TW202221378A - Projection lens and projection apparatus - Google Patents

Projection lens and projection apparatus Download PDF

Info

Publication number
TW202221378A
TW202221378A TW110127844A TW110127844A TW202221378A TW 202221378 A TW202221378 A TW 202221378A TW 110127844 A TW110127844 A TW 110127844A TW 110127844 A TW110127844 A TW 110127844A TW 202221378 A TW202221378 A TW 202221378A
Authority
TW
Taiwan
Prior art keywords
light
mirror group
projection
lens
optical axis
Prior art date
Application number
TW110127844A
Other languages
Chinese (zh)
Other versions
TWI781701B (en
Inventor
羅欣祥
吳威霆
莊福明
張銓仲
魏慶全
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Publication of TW202221378A publication Critical patent/TW202221378A/en
Application granted granted Critical
Publication of TWI781701B publication Critical patent/TWI781701B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

A projection lens includes a first lens group, a second lens group and an aperture stop. The first lens group is disposed between a reduced side and a magnified side. The second lens is disposed between the first lens group and the magnified side. The second lens group has a light incident surface, a reflective surface and a light emitting surface, the light incident surface faces the first lens group, the light emitting surface faces a projection surface, the light incident surface, the light emitting surface and the first lens group are disposed at a single side of the reflective surface, and at least one of the light incident surface, the reflective surface and the light emitting surface is a freeform surface. The aperture stop is disposed between the first lens group and the second lens group. A light valve is adopted to provide an image light beam. A first optical axis of the first lens group and a center of the image light beam aren't overlapped. Moreover, a projection apparatus including the projection lens is also provided.

Description

投影鏡頭及投影裝置Projection lens and projection device

本發明是有關於一種光學鏡頭及光學裝置,且特別是有關於一種投影鏡頭及投影裝置。The present invention relates to an optical lens and an optical device, and more particularly, to a projection lens and a projection device.

投影機已廣泛運用於家電產品、辦公室設備、遊戲機檯等。投影機的需求逐漸朝向輕薄短小發展。舉例而言,相較於使用傳統燈源的投影機,使用發光二極體的口袋型投影機,體積小且重量輕,可降低空間需求且攜帶方便。Projectors have been widely used in home appliances, office equipment, game consoles, etc. The demand for projectors is gradually developing towards thin and small size. For example, compared to projectors using conventional light sources, pocket-type projectors using light-emitting diodes are small in size and light in weight, which can reduce space requirements and are easy to carry.

實際應用上,為了縮小投影機的使用空間,須修改投影機的機構,以將傳統垂直式投影改為斜向投影,使得投影畫面透過反射鏡進行轉折,轉折後的投影頭畫面可根據需求投射至投影面(例如:桌面、地面、牆面、屏幕等)。在斜向投影架構中,投影機的出射光的參考光線無法垂直於投影面,即斜向入射(oblique incidence),會導致投影畫面產生梯形失真。傳統上,為了改善梯形失真,可使用軟體裁切投影畫面的失真區域,進而達到無失真的情形,然而,這種軟體校正方式會導致解析度降低,亮度損失。此外,另一種改善梯形失真的一種方式為硬體校正,即令投影鏡頭移向,然而,此種方式會導致投影機的體積變大。In practical application, in order to reduce the usage space of the projector, it is necessary to modify the mechanism of the projector to change the traditional vertical projection to the oblique projection, so that the projection picture can be turned through the reflector, and the turned projection head picture can be projected as required. to the projection surface (eg: desktop, floor, wall, screen, etc.). In the oblique projection structure, the reference ray of the outgoing light from the projector cannot be perpendicular to the projection surface, that is, oblique incidence, which will cause keystone distortion of the projection image. Traditionally, in order to improve the keystone distortion, software can be used to crop the distorted area of the projected image, so as to achieve no distortion. However, this software correction method will lead to a reduction in resolution and a loss of brightness. In addition, another way to improve the keystone distortion is hardware correction, that is, to move the projection lens to the direction, however, this method will cause the projector to become larger.

本發明提供一種投影鏡頭,體積小且能改善梯形失真。The present invention provides a projection lens, which is small in size and can improve keystone distortion.

本發明提供一種投影裝置,體積小且能改善梯形失真。The present invention provides a projection device with small volume and capable of improving keystone distortion.

本發明的投影鏡頭適於將配置於縮小側的光閥成像於配置於放大側的投影面上。光閥與投影面具有一角度。投影鏡頭包括第一鏡組、第二鏡組及光闌。第一鏡組配置於縮小側與放大側之間且具有第一光軸。第二鏡組配置於第一鏡組與放大側之間,其中第二鏡組至少具有入光面、反射面和出光面,入光面面向第一鏡組,出光面面向投影面,入光面、出光面及第一鏡組配置於反射面的同一側,且入光面、反射面及出光面的至少一者為自由曲面。光闌配置於第一鏡組與第二鏡組之間。光閥適於提供影像光束。影像光束依序穿過第一鏡組、通過光闌、穿過第二鏡組的入光面、被第二鏡組的反射面反射且穿過第二鏡組的出光面,以傳遞至投影面。第一鏡組的第一光軸不重疊於影像光束的中心。The projection lens of the present invention is suitable for imaging the light valve arranged on the reduction side on the projection surface arranged on the enlargement side. The light valve is at an angle to the projection surface. The projection lens includes a first mirror group, a second mirror group and a diaphragm. The first lens group is disposed between the reduction side and the enlargement side and has a first optical axis. The second mirror group is disposed between the first mirror group and the magnifying side, wherein the second mirror group has at least a light incident surface, a reflection surface and a light exit surface, the light incident surface faces the first mirror group, the light exit surface faces the projection surface, and the light incident surface faces the projection surface. The surface, the light emitting surface and the first mirror group are arranged on the same side of the reflective surface, and at least one of the light incident surface, the reflective surface and the light emitting surface is a free-form surface. The diaphragm is arranged between the first mirror group and the second mirror group. The light valve is adapted to provide the image beam. The image beam sequentially passes through the first mirror group, passes through the aperture, passes through the light incident surface of the second mirror group, is reflected by the reflective surface of the second mirror group, and passes through the light exit surface of the second mirror group to be transmitted to the projection. noodle. The first optical axis of the first lens group does not overlap with the center of the image beam.

本發明的投影裝置包括照明光源、光閥、投影面及上述的投影鏡頭。照明光源適於提供照明光束。光閥配置於縮小側且適於將照明光束轉換為影像光束。投影面配置於放大側,其中光閥與投影面具有一角度。The projection device of the present invention includes an illumination light source, a light valve, a projection surface and the above-mentioned projection lens. The illumination light source is adapted to provide an illumination beam. The light valve is arranged on the reduction side and is suitable for converting the illumination light beam into the image light beam. The projection surface is arranged on the magnifying side, wherein the light valve and the projection surface have an angle.

在本發明的一實施例中,上述的第二鏡組包括轉折稜鏡,且轉折稜鏡具有入光面、反射面及出光面。In an embodiment of the present invention, the above-mentioned second mirror group includes a turning point, and the turning point has a light incident surface, a reflection surface and a light output surface.

在本發明的一實施例中,上述的第一鏡組包括由放大側往縮小側依序排列的多個透鏡,每一透鏡具有面向第二鏡組的第一表面及面向光閥的第二表面,且多個透鏡之中最靠近光闌之一個透鏡的第一表面為自由曲面。In an embodiment of the present invention, the above-mentioned first lens group includes a plurality of lenses arranged in sequence from the magnifying side to the reducing side, and each lens has a first surface facing the second lens group and a second lens facing the light valve. surface, and the first surface of the lens closest to the diaphragm among the plurality of lenses is a free-form surface.

在本發明的一實施例中,上述的光闌與第二鏡組的反射面在平行於第一光軸的方向上具有最大距離D,影像光束包括第一邊緣光線及第二邊緣光線,第一邊緣光線自光閥之邊緣上的一點朝遠離第一光軸的方向出射,第二邊緣光線自光閥之邊緣上的該點朝指向第一光軸的方向出射,在第一鏡組中的第一邊緣光線與第一光軸在垂直於第一光軸的方向上具有最大距離H1,在第二鏡組的出光面上的第二邊緣光線與第一光軸在垂直於第一光軸的方向上具有一最大距離H2,且(H1+H2)/D<3。In an embodiment of the present invention, the above-mentioned diaphragm and the reflecting surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, the image beam includes a first edge ray and a second edge ray, the first An edge ray exits from a point on the edge of the light valve in a direction away from the first optical axis, and a second edge ray exits from this point on the edge of the light valve in a direction toward the first optical axis, in the first mirror group The first edge ray and the first optical axis have a maximum distance H1 in the direction perpendicular to the first optical axis, and the second edge ray and the first optical axis on the light-emitting surface of the second mirror group are perpendicular to the first optical axis. There is a maximum distance H2 in the direction of the axis, and (H1+H2)/D<3.

在本發明的一實施例中,上述的光闌與第二鏡組的反射面在平行於第一光軸的方向上具有最大距離D,第二鏡組的出光面具有光學有效徑CA,且CA/D<3。In an embodiment of the present invention, the above-mentioned diaphragm and the reflecting surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, the light exit surface of the second mirror group has an optical effective diameter CA, and CA/D<3.

在本發明的一實施例中,上述的影像光束相對於第一鏡組的第一光軸具有一偏移值。In an embodiment of the present invention, the above-mentioned image light beam has an offset value relative to the first optical axis of the first lens group.

在本發明的一實施例中,上述的角度為θ,且25o<θ<90o。In an embodiment of the present invention, the above-mentioned angle is θ, and 25o<θ<90o.

在本發明的一實施例中,上述的影像光束在投影面上形成一投影畫面,投影畫面的相對兩邊彼此平行且在一方向上分別具有長度A及長度B,投影畫面在所述方向上具有最大寬度W,[(B-A)/W]‧100%=T,且|T|<1%。In an embodiment of the present invention, the above-mentioned image beams form a projection picture on the projection surface, the opposite sides of the projection picture are parallel to each other and have lengths A and B respectively in one direction, and the projection picture has the maximum length in the direction. Width W, [(B-A)/W]‧100%=T, and |T|<1%.

基於上述,在本發明一實施例之投影裝置及投影鏡頭中,投影鏡頭的第二鏡組的入光面、反射面及出光面的至少一者為自由曲面,且第一鏡組的第一光軸不重疊於影像光束的中心。藉此,能實現來回共光路設計,進而減少投影鏡頭的整體厚度。此外,由於第二鏡組的入光面、反射面及出光面的至少一者為自由曲面,投影鏡頭還可使各視角對應的影像光束的焦距不同,進而改善梯形失真現象。Based on the above, in the projection device and the projection lens according to an embodiment of the present invention, at least one of the light incident surface, the reflection surface and the light output surface of the second mirror group of the projection lens is a free-form surface, and the first mirror group of the first mirror group is a free-form surface. The optical axis does not overlap the center of the image beam. Thereby, the design of the common optical path back and forth can be realized, thereby reducing the overall thickness of the projection lens. In addition, since at least one of the light incident surface, the reflection surface and the light output surface of the second mirror group is a free-form surface, the projection lens can also make the focal length of the image beam corresponding to each viewing angle different, thereby improving the trapezoidal distortion phenomenon.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or rear, etc., are only for referring to the directions of the attached drawings. Accordingly, the directional terms used are illustrative and not limiting of the present invention.

現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts.

圖1為本發明一實施例之投影裝置的側視示意圖。圖2為圖1之投影裝置的光閥、保護蓋、合光元件、平板玻璃致動器及投影鏡頭的放大示意圖。FIG. 1 is a schematic side view of a projection apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged schematic view of a light valve, a protective cover, a light combining element, a plate glass actuator and a projection lens of the projection apparatus of FIG. 1 .

請參照圖1及圖2,圖中方向z例如是垂直於投影面PS的一方向,方向y例如是平行於投影面PS的一方向,且方向x例如是平行於投影面PS且垂直於方向y的一方向。Please refer to FIG. 1 and FIG. 2 , the direction z in the figures is, for example, a direction perpendicular to the projection surface PS, the direction y is, for example, a direction parallel to the projection surface PS, and the direction x is, for example, parallel to the projection surface PS and perpendicular to the direction y direction.

請參照圖1,投影裝置100包括照明光源ILS、光閥LV、投影鏡頭PL及投影面PS。投影鏡頭PL具有縮小側及放大側。光閥LV配置於縮小側。投影面PS配置於放大側。照明光源ILS適於提供照明光束ILB。光閥LV適於將照明光束ILB轉換為影像光束IMB。投影鏡頭PL適於將來自於光閥LV的影像光束IMB成像於位於放大側的投影面PS上。特別是,投影面PS與光閥LV具有一夾角θ。換言之,投影裝置100是斜向投影裝置。投影面PS與光閥LV的夾角θ滿足:0 o<θ<90 o。舉例而言,夾角θ可滿足:25 o<θ<90 o,但本發明不以此為限。 Referring to FIG. 1 , the projection apparatus 100 includes an illumination light source ILS, a light valve LV, a projection lens PL and a projection surface PS. The projection lens PL has a reduction side and an enlargement side. The light valve LV is arranged on the reduction side. The projection surface PS is arranged on the enlargement side. The illumination light source ILS is adapted to provide the illumination light beam ILB. The light valve LV is adapted to convert the illumination beam ILB into the image beam IMB. The projection lens PL is adapted to image the image beam IMB from the light valve LV on the projection surface PS on the magnifying side. In particular, the projection surface PS and the light valve LV have an included angle θ. In other words, the projection device 100 is an oblique projection device. The angle θ between the projection surface PS and the light valve LV satisfies: 0 o <θ<90 o . For example, the included angle θ may satisfy: 25 o <θ<90 o , but the present invention is not limited to this.

投影面PS泛指可於其上形成投影畫面的物體表面。舉例而言,在本實施例中,投影面PS可以是桌面。然而,本發明不限於此,在其它實施例中,投影面PS也可以是地面、牆面、屏幕等。The projection surface PS generally refers to a surface of an object on which a projection image can be formed. For example, in this embodiment, the projection surface PS may be a desktop. However, the present invention is not limited thereto, and in other embodiments, the projection surface PS may also be a ground, a wall, a screen, or the like.

在本實施例中,光閥LV可選擇性地為反射式光調變器,例如數位微鏡元件(digital micro-mirror device)、矽基液晶面板(liquid-crystal-on-silicon panel,LCOS panel)等。然而,本發明不限於此,在其它實施例中,光閥LV也可為穿透式光調變器,例如透光液晶面板(Transparent Liquid Crystal Panel)、電光調變器(Electro-Optical Modulator)、磁光調變器(Magneto-Optic modulator)、聲光調變器(Acousto-Optic Modulator,AOM)等。In this embodiment, the light valve LV can optionally be a reflective light modulator, such as a digital micro-mirror device, a liquid-crystal-on-silicon panel (LCOS panel) )Wait. However, the present invention is not limited thereto, and in other embodiments, the light valve LV can also be a transmissive light modulator, such as a transparent liquid crystal panel, an electro-optical modulator , Magneto-Optic modulator, Acousto-Optic Modulator (AOM), etc.

在本實施例中,投影裝置100還可選擇性地包括合光元件PR。照明系統ILS發出照明光束ILB至合光元件PR,照明光束ILB經由合光元件PR傳遞至光閥LV,光閥LV將照明光束ILB反射為影像光束IMB,而影像光束IMB經由合光元件PR傳遞至投影鏡頭PL。舉例而言,在本實施例中,合光元件PR可以是內全反射稜鏡(Total Internal Reflection Prism,TIR Prism)。然而,本發明不限於此,在其它實施例中,合光元件PR也可以是分光鏡(beam splitter)、偏振分光鏡(polarizer beam splitter)、場鏡或其它光學元件,端視投影裝置100所需的分光或導光設計而定,本發明不加以限制。In the present embodiment, the projection apparatus 100 may optionally further include a light combining element PR. The illumination system ILS emits the illumination beam ILB to the light combining element PR, and the illumination light beam ILB is transmitted to the light valve LV through the light combining element PR. to the projection lens PL. For example, in this embodiment, the light combining element PR may be a Total Internal Reflection Prism (TIR Prism). However, the present invention is not limited thereto. In other embodiments, the light combining element PR may also be a beam splitter (beam splitter), a polarizer beam splitter (polarizer beam splitter), a field lens or other optical elements. It depends on the required light splitting or light guiding design, and is not limited by the present invention.

請參照圖1及圖2,在本實施例中,投影裝置100還可選擇性地包括保護蓋CG(標示於圖2),配置於光閥LV的受光面LVa(標示於圖2)上,且位於光閥LV與合光元件PR之間。保護蓋CG適於保護光閥LV。此外,在本實施例中,投影裝置100還可選擇性地包括平板玻璃致動器AC,可具有濾光功能。Referring to FIGS. 1 and 2 , in this embodiment, the projection device 100 may optionally include a protective cover CG (marked in FIG. 2 ), which is disposed on the light-receiving surface LVa (marked in FIG. 2 ) of the light valve LV, And it is located between the light valve LV and the light combining element PR. The protective cover CG is suitable for protecting the light valve LV. In addition, in this embodiment, the projection device 100 may optionally include a plate glass actuator AC, which may have a filter function.

投影鏡頭PL包括第一鏡組LG1、光闌AS及第二鏡組LG2。第一鏡組LG1配置於縮小側與放大側之間且具有第一光軸X1。第二鏡組LG2配置於第一鏡組LG1與放大側之間。光闌AS配置於第一鏡組LG1與第二鏡組LG2之間。第二鏡組LG2至少具有入光面RP3、反射面RP2和出光面RP1,其中入光面RP3面向第一鏡組LG1,出光面RP1面向投影面PS,且入光面RP3、出光面RP1及第一鏡組LG1配置於反射面RP2的同一側。The projection lens PL includes a first lens group LG1, an aperture AS and a second lens group LG2. The first lens group LG1 is disposed between the reduction side and the enlargement side and has a first optical axis X1. The second mirror group LG2 is disposed between the first mirror group LG1 and the magnifying side. The diaphragm AS is disposed between the first mirror group LG1 and the second mirror group LG2. The second mirror group LG2 has at least a light incident surface RP3, a reflection surface RP2 and a light exit surface RP1, wherein the light incident surface RP3 faces the first mirror group LG1, the light exit surface RP1 faces the projection surface PS, and the light incident surface RP3, the light exit surface RP1 and The first mirror group LG1 is arranged on the same side of the reflection surface RP2.

請參照圖2,第一鏡組LG1包括由放大側往縮小側依序排列的的多個透鏡L1、L2、L3、L4、L5,其中每一透鏡L1、L2、L3、L4、L5具有面向第二鏡組LG2的第一表面L11、L21、L31、L41、L51及面向光閥LV的第二表面L12、L22、L32、L42、L52。Referring to FIG. 2, the first lens group LG1 includes a plurality of lenses L1, L2, L3, L4, L5 sequentially arranged from the magnification side to the reduction side, wherein each lens L1, L2, L3, L4, L5 has a surface facing the The first surfaces L11, L21, L31, L41, L51 of the second mirror group LG2 and the second surfaces L12, L22, L32, L42, L52 facing the light valve LV.

舉例而言,在本實施例中,第一鏡組LG1包括由放大側往縮小側依序排列的的透鏡L1、透鏡L2、透鏡L3、透鏡L4及透鏡L5,其中透鏡L1具有面向第二鏡組LG2的第一表面L11及面向光閥LV的第二表面L12,透鏡L2具有面向第二鏡組LG2的第一表面L21及面向光閥LV的第二表面L22,透鏡L3具有面向第二鏡組LG2的第一表面L31及面向光閥LV的第二表面L32,透鏡L4具有面向第二鏡組LG2的第一表面L41及面向光閥LV的第二表面L42,且透鏡L5具有面向第二鏡組LG2的第一表面L51及面向光閥LV的第二表面L52。在本實施例中,第一鏡組LG1的多個透鏡L1、L2、L3、L4、L5的數量例如是5。然而,本發明不以此為限,第一鏡組LG1的透鏡數量可視實際需求而變。在其它實施例中, 第一鏡組LG1的透鏡數量也可以是2、3、4、6或大於6的正整數。在本實施例中,第一鏡組LG1的焦距可為負值,但本發明不以此為限。For example, in this embodiment, the first lens group LG1 includes a lens L1, a lens L2, a lens L3, a lens L4 and a lens L5 which are arranged in sequence from the magnification side to the reduction side, wherein the lens L1 has a lens facing the second mirror The first surface L11 of the group LG2 and the second surface L12 facing the light valve LV, the lens L2 has a first surface L21 facing the second mirror group LG2 and the second surface L22 facing the light valve LV, the lens L3 has a second surface facing the second mirror The group LG2 has a first surface L31 and a second surface L32 facing the light valve LV, the lens L4 has a first surface L41 facing the second mirror group LG2 and a second surface L42 facing the light valve LV, and the lens L5 has a second surface L42 facing the light valve LV. The first surface L51 of the mirror group LG2 and the second surface L52 facing the light valve LV. In this embodiment, the number of the plurality of lenses L1 , L2 , L3 , L4 , and L5 of the first lens group LG1 is, for example, five. However, the present invention is not limited to this, and the number of lenses of the first mirror group LG1 can be changed according to actual requirements. In other embodiments, the number of lenses of the first mirror group LG1 may also be 2, 3, 4, 6 or a positive integer greater than 6. In this embodiment, the focal length of the first lens group LG1 may be a negative value, but the present invention is not limited to this.

光闌AS是指在投影鏡頭PL中對影像光束IMB起限制作用的實體,光束通過光闌AS具有最小的截面積,它可以是透鏡的邊緣、框架或特別設定的帶孔屏。舉例而言,在本實施例中,光闌AS例如是設置於第一鏡組LG1與第二鏡組LG2之間的一帶孔屏,但本發明不以此為限。在本實施例中,第一鏡組LG1的多個透鏡L1、L2、L3、L4、L5之中最靠近光闌AS之一個透鏡L1的第一表面L11可以是自由曲面。Aperture AS refers to the entity that limits the image beam IMB in the projection lens PL, and the beam has the smallest cross-sectional area through the aperture AS, which can be the edge of the lens, a frame or a specially designed screen with holes. For example, in this embodiment, the aperture AS is, for example, a screen with apertures disposed between the first mirror group LG1 and the second mirror group LG2, but the invention is not limited to this. In this embodiment, the first surface L11 of one lens L1 closest to the aperture AS among the plurality of lenses L1 , L2 , L3 , L4 , and L5 of the first mirror group LG1 may be a free-form surface.

在本實施例中,第二鏡組LG2可包括一轉折稜鏡RP,且轉折稜鏡RP具有入光面RP3、反射面RP2及出光面RP1。在本實施例中,轉折稜鏡RP的入光面RP3可為凹面,且轉折稜鏡RP的出光面RP1可為凸面。In this embodiment, the second mirror group LG2 may include a turning plane RP, and the turning plane RP has a light incident surface RP3, a reflection surface RP2, and a light output surface RP1. In this embodiment, the light incident surface RP3 of the turning plane RP can be a concave surface, and the light exit surface RP1 of the turning plane RP can be a convex surface.

值得注意的是,第二鏡組LG2入光面RP3、反射面RP2及出光面RP1的至少一者為自由曲面,且第一鏡組LG1 的第一光軸X1不重疊於影像光束IMB的中心IMBc。藉此,可實現一來回共光路設計,即由第一鏡組LG1傳向第二鏡組LG2的影像光束IMB的光路徑與被第二鏡組LG2之反射面RP2反射回第一鏡組LG1的影像光束IMB的光路徑可重合,且被第二鏡組LG2之反射面RP2反射的影像光束IMB能有足夠的空間從第二鏡組LG2的入光面RP3射出。由於投影鏡頭PL具有共光路設計,被第二鏡組LG2之反射面RP2反射回第一鏡組LG1的影像光束IMB不易造成干涉,因此光闌AS與第二鏡組LG2之反射面RP2在平行於第一光軸X1的方向d1上的最大距離D可縮短。當最大距離D縮短時,第二鏡組LG2之反射面RP2的光學有效徑CA也不會過大。如此一來,便能減少投影鏡頭PL的整體厚度H。It is worth noting that, at least one of the light incident surface RP3, the reflection surface RP2 and the light exit surface RP1 of the second mirror group LG2 is a free-form surface, and the first optical axis X1 of the first mirror group LG1 does not overlap the center of the image beam IMB IMBc. Thereby, a common optical path design can be realized, that is, the optical path of the image beam IMB transmitted from the first mirror group LG1 to the second mirror group LG2 and reflected by the reflecting surface RP2 of the second mirror group LG2 back to the first mirror group LG1 The optical paths of the image beam IMB can be coincident, and the image beam IMB reflected by the reflection surface RP2 of the second mirror group LG2 can have enough space to exit from the light incident surface RP3 of the second mirror group LG2. Since the projection lens PL has a common optical path design, the image beam IMB reflected by the reflection surface RP2 of the second mirror group LG2 back to the first mirror group LG1 is unlikely to cause interference, so the aperture AS and the reflection surface RP2 of the second mirror group LG2 are parallel to each other. The maximum distance D in the direction d1 of the first optical axis X1 can be shortened. When the maximum distance D is shortened, the optical effective diameter CA of the reflection surface RP2 of the second mirror group LG2 will not be too large. In this way, the overall thickness H of the projection lens PL can be reduced.

請參照圖2,影像光束IMB包括第一邊緣光線IMB1及第二邊緣光線IMB2,第一邊緣光線IMB1自光閥LV的邊緣LVe上的一點LVp朝遠離第一光軸X1的方向出射,第二邊緣光線IMB2自光閥LV的邊緣LVe上的點LVp朝指向第一光軸X1的方向出射,在第一鏡組LG1中的第一邊緣光線IMB1與第一光軸X1在垂直於第一光軸X1的方向d2上具有最大距離H1,在第二鏡組LG2的出光面RP1上的第二邊緣光線IMB2與第一光軸X1在垂直於第一光軸X1的方向d2上具有最大距離H2,而前述之投影鏡頭PL的整體厚度H是指最大距離H1與最大距離H2的和。舉例而言,在本實施例中,投影鏡頭PL的整體厚度H可小於12mm,但本發明不以此為限。Referring to FIG. 2, the image beam IMB includes a first edge ray IMB1 and a second edge ray IMB2. The first edge ray IMB1 exits from a point LVp on the edge LVe of the light valve LV in a direction away from the first optical axis X1, and the second edge ray IMB1 The edge ray IMB2 exits from the point LVp on the edge LVe of the light valve LV toward the direction of the first optical axis X1. The first edge ray IMB1 in the first mirror group LG1 and the first optical axis X1 are perpendicular to the first optical axis X1. There is a maximum distance H1 in the direction d2 of the axis X1, and the second edge ray IMB2 on the light exit surface RP1 of the second mirror group LG2 has a maximum distance H2 with the first optical axis X1 in the direction d2 perpendicular to the first optical axis X1 , and the aforementioned overall thickness H of the projection lens PL refers to the sum of the maximum distance H1 and the maximum distance H2. For example, in this embodiment, the overall thickness H of the projection lens PL may be less than 12 mm, but the present invention is not limited to this.

光闌AS與第二鏡組LG2的反射面RP2在平行於第一光軸X1的方向d1上具有最大距離D。在本實施例中,H/D<3。另外,在本實施例中,第二鏡組LG2的出光面RP1具有一光學有效徑CA,且CA/D<3。換言之,投影鏡頭PL的整體厚度H與光闌AS和反射面RP2的最大距離D的比值以及第二鏡組LG2的出光面RP1的光學有效徑CA與光闌AS和反射面RP2的最大距離D的比值均在一適當數值以下,此設計方式可縮小投影鏡頭PL的體積。The diaphragm AS and the reflection surface RP2 of the second mirror group LG2 have a maximum distance D in the direction d1 parallel to the first optical axis X1. In this embodiment, H/D<3. In addition, in this embodiment, the light-emitting surface RP1 of the second mirror group LG2 has an optical effective diameter CA, and CA/D<3. In other words, the ratio of the overall thickness H of the projection lens PL to the maximum distance D between the diaphragm AS and the reflection surface RP2 and the optical effective diameter CA of the light exit surface RP1 of the second mirror group LG2 and the maximum distance D between the diaphragm AS and the reflection surface RP2 The ratios of are all below an appropriate value, and this design method can reduce the volume of the projection lens PL.

此外,由於第二鏡組LG2入光面RP3、反射面RP2及出光面RP1的至少一者為自由曲面,第二鏡組LG2還可使各視角對應的影像光束IMB的焦距不同,進而改善梯形失真現象。在本實施例中,第二鏡組LG2的入光面RP3、反射面RP2及出光面RP1可皆為自由曲面,但本發明不以此為限。在另一實施例中,第二鏡組LG2的出光面RP1及反射面RP2可為自由曲面,而入光面RP3可不為自由曲面。在又一實施例中,第二鏡組LG2的反射面RP2及入光面RP3可為自由曲面,而出光面RP1可不為自由曲面。在本實施例中,第二鏡組LG2的焦距例如是正值。In addition, since at least one of the light incident surface RP3, the reflection surface RP2 and the light exit surface RP1 of the second mirror group LG2 is a free-form surface, the second mirror group LG2 can also make the focal length of the image beam IMB corresponding to each viewing angle different, thereby improving the trapezoidal shape Distortion phenomenon. In this embodiment, the light incident surface RP3 , the reflection surface RP2 and the light output surface RP1 of the second mirror group LG2 may all be free-form curved surfaces, but the invention is not limited to this. In another embodiment, the light exit surface RP1 and the reflection surface RP2 of the second mirror group LG2 may be free curved surfaces, and the light incident surface RP3 may not be free curved surfaces. In yet another embodiment, the reflection surface RP2 and the light incident surface RP3 of the second mirror group LG2 may be free curved surfaces, and the light exit surface RP1 may not be free curved surfaces. In this embodiment, the focal length of the second lens group LG2 is, for example, a positive value.

在本實施例中,影像光束IMB相對於第一鏡組LG1的第一光軸X1具有一偏移值O。以下配合圖3說明偏移量O的量測方法。In this embodiment, the image beam IMB has an offset value O relative to the first optical axis X1 of the first mirror group LG1. The method for measuring the offset O will be described below with reference to FIG. 3 .

圖3為本發明一實施例之投影裝置的示意圖。請參照圖1及圖3,圖3的投影機PJT至少包括圖1的照明光源ILS、光閥LV及投影鏡頭PL,投影機PJT適於在投射面PS上形成一投影畫面IM。請參照圖3,在偏移量O的量測方法中,首先,校正投影機PJT的水平度,以使投影機PJT的第一光軸X1與地面GD水平。接著,在投影機PJT的第一光軸X1與地面GD保持水平的情況,令投影機PJT投射一投影畫面IM於投影面PS上。然後,量測投影畫面IM的高度h、投影畫面IM之遠離地面GD的一邊緣IMe到地面GD的距離a以及投影機PJT的第一光軸X1到地面GD的距離b。最後,利用下式:O=[(a-b)/h]∙100%,計算出影像光束IMB相對於第一鏡組LG1之第一光軸X1的偏移值O。舉例而言,在本實施例中,O可大於50%,但本發明不以此為限。FIG. 3 is a schematic diagram of a projection apparatus according to an embodiment of the present invention. 1 and 3, the projector PJT in FIG. 3 at least includes the illumination light source ILS, the light valve LV and the projection lens PL in FIG. 1, and the projector PJT is suitable for forming a projection image IM on the projection surface PS. Referring to FIG. 3 , in the method for measuring the offset O, first, the levelness of the projector PJT is corrected so that the first optical axis X1 of the projector PJT is level with the ground GD. Next, when the first optical axis X1 of the projector PJT is kept horizontal with the ground GD, the projector PJT is made to project a projection image IM on the projection surface PS. Then, measure the height h of the projection image IM, the distance a from an edge IMe of the projection image IM far from the ground GD to the ground GD, and the distance b from the first optical axis X1 of the projector PJT to the ground GD. Finally, using the following formula: O=[(a-b)/h]∙100%, the offset value O of the image beam IMB relative to the first optical axis X1 of the first mirror group LG1 is calculated. For example, in this embodiment, O may be greater than 50%, but the present invention is not limited thereto.

圖4示意性地繪出本發明一實施例之影像光束於投影面上形成的投影畫面。請參照圖1、圖2及圖4,在本實施例中,光閥LV將照明光束ILB轉換為影像光束IMB,影像光束IMB依序穿過第一鏡組LG1、通過光闌AS、穿過第二鏡組LG2的入光面RP3、被第二鏡組LG2的反射面RP2反射、穿過第二鏡組LG2的出光面RP1,而於投影面PS(即圖4的紙面)上形成投影畫面IM;投影畫面IM的相對兩邊IMa、IMb上彼此平行且在一方向x上分別具有長度A及長度B,投影畫面IM在方向x上具有最大寬度W,[(B-A)/W]‧100%=T,且|T|<1%。簡言之,在本實施例中,投影畫面IM的梯形失真小於1%FIG. 4 schematically depicts a projection image formed by an image light beam on a projection surface according to an embodiment of the present invention. Please refer to FIG. 1 , FIG. 2 and FIG. 4 , in this embodiment, the light valve LV converts the illumination light beam ILB into an image light beam IMB, and the image light beam IMB sequentially passes through the first mirror group LG1 , passes through the aperture AS, passes through the The light incident surface RP3 of the second mirror group LG2 is reflected by the reflection surface RP2 of the second mirror group LG2, passes through the light exit surface RP1 of the second mirror group LG2, and forms a projection on the projection surface PS (ie, the paper surface of FIG. 4 ) Picture IM; the opposite sides IMa and IMb of the projection picture IM are parallel to each other and have lengths A and B respectively in a direction x, and the projection picture IM has a maximum width W in the direction x, [(B-A)/W]‧100 %=T, and |T|<1%. In short, in this embodiment, the keystone distortion of the projection image IM is less than 1%

以下內容將舉出投影裝置100的一實施例。需注意的是,下述之表一至表三中所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 [表一] 表面 元件 類型 曲率半徑(mm) 間距 (mm) 折射率 (Nd) 阿貝數 (Vd) 材質 RP1 第二鏡組LG2 自由 曲面 31.844 4.988 1.535 55.8   RP2 自由 曲面 10.596 -2.227 RP3 自由 曲面 -3.432 -5.179 ASa 光闌AS   無窮大 -0.571       L11 透鏡L1 自由 曲面 12.609 -3.509 1.653 22.4 塑膠 L12 非球面 4.992 -0.1 L21 透鏡L2 球面 118.405 -6.493 1.49 70.2 玻璃 L22 球面 7.258 -0.1 L31 透鏡L3 球面 19.17 -1.1 1..858 24.1 玻璃 L41 透鏡L4 球面 -5.713 -2.258 1.651 56.8 玻璃 L42 球面 -15.755 -0.1 L51 透鏡L5 非球面 -7.113 -4.982 1.535 55.8 塑膠 L52 非球面 8.962 -0.8 AC1 平板玻璃致動器AC   無窮大 -2 1.526 58.6 玻璃 AC2   無窮大 -0.8 PR1 合光元件PR   無窮大 -8.4 1.842 43   PR2   無窮大 -1 CG1 保護蓋CG   無窮大 -1.1 1.151 61 玻璃 CG2   無窮大 -0.303 LVa 光閥LV   無窮大 0       An embodiment of the projection apparatus 100 will be described in the following content. It should be noted that the data listed in the following Tables 1 to 3 are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make appropriate parameters or settings after referring to the present invention. However, it should still fall within the scope of the present invention. [Table I] surface element type Radius of curvature (mm) Spacing (mm) Refractive Index (Nd) Abbe number (Vd) material RP1 The second mirror group LG2 freeform surface 31.844 4.988 1.535 55.8 RP2 freeform surface 10.596 -2.227 RP3 freeform surface -3.432 -5.179 ASa Aperture AS gigantic -0.571 L11 Lens L1 freeform surface 12.609 -3.509 1.653 22.4 plastic L12 Aspherical 4.992 -0.1 L21 Lens L2 spherical 118.405 -6.493 1.49 70.2 Glass L22 spherical 7.258 -0.1 L31 Lens L3 spherical 19.17 -1.1 1..858 24.1 Glass L41 Lens L4 spherical -5.713 -2.258 1.651 56.8 Glass L42 spherical -15.755 -0.1 L51 Lens L5 Aspherical -7.113 -4.982 1.535 55.8 plastic L52 Aspherical 8.962 -0.8 AC1 Flat Glass Actuator AC gigantic -2 1.526 58.6 Glass AC2 gigantic -0.8 PR1 Photosynthetic element PR gigantic -8.4 1.842 43 PR2 gigantic -1 CG1 Protective cover CG gigantic -1.1 1.151 61 Glass CG2 gigantic -0.303 LVa Light valve LV gigantic 0

表一列出本發明一實施例之投影裝置100的各種參數。請參照圖2及表一,表一的間距是指相鄰兩表面之間於光軸X上的直線距離。舉例來說,第一表面L11之間距,即第一表面L11與第二表面L12之間於第一光軸X1上的直線距離。表一之各表面/元件所對應的曲率半徑、間距、折射率、阿貝數及材質,請參照同列中各曲率半徑、間距、折射率、阿貝數及材質所對應的數值及內容。此外,在表一中,Rp1為第二鏡組LG2的出光面、Rp2為第二鏡組LG2的反射面、Rp3為第二鏡組LG2的入光面、L11為透鏡L1之朝向第二鏡組LG2的第一表面,L12為透鏡L1之面向光閥LV的第二表面,ASa為光闌AS的通光截面,L21為透鏡L2之面向第二鏡組LG2的第一表面,L22為透鏡L2之面向光閥LV的第二表面,L31為透鏡L3之面向第二鏡組LG2的第一表面,L41為透鏡L4之面向第二鏡組LG2的第一表面,L42為透鏡L4之面向光閥LV的第二表面,L51為透鏡L5之面向第二鏡組LG2的第一表面,L52為透鏡L54之面向光閥LV的第二表面,AC1為平板玻璃致動器AC之面向第二鏡組LG2的第一表面,AC2為平板玻璃致動器AC之面向光閥LV的第二表面,PR1為合光元件PR之面向第二鏡組LG2的第一表面,PR2為合光元件PR之面向光閥LV的第二表面,CG1為保護蓋CG之面向第二鏡組LG2的第一表面,CG2為保護蓋CG之面向光閥LV的第二表面,且LVa光閥LV的受光面。Table 1 lists various parameters of the projection apparatus 100 according to an embodiment of the present invention. Please refer to FIG. 2 and Table 1. The spacing in Table 1 refers to the linear distance on the optical axis X between two adjacent surfaces. For example, the distance between the first surfaces L11 is the linear distance between the first surface L11 and the second surface L12 on the first optical axis X1. For the curvature radius, spacing, refractive index, Abbe number and material corresponding to each surface/component in Table 1, please refer to the values and contents corresponding to each curvature radius, spacing, refractive index, Abbe number and material in the same column. In addition, in Table 1, Rp1 is the light-emitting surface of the second mirror group LG2, Rp2 is the reflective surface of the second mirror group LG2, Rp3 is the light-incident surface of the second mirror group LG2, and L11 is the second mirror of the lens L1 facing toward the second mirror. The first surface of the group LG2, L12 is the second surface of the lens L1 facing the light valve LV, ASa is the light passage section of the aperture AS, L21 is the first surface of the lens L2 facing the second mirror group LG2, L22 is the lens The second surface of L2 facing the light valve LV, L31 is the first surface of the lens L3 facing the second mirror group LG2, L41 is the first surface of the lens L4 facing the second mirror group LG2, L42 is the first surface of the lens L4 facing the light The second surface of the valve LV, L51 is the first surface of the lens L5 facing the second mirror group LG2, L52 is the second surface of the lens L54 facing the light valve LV, AC1 is the plate glass actuator AC facing the second mirror The first surface of the group LG2, AC2 is the second surface of the plate glass actuator AC facing the light valve LV, PR1 is the first surface of the light combining element PR facing the second mirror group LG2, and PR2 is the light combining element PR. The second surface facing the light valve LV, CG1 is the first surface of the protective cover CG facing the second mirror group LG2, CG2 is the second surface of the protective cover CG facing the light valve LV, and the light receiving surface of the LVa light valve LV.

請照圖2及表一,在本實施例中,透鏡L1可為自由曲面透鏡。詳言之,透鏡L1之面向第二鏡組LG2的第一表面L11可為自由曲面,且透鏡L1之面向光閥LV的第二表面L12可為非球面。在本實施例中,透鏡L2可為球面透鏡。透鏡L2之面向第二鏡組LG2的第一表面L21及面向光閥LV的第二表面L22可皆為球面。Referring to FIG. 2 and Table 1, in this embodiment, the lens L1 can be a free-form surface lens. Specifically, the first surface L11 of the lens L1 facing the second mirror group LG2 can be a free-form surface, and the second surface L12 of the lens L1 facing the light valve LV can be an aspherical surface. In this embodiment, the lens L2 can be a spherical lens. The first surface L21 of the lens L2 facing the second mirror group LG2 and the second surface L22 facing the light valve LV may both be spherical surfaces.

在本實施例中,透鏡L3可為球面透鏡。透鏡L3之朝向第二鏡組LG2的第一表面L31及透鏡L3之朝向光閥LV的第二表面L32可皆為球面。在本實施例中,透鏡L4可為球面透鏡。透鏡L4之朝向第二鏡組LG2的第一表面L41及透鏡L4之朝向光閥LV的第二表面L42可皆為球面。此外,在本實施例中,透鏡L3的第二表面L32與透鏡L4的第一表面L41可相黏合,以使透鏡L3與透鏡L4形成一雙膠合鏡片。In this embodiment, the lens L3 can be a spherical lens. The first surface L31 of the lens L3 facing the second mirror group LG2 and the second surface L32 of the lens L3 facing the light valve LV may both be spherical surfaces. In this embodiment, the lens L4 can be a spherical lens. The first surface L41 of the lens L4 facing the second mirror group LG2 and the second surface L42 of the lens L4 facing the light valve LV may both be spherical surfaces. In addition, in the present embodiment, the second surface L32 of the lens L3 and the first surface L41 of the lens L4 can be bonded together, so that the lens L3 and the lens L4 form a double cemented lens.

在本實施例中,透鏡L5可為非球面透鏡。詳言之,透鏡L5之面向第二鏡組LG2的第一表面L51及面向光閥LV的第二表面L52可皆為非球面。In this embodiment, the lens L5 can be an aspherical lens. Specifically, the first surface L51 of the lens L5 facing the second mirror group LG2 and the second surface L52 facing the light valve LV may both be aspherical.

上述的透鏡L1的第二表面L12、透鏡L5的第一表面L51及透鏡L5的第二表面L52為偶次項非球面,偶次項非球面可用下列公式表示:

Figure 02_image001
式中,Z為光軸X方向之偏移量(sag),c是密切球面(osculating sphere)之半徑的倒數,也就是接近光軸X處的曲率半徑(如表一內的曲率半徑)的倒數。k是二次曲面係數(conic),r是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而A 2、A 4、A 6、A 8、…為非球面係數(aspheric coefficient)。表二列出透鏡L1的第二表面L12、透鏡L5的第一表面L51及透鏡L5的第二表面L52的二次曲面係數及各非球面係數。 [表二] 表面 L12 L51 L52 二次曲面係數k 0.133 -2.846 0.381 係數A 4 4.81550E-04 2.31310E-05 -1.50680E-04 係數A 6 -3.84030E-07 2.99620E-06 4.90730E-07 係數A 8   -8.60850E-09 2.97760E-08 The above-mentioned second surface L12 of the lens L1, the first surface L51 of the lens L5, and the second surface L52 of the lens L5 are even-order aspheric surfaces, and the even-order aspheric surfaces can be expressed by the following formula:
Figure 02_image001
In the formula, Z is the offset in the X direction of the optical axis (sag), and c is the reciprocal of the radius of the osculating sphere, that is, the radius of curvature close to the optical axis X (such as the radius of curvature in Table 1). reciprocal. k is a quadratic surface coefficient (conic), r is the height of the aspheric surface, that is, the height from the center of the lens to the edge of the lens, and A 2 , A 4 , A 6 , A 8 , . . . are aspheric coefficients. Table 2 lists quadric coefficients and respective aspheric coefficients of the second surface L12 of the lens L1, the first surface L51 of the lens L5, and the second surface L52 of the lens L5. [Table II] surface L12 L51 L52 Quadratic coefficient k 0.133 -2.846 0.381 Coefficient A 4 4.81550E-04 2.31310E-05 -1.50680E-04 Coefficient A 6 -3.84030E-07 2.99620E-06 4.90730E-07 Coefficient A 8 -8.60850E-09 2.97760E-08

請參照圖2及表一,在本實施例中,第二鏡組LG2的出光面RP1、第二鏡組LG2的反射面RP2、第二鏡組LG2的入光面RP3及透鏡L1的第一表面L11為自由曲面,自由曲面可用下列公式表示:

Figure 02_image003
式中,Z為光學面深度,r為曲率半徑,k是圓錐常數(conic constant),Φ是透鏡口徑,C mn,為xy多項式的係數。由表一中的曲率半徑、表三中的x my n多項式的係數及上述對應的展開式可建立對應的自由曲面。 [表三] x my n多項式係數 RP1 RP2 RP3 L11 y的多項式係數 3.73960E-01 4.56960E-02 -4.65100E-01 -4.85000E-02 x 2的多項式係數 -4.32410E-02 -4.31610E-02 5.70580E-02 1.46790E-02 y 2的多項式係數 -9.75230E-02 -4.53500E-02 5.66030E-02 1.29000E-02 x 2y的多項式係數 -7.04390E-04 -1.19130E-04 -1.16570E-02 -2.55610E-03 y 3的多項式係數 1.06880E-02 8.07920E-04 -1.31230E-02 -2.83740E-03 x 4的多項式係數 1.21800E-03 -4.48560E-05 1.46620E-04 3.44080E-03 x 2y 2的多項式係數 2.68250E-03 -6.48470E-05 1.59640E-03 6.88920E-03 y 4的多項式係數 5.45350E-04 -1.81930E-04 -1.76290E-04 3.45130E-03 x 4y的多項式係數 -5.36970E-05 -3.41710E-06 -5.66890E-04 -2.03770E-04 x 2y 3的多項式係數 -2.47210E-04 1.01700E-04 -8.99270E-04 -4.59070E-04 y 5的多項式係數 -2.05140E-04 2.57940E-06 -3.32560E-04 -2.27020E-04 x 6的多項式係數 -3.20420E-05 -1.60010E-05 3.44260E-05 1.95360E-04 x 4y 2的多項式係數 -7.08860E-05 -2.84000E-05 -2.30490E-04 5.62460E-04 x 2y 4的多項式係數 -1.48630E-05 -8.81300E-05 -1.12350E-03 5.47330E-04 y 6的多項式係數 1.90740E-05 -8.43360E-06 -5.09320E-04 1.73550E-04 x 6y的多項式係數 5.30600E-06 8.41480E-06 8.61970E-05 1.70500E-05 x 4y 3的多項式係數 1.05270E-05 -1.73400E-06 2.33610E-06 3.15430E-05 x 2y 5的多項式係數 4.85560E-08 1.84170E-05 6.86320E-05 5.86140E-05 y 7的多項式係數 -7.55950E-07 1.76990E-06 -1.64650E-04 1.54730E-05 x 8的多項式係數 4.66660E-07 8.12190E-07 5.57060E-06 -4.12740E-06 x 6y 2的多項式係數 6.93520E-07 8.34820E-07 7.47250E-05 -1.60850E-05 x 4y 4的多項式係數 -7.36010E-08 5.02340E-06 2.20920E-04 -2.82570E-06 x 2y 6的多項式係數 3.24650E-07 1.32680E-07 3.26260E-04 -5.32250E-06 y 8的多項式係數 8.69560E-09 1.68230E-07 2.06690E-04 1.23870E-06 x 8y的多項式係數 -9.23210E-08 -5.82240E-07 -1.16650E-05 -6.99950E-06 x 6y 3的多項式係數 -1.12780E-07 -5.98200E-07 -4.10250E-05 -1.68450E-05 x 4y 5的多項式係數 -4.50550E-08 -1.20390E-06 -1.97560E-05 -3.08280E-05 x 2y 7的多項式係數 5.45590E-08 -4.34210E-07 1.33260E-06 -2.25730E-05 y 9的係數 -3.93740E-09 -5.41920E-08 4.13600E-05 -4.93650E-06 x 10的係數 -4.46580E-10 4.26590-E09 1.55260E-06 1.42660E-06 x 8y 2的係數 -6.30810E-11 7.55270E-08 -1.35870E-06 8.27570E-06 x 6y 4的係數 2.68880E-09 5.00410E-08 -4.04550E-06 1.04590E-05 x 4y 6的係數 3.74200E-10 8.73540E-08 -3.37610E-05 1.24310E-05 x 2y 8的係數 -7.57250E-09 3.41710E-08 -4.32090E-05 6.61670E-06 y 10的係數 1.14070E-09 2.49110E-09 -3.08130E-05 1.18280E-06 Referring to FIG. 2 and Table 1, in this embodiment, the light exit surface RP1 of the second mirror group LG2, the reflection surface RP2 of the second mirror group LG2, the light incident surface RP3 of the second mirror group LG2, and the first mirror of the lens L1 The surface L11 is a free-form surface, and the free-form surface can be expressed by the following formula:
Figure 02_image003
where Z is the depth of the optical surface, r is the radius of curvature, k is the conic constant, Φ is the aperture of the lens, and C mn is the coefficient of the xy polynomial. The corresponding free-form surface can be established from the curvature radius in Table 1, the coefficients of the x m y n polynomial in Table 3, and the above-mentioned corresponding expansion. [Table 3] x m y n polynomial coefficients RP1 RP2 RP3 L11 polynomial coefficients of y 3.73960E-01 4.56960E-02 -4.65100E-01 -4.85000E-02 Polynomial coefficients of x 2 -4.32410E-02 -4.31610E-02 5.70580E-02 1.46790E-02 Polynomial coefficients of y 2 -9.75230E-02 -4.53500E-02 5.66030E-02 1.29000E-02 Polynomial coefficients of x 2 y -7.04390E-04 -1.19130E-04 -1.16570E-02 -2.55610E-03 Polynomial coefficients of y 3 1.06880E-02 8.07920E-04 -1.31230E-02 -2.83740E-03 Polynomial coefficients of x 4 1.21800E-03 -4.48560E-05 1.46620E-04 3.44080E-03 Polynomial coefficients of x 2 y 2 2.68250E-03 -6.48470E-05 1.59640E-03 6.88920E-03 Polynomial coefficients of y 4 5.45350E-04 -1.81930E-04 -1.76290E-04 3.45130E-03 Polynomial coefficients of x 4 y -5.36970E-05 -3.41710E-06 -5.66890E-04 -2.03770E-04 Polynomial coefficients of x 2 y 3 -2.47210E-04 1.01700E-04 -8.99270E-04 -4.59070E-04 Polynomial coefficients of y 5 -2.05140E-04 2.57940E-06 -3.32560E-04 -2.27020E-04 Polynomial coefficients of x 6 -3.20420E-05 -1.60010E-05 3.44260E-05 1.95360E-04 Polynomial coefficients of x 4 y 2 -7.08860E-05 -2.84000E-05 -2.30490E-04 5.62460E-04 Polynomial coefficients of x 2 y 4 -1.48630E-05 -8.81300E-05 -1.12350E-03 5.47330E-04 Polynomial coefficients of y 6 1.90740E-05 -8.43360E-06 -5.09320E-04 1.73550E-04 Polynomial coefficients of x 6 y 5.30600E-06 8.41480E-06 8.61970E-05 1.70500E-05 Polynomial coefficients of x 4 y 3 1.05270E-05 -1.73400E-06 2.33610E-06 3.15430E-05 Polynomial coefficients of x 2 y 5 4.85560E-08 1.84170E-05 6.86320E-05 5.86140E-05 Polynomial coefficient of y 7 -7.55950E-07 1.76990E-06 -1.64650E-04 1.54730E-05 Polynomial coefficients of x 8 4.66660E-07 8.12190E-07 5.57060E-06 -4.12740E-06 Polynomial coefficients of x 6 y 2 6.93520E-07 8.34820E-07 7.47250E-05 -1.60850E-05 Polynomial coefficients of x 4 y 4 -7.36010E-08 5.02340E-06 2.20920E-04 -2.82570E-06 Polynomial coefficients of x 2 y 6 3.24650E-07 1.32680E-07 3.26260E-04 -5.32250E-06 Polynomial coefficients of y 8 8.69560E-09 1.68230E-07 2.06690E-04 1.23870E-06 Polynomial coefficients of x 8 y -9.23210E-08 -5.82240E-07 -1.16650E-05 -6.99950E-06 Polynomial coefficients of x 6 y 3 -1.12780E-07 -5.98200E-07 -4.10250E-05 -1.68450E-05 Polynomial coefficients of x 4 y 5 -4.50550E-08 -1.20390E-06 -1.97560E-05 -3.08280E-05 Polynomial coefficients of x 2 y 7 5.45590E-08 -4.34210E-07 1.33260E-06 -2.25730E-05 Coefficient of y 9 -3.93740E-09 -5.41920E-08 4.13600E-05 -4.93650E-06 factor of x 10 -4.46580E-10 4.26590-E09 1.55260E-06 1.42660E-06 Coefficient of x 8 y 2 -6.30810E-11 7.55270E-08 -1.35870E-06 8.27570E-06 Coefficient of x 6 y 4 2.68880E-09 5.00410E-08 -4.04550E-06 1.04590E-05 Coefficient of x 4 y 6 3.74200E-10 8.73540E-08 -3.37610E-05 1.24310E-05 Coefficient of x 2 y 8 -7.57250E-09 3.41710E-08 -4.32090E-05 6.61670E-06 Coefficient of y 10 1.14070E-09 2.49110E-09 -3.08130E-05 1.18280E-06

在本實施例中,投影鏡頭PL具有大的半視場角;也就是說,投影鏡頭PL具有小投射比,能在短投影距離內投射出寬投影畫面。舉例而言,在本實施例中,投影鏡頭PL的半視場角可大於45 o,但本發明不以此為限。 In this embodiment, the projection lens PL has a large half angle of view; that is, the projection lens PL has a small throw ratio and can project a wide projection image within a short projection distance. For example, in this embodiment, the half angle of view of the projection lens PL may be greater than 45 ° , but the present invention is not limited to this.

圖5為圖2的投影鏡頭的調製傳遞函數圖。圖5的調製傳遞函數圖(Modulation Transfer Function,MTF)可用以評估投影鏡頭PL的性能,圖5所顯示出的圖形均在標準的範圍內。由此可驗證,本實施例的投影鏡頭PL能夠達到良好的成像效果。FIG. 5 is a modulation transfer function diagram of the projection lens of FIG. 2 . The Modulation Transfer Function (MTF) diagram of FIG. 5 can be used to evaluate the performance of the projection lens PL, and the graphs shown in FIG. 5 are all within the standard range. Therefore, it can be verified that the projection lens PL of this embodiment can achieve a good imaging effect.

圖6示意性地繪出圖1之投影裝置的投影面上的投影畫面。圖6所顯示出的投影畫面IM的形狀接近於矩形。由圖6可驗證,投影裝置100利用投影鏡頭PL之光學元件之不對稱的自由曲面(例如:第二鏡組LG2的出光面RP1、反射面RP2及入光面RP3的至少一者)確實能有效改善梯形失真。FIG. 6 schematically depicts a projection image on a projection surface of the projection apparatus of FIG. 1 . The shape of the projection screen IM shown in FIG. 6 is close to a rectangle. It can be verified from FIG. 6 that the projection device 100 can indeed utilize the asymmetric free-form surface of the optical element of the projection lens PL (for example, at least one of the light-emitting surface RP1 , the reflecting surface RP2 and the light-incident surface RP3 of the second mirror group LG2 ) Effectively improve keystone distortion.

綜上所述,本發明一實施例的投影裝置及投影鏡頭包括配置於縮小側與放大側之間的第一鏡組、配置於第一鏡組與放大側之間的第二鏡組以及配置於第一鏡組與第二鏡組之間的光闌。第二鏡組具有入光面、反射面和出光面,入光面面向第一鏡組,出光面面向投影面,且入光面、出光面及第一鏡組配置於反射面的同一側。光閥適於提供影像光束。影像光束依序穿過第一鏡組、通過光闌、穿過第二鏡組的入光面、被第二鏡組的反射面反射且穿過第二鏡組的出光面,以傳遞至投影面。特別是,第二鏡組的入光面、反射面及出光面的至少一者為自由曲面,且第一鏡組的第一光軸不重疊於影像光束的中心。藉此,能使投影鏡頭具有一共光路設計。由於投影鏡頭具有共光路設計,因此,被第二鏡組之反射面反射回第一鏡組的影像光束不易造成干涉,而光闌與第二鏡組之反射面的距離可縮短。當光闌與第二鏡組的反射面的距離縮短時,第二鏡組的反射面的光學有效徑也不會過大。如此一來,便可有效減少投影鏡頭的整體厚度及體積。To sum up, the projection device and the projection lens according to an embodiment of the present invention include a first mirror group disposed between the reduction side and the enlargement side, a second mirror group disposed between the first mirror group and the enlargement side, and A diaphragm between the first mirror group and the second mirror group. The second mirror group has a light incident surface, a reflective surface and a light emitting surface, the light incident surface faces the first mirror group, the light emitting surface faces the projection surface, and the light incident surface, the light emitting surface and the first mirror group are arranged on the same side of the reflective surface. The light valve is adapted to provide the image beam. The image beam sequentially passes through the first mirror group, passes through the aperture, passes through the light incident surface of the second mirror group, is reflected by the reflective surface of the second mirror group, and passes through the light exit surface of the second mirror group to be transmitted to the projection. noodle. In particular, at least one of the light incident surface, the reflection surface and the light output surface of the second mirror group is a free-form surface, and the first optical axis of the first mirror group does not overlap the center of the image beam. Thereby, the projection lens can have a common optical path design. Since the projection lens has a common optical path design, the image beam reflected by the reflection surface of the second mirror group back to the first mirror group is less likely to cause interference, and the distance between the diaphragm and the reflection surface of the second mirror group can be shortened. When the distance between the diaphragm and the reflection surface of the second mirror group is shortened, the optical effective diameter of the reflection surface of the second mirror group will not be too large. In this way, the overall thickness and volume of the projection lens can be effectively reduced.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above are only preferred embodiments of the present invention, and should not limit the scope of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention, All still fall within the scope of the patent of the present invention. In addition, it is not necessary for any embodiment of the present invention or the claimed scope of the present invention to achieve all of the objects or advantages or features disclosed in the present invention. In addition, the abstract section and the title are only used to aid the search of patent documents and are not intended to limit the scope of the present invention. In addition, terms such as "first" and "second" mentioned in this specification or the scope of the patent application are only used to name the elements or to distinguish different embodiments or scopes, and are not used to limit the number of elements. upper or lower limit.

100:投影裝置 A、B:長度 a、b:距離 AC1、CG1、L11、L21、L31、L41、L51、PR1:第一表面 AC2、CG2、L12、L22、L32、L42、L52、PR2:第二表面 AC:平板玻璃致動器 AS:光闌 Asa:通光截面 CG:保護蓋 CA:光學有效徑 D:最大距離 GD:地面 H:厚度 h:高度 H1、H2:最大距離 IM:投影畫面 IMa、IMb:邊 IMe:邊緣 IMB:影像光束 IMB1:第一邊緣光線 IMB2:第二邊緣光線 IMBc:中心 ILB:照明光束 ILS:照明系統 LG1:第一鏡組 LG2:第二鏡組 LV:光閥 LVa:受光面 LVe:邊緣 LVp:點 L1、L2、L3、L4、L5:透鏡 PJT:投影機 PL:投影鏡頭 PR:合光元件 PS:投影面 RP:轉折稜鏡 RP1:出光面 RP2:反射面 RP3:入光面 W:最大寬度 X1:第一光軸 x、y、z、d1、d2:方向 θ:夾角。 100: Projection Device A, B: length a, b: distance AC1, CG1, L11, L21, L31, L41, L51, PR1: first surface AC2, CG2, L12, L22, L32, L42, L52, PR2: Second surface AC: Flat Glass Actuator AS: Aperture Asa: clear light cross section CG: Protective cover CA: optical effective diameter D: maximum distance GD: Ground H: Thickness h: height H1, H2: maximum distance IM: Projection screen IMa, IMb: edge IMe: The Edge IMB: Image Beam IMB1: First edge ray IMB2: Second Edge Ray IMBc: Center ILB: Lighting Beam ILS: Lighting System LG1: The first mirror group LG2: The second mirror group LV: light valve LVa: light-receiving surface LVe: edge LVp: point L1, L2, L3, L4, L5: Lenses PJT: Projector PL: Projection Lens PR: Combined light element PS: Projection surface RP: The turning point RP1: light-emitting surface RP2: Reflective Surface RP3: light incident surface W: maximum width X1: The first optical axis x, y, z, d1, d2: direction θ: included angle.

圖1為本發明一實施例之投影裝置的側視示意圖。 圖2為圖1之投影裝置的光閥、保護蓋、合光元件、平板玻璃致動器及投影鏡頭的放大示意圖。 圖3為本發明一實施例之投影裝置的示意圖。 圖4示意性地繪出本發明一實施例之影像光束於投影面上形成的投影畫面。 圖5為圖2的投影鏡頭的調製傳遞函數圖。 圖6示意性地繪出圖1之投影裝置的投影面上的投影畫面。 FIG. 1 is a schematic side view of a projection apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged schematic view of a light valve, a protective cover, a light combining element, a plate glass actuator and a projection lens of the projection apparatus of FIG. 1 . FIG. 3 is a schematic diagram of a projection apparatus according to an embodiment of the present invention. FIG. 4 schematically depicts a projection image formed by an image light beam on a projection surface according to an embodiment of the present invention. FIG. 5 is a modulation transfer function diagram of the projection lens of FIG. 2 . FIG. 6 schematically depicts a projection image on a projection surface of the projection apparatus of FIG. 1 .

AC1、CG1、L11、L21、L31、L41、L51、PR1:第一表面 AC1, CG1, L11, L21, L31, L41, L51, PR1: first surface

AC2、CG2、L12、L22、L32、L42、L52、PR2:第二表面 AC2, CG2, L12, L22, L32, L42, L52, PR2: Second surface

AC:平板玻璃致動器 AC: Flat Glass Actuator

AS:光闌 AS: Aperture

Asa:通光截面 Asa: clear light cross section

CG:保護蓋 CG: Protective cover

CA:光學有效徑 CA: optical effective diameter

D:最大距離 D: maximum distance

H:厚度 H: Thickness

H1、H2:最大距離 H1, H2: maximum distance

IMB:影像光束 IMB: Image Beam

IMB1:第一邊緣光線 IMB1: First edge ray

IMB2:第二邊緣光線 IMB2: Second Edge Ray

IMBc:中心 IMBc: Center

LG1:第一鏡組 LG1: The first mirror group

LG2:第二鏡組 LG2: The second mirror group

LV:光閥 LV: light valve

LVa:受光面 LVa: light-receiving surface

LVe:邊緣 LVe: edge

LVp:點 LVp: point

L1、L2、L3、L4、L5:透鏡 L1, L2, L3, L4, L5: Lenses

PL:投影鏡頭 PL: Projection Lens

PR:合光元件 PR: Combined light element

RP:轉折稜鏡 RP: The turning point

RP1:出光面 RP1: light-emitting surface

RP2:反射面 RP2: Reflective Surface

RP3:入光面 RP3: light incident surface

X1:第一光軸 X1: The first optical axis

x、y、z、d1、d2:方向 x, y, z, d1, d2: direction

Claims (14)

一種投影鏡頭,適於將配置於一縮小側的一光閥成像於配置於該放大側的一投影面上,該光閥與該投影面具有一角度,該投影鏡頭包括: 一第一鏡組,配置於該縮小側與該放大側之間,且具有一第一光軸; 一第二鏡組,配置於該第一鏡組與該放大側之間,其中該第二鏡組至少具有一入光面、一反射面和一出光面,該入光面面向該第一鏡組,該出光面面向該投影面,該入光面、該出光面及該第一鏡組配置於該反射面的同一側,且該入光面、該反射面及該出光面的至少一者為自由曲面;以及 一光闌,配置於該第一鏡組與該第二鏡組之間,其中該光閥適於提供一影像光束,該影像光束依序穿過該第一鏡組、通過該光闌、穿過該第二鏡組的該入光面、被該第二鏡組的該反射面反射且穿過第二鏡組的該出光面,以傳遞至該投影面,且該第一鏡組的該第一光軸不重疊於該影像光束的中心。 A projection lens, suitable for imaging a light valve arranged on a reduction side on a projection surface arranged on the enlargement side, the light valve and the projection surface have an angle, the projection lens comprising: a first lens group, disposed between the reduction side and the enlargement side, and having a first optical axis; A second mirror group is disposed between the first mirror group and the magnifying side, wherein the second mirror group at least has a light incident surface, a reflection surface and a light emitting surface, and the light incident surface faces the first mirror The light emitting surface faces the projection surface, the light incident surface, the light emitting surface and the first mirror group are arranged on the same side of the reflective surface, and at least one of the light incident surface, the reflective surface and the light emitting surface is a freeform surface; and A diaphragm is disposed between the first mirror group and the second mirror group, wherein the light valve is suitable for providing an image beam, and the image beam sequentially passes through the first mirror group, through the diaphragm, and through the pass through the light incident surface of the second mirror group, be reflected by the reflection surface of the second mirror group, and pass through the light exit surface of the second mirror group to be transmitted to the projection surface, and the first mirror group The first optical axis does not overlap the center of the image beam. 如請求項1所述的投影鏡頭,其中該第二鏡組包括一轉折稜鏡,且該轉折稜鏡具有該入光面、該反射面及該出光面。The projection lens as claimed in claim 1, wherein the second mirror group comprises a turning horn, and the turning horn has the light incident surface, the reflection surface and the light emitting surface. 如請求項1所述的投影鏡頭,其中該第一鏡組包括由該放大側往該縮小側依序排列的多個透鏡,該些透鏡的每一者具有面向該第二鏡組的一第一表面及面向該光閥的一第二表面,且該些透鏡之中最靠近該光闌之一透鏡的該第一表面為自由曲面。The projection lens of claim 1, wherein the first lens group comprises a plurality of lenses arranged in sequence from the magnification side to the reduction side, each of the lenses has a first lens group facing the second lens group A surface and a second surface facing the light valve, and the first surface of the lenses closest to the diaphragm is a free-form surface. 如請求項1所述的投影鏡頭,其中該光闌與該第二鏡組的該反射面在平行於該第一光軸的方向上具有一最大距離D,該影像光束包括一第一邊緣光線及一第二邊緣光線,該第一邊緣光線自該光閥之一邊緣上的一點朝遠離該第一光軸的方向出射,該第二邊緣光線自該光閥之該邊緣上的該點朝指向該第一光軸的方向出射,在該第一鏡組中的該第一邊緣光線與該第一光軸在垂直於該第一光軸的一方向上具有一最大距離H1,在該第二鏡組的該出光面上的該第二邊緣光線與該第一光軸在垂直於該第一光軸的該方向上具有一最大距離H2,且(H1+H2)/D<3。The projection lens of claim 1, wherein the diaphragm and the reflection surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, and the image beam includes a first edge ray and a second edge ray, the first edge ray exits from a point on an edge of the light valve in a direction away from the first optical axis, and the second edge ray exits from the point on the edge of the light valve toward the direction of the first optical axis The light is emitted in the direction of the first optical axis, and the first edge light in the first lens group and the first optical axis have a maximum distance H1 in a direction perpendicular to the first optical axis. The second edge light on the light-emitting surface of the mirror group and the first optical axis have a maximum distance H2 in the direction perpendicular to the first optical axis, and (H1+H2)/D<3. 如請求項1所述的投影鏡頭,其中該光闌與該第二鏡組的該反射面在平行於該第一光軸的一方向上具有一最大距離D,該第二鏡組的該出光面具有一光學有效徑CA,且CA/D<3。The projection lens of claim 1, wherein the diaphragm and the reflection surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, and the light emitting surface of the second mirror group has a maximum distance D. It has an optical effective diameter CA, and CA/D<3. 如請求項1所述的投影鏡頭,其中該影像光束相對於該第一鏡組的該第一光軸具有一偏移值。The projection lens of claim 1, wherein the image beam has an offset value relative to the first optical axis of the first lens group. 如請求項1所述的投影鏡頭,其中該角度為θ,且25 o<θ<90 oThe projection lens of claim 1, wherein the angle is θ, and 25 o <θ < 90 o . 如請求項1所述的投影鏡頭,其中該影像光束在該投影面上形成一投影畫面,該投影畫面的相對兩邊彼此平行且在一方向上分別具有一長度A及一長度B,該投影畫面在該方向上具有一最大寬度W,[(B-A)/W]‧100%=T,且|T|<1%。The projection lens according to claim 1, wherein the image beam forms a projection picture on the projection surface, opposite sides of the projection picture are parallel to each other and have a length A and a length B respectively in one direction, and the projection picture is in the There is a maximum width W in this direction, [(B-A)/W]·100%=T, and |T|<1%. 一種投影裝置,包括: 一照明光源,適於提供一照明光束; 一光閥,配置於一縮小側且適於將該照明光束轉換為一影像光束; 一投影面,配置於一放大側,其中該光閥與該投影面具有一角度;以及 一投影鏡頭,包括: 一第一鏡組,配置於該縮小側與該放大側之間,且具有一第一光軸; 一第二鏡組,配置於該第一鏡組與該放大側之間,其中該第二鏡組至少具有一入光面、一反射面和一出光面,該入光面面向該第一鏡組,該出光面面向該投影面,該入光面、該出光面及該第一鏡組配置於該反射面的同一側,且該入光面、該反射面及該出光面的至少一者為自由曲面;以及 一光闌,配置於該第一鏡組與該第二鏡組之間,其中該影像光束依序穿過該第一鏡組、通過該光闌、穿過該第二鏡組的該入光面、被該第二鏡組的該反射面反射且穿過第二鏡組的該出光面,以傳遞至該投影面,且該第一鏡組的該第一光軸不重疊於該影像光束的中心。 A projection device, comprising: an illumination light source, adapted to provide an illumination beam; a light valve, disposed on a reduction side and adapted to convert the illumination beam into an image beam; a projection surface disposed on an enlarged side, wherein the light valve and the projection surface have an angle; and A projection lens, including: a first lens group, disposed between the reduction side and the enlargement side, and having a first optical axis; A second mirror group is disposed between the first mirror group and the magnifying side, wherein the second mirror group at least has a light incident surface, a reflection surface and a light emitting surface, and the light incident surface faces the first mirror The light emitting surface faces the projection surface, the light incident surface, the light emitting surface and the first mirror group are arranged on the same side of the reflective surface, and at least one of the light incident surface, the reflective surface and the light emitting surface is a freeform surface; and A diaphragm is disposed between the first mirror group and the second mirror group, wherein the image beam sequentially passes through the first mirror group, passes through the diaphragm, and passes through the incident light of the second mirror group surface, is reflected by the reflecting surface of the second mirror group and passes through the light emitting surface of the second mirror group to be transmitted to the projection surface, and the first optical axis of the first mirror group does not overlap with the image beam center of. 如請求項9所述的投影裝置,其中該第二鏡組包括一轉折稜鏡,且該轉折稜鏡具有該入光面、該反射面及該出光面。The projection device as claimed in claim 9, wherein the second mirror group comprises a turning point, and the turning point has the light incident surface, the reflection surface and the light emitting surface. 如請求項9所述的投影裝置,其中該第一鏡組包括由該放大側往該縮小側依序排列的多個透鏡,該些透鏡的每一者具有面向該第二鏡組的一第一表面及面向該光閥的一第二表面,且該些透鏡之中最靠近該光闌之一透鏡的該第一表面為自由曲面。The projection device of claim 9, wherein the first lens group comprises a plurality of lenses arranged in sequence from the magnification side to the reduction side, each of the lenses has a first lens group facing the second lens group A surface and a second surface facing the light valve, and the first surface of the lenses closest to the diaphragm is a free-form surface. 如請求項9所述的投影裝置,其中該光闌與該第二鏡組的該反射面在平行於該第一光軸的方向上具有一最大距離D,該影像光束包括一第一邊緣光線及一第二邊緣光線,該第一邊緣光線自該光閥之一邊緣上的一點朝遠離該第一光軸的方向出射,該第二邊緣光線自該光閥之該邊緣上的該點朝指向該第一光軸的方向出射,在該第一鏡組中的該第一邊緣光線與該第一光軸在垂直於該第一光軸的一方向上具有一最大距離H1,在該第二鏡組的該出光面上的該第二邊緣光線與該第一光軸在垂直於該第一光軸的該方向上具有一最大距離H2,且(H1+H2)/D<3。The projection device according to claim 9, wherein the diaphragm and the reflection surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, and the image beam includes a first edge ray and a second edge ray, the first edge ray exits from a point on an edge of the light valve in a direction away from the first optical axis, and the second edge ray exits from the point on the edge of the light valve toward the direction of the first optical axis The light is emitted in the direction of the first optical axis, and the first edge light in the first lens group and the first optical axis have a maximum distance H1 in a direction perpendicular to the first optical axis. The second edge light on the light-emitting surface of the mirror group and the first optical axis have a maximum distance H2 in the direction perpendicular to the first optical axis, and (H1+H2)/D<3. 如請求項9所述的投影裝置,其中該光闌與該第二鏡組的該反射面在平行於該第一光軸的一方向上具有一最大距離D,該第二鏡組的該出光面具有一光學有效徑CA,且CA/D<3。The projection device according to claim 9, wherein the diaphragm and the reflection surface of the second mirror group have a maximum distance D in a direction parallel to the first optical axis, and the light emitting surface of the second mirror group has a maximum distance D. It has an optical effective diameter CA, and CA/D<3. 如請求項9所述的投影裝置,其中該影像光束相對於該第一鏡組的該第一光軸具有一偏移值。The projection device of claim 9, wherein the image beam has an offset value relative to the first optical axis of the first lens group.
TW110127844A 2020-11-18 2021-07-29 Projection lens and projection apparatus TWI781701B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063115594P 2020-11-18 2020-11-18
US63/115,594 2020-11-18

Publications (2)

Publication Number Publication Date
TW202221378A true TW202221378A (en) 2022-06-01
TWI781701B TWI781701B (en) 2022-10-21

Family

ID=81594368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127844A TWI781701B (en) 2020-11-18 2021-07-29 Projection lens and projection apparatus

Country Status (2)

Country Link
CN (1) CN114518644A (en)
TW (1) TWI781701B (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311904A (en) * 2000-04-28 2001-11-09 Canon Inc Device and system for image display
JP4061060B2 (en) * 2001-12-10 2008-03-12 オリンパス株式会社 Projection optical device
JP4223936B2 (en) * 2003-02-06 2009-02-12 株式会社リコー Projection optical system, enlargement projection optical system, enlargement projection apparatus, and image projection apparatus
JP5040180B2 (en) * 2006-06-08 2012-10-03 株式会社日立製作所 Projection type image display device
JP5217146B2 (en) * 2006-10-13 2013-06-19 株式会社日立製作所 Optical unit
JP5180689B2 (en) * 2007-08-07 2013-04-10 三洋電機株式会社 Projection display device
JP2011253024A (en) * 2010-06-02 2011-12-15 Hitachi Consumer Electronics Co Ltd Projection type video display device
JP5145486B1 (en) * 2011-07-05 2013-02-20 日東光学株式会社 Projection optical system and projector apparatus
TWI461820B (en) * 2011-10-28 2014-11-21 Qisda Corp Projection apparatus
WO2014174600A1 (en) * 2013-04-24 2014-10-30 日立マクセル株式会社 Projection-type video display device
CN104914651B (en) * 2014-03-14 2017-06-13 林伊柔 Projection lens
CN109557750B (en) * 2017-09-26 2021-06-15 中强光电股份有限公司 Illumination system and projection apparatus using the same
CN105759405B (en) * 2014-12-17 2020-08-18 深圳市亿思达科技集团有限公司 Optical system capable of increasing field angle and projection lens
WO2017000264A1 (en) * 2015-06-30 2017-01-05 华为技术有限公司 Projection system
US9690180B2 (en) * 2015-07-03 2017-06-27 National Chiao Tung University Prism group and projection apparatus
TWI773677B (en) * 2017-06-30 2022-08-11 揚明光學股份有限公司 Wide-angle projection lens
JP6993251B2 (en) * 2018-02-01 2022-01-13 リコーインダストリアルソリューションズ株式会社 Projection optical system and image display device
CN110780434B (en) * 2018-07-27 2022-04-05 精工爱普生株式会社 Projection optical system and projection type image display apparatus
JP7124521B2 (en) * 2018-07-30 2022-08-24 セイコーエプソン株式会社 Projection optical system and projection image display device
CN111381346B (en) * 2018-12-30 2021-05-11 上海微电子装备(集团)股份有限公司 Photoetching projection objective lens
JP7259413B2 (en) * 2019-03-01 2023-04-18 セイコーエプソン株式会社 PROJECTION OPTICAL SYSTEM, PROJECTION TYPE IMAGE DISPLAY DEVICE, AND IMAGING DEVICE
CN111123481A (en) * 2020-01-19 2020-05-08 中山联合光电科技股份有限公司 Ultra-short focus projection lens based on refraction and reflection type optical lens

Also Published As

Publication number Publication date
CN114518644A (en) 2022-05-20
TWI781701B (en) 2022-10-21

Similar Documents

Publication Publication Date Title
US6575580B2 (en) Lighting system and projection type display unit using thereof
CN110832377B (en) Image display device and projection optical system
TWI795592B (en) Projection lens and projector
JP2015138039A (en) Projection optical system and image projection device
WO2012006614A2 (en) On-axis projection lens with offset
WO1996012208A1 (en) Liquid crystal display
JP2019113842A (en) Projection device
CN111290101A (en) Projection imaging system and laser projection equipment
KR20130019191A (en) Projector with offset between projection optical system and display unit
US10036939B2 (en) Biaxially-tilted digital micromirror projector
JP7243723B2 (en) Image display device and projection optical system
CN111999870B (en) Zoom lens for image projection and image projection apparatus
KR20130043975A (en) Beam projector with equalization lens
JP2014044377A (en) Projector and projection optical system
TWI781701B (en) Projection lens and projection apparatus
JP2009151078A (en) Projection optical system and image projection device
CN210075447U (en) Optical machine module and projection device
KR20180088249A (en) Ultra short focus projector
US11982798B2 (en) Projection lens and projection apparatus
JPH05150158A (en) Projection lens and projection type display device
CN113641068A (en) Lighting device and laser projection apparatus
TWI809587B (en) Projection lens
CN116859557B (en) Projection lens and projection device
KR20130048524A (en) Projector with prism
TWI798802B (en) Projection lens and projection apparatus

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent