TW202221343A - Current parameter calculation method capable of obtaining a precise current relational expression of an insulated gate bipolar transistor - Google Patents

Current parameter calculation method capable of obtaining a precise current relational expression of an insulated gate bipolar transistor Download PDF

Info

Publication number
TW202221343A
TW202221343A TW109139895A TW109139895A TW202221343A TW 202221343 A TW202221343 A TW 202221343A TW 109139895 A TW109139895 A TW 109139895A TW 109139895 A TW109139895 A TW 109139895A TW 202221343 A TW202221343 A TW 202221343A
Authority
TW
Taiwan
Prior art keywords
current
bipolar transistor
gate bipolar
value
calculation method
Prior art date
Application number
TW109139895A
Other languages
Chinese (zh)
Other versions
TWI745165B (en
Inventor
楊信佳
Original Assignee
楊信佳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楊信佳 filed Critical 楊信佳
Priority to TW109139895A priority Critical patent/TWI745165B/en
Application granted granted Critical
Publication of TWI745165B publication Critical patent/TWI745165B/en
Publication of TW202221343A publication Critical patent/TW202221343A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention discloses a current parameter calculation method, which includes the following steps: selecting initial values of different parameters of a current relational expression corresponding to an insulated gate bipolar transistor, wherein the current relational expression is established according to a diode current formula; using each initial value as the center, selecting a plurality of selected values corresponding to each parameter accordingly, and inputting the selected values corresponding to the parameters into the current relational expression to form a plurality of current curves; calculating an absolute value of a current difference between the current measurement curve of the insulated gate bipolar transistor and each current curve at the same bias voltage, so as to obtain deviation values corresponding to different bias voltages, and calculating the sum of all deviation values corresponding to the same current curve; and when the minimum of all sums converges, selecting the corresponding selected value, and then completing the precise current relational expression.

Description

電流參數計算方法Current parameter calculation method

本發明係關於一種計算方法,且特別關於一種電流參數計算方法。The present invention relates to a calculation method, and in particular to a current parameter calculation method.

絕緣閘雙極電晶體(Insulated  Gate  Bipolar  Transistor , IGBT),是半導體器件的一種,主要用於電動車輛、鐵路機車及動車組的交流電電動機的輸出控制。傳統的雙載子接面電晶體(BJT)導通電阻小,但是驅動電流大,而金氧半場效電晶體(MOSFET)的導通電阻大,卻有著驅動電流小的優點。IGBT正是結合了這兩者的優點:不僅驅動電流小,導通電阻也很低。Insulated Gate Bipolar Transistor (IGBT) is a kind of semiconductor device, which is mainly used for output control of AC motors of electric vehicles, railway locomotives and EMUs. The traditional two-carrier junction transistor (BJT) has a small on-resistance, but a large driving current, while the metal-oxide semi-field effect transistor (MOSFET) has a large on-resistance, but has the advantage of a small driving current. IGBT combines the advantages of these two: not only the driving current is small, but also the on-resistance is very low.

絕緣閘雙極電晶體的基本包裝為三個端點的功率級半導體元件,其特點為高效率及切換速度快,為改善功率級雙載子接面電晶體運作的工作狀況而誕生。絕緣閘雙極電晶體結合了場效電晶體閘極易驅動的特性與雙極性電晶體耐高電流與低導通電壓壓降特性,絕緣閘雙極電晶體通常用於中高容量功率場合,如切換式電源供應器、馬達控制與電磁爐。大型的絕緣閘雙極電晶體模組應用於數百安培與六千伏特的電力系統領域,其模組內部包含數個單一絕緣閘雙極電晶體元件與保護電路。然而,目前並無能夠精準吻合絕緣閘雙極電晶體之電流公式。The basic package of the insulated gate bipolar transistor is a three-terminal power stage semiconductor element, which is characterized by high efficiency and fast switching speed. It was born to improve the working condition of the power stage bipolar junction transistor. Insulated gate bipolar transistors combine the characteristics of field effect transistor gates that are easy to drive and bipolar transistors with high current resistance and low on-voltage drop characteristics. Insulated gate bipolar transistors are usually used in medium and high capacity power applications, such as switching type power supply, motor control and induction cooker. Large-scale IGBT modules are used in power systems with hundreds of amps and 6,000 volts. The modules contain several single IGBT components and protection circuits. However, at present, there is no current formula that can accurately match the IGBT.

因此,本發明係在針對上述的困擾,提出一種電流參數計算方法,以解決習知所產生的問題。Therefore, the present invention proposes a current parameter calculation method to solve the problems caused by the prior art in view of the above-mentioned problems.

本發明提供一種電流參數計算方法,其係推導出精準的絕緣閘雙極性電晶體之電流關係式,以供使用者使用。The present invention provides a current parameter calculation method, which derives an accurate current relational expression of an insulating gate bipolar transistor for use by users.

在本發明之一實施例中,提供一種電流參數計算方法,其包含下列步驟:選取分別對應絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor)之電流關係式之複數個不同參數之複數個第一初始值,其中電流關係式根據二極體之電流公式而建立;以每一第一初始值為中心,向正方向與負方向延伸以形成第一預設範圍,在第一預設範圍中選取每一參數對應之複數個第一選取值,將所有參數對應之所有第一選取值代入電流關係式,以形成複數條第一電流曲線;計算絕緣閘雙極性電晶體之電流量測曲線與每一第一電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第一偏差值,並計算對應同一第一電流曲線之所有第一偏差值之總和,其中N為自然數;選取所有前一電流曲線對應之總和的最小者,將最小者對應之所有選取值分別作為分別對應所有參數之複數個第二初始值;以每一第二初始值為中心,向正方向與負方向延伸以形成第二預設範圍,在第二預設範圍中選取每一參數對應之複數個第二選取值,將所有參數對應之所有第二選取值代入電流關係式,以形成複數條第二電流曲線;計算電流量測曲線與每一第二電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第二偏差值,並計算對應同一第二電流曲線之所有第二偏差值之總和;選取所有第二電流曲線對應之總和的最小者;以及判斷最新之最小者與前一最小者之差值是否小於一預設值:若是,選取最新之最小者對應之所有選取值;以及若否,回至選取所有前一電流曲線對應之總和的最小者,將所有前一電流曲線對應之所有選取值分別作為分別對應所有參數之所有第二初始值之步驟。In one embodiment of the present invention, a method for calculating a current parameter is provided, which includes the following steps: selecting a plurality of first ones corresponding to a plurality of different parameters of a current relational expression of an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor) respectively The initial value, wherein the current relationship is established according to the current formula of the diode; centering on each first initial value, extending to the positive direction and the negative direction to form a first preset range, selected from the first preset range Each parameter corresponds to a plurality of first selected values, and all the first selected values corresponding to all parameters are substituted into the current relationship to form a plurality of first current curves; calculate the current measurement curve of the insulating gate bipolar transistor and each The N power of the absolute value of the current difference of a first current curve at the same bias voltage, so as to obtain a plurality of first deviation values corresponding to different bias voltages, and calculate all the first deviation values corresponding to the same first current curve The sum of the sum, where N is a natural number; select the smallest of the sums corresponding to all previous current curves, and take all the selected values corresponding to the smallest as a plurality of second initial values corresponding to all parameters respectively; with each second initial value The value is the center, and extends in the positive and negative directions to form a second preset range, select a plurality of second selection values corresponding to each parameter in the second preset range, and substitute all the second selection values corresponding to all parameters into current relationship to form a plurality of second current curves; calculate the N-th power of the absolute value of the current difference between the current measurement curve and each second current curve at the same bias voltage to obtain complex numbers corresponding to different bias voltages respectively a second deviation value, and calculate the sum of all the second deviation values corresponding to the same second current curve; select the minimum of the sums corresponding to all the second current curves; and determine the difference between the latest minimum and the previous minimum Whether it is less than a preset value: if yes, select all selected values corresponding to the latest minimum; and if no, return to selecting the minimum corresponding to the sum of all previous current curves, and set all selected values corresponding to all previous current curves as the steps corresponding to all the second initial values of all the parameters, respectively.

在本發明之一實施例中, 絕緣閘雙極性電晶體包含一N型半導體基板、一P型重摻雜層、一P型井區、一環形N型重摻雜區、一源極層、一絕緣層與一閘極層。P型重摻雜層設於N型半導體基板之底部,P型重摻雜層作為汲極層。P型井區設於N型半導體基板中,環形N型重摻雜區設於P型井區中。源極層與絕緣層設於N型半導體基板之頂部。源極層覆蓋部分之P型井區與部分之環形N型重摻雜區,絕緣層覆蓋部分之N型半導體基板、部分之P型井區與部分之環形N型重摻雜區,並環繞源極層。閘極層設於絕緣層上。In one embodiment of the present invention, the IGBT includes an N-type semiconductor substrate, a P-type heavily doped layer, a P-type well region, an annular N-type heavily doped region, a source electrode layer, an insulating layer and a gate layer. The P-type heavily doped layer is disposed on the bottom of the N-type semiconductor substrate, and the P-type heavily doped layer is used as a drain layer. The P-type well region is arranged in the N-type semiconductor substrate, and the annular N-type heavily doped region is arranged in the P-type well region. The source layer and the insulating layer are arranged on top of the N-type semiconductor substrate. The source layer covers part of the P-type well region and part of the annular N-type heavily doped region, the insulating layer covers part of the N-type semiconductor substrate, part of the P-type well region and part of the annular N-type heavily doped region, and surrounds source layer. The gate layer is arranged on the insulating layer.

在本發明之一實施例中,絕緣閘雙極性電晶體更包含一P型重摻雜區,其係設於P型井區中,環形N型重摻雜區環繞P型重摻雜區,源極層覆蓋P型重摻雜區。In an embodiment of the present invention, the IGBT further includes a P-type heavily doped region, which is disposed in the P-type well region, and the annular N-type heavily doped region surrounds the P-type heavily doped region, The source layer covers the P-type heavily doped region.

在本發明之一實施例中,電流關係式以下列公式表示:

Figure 02_image001
;在
Figure 02_image003
時,
Figure 02_image005
;以及在
Figure 02_image007
時,
Figure 02_image009
;其中
Figure 02_image001
為二極體之電流公式,I為絕緣閘雙極性電晶體之電流,
Figure 02_image011
為飽和電流,
Figure 02_image013
為絕緣閘雙極性電晶體之汲極電壓,
Figure 02_image015
為絕緣閘雙極性電晶體之閘極電壓,
Figure 02_image017
為絕緣閘雙極性電晶體之臨界電壓,
Figure 02_image019
為絕緣閘雙極性電晶體之1/爾利電壓(early voltage),
Figure 02_image021
為絕緣閘雙極性電晶體之汲源電壓,
Figure 02_image023
為絕緣閘雙極性電晶體之製程互導參數(process transconductance parameter) ,且為溫度的函數。 In one embodiment of the present invention, the current relationship is represented by the following formula:
Figure 02_image001
;exist
Figure 02_image003
hour,
Figure 02_image005
; and in
Figure 02_image007
hour,
Figure 02_image009
;in
Figure 02_image001
is the current formula of the diode, I is the current of the insulating gate bipolar transistor,
Figure 02_image011
is the saturation current,
Figure 02_image013
is the drain voltage of the insulated gate bipolar transistor,
Figure 02_image015
is the gate voltage of the insulated gate bipolar transistor,
Figure 02_image017
is the threshold voltage of the insulating gate bipolar transistor,
Figure 02_image019
is the 1/early voltage of the insulating gate bipolar transistor,
Figure 02_image021
is the drain-source voltage of the insulated gate bipolar transistor,
Figure 02_image023
is the process transconductance parameter of the insulated gate bipolar transistor and is a function of temperature.

在本發明之一實施例中,參數包含

Figure 02_image011
Figure 02_image017
Figure 02_image023
Figure 02_image019
。 In one embodiment of the present invention, the parameters include
Figure 02_image011
,
Figure 02_image017
,
Figure 02_image023
and
Figure 02_image019
.

在本發明之一實施例中,最新之最小者與前一最小者之差值小於預設值時,所有前一電流曲線為所有第一電流曲線。In an embodiment of the present invention, when the difference between the latest smallest and the previous smallest is less than a predetermined value, all previous current curves are all first current curves.

在本發明之一實施例中,第一預設範圍之最大值與其對應之第一初始值之差值的絕對值等於第一預設範圍之最小值與其對應之第一初始值之差值的絕對值。In an embodiment of the present invention, the absolute value of the difference between the maximum value of the first preset range and the corresponding first initial value is equal to the difference between the minimum value of the first preset range and the corresponding first initial value. absolute value.

在本發明之一實施例中,第一選取值在該第一預設範圍中為均勻分布。In an embodiment of the present invention, the first selected value is uniformly distributed in the first preset range.

在本發明之一實施例中,第二預設範圍之最大值與其對應之第二初始值之差值的絕對值等於第二預設範圍之最小值與其對應之第二初始值之差值的絕對值。In an embodiment of the present invention, the absolute value of the difference between the maximum value of the second preset range and the corresponding second initial value is equal to the difference between the minimum value of the second preset range and the corresponding second initial value. absolute value.

在本發明之一實施例中,第二選取值在該第二預設範圍中為均勻分布。In an embodiment of the present invention, the second selected value is uniformly distributed in the second preset range.

基於上述,電流參數計算方法根據二極體之電流公式而建立精準的絕緣閘雙極性電晶體之電流關係式,以供使用者使用。Based on the above, the current parameter calculation method establishes an accurate current relational expression of the insulating gate bipolar transistor according to the current formula of the diode for the user to use.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:Hereby, in order to make your examiners have a further understanding and understanding of the structural features of the present invention and the effects achieved, I would like to assist with the preferred embodiment drawings and coordinate detailed descriptions, and the descriptions are as follows:

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。Embodiments of the present invention will be further explained with the help of the related drawings below. Wherever possible, in the drawings and the description, the same reference numbers refer to the same or similar components. In the drawings, shapes and thicknesses may be exaggerated for simplicity and convenience. It should be understood that the elements not particularly shown in the drawings or described in the specification have forms known to those of ordinary skill in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.

在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語, 故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。Certain terms are used in the specification and claims to refer to particular elements. However, those of ordinary skill in the art should understand that the same elements may be referred to by different nouns. The description and the scope of the patent application do not use the difference in name as a way of distinguishing elements, but use the difference in function of the elements as a basis for distinguishing. The "comprising" mentioned in the description and the scope of the patent application is an open-ended term, so it should be interpreted as "including but not limited to". In addition, "coupled" herein includes any direct and indirect means of connection. Therefore, if it is described in the text that the first element is coupled to the second element, it means that the first element can be directly connected to the second element through electrical connection or signal connection such as wireless transmission or optical transmission, or through other elements or connections. The means are indirectly electrically or signally connected to the second element.

於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。The following description of "one embodiment" or "an embodiment" refers to a particular element, structure or feature associated with at least one embodiment. Thus, the appearances of "one embodiment" or "an embodiment" in various places below are not directed to the same embodiment. Furthermore, the specific components, structures and features in one or more embodiments may be combined in a suitable manner.

除非特別說明,一些條件句或字詞,例如「可以(can)」、「可能(could)」、「也許(might)」,或「可(may)」,通常是試圖表達本案實施例具有,但是也可以解釋成可能不需要的特徵、元件,或步驟。在其他實施例中,這些特徵、元件,或步驟可能是不需要的。Unless otherwise specified, some conditional sentences or words, such as "can", "could", "might", or "may", are usually intended to express that the embodiments of this case have, However, it can also be interpreted as features, elements, or steps that may not be required. In other embodiments, these features, elements, or steps may not be required.

第1圖為本發明之電流參數計算方法之一實施例之流程圖。第2圖為本發明之絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor)之一實施例之結構俯視圖。第3圖為第2圖沿A-A’線之結構剖視圖。以下介紹本發明之電流參數計算方法之一實施例,請同時參閱第1圖、第2圖與第3圖。如步驟S10所示,選取分別對應絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor)1之電流關係式之複數個不同參數之複數個第一初始值,其中此電流關係式根據二極體之電流公式而建立。舉例來說,絕緣閘雙極性電晶體1包含一N型半導體基板10、一P型重摻雜層11、一P型井區12、一環形N型重摻雜區13、一源極層14、一絕緣層15、一閘極層16與一P型重摻雜區17,但本發明並不以此為限,其中亦可省略P型重摻雜區17。P型重摻雜層11設於N型半導體基板10之底部,P型重摻雜層11作為汲極層。P型井區12設於N型半導體基板10中,環形N型重摻雜區13設於P型井區12中。源極層14與絕緣層15設於N型半導體基板10之頂部。源極層14覆蓋部分之P型井區12與部分之環形N型重摻雜區13,絕緣層15覆蓋部分之N型半導體基板10、部分之P型井區12與部分之環形N型重摻雜區13,並環繞源極層14。閘極層16設於絕緣層15上,P型重摻雜區17設於P型井區12中,環形N型重摻雜區13環繞P型重摻雜區17,源極層14覆蓋P型重摻雜區17。當汲極層與閘極層16施加高電壓,源極層14施加低電壓時,N型半導體基板10、P型井區12與環形N型重摻雜區13形成的NPN雙載子接面電晶體會被啟動,從而驅動絕緣閘雙極性電晶體1,使絕緣閘雙極性電晶體1之電流從P型重摻雜層11依序透過N型半導體基板10、P型井區12與P型重摻雜區17,最後流向源極層14。FIG. 1 is a flow chart of an embodiment of the current parameter calculation method of the present invention. FIG. 2 is a top view of the structure of an embodiment of the Insulated Gate Bipolar Transistor of the present invention. Fig. 3 is a sectional view of the structure along the line A-A' of Fig. 2. An embodiment of the current parameter calculation method of the present invention is described below. Please refer to FIG. 1 , FIG. 2 and FIG. 3 at the same time. As shown in step S10, a plurality of first initial values corresponding to a plurality of different parameters of a current relational expression of the Insulated Gate Bipolar Transistor 1 are selected, wherein the current relational expression is based on the current of the diode. established by the formula. For example, the IGBT 1 includes an N-type semiconductor substrate 10 , a P-type heavily doped layer 11 , a P-type well region 12 , an annular N-type heavily doped region 13 , and a source layer 14 , an insulating layer 15 , a gate layer 16 and a P-type heavily doped region 17 , but the invention is not limited to this, and the P-type heavily doped region 17 can also be omitted. The P-type heavily doped layer 11 is disposed on the bottom of the N-type semiconductor substrate 10 , and the P-type heavily doped layer 11 serves as a drain layer. The P-type well region 12 is provided in the N-type semiconductor substrate 10 , and the annular N-type heavily doped region 13 is provided in the P-type well region 12 . The source layer 14 and the insulating layer 15 are disposed on top of the N-type semiconductor substrate 10 . The source layer 14 covers part of the P-type well region 12 and part of the annular N-type heavily doped region 13 , the insulating layer 15 covers part of the N-type semiconductor substrate 10 , part of the P-type well region 12 and part of the annular N-type heavily doped region 10 . The doped region 13 surrounds the source layer 14 . The gate layer 16 is arranged on the insulating layer 15, the P-type heavily doped region 17 is arranged in the P-type well region 12, the annular N-type heavily doped region 13 surrounds the P-type heavily doped region 17, and the source layer 14 covers the P-type heavily doped region 17. type heavily doped region 17 . When a high voltage is applied to the drain layer and the gate layer 16 , and a low voltage is applied to the source layer 14 , the NPN dual carrier junction formed by the N-type semiconductor substrate 10 , the P-type well region 12 and the annular N-type heavily doped region 13 The transistor will be activated to drive the IGBT 1, so that the current of the IGBT 1 passes through the N-type semiconductor substrate 10, the P-type well region 12 and the P-type heavily doped layer 11 in sequence. The heavily doped region 17 flows to the source layer 14 at last.

由於絕緣閘雙極性電晶體1之電流是基於N型半導體基板10、P型井區12與環形N型重摻雜區13形成的NPN雙載子接面電晶體的電流所產生,故在本發明之某些實施例中,絕緣閘雙極性電晶體1之電流關係式以公式(1)表示:Since the current of the insulated gate bipolar transistor 1 is generated based on the current of the NPN bipolar junction transistor formed by the N-type semiconductor substrate 10 , the P-type well region 12 and the annular N-type heavily doped region 13 , in this In some embodiments of the invention, the current relationship of the IGBT 1 is represented by the formula (1):

Figure 02_image001
(1)
Figure 02_image001
(1)

Figure 02_image003
時,
Figure 02_image005
,在
Figure 02_image007
時,
Figure 02_image009
。其中
Figure 02_image001
為二極體之電流公式,I為絕緣閘雙極性電晶體1之電流,
Figure 02_image011
為飽和電流,
Figure 02_image013
為絕緣閘雙極性電晶體1之汲極電壓,
Figure 02_image015
為絕緣閘雙極性電晶體1之閘極電壓,
Figure 02_image017
為絕緣閘雙極性電晶體1之臨界電壓,
Figure 02_image019
為絕緣閘雙極性電晶體1之1/爾利電壓(early voltage),
Figure 02_image021
為絕緣閘雙極性電晶體1之汲源電壓,
Figure 02_image023
為絕緣閘雙極性電晶體1之製程互導參數(process transconductance parameter) ,且為溫度的函數。
Figure 02_image015
是提供給閘極層16,
Figure 02_image013
是提供給汲極層,
Figure 02_image040
是提供給源極層14之源極電壓,
Figure 02_image042
。在步驟S10中所使用的參數包含
Figure 02_image011
Figure 02_image017
Figure 02_image023
Figure 02_image019
,但本發明並不以此為限。舉例來說,
Figure 02_image011
的第一初始值為0.1毫安培(mA),
Figure 02_image017
的第一初始值為1伏特,
Figure 02_image023
的第一初始值為100微安培/平方伏特(μA/V 2),
Figure 02_image019
的第一初始值為0.01伏特 -1。 exist
Figure 02_image003
hour,
Figure 02_image005
,exist
Figure 02_image007
hour,
Figure 02_image009
. in
Figure 02_image001
is the current formula of the diode, I is the current of the insulating gate bipolar transistor 1,
Figure 02_image011
is the saturation current,
Figure 02_image013
is the drain voltage of the insulated gate bipolar transistor 1,
Figure 02_image015
is the gate voltage of the insulated gate bipolar transistor 1,
Figure 02_image017
is the threshold voltage of the insulating gate bipolar transistor 1,
Figure 02_image019
is the 1/early voltage of the insulating gate bipolar transistor 1,
Figure 02_image021
is the drain-source voltage of the insulated gate bipolar transistor 1,
Figure 02_image023
is the process transconductance parameter of the insulated gate bipolar transistor 1 and is a function of temperature.
Figure 02_image015
is supplied to the gate layer 16,
Figure 02_image013
is provided to the drain layer,
Figure 02_image040
is the source voltage supplied to the source layer 14,
Figure 02_image042
. The parameters used in step S10 include
Figure 02_image011
,
Figure 02_image017
,
Figure 02_image023
and
Figure 02_image019
, but the present invention is not limited to this. for example,
Figure 02_image011
The first initial value of 0.1 milliamps (mA),
Figure 02_image017
The first initial value of 1 volt,
Figure 02_image023
The first initial value of 100 microamps/square volts (µA/V 2 ),
Figure 02_image019
The first initial value of 0.01 Volt -1 .

如步驟S12所示,以每一第一初始值為中心,向正方向與負方向延伸以形成第一預設範圍。在第一預設範圍中選取每一參數對應之複數個第一選取值,將所有參數對應之所有第一選取值代入電流關係式,以形成複數條第一電流曲線。本發明之某些實施例中,第一預設範圍之最大值與其對應之第一初始值之差值的絕對值等於第一預設範圍之最小值與其對應之第一初始值之差值的絕對值。舉例來說,

Figure 02_image011
對應的第一預設範圍之最大值與最小值分別為0.15毫安培與0.05毫安培,
Figure 02_image017
對應的第一預設範圍之最大值與最小值分別為1.5伏特與0.5伏特,
Figure 02_image023
對應的第一預設範圍之最大值與最小值分別為150微安培/平方伏特與50微安培/平方伏特,
Figure 02_image019
對應的第一預設範圍之最大值與最小值分別為0.015伏特 -1與0.005伏特 -1。此外,所有第一選取值在第一預設範圍中可為均勻分布,舉例來說,
Figure 02_image011
對應的第一選取值有三個,即0.15毫安培、0.1毫安培與0.05毫安培。
Figure 02_image017
對應的第一選取值有三個,即0.5伏特、1伏特與1.5伏特。
Figure 02_image023
對應的第一選取值有三個,即50微安培/平方伏特、100微安培/平方伏特與150微安培/平方伏特。
Figure 02_image019
對應的第一選取值有三個,即0.005伏特 -1、0.01伏特 -1與0.015伏特 -1。因為
Figure 02_image011
Figure 02_image017
Figure 02_image023
Figure 02_image019
對應的第一選取值皆有三個,所以第一電流曲線有81條。 As shown in step S12, each first initial value is centered and extended in a positive direction and a negative direction to form a first predetermined range. A plurality of first selected values corresponding to each parameter are selected in the first preset range, and all the first selected values corresponding to all parameters are substituted into the current relational expression to form a plurality of first current curves. In some embodiments of the present invention, the absolute value of the difference between the maximum value of the first preset range and the corresponding first initial value is equal to the difference between the minimum value of the first preset range and the corresponding first initial value. absolute value. for example,
Figure 02_image011
The corresponding maximum value and minimum value of the first preset range are 0.15 mA and 0.05 mA respectively,
Figure 02_image017
The corresponding maximum value and minimum value of the first preset range are 1.5 volts and 0.5 volts, respectively.
Figure 02_image023
The corresponding maximum value and minimum value of the first preset range are 150 microampere/square volt and 50 microampere/square volt, respectively.
Figure 02_image019
The corresponding maximum value and minimum value of the first preset range are 0.015 volt -1 and 0.005 volt -1 , respectively. In addition, all the first selected values may be uniformly distributed in the first preset range, for example,
Figure 02_image011
There are three corresponding first selected values, namely 0.15 mA, 0.1 mA and 0.05 mA.
Figure 02_image017
There are three corresponding first selected values, namely 0.5 volts, 1 volts and 1.5 volts.
Figure 02_image023
There are three corresponding first selected values, namely 50 microamps/square volt, 100 microamps/square volt and 150 microamps/square volt.
Figure 02_image019
There are three corresponding first selected values, namely 0.005 volt -1 , 0.01 volt -1 and 0.015 volt -1 . because
Figure 02_image011
,
Figure 02_image017
,
Figure 02_image023
and
Figure 02_image019
There are three corresponding first selected values, so there are 81 first current curves.

如步驟S14所示,計算絕緣閘雙極性電晶體1之電流量測曲線與每一第一電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第一偏差值,並計算對應同一第一電流曲線之所有第一偏差值之總和,其中N為自然數。第4圖為本發明之絕緣閘雙極性電晶體之電流量測曲線與第一電流曲線相對汲極電壓之曲線圖,其中實線代表電流量測曲線,虛線代表第一電流曲線,在相同的汲極電壓

Figure 02_image013
下,同時固定源極電壓
Figure 02_image040
與閘極電壓
Figure 02_image015
,以計算對應不同汲極電壓
Figure 02_image013
之第一偏差值,最後再計算對應同一第一電流曲線之所有第一偏差值之總和。 As shown in step S14, the N-th power of the absolute value of the current difference between the current measurement curve of the insulating gate bipolar transistor 1 and each first current curve at the same bias voltage is calculated, so as to obtain the values corresponding to different bias voltages. A plurality of first deviation values are calculated, and the sum of all the first deviation values corresponding to the same first current curve is calculated, wherein N is a natural number. Fig. 4 is a graph of the current measurement curve and the first current curve relative to the drain voltage of the insulated gate bipolar transistor of the present invention, wherein the solid line represents the current measurement curve, and the dashed line represents the first current curve. drain voltage
Figure 02_image013
down, while fixing the source voltage
Figure 02_image040
with gate voltage
Figure 02_image015
, to calculate the corresponding different drain voltages
Figure 02_image013
The first deviation value is calculated, and finally the sum of all the first deviation values corresponding to the same first current curve is calculated.

請繼續參閱第1圖、第2圖與第3圖。如步驟S16所示,選取所有前一電流曲線對應之總和的最小者,將最小者對應之所有選取值分別作為分別對應所有參數之複數個第二初始值。若步驟S16是第一次執行,則是選取所有第一電流曲線對應之總和的最小者,將此最小者對應之所有第一選取值分別作為分別對應所有參數之複數個第二初始值。舉例來說,

Figure 02_image011
的第二初始值為0.2毫安培(mA),
Figure 02_image017
的第二初始值為2伏特,
Figure 02_image023
的第二初始值為200微安培/平方伏特(μA/V 2),
Figure 02_image019
的第二初始值為0.02伏特 -1。 Please continue to refer to Figure 1, Figure 2 and Figure 3. As shown in step S16, the smallest one of the sums corresponding to all the previous current curves is selected, and all the selected values corresponding to the smallest one are respectively used as a plurality of second initial values corresponding to all parameters respectively. If step S16 is performed for the first time, the minimum value of the sums corresponding to all the first current curves is selected, and all the first selected values corresponding to the minimum value are used as a plurality of second initial values corresponding to all parameters respectively. for example,
Figure 02_image011
The second initial value of 0.2 milliamps (mA),
Figure 02_image017
The second initial value of 2 volts,
Figure 02_image023
The second initial value of 200 microamps/square volts (µA/V 2 ),
Figure 02_image019
The second initial value of 0.02 volt -1 .

如步驟S18所示,以每一第二初始值為中心,向正方向與負方向延伸以形成第二預設範圍。在第二預設範圍中選取每一參數對應之複數個第二選取值,將所有參數對應之所有第二選取值代入電流關係式,以形成複數條第二電流曲線。本發明之某些實施例中,第二預設範圍之最大值與其對應之第二初始值之差值的絕對值等於第二預設範圍之最小值與其對應之第二初始值之差值的絕對值。舉例來說,

Figure 02_image011
對應的第二預設範圍之最大值與最小值分別為0.25毫安培與0.15毫安培,
Figure 02_image017
對應的第二預設範圍之最大值與最小值分別為2.5伏特與1.5伏特,
Figure 02_image023
對應的第二預設範圍之最大值與最小值分別為250微安培/平方伏特與150微安培/平方伏特,
Figure 02_image019
對應的第二預設範圍之最大值與最小值分別為0.025伏特 -1與0.0125伏特 -1。此外,所有第二選取值在第二預設範圍中可為均勻分布,舉例來說,
Figure 02_image011
對應的第二選取值有三個,即0.25毫安培、0.2毫安培與0.15毫安培。
Figure 02_image017
對應的第二選取值有三個,即1.5伏特、2伏特與2.5伏特。
Figure 02_image023
對應的第二選取值有三個,即150微安培/平方伏特、200微安培/平方伏特與250微安培/平方伏特。
Figure 02_image019
對應的第二選取值有三個,即0.015伏特 -1、0.02伏特 -1與0.025伏特 -1。因為
Figure 02_image011
Figure 02_image017
Figure 02_image023
Figure 02_image019
對應的第二選取值皆有三個,所以第二電流曲線亦有81條。 As shown in step S18, each second initial value is centered and extended in the positive direction and the negative direction to form a second predetermined range. A plurality of second selection values corresponding to each parameter are selected in the second preset range, and all second selection values corresponding to all parameters are substituted into the current relational expression to form a plurality of second current curves. In some embodiments of the present invention, the absolute value of the difference between the maximum value of the second preset range and the corresponding second initial value is equal to the difference between the minimum value of the second preset range and the corresponding second initial value. absolute value. for example,
Figure 02_image011
The corresponding maximum value and minimum value of the second preset range are 0.25 mA and 0.15 mA, respectively.
Figure 02_image017
The maximum value and the minimum value of the corresponding second preset range are 2.5 volts and 1.5 volts, respectively,
Figure 02_image023
The corresponding maximum value and minimum value of the second preset range are 250 microamps/square volt and 150 microamps/square volt, respectively,
Figure 02_image019
The corresponding maximum value and minimum value of the second preset range are 0.025V -1 and 0.0125V -1 , respectively. In addition, all the second selection values can be uniformly distributed in the second preset range, for example,
Figure 02_image011
There are three corresponding second selection values, namely 0.25 mA, 0.2 mA and 0.15 mA.
Figure 02_image017
There are three corresponding second selection values, namely 1.5 volts, 2 volts and 2.5 volts.
Figure 02_image023
There are three corresponding second selection values, namely 150 microamps/square volt, 200 microamps/square volt and 250 microamps/square volt.
Figure 02_image019
There are three corresponding second selection values, namely 0.015 volt -1 , 0.02 volt -1 and 0.025 volt -1 . because
Figure 02_image011
,
Figure 02_image017
,
Figure 02_image023
and
Figure 02_image019
There are three corresponding second selected values, so there are also 81 second current curves.

如步驟S20所示,計算電流量測曲線與每一第二電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第二偏差值,並計算對應同一第二電流曲線之所有第二偏差值之總和。在本發明之某些實施例中,在相同的汲極電壓

Figure 02_image013
下,同時固定源極電壓
Figure 02_image040
與閘極電壓
Figure 02_image015
,以計算對應不同汲極電壓
Figure 02_image013
之第二偏差值,最後再計算對應同一第二電流曲線之所有第二偏差值之總和。 As shown in step S20, the N-th power of the absolute value of the current difference between the current measurement curve and each second current curve at the same bias voltage is calculated to obtain a plurality of second deviation values corresponding to different bias voltages, and The sum of all second deviation values corresponding to the same second current curve is calculated. In some embodiments of the present invention, at the same drain voltage
Figure 02_image013
down, while fixing the source voltage
Figure 02_image040
with gate voltage
Figure 02_image015
, to calculate the corresponding different drain voltages
Figure 02_image013
the second deviation value, and finally calculate the sum of all the second deviation values corresponding to the same second current curve.

如步驟S22所示,選取所有第二電流曲線對應之總和的最小者。最後,如步驟S24所示,判斷最新之最小者與前一最小者之差值是否小於一預設值。若是,執行步驟S26,即選取最新之最小者對應之所有選取值;若否,回至步驟S16,即選取所有前一電流曲線對應之總和的最小者,將最小者對應之所有選取值分別作為分別對應所有參數之複數個第二初始值。預設值是用來判斷選取值是否收斂到最小值。當選取值收斂到最小值後,便可選取最新之最小者對應之所有選取值,將此代入絕緣閘雙極性電晶體1之電流關係式(1)中,推導出精準的絕緣閘雙極性電晶體1之電流關係式,以供使用者使用。舉例來說,判斷所有第二電流曲線對應之總和的最小者與所有第一電流曲線對應之總和的最小者之差值是否小於預設值,若是,選取所有第二電流曲線對應之總和的最小者所對應之所有第二選取值;若否,則選取所有前一第二電流曲線對應之總和的最小者,將此最小者對應之所有第二選取值分別作為分別對應所有參數之複數個新第二初始值,以供進行後續步驟。換言之,若最新之最小者與前一最小者之差值小於預設值時,則所有前一電流曲線為所有第一電流曲線。As shown in step S22, the minimum of the sums corresponding to all the second current curves is selected. Finally, as shown in step S24, it is determined whether the difference between the latest minimum and the previous minimum is less than a predetermined value. If yes, go to step S26, that is, select all the selected values corresponding to the latest minimum; Plural second initial values corresponding to all parameters respectively. The default value is used to determine whether the selected value converges to the minimum value. When the selected value converges to the minimum value, all the selected values corresponding to the latest minimum can be selected, and this is substituted into the current relationship (1) of the insulating gate bipolar transistor 1, and the precise insulating gate bipolar current can be derived. The current relationship of crystal 1 is for users to use. For example, determine whether the difference between the minimum of the sums corresponding to all the second current curves and the minimum of the sums corresponding to all the first current curves is less than a preset value, and if so, select the minimum of the sums corresponding to all the second current curves. All the second selected values corresponding to the first one; if not, select the smallest one of the sums corresponding to all the previous second current curves, and all the second selected values corresponding to the smallest one are respectively used as a plurality of new values corresponding to all parameters. A second initial value for subsequent steps. In other words, if the difference between the latest minimum and the previous minimum is smaller than the predetermined value, then all the previous current curves are all the first current curves.

根據上述實施例,電流參數計算方法根據二極體之電流公式而建立精準的絕緣閘雙極性電晶體之電流關係式,以供使用者使用。According to the above-mentioned embodiment, the current parameter calculation method establishes an accurate current relational expression of the insulating gate bipolar transistor according to the current formula of the diode for the user to use.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all changes and modifications made in accordance with the shape, structure, feature and spirit described in the scope of the patent application of the present invention are equivalent. , shall be included in the scope of the patent application of the present invention.

1:絕緣閘雙極性電晶體 10:N型半導體基板 11:P型重摻雜層 12:P型井區 13:環形N型重摻雜區 14:源極層 15:絕緣層 16:閘極層 17:P型重摻雜區

Figure 02_image013
:汲極電壓
Figure 02_image015
:閘極電壓
Figure 02_image040
:源極電壓 S10、S12、S14、S16、S18、S20、S22、S24、S26:步驟 1: Insulated gate bipolar transistor 10: N-type semiconductor substrate 11: P-type heavily doped layer 12: P-type well region 13: Annular N-type heavily doped region 14: Source layer 15: Insulating layer 16: Gate Layer 17: P-type heavily doped region
Figure 02_image013
: Drain voltage
Figure 02_image015
: gate voltage
Figure 02_image040
: source voltage S10, S12, S14, S16, S18, S20, S22, S24, S26: step

第1圖為本發明之電流參數計算方法之一實施例之流程圖。 第2圖為本發明之絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor)之一實施例之結構俯視圖。 第3圖為第2圖沿A-A’線之結構剖視圖。 第4圖為本發明之絕緣閘雙極性電晶體之電流量測曲線與第一電流曲線相對汲極電壓之曲線圖。 FIG. 1 is a flow chart of an embodiment of the current parameter calculation method of the present invention. FIG. 2 is a top view of the structure of an embodiment of the Insulated Gate Bipolar Transistor of the present invention. Fig. 3 is a sectional view of the structure along the line A-A' of Fig. 2. FIG. 4 is a graph of the current measurement curve and the first current curve versus the drain voltage of the insulated gate bipolar transistor of the present invention.

S10、S12、S14、S16、S18、S20、S22、S24、S26:步驟 S10, S12, S14, S16, S18, S20, S22, S24, S26: Steps

Claims (10)

一種電流參數計算方法,包含下列步驟: 選取分別對應絕緣閘雙極性電晶體(Insulated Gate Bipolar Transistor)之電流關係式之複數個不同參數之複數個第一初始值,其中該電流關係式根據二極體之電流公式而建立; 以每一該第一初始值為中心,向正方向與負方向延伸以形成第一預設範圍,在該第一預設範圍中選取每一該參數對應之複數個第一選取值,將該些參數對應之該些第一選取值代入該電流關係式,以形成複數條第一電流曲線; 計算該絕緣閘雙極性電晶體之電流量測曲線與每一該第一電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第一偏差值,並計算對應同一該第一電流曲線之該些第一偏差值之總和,其中N為自然數; 選取所有前一該電流曲線對應之該總和的最小者,將該最小者對應之該些選取值分別作為分別對應該些參數之複數個第二初始值; 以每一該第二初始值為中心,向正方向與負方向延伸以形成第二預設範圍,在該第二預設範圍中選取每一該參數對應之複數個第二選取值,將該些參數對應之該些第二選取值代入該電流關係式,以形成複數條第二電流曲線; 計算該電流量測曲線與每一該第二電流曲線在相同偏壓時的電流差之絕對值的N次方,以得到分別對應不同偏壓之複數個第二偏差值,並計算對應同一該第二電流曲線之該些第二偏差值之總和; 選取該些第二電流曲線對應之該總和的最小者;以及 判斷最新之該最小者與前一該最小者之差值是否小於一預設值: 若是,選取該最新之該最小者對應之該些選取值;以及 若否,回至選取該所有前一該電流曲線對應之該總和的該最小者,將所有前一該電流曲線對應之該些選取值分別作為分別對應該些參數之該些第二初始值之步驟。 A current parameter calculation method, comprising the following steps: Selecting a plurality of first initial values respectively corresponding to a plurality of different parameters of the current relational expression of the Insulated Gate Bipolar Transistor, wherein the current relational expression is established according to the current formula of the diode; Taking each of the first initial values as the center, extending in the positive direction and the negative direction to form a first preset range, selecting a plurality of first selection values corresponding to each of the parameters in the first preset range, and using the The first selected values corresponding to the parameters are substituted into the current relational expression to form a plurality of first current curves; Calculate the N-th power of the absolute value of the current difference between the current measurement curve of the insulating gate bipolar transistor and each of the first current curves at the same bias voltage, so as to obtain a plurality of first deviations corresponding to different bias voltages respectively value, and calculate the sum of the first deviation values corresponding to the same first current curve, wherein N is a natural number; Selecting the smallest of the sums corresponding to all the previous current curves, and using the selected values corresponding to the smallest as a plurality of second initial values corresponding to the parameters respectively; Centering on each of the second initial values, extending in the positive and negative directions to form a second preset range, selecting a plurality of second selection values corresponding to each of the parameters in the second preset range, and using the The second selected values corresponding to the parameters are substituted into the current relational expression to form a plurality of second current curves; Calculate the N-th power of the absolute value of the current difference between the current measurement curve and each of the second current curves at the same bias voltage, so as to obtain a plurality of second deviation values corresponding to different bias voltages, and calculate the same The sum of the second deviation values of the second current curve; selecting the smallest of the sums corresponding to the second current curves; and Determine whether the difference between the latest minimum and the previous minimum is less than a preset value: If so, select the selected values corresponding to the latest minimum; and If not, go back to selecting the minimum of the sum corresponding to all the previous current curves, and use the selected values corresponding to all the previous current curves as the sum of the second initial values corresponding to the parameters respectively step. 如請求項1所述之電流參數計算方法,其中該絕緣閘雙極性電晶體包含: 一N型半導體基板; 一P型重摻雜層,設於該N型半導體基板之底部,該P型重摻雜層作為汲極層; 一P型井區,設於該N型半導體基板中; 一環形N型重摻雜區,設於該P型井區中; 一源極層與一絕緣層,設於該N型半導體基板之頂部,其中該源極層覆蓋部分之該P型井區與部分之該環形N型重摻雜區,該絕緣層覆蓋部分之該N型半導體基板、部分之該P型井區與部分之該環形N型重摻雜區,並環繞該源極層;以及 一閘極層,設於該絕緣層上。 The current parameter calculation method as claimed in claim 1, wherein the insulating gate bipolar transistor comprises: an N-type semiconductor substrate; a P-type heavily doped layer disposed on the bottom of the N-type semiconductor substrate, and the P-type heavily doped layer serves as a drain layer; a P-type well region located in the N-type semiconductor substrate; an annular N-type heavily doped region disposed in the P-type well region; A source layer and an insulating layer are disposed on top of the N-type semiconductor substrate, wherein the source layer covers part of the P-type well region and part of the annular N-type heavily doped region, and the insulating layer covers part of the the N-type semiconductor substrate, a portion of the P-type well region and a portion of the annular N-type heavily doped region surrounding the source layer; and A gate layer is arranged on the insulating layer. 如請求項2所述之電流參數計算方法,其中該絕緣閘雙極性電晶體更包含一P型重摻雜區,其係設於該P型井區中,該環形N型重摻雜區環繞該P型重摻雜區,該源極層覆蓋該P型重摻雜區。The current parameter calculation method as claimed in claim 2, wherein the IGBT further comprises a P-type heavily doped region, which is disposed in the P-type well region, and the annular N-type heavily doped region surrounds In the P-type heavily doped region, the source layer covers the P-type heavily doped region. 如請求項1所述之電流參數計算方法,其中該電流關係式以下列公式表示:
Figure 03_image001
; 在
Figure 03_image003
時,
Figure 03_image005
;以及 在
Figure 03_image007
時,
Figure 03_image062
; 其中
Figure 03_image001
為該二極體之該電流公式,I為該絕緣閘雙極性電晶體之電流,
Figure 03_image011
為飽和電流,
Figure 03_image013
為該絕緣閘雙極性電晶體之汲極電壓,
Figure 03_image015
為該絕緣閘雙極性電晶體之閘極電壓,
Figure 03_image017
為該絕緣閘雙極性電晶體之臨界電壓,
Figure 03_image019
為該絕緣閘雙極性電晶體之1/爾利電壓(early voltage),
Figure 03_image021
為該絕緣閘雙極性電晶體之汲源電壓,
Figure 03_image023
為該絕緣閘雙極性電晶體之製程互導參數(process transconductance parameter) ,且為溫度的函數。
The current parameter calculation method as claimed in claim 1, wherein the current relational expression is represented by the following formula:
Figure 03_image001
; exist
Figure 03_image003
hour,
Figure 03_image005
; and in
Figure 03_image007
hour,
Figure 03_image062
; in
Figure 03_image001
is the current formula of the diode, I is the current of the insulating gate bipolar transistor,
Figure 03_image011
is the saturation current,
Figure 03_image013
is the drain voltage of the insulated gate bipolar transistor,
Figure 03_image015
is the gate voltage of the insulated gate bipolar transistor,
Figure 03_image017
is the threshold voltage of the insulating gate bipolar transistor,
Figure 03_image019
is the 1/early voltage of the insulating gate bipolar transistor,
Figure 03_image021
is the drain-source voltage of the insulated gate bipolar transistor,
Figure 03_image023
is the process transconductance parameter of the insulating gate bipolar transistor and is a function of temperature.
如請求項4所述之電流參數計算方法,其中該些參數包含
Figure 03_image011
Figure 03_image017
Figure 03_image023
Figure 03_image019
The current parameter calculation method as claimed in claim 4, wherein the parameters include
Figure 03_image011
,
Figure 03_image017
,
Figure 03_image023
and
Figure 03_image019
.
如請求項1所述之電流參數計算方法,其中該最新之該最小者與該前一該最小者之該差值小於該預設值時,該所有前一該電流曲線為所有該第一電流曲線。The current parameter calculation method as claimed in claim 1, wherein when the difference between the latest minimum and the previous minimum is less than the preset value, all the previous current curves are all the first currents curve. 如請求項1所述之電流參數計算方法,其中該第一預設範圍之最大值與其對應之該第一初始值之差值的絕對值等於該第一預設範圍之最小值與其對應之該第一初始值之差值的絕對值。The current parameter calculation method according to claim 1, wherein the absolute value of the difference between the maximum value of the first preset range and the corresponding first initial value is equal to the minimum value of the first preset range and the corresponding first initial value. The absolute value of the difference between the first initial values. 如請求項1所述之電流參數計算方法,其中該些第一選取值在該第一預設範圍中為均勻分布。The current parameter calculation method according to claim 1, wherein the first selected values are uniformly distributed in the first predetermined range. 如請求項1所述之電流參數計算方法,其中該第二預設範圍之最大值與其對應之該第二初始值之差值的絕對值等於該第二預設範圍之最小值與其對應之該第二初始值之差值的絕對值。The current parameter calculation method according to claim 1, wherein the absolute value of the difference between the maximum value of the second preset range and the corresponding second initial value is equal to the minimum value of the second preset range and the corresponding second initial value. The absolute value of the difference between the second initial values. 如請求項1所述之電流參數計算方法,其中該些第二選取值在該第二預設範圍中為均勻分布。The current parameter calculation method as claimed in claim 1, wherein the second selected values are uniformly distributed in the second predetermined range.
TW109139895A 2020-11-16 2020-11-16 Current parameter calculation method TWI745165B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109139895A TWI745165B (en) 2020-11-16 2020-11-16 Current parameter calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109139895A TWI745165B (en) 2020-11-16 2020-11-16 Current parameter calculation method

Publications (2)

Publication Number Publication Date
TWI745165B TWI745165B (en) 2021-11-01
TW202221343A true TW202221343A (en) 2022-06-01

Family

ID=79907332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139895A TWI745165B (en) 2020-11-16 2020-11-16 Current parameter calculation method

Country Status (1)

Country Link
TW (1) TWI745165B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314390B1 (en) * 1998-11-30 2001-11-06 International Business Machines Corporation Method of determining model parameters for a MOSFET compact model using a stochastic search algorithm
CN102323967B (en) * 2011-09-07 2014-05-14 中国人民解放军海军工程大学 Method for establishing transient model of FS (Field Stop)-type IGBT (Insulated Gate Bipolar Transistor) switch
CN102368274B (en) * 2011-09-07 2013-07-10 中国人民解放军海军工程大学 Electro-thermal simulation method for FS (Field Stop) type IGBT (Insulated Gate Bipolar Transistor) transient temperature characteristic
CN105138741B (en) * 2015-08-03 2018-04-20 重庆大学 IGBT model parameters calibration system and method based on neutral net
CN106295013B (en) * 2016-08-12 2019-09-27 全球能源互联网研究院有限公司 A kind of modeling method of high-voltage semi-conductor device short term failure model

Also Published As

Publication number Publication date
TWI745165B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US10892352B2 (en) Power semiconductor device
JP3891090B2 (en) Freewheeling diode and load driving circuit
US9818851B2 (en) Semiconductor device and manufacturing method thereof
US9007736B2 (en) Power module
JP5779025B2 (en) Semiconductor device
JP4017258B2 (en) Semiconductor device
US20160358822A1 (en) Bipolar Junction Transistor Formed on Fin Structures
US20120223763A1 (en) Semiconductor device
JPS5918870B2 (en) semiconductor integrated circuit
JP7394038B2 (en) semiconductor equipment
JP6565814B2 (en) Semiconductor device
JP6640639B2 (en) Semiconductor device and semiconductor device
JP2008218611A (en) Semiconductor device
US20120319740A1 (en) Method and Circuit for Driving an Electronic Switch
JP2020088239A (en) Semiconductor device
US11061425B2 (en) Voltage stabilizer
TW202221343A (en) Current parameter calculation method capable of obtaining a precise current relational expression of an insulated gate bipolar transistor
US20160276474A1 (en) Semiconductor device
JPS62221155A (en) Semiconductor device which can be turned off and applicationof the same
JP2019536407A (en) Parallel reverse conducting IGBT and wide bandgap switch switching
JPS59219961A (en) Bipolar power transistor structure
JP2005175074A (en) Semiconductor device
JPWO2021019882A1 (en) Semiconductor device
TWI736472B (en) Current parameter calculation method
CN111627994B (en) BJT driven by voltage