TW202221950A - Electrode-defined unsuspended acoustic resonator - Google Patents

Electrode-defined unsuspended acoustic resonator Download PDF

Info

Publication number
TW202221950A
TW202221950A TW110140579A TW110140579A TW202221950A TW 202221950 A TW202221950 A TW 202221950A TW 110140579 A TW110140579 A TW 110140579A TW 110140579 A TW110140579 A TW 110140579A TW 202221950 A TW202221950 A TW 202221950A
Authority
TW
Taiwan
Prior art keywords
layer
aforementioned
thickness
acoustic impedance
mode
Prior art date
Application number
TW110140579A
Other languages
Chinese (zh)
Other versions
TWI810698B (en
Inventor
文清 許
迪 藍
克里斯多福 S. 柯本
Original Assignee
美商特拉華公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/874,164 external-priority patent/US11362640B2/en
Application filed by 美商特拉華公司 filed Critical 美商特拉華公司
Publication of TW202221950A publication Critical patent/TW202221950A/en
Application granted granted Critical
Publication of TWI810698B publication Critical patent/TWI810698B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0004Impedance-matching networks
    • H03H9/0014Impedance-matching networks using bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors

Abstract

A bulk acoustic resonator operable in a bulk acoustic mode includes a resonator body mounted to a separate carrier that is not part of the resonator body. The resonator body includes a piezoelectric layer, a device layer, and a top conductive layer on the piezoelectric layer opposite the device layer. The piezoelectric layer is a single crystal of LiNbO3 cut at an angle of 130 DEG ± 30 DEG. A surface of the device layer opposite the piezoelectric layer is for mounting the resonator body to the carrier.

Description

電極界定未懸掛之聲波共振器Electrodes define unsuspended acoustic resonators

本發明係關於一種體聲波共振器,特別係關於一種體聲波共振器,其具有一共振器本體,並可選地具有一個或複數個連接結構,前述連接結構可以用來供應電訊號到一個或複數個共振器的傳導層。The present invention relates to a BAW resonator, in particular to a BAW resonator, which has a resonator body, and optionally has one or more connecting structures, the aforementioned connecting structures can be used to supply electrical signals to one or more Conductive layers of a plurality of resonators.

無線通訊已經從1980年代的「1G」系統進步到1990年代的「2G」系統,到2000年代的「3G」系統,到目前已在2012標準化的「4G」系統。在現有無線通訊中,使用表面聲波(surface-acoustic-wave;SAW)濾波器或體聲波(bulk-acoustic-wave;BAW)濾波器過濾RF訊號。Wireless communication has progressed from the "1G" system in the 1980s to the "2G" system in the 1990s, to the "3G" system in the 2000s, to the "4G" system that has been standardized in 2012. In existing wireless communications, surface-acoustic-wave (SAW) filters or bulk-acoustic-wave (BAW) filters are used to filter RF signals.

薄膜體聲波共振器(film-bulk-acoustic-resonators;FBAR)及固態微型共振器(solid-mounted-resonators;SMR)為兩種BAW濾波器,其為壓電驅動的微機電系統(micro-electro-mechanical-system;MEMS)裝置,其跟SAW濾波器裝置比,可以使現今的4G無線通訊在相對高頻及相對低插入損失下共振。此等BAW聲波共振器包含一壓電堆疊,其具有例如:一個壓電材料薄膜夾在一個上電極薄膜及一個下電極薄膜之間。此等壓電堆疊的共振頻率為厚度基礎或取決於壓電堆疊的薄膜的厚度。隨著壓電堆疊的薄膜的厚度減少而共振頻率增加。共振體的薄膜厚度為關鍵且必須精確控制來得到所需的共振頻率。為了在FBAR及SMR生產過程的合理收益中實現目標或特定RF頻率,使厚度達到一致高程度而修正壓電堆疊的不同區域為困難及費時。Film-bulk-acoustic-resonators (FBAR) and solid-mounted-resonators (SMR) are two types of BAW filters, which are piezoelectrically driven micro-electromechanical systems (micro-electromechanical systems). -mechanical-system; MEMS) devices, which can resonate today's 4G wireless communications at relatively high frequencies and relatively low insertion loss compared to SAW filter devices. These BAW acoustic resonators include a piezoelectric stack having, for example, a film of piezoelectric material sandwiched between an upper electrode film and a lower electrode film. The resonant frequencies of these piezoelectric stacks are thickness-based or depend on the thickness of the films of the piezoelectric stacks. The resonance frequency increases as the thickness of the thin film of the piezoelectric stack decreases. The film thickness of the resonator is critical and must be precisely controlled to obtain the desired resonant frequency. It is difficult and time consuming to modify different areas of the piezoelectric stack to achieve a uniformly high level of thickness in order to achieve a target or specific RF frequency within a reasonable yield of the FBAR and SMR production process.

正在開發的5G無線通訊系統終究將取代前述早期性能較低的通訊系統,前述早期通訊系統的RF頻率在幾百MHz與1.8GHz之間。5G系統將操作在更高的RF頻率,例如:3-6 GHz (6 GHz以下)或更高至100 GHz。The 5G wireless communication system under development will eventually replace the earlier, lower-performance communication systems whose RF frequencies were between a few hundred MHz and 1.8 GHz. 5G systems will operate at higher RF frequencies such as: 3-6 GHz (below 6 GHz) or up to 100 GHz.

因頻率的提升,必須藉由減少5G應用程式所用之FBAR及SMR-相關RF濾波器的薄膜厚度,以增加共振頻率,其為目前技術水平中BAW聲波共振器所面臨的其中一個挑戰。壓電薄膜厚度的減少表示壓電堆疊的上電極及下電極之間的距離減少,導致電容上升。電容的上升導致RF訊號的更高饋通,並將訊號降低至雜訊比,此現象是非期望的。壓電堆疊(上電極、下電極及在上下電極之間的壓電層)的理想壓電偶合效率可以來自一個理想的組合,其為壓電層的厚度、上電極的厚度、下電極的厚度及壓電結晶的對準與方向。為了實現5G通訊所需的高RF頻率操作,而減少壓電薄膜厚度可能無法獲得最佳的壓電偶合效率,其導致更高插入損失及更高運動阻抗。電極之厚度,不論上電極、下電極或兩者皆須被減少。電極厚度的減少導致電阻率上升,將導致另一個非期望的限制,即更高插入損失。Due to the increase in frequency, it is necessary to increase the resonant frequency by reducing the film thickness of FBAR and SMR-related RF filters used in 5G applications, which is one of the challenges faced by BAW acoustic resonators in the state of the art. The reduction in the thickness of the piezoelectric film represents a reduction in the distance between the upper and lower electrodes of the piezoelectric stack, resulting in an increase in capacitance. The rise in capacitance results in higher feedthrough of the RF signal and reduces the signal to noise ratio, which is undesirable. The ideal piezoelectric coupling efficiency of the piezoelectric stack (upper electrode, lower electrode, and piezoelectric layer between the upper and lower electrodes) can come from an ideal combination of the thickness of the piezoelectric layer, the thickness of the upper electrode, the thickness of the lower electrode and the alignment and orientation of the piezoelectric crystals. In order to achieve the high RF frequency operation required for 5G communication, reducing the thickness of the piezoelectric film may not achieve optimal piezoelectric coupling efficiency, resulting in higher insertion loss and higher kinetic impedance. The thickness of the electrodes, whether the upper electrode, the lower electrode or both, must be reduced. The reduction in electrode thickness leads to an increase in resistivity, which will lead to another undesired limitation, higher insertion loss.

又,頻率之產品及FBAR與SMR裝置的品質因子(或Q值)一般為不變,代表共振頻率的增加會將低Q值。Q值的降低並非所期望的,特別係FBAR的目前技術水平及SMR的Q即將接近理論極限頻率2.45 GHz或更低。因此,將頻率加倍會導致Q值降低,將難以製造RF裝置,例如:RF濾波器、RF共振器、RF開關及RF振盪器等。Also, the product of frequency and the quality factor (or Q value) of the FBAR and SMR devices are generally unchanged, which means that an increase in the resonant frequency will lower the Q value. The decrease in the Q value is not expected, especially because the current state of the art for FBAR and the Q of SMR are about to approach the theoretical limit frequency of 2.45 GHz or lower. Therefore, doubling the frequency results in a lower Q value, making it difficult to manufacture RF devices such as RF filters, RF resonators, RF switches, and RF oscillators.

有鑑於此,本發明提供一種共振器本體,其可使用體聲波模式操作,理想為側向共振模式。共振器本體之底部可以安裝或偶合在安裝基材或載體上,同時以共振器本體用作RF濾波器、RF共振器、RF開關及RF振盪器等。In view of this, the present invention provides a resonator body that can operate using a bulk acoustic wave mode, ideally a lateral resonance mode. The bottom of the resonator body can be mounted or coupled to a mounting substrate or carrier, and the resonator body can be used as an RF filter, an RF resonator, an RF switch, an RF oscillator, and the like.

本發明亦提供一種體聲波共振器,其包含共振器本體及一個或複數個連接結構,其可以使電訊息傳遞到共振器本體之一個或複數個導電層。在一個理想及非限制性的實施型態或例子,前述一個或複數個連接結構可為一體成形及/或以與前述共振器本體相同層之材料形成,因此體聲波共振器可為單一物件。單一物件體聲波共振器之底部可以安裝或偶合在安裝基材或載體,同時以共振器本體用作RF濾波器、RF共振器、RF開關及RF振盪器等。The present invention also provides a bulk acoustic wave resonator, which includes a resonator body and one or more connecting structures, which can transmit electrical information to one or more conductive layers of the resonator body. In an ideal and non-limiting embodiment or example, the one or more connecting structures can be integrally formed and/or formed of the same layer of material as the resonator body, so the BAW resonator can be a single object. The bottom of the single-object BAW resonator can be mounted or coupled to a mounting substrate or carrier, and the resonator body can be used as an RF filter, RF resonator, RF switch, and RF oscillator.

本發明之體聲波共振器,其特徵係其包含:一共振器本體,係包含:一壓電層;一裝置層;及一上導電層,係位於前述壓電層上方且前述壓電層之另一側為前述裝置層;其中前述裝置層中與前述壓電層相反側之全部表面,實質上用於將前述共振器本體安裝於載體並分隔前述共振器本體。The BAW resonator of the present invention is characterized in that it comprises: a resonator body, comprising: a piezoelectric layer; a device layer; and an upper conductive layer, which is located above the piezoelectric layer and between the piezoelectric layer The other side is the device layer; wherein the entire surface of the device layer opposite to the piezoelectric layer is substantially used to mount the resonator body on the carrier and separate the resonator body.

為了下述詳細敘述的目的,應當理解,除非明確地相反指出,否則本發明可以假設各種替代情形及步驟順序。亦應當理解,下述說明書所記載之特定裝置及方法僅為本發明之示例性實施型態、例子、或層面。又,除了在任何操作的例子或有特別說明,本說明書及申請專利範圍在理想及非限制性實施型態、例子、層面,在所有情況下所提及的成分數量應該理解為詞「約」。因此,除非明確地相反指出,在下述說明書及申請專利範圍所制定的數值參數為大約值,可以會根據本發明獲得的所需性質而變化。因此,每個數值參數應至少根據報告的有效數字的數量並藉由一般普通的捨入技術來解釋。For the purposes of the following detailed description, it is to be understood that the present invention may assume various alternative situations and sequences of steps unless expressly indicated to the contrary. It should also be understood that the specific devices and methods described in the following description are merely exemplary implementations, examples, or aspects of the present invention. Also, except in any operational examples or otherwise specifically stated, the description and the scope of the patent application are in ideal and non-limiting embodiments, examples, and levels, and in all cases, the quantities of ingredients mentioned should be understood as the word "about" . Accordingly, unless expressly indicated to the contrary, the numerical parameters set forth in the following specification and claims are approximations that can vary depending upon the desired properties to be obtained by the present invention. Accordingly, each numerical parameter should at least be construed in light of the number of reported significant digits and by ordinary rounding techniques.

儘管闡述本發明廣泛範圍的數值範圍及參數為近似值,具體實施例中闡述的數值盡可能精確地報告。然而,任何數值固有地包含其各自的測試測量中發現的標準偏差所引起必然的部分誤差。Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

又,應當理解,本發明所記載的任何數值範圍應包含所有歸納在內的次範圍。例如:「1到10」的範圍旨在包括所列舉的最小值1及所列舉的最大值10之間的所有子範圍(並且包括)亦即,最小值等於或大於1且最大值等於或小於10。Also, it is to be understood that any numerical range recited herein is intended to include all sub-ranges included therein. For example: a range of "1 to 10" is intended to include (and include) all subranges between the recited minimum value of 1 and the recited maximum value of 10. That is, the minimum value is equal to or greater than 1 and the maximum value is equal to or less than 10.

亦應當理解,圖式及下述說明書中所記載之特定裝置及步驟僅為本發明之示例性實施例、例子或層面。因此,本發明之示例性實施型態、例子或層面並不限於特定尺寸或其他相關物理特徵。本發明之特定理想及非限制性實施例、例子、或層面將藉由圖式中相同的元件代碼對應於相同或功能上等同的元件來描述。It should also be understood that the specific devices and steps described in the drawings and the following description are merely exemplary embodiments, examples or aspects of the present invention. Accordingly, exemplary embodiments, instances or aspects of the invention are not limited to specific dimensions or other relevant physical characteristics. Certain desirable and non-limiting embodiments, examples, or aspects of the present invention will be described by means of the like element numbers corresponding to the same or functionally equivalent elements in the drawings.

本發明中,除非另外特別說明,單數之使用可以包含複數及複數包圍單數。又,在本發明中,除非另外特別說明,使用「或」表示「及/或」,即使「及/或」可能會在特定情況使用。更進一步,在本發明中,使用「一」表示「至少一個」除非另有說明。In the present invention, unless specifically stated otherwise, the use of the singular can include the plural and the plural surrounds the singular. Also, in the present invention, unless otherwise specified, the use of "or" means "and/or", even though "and/or" may be used in a specific situation. Further, in the present invention, the use of "a" means "at least one" unless otherwise specified.

在下述說明之目的,詞彙「末端」、「上」、「下」、「右」、「左」、「垂直」、「水平」、「頂部」、「底部」、「橫向」、「縱向」及其衍生物應與圖中的例子相關。然而,應當理解例子可能假設各種替代情形及步驟順序,除非另有特別說明。應當注意,圖式及本說明書所紀載之特定例子,僅為本發明之示例性例子或層面。因此,本文所揭露之示例性例子或層面不應限制在此。For the purposes of the following description, the words "end", "top", "bottom", "right", "left", "vertical", "horizontal", "top", "bottom", "horizontal", "vertical" and its derivatives should be related to the examples in the figure. It should be understood, however, that the examples may assume various alternative situations and order of steps unless specifically stated otherwise. It should be noted that the drawings and specific examples described in this specification are merely illustrative examples or aspects of the present invention. Therefore, the illustrative examples or aspects disclosed herein should not be limited thereto.

如圖1所示,在一個理想及非限制的實施型態或例子,根據本發明之原理,未懸掛的體聲波共振器(UBAR)2可以在體聲波模式中操作,並包含一共振器本體4,其可以包含從頂部至底部之堆疊層,其堆疊層包含一上導電層6、一壓電層8、一可選的下導電層10及一裝置層12。在圖1所示之UBAR 2例子中,導電層12之底部可以安裝,例如:直接安裝在安裝基材或載體14。As shown in FIG. 1, in one ideal and non-limiting implementation or example, an unsuspended bulk acoustic resonator (UBAR) 2 can operate in a bulk acoustic wave mode and includes a resonator body in accordance with the principles of the present invention 4. It may comprise stacked layers from top to bottom, the stacked layers comprising an upper conductive layer 6, a piezoelectric layer 8, an optional lower conductive layer 10 and a device layer 12. In the example of the UBAR 2 shown in FIG. 1 , the bottom of the conductive layer 12 can be mounted, for example, directly on the mounting substrate or carrier 14 .

參考圖2並接續圖1,在一個理想及非限制的實施型態或例子中,根據本發明之原理,另一個UBAR2例子可以與圖1所示之UBAR2相似,其中不同處為圖2之共振器本體4可在裝置層12及載體14之間包含可選的基材16。在一個例子中,導電層12之底部可以安裝,例如:直接安裝在基材16頂部,及基材16之底部可以安裝,例如:直接安裝在載體14。Referring to FIG. 2 and continuing with FIG. 1, in an ideal and non-limiting implementation or example, according to the principles of the present invention, another UBAR2 example may be similar to the UBAR2 shown in FIG. 1, with the difference being the resonance of FIG. 2 The device body 4 may include an optional substrate 16 between the device layer 12 and the carrier 14 . In one example, the bottom of conductive layer 12 may be mounted, eg, directly on top of substrate 16 , and the bottom of substrate 16 may be mounted, eg, directly on carrier 14 .

參考圖3並接續圖1及2,在一個理想及非限制的實施型態或例子中,根據本發明之原理,另一個UBAR2例子可以與圖2所示之UBAR2相似,其中不同處為圖3之共振器本體4可在裝置層12及壓電層8或可選的下導電層10之間包含可選的第2基材16-1,及/或在第2基材16-1及壓電層8或可選的下導電層10之間包含第2裝置層12-1。在一個理想及非限制的實施型態或例子中,若圖3之共振器本體4可以進一步包含一個或多個額外的裝置層12(未特別顯示)及/或一個或多個額外的基材16(未特別顯示)為更佳。另一個例子共振器本體4具有數個裝置層12及基材16,並可包含一示例性順序,從壓電層8或可選的下導電層10到載體14依序為:第一裝置層、第一基材、第二裝置層、第二基材;第三裝置層、第三基材等如此接續。在一個理想及非限制的實施型態或例子中,其中共振器本體4可包含複數個裝置層12及/或複數個基材16,各裝置層12可以由同樣或不同材質所製,各基材16可以由同樣或不同材質所製。在一個理想及非限制的實施型態或例子中,裝置層12的數目與基材16的數目可以不同。在一個例子中,示例性地從壓電層8或可選擇的下導電層10到載體14,共振器本體4可包含裝置層12-1、基材16-1、裝置層12作為共振器本體4的最下層。可作為各裝置層12及各基材16的材料例子在下述說明。Referring to FIG. 3 and continuing with FIGS. 1 and 2, in an ideal and non-limiting implementation or example, according to the principles of the present invention, another example of UBAR2 may be similar to the UBAR2 shown in FIG. 2, with the difference of FIG. 3 The resonator body 4 may include an optional second substrate 16-1 between the device layer 12 and the piezoelectric layer 8 or the optional lower conductive layer 10, and/or between the second substrate 16-1 and the piezoelectric layer 10. A second device layer 12-1 is included between the electrical layer 8 or the optional lower conductive layer 10. In an ideal and non-limiting implementation or example, the resonator body 4 of FIG. 3 may further include one or more additional device layers 12 (not specifically shown) and/or one or more additional substrates 16 (not specifically shown) is better. Another example resonator body 4 has several device layers 12 and substrate 16, and may include an exemplary sequence, from piezoelectric layer 8 or optional lower conductive layer 10 to carrier 14, as: first device layer , the first substrate, the second device layer, the second substrate; the third device layer, the third substrate, etc. are so connected. In an ideal and non-limiting embodiment or example, the resonator body 4 may include a plurality of device layers 12 and/or a plurality of substrates 16 , and each device layer 12 may be made of the same or different materials. Material 16 may be made of the same or different materials. In one ideal and non-limiting implementation or example, the number of device layers 12 and the number of substrates 16 may be different. In one example, illustratively from piezoelectric layer 8 or optional lower conductive layer 10 to carrier 14, resonator body 4 may include device layer 12-1, substrate 16-1, device layer 12 as a resonator body 4's bottom layer. Examples of materials that can be used for each device layer 12 and each base material 16 are described below.

在一個理想及非限制的實施型態或例子中,如圖1-3所示,一個或多個溫度補償層90、92、94可以在上導電層6之頂部表面;在壓電層8或可選擇的下導電層10之間,及裝置層12;及/或在裝置層12(或12-1)及基材16(或16-1)之間。各溫度補償層可以包含至少矽和氧的其中之一。例如,各溫度補償層可以包含二氧化矽,或一矽元素,及/或一氧元素。一個或多個可選的溫度補償層90、92、94可以有助於避免因使用圖1-3所示之各例子中的共振器本體4所產生的熱而造成共振頻率改變。In an ideal and non-limiting implementation or example, as shown in FIGS. 1-3, one or more temperature compensation layers 90, 92, 94 may be on the top surface of the upper conductive layer 6; on the piezoelectric layer 8 or on the top surface of the upper conductive layer 6; Optionally between lower conductive layers 10, and device layer 12; and/or between device layer 12 (or 12-1) and substrate 16 (or 16-1). Each temperature compensation layer may contain at least one of silicon and oxygen. For example, each temperature compensation layer may contain silicon dioxide, or a silicon element, and/or an oxygen element. One or more optional temperature compensation layers 90, 92, 94 may help avoid resonant frequency changes due to the use of heat generated by the resonator body 4 of the examples shown in Figures 1-3.

在平面圖,本發明所描述之共振器本體4及/或UBAR 2可以有正方體或長方體形狀。然而,共振器本體4及/或UBAR 2可以設想具有其他形狀。In plan view, the resonator body 4 and/or the UBAR 2 described in the present invention may have the shape of a cube or a rectangular parallelepiped. However, other shapes of the resonator body 4 and/or the UBAR 2 are envisaged.

如圖4A-4C所示及接續所有前述圖,在一個理想及非限制的實施型態或例子中,一個或兩個導電層6及可選的導電層10可以由指叉電極18的形式呈現(圖4A),其可以包含導電線或彈片20,由背部22支撐,與導電線或彈片24叉合,由背部26支撐。在一個理想及非限制的實施型態或例子中,一個或兩個導電層6及可選的導電層10可以由梳狀電極27的形式呈現(圖4B),其可以包含由第一背部30延伸過來的導電線或彈片28。與第一背部30相反側的導電線或彈片28之末端可以與可選的第二背部32連接(表示於圖4B之虛線)。在一個理想及非限制的實施型態或例子中,一個或兩個導電層6及可選的導電層10可以由導電片狀電極33的形式呈現(圖4C)。各線或彈片20、24及28以直線呈現。在一個例子中,各線或彈片20、24及28可以為弧形的線或彈片,螺旋的線或彈片,或其他適合的及/或所欲的形狀。As shown in FIGS. 4A-4C and following all preceding figures, in one ideal and non-limiting implementation or example, one or both conductive layers 6 and optional conductive layers 10 may be represented by interdigitated electrodes 18 ( FIG. 4A ), which may include conductive wires or springs 20 , supported by the back 22 , interdigitated with the conductive wires or springs 24 , and supported by the back 26 . In one ideal and non-limiting implementation or example, one or both conductive layers 6 and optional conductive layers 10 may be represented by comb electrodes 27 ( FIG. 4B ), which may include a backside 30 Conductive wire or shrapnel 28 that extends over. The ends of the conductive wires or springs 28 on the opposite side of the first back 30 may be connected to an optional second back 32 (shown in phantom in Figure 4B). In one ideal and non-limiting implementation or example, one or both of the conductive layers 6 and optionally the conductive layer 10 may be presented in the form of conductive sheet electrodes 33 (FIG. 4C). The lines or clips 20, 24 and 28 are presented as straight lines. In one example, each wire or clip 20, 24 and 28 may be an arcuate wire or clip, a helical wire or clip, or other suitable and/or desired shape.

在一個理想及非限制的實施型態或例子中,上導電層6可以為指叉電極18,或梳狀電極27或片狀電極33的形式呈現。獨立於上導電層6的形式,可選的底部導電層10可以為指叉電極18,或梳狀電極27或片狀電極33的形式呈現。在下文中,僅為了描述目的,在一個理想及非限制性實施型態或示例中,上導電層6將被描述為以梳狀電極27的形式呈現,其包含第一背部30及可選的第二背部32,及可選的下導電層10將被描述以片狀電極33的形式呈現。然而,本實施型態並不限定於此,亦可指叉電極18或梳狀電極27或片狀電極33的任何一個作為上導電層6,與指叉電極18或梳狀電極27或片狀電極33的任何一個作為可選的下導電層10相結合。In an ideal and non-limiting implementation form or example, the upper conductive layer 6 may be in the form of interdigitated electrodes 18 , or comb-shaped electrodes 27 or sheet-shaped electrodes 33 . Independent of the form of the upper conductive layer 6 , the optional bottom conductive layer 10 may be presented in the form of interdigitated electrodes 18 , or comb electrodes 27 or sheet electrodes 33 . In the following, for descriptive purposes only, in an ideal and non-limiting implementation or example, the upper conductive layer 6 will be described as being presented in the form of a comb-shaped electrode 27, which includes a first backside 30 and an optional first backside 30. The two backsides 32 , and optionally the lower conductive layer 10 will be described in the form of sheet electrodes 33 . However, this embodiment is not limited to this, and any one of the interdigitated electrodes 18 , the comb-shaped electrodes 27 or the sheet-shaped electrodes 33 can be used as the upper conductive layer 6 , and the interdigitated electrodes 18 , the comb-shaped electrodes 27 or the sheet-shaped electrodes 33 can also be used as the upper conductive layer 6 . Any one of the electrodes 33 is incorporated as an optional lower conductive layer 10 .

在一個理想及非限制的實施型態或例子中,各例子中至少具有指叉電極18或梳狀電極27形式的上導電層6的共振器本體4的共振頻率,不論可選的下導電層10的形式可以藉由適當選擇指間距38以習知的方式調節或選擇(例:圖4A-4B),其中指間距38=指寬+指縫(相鄰兩指之間)。在一個例子中,主要所欲得到的每一個共振器本體4但非全部,在橫向模式中,相對於厚度模式,可以藉由減少指間距38來增加共振器本體4的共振頻率。在一個例子中,主要所欲得到的每一個共振器本體但非全部,在厚度模式中,相對於橫向模式,可以藉由增加指間距38來減少共振器本體4的共振頻率。In an ideal and non-limiting embodiment or example, the resonant frequency of the resonator body 4 having at least the upper conductive layer 6 in the form of interdigitated electrodes 18 or comb electrodes 27 in each example, regardless of the optional lower conductive layer The form of 10 can be adjusted or selected in a conventional manner by appropriately selecting the finger spacing 38 (eg, FIGS. 4A-4B ), wherein the finger spacing 38 = finger width + finger gap (between two adjacent fingers). In one example, the resonant frequency of the resonator body 4 may be increased by reducing the finger spacing 38 in the transverse mode relative to the thickness mode, primarily for each, but not all, of the desired resonator bodies 4 . In one example, the resonant frequency of the resonator body 4 may be reduced by increasing the finger spacing 38 in the thickness mode, relative to the transverse mode, for each, but not all, of the desired resonator bodies.

在一個理想及非限制的實施型態或例子中,各例子的共振器本體4可以在厚度模式、橫向模式或厚度模式及橫向模式組合之混合/複合模式。對於厚度模式共振,聲波在壓電層8的厚度方向上共振,共振頻率基於壓電層8的厚度,及上導電層6與可選的下導電層10的厚度。壓電層8、可選的下導電層10及上導電層6的組合可以稱為壓電疊層。在此描述的各例子之共振器本體4的共振頻率所決定的聲速為壓電疊層的複合聲速。在一個例子中,共振頻率 f可以藉由將複合聲速 V a 除以兩倍的壓電疊層厚度

Figure 02_image001
來計算。 In an ideal and non-limiting implementation or example, the resonator body 4 of each example may be in a thickness mode, a transverse mode, or a mixed/composite mode of a combination of thickness and transverse modes. For thickness mode resonance, the acoustic wave resonates in the thickness direction of the piezoelectric layer 8, and the resonance frequency is based on the thickness of the piezoelectric layer 8, and the thickness of the upper conductive layer 6 and optionally the lower conductive layer 10. The combination of piezoelectric layer 8, optional lower conductive layer 10, and upper conductive layer 6 may be referred to as a piezoelectric stack. The sound velocity determined by the resonant frequency of the resonator body 4 of the examples described here is the composite sound velocity of the piezoelectric stack. In one example, the resonant frequency f can be determined by dividing the composite sound velocity Va by twice the thickness of the piezoelectric stack
Figure 02_image001
to calculate.

對於橫向模式共振,聲波在壓電層8的橫向(x或y方向)共振,並且可以藉由將壓電疊層的複合聲速 V a 除以指間距38的兩倍來得到共振頻率, f= V a /2(指間距)。當指間距從大間距尺寸

Figure 02_image003
L減小到小間距尺寸
Figure 02_image003
S時,頻率增加的百分比,PFI 計算,在一個例子中,可以由下述公式計算 PFI Calculated = (
Figure 02_image003
L-
Figure 02_image003
S) /
Figure 02_image003
S. 在一個例子中,當指間距38從2.2μm減小到1.8μm時,橫向模式的PFI 計算為22.2%。在另一個例子中,當指間距38從1.8μm減小到1.4μm時,橫向模式的PFI 計算為28.5%。 For transverse mode resonance, the acoustic wave resonates in the transverse direction (x or y direction) of the piezoelectric layer 8, and the resonance frequency can be obtained by dividing the composite sound velocity Va of the piezoelectric stack by twice the finger spacing 38, f = V a /2 (referring to the spacing). When the finger spacing is changed from the large spacing size
Figure 02_image003
L reduced to fine pitch size
Figure 02_image003
When S , the percentage of frequency increase, PFI is calculated , in one example, PFI can be calculated by the following formula Calculated = (
Figure 02_image003
L -
Figure 02_image003
S ) /
Figure 02_image003
S. In one example, when the finger pitch 38 was reduced from 2.2 μm to 1.8 μm, the PFI for the lateral mode was calculated to be 22.2%. In another example, when the finger pitch 38 is reduced from 1.8 μm to 1.4 μm, the PFI for the lateral mode is calculated to be 28.5%.

複合模式共振可包括厚度模式共振的部分及橫向模式共振的部分。在復合模式共振中橫向模式共振的部分 L可以藉由改變指間距38從大間距尺寸

Figure 02_image003
L至小間距尺寸
Figure 02_image003
S,得到增加頻率的實際比率或測量百分比(PFI 測量)與增加頻率的計算比率(PFI 計算),二者之間的比例來定義。如果存在一個或多個不受控制或不可預見的變化,則橫向模式共振L值可以大於100%。在一例子中,共振器本體4可以在厚度模式、橫向模式或複合模式共振。在複合模式共振的例子中,橫向模式共振的部分 L可以≥20%。在複合模式共振的另一個例子中,橫向模式共振的部分 L可以≥30%。在複合模式共振的另一個例子中,橫向模式共振的部分 L可以≥40%。 Composite mode resonances may include portions of thickness mode resonances and portions of transverse mode resonances. The portion L of the transverse mode resonance in the compound mode resonance can be changed from the large pitch size by changing the finger pitch 38
Figure 02_image003
L to small pitch size
Figure 02_image003
S , to get the actual ratio of increased frequency or measured percentage (PFI measurement ) to the calculated ratio of increased frequency (PFI calculation ), defined by the ratio between the two. If there are one or more uncontrolled or unpredictable changes, the transverse mode resonance L value can be greater than 100%. In one example, the resonator body 4 may resonate in a thickness mode, a transverse mode or a composite mode. In the case of compound mode resonance, the fraction L of transverse mode resonance may be > 20%. In another example of compound mode resonance, the fraction L of transverse mode resonance may be > 30%. In another example of compound mode resonance, the fraction L of transverse mode resonance may be > 40%.

在一個理想及非限制的實施型態或例子中,一個共振器本體4具有以片狀電極33的形式呈現之可選的下導電層10及以梳狀電極27的形式呈現之上導電層6,其中2.2μm的指間距38可以在複合模式中共振,其具有下述模式共振頻率:模式1共振頻率= 1.34 GHz;模式2共振頻率= 2.03 GHz;及模式4共振頻率= 2.82 GHz。In an ideal and non-limiting embodiment or example, a resonator body 4 has an optional lower conductive layer 10 in the form of sheet electrodes 33 and an upper conductive layer 6 in the form of comb electrodes 27 , where the 2.2 μm finger spacing 38 can resonate in a composite mode with the following mode resonance frequencies: Mode 1 resonance frequency = 1.34 GHz; Mode 2 resonance frequency = 2.03 GHz; and Mode 4 resonance frequency = 2.82 GHz.

在一個例子中,一個共振器本體4具有以片狀電極33的形式呈現之可選的下導電層10及以梳狀電極27的形式呈現之上導電層6,其中1.8μm的指間距38可以在複合模式中共振,其具有下述模式共振頻率:模式1共振頻率= 1.49 GHz;模式2共振頻率= 2.38 GHz;及模式4共振頻率= 3.05 GHz。在此例子,複合模式共振的橫向模式共振L百分比可以分別為:L模式1 = 53%;L模式2 = 78%;及L模式4 = 27%。亦參見圖10,其為該例子中共振器本體4的頻率與dB的關係圖。在圖10中,每個峰值82、84及88表示共振器本體4對不同模式的反應,模式1共振頻率= 1.49GHz;模式2共振頻率= 2.38 GHz;及模式4共振頻率= 3.05 GHz。In one example, a resonator body 4 has an optional lower conductive layer 10 in the form of sheet electrodes 33 and an upper conductive layer 6 in the form of comb electrodes 27, wherein the 1.8 μm finger pitch 38 can be Resonates in a composite mode with the following mode resonance frequencies: Mode 1 resonance frequency = 1.49 GHz; Mode 2 resonance frequency = 2.38 GHz; and Mode 4 resonance frequency = 3.05 GHz. In this example, the transverse mode resonance L percentages of composite mode resonances may be: L-mode 1 = 53%; L-mode 2 = 78%; and L-mode 4 = 27%, respectively. See also Figure 10, which is a graph of frequency versus dB for the resonator body 4 in this example. In Figure 10, each peak 82, 84 and 88 represents the response of resonator body 4 to a different mode, mode 1 resonance frequency = 1.49 GHz; mode 2 resonance frequency = 2.38 GHz; and mode 4 resonance frequency = 3.05 GHz.

在一個例子中,模式1共振頻率可以或替代性的被認為或與一個表面聲波(SAW)相關;模式2共振頻率可以或替代性的被認為或與S 0(或擴充Extensional)模式相關;及模式4共振頻率可以或替代性的被認為或與A 1(或撓曲Flexural)模式相關。此外,模式3共振頻率(在下述說明)可以或替代性的被認為或與切變(Shear)模式相關。SAW、S 0模式、擴充模式、A 1模式、切變模式及撓曲模式為通常知識者所知悉,在此不會進一步說明。 In one example, the mode 1 resonant frequency may or alternatively be considered or associated with a surface acoustic wave (SAW); the mode 2 resonant frequency may or alternatively be considered or associated with the S0 (or Extensional) mode; and The mode 4 resonance frequency may or alternatively be considered or related to the A1 ( or Flexural) mode. Additionally, the Mode 3 resonance frequency (described below) may or alternatively be considered or associated with the Shear mode. SAW, S 0 mode, expansion mode, A 1 mode, shear mode and flexure mode are known to those of ordinary skill and will not be further described here.

在一個例子中,一個共振器本體4具有可選的下導電層10以片狀電極33的形式呈現及上導電層6以梳狀電極27的形式呈現,其中1.4μm的指間距38可以在複合模式中共振,其具有下述模式共振頻率:模式1共振頻率= 1.79 GHz;模式2共振頻率= 2.88 GHz;及模式4共振頻率= 3.36 GHz。此例子的共振器本體4,複合模式共振 L的橫向模式共振百分比可以為:L模式1 = 70%;L模式2 = 74%;及L模式4 = 35%。 In one example, a resonator body 4 has an optional lower conductive layer 10 in the form of a sheet electrode 33 and an upper conductive layer 6 in the form of a comb electrode 27, where the 1.4 μm finger spacing 38 can be used in the composite Resonance in mode with the following mode resonance frequencies: Mode 1 resonance frequency = 1.79 GHz; Mode 2 resonance frequency = 2.88 GHz; and Mode 4 resonance frequency = 3.36 GHz. For the resonator body 4 of this example, the transverse mode resonance percentage of the composite mode resonance L may be: L-mode 1 = 70%; L-mode 2 = 74%; and L-mode 4 = 35%.

在一個例子中,前述之共振器本體4在厚度模式、橫向模式、或複合模式可以應用於圖1-3所示之每個UBAR 2例子,其可包含一個共振器本體4與一個或多個連接結構34及36結合,細節將在下述說明。In one example, the aforementioned resonator body 4 in thickness mode, transverse mode, or composite mode can be applied to each of the UBAR 2 examples shown in FIGS. 1-3 , which can include a resonator body 4 and one or more The connection structures 34 and 36 are combined, the details of which will be described below.

接著,參照圖1-3,在一個理想及非限制的實施型態或例子中,圖1-3所示最底層的各共振器本體4可以使用任何適合及/或所欲得到的安裝技術直接安裝在載體14,例如:共晶安裝、黏著劑等。在此「直接安裝」、「在…直接安裝」及相似片語可以理解為在圖1-3所示各共振器本體4之最底層,以任何適合及/或所欲得到的方式緊臨於載體14放置及接合於載體14,例如:在一個例子為安裝、連接,及/或藉由適合及/或所欲得到的方法,例如:在一個例子為共晶鍵結、導電黏著劑、非導電黏著劑等。在一個理想及非限制的實施型態或例子中,載體14可作為封裝之表面,例如傳統的積體電路(IC)封裝。在共振器本體4的最底層安裝到前述封裝的表面之後,共振器本體4,以及一般而言,UBAR 2以習知方法密封在前述封裝中以保護共振器本體4,更一般而言為針對外部環境狀況保護UBAR 2。在一個例子中,封裝使用來自日本商NTK Ceramic Co., Ltd.的傳統陶瓷IC封裝,用於安裝UBAR。 然而,這不應被解釋為具有限制意義,因為可以設想共振器本體4及/或UBAR 2可以安裝在現在習知或以後開發的任何適合/或所欲得到的封裝中。Next, referring to FIGS. 1-3 , in an ideal and non-limiting implementation or example, the bottom-most resonator bodies 4 shown in FIGS. 1-3 can be directly mounted using any suitable and/or desired mounting technique. Mounted on carrier 14, eg eutectic mount, adhesive, etc. Herein, "directly mounted", "directly mounted" and similar phrases may be understood to mean that the bottommost layer of each resonator body 4 shown in Figs. 1-3 is immediately adjacent to the The carrier 14 is placed and bonded to the carrier 14, such as, in one example, mounting, connecting, and/or by suitable and/or desired methods, such as, in one example, eutectic bonding, conductive adhesive, non- Conductive adhesives, etc. In one ideal and non-limiting implementation or example, the carrier 14 may serve as a surface of a package, such as a conventional integrated circuit (IC) package. After the bottommost layer of the resonator body 4 is mounted to the surface of the aforementioned package, the resonator body 4, and generally, the UBAR 2, is sealed in the aforementioned package in a conventional manner to protect the resonator body 4, and more generally against External environmental conditions protect the UBAR 2. In one example, the package uses a conventional ceramic IC package from Japanese business NTK Ceramic Co., Ltd. for mounting the UBAR. However, this should not be construed in a limiting sense as it is envisaged that the resonator body 4 and/or the UBAR 2 may be mounted in any suitable and/or desired package, now known or later developed.

在另一個例子中,載體14可以作為基材的表面,例如,陶瓷片、傳統的印刷電路板材料片材等。在此描述各基材例子中圖1-3的共振器本體4及/或UBAR 2的最底層可安裝並僅用於說明目的,而不應被解釋為具有限制性。而載體14可以由任何適合的及/或所欲得到的材料製成,該材料可與圖1-3中所示的各共振器本體4及/或UBAR 2的最底層材料相容,且能以習知的方法使用共振器本體4及/或UBAR 2。載體14可以具有所屬領域具有通常知識者認為適合及/或所欲得到的任何形式。因此,本說明書有關安裝基材或載體14並不具有限制性。In another example, the carrier 14 may serve as the surface of a substrate, eg, a ceramic sheet, a conventional sheet of printed circuit board material, or the like. The bottommost layers of the resonator body 4 and/or UBAR 2 of FIGS. 1-3 in each of the substrate examples described herein may be mounted and are for illustrative purposes only and should not be construed as limiting. The carrier 14 can be made of any suitable and/or desired material that is compatible with the bottommost material of each resonator body 4 and/or UBAR 2 shown in FIGS. 1-3 and can The resonator body 4 and/or the UBAR 2 are used in a known manner. The carrier 14 may be in any form deemed suitable and/or desired by one of ordinary skill in the art. Accordingly, this specification is not limiting with respect to the mounting substrate or carrier 14 .

接著,參照圖1-3,在一個理想及非限制的實施型態或例子中,各UBAR 2可包含一個或多個可選的連接結構34及/或36,其有助於將電訊號應用到共振器本體4的上導電層6及可選的下導電層10。然而,在一個理想及非限制的實施型態或例子中,一個或多個可選的連接結構34及/或36可被排除(例如沒有提供),其中電訊號可以直接應用到共振器本體4的上導電層6及可選的下導電層10。因此,在一個例子中,UBAR 2可包含共振器本體4,不含連接結構34及36。在另一個例子中,UBAR 2可包含共振器本體4及一單獨連接結構34或36。僅為了詳細說明本發明中,在下述說明UBAR 2包含共振器本體4及連接結構34及36之一個理想及非限制的實施型態或例子。1-3, in one ideal and non-limiting implementation or example, each UBAR 2 may include one or more optional connecting structures 34 and/or 36 that facilitate the application of electrical signals to the upper conductive layer 6 and optionally the lower conductive layer 10 of the resonator body 4 . However, in an ideal and non-limiting implementation or example, one or more of the optional connection structures 34 and/or 36 may be excluded (eg, not provided), wherein the electrical signal may be applied directly to the resonator body 4 upper conductive layer 6 and optional lower conductive layer 10. Thus, in one example, UBAR 2 may include resonator body 4 without connecting structures 34 and 36 . In another example, the UBAR 2 may include the resonator body 4 and a separate connecting structure 34 or 36 . For the purpose of describing the present invention in detail, the UBAR 2 includes an ideal and non-limiting implementation form or example of the resonator body 4 and the connecting structures 34 and 36 in the following description.

各連接結構34及36可以由任何適合及/或所欲得到的形式呈現,可以由任何適合及/或所欲得到的方法形成,並可以由任何適合的及/或所欲得到的材料製成,該等材料可以助於對上導電層6及可選的下導電層10提供獨立的電訊號。在一個例子中,其中上導電層6以僅具有一背部30或32之梳狀電極27的形式呈現,並且可選的下導電層10為僅具有一背部30或32、或片狀電極33之梳狀電極27的形式,電訊號可以藉由單個連接結構34或36提供給各上導電層6及可選的下導電層10,該單個連接結構34或36可以被配置為分別對上導電層6及可選的下導電層10提供電訊號。The respective connecting structures 34 and 36 may be in any suitable and/or desired form, may be formed by any suitable and/or desired method, and may be fabricated from any suitable and/or desired material , these materials can help provide independent electrical signals to the upper conductive layer 6 and optionally the lower conductive layer 10 . In one example, the upper conductive layer 6 is in the form of a comb-shaped electrode 27 having only one back 30 or 32 , and the optional lower conductive layer 10 is one of only one back 30 or 32 , or a sheet electrode 33 . In the form of comb electrodes 27, electrical signals may be provided to each upper conductive layer 6 and optionally lower conductive layer 10 via a single connection structure 34 or 36, which may be configured to correspond to the upper conductive layer, respectively 6 and optional lower conductive layer 10 provide electrical signals.

在另一個例子中,其中上導電層6或可選下導電層10中的至少一個具有指叉電極18或梳狀電極27的形式並具有兩個背部30及32,藉由個別的連接結構34及36而可分別提供一個或多個電訊號至指叉電極18的背部24及26,及/或梳狀電極27的背部30及32。上導電層6及可選的下導電層10的形式以及對上導電層6及可選的下導電層10提供電信號的方式不應具有限制性。In another example, wherein at least one of the upper conductive layer 6 or optionally the lower conductive layer 10 has the form of an interdigitated electrode 18 or a comb electrode 27 and has two backsides 30 and 32 by means of individual connecting structures 34 and 36 to provide one or more electrical signals to the backs 24 and 26 of the interdigitated electrodes 18 and/or the backs 30 and 32 of the comb electrodes 27, respectively. The form of upper conductive layer 6 and optional lower conductive layer 10 and the manner in which electrical signals are provided to upper conductive layer 6 and optional lower conductive layer 10 should not be limiting.

在一個理想及非限制的實施型態或例子中,而不受任何特定的描述、例子或理論約束,第一及第二連接結構34及36的例子可以與圖1-3所示的UBARs 2例子一起使用,將在下述說明。In an ideal and non-limiting implementation or example, and not bound by any particular description, example, or theory, examples of the first and second connecting structures 34 and 36 may be similar to the UBARs 2 shown in FIGS. 1-3 . Examples used together will be described below.

在一個理想及非限制的實施型態或例子中,僅為了詳細說明本發明,如圖1-3所示,各連接結構34及36將被描述為具有各種層及/或基材的延伸部分形成共振器本體4之多種例子。然而,此將不具有限制性,因可以設想各連接結構34及36可以具有任何適合及/或所欲得到的形式及/或結構,其能夠對上導電層6及可選的下導電層10提供一個或多個個別的電訊號。In one ideal and non-limiting embodiment or example, and merely to illustrate the invention in detail, as shown in FIGS. 1-3, each of the connecting structures 34 and 36 will be described as having various layers and/or extensions of the substrate Various examples of the resonator body 4 are formed. This is not intended to be limiting, however, as it is envisaged that each connection structure 34 and 36 may have any suitable and/or desired form and/or structure that can be used for the upper conductive layer 6 and optionally the lower conductive layer 10. Provide one or more individual electrical signals.

在一個理想及非限制的實施型態或例子中,如圖5A-5B所示,其為在任一或全部圖1-3中沿著A-A及B-B的線上之代表圖,圖5A表示在壓電層8頂部上以梳狀電極27形式呈現的上導電層6,包含背部30及可選的背部32。在一個例子中,上導電層6可選擇以指叉電極18形式呈現。在一個理想及非限制的實施型態或例子中,圖5B表示在壓電層8之下可選的下導電層10以片狀電極33形式呈現(如圖5B之虛線所示)。在一個例子中,可選的下導電層10可選擇以指叉電極18或梳狀電極27形式呈現。下述僅為示例,上導電層6及可選的下導電層10將分別被敘述為以梳狀電極18的形式呈現,包含背部30及可選的背部32,以及以片狀電極33的形式呈現。然而,此將不具有限制性。In one ideal and non-limiting implementation or example, shown in FIGS. 5A-5B, which are representative graphs along the lines A-A and B-B in any or all of FIGS. 1-3, Upper conductive layer 6 in the form of comb electrodes 27 on top of layer 8, including backside 30 and optionally backside 32. In one example, the upper conductive layer 6 may optionally be present in the form of interdigitated electrodes 18 . In an ideal and non-limiting implementation or example, FIG. 5B shows that the optional lower conductive layer 10 under the piezoelectric layer 8 is in the form of a sheet electrode 33 (shown by the dashed line in FIG. 5B ). In one example, the optional lower conductive layer 10 may optionally be presented in the form of interdigitated electrodes 18 or comb electrodes 27 . The following are examples only, the upper conductive layer 6 and optionally the lower conductive layer 10 will be respectively described as being presented in the form of comb electrodes 18, including backside 30 and optional backside 32, and in the form of sheet electrodes 33, respectively render. However, this will not be limiting.

在一個理想及非限制的實施型態或例子中,連接結構34及36可包含接觸片狀電極33之底部金屬層40及44(圖5B),該片狀電極33形成為共振器本體4之可選的下導電層10。各底層40及44可以為片狀並以壓電層8覆蓋。在一個例子中,各底層40及44可作為片狀電極33的延伸並同時形成。在另一個例子中,各底層40及44可以分別從片狀電極33形成,並與片狀電極33為相同或不同材質。在一個例子中,連接結構34及36亦可以包含在壓電層8頂部上之頂部金屬層42及46以及分別接觸形成為共振器本體4之上導電層6之梳狀電極27之背部30及背部32。In an ideal and non-limiting implementation or example, the connection structures 34 and 36 may include bottom metal layers 40 and 44 ( FIG. 5B ) contacting the sheet electrode 33 formed as a part of the resonator body 4 Optional lower conductive layer 10 . Each of the bottom layers 40 and 44 may be sheet-like and covered with the piezoelectric layer 8 . In one example, each of the bottom layers 40 and 44 may be formed simultaneously as an extension of the sheet electrode 33 . In another example, each of the bottom layers 40 and 44 may be formed from the sheet electrode 33 , respectively, and may be of the same or different material as the sheet electrode 33 . In one example, connection structures 34 and 36 may also include top metal layers 42 and 46 on top of piezoelectric layer 8 and backsides 30 and 46 respectively contacting comb electrodes 27 formed as conductive layers 6 over resonator body 4 Back 32.

在一個例子中,底部金屬層40及44可以藉由在壓電層8中形成的導電通孔50連接到第一與第二連接結構34及36的頂部表面上的接觸墊48,導電通孔50在前述接觸墊48及底部金屬層40及44之間延伸。例如,各頂部金屬層42及46可以具有片狀,並與相應的接觸墊48隔開一間隙(未標號)。各頂部金屬層42及46亦可包含一接觸墊58。各接觸墊48可以相連,視需要各接觸墊48可以連接到適合的訊號源(未圖示),該訊號源可以用以任何適合及/或所欲得到的方式電驅動/偏壓可選的下導電層10。相同地,各接觸墊58可以相連,視需要各接觸墊58可以連接到適合的訊號源(未圖示),該訊號源可以用以任何適合及/或所欲得到的方式電驅動/偏壓上導電層6。In one example, the bottom metal layers 40 and 44 may be connected to the contact pads 48 on the top surfaces of the first and second connection structures 34 and 36 via conductive vias 50 formed in the piezoelectric layer 8, the conductive vias 50 extends between the aforementioned contact pads 48 and the bottom metal layers 40 and 44 . For example, each of the top metal layers 42 and 46 may have a sheet shape and be separated from the corresponding contact pad 48 by a gap (not numbered). Each of the top metal layers 42 and 46 may also include a contact pad 58 . The contact pads 48 may be connected, as desired, to a suitable signal source (not shown) which may be electrically driven/biased in any suitable and/or desired manner. Lower conductive layer 10 . Likewise, the contact pads 58 can be connected, as desired, to a suitable signal source (not shown) that can be electrically driven/biased in any suitable and/or desired manner upper conductive layer 6 .

如圖5A-5B中元件代碼18及27所示,上導電層6亦可以為指叉電極18的形式,並且可選的下導電層10亦可以為梳狀電極27或指叉電極18的形式。As shown in element codes 18 and 27 in FIGS. 5A-5B , the upper conductive layer 6 can also be in the form of interdigitated electrodes 18 , and the optional lower conductive layer 10 can also be in the form of comb-shaped electrodes 27 or interdigitated electrodes 18 .

如圖6A-6B所示,其為在任一或全部圖1-3中沿著A-A及B-B的線上之代表圖,在一個理想及非限制的實施型態或例子中,圖6A-6B中的例子與圖5A-5B中的例子相似,除了至少下述不同處。底部金屬層40和44各可以為一對隔開的導體52形式(相對於圖5A-5B中所示的導電片),其藉由橫向導體54及繫鏈導體56連接到片狀電極33形式的可選的下導電層10。頂部金屬層42及46可各為導體60之形式。各導體60可以藉由繫鏈導體62連接到形成為上導電層6之梳狀電極27的背部30或背部32。繫鏈導體62可以與繫鏈導體56垂直對齊並且藉由壓電層8與繫鏈導體56隔開。在一個例子中,如圖6A-6B所示,繫鏈導體62的寬度可以比繫鏈導體60的寬度少,且繫鏈導體56的寬度可以與繫鏈導體62的寬度大約相同。As shown in Figures 6A-6B, which are representative graphs along the lines A-A and B-B in any or all of Figures 1-3, in one ideal and non-limiting implementation or example, Figures 6A-6B The example is similar to the example in Figures 5A-5B, except for at least the following differences. Bottom metal layers 40 and 44 may each be in the form of a pair of spaced-apart conductors 52 (relative to the conductive sheets shown in FIGS. 5A-5B ) connected to sheet electrodes 33 by lateral conductors 54 and tether conductors 56 The optional lower conductive layer 10. Top metal layers 42 and 46 may each be in the form of conductors 60 . Each conductor 60 may be connected to the backside 30 or the backside 32 of the comb electrode 27 formed as the upper conductive layer 6 by a tether conductor 62 . Tether conductor 62 may be vertically aligned with tether conductor 56 and separated from tether conductor 56 by piezoelectric layer 8 . In one example, as shown in FIGS. 6A-6B , the width of tether conductor 62 may be less than the width of tether conductor 60 , and the width of tether conductor 56 may be approximately the same as the width of tether conductor 62 .

如圖7A-7B所示,其為在任一或全部圖1-3中沿著A-A及B-B的線上之代表圖,在一個理想及非限制的實施型態或例子中,圖7A-7B中的例子與圖6A-6B中的例子相似,除了至少下述不同處。繫鏈導體62及56兩側之各連接結構34及36之部分或全部材料中,前述連接結構部分可以被移除,從而形成槽溝,其可在前述連接結構的剩餘部分及共振器本體4之間,在前述繫鏈導體的兩側從UBAR 2的頂部延伸到底部部分或全部距離。在一個例子中,在前述連接結構的繫鏈導體的兩側上移除各連接結構34及36的部分或所有材料定義為繫鏈結構76,該繫鏈結構76可以包含繫鏈導體62及56且壓電層8的一部分與繫鏈導體62垂直對齊。As shown in Figures 7A-7B, which are representative graphs along the lines A-A and B-B in any or all of Figures 1-3, in one ideal and non-limiting implementation or example, Figures 7A-7B The example is similar to the example in Figures 6A-6B, except for at least the following differences. In part or all of the material of each connection structure 34 and 36 on both sides of the tether conductors 62 and 56, the connection structure portion may be removed, thereby forming a groove, which can be used in the remaining part of the connection structure and the resonator body 4 In between, on both sides of the aforementioned tether conductors extend part or all of the distance from the top to the bottom of the UBAR 2 . In one example, the removal of some or all of the material from each of the connection structures 34 and 36 on both sides of the tether conductors of the aforementioned connection structures defines tether structure 76 , which may include tether conductors 62 and 56 And a portion of the piezoelectric layer 8 is vertically aligned with the tether conductor 62 .

參照圖7C及持續參照圖7A-7B,在一個理想及非限制的實施型態或例子中,在繫鏈導體62及56的兩側上移除各連接結構34及36的部分或所有材料,前述連接結構可用於圖1-3中任一UBAR 2例子使用。例如:圖7C為圖1中UBAR 2例子的側視圖,在繫鏈導體62及56的兩側上第一及第二連接結構34及36的材料中,如圖7A-7B所示移除前述連接結構部分。可以從圖7A-7C理解,在前述連接結構的繫鏈導體62及56的兩側上,移除各連接結構34及36的該材料可以包含上導電層6、壓電層8、可選的下導電層10及裝置層12的部分,因此,在圖7A-7B中在前述連接結構的繫鏈導體62及56的兩側上移除各連接結構34及36所形成的溝槽中沒有可見的材料。在圖7A-7C所示的例子中,各繫鏈結構76可以包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在下導電層10時),以及裝置層12與繫鏈導體62垂直對齊的部分。7C and with continued reference to FIGS. 7A-7B, in one ideal and non-limiting implementation or example, some or all of the material of each connection structure 34 and 36 is removed on both sides of the tether conductors 62 and 56, The aforementioned connection structure can be used with any of the UBAR 2 examples in Figures 1-3. For example: FIG. 7C is a side view of the example of UBAR 2 in FIG. 1 , in the material of the first and second connection structures 34 and 36 on both sides of the tether conductors 62 and 56 , with the aforementioned removed as shown in FIGS. 7A-7B . Connect the structural parts. As can be understood from FIGS. 7A-7C, on both sides of the tether conductors 62 and 56 of the aforementioned connection structures, the material removed from each connection structure 34 and 36 may include the upper conductive layer 6, the piezoelectric layer 8, the optional Portions of the lower conductive layer 10 and the device layer 12, therefore, are not visible in the trenches formed by removing the respective connection structures 34 and 36 on both sides of the tether conductors 62 and 56 of the aforementioned connection structures in FIGS. 7A-7B s material. In the example shown in FIGS. 7A-7C , each tether structure 76 may include, from top to bottom: tether conductor 62 , a portion of piezoelectric layer 8 vertically aligned with tether conductor 62 , optional tether conductor 56 (when lower conductive layer 10 is present), and the portion of device layer 12 that is vertically aligned with tether conductor 62 .

在另一個例子,其中UBAR 2包含基材16(圖2),表示於圖7C之虛線及可選地一個或多個附加的裝置層12-1及/或基材16-1(圖3),在繫鏈導體62及56的兩側上各附加裝置層12-1及/或基材16-1(圖3)及基材16的形成材料中,亦可移除各連接結構34及36部分,因此在圖7A-7B中在前述連接結構的繫鏈導體62及56的兩側上移除各連接結構34及36所形成的溝槽中沒有可見的材料。In another example, wherein UBAR 2 includes substrate 16 (FIG. 2), shown in phantom in FIG. 7C and optionally one or more additional device layers 12-1 and/or substrate 16-1 (FIG. 3) , in the forming material of each additional device layer 12-1 and/or substrate 16-1 (FIG. 3) and substrate 16 on both sides of tether conductors 62 and 56, each connection structure 34 and 36 may also be removed portion, so there is no visible material in the trenches formed by the removal of each connection structure 34 and 36 on both sides of the tether conductors 62 and 56 of the aforementioned connection structures in FIGS. 7A-7B.

在一個例子中,圖7A-7B為圖2中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12與繫鏈導體62垂直對齊的部分,以及基材16與裝置層12垂直對齊的部分。在另一個例子中,圖7A-7B為圖3中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊的部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12及12-1與繫鏈導體62垂直對齊的部分,以及基材16及16-1與繫鏈導體62垂直對齊的部分。In one example, FIGS. 7A-7B are diagrams of the example UBAR 2 of FIG. 2 , each tether structure 76 may include, from top to bottom, a portion of the tether conductor 62 , the piezoelectric layer 8 and the portion of the tether conductor 62 that are vertically aligned , optional tether conductors 56 (when optional lower conductive layer 10 is present), portions of device layer 12 vertically aligned with tether conductors 62 , and portions of substrate 16 vertically aligned with device layer 12 . In another example, FIGS. 7A-7B are diagrams of the example UBAR 2 in FIG. 3 , each tether structure 76 may include, from top to bottom, a tether conductor 62 , a piezoelectric layer 8 that is vertically aligned with the tether conductor 62 . portion, optional tether conductor 56 (when optional lower conductive layer 10 is present), portion of device layers 12 and 12-1 vertically aligned with tether conductor 62, and substrate 16 and 16-1 and tether The portion of conductor 62 that is vertically aligned.

如圖8A-8B所示,其為在任一或全部圖1-3中沿著A-A及B-B的線上之代表圖,在一個理想及非限制的實施型態或例子中,圖8A-8B中的例子與圖7A-7B中的例子相似,除了至少下述不同處。亦即,形成各連接結構34及36的至少一個裝置層12或12-1的全部或部分的材料保留在前述連接結構的繫鏈導體62及56的兩側,因此前述至少一個裝置層12或12-1的材料於前述連接結構的繫鏈導體62及56的兩側溝槽可見。在一個例子中,圖8A-8C為圖1中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)。在此例中,裝置層12被保留在溝槽中並可見於圖8A-8B。As shown in Figures 8A-8B, which are representative graphs along the lines A-A and B-B in any or all of Figures 1-3, in one ideal and non-limiting implementation or example, Figures 8A-8B The example is similar to the example in Figures 7A-7B, except for at least the following differences. That is, the material forming all or part of the at least one device layer 12 or 12-1 of each connection structure 34 and 36 remains on both sides of the tether conductors 62 and 56 of the aforementioned connection structure, so the aforementioned at least one device layer 12 or The material of 12-1 can be seen in the grooves on both sides of the tether conductors 62 and 56 of the aforementioned connection structure. In one example, FIGS. 8A-8C are diagrams of the example UBAR 2 in FIG. 1 , each tether structure 76 may include, from top to bottom, a portion of the tether conductor 62 , the piezoelectric layer 8 and the portion of the tether conductor 62 that are vertically aligned , optional tether conductor 56 (when optional lower conductive layer 10 is present). In this example, the device layer 12 is retained in the trenches and can be seen in Figures 8A-8B.

在另一個例子中,圖8A-8B為圖2中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12與繫鏈導體62垂直對齊的部分。在此例中,裝置層12被保留在溝槽中並可見於圖8A-8B,裝置層12底下之基材16亦被保留(表示於圖8C的虛線),但不可見於圖8A-8B之溝槽。In another example, FIGS. 8A-8B are diagrams of the UBAR 2 example of FIG. 2 , each tether structure 76 may include, from top to bottom, a tether conductor 62 , a piezoelectric layer 8 that is vertically aligned with the tether conductor 62 . portion, optional tether conductor 56 (when optional lower conductive layer 10 is present), portion of device layer 12 vertically aligned with tether conductor 62 . In this example, the device layer 12 is retained in the trenches and can be seen in Figures 8A-8B, and the substrate 16 under the device layer 12 is also retained (shown in dashed lines in Figure 8C), but not visible in Figures 8A-8B groove.

在另一個例子中,圖8A-8B為圖3中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12與繫鏈導體62垂直對齊的部分。在一個例子中,裝置層12被保留並可見於在圖8A-8B的溝槽中,裝置層12底下之基材16亦被保留,但不可見於圖8A-8B的溝槽中,各繫鏈結構76亦包含裝置層12-1及基材16-1與繫鏈導體62垂直對齊的部分。在另一個例子中,裝置層12-1被保留並可見於圖8A-8B的溝槽中,基材16、16-1及裝置層12亦被保留但不可見於圖8A-8B之溝槽。In another example, FIGS. 8A-8B are diagrams of the example of UBAR 2 in FIG. 3 , each tether structure 76 may include, from top to bottom, a tether conductor 62 , a piezoelectric layer 8 that is vertically aligned with the tether conductor 62 . portion, optional tether conductor 56 (when optional lower conductive layer 10 is present), portion of device layer 12 vertically aligned with tether conductor 62 . In one example, the device layer 12 is retained and visible in the trenches of FIGS. 8A-8B, and the substrate 16 underlying the device layer 12 is also retained, but not visible in the trenches of FIGS. 8A-8B, each tether Structure 76 also includes portions of device layer 12 - 1 and substrate 16 - 1 that are vertically aligned with tether conductors 62 . In another example, device layer 12-1 is retained and visible in the trenches of FIGS. 8A-8B, and substrates 16, 16-1 and device layer 12 are also retained but not visible in the trenches of FIGS. 8A-8B.

另一個例子如圖8D所示,圖1或2中UBAR 2例子的圖,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊的部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12之本體與繫鏈導體62垂直對齊的部分,藉由部分移除在各連接結構34及36的繫鏈導體62及56的兩側上之裝置層12而暴露裝置層12之本體與繫鏈導體62垂直對齊的部分。其中圖8D的例子為圖2中所示之UBAR 2,基材16(如圖8D所示之虛線)可被保留在裝置層12之下但不可見於圖8A-8B。As another example, as shown in FIG. 8D, the diagram of the example of UBAR 2 in FIG. 1 or 2, each tether structure 76 may include from top to bottom: tether conductor 62, piezoelectric layer 8 and tether conductor 62 vertically aligned Portions, optional tether conductors 56 (when optional lower conductive layer 10 is present), portions of the body of device layer 12 vertically aligned with tether conductors 62, by partially removing the The device layer 12 on both sides of the tether conductors 62 and 56 exposes the portion of the device layer 12 that is vertically aligned with the tether conductor 62 . Where the example of FIG. 8D is the UBAR 2 shown in FIG. 2 , the substrate 16 (shown in phantom in FIG. 8D ) may be left under the device layer 12 but not visible in FIGS. 8A-8B .

在另一個例子中,圖3所指之UBAR 2例子,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12之本體或裝置層12-1與繫鏈導體62垂直對齊的部分,藉由部分移除在各連接結構34及36的繫鏈導體62及56的兩側上之裝置層12或裝置層12-1(類似圖8D部分移除裝置層12)而暴露裝置層12之本體或裝置層12-1與繫鏈導體62垂直對齊的部分。在一個例子中,當移除圖3所示之UBAR 2之裝置層12本體的一部分(類似圖8D部分移除裝置層12),圖3中UBAR 2之裝置層12的形成材料內部部分在圖8A-8B中的溝槽中可見,各繫鏈結構76亦可包含裝置層12-1及基材16-1與繫鏈導體62垂直對齊的部分。在此例中,基材16被保留,亦即沒有任何基材16的部分被移除,將不會顯示在圖8A-8B中。In another example, the UBAR 2 example referred to in FIG. 3 , each tether structure 76 may include, from top to bottom, a tether conductor 62 , a portion of the piezoelectric layer 8 vertically aligned with the tether conductor 62 , an optional Tether conductor 56 (when optional lower conductive layer 10 is present), the body of device layer 12 or the portion of device layer 12-1 that is vertically aligned with tether conductor 62, by partial removal at each connection structure 34 and 36 Device layer 12 or device layer 12-1 on both sides of tether conductors 62 and 56 (similar to FIG. 8D partially removing device layer 12) to expose the body of device layer 12 or device layer 12-1 and tether conductor 62 Vertically aligned sections. In one example, when a part of the body of the device layer 12 of the UBAR 2 shown in FIG. 3 is removed (similar to the partial removal of the device layer 12 in FIG. 8D ), the inner part of the forming material of the device layer 12 of the UBAR 2 in FIG. 3 is shown in FIG. As seen in the trenches in 8A-8B, each tether structure 76 may also include portions of device layer 12-1 and substrate 16-1 that are vertically aligned with tether conductors 62. In this example, the substrate 16 is retained, ie no portion of the substrate 16 has been removed, which will not be shown in Figures 8A-8B.

在另一個例子中,當移除圖3所示之UBAR 2之裝置層12-1本體的一部分(類似圖8D裝置層12部分移除),裝置層12-1的形成材料內部部分在圖8A-8B中的溝槽中可見,各繫鏈結構76亦可包含裝置層12-1與繫鏈導體62垂直對齊的部分。在此例中,基材16、16-1及裝置層12被保留,亦即沒有任何基材16、16-1及裝置層12的部分被移除,將不會顯示在圖8A-8B中。In another example, when a portion of the body of the device layer 12-1 of the UBAR 2 shown in FIG. 3 is removed (similar to the partial removal of the device layer 12 in FIG. 8D ), the inner portion of the forming material of the device layer 12-1 is shown in FIG. 8A . As seen in the trenches in -8B, each tether structure 76 may also include a portion of the device layer 12-1 that is vertically aligned with the tether conductor 62. In this example, the substrates 16, 16-1 and the device layer 12 are retained, ie no portions of the substrates 16, 16-1 and the device layer 12 are removed, which will not be shown in Figures 8A-8B .

參照圖9A-9B,其為在任一或全部圖1-3中沿著A-A及B-B的線上之代表圖,圖2的UBAR 2在一個理想或非限制的實施型態或例子,圖9A-9B所示之例子與圖8A-8B的例子相似,除了至少下述例外。各繫鏈結構76可包含裝置層12之部分形成材料,其中如圖9A-9C所示,基材16之部分可見於在各連接結構34及36的繫鏈導體62及56的兩側所形成的溝槽中。在此例中,基材16被保留且各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、及裝置層12與繫鏈導體62垂直對齊之部分。Referring to Figures 9A-9B, which are representative views along the lines A-A and B-B in any or all of Figures 1-3, the UBAR 2 of Figure 2 in an ideal or non-limiting implementation or example, Figures 9A-9B The example shown is similar to that of Figures 8A-8B, with at least the following exceptions. Each tether structure 76 may comprise a portion of the device layer 12 forming material, wherein as shown in FIGS. 9A-9C , portions of the substrate 16 can be seen formed on both sides of the tether conductors 62 and 56 of each connection structure 34 and 36 in the groove. In this example, substrate 16 is retained and each tether structure 76 may include, from top to bottom: tether conductor 62 , portion of piezoelectric layer 8 vertically aligned with tether conductor 62 , optional tether conductor 56 (when the optional lower conductive layer 10 is present), and the portion of the device layer 12 that is vertically aligned with the tether conductor 62 .

接著,參照圖9A-9B,圖3所示之UBAR 2在一個理想及非限制的實施型態或例子中,裝置層12及基材16、16-1被保留如圖9A-9B所示,基材16-1可見於在各連接結構34及36的繫鏈導體62及56的兩側所形成的溝槽中。在此例中,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、及裝置層12-1與繫鏈導體62垂直對齊之部分。9A-9B, in an ideal and non-limiting implementation or example of the UBAR 2 shown in FIG. 3, the device layer 12 and the substrates 16, 16-1 are retained as shown in FIGS. 9A-9B, Substrate 16 - 1 can be seen in trenches formed on both sides of tether conductors 62 and 56 of each connection structure 34 and 36 . In this example, each tether structure 76 may include, from top to bottom: tether conductor 62, a portion of piezoelectric layer 8 vertically aligned with tether conductor 62, optional tether conductor 56 (when optional the lower conductive layer 10), and the portion of the device layer 12-1 that is vertically aligned with the tether conductor 62.

在另一個例子中,圖3所示之UBAR 2,其中基材16被保留,在圖9A-9B中基材16可見於在各連接結構34及36的繫鏈導體62及56的兩側所形成的溝槽中,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12-1與繫鏈導體62垂直對齊之部分、基材16-1與繫鏈導體62垂直對齊之部分、及裝置層12與繫鏈導體62垂直對齊之部分。In another example, the UBAR 2 shown in FIG. 3 in which the substrate 16 is retained, the substrate 16 is visible on both sides of the tether conductors 62 and 56 of the respective connecting structures 34 and 36 in FIGS. 9A-9B . In the grooves formed, each tether structure 76 may include, from top to bottom: tether conductor 62, a portion of piezoelectric layer 8 vertically aligned with tether conductor 62, optional tether conductor 56 (when optional the lower conductive layer 10), the portion of the device layer 12-1 vertically aligned with the tether conductor 62, the portion of the substrate 16-1 vertically aligned with the tether conductor 62, and the portion of the device layer 12 vertically aligned with the tether conductor 62 part.

在圖9D所示的另一個例子中,圖2所示的UBAR 2的例子中,在基材16及裝置層12的介面,可以在共振器本體4及連接結構34及36的下方橫向移除基材16本體的部分形成材料,其中如圖9D所示,連接結構34及36的底部64及70被暴露、共振器本體4的底部66及68被暴露、及基材16本體的表面72及74被暴露。在此例中,基材16本體被移除的部分形成材料可以延伸至圖9D的平面並基材16的材料部分與各繫鏈結構76垂直對齊。在此例中,各繫鏈結構76可包含由上至下為:繫鏈導體62、壓電層8與繫鏈導體62垂直對齊之部分、可選的繫鏈導體56(當存在可選的下導電層10時)、裝置層12與繫鏈導體62垂直對齊之部分、及基材16與繫鏈導體62垂直對齊並貼近裝置層12之部分。在此例中,表面72及74可見於圖9A-9B的溝槽中。In another example shown in FIG. 9D , the example of UBAR 2 shown in FIG. 2 , at the interface of the substrate 16 and the device layer 12 , it can be removed laterally below the resonator body 4 and the connecting structures 34 and 36 A portion of the body of the substrate 16 forms the material, wherein as shown in FIG. 9D , the bottoms 64 and 70 of the connecting structures 34 and 36 are exposed, the bottoms 66 and 68 of the resonator body 4 are exposed, and the surfaces 72 and 70 of the body of the substrate 16 are exposed. 74 were exposed. In this example, the portion of the substrate 16 body from which the material has been removed may extend to the plane of FIG. 9D and the material portion of the substrate 16 is vertically aligned with each tether structure 76 . In this example, each tether structure 76 may include, from top to bottom: tether conductor 62, a portion of piezoelectric layer 8 vertically aligned with tether conductor 62, optional tether conductor 56 (when optional the lower conductive layer 10 ), the portion of the device layer 12 vertically aligned with the tether conductor 62 , and the portion of the substrate 16 vertically aligned with the tether conductor 62 and close to the device layer 12 . In this example, surfaces 72 and 74 can be seen in the trenches of Figures 9A-9B.

在另一個替代的例子中,圖3所示之UBAR 2例子中,可以在共振器本體4及連接結構34及36的下方橫向移除基材16-1或16的部分形成材料,類似移除圖9D中基材16的形成材料,其中基材16-1或16的形成材料表面(如表面72及74)被暴露並可見於圖9A-9B的溝槽中。In another alternative example, in the example of UBAR 2 shown in FIG. 3 , part of the forming material of the substrate 16 - 1 or 16 may be laterally removed under the resonator body 4 and the connecting structures 34 and 36 , similar to removing The forming material of substrate 16 in Figure 9D, wherein the forming material surfaces of substrate 16-1 or 16 (eg, surfaces 72 and 74) are exposed and visible in the trenches of Figures 9A-9B.

在一個例子中,當圖3之UBAR 2例子之基材16-1的形成材料表面(如表面72及74)被暴露並可見於圖9A-9B的溝槽中,各繫鏈結構76亦可包含裝置層12-1與繫鏈導體62垂直對齊之部分及基材16-1形成材料與繫鏈導體62垂直對齊之部分並貼近裝置層12-1。在此例中,只移除基材16-1本體之部分以形成各溝槽,且裝置層12及基材16被保留,亦即,沒有任何裝置層12及基材16的部分被移除,並不可見於圖9A-9B中。In one example, when the forming material surfaces (eg, surfaces 72 and 74) of the substrate 16-1 of the UBAR 2 example of FIG. 3 are exposed and visible in the trenches of FIGS. 9A-9B, each tether structure 76 may also be The portion of the device layer 12-1 that is vertically aligned with the tether conductor 62 and the substrate 16-1 form the portion of the material vertically aligned with the tether conductor 62 and proximate the device layer 12-1. In this example, only a portion of the body of the substrate 16-1 is removed to form each trench, and the device layer 12 and the substrate 16 are retained, that is, no portion of the device layer 12 and the substrate 16 is removed , not visible in Figures 9A-9B.

在另一個例子中,當圖3中UBAR 2的例子之基材16的形成材料表面(如表面72及74)被暴露,並可見於圖9A-9B所示之溝槽中,各繫鏈結構76亦可包含裝置層12-1與繫鏈導體62垂直對齊的部分、基材16-1與繫鏈導體62垂直對齊的部分、裝置層12與繫鏈導體62垂直對齊的部分、基材16形成材料與繫鏈導體62垂直對齊並貼近裝置層12的部分。在此例中,只移除基材16-1本體的部分以形成各溝槽。In another example, when the forming material surfaces (eg, surfaces 72 and 74 ) of the substrate 16 of the example of UBAR 2 in FIG. 3 are exposed and visible in the trenches shown in FIGS. 9A-9B , each tether structure 76 may also include portions of device layer 12-1 vertically aligned with tether conductors 62, portions of substrate 16-1 vertically aligned with tether conductors 62, portions of device layer 12 vertically aligned with tether conductors 62, substrate 16 The portion of the material that is vertically aligned with the tether conductor 62 and proximate the device layer 12 is formed. In this example, only a portion of the body of the substrate 16-1 is removed to form the grooves.

在一個理想及非限制的實施型態或例子中,當前述討論之例子中沒有下導電層10時,不需要存在連接結構34及36的底部金屬層40及44。In one ideal and non-limiting implementation or example, the bottom metal layers 40 and 44 of the connection structures 34 and 36 need not be present when the lower conductive layer 10 is not present in the examples discussed above.

在一個理想及非限制的實施型態或例子中,前述各繫鏈結構76可包含至少繫鏈導體62、可選的繫鏈導體56(當存在可選的下導電層10時)、僅壓電層8與繫鏈導體62垂直對齊的部分。在另一個理想及非限制的實施型態或例子中,各繫鏈結構76可包含下列一個或多個與繫鏈導體62垂直對齊之部分:裝置層12、基材16、裝置層12-1、及/或基材16-1。然而,在此不具有限制性。In an ideal and non-limiting implementation form or example, each of the aforementioned tether structures 76 may include at least the tether conductor 62 , the optional tether conductor 56 (when the optional lower conductive layer 10 is present), the only voltage The portion of the electrical layer 8 that is vertically aligned with the tether conductor 62 . In another desirable and non-limiting implementation or example, each tether structure 76 may include one or more of the following vertically aligned with the tether conductors 62: device layer 12, substrate 16, device layer 12-1 , and/or Substrate 16-1. However, it is not limiting here.

在一個理想及非限制的實施型態或例子中,圖1-3所示各例子中的共振器本體4,至少上導電層6、可選的下導電層10、及上導電層6下方之壓電層8部分的寬度可為相同。亦即或者,在一個例子中,裝置層12、基材16、裝置層12-1、及/或基材16-1的寬度可以與上導電層6、可選的下導電層10、及壓電層8的寬度及/或尺寸相同。In an ideal and non-limiting implementation form or example, the resonator body 4 in each example shown in FIGS. 1-3 has at least one of the upper conductive layer 6 , the optional lower conductive layer 10 , and the lower part of the upper conductive layer 6 . The widths of the portions of the piezoelectric layer 8 may be the same. That is, alternatively, in one example, the width of device layer 12, substrate 16, device layer 12-1, and/or substrate 16-1 may be the same as the width of upper conductive layer 6, optional lower conductive layer 10, and the pressure The widths and/or dimensions of the electrical layers 8 are the same.

在一個理想及非限制的實施型態或例子中,圖1-3所示任一例子中的共振器本體4的任一或複數個表面及/或任一或複數個連接結構34及/或36之一個或全部表面,可依適合及/或所欲進行適當地蝕刻,期望將圖1-3中任何UBAR 2例子的品質因子及/或插入損失情形優化。例如,可蝕刻圖1-3所示之任一例子中的共振器本體4的上表面及下表面。亦即或者,圖1-3所示各例子中的共振器本體4的任一或複數個側面可被蝕刻,其中前述側面與平面垂直。In an ideal and non-limiting implementation form or example, any one or a plurality of surfaces and/or any or a plurality of connecting structures 34 and/or of the resonator body 4 in any of the examples shown in FIGS. 1-3 One or all of the surfaces of 36 may be appropriately etched as appropriate and/or desired, desirably optimized for quality factor and/or insertion loss conditions for any of the UBAR 2 examples in Figures 1-3. For example, the upper and lower surfaces of the resonator body 4 in any of the examples shown in FIGS. 1-3 may be etched. That is, alternatively, any one or more of the sides of the resonator body 4 in the examples shown in FIGS. 1-3 may be etched, wherein the aforementioned sides are perpendicular to the plane.

在一個理想及非限制的實施型態或例子中,其中上導電層6、可選的下導電層10、或兩者,其為指叉電極18之形式,前述指叉電極18的一背部22或26可由一個適合的訊號源連接並驅動,而另一個背部22或26可以不與訊號源相連。在另一個理想及非限制的實施型態或例子中,其中上導電層6、可選的下導電層10、或兩者,其為指叉電極18之形式,前述指叉電極18的一背部22可由一個訊號源連接並驅動,且前述指叉電極18的一背部26可由第二訊號源連接並驅動。在一個例子中,第二訊號源可以與第一訊號源相同或不同。In an ideal and non-limiting implementation form or example, wherein the upper conductive layer 6 , the optional lower conductive layer 10 , or both, are in the form of interdigitated electrodes 18 , a backside 22 of the aforementioned interdigitated electrodes 18 Either or 26 may be connected and driven by a suitable signal source, while the other back 22 or 26 may not be connected to the signal source. In another ideal and non-limiting embodiment or example, the upper conductive layer 6 , the optional lower conductive layer 10 , or both, are in the form of interdigitated electrodes 18 , a backside of the aforementioned interdigitated electrodes 18 . 22 can be connected and driven by a signal source, and a back 26 of the aforementioned interdigitated electrode 18 can be connected and driven by a second signal source. In one example, the second signal source may be the same as or different from the first signal source.

在一個理想及非限制的實施型態或例子中,各裝置層12(或12-1)的例子之聲阻抗可為≥ 60 x 10 6Pa-s/m 3。在另一個例子中,各裝置層12(或12-1)的例子之聲阻抗可為≥ 90 x 10 6Pa-s/m 3。在另一個例子中,各裝置層12(或12-1)的例子之聲阻抗可為≥ 500 x 10 6Pa-s/m 3。在一個理想及非限制的實施型態或例子中,各基材層16的聲阻抗可為≤ 100 x10 6Pa-s/m 3。在另一個例子中,各基材層16的聲阻抗可為≤ 60 x10 6Pa-s/m 3In one ideal and non-limiting implementation or example, the acoustic impedance of each instance of device layer 12 (or 12-1 ) may be ≥ 60 x 10 6 Pa-s/m 3 . In another example, the acoustic impedance of an instance of each device layer 12 (or 12-1 ) may be ≥ 90 x 10 6 Pa-s/m 3 . In another example, the acoustic impedance of an instance of each device layer 12 (or 12-1 ) may be ≥ 500 x 10 6 Pa-s/m 3 . In an ideal and non-limiting implementation or example, the acoustic impedance of each substrate layer 16 may be ≤ 100×10 6 Pa-s/m 3 . In another example, the acoustic impedance of each substrate layer 16 may be ≦60×10 6 Pa-s/m 3 .

在一個理想及非限制的實施型態或例子中,裝置層12、壓電層8、或可選的下導電層10之介面的聲波反射率(R)可以大於50%。在另一個例子中,裝置層12、壓電層8、或可選的下導電層10之介面的聲波反射率(R)可以大於70%。在另一個例子中,裝置層12、壓電層8、或可選的下導電層10之介面的聲波反射率(R)可以大於90%。In one ideal and non-limiting implementation or example, the acoustic reflectivity (R) of the interface between the device layer 12, the piezoelectric layer 8, or the optional lower conductive layer 10 may be greater than 50%. In another example, the acoustic reflectivity (R) of the interface of device layer 12, piezoelectric layer 8, or optional lower conductive layer 10 may be greater than 70%. In another example, the acoustic reflectivity (R) of the interface of device layer 12, piezoelectric layer 8, or optional lower conductive layer 10 may be greater than 90%.

在一個理想及非限制的實施型態或例子中,裝置層12或12-1、及壓電層8、或可選的下導電層10之介面的聲波反射率(R)可以大於70%。在一個例子中,任兩層6與8;8與10;8或10與12或12-1;或12或12-1與16或16-1的介面反射率R,或裝置層12或12-1與基材16或16-1的介面反射率R可以藉由下述方程式計算:In an ideal and non-limiting implementation or example, the acoustic reflectivity (R) of the interface between the device layer 12 or 12-1, and the piezoelectric layer 8, or the optional lower conductive layer 10 may be greater than 70%. In one example, the interface reflectance R of any two layers 6 and 8; 8 and 10; 8 or 10 and 12 or 12-1; or 12 or 12-1 and 16 or 16-1, or device layer 12 or 12 The reflectivity R of the interface between -1 and substrate 16 or 16-1 can be calculated by the following equation:

R = ǀ (Zb-Za)/(Za+Zb) ǀR = ǀ (Zb-Za)/(Za+Zb) ǀ

其中Za =第一層之聲阻抗,例如:壓電層8或可選的下導電層10,其位於第二層之上;及where Za = the acoustic impedance of the first layer, eg: the piezoelectric layer 8 or optional lower conductive layer 10, which is located above the second layer; and

Zb =第二層之聲阻抗,例如:裝置層12。Zb = acoustic impedance of the second layer, eg: device layer 12.

第一層及第二層的其他例子可以包含裝置層12或12-1在基材16或16-1之上的例子。Other examples of first and second layers may include examples of device layer 12 or 12-1 over substrate 16 or 16-1.

在一個理想及非限制的實施型態或例子中,圖1-3所示的共振器本體4的任何例子的整體反射率(R)可為> 90%。In one ideal and non-limiting implementation or example, the overall reflectivity (R) of any example of the resonator body 4 shown in FIGS. 1-3 may be >90%.

在一個理想及非限制的實施型態或例子中,裝置層12可為以先前技術形成之鑽石層或SiC。在一個例子中,基材16可以由矽形成。In one ideal and non-limiting implementation or example, the device layer 12 may be a diamond layer or SiC formed in the prior art. In one example, substrate 16 may be formed of silicon.

在一個理想及非限制的實施型態或例子中,鑽石所形成的裝置層12可以藉由基材16或16-1或犧牲性基材(未圖示)上鑽石的化學氣相沉積成長得到。在一個理想及非限制的實施型態或例子中,可選的下導電層10、壓電層8、上導電層6可以沉積在裝置層12上,並視需要圖案化(例如:梳狀電極27或指叉電極18),其利用的傳統半導體製作技術在此不多做說明。In an ideal and non-limiting implementation or example, the diamond-formed device layer 12 may be grown by chemical vapor deposition of diamond on the substrate 16 or 16-1 or a sacrificial substrate (not shown) . In an ideal and non-limiting implementation or example, optional lower conductive layer 10, piezoelectric layer 8, and upper conductive layer 6 may be deposited on device layer 12 and patterned as desired (eg, comb electrodes) 27 or the interdigitated electrode 18), the conventional semiconductor fabrication technology used by it will not be described here.

在此,各溫度補償層90、92、94可以包含矽或氧之至少一者。例如:各溫度補償層可包含二氧化矽、或矽元素、及/或氧元素。Here, each of the temperature compensation layers 90, 92, 94 may include at least one of silicon or oxygen. For example, each temperature compensation layer may contain silicon dioxide, or silicon element, and/or oxygen element.

在一個理想及非限制的實施型態或例子中,圖1-3所示之各UBAR 2可以具有無負載品質因子≥ 100。在另一個例子,圖1-3所示之各UBAR 2可以具有無負載品質因子≥50。在一個理想及非限制的實施型態或例子中,圖1-3所示各共振器本體4例子之壓電層8、各裝置層12及基材16的厚度可選擇以任何適合及/或期望的方式,優化共振器本體4的性能。相同地,在一個例子中,圖1-3所示的各例子共振器本體4之尺寸可根據目標性能做選擇,不具限制性地舉例:插入損失、功率承載能力、及熱耗散。在一個理想及非限制的實施型態或例子中,當鑽石作為裝置層12的材料使用時,前述鑽石層的表面在下層12的介面可以用光學方法完成及/或其物理上為密集。在一個例子中,形成裝置層12的鑽石材料可以為未摻雜或摻雜,例如:P型或N型。該鑽石材料可以為多晶體、奈米晶體或超奈米晶體。在一個例子中,當矽用作各基材16例子的材料時,前述矽可以為未摻雜或摻雜,例如:P型或N型,及單晶體或多晶體。形成裝置層的鑽石材料可以有拉曼半高峰寬≤ 20 cm -1In one ideal and non-limiting implementation or example, each of the UBARs 2 shown in FIGS. 1-3 may have an unloaded quality factor ≥ 100. In another example, each of the UBARs 2 shown in Figures 1-3 may have an unloaded quality factor ≥ 50. In an ideal and non-limiting implementation or example, the thicknesses of the piezoelectric layer 8, the device layers 12, and the substrate 16 of each example of the resonator body 4 shown in FIGS. 1-3 may be selected in any suitable and/or In the desired manner, the performance of the resonator body 4 is optimized. Likewise, in one example, the dimensions of the example resonator bodies 4 shown in FIGS. 1-3 may be selected according to target performance, by way of non-limiting example: insertion loss, power carrying capacity, and heat dissipation. In an ideal and non-limiting embodiment or example, when diamond is used as the material of the device layer 12, the interface of the surface of the diamond layer with the underlying layer 12 may be optically completed and/or physically dense. In one example, the diamond material forming device layer 12 may be undoped or doped, eg, P-type or N-type. The diamond material can be polycrystalline, nanocrystalline or super nanocrystalline. In one example, when silicon is used as the material for each of the substrate 16 instances, the aforementioned silicon may be undoped or doped, eg, P-type or N-type, and monocrystalline or polycrystalline. The diamond material forming the device layer may have a Raman half maximum width ≤ 20 cm -1 .

在一個理想及非限制的實施型態或例子中,壓電層8可以由ZnO、AlN、InN、鹼金屬或鹼土金屬鈮酸鹽、鹼金屬或鹼土金屬鈦酸鹽、鹼金屬或鹼土金屬鉭鐵礦,GaN,AlGaN,鋯鈦酸鉛(PZT)、任何前述材料所形成之聚合物或摻雜型態。In an ideal and non-limiting embodiment or example, the piezoelectric layer 8 can be made of ZnO, AlN, InN, alkali metal or alkaline earth metal niobate, alkali metal or alkaline earth metal titanate, alkali metal or alkaline earth metal tantalum Iron ore, GaN, AlGaN, lead zirconate titanate (PZT), polymers or doped forms of any of the foregoing.

在一個理想及非限制的實施型態或例子中,裝置層12可以由任何適合及/或期望的高聲阻抗材料所形成。例如:一個材料具有在10 6Pa-s/m 3與630 x 10 6Pa-s/m 3之間或高於630 x 10 6Pa-s/m 3的聲阻抗可以視為高聲阻抗材料。可以使用的典型高聲阻抗材料之部分非限制的例子,例如形成任何在此所述之裝置層12,可包含:鑽石(~630 x 10 6Pa-s/m 3);W (~99.7 x 10 6Pa-s/m 3);SiC;一種凝相材料如金屬,例如Al、Pt、Pd、Mo、Cr、Ir、Ti、Ta;週期表中3A或4A族的元素;週期表中1B、2B、3B、4B、5B、6B、7B或8B族的過渡元素;陶瓷;玻璃及聚合物。此高聲阻抗材料之非限制性清單並不限於此。 In one ideal and non-limiting implementation or example, the device layer 12 may be formed of any suitable and/or desired high acoustic impedance material. For example: a material with an acoustic impedance between 10 6 Pa-s/m 3 and 630 x 10 6 Pa-s/m 3 or above 630 x 10 6 Pa-s/m 3 can be considered a high acoustic impedance material . Some non-limiting examples of typical high acoustic impedance materials that may be used, such as to form any of the device layers 12 described herein, may include: diamond (~630 x 10 6 Pa-s/m 3 ); W (~99.7 x 10 6 Pa-s/m 3 ); SiC; a condensed phase material such as a metal such as Al, Pt, Pd, Mo, Cr, Ir, Ti, Ta; an element of Group 3A or 4A of the Periodic Table; 1B of the Periodic Table , 2B, 3B, 4B, 5B, 6B, 7B or 8B transition elements; ceramics; glasses and polymers. This non-limiting list of high acoustic impedance materials is not limited thereto.

在一個理想及非限制的實施型態或例子中,基材16可以由任何適合及/或期望的低聲阻抗材料所形成。例如:一個材料具有在10 6Pa-s/m 3與30 x 10 6Pa-s/m 3之間的聲阻抗可以視為低聲阻抗材料。可以使用的典型低聲阻抗材料之部分非限制例子,例如形成在此所述之任一基材16,可包含下述至少一種:陶瓷;具有在10 6Pa-s/m 3與30 x 10 6Pa-s/m 3之間的聲阻抗之金屬、玻璃、水晶、礦物質;象牙(1.4 x 10 6Pa-s/m 3);氧化鋁/藍寶石(25.5 x 10 6Pa-s/m 3);鹼金屬K(1.4 x 10 6Pa-s/m 3);二氧化矽及矽(19.7 x 10 6Pa-s/m 3)。此低聲阻抗材料之非限制性清單並不限於此。 In one desirable and non-limiting implementation or example, substrate 16 may be formed of any suitable and/or desired low acoustic impedance material. For example: a material having an acoustic impedance between 10 6 Pa-s/m 3 and 30 x 10 6 Pa-s/m 3 can be considered a low acoustic impedance material. Some non-limiting examples of typical low acoustic impedance materials that may be used, such as forming any of the substrates 16 described herein, may comprise at least one of the following: ceramic; Acoustic impedance between 6 Pa-s/m 3 metal, glass, crystal, minerals; ivory (1.4 x 10 6 Pa-s/m 3 ); alumina/sapphire (25.5 x 10 6 Pa-s/m 3 ) 3 ); alkali metal K (1.4 x 10 6 Pa-s/m 3 ); silica and silicon (19.7 x 10 6 Pa-s/m 3 ). This non-limiting list of low acoustic impedance materials is not limited thereto.

在一個理想及非限制的實施型態或例子中,取決於各例子共振器本體4的形成材料選擇,通常被認為是高聲阻抗材料的一種或多種材料可以用作共振器本體4的低聲阻抗材料。例如:當使用鑽石或SiC作為裝置層12的材料時,可以使用W作為基材16的材料。因此,藉由達成兩層介面或共振器本體4所期望的反射率R(如上所述),可以決定哪些材料可作為高聲抗阻及哪些作為低聲抗阻。In one ideal and non-limiting embodiment or example, depending on the choice of material for forming the resonator body 4 for each example, one or more materials generally considered to be high acoustic impedance materials may be used as the low acoustic resistance material. For example, when diamond or SiC is used as the material of the device layer 12 , W may be used as the material of the substrate 16 . Thus, by achieving the desired reflectivity R of the two-layer interface or resonator body 4 (as described above), it is possible to decide which materials can be used as high acoustic impedance and which as low acoustic impedance.

在一個理想及非限制的實施型態或例子中,一體聲波共振器,根據本發明之原理可以包含共振器本體4。該共振器本體4可以包含壓電層8;裝置層12;上導電層6,係位於前述壓電層8上方且前述壓電層之另一側為前述裝置層12。前述裝置層12中與前述壓電層8相反側之全部表面,實質上用於將前述共振器本體4安裝於分隔於前述共振器本體4之載體14。在此例中,期望但非必要前述裝置層與前述壓電層相反側之全部表面用來作為將整個共振器本體安裝於載體。在此例中,期望但非必要體聲波共振器可以包含連接結構34或36以傳導訊號到上導電層。在一個例子中,裝置層可包含鑽石或SiC。在一個例子中,上導電層6可包含複數個含間格的導電線或彈片。在一個例子中,前述共振器本體4可以進一步包含可選的下導電層10,係位在壓電層8及裝置層12之間。In an ideal and non-limiting embodiment or example, an integrated acoustic wave resonator may include a resonator body 4 in accordance with the principles of the present invention. The resonator body 4 may include a piezoelectric layer 8 ; a device layer 12 ; The entire surface of the device layer 12 opposite to the piezoelectric layer 8 is substantially used to mount the resonator body 4 on the carrier 14 separated from the resonator body 4 . In this example, it is desirable, but not necessary, that the entire surface of the device layer opposite the piezoelectric layer is used to mount the entire resonator body to the carrier. In this example, it may be desirable, but not necessary, for the BAW resonator to include connecting structures 34 or 36 to conduct signals to the upper conductive layer. In one example, the device layer may comprise diamond or SiC. In one example, the upper conductive layer 6 may include a plurality of conductive lines or elastic sheets with spaces. In one example, the aforementioned resonator body 4 may further include an optional lower conductive layer 10 positioned between the piezoelectric layer 8 and the device layer 12 .

在一個理想及非限制的實施型態或例子中,共振器本體4可以進一步包含基材16,係連接於前述裝置層12且前述裝置層之另一側為前述壓電層8。在一個例子中,前述裝置層12之表面可整個安裝進前述基材16。在一個例子中,面向前述載體14之基材16的表面可整個直接安裝進前述載體14。In an ideal and non-limiting embodiment or example, the resonator body 4 may further include a substrate 16 connected to the aforementioned device layer 12 and the other side of the aforementioned device layer is the aforementioned piezoelectric layer 8 . In one example, the surface of the aforementioned device layer 12 may be entirely mounted into the aforementioned substrate 16 . In one example, the entire surface of the substrate 16 facing the aforementioned carrier 14 may be directly mounted into the aforementioned carrier 14 .

在一個理想及非限制的實施型態或例子中,面向前述載體14之前述裝置層12之表面可整個安裝進前述基材16。在一個例子中,面向前述載體14之前述裝置層12之表面可整個安裝進前述載體14。In an ideal and non-limiting embodiment or example, the surface of the device layer 12 facing the carrier 14 may be entirely mounted into the substrate 16 . In one example, the surface of the aforementioned device layer 12 facing the aforementioned carrier 14 may be entirely mounted into the aforementioned carrier 14 .

在一個理想及非限制的實施型態或例子中,共振器本體4可進一步包含第二裝置層12-1,其位於基材16與壓電層8之間;或第二基材16-1,其位於基材16與壓電層8之間;或包含兩者。In an ideal and non-limiting embodiment or example, the resonator body 4 may further include a second device layer 12-1, which is located between the substrate 16 and the piezoelectric layer 8; or the second substrate 16-1 , which is located between the substrate 16 and the piezoelectric layer 8; or includes both.

在一個理想及非限制的實施型態或例子中,在此使用「整個安裝」可以表示直接安裝一層或基材,或間接安裝另一層或基材。在一個例子中,在此使用「整個安裝」可以表示或取代性為在一層或基材與另一層或基材之間沒有刻意預留的空間或間隔。在另一個例子中,在此使用「整個安裝」可以表示或取代性包含一層或基材與另一層或基材之間自然產生的空間,其為自然產生並非刻意製造。In an ideal and non-limiting implementation or example, the use of "entirely mounted" herein may mean directly mounting one layer or substrate, or indirectly mounting another layer or substrate. In one example, the use of "entirely mounted" herein may mean or alternatively mean that no space or separation is intentionally reserved between one layer or substrate and another layer or substrate. In another example, use of "entirely mounted" herein may mean or alternatively include a naturally occurring space between one layer or substrate and another layer or substrate, which is naturally occurring and not intentionally fabricated.

UBAR之部分非限制的實施型態或例子已說明,在此將說明第一至第六的UBAR例子。Some non-limiting implementations or examples of UBAR have been described, and the first to sixth UBAR examples will be described here.

第一UBARfirst UBAR 例子:一個啟用裝置層之模式3Example: A mode 3 enabled device layer 及或模式4and or mode 4 共振且具有溫度補償層。Resonant and has a temperature compensation layer.

參照圖1,在部分非限制性的實施型態或例子中,一個第一UBAR2例子(如圖1所示)可包含由頂端至載體14為:包含間格的導電線或彈片20或28之上導電層6(如圖4A至4B所示)、由LiNbO 3所形成的壓電層8、由SiO 2所形成的溫度補償層92及由鑽石或SiC所形成的裝置層12。在一個例子中,指間距38(如圖4A至4B所示)為0.6µm及壓電層8的厚度為0.6µm。 Referring to FIG. 1, in some non-limiting implementations or examples, a first UBAR2 example (shown in FIG. 1) may include from the top end to the carrier 14: a conductive line including a space between or between the elastic pieces 20 or 28 The upper conductive layer 6 (shown in FIGS. 4A to 4B ), the piezoelectric layer 8 formed of LiNbO 3 , the temperature compensation layer 92 formed of SiO 2 , and the device layer 12 formed of diamond or SiC. In one example, the finger pitch 38 (shown in FIGS. 4A-4B ) is 0.6 μm and the thickness of the piezoelectric layer 8 is 0.6 μm.

在整個本發明中,變數「λ」值可以基於由上導電層 所界定之圖案或特徵之一個或多個尺寸,或基於壓電層8之厚度。在部分非限制性的實施型態或例子中,λ值可以為指間距38之2倍或壓電層8厚度之2倍(此例為1.2µm)。然而,這不應被解釋為具有限制意義,因λ值可以基於在此所述各UBAR例子中一層或更多層之厚度及/或一個或更多圖案或特徵之任何其他適合及/或所期望的尺寸。在此例子中,壓電層8之切割角度為0° (或180°),有時稱為Y切割或YX切割。在部分非限制性的實施型態或例子中,可預想壓電層8之切割角度為0° (或180°) ± 20°。在此,除非另有說明,壓電層8之切割角度為參照相對於X軸旋轉之切割角度。Throughout the present invention, the value of the variable "λ" may be based on one or more dimensions of the pattern or features defined by the upper conductive layer, or on the thickness of the piezoelectric layer 8. In some non-limiting implementations or examples, the λ value may be twice the finger spacing 38 or twice the thickness of the piezoelectric layer 8 (1.2 µm in this example). However, this should not be construed in a limiting sense as the λ value may be based on the thickness of one or more layers in each UBAR example described herein and/or any other suitable and/or desired size. In this example, the cutting angle of the piezoelectric layer 8 is 0° (or 180°), which is sometimes referred to as Y-cut or YX-cut. In some non-limiting implementations or examples, it can be envisaged that the cutting angle of the piezoelectric layer 8 is 0° (or 180°) ± 20°. Here, unless otherwise specified, the cutting angle of the piezoelectric layer 8 refers to the cutting angle rotated with respect to the X axis.

在部分非限制性的實施型態或例子中,為了塑模第一UBAR2例子,針對由SiO 2所形成的溫度補償層92厚度的多個或複數個不同示例性的值,在第一UBAR2例子進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應(頻率vs.振福)。在一個塑模例子,SiO 2所形成的溫度補償層92厚度介於(9/16)λ及(1/64)λ,各不同厚度值中,在第一UBAR2例子進行示例性的電刺激頻率為至少在1 GHz至6.2 GHz間。在一個例子中,在至少1 GHz至6.2 GHz間做頻率掃描可確定溫度補償層92厚度如(9/16)λ之頻率vs.振福的第一圖表、圖或關係。在一個例子中,在至少1 GHz至6.2 GHz間做頻率掃描可確定溫度補償層92厚度如(3/64)λ之頻率vs.振福的另一個圖表、圖或關係。在溫度補償層92的不同厚度做頻率掃描可確定額外的頻率vs.振福的圖表、圖或關係。 In some non-limiting implementations or examples, in order to mold the first UBAR2 example, for multiple or multiple different exemplary values of the thickness of the temperature compensation layer 92 formed of SiO 2 , in the first UBAR2 example An exemplary electrical stimulation frequency sweep (eg: 1 GHz to 6.2 GHz) was performed to confirm frequency response (frequency vs. vibration). In a molding example, the thickness of the temperature compensation layer 92 formed by SiO 2 is between (9/16)λ and (1/64)λ, and in various thickness values, an exemplary electrical stimulation frequency is performed in the first UBAR2 example is at least between 1 GHz and 6.2 GHz. In one example, a frequency sweep over at least 1 GHz to 6.2 GHz can determine a first graph, graph or relationship of frequency vs. vibration for temperature compensation layer 92 thickness such as (9/16)λ. In one example, a frequency sweep over at least 1 GHz to 6.2 GHz may determine another graph, graph or relationship of frequency vs. vibration for temperature compensation layer 92 thickness such as (3/64)λ. Frequency sweeps at different thicknesses of the temperature compensation layer 92 may determine additional frequency vs. vibration graphs, graphs or relationships.

在各頻率vs.振福的圖表、圖或關係觀察到至少模式4共振頻率88(圖10及11)。在第一UBAR例子中,然而意外地在5.2 GHz觀察到模式4共振頻率88(圖11)相對於在3.05 GHz觀察到模式4共振頻率88(圖10),以及在3.13 GHz觀察到模式3共振頻率86(圖11)。At least the mode 4 resonant frequency 88 was observed in a graph, graph or relationship for each frequency vs. Zhenfu (FIGS. 10 and 11). In the first UBAR example, however, the mode 4 resonance frequency 88 was unexpectedly observed at 5.2 GHz (FIG. 11) relative to the mode 4 resonance frequency 88 observed at 3.05 GHz (FIG. 10), and the mode 3 resonance was observed at 3.13 GHz Frequency 86 (Figure 11).

在圖11中,為了簡潔表示,將模式1及模式2之共振頻率82及84(如圖10所示)省略在模式3共振頻率86之左邊。然而,應當理解在頻率掃描介於至少1 GHz及6.2 GHz時,除了模式3及模式4的共振頻率86及88之外,亦可以有模式1及模式2的共振頻率82及84(如圖10所示)。In FIG. 11 , the resonance frequencies 82 and 84 of mode 1 and mode 2 (shown in FIG. 10 ) are omitted to the left of the resonance frequency 86 of mode 3 for the sake of brevity. However, it should be understood that in addition to the resonant frequencies 86 and 88 of mode 3 and mode 4, there may also be resonant frequencies 82 and 84 of mode 1 and mode 2 when the frequency sweep is at least 1 GHz and 6.2 GHz (Fig. 10). shown).

在部分非限制性的實施型態或例子中,如圖11所示,頻率vs.振福的各個圖表、圖或關係中,模式3共振頻率86包含正峰值 f s1 及負峰值 f p1 ,模式4共振頻率88包含正峰值 f s2 及負峰值 f p2 In some non-limiting implementations or examples, as shown in FIG. 11 , in each graph, graph or relationship of frequency vs. vibration, the mode 3 resonant frequency 86 includes a positive peak f s1 and a negative peak f p1 , the mode The resonant frequency 88 includes a positive peak fs2 and a negative peak fp2 .

僅為說明目的,在此所記載之「大約」一特定頻率所觀察到的「共振頻率」,對於模式3共振頻率86可以為正峰值 f s1 及負峰值 f p1 中任一代表頻率,對於模式4共振頻率88可以為正峰值 f s2 及負峰值 f p2 中任一代表值。因此,在此所記載之「大約」一特定頻率之任何共振頻率不應被限制。 For illustrative purposes only, the "resonant frequency" observed at "approximately" a particular frequency described herein may be any representative frequency of the positive peak f s1 and the negative peak f p1 for the mode 3 resonance frequency 86 . The resonance frequency 88 may be any representative value of the positive peak value f s2 and the negative peak value f p2 . Accordingly, any resonant frequency described herein as "about" a particular frequency should not be limited.

在部分非限制性的實施型態或例子中,SiO 2所形成的溫度補償層92之厚度為(1/16)λ時,模式3及模式4的共振頻率86及88之模式3耦合效率(M3CE)及模式4耦合效率(M4CE)可以分別藉由下述方程式EQ1及EQ2確定: EQ1:模式3耦合效率(M3CE) = (π 2/4)(( f p1 f s1 )/ f p1 ) EQ2:模式4耦合效率(M4CE) = (π 2/4)(( f p2 f s2 )/ f p2 ) 其中,當 f p1 f s1 示例性的值分別為3.738 GHz及3.13 GHz,M3CE =  40.093%;及 當 f p2 f s2 示例性的值分別為5.442 GHz及5.172 GHz,M4CE = 12.229%。 In some non-limiting implementations or examples, when the thickness of the temperature compensation layer 92 formed by SiO 2 is (1/16)λ, the mode 3 coupling efficiency ( M3CE) and mode 4 coupling efficiency (M4CE) can be determined by the following equations EQ1 and EQ2, respectively: EQ1: Mode 3 coupling efficiency (M3CE) = (π 2 /4)(( f p1 f s1 )/ f p1 ) EQ2: Mode 4 Coupling Efficiency (M4CE) = (π 2 /4)(( f p2 f s2 )/ f p2 ) where, when the exemplary values of f p1 and f s1 are 3.738 GHz and 3.13 GHz, respectively, M3CE = 40.093 %; and when the exemplary values of fp2 and fs2 are 5.442 GHz and 5.172 GHz, respectively, M4CE = 12.229%.

然而,因M3CE之值≥8%、≥11%、≥14%、≥17%或≥20%為可令人滿意、適合及/或所期望的,此例中前述M3CE值不應具有限制性。此外或取代性地,因M4CE之值≥3%、≥4%、≥6%、≥8%或≥10%為可令人滿意、適合及/或所期望的,此例中前述M4CE值不應具有限制性。However, since M3CE values ≥8%, ≥11%, ≥14%, ≥17%, or ≥20% are satisfactory, suitable and/or desirable, the aforementioned M3CE values in this example should not be limiting . Additionally or alternatively, since M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% are satisfactory, suitable and/or desirable, the aforementioned M4CE values in this example are not should be restrictive.

在部分非限制性的實施型態或例子中,當所期望一個特定的M3CE值如≥8%、≥11%、≥14%、≥17%或≥20%時,則壓電層8之切割角度可以延伸超過上述0° (或180°) ± 20°,例如:切割角度為0° (或180°) ≥ ± 20°、≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子中,壓電層8不具限制性例如為LiNbO 3晶體,生產自Z切割或X切割之期望的切割角度亦可能足以得到M3CE之特定期望值。 In some non-limiting embodiments or examples, when a specific M3CE value such as ≥8%, ≥11%, ≥14%, ≥17% or ≥20% is desired, the cutting of the piezoelectric layer 8 The angle can extend beyond the above 0° (or 180°) ± 20°, for example: the cutting angle is 0° (or 180°) ≥ ± 20°, ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. In some non-limiting implementations or examples, the piezoelectric layer 8 is not limited, such as LiNbO 3 crystal, and the desired cutting angle produced from Z-cut or X-cut may also be sufficient to obtain the specific desired value of M3CE.

在部分非限制性的實施型態或例子中,當所期望一個特定的M4CE值如≥3%、≥4%、≥6%、≥8%或≥10%時,則壓電層8之切割角度可以延伸超過上述130° ± 30°(有時稱作Y切割130 ± 30或YX切割130 ±30),例如切割角度為:130° ≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子中,壓電層8不具限制性例如LiNbO 3晶體,生產自Z切割或X切割之期望的切割角度亦可能足以得到M4CE之特定期望值。 In some non-limiting embodiments or examples, when a specific M4CE value such as ≥3%, ≥4%, ≥6%, ≥8% or ≥10% is desired, the cutting of the piezoelectric layer 8 The angle can extend beyond the above 130° ± 30° (sometimes called Y cut 130 ± 30 or YX cut 130 ± 30), for example cutting angles are: 130° ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. . In some non-limiting implementations or examples, the piezoelectric layer 8 is not limited such as LiNbO 3 crystal, and the desired cutting angle produced from Z-cut or X-cut may also be sufficient to obtain the specific desired value of M4CE.

在部分非限制性的實施型態或例子中,使用方程式EQ1及EQ2及上述所確定的頻率vs.振福的圖表、圖或關係,得到溫度補償層92之多個厚度值,由SiO 2所形成的溫度補償層92並用於優化模式3及模式4共振頻率的多個厚度值分別決定為(3/64)λ及(1/32)λ。然而,因SiO 2所形成的溫度補償層92厚度可以為任何適合及/或期望且不具限制性的厚度,如≤1λ、≤(1/2)λ、≤(3/8)λ、≤(1/4)λ或≤(1/8)λ,該厚度值不應具有限制性。 In some non-limiting implementations or examples, equations EQ1 and EQ2 and the above-determined graphs, graphs or relationships of frequency vs. vibration are used to obtain a plurality of thickness values for the temperature compensation layer 92, determined by SiO 2 . The formed temperature compensation layer 92 and the plurality of thickness values for optimizing the resonance frequencies of the mode 3 and the mode 4 are determined to be (3/64)λ and (1/32)λ, respectively. However, the thickness of the temperature compensation layer 92 formed by SiO 2 can be any suitable and/or desired and non-limiting thickness, such as ≤1λ, ≤(1/2)λ, ≤(3/8)λ, ≤( 1/4)λ or ≤(1/8)λ, the thickness value should not be restrictive.

第二UBARSecond UBAR 例子:一個啟用裝置層之模式3Example: A mode 3 enabled device layer 及或模式4and or mode 4 共振且不具有溫度補償層。Resonant and without a temperature compensation layer.

在部分非限制性的實施型態或例子中,為了比較及/或塑模目的,在第二UBAR2例子進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應,第二UBAR2例子各層面與上述第一UBAR2例子相似(如圖1所示),唯獨第二UBAR2例子不包含溫度補償層92。進行頻率掃描以確認頻率vs.振福的圖表、圖或關係。In some non-limiting implementations or examples, for comparison and/or modeling purposes, an exemplary electrical stimulation frequency sweep (eg, 1 GHz to 6.2 GHz) was performed on a second UBAR2 instance to confirm frequency response, and The layers of the two UBAR2 examples are similar to the above-mentioned first UBAR2 example (as shown in FIG. 1 ), except that the second UBAR2 example does not include the temperature compensation layer 92 . Perform a frequency sweep to confirm a graph, graph or relationship of frequency vs. Zhenfu.

使用方程式EQ1及EQ2及頻率掃描所確認的頻率vs.振福的圖表、圖或關係,第二UBAR2例子之模式3及模式4共振頻率86及88的耦合效率M3CE及M4CE可確認為: f p1 f s1 的值分別為3.738 GHz及3.13 GHz時,M3CE = 40.093%; f p2 f s2 的值分別為6.194 GHz及5.96 GHz 時,M4CE = 9.312%。 Using equations EQ1 and EQ2 and the frequency sweep identified frequency vs. Zhenfu graph, graph or relationship, the coupling efficiencies M3CE and M4CE for the mode 3 and mode 4 resonant frequencies 86 and 88 of the second UBAR2 example can be identified as: f p1 When the values of f p2 and f s1 are 3.738 GHz and 3.13 GHz, respectively, M3CE = 40.093%; when the values of f p2 and f s2 are 6.194 GHz and 5.96 GHz, respectively, M4CE = 9.312%.

然而,因M3CE值≥8%、≥11%、≥14%、≥17%或≥20%為可令人滿意、適合及/或所期望的,此例之前述M3CE值不應具有限制性。此外或取代性地,因M4CE值≥3%、≥4%、≥6%、≥8%或≥10%為可令人滿意、適合及/或所期望的,此例之前述M4CE值不應具有限制性。However, since M3CE values ≥8%, ≥11%, ≥14%, ≥17%, or ≥20% are satisfactory, suitable and/or desirable, the aforementioned M3CE values of this example should not be limiting. Additionally or alternatively, since M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8% or ≥ 10% are satisfactory, suitable and/or desirable, the aforementioned M4CE values of this example should not be Restrictive.

在部分非限制性的實施型態或例子,當所期望一個特定M3CE值時,例如≥8%、≥11%、≥14%、≥17%或≥20%,壓電層8之切割角度可延伸超過前述切割角度 0° (或180°) ± 20°,例如切割角為0° (或180°) ≥ ± 20°、≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子,壓電層8不具限制性的例如為LiNbO 3晶體,生產自Z切割或X切割的期望切割角度亦可能得到期望的特定M3CE值。 In some non-limiting implementations or examples, when a specific M3CE value is desired, such as ≥8%, ≥11%, ≥14%, ≥17%, or ≥20%, the cutting angle of the piezoelectric layer 8 can be Extend beyond the aforementioned cutting angle of 0° (or 180°) ± 20°, such as a cutting angle of 0° (or 180°) ≥ ± 20°, ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. In some non-limiting embodiments or examples, the piezoelectric layer 8 is not limited, for example, LiNbO 3 crystal, and the desired specific M3CE value may also be obtained from the desired cutting angle of Z-cut or X-cut.

在部分非限制性的實施型態或例子,當所期望一個特定M4CE值時,例如≥3%、≥4%、≥6%、≥8%或≥10%,壓電層8之切割角度可以延伸超過130° ± 30°(有時稱作Y切割130 ± 30或YX切割130 ±30),例如切割角度為:130° ≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子中,壓電層8不具限制性例如LiNbO 3晶體,生產自Z切割或X切割之期望的切割角度亦可能足以得到M4CE之特定期望值。 In some non-limiting implementations or examples, when a specific M4CE value is desired, such as ≥3%, ≥4%, ≥6%, ≥8%, or ≥10%, the cutting angle of the piezoelectric layer 8 can be Extends beyond 130° ± 30° (sometimes called Y cut 130 ± 30 or YX cut 130 ± 30), e.g. at cut angles: 130° ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. In some non-limiting implementations or examples, the piezoelectric layer 8 is not limited such as LiNbO 3 crystal, and the desired cutting angle produced from Z-cut or X-cut may also be sufficient to obtain the specific desired value of M4CE.

從UBAR2具有及不具有上述溫度補償層92的M4CE值可以理解UBAR2具有由SiO 2所形成的溫度補償層92時,其耦合效率較大,相反地,UBAR2不具有由SiO 2所形成的溫度補償層92時,其耦合效率較小。在部分非限制性的實施型態或例子,一般而言,較期望得到越大數值的耦合效率。 From the M4CE values of UBAR2 with and without the above-mentioned temperature compensation layer 92, it can be understood that when the UBAR2 has the temperature compensation layer 92 formed of SiO 2 , its coupling efficiency is higher, on the contrary, UBAR2 does not have the temperature compensation layer formed of SiO 2 . When layer 92 is used, the coupling efficiency is less. In some non-limiting implementations or examples, generally speaking, it is more desirable to obtain a larger value of coupling efficiency.

第三UBARThird UBAR 例子:一個啟用裝置層之模式3Example: A mode 3 enabled device layer 及或模式4and or mode 4 共振且並具有溫度補償層及氮化鋁層。It resonates and has a temperature compensation layer and an aluminum nitride layer.

參照圖12並接續參照圖11,在部分非限制性的實施型態或例子中,為了比較及/或塑模之目的,在第三UBAR2例子(如圖12所示)進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應,第三UBAR2例子各層面與上述第一UBAR2例子相似,唯獨第三UBAR2至少在下述除外:亦即,第三UBAR2例子在由鑽石或SiC所形成的裝置層12與由SiO 2所形成的溫度補償層92之間包含一層氮化鋁AlN 96,溫度補償層92於氮化鋁層96之上(如圖12所示),氮化鋁層96厚度為(7/16)λ,由SiO 2所形成的溫度補償層92厚度為(11/128)λ,由鑽石或SiC所形成的裝置層12厚度為(90/16)λ。在此例中,λ相當於1.6 µm。接著進行頻率掃描以確認頻率vs.振福的圖表、圖或關係。 Referring to Figure 12 with continued reference to Figure 11, in some non-limiting implementations or examples, for comparison and/or modeling purposes, exemplary electrical stimulation was performed on a third UBAR2 example (shown in Figure 12) Frequency sweep (ex: 1 GHz to 6.2 GHz) to confirm frequency response, the third UBAR2 example is similar in all aspects to the first UBAR2 example above, except that the third UBAR2 is at least the following: i.e., the third UBAR2 example is made of diamond A layer of aluminum nitride AlN 96 is included between the device layer 12 formed of SiC or the temperature compensation layer 92 formed of SiO 2 , the temperature compensation layer 92 is on the aluminum nitride layer 96 (as shown in FIG. 12 ), nitrogen The thickness of the aluminum oxide layer 96 is (7/16)λ, the thickness of the temperature compensation layer 92 formed by SiO 2 is (11/128)λ, and the thickness of the device layer 12 formed by diamond or SiC is (90/16)λ . In this example, λ corresponds to 1.6 µm. A frequency sweep is then performed to confirm a graph, graph or relationship of frequency vs. Zhenfu.

使用方程式EQ1及EQ2以及由頻率掃描所確認之頻率vs.振福的圖表、圖或關係,圖12中第三UBAR2例子的模式3及模式4共振頻率86及88之耦合效率M3CE及M4CE確認為: f p1 f s1 的值分別為3.608 GHz及3.032 GHz時,M3CE = 39.351%; f p2 f s2 的值分別為5.02 GHz及4.8 GHz 時,M4CE = 10.802%。 Using equations EQ1 and EQ2 and a graph, graph or relationship of frequency vs. Zhenfu identified by the frequency sweep, the coupling efficiencies M3CE and M4CE for the mode 3 and mode 4 resonant frequencies 86 and 88 of the third UBAR2 example in Figure 12 are identified as : When the values of f p1 and f s1 are 3.608 GHz and 3.032 GHz, respectively, M3CE = 39.351%; when the values of f p2 and f s2 are 5.02 GHz and 4.8 GHz, respectively, M4CE = 10.802%.

然而,此例中前述的M3CE值不具有限制性,因M3CE ≥8%、≥11%、≥14%、≥17%或≥20%可為令人滿意的、適合及/或所期望的。此外或取代性地,此例中前述的M4CE值不具有限制性,因M4CE≥3%、≥4%、≥6%、≥8%或≥10%可為令人滿意的、適合及/或所期望的。However, the aforementioned M3CE values in this example are not limiting, as M3CE > 8%, > 11%, > 14%, > 17% or > 20% may be satisfactory, suitable and/or desirable. Additionally or alternatively, the aforementioned M4CE values in this example are not limiting, as M4CE ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8% or ≥ 10% may be satisfactory, suitable and/or expected.

在部分非限制性的實施型態或例子中,當所期望一個特殊M3CE值如≥8%、≥11%、≥14%、≥17%或≥20%,壓電層8之切割角度可延伸超過前述切割角度 0° (或180°) ± 20°,例如切割角為0° (或180°) ≥ ± 20°、≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子,壓電層8不具限制性的例如為LiNbO 3晶體,生產自Z切割或X切割的期望切割角度亦可能得到期望的特定M3CE值。 In some non-limiting implementations or examples, when a particular M3CE value such as ≥8%, ≥11%, ≥14%, ≥17% or ≥20% is desired, the cutting angle of the piezoelectric layer 8 can be extended Exceeds the aforementioned cutting angle of 0° (or 180°) ± 20°, for example, the cutting angle is 0° (or 180°) ≥ ± 20°, ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. In some non-limiting embodiments or examples, the piezoelectric layer 8 is not limited, for example, LiNbO 3 crystal, and the desired specific M3CE value may also be obtained from the desired cutting angle of Z-cut or X-cut.

在部分非限制性的實施型態或例子,當所期望一個特定M4CE值時,例如≥3%、≥4%、≥6%、≥8%或≥10%,壓電層8之切割角度可以延伸超過130° ± 30°(有時稱作Y切割130 ± 30或YX切割130± 30),例如切割角度為:130° ≥ ± 30°、≥ ± 40°、≥ ± 50°等。在部分非限制性的實施型態或例子中,壓電層8不具限制性例如LiNbO 3晶體,生產自Z切割或X切割之期望的切割角度亦可能足以得到M4CE之特定期望值。 In some non-limiting implementations or examples, when a specific M4CE value is desired, such as ≥3%, ≥4%, ≥6%, ≥8%, or ≥10%, the cutting angle of the piezoelectric layer 8 can be Extends beyond 130° ± 30° (sometimes called Y cut 130 ± 30 or YX cut 130 ± 30), e.g. at cut angles: 130° ≥ ± 30°, ≥ ± 40°, ≥ ± 50°, etc. In some non-limiting implementations or examples, the piezoelectric layer 8 is not limited such as LiNbO 3 crystal, and the desired cutting angle produced from Z-cut or X-cut may also be sufficient to obtain the specific desired value of M4CE.

在上述第一至第三例子,確認以0° (或180°)切割之LiNbO 3晶體所形成的壓電層8之UBARs、M3CE及M4CE值。在部分非限制性的實施型態或例子,申請人發現由LiNbO 3晶體所形成的壓電層8以130°(有時稱作YX切割130°或Y切割130 °)切割可以增強或優化模式4共振頻率88之耦合效率M4CE。在一個例子中,由LiNbO 3晶體所形成的壓電層8之切割角度可以為130° ± 30°,例如在100°至160°之範圍內;理想為130° ± 20°,例如在110°至150°範圍內;最理想為130° ± 10°,例如在120°至140°範圍內。然而,此±值或範圍不具有限制性。 In the above-mentioned first to third examples, the values of UBARs, M3CE and M4CE of the piezoelectric layer 8 formed by the LiNbO 3 crystal cut at 0° (or 180°) were confirmed. In some non-limiting implementations or examples, Applicants have discovered that the piezoelectric layer 8 formed of LiNbO3 crystals is cut at 130° (sometimes referred to as YX cut 130° or Y cut 130°) to enhance or optimize the mode 4. Coupling efficiency M4CE at resonant frequency 88. In one example, the cutting angle of the piezoelectric layer 8 formed of LiNbO 3 crystal can be 130°±30°, for example, in the range of 100° to 160°; ideally, it is 130°±20°, such as 110° to 150°; ideally 130° ± 10°, eg, 120° to 140°. However, this ± value or range is not limiting.

此外,在部分非限制性的實施型態或例子中,申請人發現當UBAR2形成時,在壓電層8(由LiNbO 3晶體所形成並以約130° (± 30°、或± 20°、或± 10°)之角度切割)與裝置層12(當基材16省略)或基材16(當裝置層12省略)或同時有裝置層12及基材16兩者之間,具有交替的低與高聲抗阻層可以增強或優化模式4共振頻率88之耦合效率M4CE。在部分非限制性的實施型態或例子中,UBAR2具有交替的低與高聲抗阻層可包含由鑽石、SiC、W、Ir或AlN所形成的裝置層12以及由矽所形成的基材16。在部分非限制性的實施型態或例子中,UBAR2具有交替的低與高聲抗阻層可包含由矽所形成的基材16,但可排除裝置層12。 In addition, in some non-limiting implementations or examples, the applicant found that when the UBAR 2 was formed, the piezoelectric layer 8 (which was formed of LiNbO 3 crystal and was formed at about 130° (± 30°, or ± 20°, or ±10°) angle cutting) and device layer 12 (when substrate 16 is omitted) or substrate 16 (when device layer 12 is omitted) or both device layer 12 and substrate 16, with alternating low The coupling efficiency M4CE at the mode 4 resonant frequency 88 can be enhanced or optimized with a high acoustic impedance layer. In some non-limiting implementations or examples, the UBAR 2 having alternating low and high acoustic impedance layers may include a device layer 12 formed of diamond, SiC, W, Ir or AlN and a substrate formed of silicon 16. In some non-limiting implementations or examples, UBAR2 having alternating low and high acoustic impedance layers may include substrate 16 formed of silicon, but may exclude device layer 12 .

第四UBARFourth UBAR 例子:一個堆疊啟用的撓曲模式(Example: A stack-enabled flex mode ( 模式4)Mode 4) 包含至少一個低聲抗阻層及一個高聲抗阻層,及可選地含一個裝置層。Contains at least one low acoustic impedance layer and one high acoustic impedance layer, and optionally a device layer.

參照圖13並持續參照圖11,在部分非限制性的實施型態或例子中,一個第四UBAR2例子(如圖13所示)由交替的低及高聲抗阻材料層所組成,可包含:在壓電層8(由LiNbO 3晶體所形成並以約130° (± 30°、± 20°、± 10°)之角度切割)與(可選的)裝置層12或基材16間,具有第一低聲抗阻層100、第一高聲抗阻層102、第二低聲抗阻層104、第二高聲抗阻層106及第三低聲抗阻層108。在此例中,上導電層6中含間格的導電線或彈片20或28(如圖4A及4B所示)之指間距38為1.2 µm、λ值為2.4 µm、壓電層厚度為λ/2、若有裝置層12其厚度為4λ、基材16厚度為20 µm。在此例中,為了塑模之目的,壓電層8之切割角度可為100°至160°。 Referring to FIG. 13 and with continued reference to FIG. 11, in some non-limiting implementations or examples, a fourth UBAR2 example (shown in FIG. 13) is composed of alternating layers of low and high acoustic impedance materials, which may include : between piezoelectric layer 8 (formed from LiNbO crystal and cut at an angle of about 130° (± 30°, ± 20°, ± 10°)) and (optional) device layer 12 or substrate 16, It has a first low acoustic impedance layer 100 , a first high acoustic impedance layer 102 , a second low acoustic impedance layer 104 , a second high acoustic impedance layer 106 and a third low acoustic impedance layer 108 . In this example, the interdigitated conductive lines or elastic pieces 20 or 28 in the upper conductive layer 6 (as shown in FIGS. 4A and 4B ) have a finger spacing 38 of 1.2 µm, a λ value of 2.4 µm, and a piezoelectric layer thickness of λ /2. If the device layer 12 has a thickness of 4λ, and the substrate 16 has a thickness of 20 µm. In this example, the cutting angle of the piezoelectric layer 8 may be 100° to 160° for the purpose of molding.

在部分非限制性的實施型態或例子中,各低聲抗阻層100、104及108可形成自二氧化矽(SiO 2)、各高聲抗阻層102及106可形成自金屬,如鎢(W),裝置層12可形成自鑽石或SiC,基材16可形成自矽。在一個例子中,裝置層12為可選的,其中第三低聲抗阻層108可以直接接觸基材16及第二高聲抗阻層106。 In some non-limiting implementations or examples, each of the low acoustic impedance layers 100, 104, and 108 may be formed from silicon dioxide ( SiO2 ), and each of the high acoustic impedance layers 102 and 106 may be formed from a metal, such as Tungsten (W), the device layer 12 can be formed from diamond or SiC, and the substrate 16 can be formed from silicon. In one example, the device layer 12 is optional, wherein the third low acoustic impedance layer 108 may directly contact the substrate 16 and the second high acoustic impedance layer 106 .

在部分非限制性的實施型態或例子中,為了塑模之目的,在數個第四UBARs 2例子進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應(頻率vs.振幅),在分別具有及不具有裝置層12的情況下、在壓電層8從100°至160°多個不同切割角度、在低聲抗阻層100、104及108之不同示例性厚度、在高聲抗阻層102及106之不同示例性厚度,例如以前述第一UBAR2之方式進行。換句話說,在數個第四UBARs 2例子進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應(頻率vs.振幅),前述UBARs 2例子有不同組合:(1)具有裝置層12或不具有裝置層12;(2)壓電層8從100°至160°多個不同切割角度;(3)低聲抗阻層100、104及108之不同厚度;(4)高聲抗阻層102及106之不同厚度。In some non-limiting implementations or examples, exemplary electrical stimulation frequency sweeps (eg, 1 GHz to 6.2 GHz) were performed on several fourth examples of UBARs 2 for molding purposes to confirm frequency responses (frequency vs. amplitude), with and without device layer 12, respectively, at multiple different cut angles from 100° to 160° at piezoelectric layer 8, at different exemplary levels of low acoustic impedance layers 100, 104, and 108 Thickness, different exemplary thicknesses in the high acoustic impedance layers 102 and 106, for example, in the manner described above for the first UBAR2. In other words, exemplary electrical stimulation frequency sweeps (eg: 1 GHz to 6.2 GHz) were performed on several fourth examples of UBARs 2 to confirm frequency responses (frequency vs. amplitude), with various combinations of the preceding UBARs 2 examples: (1 ) with the device layer 12 or without the device layer 12; (2) a plurality of different cutting angles of the piezoelectric layer 8 from 100° to 160°; (3) different thicknesses of the low acoustic impedance layers 100, 104 and 108; (4) ) different thicknesses of the high acoustic impedance layers 102 and 106.

在部分非限制性的實施型態或例子中,壓電層8之各切割角度、各低聲抗阻層100、104及108之厚度定在相同值(第一個值)、各高聲抗阻層102及106之厚度定在相同值(第二個值)、在第四UBARs 2例子進行示例性的電刺激頻率掃描,頻率例如1 GHz至6.2 GHz,並記錄第四UBARs 2例子掃描之頻率反應。接著,僅改變低聲抗阻層之厚度(第一個值)或高聲抗阻層之厚度(第二個值),重複頻率掃描,並記錄第四UBARs 2例子之反應頻率。為了表徵第四UBARs 2例子低聲抗阻層及高聲抗阻層不同厚度值之頻率反應,該過程針對不同低聲抗阻層及高聲抗阻層不同厚度值重複數次。在部分非限制性的實施型態或例子中,各低聲抗阻層及/或高聲抗阻層不同厚度值可以為相同或不同。在部分非限制性的實施型態或例子中,鑽石、SiC、W、Ir、AlN等可被用作高聲抗阻材料。各頻率掃描中確認頻率vs.振幅之圖表、圖、或關係。In some non-limiting embodiments or examples, the cutting angles of the piezoelectric layer 8, the thicknesses of the low acoustic impedance layers 100, 104 and 108 are set at the same value (the first value), the high acoustic impedance The thicknesses of the resistive layers 102 and 106 are set at the same value (the second value), an exemplary electrical stimulation frequency sweep is performed on the fourth instance of UBARs 2, for example, at a frequency of 1 GHz to 6.2 GHz, and the fourth instance of UBARs 2 is recorded. frequency response. Next, changing only the thickness of the low acoustic impedance layer (the first value) or the thickness of the high acoustic impedance layer (the second value), the frequency sweep was repeated, and the response frequency of the fourth example of UBARs 2 was recorded. In order to characterize the frequency response of different thickness values of the low-acoustic impedance layer and the high-acoustic impedance layer of the fourth UBARs 2, the process was repeated several times for different thickness values of the low-acoustic impedance layer and the high-acoustic impedance layer. In some non-limiting implementations or examples, the different thickness values of the low acoustic impedance layers and/or the high acoustic impedance layers may be the same or different. In some non-limiting implementations or examples, diamond, SiC, W, Ir, AlN, etc. can be used as the high acoustic impedance material. A graph, graph, or relationship of frequency vs. amplitude is confirmed for each frequency sweep.

藉由方程式EQ2及第四UBAR2例子所做之頻率掃描進而確認頻率vs.振幅之圖表、圖、或關係,圖13中第四UBAR2例子之模式4共振頻率88之理想耦合效率M4CE在具有及不具有裝置層12的情況下為: 對於 f p2 f s2 分別為5.43 GHz及5.08 GHz時,M4CE = 15.888% 例如:壓電層8之切割角度為130°,各低聲抗阻層100、104、108厚度為(1/16)λ,各高聲抗阻層102、106厚度為(1/16)λ。 The ideal coupling efficiency M4CE at the mode 4 resonant frequency 88 of the fourth UBAR2 example in Figure 13 with and without With the device layer 12: For f p2 and f s2 of 5.43 GHz and 5.08 GHz, respectively, M4CE = 15.888% For example: the cut angle of the piezoelectric layer 8 is 130°, and the low acoustic impedance layers 100, 104 The thickness of 108 is (1/16)λ, and the thickness of each high acoustic impedance layer 102 and 106 is (1/16)λ.

因M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%可為令人滿意、適合的及/或所期望的,此例中前述M4CE值不應具有限制性。在一個例子中,M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%可以藉由調整壓電層8之切割角度±一個適合及/或所期望的值如前述之130° ± 30°而達成。在部分非限制的實施型態及例子中,壓電層8不具限制性的如LiNbO 3晶體產自Z切割或X切割的期望切割角度亦可能得到期望的特定M4CE值。 Since M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% may be satisfactory, suitable and/or desirable, the aforementioned M4CE values in this example should not be limiting. In one example, the M4CE value ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8% or ≥ 10% can be adjusted by adjusting the cutting angle of the piezoelectric layer 8 ± a suitable and/or desired value as previously described 130° ± 30°. In some non-limiting embodiments and examples, the piezoelectric layer 8 is not limited, such as LiNbO 3 crystals produced from a desired cutting angle of Z-cut or X-cut, it is also possible to obtain a desired specific M4CE value.

此外,各低聲抗阻層及/或各高聲抗阻層之前述厚度不應具有限制性,因各低聲抗阻層及/或各高聲抗阻層之前述厚度可為適合的及/或所期望的厚度,不具限制性地例如可為≤1λ、≤(1/2)λ、≤(3/8)λ、≤(1/4)λ或≤(1/8)λ。各低聲抗阻層及/或各高聲抗阻層之厚度可與任一其他低聲抗阻層及/或各高聲抗阻層之厚度不同(或相同)。因此,在此低聲抗阻層之厚度相同、高聲抗阻層之厚度相同或低聲抗阻層之厚度與高聲抗阻層之厚度相同時皆不具有限制性。In addition, the aforementioned thicknesses of each low acoustic impedance layer and/or each high acoustic impedance layer should not be limiting, as the aforementioned thicknesses of each low acoustic impedance layer and/or each high acoustic impedance layer may be suitable and /or desired thickness, for example, without limitation, may be ≤1λ, ≤(1/2)λ, ≤(3/8)λ, ≤(1/4)λ, or ≤(1/8)λ. The thickness of each low acoustic impedance layer and/or each high acoustic impedance layer may be different (or the same) as the thickness of any other low acoustic impedance layer and/or each high acoustic impedance layer. Therefore, there is no limitation when the thickness of the low acoustic impedance layer is the same, the thickness of the high acoustic impedance layer is the same, or the thickness of the low acoustic impedance layer and the thickness of the high acoustic impedance layer are the same.

第五UBARFifth UBAR 例子:一個堆疊啟用的撓曲模式(Example: A stack-enabled flex mode ( 模式4)Mode 4) 包含至少一個低聲抗阻層及一個高聲抗阻層,及可選地含一個裝置層。Contains at least one low acoustic impedance layer and one high acoustic impedance layer, and optionally a device layer.

接續參考圖11及圖13,在部分非限制性的實施型態或例子中,相似於前述所記載之第四UBAR 2例子之型態,對於壓電層8之各個從100°至160°之不同切割角度,為了塑模之目的,在第五UBAR 2例子之低聲抗阻層及高聲抗阻層之不同厚度值進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應(頻率vs.振幅),前述第五UBAR 2例子在各層面與前述第四UBAR 2例子相似(如圖13所示)除了下述除外:即省略低聲抗阻層108。各頻率掃描中確認頻率vs.振幅之圖表、圖、或關係。11 and 13, in some non-limiting implementations or examples, similar to the aforementioned fourth UBAR 2 example, for each of the piezoelectric layers 8 from 100° to 160°. At different cutting angles, for molding purposes, exemplary electrical stimulation frequency sweeps (eg, 1 GHz to 6.2 GHz) were performed at different thickness values of the low and high acoustic impedance layers of the fifth UBAR 2 example to Confirming the frequency response (frequency vs. amplitude), the aforementioned fifth UBAR 2 example is similar in every respect to the aforementioned fourth UBAR 2 example (shown in Figure 13) except that the low acoustic impedance layer 108 is omitted. A graph, graph, or relationship of frequency vs. amplitude is confirmed for each frequency sweep.

使用方程式EQ2及第五UBAR2例子所確認的頻率vs.振幅之圖表、圖、或關係,第五UBAR 2例子之模式4共振頻率88之理想耦合效率M4CE在具有與不具有裝置層12的情況下與第四UBAR 2例子一致,亦即: 當 f p2 f s2 分別為5.43 GHz及5.08 GHz時,M4CE = 15.888%。 當壓電層8切割角度為130°時,各低聲抗阻層100及104之厚度為(1/16)λ,各高聲抗阻層102及106之厚度為(1/16)λ。 Ideal coupling efficiency M4CE for the mode 4 resonant frequency 88 of the fifth UBAR 2 example with and without device layer 12 using equation EQ2 and the frequency vs. Consistent with the fourth UBAR 2 example, namely: M4CE = 15.888% when f p2 and f s2 are 5.43 GHz and 5.08 GHz, respectively. When the cutting angle of the piezoelectric layer 8 is 130°, the thickness of each of the low acoustic impedance layers 100 and 104 is (1/16)λ, and the thickness of each of the high acoustic impedance layers 102 and 106 is (1/16)λ.

在部分非限制性的實施型態或例子中,各低聲抗阻層之厚度及/或各高聲抗阻層之厚度可為相同或不同。在部分非限制性的實施型態或例子中,鑽石、SiC、W、AlN、Ir等可以被用做各高聲抗阻層之材料。In some non-limiting implementations or examples, the thickness of each low acoustic impedance layer and/or the thickness of each high acoustic impedance layer may be the same or different. In some non-limiting implementations or examples, diamond, SiC, W, AlN, Ir, etc. can be used as materials for each of the high acoustic impedance layers.

因當M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%時為令人滿意的、適合的及/或所期望的,此例中前述M4CE值不應具有限制性。在一個例子中,M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%可以藉由調整壓電層8之切割角度±一個適合及/或期望的值而達成,如前述130° ± 30°。在部分非限制性的實施型態或例子中,壓電層8例如為不具限制性的LiNbO 3晶體,產自Z切割或X切割之切割角度亦可能得到所期望的特定M4CE值。 Since M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% are satisfactory, suitable and/or desired, the aforementioned M4CE values in this example should not be limiting . In one example, M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% can be achieved by adjusting the cutting angle of the piezoelectric layer 8 ± a suitable and/or desired value, such as The aforementioned 130° ± 30°. In some non-limiting embodiments or examples, the piezoelectric layer 8 is, for example, a non-limiting LiNbO 3 crystal, and the desired specific M4CE value may also be obtained from the cutting angle of Z-cut or X-cut.

此外,前述各低聲抗阻層及/或各高聲抗阻層之厚度不應具有限制性,因各低聲抗阻層及/或各高聲抗阻層之厚度可以理想為及/或期望、不具限制的為≤1λ、≤(1/2)λ、≤(3/8)λ、≤(1/4)λ或≤(1/8)λ,各低及/或高聲抗阻層之厚度可能與任一其他低及/或高聲抗阻層之厚度不同或相同。因此,在此低聲抗阻層之厚度相同、高聲抗阻層之厚度相同或低聲抗阻層之厚度與高聲抗阻層之厚度相同時皆不具有限制性。In addition, the thickness of each of the aforementioned low-acoustic impedance layers and/or each of the high-acoustic impedance layers should not be limited, because the thickness of each of the low-acoustic impedance layers and/or each of the high-acoustic impedance layers can be ideally and/or Expected, without limitation, ≤1λ, ≤(1/2)λ, ≤(3/8)λ, ≤(1/4)λ, or ≤(1/8)λ, each with low and/or high acoustic impedance The thickness of the layer may be different or the same as the thickness of any other low and/or high acoustic impedance layer. Therefore, there is no limitation when the thickness of the low acoustic impedance layer is the same, the thickness of the high acoustic impedance layer is the same, or the thickness of the low acoustic impedance layer and the thickness of the high acoustic impedance layer are the same.

此結果表示在高聲抗阻層106及裝置層12或基材16或兩者之間具有一個或更多額外低聲抗阻層可能會有少許優點。This result indicates that there may be little advantage in having one or more additional low acoustic impedance layers between the high acoustic impedance layer 106 and the device layer 12 or the substrate 16 or both.

第六UBAR 例子:一個堆疊啟用的撓曲模式( 模式4) 包含至少一個低聲抗阻層及一個高聲抗阻層,及可選地含一個裝置層。參考圖14並持續參考圖11,在部分非限制實施型態或例子中,第六UBAR 2例子(如圖14所示)形成自交替的低及高聲抗阻層材料,其自壓電層8(形成自LiNbO 3晶體,切割角度為130° (± 30°或± 20°或± 10°))至裝置層12可包含:第一低聲抗阻層100、第一高聲抗阻層102、第二低聲抗阻層104、第二高聲抗阻層106、第三低聲抗阻層108、第三高聲抗阻層110、第四低聲抗阻層112、第四高聲抗阻層114、第五低聲抗阻層116、第五高聲抗阻層118、第六低聲抗阻層120、第六高聲抗阻層122、第七低聲抗阻層124、第七高聲抗阻層126、第八低聲抗阻層128、第八高聲抗阻層130及第九低聲抗阻層132。 Sixth UBAR Example: A stack-enabled flex mode ( Mode 4) comprising at least one low acoustic impedance layer and one high acoustic impedance layer, and optionally one device layer. Referring to FIG. 14 with continued reference to FIG. 11 , in some non-limiting implementations or examples, a sixth UBAR 2 example (shown in FIG. 14 ) is formed from alternating low and high acoustic impedance layer materials, which are formed from piezoelectric layers 8 (formed from LiNbO 3 crystal, cutting angle is 130° (± 30° or ± 20° or ± 10°)) to device layer 12 may include: a first low acoustic impedance layer 100, a first high acoustic impedance layer 102. The second low acoustic impedance layer 104, the second high acoustic impedance layer 106, the third low acoustic impedance layer 108, the third high acoustic impedance layer 110, the fourth low acoustic impedance layer 112, the fourth high acoustic impedance layer Acoustic impedance layer 114 , fifth low acoustic impedance layer 116 , fifth high acoustic impedance layer 118 , sixth low acoustic impedance layer 120 , sixth high acoustic impedance layer 122 , seventh low acoustic impedance layer 124 , the seventh high acoustic impedance layer 126 , the eighth low acoustic impedance layer 128 , the eighth high acoustic impedance layer 130 and the ninth low acoustic impedance layer 132 .

在此例中,上導電層6中含間格的導電線或彈片20或28(如圖4A及4B所示)之指間距38為1.2 µm、λ值為2.4 µm、壓電層厚度為(0.2)λ,各低聲抗阻層之厚度為(1/16)λ及裝置層12之厚度為4λ。In this example, the interdigitated conductive lines or elastic pieces 20 or 28 in the upper conductive layer 6 (as shown in FIGS. 4A and 4B ) have a finger spacing 38 of 1.2 µm, a λ value of 2.4 µm, and a piezoelectric layer thickness of ( 0.2)λ, the thickness of each low acoustic impedance layer is (1/16)λ and the thickness of the device layer 12 is 4λ.

為了依壓電層8之數個不同自100°至160°切割角度塑模第六UBAR 2例子,在第六UBARs 2例子進行示例性的電刺激頻率掃描(例如:1 GHz至6.2 GHz)以確認頻率反應,在高聲抗阻層之不同示例性厚度,例如以前述第四UBAR2之方式進行。在此例中,對於各壓電層8切割角度及各頻率掃描,各高聲抗阻層皆為相同厚度。各頻率掃描中確認頻率vs.振幅之圖表、圖、或關係。To mold the sixth instance of UBAR 2 at several different cutting angles from 100° to 160° for the piezoelectric layer 8 , an exemplary electrical stimulation frequency sweep (eg, 1 GHz to 6.2 GHz) was performed on the sixth instance of UBARs 2 to The frequency response was confirmed, at different exemplary thicknesses of the high acoustic impedance layer, for example in the manner described above for the fourth UBAR2. In this example, for each piezoelectric layer 8 cutting angle and each frequency sweep, each high acoustic impedance layer has the same thickness. A graph, graph, or relationship of frequency vs. amplitude is confirmed for each frequency sweep.

在部分非限制性的實施型態或例子中,各低聲抗阻層可形成自二氧化矽(SiO 2),各高聲抗阻層可形成自例如氮化鋁(AlN),裝置層12可形成自鑽石或SiC及基材16可形成自矽。 In some non-limiting implementations or examples, the low acoustic impedance layers can be formed from silicon dioxide (SiO 2 ), the high acoustic impedance layers can be formed from, for example, aluminum nitride (AlN), and the device layer 12 It can be formed from diamond or SiC and substrate 16 can be formed from silicon.

使用方程式EQ2及第六UBAR 2例子所確認之頻率反應之圖表、圖或關係,第六UBAR 2例子的模式4共振頻率88之理想耦合效率M4CE可確認為: 當 f p2 f s2 值分別等於5.38 GHz及5.09 GHz時,M4CE = 13.287%, 當壓電層8具有130°之切割角度為130°及各高聲抗阻層之厚度為(5/16)λ時。 Using equation EQ2 and a graph, graph or relationship of the frequency response identified for the sixth UBAR 2 example, the ideal coupling efficiency M4CE for the mode 4 resonant frequency 88 of the sixth UBAR 2 example can be identified as: When the f p2 and f s2 values are equal to At 5.38 GHz and 5.09 GHz, M4CE = 13.287%, when the piezoelectric layer 8 has a 130° cutting angle of 130° and the thickness of each high acoustic impedance layer is (5/16)λ.

在部分非限制性的實施型態或例子中,各低聲抗阻層及/或高聲抗阻層之厚度可以相同或不同。在部分非限制的實施型態或例子中,鑽石、SiC、W、AlN等可作為各高聲抗阻層之材料。In some non-limiting implementations or examples, the thicknesses of the low acoustic impedance layers and/or the high acoustic impedance layers may be the same or different. In some non-limiting embodiments or examples, diamond, SiC, W, AlN, etc. can be used as materials for each high acoustic impedance layer.

因當M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%時為令人滿意的、適合的及/或所期望的,此例中前述M4CE值不應具有限制性。此外,前述各低聲抗阻層及/或各高聲抗阻層之厚度不應具有限制性,因各低聲抗阻層及/或各高聲抗阻層之厚度可為適合的及/或所期望、不具限制性≤1λ、≤(1/2)λ、≤(3/8)λ、≤(1/4)λ或≤(1/8)λ,各低及/或高聲抗阻層之厚度可與任一其他各低及/或高聲抗阻層之厚度不同(或相同)。因此,在此低聲抗阻層之厚度相同、高聲抗阻層之厚度相同或低聲抗阻層之厚度與高聲抗阻層之厚度相同皆不具有限制性。Since M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% are satisfactory, suitable and/or desired, the aforementioned M4CE values in this example should not be limiting . In addition, the thickness of each of the aforementioned low-acoustic impedance layers and/or each of the high-acoustic impedance layers should not be limited, as the thickness of each of the low-acoustic impedance layers and/or each of the high-acoustic impedance layers may be suitable and/or or desired, without limitation ≤1λ, ≤(1/2)λ, ≤(3/8)λ, ≤(1/4)λ or ≤(1/8)λ, each with low and/or high acoustic impedance The thickness of the resistive layer may be different (or the same) as the thickness of any other low and/or high acoustic resistive layer. Therefore, the thickness of the low acoustic impedance layer is the same, the thickness of the high acoustic impedance layer is the same, or the thickness of the low acoustic impedance layer and the thickness of the high acoustic impedance layer are not limited herein.

在一個例子中,M4CE值≥ 3%、≥ 4%、≥ 6%、≥ 8%或≥ 10%可以藉由調整壓電層8之切割角度±一個適合及/或期望的值而達成,例如前述130° ± 30°。在部分非限制性的實施型態或例子中,壓電層8不具限制性的例如LiNbO 3晶體,並以Z切割或X切割之特定角度切割,亦可得到特定期望的M4CE值。 In one example, M4CE values ≥ 3%, ≥ 4%, ≥ 6%, ≥ 8%, or ≥ 10% can be achieved by adjusting the cutting angle of the piezoelectric layer 8 ± a suitable and/or desired value, such as The aforementioned 130° ± 30°. In some non-limiting embodiments or examples, the piezoelectric layer 8 is not limited, such as LiNbO 3 crystal, and is cut at a specific angle of Z-cut or X-cut, and a specific desired M4CE value can also be obtained.

在部分非限制性的實施型態或例子中,前述第一至第六UBARs 2例子的塑模是藉由電腦模擬表示,在部分情況,在一個或更多實際範例表示。In some non-limiting implementations or examples, the molds of the aforementioned first to sixth examples of UBARs 2 are represented by computer simulations, and in some cases, in one or more practical examples.

在部分非限制性的實施型態或例子中,可以藉由前述第一至第六UBARs 2例子得知,形成自LiNbO 3的壓電層8並以130°或約略之角度切割可得到理想M4CE值。然而,在部分非限制性的實施型態或例子中,形成自LiNbO 3的壓電層8並以100°至160°之角度切割亦可得到理想M4CE值;形成自LiNbO 3的壓電層8並以110°至150°之角度切割可得到更理想M4CE值;形成自LiNbO 3的壓電層8並以120°至140°之角度切割可進一步得到又更理想M4CE值。然而,形成自LiNbO 3的壓電層8並以130°之角度切割可得到最理想(最高)M4CE值。 In some non-limiting implementations or examples, it can be known from the first to sixth examples of UBARs 2 that the piezoelectric layer 8 formed from LiNbO 3 and cut at an angle of 130° or approximately can obtain an ideal M4CE value. However, in some non-limiting embodiments or examples, the piezoelectric layer 8 formed from LiNbO 3 and cut at an angle of 100° to 160° can also obtain ideal M4CE values; the piezoelectric layer 8 formed from LiNbO 3 A more ideal M4CE value can be obtained by cutting at an angle of 110° to 150°; a further ideal M4CE value can be obtained by cutting the piezoelectric layer 8 formed from LiNbO 3 at an angle of 120° to 140°. However, forming the piezoelectric layer 8 from LiNbO3 and cutting at an angle of 130° results in the most desirable (highest) M4CE values.

在此所記載之任一UBAR例子,壓電層如LiNbO 3之厚度,可為任何適合的及/或所期望的厚度,例如在模式4之撓曲模式例子中,厚度為≤0.5λ、≤0.4λ、≤0.3λ或≤0.2λ。 In any of the UBAR examples described herein, the thickness of the piezoelectric layer, such as LiNbO 3 , can be of any suitable and/or desired thickness, for example, in the flex mode example of Mode 4, the thickness is ≤ 0.5λ, ≤ 0.4λ, ≤0.3λ or ≤0.2λ.

在此所記載之任一UBAR例子,壓電層如LiNbO 3之厚度,可為任何適合的及/或所期望的厚度,例如在模式3之切變模式例子中,厚度為≤2λ、≤1.6λ、≤1.2λ或≤0.8λ。 In any of the UBAR examples described herein, the thickness of the piezoelectric layer, such as LiNbO 3 , can be of any suitable and/or desired thickness, eg, in the shear mode example of Mode 3, the thickness is ≤ 2λ, ≤ 1.6 λ, ≤1.2λ or ≤0.8λ.

在此所記載之任一UBAR例子,電極如Al、Mo、W等之厚度,可為任何適合的及/或所期望的厚度,例如為≥0.010λ、≥0.013λ、≥0.016λ、≥0.019λ或≥0.022λ。In any of the UBAR examples described herein, the thickness of the electrodes, such as Al, Mo, W, etc., can be any suitable and/or desired thickness, such as ≥0.010λ, ≥0.013λ, ≥0.016λ, ≥0.019 λ or ≥ 0.022λ.

在此所記載之任一UBAR例子,裝置層如鑽石、SiC、AlN等之厚度,可為任何適合的及/或所期望的厚度,例如為≥50 nm、≥100 nm、≥150 nm或≥200 nm。For any of the UBAR examples described herein, the thickness of the device layers, such as diamond, SiC, AlN, etc., can be any suitable and/or desired thickness, such as ≥50 nm, ≥100 nm, ≥150 nm, or ≥ 200 nm.

在此所記載之任一UBAR例子,低聲抗阻層之厚度可為適合的及/或所期望的厚度,例如為≥0.05λ、≥0.07λ、≥0.09λ、≥0.11λ或≥0.13λ。For any of the UBAR examples described herein, the thickness of the low acoustic impedance layer may be suitable and/or desired thickness, eg, ≥0.05λ, ≥0.07λ, ≥0.09λ, ≥0.11λ, or ≥0.13λ .

在此所記載之任一UBAR例子,高聲抗阻層之厚度可為適合的及/或所期望的厚度,例如為≥0.05λ、≥0.07λ、≥0.09λ、≥0.11λ或≥0.13λ。In any of the UBAR examples described herein, the thickness of the high acoustic impedance layer may be suitable and/or desired thickness, eg, ≥0.05λ, ≥0.07λ, ≥0.09λ, ≥0.11λ, or ≥0.13λ .

在此所記載之任一UBAR例子,溫度補償層之厚度可為適合的及/或所期望的厚度,例如為≤2λ、≤1.5λ、≤1.0λ、≤0.5λ或≤0.3λ。理想地,在此所記載之任一UBAR例子之一個或更多或全部外表面被可選的鈍化層所保護。該鈍化層可以為一層介電材料,如AlN、SiN、SiO 2等。 In any of the UBAR examples described herein, the thickness of the temperature compensation layer can be a suitable and/or desired thickness, eg, ≤2λ, ≤1.5λ, ≤1.0λ, ≤0.5λ, or ≤0.3λ. Ideally, one or more or all of the outer surfaces of any of the UBAR examples described herein are protected by an optional passivation layer. The passivation layer can be a layer of dielectric material, such as AlN, SiN, SiO 2 and the like.

在此所記載之任一UBAR例子之共振頻率可為≥0.1GHz, ≥0.5GHz、≥1.0GHz、≥1.5GHz或≥2.0GHz。The resonant frequency of any of the UBAR examples described herein may be > 0.1 GHz, > 0.5 GHz, > 1.0 GHz, > 1.5 GHz, or > 2.0 GHz.

在此所記載之任一UBAR例子之耦合效率可為≥3%、≥4%、≥6%、≥8%或≥10%。The coupling efficiency of any of the UBAR examples described herein can be > 3%, > 4%, > 6%, > 8%, or > 10%.

在此所記載之任一UBAR例子會以一個模式共振,其包含一個體聲波,淺體聲波可包含但不限於S 0模式、擴充模式、切變模式、A 1模式、撓曲模式等,及複合模式。 Any of the UBAR examples described herein will resonate in a mode that includes a bulk acoustic wave. Shallow bulk acoustic waves may include, but are not limited to, S0 mode, extended mode, shear mode, A1 mode, flexural mode, etc., and Composite mode.

將在下述編號之實施例說明更多非限制性實施型態或例子。 [實施例] Further non-limiting embodiments or examples will be described in the following numbered examples. [Example]

實施例1:一個體聲波共振器包含:一個共振本體,其包含:一壓電層,前述壓電層為LiNbO 3之單晶;一裝置層;及一上導電層,係位於前述壓電層上方且前述壓電層之另一側為前述裝置層;其中前述裝置層中與前述壓電層相反側之全部表面,實質上用於將前述共振器本體安裝於載體並分隔前述共振器本體。 Embodiment 1: A bulk acoustic wave resonator includes: a resonant body, which includes: a piezoelectric layer, the piezoelectric layer is a single crystal of LiNbO 3 ; a device layer; and an upper conductive layer, which is located on the piezoelectric layer Above and on the other side of the piezoelectric layer is the device layer; wherein the entire surface of the device layer opposite to the piezoelectric layer is substantially used to mount the resonator body on the carrier and separate the resonator body.

實施例2:如實施例1之體聲波共振器,其中LiNbO 3之單晶可以130° ± 30°、± 20°或± 10°之角度切割。 Embodiment 2: The bulk acoustic wave resonator of Embodiment 1, wherein the single crystal of LiNbO 3 can be cut at an angle of 130°±30°, ±20° or ±10°.

實施例3:如實施例1或2之體聲波共振器,其中,LiNbO 3之單晶可以0° ± 30°、± 20°或± 10°之角度切割。 Embodiment 3: The bulk acoustic wave resonator as in Embodiment 1 or 2, wherein the single crystal of LiNbO 3 can be cut at an angle of 0°±30°, ±20° or ±10°.

實施例4:如實施例1至3中任一實施例之體聲波共振器,可包含模式3或模式4之共振頻率≥ 0.1GHz、≥ 0.5GHz、≥ 1.0GHz、≥ 1.5GHz或≥ 2.0GHz。Embodiment 4: The BAW resonator according to any one of Embodiments 1 to 3, may include a resonant frequency of mode 3 or mode 4 ≥ 0.1 GHz, ≥ 0.5 GHz, ≥ 1.0 GHz, ≥ 1.5 GHz or ≥ 2.0 GHz .

實施例5:如實施例1至4中任一實施例之體聲波共振器,其可包含至少下述其一:模式3共振之耦合效率≥8%、≥11%、≥14%、≥17%或≥20%;及模式4共振之耦合效率≥3%、≥4%、≥6%、≥8%或≥10%。Embodiment 5: The bulk acoustic wave resonator according to any one of Embodiments 1 to 4, which can include at least one of the following: the coupling efficiency of mode 3 resonance is ≥8%, ≥11%, ≥14%, ≥17 % or ≥20%; and the coupling efficiency of mode 4 resonance ≥3%, ≥4%, ≥6%, ≥8% or ≥10%.

實施例6:如實施例1至5中任一實施例之體聲波共振器,其中,模式4共振中LiNbO 3之單晶厚度可為≤ 0.5λ、≤ 0.4λ、≤ 0.3λ或≤ 0.2λ。 Embodiment 6: The bulk acoustic wave resonator according to any one of Embodiments 1 to 5, wherein the single crystal thickness of LiNbO 3 in mode 4 resonance can be ≤ 0.5λ, ≤ 0.4λ, ≤ 0.3λ or ≤ 0.2λ .

實施例7:如實施例1至6中任一實施例之體聲波共振器,其中,模式3共振中LiNbO 3之單晶厚度可為≤ 2λ、≤ 1.6λ、≤ 1.2λ或≤ 0.8λ。 Embodiment 7: The bulk acoustic wave resonator according to any one of Embodiments 1 to 6, wherein the single crystal thickness of LiNbO 3 in the mode 3 resonance can be ≤ 2λ, ≤ 1.6λ, ≤ 1.2λ or ≤ 0.8λ.

實施例8:如實施例1至7中任一實施例之體聲波共振器,其進一步包含在壓電層與裝置層之間的導電層,厚度為≥ 0.010λ、≥ 0.013λ、≥ 0.016λ、≥ 0.019λ或≥ 0.022λ。Embodiment 8: The bulk acoustic wave resonator according to any one of Embodiments 1 to 7, further comprising a conductive layer between the piezoelectric layer and the device layer, with a thickness of ≥ 0.010λ, ≥ 0.013λ, ≥ 0.016λ , ≥ 0.019λ, or ≥ 0.022λ.

實施例9:如實施例1至8中任一實施例之體聲波共振器,其中裝置層之厚度可為≥ 50 nm、≥ 100 nm、≥ 150 nm或≥ 200 nm。Embodiment 9: The BAW resonator according to any one of Embodiments 1 to 8, wherein the thickness of the device layer can be ≥ 50 nm, ≥ 100 nm, ≥ 150 nm or ≥ 200 nm.

實施例10:如實施例1至9中任一實施例之體聲波共振器,其進一步包含在壓電層及裝置層間的低聲抗阻材料,前述低聲抗阻材料之聲抗阻介於10 6Pa-s/m 3與30 x 10 6Pa-s/m 3間,厚度為≥ 0.05λ、≥ 0.07λ、≥ 0.09λ、≥ 0.11λ或≥ 0.13λ。 Embodiment 10: The bulk acoustic wave resonator according to any one of Embodiments 1 to 9, further comprising a low acoustic impedance material between the piezoelectric layer and the device layer, the acoustic impedance of the aforementioned low acoustic impedance material is between Between 10 6 Pa-s/m 3 and 30 x 10 6 Pa-s/m 3 , the thickness is ≥ 0.05λ, ≥ 0.07λ, ≥ 0.09λ, ≥ 0.11λ or ≥ 0.13λ.

實施例11:如實施例1至10中任一實施例之體聲波共振器,其進一步包含在壓電層及裝置層間的高聲抗阻材料,前述高聲抗阻材料之聲抗阻介於10 6Pa-s/m 3與630 x 10 6Pa-s/m 3,厚度為≥ 0.05λ、≥ 0.07λ、≥ 0.09λ、≥ 0.11λ或≥ 0.13λ。 Embodiment 11: The bulk acoustic wave resonator according to any one of Embodiments 1 to 10, further comprising a high acoustic impedance material between the piezoelectric layer and the device layer, wherein the acoustic impedance of the aforementioned high acoustic impedance material is between 10 6 Pa-s/m 3 and 630 x 10 6 Pa-s/m 3 with thicknesses ≥ 0.05λ, ≥ 0.07λ, ≥ 0.09λ, ≥ 0.11λ or ≥ 0.13λ.

實施例12:如實施例1至11中任一實施例之體聲波共振器,其進一步包含在壓電層及裝置層間的溫度補償層,前述溫度補償層包含矽及氧,厚度為≤ 2λ、≤ 1.5λ、≤ 1.0λ、≤ 0.5λ或≤ 0.3λ。Embodiment 12: The bulk acoustic wave resonator according to any one of Embodiments 1 to 11, further comprising a temperature compensation layer between the piezoelectric layer and the device layer, the temperature compensation layer comprising silicon and oxygen, and having a thickness of ≤ 2λ, ≤ 1.5λ, ≤ 1.0λ, ≤ 0.5λ, or ≤ 0.3λ.

實施例13:如實施例1至12中任一實施例之體聲波共振器進一步包含一個鈍化層。Embodiment 13: The bulk acoustic wave resonator of any one of Embodiments 1 to 12 further comprises a passivation layer.

實施例14:如實施例1至13中任一實施例之體聲波共振器,其中前述上導電層可包含至少一組含間格之導電彈片。前述至少一組含間格之導電彈片其指間距可為≤ 70μm、≤ 20μm、≤ 10μm、≤ 6μm或≤ 4μm。Embodiment 14: The BAW resonator according to any one of Embodiments 1 to 13, wherein the above-mentioned upper conductive layer may include at least one set of conductive elastic sheets with spaces. The finger spacing of the at least one group of conductive elastic sheets with spaces may be ≤ 70 μm, ≤ 20 μm, ≤ 10 μm, ≤ 6 μm or ≤ 4 μm.

實施例15:如實施例1至14中任一實施例之體聲波共振器,其在壓電層與裝置層之間進一步包含複數並交替的溫度補償層及高聲抗阻層。Embodiment 15: The BAW resonator of any one of Embodiments 1 to 14, further comprising a plurality of alternating temperature compensation layers and high acoustic impedance layers between the piezoelectric layer and the device layer.

實施例16:如實施例1至15中任一實施例之體聲波共振器,其中前述裝置層可進一步包含下述:鑽石;W;SiC;Ir、AlN、Al;Pt;Pd;Mo;Cr;Ti;Ta;元素週期表上3A或4A族之元素;元素週期表上1B、2B、3B、4B、5B、6B、7B或8B族之過渡元素;陶瓷;玻璃及聚合物。Embodiment 16: the bulk acoustic wave resonator according to any one of Embodiments 1 to 15, wherein the aforementioned device layer may further comprise the following: diamond; W; SiC; Ir, AlN, Al; Pt; Pd; Mo; Cr ; Ti; Ta; elements of group 3A or 4A on the periodic table; transition elements of group 1B, 2B, 3B, 4B, 5B, 6B, 7B or 8B on the periodic table; ceramics; glasses and polymers.

本發明的目的已經基於目前被認為最理想實用且非限制性實施例、例子或型態詳細描述,但應理解此等細節僅用於該目的且本發明不限於所揭露的理想及非限制性的實施例、例子或型態。相反地,本說明旨在涵蓋其申請專利範圍中精神與範圍內的修改與等同配置。例如:應當理解本發明將盡可能考慮任一或更多理想及非限制性的實施例、例子、型態或所依附申請專利範圍的技術,可以與一個或更多其他理想及非限制性的實施例、例子、型態或所依附申請專利範圍的技術合併。The object of the present invention has been described in detail based on what is presently considered to be the most ideal practical and non-limiting embodiment, example or form, but it should be understood that such details are only used for this purpose and the invention is not limited to the disclosed ideal and non-limiting embodiment, instance or form of. On the contrary, the description is intended to cover modifications and equivalent arrangements within the spirit and scope of its patent claims. For example: it should be understood that the present invention will, as far as possible, contemplate any or more ideal and non-limiting embodiments, examples, forms or techniques of the scope of the appended claims, which may be combined with one or more other ideal and non-limiting embodiments. Embodiments, examples, patterns, or technical combinations within the scope of the appended claims.

2:體聲波共振器(UBAR) 4:共振器本體 6:上導電層 8:壓電層 10:可選的下導電層 12:裝置層 14:載體 16:基材 18:指叉電極 20、24、28:彈片 22、26:背部 27:梳狀電極 30:第一背部 32:第二背部 33:片狀電極 34、36:連接結構 38:指間距 40、44底部金屬層 42、46金屬層 48、58:接觸墊 50:導電通孔 52、60:導體 54:橫向導體 56、62:繫鏈導體 64、66、68、70:底部 76:繫鏈結構 82、84、88:共振頻率 90、92、94:溫度補償層 96:氮化鋁 100:第一低聲抗阻層 102:第一高聲抗阻層 104:第二低聲抗阻層 106:第二高聲抗阻層 108:第三低聲抗阻層 110:第三高聲抗阻層 112:第四低聲抗阻層 114:第四高聲抗阻層 116:第五低聲抗阻層 118:第五高聲抗阻層 120:第六低聲抗阻層 122:第六高聲抗阻層 124:第七低聲抗阻層 126:第七高聲抗阻層 128:第八低聲抗阻層 130:第八高聲抗阻層 132:第九低聲抗阻層 2: Bulk Acoustic Resonator (UBAR) 4: Resonator body 6: Upper conductive layer 8: Piezoelectric layer 10: Optional lower conductive layer 12: Device layer 14: Carrier 16: Substrate 18: Interdigital electrode 20, 24, 28: Shrapnel 22, 26: Back 27: Comb Electrodes 30: First Back 32: Second Back 33: Sheet electrode 34, 36: Connection structure 38: Finger Spacing 40, 44 Bottom metal layer 42, 46 metal layers 48, 58: Contact pads 50: Conductive vias 52, 60: conductor 54: Lateral conductor 56, 62: Tether Conductor 64, 66, 68, 70: Bottom 76: Tethered Structure 82, 84, 88: Resonance frequency 90, 92, 94: temperature compensation layer 96: Aluminum Nitride 100: The first low acoustic impedance layer 102: The first high acoustic impedance layer 104: Second low acoustic impedance layer 106: Second high acoustic impedance layer 108: Third low acoustic impedance layer 110: The third high acoustic impedance layer 112: Fourth low acoustic impedance layer 114: Fourth high acoustic impedance layer 116: Fifth low acoustic impedance layer 118: Fifth high acoustic impedance layer 120: Sixth low acoustic impedance layer 122: sixth high acoustic impedance layer 124: Seventh low acoustic impedance layer 126: Seventh high acoustic impedance layer 128: Eighth low acoustic impedance layer 130: Eighth high acoustic impedance layer 132: Ninth Low Sound Impedance Layer

結合圖式,並藉由下述之描述對本發明進行說明,從而使上述及其他發明目的與技術特徵可更顯見。The present invention will be described by the following description in conjunction with the drawings, so as to make the above and other purposes and technical features of the invention more apparent.

〔圖1〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖(例如,在此用以說明未懸掛體聲波共振器之第一及第二例子)。 〔圖2〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖。 〔圖3〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖。 〔圖4A〕係根據本發明之原理的一個理想及非限制性實施型態或例子之指叉電極之分離平面圖,其可以作為未懸掛的體聲波共振器的上導電層、可選的下導電層或兩者。 〔圖4B〕係根據本發明之原理的一個理想及非限制性實施型態或例子之梳狀電極之分離平面圖,其可以作為未懸掛的體聲波共振器的上導電層、可選的下導電層或兩者。 〔圖4C〕係根據本發明之原理的一個理想及非限制性實施型態或例子之片狀電極之分離平面圖,其可以作為未懸掛的體聲波共振器的上導電層、可選的下導電層或兩者。 〔圖5A-5B〕係圖1至3的理想及非限制性實施型態或例子,沿著A-A線及B-B線之截面圖。 〔圖6A-6B〕係圖1至3的理想及非限制性實施型態或例子,沿著A-A線及B-B線之截面圖。 〔圖7A-7B〕係圖1至3的理想及非限制性實施型態或例子,沿著A-A線及B-B線之截面圖。 〔圖7C〕係圖7A-7B中理想及非限制性實施型態或例子之未懸掛的體聲波共振器之側視圖,移除第一及第二連接結構與兩邊繫鍊導體上之材料。 〔圖8A-8B〕係圖1至3的理想及非限制性實施型態或例子,沿著A-A線及B-B線之截面圖。 〔圖8C〕係圖8A-8B中理想及非限制性實施型態或例子之未懸掛的體聲波共振器之側視圖,移除第一及第二連接結構與兩邊繫鍊導體上之材料。 〔圖8D〕係圖8A-8B中理想及非限制性實施型態或例子之未懸掛的體聲波共振器之側視圖,移除第一及第二連接結構與兩邊繫鍊導體上之材料。 〔圖9A-9B〕係圖1至3的理想及非限制性實施型態或例子,沿著A-A線及B-B線之截面圖。 〔圖9C〕係圖9A-9B中理想及非限制性實施型態或例子之未懸掛的體聲波共振器之側視圖,移除第一及第二連接結構與兩邊繫鍊導體上之材料。 〔圖9D〕係圖9A-9B中理想及非限制性實施型態或例子之未懸掛的體聲波共振器之側視圖,移除第一及第二連接結構與兩邊繫鍊導體上之材料。 〔圖10〕係一共振器本體之頻率對分貝的圖表,前述共振器本體具有片狀電極型態的下導電層與疏狀電極型態的上導電層,其中指間距為1.8 μm。 〔圖11〕係頻率對正規化振福的示例性圖表,特別為模式3及模式4之共振頻率,其可用以說明在本說明書所記載之未懸掛體聲波共振器之第一至第六例子之頻率反應。 〔圖12〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖(例如,在此用以說明未懸掛體聲波共振器之第三例子)。 〔圖13〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖(例如,在此用以說明未懸掛體聲波共振器之第四及第五例子)。 〔圖14〕係根據本發明之原理的一個理想及非限制性實施型態或例子之未懸掛的體聲波共振器的側視圖(例如,在此用以說明未懸掛體聲波共振器之第六例子)。 [FIG. 1] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation form or example of the principles of the present invention (eg, used herein to illustrate the first example of an unsuspended BAW resonator). and the second example). [FIG. 2] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation or example of the principles of the present invention. [FIG. 3] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation or example of the principles of the present invention. [FIG. 4A] is an isolated plan view of an interdigitated electrode according to an ideal and non-limiting embodiment or example of the principles of the present invention, which can be used as an upper conductive layer, an optional lower conductive layer of an unsuspended bulk acoustic wave resonator. layer or both. [FIG. 4B] is an isolated plan view of a comb electrode according to an ideal and non-limiting implementation form or example of the principles of the present invention, which can be used as an upper conductive layer, an optional lower conductive layer of an unsuspended bulk acoustic wave resonator. layer or both. [FIG. 4C] is an isolated plan view of a sheet electrode according to an ideal and non-limiting embodiment or example of the principles of the present invention, which can be used as an upper conductive layer, an optional lower conductive layer of an unsuspended bulk acoustic wave resonator. layer or both. [Figs. 5A-5B] are ideal and non-limiting implementations or examples of Figs. 1 to 3, and are cross-sectional views along lines A-A and B-B. [Figs. 6A-6B] are ideal and non-limiting implementations or examples of Figs. 1 to 3, and are cross-sectional views along lines A-A and B-B. [Figs. 7A-7B] are ideal and non-limiting implementations or examples of Figs. 1 to 3, and are cross-sectional views along lines A-A and B-B. [FIG. 7C] is a side view of the unsuspended BAW resonator of an ideal and non-limiting implementation or example of FIGS. 7A-7B, with the material on the first and second connection structures and the tether conductors on both sides removed. [Figs. 8A-8B] are ideal and non-limiting implementations or examples of Figs. 1 to 3, and are cross-sectional views along lines A-A and B-B. [FIG. 8C] is a side view of the unsuspended BAW resonator of an ideal and non-limiting implementation or example of FIGS. 8A-8B with the material on the first and second connecting structures and the tether conductors on both sides removed. [FIG. 8D] is a side view of the unsuspended BAW resonator of an ideal and non-limiting implementation or example of FIGS. 8A-8B with the material on the first and second connecting structures and the tether conductors on both sides removed. [Figs. 9A-9B] are ideal and non-limiting implementations or examples of Figs. 1 to 3, and are cross-sectional views along lines A-A and B-B. [FIG. 9C] is a side view of the unsuspended BAW resonator of an ideal and non-limiting implementation or example of FIGS. 9A-9B with the material on the first and second connecting structures and the tether conductors on both sides removed. [FIG. 9D] is a side view of the unsuspended BAW resonator of an ideal and non-limiting implementation or example of FIGS. 9A-9B with the material on the first and second connection structures and the tether conductors on both sides removed. [Fig. 10] is a graph of frequency versus decibel of a resonator body. The resonator body has a lower conductive layer in the form of sheet electrodes and an upper conductive layer in the form of sparse electrodes, and the finger spacing is 1.8 μm. [FIG. 11] is an exemplary graph of frequency versus normalized vibration, especially the resonant frequencies of mode 3 and mode 4, which can be used to illustrate the first to sixth examples of unsuspended bulk acoustic resonators described in this specification frequency response. [FIG. 12] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation or example of the principles of the present invention (eg, a third embodiment of an unsuspended BAW resonator is used here to illustrate the invention). example). [FIG. 13] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation or example of the principles of the present invention (eg, the fourth method used to illustrate the and fifth example). [FIG. 14] is a side view of an unsuspended BAW resonator according to an ideal and non-limiting implementation form or example of the principles of the present invention (for example, the sixth method used to illustrate the unsuspended BAW resonator herein. example).

2:體聲波共振器(UBAR) 2: Bulk Acoustic Resonator (UBAR)

6:上導電層 6: Upper conductive layer

8:壓電層 8: Piezoelectric layer

10:可選的下導電層 10: Optional lower conductive layer

12:裝置層 12: Device layer

14:載體 14: Carrier

34、36:連接結構 34, 36: Connection structure

90、92:溫度補償層 90, 92: temperature compensation layer

96:氮化鋁 96: Aluminum Nitride

Claims (18)

一種體聲波共振器,其特徵係包含: 一共振器本體,係包含: 一壓電層,前述壓電層為LiNbO 3之單晶; 一裝置層,係位於前述壓電層下方; 至少一對一溫度補償層及一高聲抗阻層,係位在前述壓電層及前述裝置層之間;及 一上導電層,係位於前述壓電層上方且前述壓電層之另一側為前述裝置層;其中前述裝置層中與前述壓電層相反側之全部表面,實質上用於將前述共振器本體安裝於載體並分隔前述共振器本體。 A bulk acoustic wave resonator is characterized by comprising: a resonator body, comprising: a piezoelectric layer, the piezoelectric layer is a single crystal of LiNbO 3 ; a device layer is located below the piezoelectric layer; at least one pair of A temperature compensation layer and a high acoustic impedance layer are located between the piezoelectric layer and the device layer; and an upper conductive layer is located above the piezoelectric layer and the other side of the piezoelectric layer is the piezoelectric layer. The device layer; wherein the entire surface of the device layer opposite to the piezoelectric layer is substantially used to mount the resonator body on the carrier and separate the resonator body. 如請求項1所記載之體聲波共振器,其中,前述LiNbO 3之單晶具一切割角度且具一厚度。 The bulk acoustic wave resonator according to claim 1, wherein the single crystal of LiNbO 3 has a cutting angle and a thickness. 如請求項2所記載之體聲波共振器,其中,前述LiNbO 3之單晶以130° ± 30°、130° ± 20°、130° ± 10°、0° ± 30°或0° ± 20°角度切割。 The bulk acoustic wave resonator as set forth in claim 2, wherein the single crystal of the aforementioned LiNbO 3 is 130°±30°, 130°±20°, 130°±10°, 0°±30° or 0°±20° Angled cut. 如請求項2所記載之體聲波共振器,其中,前述角度及前述厚度有利於一模式3共振及一模式4共振之一預定耦合效率。The bulk acoustic wave resonator according to claim 2, wherein the aforementioned angle and the aforementioned thickness are favorable for a predetermined coupling efficiency of a mode 3 resonance and a mode 4 resonance. 如請求項4所記載之體聲波共振器,其中,前述LiNbO 3之單晶以0° ± 10°角度切割。 The bulk acoustic wave resonator according to claim 4, wherein the single crystal of LiNbO 3 is cut at an angle of 0°±10°. 如請求項5所記載之體聲波共振器,其中包含共振頻率≥ 0.1GHz之前述模式3共振或前述模式4共振。The bulk acoustic wave resonator as claimed in claim 5, comprising the aforementioned mode 3 resonance or the aforementioned mode 4 resonance with a resonance frequency ≥ 0.1 GHz. 如請求項4所記載之體聲波共振器,其中包含至少下述之一: 具有預定耦合效率≥8%之前述模式3共振;及 具有預定耦合效率≥3%之前述模式4共振。 The bulk acoustic wave resonator as claimed in claim 4, comprising at least one of the following: the aforementioned mode 3 resonance with a predetermined coupling efficiency ≥8%; and The aforementioned mode 4 resonance with a predetermined coupling efficiency ≥ 3%. 如請求項7所記載之體聲波共振器,其中,前述模式4共振中,前述LiNbO 3之單晶厚度≤ 0.5λ,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator as claimed in claim 7, wherein, in the aforementioned mode 4 resonance, the single crystal thickness of the aforementioned LiNbO ≤ 0.5λ, wherein the λ value is based on the size of the pattern or feature defined by the aforementioned upper conductive layer, or Based on the aforementioned single crystal thickness of LiNbO 3 . 如請求項7所記載之體聲波共振器,其中,前述模式3共振中,前述LiNbO 3之單晶厚度≤ 2λ,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator according to claim 7, wherein, in the above-mentioned mode 3 resonance, the single-crystal thickness of the above-mentioned LiNbO ≤ 2λ, wherein the λ value is based on the size of the pattern or feature defined by the above-mentioned upper conductive layer, or based on The single crystal thickness of the aforementioned LiNbO 3 . 如請求項1所記載之體聲波共振器,進一步包含位於前述壓電層與前述裝置層之間,厚度≥ 0.010λ的下導電層,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator as claimed in claim 1, further comprising a lower conductive layer with a thickness ≥ 0.010λ located between the piezoelectric layer and the device layer, wherein the λ value is based on patterns or features defined by the upper conductive layer size, or based on the single crystal thickness of the aforementioned LiNbO 3 . 如請求項1所記載之體聲波共振器,其中前述裝置層厚度≥ 50 nm。The bulk acoustic wave resonator as claimed in claim 1, wherein the thickness of the aforementioned device layer is ≥ 50 nm. 如請求項1所記載之體聲波共振器,進一步包含位在前述壓電層及前述裝置層之間之一層低聲阻抗材料,其具有在10 6Pa-s/m 3與30 x 10 6Pa-s/m 3之間的聲阻抗及厚度≥ 0.05λ,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator as claimed in claim 1, further comprising a layer of low acoustic impedance material located between the piezoelectric layer and the device layer, which has a value between 10 6 Pa-s/m 3 and 30 x 10 6 Pa Acoustic impedance and thickness ≥ 0.05λ between -s/m 3 , where the λ value is based on the size of the pattern or feature defined by the aforementioned upper conductive layer, or based on the aforementioned single crystal thickness of LiNbO 3 . 如請求項1所記載之體聲波共振器,其中,前述位在前述壓電層及前述裝置層之間之至少一對中的前述高聲抗阻層,其具有在10 6Pa-s/m 3與630 x 10 6Pa-s/m 3之間的聲阻抗及厚度≥ 0.05λ,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator according to claim 1, wherein the high acoustic impedance layer in at least one pair between the piezoelectric layer and the device layer has a value of 10 6 Pa-s/m Acoustic impedance and thickness ≥ 0.05λ between 3 and 630 x 10 6 Pa-s/m 3 , where the λ value is based on the size of the pattern or feature defined by the aforementioned upper conductive layer, or based on the aforementioned single crystal thickness of LiNbO 3 . 如請求項1所記載之體聲波共振器,其中,前述位在前述壓電層及前述裝置層之間之至少一對中的前述溫度補償層,其包含矽及氧,厚度≤ 2λ,其中λ值基於由前述上導電層所界定之圖案或特徵之尺寸,或基於前述LiNbO 3之單晶厚度。 The bulk acoustic wave resonator according to claim 1, wherein the temperature compensation layer in at least one pair between the piezoelectric layer and the device layer comprises silicon and oxygen, and has a thickness ≤ 2λ, where λ Values are based on the size of the pattern or feature defined by the aforementioned upper conductive layer, or based on the aforementioned single crystal thickness of LiNbO 3 . 如請求項1所記載之體聲波共振器,進一步包含一個鈍化層。The bulk acoustic wave resonator as claimed in claim 1, further comprising a passivation layer. 如請求項1所記載之體聲波共振器,其中,前述上導電層至少包含一組含間格的導電彈片。The bulk acoustic wave resonator according to claim 1, wherein the upper conductive layer includes at least one set of conductive elastic sheets with spaces. 如請求項1所記載之體聲波共振器,其中,前述位在前述壓電層及前述裝置層之間之至少一對前述溫度補償層及前述高聲抗阻層包含複數個交替的溫度補償層及高聲抗阻層。The bulk acoustic wave resonator according to claim 1, wherein the at least one pair of the temperature compensation layer and the high acoustic impedance layer located between the piezoelectric layer and the device layer includes a plurality of alternating temperature compensation layers and high acoustic impedance layer. 如請求項1所記載之體聲波共振器,其中,前述裝置層包含至少下述之一:鑽石;W;SiC;Ir、AlN、Al、Pt、Pd、Mo、Cr、Ti、Ta;週期表中3A或4A族的元素;週期表中1B、2B、3B、4B、5B、6B、7B或8B族的過渡元素;陶瓷;玻璃及聚合物。The bulk acoustic wave resonator according to claim 1, wherein the device layer comprises at least one of the following: diamond; W; SiC; Ir, AlN, Al, Pt, Pd, Mo, Cr, Ti, Ta; periodic table Elements of groups 3A or 4A in the periodic table; transition elements of groups 1B, 2B, 3B, 4B, 5B, 6B, 7B or 8B in the periodic table; ceramics; glasses and polymers.
TW110140579A 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator TWI810698B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962860426P 2019-06-12 2019-06-12
US62/860,426 2019-06-12
US16/874,164 2020-05-14
US16/874,164 US11362640B2 (en) 2018-07-17 2020-05-14 Electrode-defined unsuspended acoustic resonator

Publications (2)

Publication Number Publication Date
TW202221950A true TW202221950A (en) 2022-06-01
TWI810698B TWI810698B (en) 2023-08-01

Family

ID=73546976

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110140579A TWI810698B (en) 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator
TW109118689A TWI748497B (en) 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator
TW112124378A TW202343838A (en) 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW109118689A TWI748497B (en) 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator
TW112124378A TW202343838A (en) 2019-06-12 2020-06-03 Electrode-defined unsuspended acoustic resonator

Country Status (4)

Country Link
JP (1) JP7307032B2 (en)
KR (2) KR102451077B1 (en)
DE (1) DE102020115436A1 (en)
TW (3) TWI810698B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707477B (en) * 2023-08-02 2024-04-02 深圳新声半导体有限公司 Method for manufacturing Film Bulk Acoustic Resonator (FBAR) filter device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246451A (en) 2005-02-07 2006-09-14 Kyocera Corp Thin-film bulk acoustic wave resonator, filter, and communications apparatus
JP2007228225A (en) 2006-02-23 2007-09-06 Seiko Epson Corp Surface acoustic wave device
JP2007312164A (en) * 2006-05-19 2007-11-29 Hitachi Ltd Piezoelectric thin film resonator, and high frequency filter and high frequency module using the same
JP2008301453A (en) 2007-06-04 2008-12-11 Toshiba Corp Thin film piezoelectric resonator, and filter circuit using the same
JPWO2009013938A1 (en) * 2007-07-20 2010-09-30 株式会社村田製作所 Piezoelectric resonator and piezoelectric filter device
US8512800B2 (en) * 2007-12-04 2013-08-20 Triquint Semiconductor, Inc. Optimal acoustic impedance materials for polished substrate coating to suppress passband ripple in BAW resonators and filters
FI123640B (en) 2010-04-23 2013-08-30 Teknologian Tutkimuskeskus Vtt Broadband acoustically connected thin film BAW filter
CN103053111B (en) * 2010-08-31 2015-07-22 太阳诱电株式会社 Acoustic wave device
WO2012086441A1 (en) 2010-12-24 2012-06-28 株式会社村田製作所 Elastic wave device and production method thereof
FI124732B (en) * 2011-11-11 2014-12-31 Teknologian Tutkimuskeskus Vtt Lateral connected bulk wave filter with improved passband characteristics
DE102011119660B4 (en) 2011-11-29 2014-12-11 Epcos Ag Microacoustic device with waveguide layer
US20130322328A1 (en) 2012-05-30 2013-12-05 Qualcomm Incorporated Methods and devices for optimizing cell re acquisitions
US9240767B2 (en) * 2012-05-31 2016-01-19 Texas Instruments Incorporated Temperature-controlled integrated piezoelectric resonator apparatus
CN102904546B (en) * 2012-08-30 2016-04-13 中兴通讯股份有限公司 The adjustable piezoelectric acoustic wave resonator of a kind of temperature compensation capability
US20140117815A1 (en) * 2012-10-26 2014-05-01 Avago Technologies General Ip (Singapore) Pte. Ltd Temperature compensated resonator device having low trim sensitivy and method of fabricating the same
GB2511919A (en) 2013-02-28 2014-09-17 Avago Technologies General Ip Acoustic resonator comprising collar and frame
DE102014103229B3 (en) 2014-03-11 2015-07-23 Epcos Ag BAW resonator with temperature compensation
CN107567682B (en) * 2014-12-17 2021-01-22 Qorvo美国公司 Plate wave device with wave confinement structure and method of manufacture
US10193524B2 (en) 2015-10-21 2019-01-29 Qorvo Us, Inc. Resonator structure with enhanced reflection of shear and longitudinal modes of acoustic vibrations
GB2600838A (en) * 2016-10-20 2022-05-11 Skyworks Solutions Inc Elastic wave device with sub-wavelength thick piezoelectric layer

Also Published As

Publication number Publication date
KR20220137599A (en) 2022-10-12
TW202343838A (en) 2023-11-01
KR102451077B1 (en) 2022-10-06
JP2020202564A (en) 2020-12-17
JP7307032B2 (en) 2023-07-11
KR20200142469A (en) 2020-12-22
TWI748497B (en) 2021-12-01
TW202103346A (en) 2021-01-16
TWI810698B (en) 2023-08-01
DE102020115436A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11362640B2 (en) Electrode-defined unsuspended acoustic resonator
JP3940932B2 (en) Thin film piezoelectric resonator, thin film piezoelectric device and manufacturing method thereof
US10938367B2 (en) Solidly mounted layer thin film device with grounding layer
KR100771345B1 (en) Piezoelectric thin-film resonator and filter
JP2018506930A (en) Plate wave device having wave confinement structure and fabrication method
JP2018506930A5 (en)
JP2004158970A (en) Band filter employing thin film piezoelectric resonator
US20230261639A1 (en) Acoustic wave device
TWI735913B (en) Electrode defined resonator
JP2007129776A (en) Thin film piezoelectric oscillator, thin film piezoelectric device, and manufacturing method thereof
CN113037245B (en) Quartz resonator based on piezoelectric thin film transduction and electronic equipment
KR20230148137A (en) Electrode defined resonator
TWI810698B (en) Electrode-defined unsuspended acoustic resonator
JP4730383B2 (en) Thin film acoustic resonator and manufacturing method thereof
US11750169B2 (en) Electrode-defined unsuspended acoustic resonator
TW202224221A (en) Piezoelectric layer arrangements in acoustic wave devices and related methods
WO2024055388A1 (en) Acoustic resonator
US20240097643A1 (en) Piezoelectric bulk wave device and method for manufacturing the same
CN116615865A (en) Elastic wave device
CN117280605A (en) Elastic wave device