TW202223576A - 用於氣體輸送健康監測的參數感測和電腦建模 - Google Patents
用於氣體輸送健康監測的參數感測和電腦建模 Download PDFInfo
- Publication number
- TW202223576A TW202223576A TW110135126A TW110135126A TW202223576A TW 202223576 A TW202223576 A TW 202223576A TW 110135126 A TW110135126 A TW 110135126A TW 110135126 A TW110135126 A TW 110135126A TW 202223576 A TW202223576 A TW 202223576A
- Authority
- TW
- Taiwan
- Prior art keywords
- processing
- computer
- gas
- sensors
- generated model
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D18/00—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Mathematical Analysis (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Fluid Mechanics (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
一種方法包括:從沿著輸送管線定位的多個感測器接收量測資料,該輸送管線將液體作為氣體輸送到氣體面板或處理腔室的一者;使用電腦生成的模型模擬與輸送管線及在輸送管線周圍定位的複數個加熱器護套相關聯的一或多個處理參數;將量測資料與一或多個處理參數的值進行比較;以及基於在量測資料與一或多個處理參數的值之間的至少閾值偏差,決定存在與維持輸送管線內的溫度與液體的氣態一致相關聯的故障。
Description
本說明書通常係關於到處理腔室的氣體輸送。更具體地,本說明書係關於用於氣體輸送健康監測的參數感測及電腦建模。
製造現代材料經常涉及各種沉積技術,諸如化學氣相沉積(chemical vapor deposition; CVD)或物理氣相沉積(physical vapor deposition; PVD)技術,其中一或多種所選類型的原子或分子在晶圓(基板)上沉積,該晶圓保持在藉由真空處理(例如,沉積、蝕刻等)腔室提供的低或高真空環境中。例如,CVD沉積製程用於廣泛範圍的應用。此等應用範圍從圖案化膜到在電晶體結構中並且在形成電路的導電金屬層之間的絕緣材料。應用包括淺溝槽隔離、預金屬介電質、金屬間介電質、及鈍化。其等亦在應變工程中採用,該應變工程使用壓縮或拉伸應力膜以經由改進的導電性來增強電晶體效能。取決於待在基板上沉積的薄膜的類型,將前驅物(氣體或液體)輸送到處理腔室,其中熱氧化或反應導致沉積期望的膜。
前驅物(以及其他液體)藉由在半導體製造期間將各種類型的反應氣體引入處理(或反應)腔室中來引起化學反應。在CVD處理中,越來越偏好使用液體前驅物替代氣體。液體前驅物的普及性部分基於使其比氣體前驅物的危害性、可燃性、腐蝕性及毒性更小的物理性質。例如,在製造半導體裝置時使用的更常見液體之一係正矽酸乙酯(TEOS),其頻繁替代矽烷。利用TEOS,可以沉積不具有可偵測缺陷的保形二氧化矽(SiO
2)膜,該等膜具有與矽烷相比更佳的階梯覆蓋率及小得多的危害。在金屬有機CVD(MOCVD)製程中,經常使用用於金屬(諸如銅)的液體前驅物,因為氣體前驅物係不可用的。
因為液體前驅物(及其他處理液體)為第一液體,將其等轉化為氣態以穿過傳輸管線將前驅物作為氣體輸送。在製造操作或輸送管線環境中的故障(特別係影響溫度及壓力的故障)可以導致輸送管線中的一些氣體冷凝。此種冷凝可以吸收顆粒並且將其攜帶到處理腔室中及在基板上沉積顆粒,從而在基板及任何所得的製造裝置上導致顆粒缺陷。
在一個實現方式中,揭示了一種方法,該方法包括從沿著輸送管線定位的多個感測器接收量測資料,該輸送管線將液體作為氣體輸送到氣體面板或處理腔室的一者。方法進一步包括使用在處理裝置上執行的電腦生成的模型來模擬與輸送管線及在輸送管線周圍定位的複數個加熱器護套相關聯的一或多個處理參數。方法進一步包括藉由處理裝置將量測資料與一或多個處理參數的值進行比較。方法進一步包括藉由處理裝置基於在量測資料與一或多個處理參數的值之間的至少閾值偏差來決定存在與維持輸送管線內的溫度與液體的氣態一致相關聯的故障。
在另一實現方式中,揭示了一種系統,包括記憶體及可操作地耦接到記憶體的處理裝置,用於從沿著處理子系統定位的複數個感測器接收量測資料,該處理子系統將液體作為氣體輸送到處理腔室。處理裝置進一步執行電腦生成的模型來模擬與處理子系統相關聯的一或多個處理參數。處理裝置進一步將量測資料與一或多個處理參數的值進行比較。處理裝置進一步基於在量測資料與一或多個處理參數的值之間的至少閾值偏差來決定存在與維持處理子系統內的溫度及壓力與液體的氣態一致相關聯的故障。
在另一實現方式中,揭示了一種儲存指令的非暫時性電腦可讀取儲存媒體,該等指令當由處理裝置執行時,導致處理裝置執行複數個操作,包括從沿著輸送管線定位的多個感測器接收量測資料,該輸送管線將液體作為氣體輸送到處理腔室。操作進一步包括藉由執行電腦生成的模型來模擬與輸送管線及在輸送管線周圍定位的複數個加熱器護套相關聯的一或多個處理參數。操作進一步包括將量測資料與一或多個處理參數的值進行比較。操作進一步包括基於在量測資料與一或多個處理參數的值之間的至少閾值偏差來決定存在與維持輸送管線內的溫度及壓力與液體的氣態一致相關聯的故障。
本文揭示的實現方式提供了用於前驅物及其他氣體輸送健康監測的參數感測及電腦建模。例如,前驅物(諸如TEOS)在室溫下係沸點為168℃的液體。因此,TEOS係一般在經過氣體面板之後以氣體形式輸送到處理腔室的液體前驅物。因此,使用諸如沸騰、起泡、或注入的方法來將前驅物轉化為氣態。為了防止氣態前驅物的冷凝,輸送管線藉由使用在管線周圍纏繞的多個加熱器護套來加熱。加熱器護套的任一者的不正確安裝、加熱器護套的故障(實體損壞或控制問題)、或在預防性維護之後的加熱器護套的安裝不一致性皆可以導致氣體壓力下降到其飽和壓力以下並且在管線中冷凝的情況。冷凝繼而導致顆粒缺陷、潛在地晶圓廢料、及冗長且昂貴的計劃外維護程序。
儘管藉由實例的方式本申請案關於前驅物,本揭示可應用於將維持在溫度範圍內以便避免冷凝回到液體狀態的任何氣體。例如,氣體可以位於前級氣體管線(其中氣體正進入處理腔室)或排放氣體管線(其中處理氣體正離開處理腔室)內,並且沉積作為液體的氣體將在氣體管線內及氣體輸送系統中的其他地方避免。防止此類型的向液體的轉化及在輸送管線內的對應沉積可以防止堵塞或其他不利的泵送效能。
由此,為了解決當前採用呈氣態的液體的技術中的此等缺陷,本實現方式追蹤關於將液體保持在此氣態的參數。例如,參數可為下列參數的一或多者:溫度、壓力、氣體的濃度、氣體的流動速率、及/或加熱器護套的功率輸出。更具體地,本實現方式採用計算裝置來校準或機器學習電腦生成的模型,該電腦生成的模型係基於物理學並且經由預測一或多個此等參數來表徵輸送管線及加熱器護套隨著時間推移的實體系統。
在各個實現方式中,計算裝置可以隨後將預測的參數的值與從沿著輸送管線定位(例如,附接)的多個感測器接收的量測資料進行比較。若針對一參數的預測值與量測資料值之間存在至少滿足閾值偏差的變化,計算裝置偵測到故障。在一些實現方式中,可以組合針對多於一個參數的預測值及量測值。計算裝置可以進一步決定(或識別)此至少在參數的量測資料與預測值之間的閾值偏差的偏差模式。計算裝置可以將偏差模式與先前已經與各種故障相關聯的預定偏差模式進行比較以決定具體故障。計算裝置可以進一步向操作者警告具體故障,並且視情況當解決具體故障並且操作者清除處理以繼續進行時,暫停處理。
此途徑可以進一步應用於較大的實體處理子系統的集合,例如,該處理子系統包括輸送管線、在輸送管線周圍定位的加熱器護套、氣體面板、及處理腔室。以此方式,電腦生成的模型可以經擴展用於預防性維護、故障偵測、或在處理腔室外部及內部關於前驅物的氣態或其他氣體的自動診斷。
在一些實現方式中,電腦生成的模型整合從感測器接收的量測資料的基於統計的分析。此外,計算裝置可以進一步使用來自沿著輸送管線(或處理子系統)定位的感測器的量測資料以執行電腦生成(例如,機器學習)模型的強化學習。強化學習及/或基於統計的分析使得能夠更新電腦生成的模型並且追蹤跨輸送管線的區段、彎管、及區域(除了跨處理子系統的其他部件之外,諸如氣體面板及處理腔室)的參數的趨勢。
所揭示的實現方式涉及使用處理腔室(其可包括沉積腔室、蝕刻腔室、及類似者)的各種製造技術,諸如化學氣相沉積技術(CVD)、物理氣相沉積(PVD)、電漿增強的CVD、電漿增強的PVD、濺射沉積、原子層CVD、燃燒CVD、催化CVD、蒸發沉積、分子束磊晶技術等等。所揭示的實現方式可在使用真空沉積腔室的技術(例如,超高真空CVD或PVD、低壓CVD等)中採用,以及在大氣壓沉積腔室中採用。
第1A 圖示出了根據一些實現方式的在到處理腔室的液體轉化及氣體輸送系統100內的健康監測的一個示例性實現方式。系統100的液體轉化部分可以包括載送氣體管線102及推動氣體管線104。載送氣體管線102可以包括流量控制閥及質量流量控制器(mass flow controller; MFC)以使載送氣體(一般為惰性氣體)進入蒸發器110中。推動氣體管線104可以包括流量控制閥、液體儲存容器114、及液體流量計(liquid flow meter; LFM)以便亦將液體輸送到蒸發器110。蒸發器110可以隨後藉由沸騰、起泡、或注入載送氣體到液體前驅物中同時用周圍加熱器加熱氣體來將液體(諸如前驅物)轉化為氣體。
在各個實現方式中,液體轉化及氣體輸送系統100包括氣體輸送系統118,該氣體輸送系統繼而包括在氣體面板124之前及之後的輸送管線120的集合,以及在輸送管線120的集合周圍定位的多個加熱器護套128。例如,輸送管線120的集合可以包括來自設施內的氣體源(例如,在所揭示的實現方式中的蒸發器110)並且耦接到氣體面板124的設施氣體管線120A的集合,及在氣體面板124與處理腔室115(或多個處理腔室)之間耦接的腔室氣體管線120B的集合。
加熱器護套128以簡化方式示出並且從輸送管線120的集合分解開,從而不混淆此等部件的示出。然而,
第 1B 圖係根據一些實現方式的包括在輸送管線120周圍定位的多個加熱器護套128A、128B、128C及128D的輸送管線120的一部分的示例性橫截面圖。換言之,多個加熱器護套完全纏繞在輸送管線120的外表面周圍。輸送管線120的長度可以因此藉由此等加熱器護套128覆蓋以保持充分加熱輸送管線120來將氣體維持在氣態。
在此等實現方式中,此等加熱器護套128A、128B、128C、及128D將各自通常包括連接到電源的一或多個加熱元件132並且具有可以作為量測資料追蹤的功率輸出。每個加熱器護套128將通常亦包括至少一個熱電偶136(例如,溫度感測器)以追蹤加熱器護套的溫度。在一些實現方式中,加熱器護套包括在電源與加熱器護套之間耦接的功能如同恆溫器的閉環控制。當加熱器護套128達到目標溫度時,熱電偶136使輸送到加熱器護套的功率變平。熱電偶136可以隨後週期性地量測加熱器護套的溫度,並且當溫度下降到閾值溫度值以下時,可以再次增加輸送到加熱器護套的功率,直到達到目標溫度。
第1C 圖示出了根據一個實現方式的在氣體面板124內部及外部定位的輸送管線120的集合。如所示出,進入氣體面板124的輸送管線120的集合可為多個設施氣體管線120A或如所論述從設施氣體管線運行的饋送件。離開氣體面板124的輸送管線120的集合可為在氣體面板124與處理腔室(諸如處理腔室115)之間耦接的腔室氣體管線120B的集合。腔室氣體管線120B的末端可以附接到腔室氣體饋通138,該等腔室氣體饋通附接到多個處理腔室。
在一些實施例中,輸送管線120的集合係以區段或區域識別並且包括各個彎管、彎曲、及其他方向改變。輸送管線120的集合的此等非線性特徵使得利用加熱器護套128完全及可靠地覆蓋輸送管線120的集合的全部外表面更加具有挑戰性。另外,在預防性(或要求的不定期)維護期間,加熱器護套128從輸送管線120的集合移除。若此等加熱器護套128沒有在有時係氣體輸送系統118的擁擠空間中適當地重新安裝在輸送管線120的集合周圍,則輸送管線120可仍至少部分地暴露於周圍空氣。此暴露可以導致在彼等區域中不正確的溫度變化,並且因此導致在輸送管線的至少部分內氣體冷凝回到液體狀態的風險。
作為具體實例,
第 2A 圖係根據一些實現方式的攜帶不同氣體的雙重輸送管線220的示例性橫截面。雙重輸送管線220包括攜帶TEOS及氬氣(Ar)氣體的頂部輸送管線及攜帶氧化亞氮(N
2O)的底部輸送管線。注意到,各個淺色箭頭指示來自在雙重輸送管線220周圍定位的加熱器護套228的熱流。例如,熱量從加熱器護套228流動到雙重輸送管線220的不鏽鋼(或其他金屬)管道。熱量亦跨每個輸送管線的兩個區段流動,直到熱量亦在雙重輸送管線220之間的間隙中流動。在雙重輸送管線220內,熱量亦從加熱的氣體流動到雙重輸送管線220的不鏽鋼管道。將更詳細論述的基於物理學的模型可在流體動力學及熱傳遞方程式中考慮到此等表面因素(包括接觸電阻)、及的氣體本身。
第 2B 圖係根據一實現方式示出蒸汽壓力如何隨著頂部輸送管線中的TEOS的溫度變化的實例的圖表。因此,溫度本身影響輸送管線內的壓力,該壓力將保持足夠恆定並且高於飽和壓力以便避免冷凝。
額外參考
第 1A 圖,多個感測器140沿著氣體輸送系統118定位,包括沿著輸送管線120的集合並且視情況亦在氣體面板124及處理腔室115(將一起在本文中稱為處理子系統)內部。
第 1C 圖示出了一些此等感測器140的潛在位置,作為在沿著輸送管線120的集合的各個位置處重疊的星形。在一個實現方式中,感測器140係同步並且耦接到計算裝置101的溫度感測器的集合,該計算裝置包括可操作地耦接到處理裝置(參見
第 7 圖)的記憶體。感測器140可以經由有線連接耦接及/或與計算裝置101無線地耦接。在替代實施例中,計算裝置101係或包括從感測器140本端地定位的邊緣裝置。
在各個實現方式中,此等感測器140可以包括下列的一或多者:熱電偶、壓力感測器、濃度感測器、光學感測器、氣體流量感測器、或加熱器護套功率輸出感測器。因此,一些感測器140附接到輸送管線120,而其他感測器定位或附接到輸送管線的內部,在氣體面板124內及/或在處理腔室115內。溫度感測器可以偵測溫度,該溫度如參考
第 2B 圖論述與壓力有關。或替代地,壓力可以直接藉由壓力感測器量測。輸送管線中的壓力可以與特定氣體(例如,前驅物)混合物相關聯並且決定其是否下降到其飽和壓力以下,並且因此冷凝。
在有關或不同的實現方式中,濃度感測器可以感測輸送管線中的氣體濃度,其可為偵測冷凝的另一方式。例如,濃度感測器可為壓電錐。或者,可以使用光學感測器,諸如層析感測器或非色散紅外(nondispersive infrared; NDIR)感測器,其中氣體的濃度與對特定波長的吸收成比例並且可以識別掃描的氣體中的特定化合物。光學感測器可以因此偵測液體的相位改變,該相位改變指示冷凝。加熱器護套功率輸出感測器可以耦接到加熱器護套並且偵測與電力的期望位準的異常或其他偏差,該偏差可以指示有缺陷的加熱器護套。
在各個實施例中,
第 1A 圖中的計算裝置101可以執行在記憶體中儲存的指令以實例化計算裝置101的各個模組或部件,包括感測器控制模組(sensor control module; SCM) 150、感測器統計模組(sensor statistic module; SSM) 152、機器學習模組(machine learning module; MLM) 154、及故障偵測模組(fault detection module; FDM) 170。在一些實施例中包括機器學習模型的電腦生成的模型可以儲存在記憶體中,並且在用於氣體輸送健康監測的參數感測及電腦建模期間參考。
SCM 150可以啟動感測器、停用感測器、將感測器置於閒置狀態、改變感測器的設置、偵測感測器硬體或軟體問題等等。在一些實現方式中,SCM 150可以保持追蹤藉由系統100執行的處理操作,並且決定哪些感測器140將經取樣用於系統100的特定處理(或診斷、維護等)操作。
SSM 152可以處理藉由SCM 150從感測器140獲得的原始資料並且決定表示原始資料的統計。例如,針對原始感測器資料分佈的每一者或一些,SCM 150可以決定分佈的一或多個參數,諸如資料分佈的均值、中值、模式、上限、下限、方差(或標準偏差)、偏度(第三力矩)、峰度(第四力矩)、或任何另外的力矩或累積量。在一些實現方式中,SCM 150可以用各種模型分佈(常態分佈、對數常態分佈、二項分佈、帕松分佈、伽瑪分佈、或任何其他分佈)對原始資料建模(例如,經由迴歸分析擬合)。在此種實現方式中,一或多個參數可以包括與藉由SCM 150決定的擬合參數一起使用的擬合分佈的識別。
在一些實現方式中,SCM 150可以使用多個分佈來擬合來自一個感測器的原始資料,例如,針對離群值資料點的主要分佈及尾端分佈。藉由SCM 150獲得的分佈的參數可為特定於感測器的。例如,對於一些感測器,可以決定少量的參數(均值、中值、方差),而對於一些感測器,可以決定更多的(例如,10或20個)力矩。
在各個實現方式中,電腦生成的模型160包括下列的至少一者:與輸送管線或與處理子系統相關聯的流體動力學方程式、熱傳遞方程式、及/或熱接觸電阻方程式。熱傳遞方程式可為至少三種類型,包括但不限於熱傳導、熱對流、及熱輻射。熱接觸電阻方程式可以對在彼此接觸的兩個表面之間的較不完美的熱傳遞(例如,傳導)建模,如可為各種感測器的情況。設想了其他基於熱力學或物理學的方程式。電腦生成的模型可為至少一些此等方程式的聚集或混合。
在一些實現方式中,計算裝置101可以校準電腦生成的模型160,如將參考
第 4圖更詳細論述。在其他實現方式中,計算裝置101的MLM 154可以使用訓練資料集作為輸入來訓練機器學習模型,該訓練資料集藉由多個感測器140量測,並且與一或多個處理參數相關聯以提供電腦生成的模型160來替代嚴格演算法融合。機器學習模型實現方式將參考
第 5圖更詳細論述。在一些實現方式中,MLM 154位於遠端伺服器上或可以跨多個處理裝置分佈並且對訓練資料集操作以訓練機器學習模型,並且將機器學習模型發送回計算裝置101用於儲存及使用。
在各個實現方式中,FDM 170可以將預測的參數值與從沿著輸送管線120定位(例如,附接)的多個感測器140接收的量測資料進行比較。若針對一參數的預測值與量測資料的值之間存在至少滿足閾值偏差的變化,FDM 170偵測到故障。在一些實現方式中,FDM 170可以組合針對多於一個參數的預測值與量測資料值,例如,統計上或以其他方式,以便基於多於一個參數決定故障,該參數諸如溫度、壓力、氣體的濃度、氣體的流動速率、及/或加熱器護套的功率輸出。FDM 170可以進一步決定(或識別)此至少在參數的量測的資料值與預測值之間的閾值偏差的偏差模式。FDM 170可以將偏差模式與先前已經與各種故障相關聯的預定的偏差模式進行比較以決定具體故障。計算裝置101可以進一步向操作者警告具體故障,並且視情況當解決具體故障並且操作者清除處理以繼續進行時,暫停處理。
在一些實現方式中,在校準運行期間以及追蹤趨於與所識別的故障相關聯的隨著時間推移變化的參數值期間,可以將額外或更細微的變化模式與具體故障相關聯並且儲存在例如計算裝置101的記憶體的表或其他資料結構中。FDM 170可以在自動診斷或後預防性維護分析期間存取此表或資料結構,以決定是否偵測到故障。FDM 170可以決定的具體故障包括但不限於:周圍空氣經過加熱器護套128洩漏,與輸送管線120直接接觸;缺乏對氣體的流動速率改變的敏感性;藉由電腦生成的模型160預測的氣體的分壓低於液體的飽和壓力;到複數個加熱器護套的一或多個的輸入功率在維持輸送管線內的目標溫度的預定範圍之外;在腔室歧管中的氣體的溫度低於歷史溫度值;或來自多個感測器140的一者的感測器信號中的意外波動。
以上途徑可以進一步應用於較大的實體處理子系統的集合,例如,該處理子系統包括輸送管線120(或多個輸送管線)、在輸送管線120周圍定位(例如,纏繞)的加熱器護套128、氣體面板124、及處理腔室115。以此方式,電腦生成的模型160可以經擴展用於預防性維護、故障偵測、或在處理腔室115外部及內部關於液體的氣態的自動診斷。
在一些實現方式中,電腦生成的模型160整合從感測器140接收的量測資料的基於統計的分析。此外,計算裝置101可以進一步使用來自沿著輸送管線(或處理子系統)定位的感測器的量測資料以執行電腦生成的模型160(或機器學習模型)的強化學習。強化學習及/或基於統計的分析使得能夠更新電腦生成的模型並且追蹤跨輸送管線的區段、彎管、及區域(除了處理子系統的其他部件之外,諸如氣體面板124及處理腔室115)的參數的趨勢。另外,將量測資料與一或多個處理參數的值進行比較可以包括將輸送管線的多個區段的一區段的量測資料與對應於該區段的一或多個處理參數的具體值進行比較。因此,本文論述的診斷分析可以在輸送管線120的不同區段、區域、或彎管的粒度處執行,或作為此種部件的集合執行。
此外,藉助於對電腦生成的模型160執行的強化學習及其他更新,計算裝置101可以使多個感測器140的一或多個離線。或者,例如,在預防性維護期間,當操作者存取感測器140時,可以移除多個感測器140的一或多個。此係因為電腦生成的模型160將經充分地校準或訓練以僅需要稀疏及/或不頻繁的量測資料來維持準確性。對較少感測器140的需要節省了資源並且長期簡化了系統100。
第3 圖係根據一些實現方式的監測將呈氣態的液體輸送到處理腔室的健康的方法300的流程圖。方法300可以藉由處理邏輯執行,該處理邏輯可以包括硬體(例如,處理裝置、電路系統、專屬邏輯、可程式設計邏輯、微代碼、裝置的硬體、積體電路等)、軟體(例如,在處理裝置上運行或執行的指令)、或其組合。在一些實施例中,方法300藉由
第 1A 圖至
第 2A 圖所示的系統100及部件、或其任何組合執行。方法300可以使用單個處理裝置或多個處理裝置執行。藉由虛線指示,方法300的一些操作可為可選的。在實現方式中,方法300的一些操作藉由計算裝置101的處理裝置(處理器、中央處理單元(central processing unit; CPU))執行,例如,回應於藉由故障偵測模組(FDM) 170發佈的指令。
在方法300的各個實現方式中,於操作310,處理邏輯執行用於在處理腔室115以及其他處理腔室中處理基板的方案序列,該方案序列包括計劃的閒置時間。於操作320,處理邏輯進行到方案序列的序列中的下一方案或項目。在一個實現方式中,待處理的下一方案係預防性維護恢復檢查。
於操作325,處理邏輯從沿著輸送管線定位的多個感測器140接收量測資料,該輸送管線將液體作為氣體輸送到氣體面板或處理腔室的一者。在另一實現方式中,操作325經擴展為包括從沿著處理子系統定位的多個感測器140接收量測資料,該處理子系統將液體作為氣體輸送到處理腔室。
於操作330,處理邏輯藉由執行電腦生成的模型來模擬與輸送管線120、在輸送管線周圍定位(例如,纏繞)的多個加熱器護套128相關聯的一或多個處理參數。在另一實現方式中,操作330經擴展為包括模擬跨處理子系統的部件(例如,輸送管線120、氣體面板124、多個加熱器護套128、及處理腔室115)的一或多個處理參數。在一些實現方式中,操作325及操作330並行執行。在此等及替代實現方式中,操作325及330在處理期間週期性或連續執行,以便執行至少輸送管線120及視情況處理子系統的即時診斷。
於操作340,處理邏輯將量測資料(來自多個感測器140)與一或多個處理參數的值進行比較。此比較可為例如從多個感測器140接收的第一信號與藉由執行電腦生成的模型160的計算裝置101產生的第二信號的比較。
於操作350,處理邏輯決定在量測資料與一或多個處理參數的值之間的差是否滿足至少閾值偏差。若是,則進行到操作350,隨後於操作352,此閾值偏差可以觸發處理邏輯決定已經偵測到故障並且觸發校正動作。例如,於操作355,處理邏輯可以回應於故障決定而暫停處理(例如,在處理腔室115內)。亦可以採取其他校正動作,諸如藉由增加到加熱器護套的功率來補償加熱器護套中的溫度偏差、及類似者。若未偵測到至少閾值偏差,則處理邏輯可以循環回到操作310,其中執行方案序列中的下一處理步驟,而沒有中斷。
額外參考
第 3 圖,於操作360,處理邏輯決定在量測資料與一或多個處理參數的值之間的至少閾值偏差的偏差模式。於操作370,處理邏輯決定偏差模式是否對應於任何一或多個預定故障,其參考
第 1A 圖論述並且可以在計算裝置101的記憶體中的表或其他資料結構中存取。若操作370產生否定回應,則於操作380,處理邏輯向操作者警告已知故障,例如,已決定的具體故障。若操作370產生肯定回應,則於操作390,處理邏輯向操作者警告未知故障。此種未知故障可為執行預防性維護或進行額外診斷步驟以嘗試驗證未知故障的充分原因。處理邏輯可以經由耦接到計算裝置101的處理裝置的輸入/輸出(I/O)裝置向操作者發送或發佈此等警告。
在任一情況下,於操作395,處理邏輯可以等待操作者輸入(例如,經由I/O裝置),該輸入指示在繼續處理之前進行。此可以迫使處理邏輯進入安全週期(類似於操作355處執行的暫停的緊急停止),直到操作者在已驗證了已解決故障之後手動地插入命令以繼續進行。
第4 圖係根據一些實現方式的用於產生及校準電腦生成的模型的方法400的流程圖。方法400可以藉由處理邏輯執行,該處理邏輯可以包括硬體(例如,處理裝置、電路系統、專屬邏輯、可程式設計邏輯、微代碼、裝置的硬體、積體電路等)、軟體(例如,在處理裝置上運行或執行的指令)、或其組合。在一些實施例中,方法400藉由
第 1A 圖至
第 2A 圖所示的系統100及部件、或其任何組合執行。方法400可以使用單個處理裝置或多個處理裝置執行。藉由虛線指示,方法400的一些操作可為可選的。在實現方式中,方法400的一些操作藉由計算裝置101的處理裝置(處理器、中央處理單元(CPU))執行。
於操作410,處理邏輯結合用於與氣體輸送管線(或處理子系統)相關聯的流體動力學、熱傳遞、及/或視情況熱接觸電阻的演算法以產生電腦生成的模型。於操作420,處理邏輯從多個感測器140接收基線量測的資料集。當系統100第一次在線時或在系統100的預防性維護及重置之後,可以獲得基線量測資料。
於操作430,處理邏輯將資料集輸入到電腦生成的模型中,例如,出於校準的目的。於操作440,處理邏輯執行電腦生成的模型來基於輸入資料集預測一或多個故障。以此方式,處理邏輯係使用基線量測資料校準電腦生成的額模型160,該基線量測資料與量測資料的經更新的資料集進行比較(或從量測資料的經更新的資料集獲得推論)。於操作450,處理邏輯出於校準目的將藉由電腦生成的模型預測的故障與產生的已知故障進行比較。
於操作460,處理邏輯基於比較來決定於操作450決定的預測是否係正確的。例如,可以決定預測以確保電腦生成的模型160預測故障在準確度的閾值位準內,例如,並且因此係正確預測。若於操作450決定的預測係正確的,則於操作470,處理邏輯輸出經校準的模型作為用於輸送管線120及/或處理子系統的故障診斷中的電腦生成的模型160。儘管暫時於操作470完成,方法400可以使用在中期接收的歷史量測資料來在稍後日期重複,並且藉此基於在一時間段期間接收的量測資料來生產經更新的校準模型。若於操作450決定的預測係不正確的,則於操作480,處理邏輯基於預測失敗來更新電腦生成的模型,並且循環回到操作410以繼續校準電腦生成的模型。
第5 圖係根據一些實現方式的用於訓練機器學習模型以預測液體轉化及氣體輸送系統中的故障的方法500的流程圖。方法500可以藉由處理邏輯執行,該處理邏輯可以包括硬體(例如,處理裝置、電路系統、專屬邏輯、可程式設計邏輯、微代碼、裝置的硬體、積體電路等)、軟體(例如,在處理裝置上運行或執行的指令)、或其組合。在一些實施例中,方法500藉由
第 1A 圖至
第 2A 圖所示的系統100及部件、或其任何組合執行。方法500可以使用單個處理裝置或多個處理裝置執行。藉由虛線指示,方法500的一些操作可為可選的。在實現方式中,方法500的一些操作藉由計算裝置101的處理裝置(處理器、中央處理單元(CPU))執行,例如,回應於藉由機器學習模組(MLM) 154發佈的指令。
於操作510,處理邏輯初始化(或更新,若方法500的稍後迭代)未訓練的機器學習模型。於操作520,處理邏輯從多個感測器140接收量測資料的訓練資料集。取決於機器學習模型的焦點,此量測資料可以來自不同類型的感測器或多種類型的感測器。在一個實現方式中,機器學習模型的焦點係預測單個參數,諸如溫度,並且此可針對不同參數(諸如加熱器護套128的壓力、氣體濃度、或功率輸出)多次執行。在另一實現方式中,機器學習模型的焦點係預測參數的組合,該等參數可以關於例如溫度及壓力或從光學感測器偵測的濃度及成分分子。
於操作530,處理邏輯將訓練資料集輸入到未訓練的機器學習模組中。於操作540,處理邏輯訓練未訓練的機器學習模組以產生至少部分訓練的機器學習模型。於操作550,處理邏輯出於監督學習的目的將(至少部分地)藉由訓練的機器學習模型預測的故障與產生的已知故障進行比較。
繼續參考
第 5 圖,於操作560,處理邏輯決定於操作550決定的預測是否匹配處理邏輯與其進行比較的已知故障。若預測係不正確的,則處理邏輯循環回到操作510以繼續(至少部分地)訓練仍未訓練的機器學習模型。然而,若預測係正確的,則於操作570,處理邏輯輸出經訓練的機器學習模型作為用於氣體輸送管線120及/或先前論述的處理子系統的故障診斷中的電腦生成的模型160。
第 6 圖係根據一實現方式示出與一或多個處理參數的電腦生成的模型相比的感測器量測資料並且可以由其產生變化模式的圖表集合。例如,感測器量測資料605(出於示例性目的為溫度)的集合從至少一個感測器接收,在輸送管線120的第四彎管處識別為Ch36(C)。此感測器量測資料605可以相對於氣體流動(例如,前驅物液體的氣態的流動速率)繪圖。感測器量測資料605可以隨後在單個圖表607上繪製,該圖表經示出為下線。電腦生成的模型160(或機器學習模型)可以將其自身的預測值輸出到單個圖表607上,如在此情況中的上線。注意到,儘管在上線與下線之間存在對應性,但是存在可以被認為足夠顯著以被認為係故障的一些偏差,特別係如在開始及拐點處隨著時間看到。計算裝置101可以藉由從上線減去下線來生成偏差模式,該偏差模式可以隨後在與預儲存的偏差模式進行比較時使用以決定偏差模式是否匹配許多可能故障的一者。
第 7 圖描繪了根據本揭示的一或多個態樣操作並且更夠根據各個實現方式進行用於氣體輸送健康監測的參數感測及電腦建模的示例計算裝置700的方塊圖。在一個實現方式中,計算裝置700可為
第 1 圖的計算裝置101或計算裝置101的微控制器。
示例計算裝置700可以連接到LAN、網內網路、網外網路、及/或網際網路中的其他處理裝置。計算裝置700可為個人電腦(personal computer; PC)、機上盒(set-top box; STB)、伺服器、網路路由器、開關或橋接器、或能夠執行指令集(連續或以其他方式)的任何機器,該指令集規定由彼裝置採取的動作。另外,儘管僅示出單個示例的處理裝置,術語「處理裝置」亦應當被認為包括處理裝置(例如,電腦)的任何集合,該等處理裝置獨立或聯合地執行指令集(或多個指令集)以執行本文論述的任何一或多種方法。
示例計算裝置700可以包括處理裝置702(例如,CPU)、主記憶體704(例如,唯讀記憶體(read-only memory; ROM)、快閃記憶體、動態隨機存取記憶體(dynamic random access memory; DRAM)諸如同步DRAM(SDRAM)等)、靜態記憶體706(例如,快閃記憶體、靜態隨機存取記憶體(static random access memory; SRAM)等)、及輔助記憶體(例如,資料儲存裝置718),其等經由匯流排730彼此通訊。
處理裝置702表示一或多個通用處理裝置,諸如微處理器、中央處理單元、或類似者。更特定地,處理裝置702可為複雜指令集計算(complex instruction set computing; CISC)微處理器、精簡指令集計算(reduced instruction set computing; RISC)微處理器、極長指令詞(very long instruction word; VLIW)微處理器、實施其他指令集的處理器、或實施指令集的組合的處理器。處理裝置702亦可為一或多個專用處理裝置,諸如特殊應用積體電路(application specific integrated circuit; ASIC)、場可程式設計閘陣列(field programmable gate array; FPGA)、數位信號處理器(digital signal processor; DSP)、網路處理器、或類似者。根據本揭示的一或多個態樣,處理裝置702可以經配置為執行實現監測呈氣態的液體的輸送健康的方法300及/或方法400及500的指令。
示例計算裝置700可以進一步包括網路介面裝置708,該網路介面裝置可以通訊地耦接到網路720。示例計算裝置700可以進一步包括視訊顯示器710(例如,液晶顯示器(liquid crystal display; LCD)、觸控式螢幕、或陰極射線管(cathode ray tube; CRT))、字母數字輸入裝置712(例如,鍵盤)、輸入控制裝置714(例如,游標控制裝置、觸控式螢幕控制裝置、滑鼠)、及信號生成裝置716(例如,聲學揚聲器)。
計算裝置可以包括資料儲存裝置718,包括其上儲存可執行指令722的一或多個集合的電腦可讀取儲存媒體(或更具體地,非暫時性電腦可讀取儲存媒體)728。根據本揭示的一或多個態樣,可執行指令722可以包括實現監測呈氣態的液體的輸送健康的方法300及/或方法400及500的可執行指令。
可執行指令722亦可在其執行期間藉由亦構成電腦可讀取儲存媒體的示例計算裝置700、主記憶體704及處理裝置702完全或至少部分擱置在主記憶體704內及/或處理裝置702內。可執行指令722可以進一步在網路上經由網路介面裝置708發送或接收。
儘管在
第 7 圖中將電腦可讀取儲存媒體728圖示為單個媒體,術語「電腦可讀取儲存媒體」(或「儲存指令的非暫時性電腦可讀取媒體」)應當被認為包括儲存操作指令的一或多個集合的單個媒體或多個媒體(例如,集中式或分散式資料集、及/或相關聯的快取記憶體及伺服器)。術語「電腦可讀取儲存媒體」(或「儲存指令的非暫時性電腦可讀取媒體」)亦應當被認為包括能夠儲存或編碼指令集用於由機器執行的任何媒體,該指令集導致機器執行本文描述的任何一或多個方法。術語「電腦可讀取儲存媒體」(或「非暫時性電腦可讀取媒體」)由此應當被認為包括但不限於固態記憶體、以及光學及磁性媒體。
應當理解,以上描述意欲為說明性而非限制性的。在讀取及理解以上描述之後,許多其他實現方式實例將對熟習此項技術者顯而易見。儘管本揭示描述了具體實例,將認識到,本揭示的系統及方法不限於本文描述的實例,但可以在所附申請專利範圍的範疇內以修改實踐。由此,說明書及附圖被認為係說明性意義而非限制性意義。由此,本揭示的範疇應當參考隨附申請專利範圍連同此種申請專利範圍所賦予的等效物的全部範疇來決定。
上文闡述的方法、硬體、軟體、韌體或代碼的實現方式可以經由在可藉由處理元件執行的機器可存取、機器可讀取、電腦可存取、或電腦可讀取媒體上儲存的指令或代碼來實現。「記憶體」包括提供(亦即,儲存及/或發送)資訊的任何機制,該資訊呈可藉由機器(諸如電腦或電子系統)讀取的形式。例如,「記憶體」包括隨機存取記憶體(random-access memory; RAM),諸如靜態RAM(SRAM)或動態RAM(DRAM);ROM;磁性或光學儲存媒體;快閃記憶體裝置;電氣儲存裝置;光學儲存裝置;聲學儲存裝置,及適用於儲存或發送呈可藉由機器(例如,電腦)讀取的形式的電子指令或資訊的任何類型的有形機器可讀取媒體。
在此說明書全文中提及「一個實現方式」或「一實現方式」意味著結合該實現方式描述的特定特徵、結構、或特性包括在本揭示的至少一個實現方式中。因此,在此說明書全文的各個位置中出現片語「在一個實現方式中」或「在一實現方式中」不必皆指相同實現方式。此外,特定特徵、結構、或特性可以任何適宜方式結合在一或多個實現方式中。
在前述說明書中,詳細描述已經參考具體示例性實現方式來給出。然而,將證實,可以對其進行各種修改及改變,而不脫離如在隨附申請專利範圍中闡述的本揭示的更廣精神及範疇。說明書及附圖由此被認為係說明性意義而非限制性意義。此外,實現方式、實現、及/或其他示例性語言的前述使用不必指相同的實現方式或相同的實例,而是可以指不同及相異的實現方式,以及潛在地相同的實現方式。
詞語「實例」或「示例性」在本文中用於意謂用作實例、示例、或說明。本文描述為「實例」或「示例性」的任何態樣或設計不必解釋為相比於其他態樣或設計優選或有利。而是,使用詞語「實例」或「示例性」意欲以具體方式提供概念。如在本申請案中使用,術語「或」意欲意味著包括性「或」而非排除性「或」。亦即,除非另外聲明,或從上下文清楚,「X包括A或B」意欲意味著任何自然包括的置換。亦即,若X包括A;X包括B;或X包括A及B兩者,則「X包括A或B」在任何前述情況下得到滿足。此外,如在此申請案及隨附的申請專利範圍中使用的冠詞「一(a/an)」應當通常解釋為意味著「一或多個」,除非另外聲明或從上下文清楚可知涉及單數形式。此外,在全文中使用術語「一實現方式」或「一個實現方式」或「一實現方式」或「一個實現方式」不意欲意味著相同的實現方式或實現方式,除非如此描述。此外,如本文使用,術語「第一」、「第二」、「第三」、「第四」等意味著在不同元件之中進行區分的標記並且不一定具有根據其數字命名的序數意義。
100:液體轉化及氣體輸送系統
101:計算裝置
102:載送氣體管線
104:推動氣體管線
110:蒸發器
114:液體儲存容器
115:處理腔室
118:氣體輸送系統
120:輸送管線
120A:設施氣體管線
120B:腔室氣體管線
124:氣體面板
128:加熱器護套
128A:加熱器護套
128B:加熱器護套
128C:加熱器護套
128D:加熱器護套
132:加熱元件
136:熱電偶
138:腔室氣體饋通
140:感測器
150:感測器控制模組(SCM)
152:感測器統計模組(SSM)
154:機器學習模組(MLM)
160:電腦生成的模型
170:故障偵測模組(FDM)
220:雙重輸送管線
228:加熱器護套
300:方法
310:操作
320:操作
325:操作
330:操作
340:操作
350:操作
352:操作
355:操作
360:操作
370:操作
380:操作
390:操作
395:操作
400:方法
410:操作
420:操作
430:操作
440:操作
450:操作
460:操作
470:操作
480:操作
500:方法
510:操作
520:操作
530:操作
540:操作
550:操作
560:操作
570:操作
605:感測器量測資料
607:圖表
660:電腦生成(或經訓練的機器學習)模型
700:計算裝置
702:處理裝置
704:主記憶體
706:靜態記憶體
708:網路介面裝置
710:視訊顯示器
712:字母數字輸入裝置
714:輸入控制裝置
716:信號生成裝置
718:資料儲存裝置
720:網路
722:可執行指令
726:處理邏輯
728:電腦可讀取儲存媒體
730:匯流排
LFM:液體流量計
MFC:質量流量控制器
第 1A 圖示出了根據一些實現方式的在到處理腔室的液體轉化及氣體輸送系統內的健康監測的一個示例性實現方式。
第 1B 圖係根據一些實現方式的包括在輸送管線周圍定位的多個加熱器護套的輸送管線的一部分的示例性橫截面圖。
第 1C 圖示出了根據一個實現方式的在氣體面板內部及外部定位的輸送管線。
第 2A 圖係根據一些實現方式的攜帶不同氣體的雙重輸送管線的示例性橫截面。
第 2B 圖係根據一實現方式示出蒸汽壓力如何隨著輸送管線中的正矽酸乙酯(TEOS)的溫度變化的實例的圖表。
第 3 圖係根據一些實現方式的用於監測將呈氣態的液體輸送到處理腔室的健康的方法的流程圖。
第 4 圖係根據一些實現方式的用於產生及校準電腦生成的模型的方法的流程圖。
第 5 圖係根據一些實現方式的用於訓練機器學習模型以預測液體轉化及氣體輸送系統中的故障的方法的流程圖。
第 6 圖係根據一實現方式示出與一或多個處理參數的電腦生成的模型相比的感測器量測資料並且可以由其產生變化模式的圖表集合。
第7 圖描繪了根據本揭示的一或多個態樣操作並且能夠根據各個實現方式進行用於氣體輸送健康監測的參數感測及電腦建模的示例計算裝置的方塊圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記)
無
國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記)
無
100:液體轉化及氣體輸送系統
101:計算裝置
102:載送氣體管線
104:推動氣體管線
110:蒸發器
114:液體儲存容器
115:處理腔室
118:氣體輸送系統
120:輸送管線
120A:設施氣體管線
120B:腔室氣體管線
124:氣體面板
128:加熱器護套
132:加熱元件
136:熱電偶
138:腔室氣體饋通
140:感測器
150:感測器控制模組(SCM)
152:感測器統計模組(SSM)
154:機器學習模組(MLM)
160:電腦生成的模型
170:故障偵測模組(FDM)
Claims (21)
- 一種方法,包含以下步驟: 從沿著一輸送管線定位的多個感測器接收量測資料,該輸送管線將一液體作為一氣體輸送到一氣體面板或一處理腔室的一者; 使用在一處理裝置上執行的一電腦生成的模型來模擬與該輸送管線及定位在該輸送管線周圍的複數個加熱器護套相關聯的一或多個處理參數; 藉由該處理裝置將該量測資料與該一或多個處理參數的值進行比較;以及 藉由該處理裝置基於在該量測資料與該一或多個處理參數的該等值之間的至少一閾值偏差來決定存在與維持該輸送管線內的溫度與該液體的一氣態一致相關聯的一故障。
- 如請求項1所述之方法,進一步包含以下步驟:回應於決定該故障存在,觸發一校正動作。
- 如請求項1所述之方法,回應於該決定該故障之步驟,進一步包含以下步驟: 暫停該處理腔室內的處理; 經由耦接到該處理裝置的一輸入/輸出裝置向一操作者警告該故障;以及 等待經由該輸入/輸出裝置從該操作者的輸入,該輸入指示在繼續該處理之前進行。
- 如請求項1所述之方法,其中該一或多個處理參數係下列的至少一者:該氣體的溫度、壓力、濃度,或該複數個加熱器護套的功率輸出,其中該方法進一步包含以下步驟:使用藉由該多個感測器量測並且與該一或多個處理參數相關聯的一訓練資料集作為輸入來訓練一機器學習模型以提供該電腦生成的模型。
- 如請求項1所述之方法,其中該電腦生成的模型包含下列的至少一者:與該輸送管線相關聯的流體動力學方程式、熱傳遞方程式、及/或熱接觸電阻方程式。
- 如請求項1所述之方法,其中該輸送管線包含複數個區段,包括彎管及區域,並且其中比較包含以下步驟:將該複數個區段的一區段的該量測資料與對應於該區段的該一或多個處理參數的一具體值進行比較。
- 如請求項1所述之方法,其中該方法進一步包含以下步驟: 基於該一或多個處理參數的該等值執行強化學習以更新該電腦生成的模型,同時在該處理腔室內處理;以及 移除或使該多個感測器的一或多個離線中的一者。
- 如請求項1所述之方法,進一步包含以下步驟: 決定在該量測資料與該一或多個處理參數的該等值之間的該至少一閾值偏差的一偏差模式;以及 決定對應於該一或多個處理參數的該偏差模式的一具體故障。
- 如請求項8所述之方法,其中該具體故障包含下列的至少一者: 周圍空氣經過該複數個加熱器護套的洩漏,與該輸送管線直接接觸; 缺乏對該氣體的流動速率改變的敏感性; 藉由該電腦生成的模型預測的該氣體的分壓低於該液體的一飽和壓力; 到該複數個加熱器護套的一或多個的一輸入功率在維持該輸送管線中的一目標溫度的一預定範圍之外;或 來自該多個感測器的一者的一感測器信號的意外波動。
- 一種系統,包含: 一記憶體;以及 一處理裝置,可操作地耦接到該記憶體,用於: 從沿著一處理子系統定位的複數個感測器接收量測資料,該處理子系統將一液體作為一氣體輸送到一處理腔室; 執行一電腦生成的模型,模擬與一處理子系統相關聯的一或多個處理參數; 將該量測資料與該一或多個處理參數的值進行比較;以及 基於在該量測資料與該一或多個處理參數的該等值之間的至少一閾值偏差,決定存在與維持該處理子系統內的溫度及壓力與該液體的一氣態一致相關聯的一故障。
- 如請求項10所述之系統,其中該處理裝置進一步使用該複數個感測器的基線量測資料校準該電腦生成的模型以確保該電腦生成的模型在準確度的一閾值位準內預測該故障。
- 如請求項10所述之系統,其中該電腦生成的模型包含下列的至少一者:與該處理子系統及從該複數個感測器接收的量測資料的基於統計的分析相關聯的流體動力學方程式、熱傳遞方程式、及/或熱接觸電阻方程式。
- 如請求項10所述之系統,進一步包含該處理子系統,其包含: 輸送管線的一集合的一輸送管線,用於攜帶該液體作為該氣體; 一氣體面板,耦接到輸送管線的該集合,該氣體面板用於穿過該輸送管線將該氣體饋送到該處理腔室中; 複數個加熱器護套,在該輸送管線周圍定位以維持該輸送管線的該溫度及壓力,諸如將該液體維持在該氣態;以及 該處理腔室。
- 如請求項13所述之系統,其中該複數個感測器包含下列的一或多個:一熱電偶、一壓力感測器、一光學感測器、一濃度感測器、一氣體流量感測器、或一加熱器護套功率輸出感測器,並且該處理裝置進一步使用藉由該複數個感測器量測且與該一或多個處理參數相關聯的一訓練資料集作為輸入來訓練一機器學習模型以提供該電腦生成的模型。
- 如請求項13所述之系統,其中該輸送管線包含複數個區段,包括彎管及區域,並且其中將該量測資料與該一或多個處理參數的值進行比較包含將該複數個區段的一區段的該量測資料與對應於該區段的該一或多個處理參數的一具體值進行比較。
- 如請求項13所述之系統,其中該處理裝置進一步用於: 決定在該量測資料與該一或多個處理參數的該等值之間的該至少一閾值偏差的一偏差模式;以及 決定對應於該一或多個處理參數的該偏差模式的一具體故障。
- 如請求項16所述之系統,其中該具體故障包含下列的至少一者: 周圍空氣經過該複數個加熱器護套的洩漏,與該輸送管線直接接觸; 缺乏對該氣體的流動速率改變的敏感性; 藉由該電腦生成的模型預測的該氣體的分壓低於該液體的一飽和壓力; 到該複數個加熱器護套的一或多個的一輸入功率在維持該輸送管線中的一目標溫度的一預定範圍之外; 在一腔室歧管中的該氣體的溫度低於歷史溫度值; 來自該複數個感測器的一者的一感測器信號的意外波動。
- 一種儲存指令的非暫時性電腦可讀取媒體,該等指令當藉由一處理裝置執行時,執行複數個操作,包含以下步驟: 從沿著一輸送管線定位的多個感測器接收量測資料,該輸送管線將一液體作為一氣體輸送到一處理腔室; 藉由執行一電腦生成的模型來模擬與該輸送管線及在該輸送管線周圍定位的複數個加熱器護套相關聯的一或多個處理參數; 將該量測資料與該一或多個處理參數的值進行比較;以及 基於在該量測資料與該一或多個處理參數的該等值之間的至少一閾值偏差,決定存在與維持該輸送管線內的溫度及壓力與該液體的一氣態一致相關聯的一故障。
- 如請求項18所述之非暫時性電腦可讀取媒體,其中該等操作進一步包含以下步驟:使用該多個感測器的基線量測資料校準該電腦生成的模型以確保該電腦生成的模型在準確度的一閾值位準內預測該故障。
- 如請求項18所述之非暫時性電腦可讀取媒體,其中該電腦生成的模型包含下列的至少一者:與該輸送管線及從該多個感測器接收的量測資料的基於統計的分析相關聯的流體動力學方程式、熱傳遞方程式、及/或熱接觸電阻方程式。
- 如請求項18所述之非暫時性電腦可讀取媒體,其中該一或多個處理參數係下列的至少一者:該氣體的溫度、壓力、濃度,或該複數個加熱器護套的功率輸出,其中該複數個操作進一步包含以下步驟:使用藉由該多個感測器量測並且與該一或多個處理參數相關聯的一訓練資料集作為輸入來訓練一機器學習模型以提供該電腦生成的模型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/948,522 | 2020-09-22 | ||
US16/948,522 US11768984B2 (en) | 2020-09-22 | 2020-09-22 | Parameter sensing and computer modeling for gas delivery health monitoring |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202223576A true TW202223576A (zh) | 2022-06-16 |
Family
ID=80740475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110135126A TW202223576A (zh) | 2020-09-22 | 2021-09-22 | 用於氣體輸送健康監測的參數感測和電腦建模 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11768984B2 (zh) |
KR (1) | KR20230070291A (zh) |
CN (1) | CN116209965A (zh) |
TW (1) | TW202223576A (zh) |
WO (1) | WO2022066657A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE544494C2 (en) * | 2020-10-21 | 2022-06-21 | Senseair Ab | Temperature controller for a temperature control mechanism |
US20240230189A1 (en) * | 2023-01-05 | 2024-07-11 | Applied Materials, Inc. | Cooling flow in substrate processing according to predicted cooling parameters |
CN117913001B (zh) * | 2024-03-07 | 2024-08-02 | 苏州普伊特自动化系统有限公司 | 一种链式清洗设备控制系统和方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6895293B2 (en) | 2000-09-14 | 2005-05-17 | Applied Materials, Inc. | Fault detection and virtual sensor methods for tool fault monitoring |
KR100593628B1 (ko) | 2005-04-26 | 2006-07-03 | (주)에이오앤 | 단열 히터 재킷 |
US7302363B2 (en) * | 2006-03-31 | 2007-11-27 | Tokyo Electron Limited | Monitoring a system during low-pressure processes |
US20100076729A1 (en) | 2008-09-19 | 2010-03-25 | Applied Materials, Inc. | Self-diagnostic semiconductor equipment |
DE102009006887B3 (de) * | 2009-01-30 | 2010-07-15 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren und System zur Halbleiterprozesssteuerung und Überwachung unter Anwendung eines Datenqualitätsmaßes |
US8295966B2 (en) | 2009-06-30 | 2012-10-23 | Lam Research Corporation | Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber |
JP2015185824A (ja) | 2014-03-26 | 2015-10-22 | 株式会社日立国際電気 | 状態検出装置、基板処理装置、状態検出方法及び半導体装置の製造方法 |
US10860005B2 (en) * | 2016-10-31 | 2020-12-08 | Kokusai Electric Corporation | Substrate processing apparatus and non-transitory computer-readable recording medium |
US20210088867A1 (en) * | 2019-09-20 | 2021-03-25 | Kinestral Technologies, Inc. | Quality control of an electrochromic device |
-
2020
- 2020-09-22 US US16/948,522 patent/US11768984B2/en active Active
-
2021
- 2021-09-21 KR KR1020237013433A patent/KR20230070291A/ko not_active Application Discontinuation
- 2021-09-21 CN CN202180064973.XA patent/CN116209965A/zh active Pending
- 2021-09-21 WO PCT/US2021/051339 patent/WO2022066657A1/en active Application Filing
- 2021-09-22 TW TW110135126A patent/TW202223576A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
US11768984B2 (en) | 2023-09-26 |
US20220092241A1 (en) | 2022-03-24 |
CN116209965A (zh) | 2023-06-02 |
WO2022066657A1 (en) | 2022-03-31 |
KR20230070291A (ko) | 2023-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202223576A (zh) | 用於氣體輸送健康監測的參數感測和電腦建模 | |
TWI713581B (zh) | 用於半導體設備之匹配腔室性能的方法 | |
CN116134396B (zh) | 基于使用神经网络的聚集统计的异常检测 | |
KR101018545B1 (ko) | 적응형 다변수 결함 검출 | |
TW202024827A (zh) | 用於半導體及顯示器工序設備工具中的設備健康監測及錯誤偵測的深度自動編碼器 | |
JP2022519348A (ja) | 半導体製造装置ツールにおけるニューラルネットワークを用いたチャンバ整合化 | |
US7869888B2 (en) | Information processing apparatus, semiconductor manufacturing system, information processing method, and storage medium | |
US10860005B2 (en) | Substrate processing apparatus and non-transitory computer-readable recording medium | |
JP2023546905A (ja) | リアルタイムで製品基板を検出し補正するための、改良されたプロセスおよびハードウェアアーキテクチャ | |
KR20090035613A (ko) | 측정값들을 결정하는 방법 및 장치 | |
TW202225658A (zh) | 用於後期維護真空恢復系統的方法及硬體 | |
US20220084842A1 (en) | Antifragile systems for semiconductor processing equipment using multiple special sensors and algorithms | |
TW202314559A (zh) | 使用缺陷模型估計缺陷風險和最佳化製程配方 | |
JP2023550487A (ja) | 装置製造中の多層スタックのフィードフォワード制御 | |
KR102700155B1 (ko) | 반도체 증착공정 설비의 자동적 메인터넌스시점 결정방법 | |
TW201516603A (zh) | 應用於工廠進行生產製造的驗證方法 | |
US20230051521A1 (en) | Pyrometry error detection sensor for rtp temperature control system | |
US20230392987A1 (en) | Emissivity independence tuning | |
US20240327988A1 (en) | Thermal processing chamber state based on thermal sensor readings | |
US20240183702A1 (en) | Mass flow control device and zero point calibration method for the same | |
Sanseverinatti et al. | An Adaptive Soft Sensor for On‐Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process | |
TW202309755A (zh) | 用於無接觸處理腔室特徵化的方法及機制 | |
CN117810113A (zh) | 一种半导体工艺设备沉积过度的监测方法和半导体工艺设备 | |
JP2009238997A (ja) | 半導体装置の製造方法および半導体製造装置 |