TW202218197A - Temperature sensing device and the manufacturing method thereof - Google Patents

Temperature sensing device and the manufacturing method thereof Download PDF

Info

Publication number
TW202218197A
TW202218197A TW109137960A TW109137960A TW202218197A TW 202218197 A TW202218197 A TW 202218197A TW 109137960 A TW109137960 A TW 109137960A TW 109137960 A TW109137960 A TW 109137960A TW 202218197 A TW202218197 A TW 202218197A
Authority
TW
Taiwan
Prior art keywords
metal
sensing device
array
pattern
microns
Prior art date
Application number
TW109137960A
Other languages
Chinese (zh)
Other versions
TWI782347B (en
Inventor
林本勝
方維倫
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW109137960A priority Critical patent/TWI782347B/en
Publication of TW202218197A publication Critical patent/TW202218197A/en
Application granted granted Critical
Publication of TWI782347B publication Critical patent/TWI782347B/en

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A sensing device is provided. The sensing device includes a substrate having a first side, and a second side opposite the first side, wherein the first side has a groove; an infrared energy absorbing unit disposed on the groove, and including plural metal layers and plural dielectric layers stacked on top of each other, and a thermocouple, wherein the uppermost metal layer includes a combination of array metal geometrical patterns, and the combination of array metal geometrical patterns includes plural array metal geometrical patterns having specific sizes and shapes; and a temperature sensing unit disposed around the first side, wherein the thermocouple is coupled to the temperature sensing unit.

Description

溫度感測裝置及其製造方法 Temperature sensing device and manufacturing method thereof

本發明係關於一種感測裝置及其製造方法,尤指一種溫度感測裝置及其製造方法。 The present invention relates to a sensing device and a manufacturing method thereof, in particular to a temperature sensing device and a manufacturing method thereof.

紅外線感測器的應用在日常生活中相當普及,早期技術多半是使用光子型元件作為紅外線感測器,而光子型感測器包含了光導式及光敏電阻式,光子型感測器具有高響應度和元件反應迅速等優點,但無法做大波段的吸收。此外,光子型感測器之磊晶製程繁複,故製造成本相當高。 The application of infrared sensors is quite popular in daily life. Most of the early technologies use photonic components as infrared sensors, and photonic sensors include photoconductive and photoresistive types. Photonic sensors have high response It has the advantages of high speed and rapid response of components, but it cannot absorb large wavebands. In addition, the epitaxial process of the photonic sensor is complicated, so the manufacturing cost is quite high.

另一種利用紅外線吸收轉為熱以作為感測的熱型紅外線感測器,和光子型感應器相較,紅外線吸收波段較廣,且隨著半導體製程與微機電技術的成熟,熱型紅外線感測器的性能提升、尺寸縮小、大批次製造、及成本下降等 因素,熱型紅外線感測器為近期紅外線感測器發展的主要方向。 Another thermal infrared sensor uses infrared absorption into heat for sensing. Compared with photonic sensors, the infrared absorption band is wider, and with the maturity of semiconductor manufacturing process and MEMS technology, thermal infrared sensor performance improvement, size reduction, high-volume manufacturing, and cost reduction of the tester Factors, thermal infrared sensor is the main direction of the recent infrared sensor development.

熱型紅外線感測器依據感測原理可分為焦電型(Pyroelectric type)、熱電型(Thermoelectric type)、及熱敏阻型(Bolometer)。焦電型紅外線感測器的響應度與溫度變化速率相關,而材料內部的電偶極矩平衡後就不會有訊號輸出,僅能量測交流訊號。熱電型紅外線感測器是利用熱電材料兩端存在的溫度差,使材料兩端之電子濃度產生差異,形成電位差。傳統上,熱電型紅外線感測器尺寸較大、響應度也較差。熱敏阻型紅外線感測器是利用高溫度電阻係數的材料來感測溫度,但運作時需要供給工作電壓或電流,且元件本身會產生焦耳熱,容易產生誤差。 Thermal infrared sensors can be classified into a pyroelectric type, a thermoelectric type, and a thermistor type (Bolometer) according to the sensing principle. The responsivity of the pyroelectric infrared sensor is related to the temperature change rate. After the electric dipole moment inside the material is balanced, there will be no signal output, and only the AC signal can be measured. The pyroelectric infrared sensor utilizes the temperature difference between the two ends of the pyroelectric material to make the electron concentration at the two ends of the material different to form a potential difference. Traditionally, pyroelectric infrared sensors are larger in size and less responsive. The thermistor infrared sensor uses materials with high temperature resistivity to sense temperature, but it needs to supply operating voltage or current during operation, and the component itself will generate Joule heat, which is prone to errors.

無論是光子型或熱型紅外線感測器,各有其優劣。對於紅外線感測器的開發,不外乎微型化、低功率消耗、成本降低、及性能提升等需求。目前,微機電製程和半導體製程整合並加以改良,期改善熱電式紅外線感測器響應度較低的問題。 Whether it is a photonic or thermal infrared sensor, each has its own advantages and disadvantages. For the development of infrared sensors, it is nothing more than miniaturization, low power consumption, cost reduction, and performance improvement. At present, the MEMS process and the semiconductor process are integrated and improved, and the problem of low responsivity of the pyroelectric infrared sensor is expected to be improved.

爰是之故,申請人有鑑於習知技術之缺失,發明出本案「溫度感測裝置及其製造方法」,用以改善上述缺 失。 For this reason, in view of the deficiencies of the prior art, the applicant invented the present "temperature sensing device and its manufacturing method" to improve the above deficiencies. lose.

本案之一面向係提供一種感測裝置,包含一基板,具有一第一側及相對於該第一側之一第二側,其中該第一側具有一溝槽;一紅外線能量吸收單元,設置於該溝槽上,且包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,其中最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具有特定尺寸及形狀之陣列金屬幾何圖案;以及一溫度感測單元,設置於該第一側之周圍,其中該熱電耦耦接於該溫度感測單元。 One aspect of the present application is to provide a sensing device, which includes a substrate having a first side and a second side opposite to the first side, wherein the first side has a groove; an infrared energy absorbing unit provided with On the trench, it includes a plurality of metal layers and a plurality of dielectric layers stacked alternately with each other, and a thermocouple, wherein the uppermost metal layer includes an array of metal geometric pattern combinations, and the array metal geometric pattern combination includes a plurality of an array metal geometric pattern of specific size and shape; and a temperature sensing unit disposed around the first side, wherein the thermoelectricity is coupled to the temperature sensing unit.

本案之另一面向係提供一種製造一感測裝置之方法,包含下列步驟:提供一基板,該基板具有一第一側及相對於該第一側之一第二側,且該第一側具有一溝槽;形成一紅外線能量吸收單元於該溝槽上,其中該紅外線能量吸收單元包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具有特定尺寸及形狀之陣列金屬幾何圖案;以及形成一溫度感測單元於該第一側 之周圍,其中該熱電耦耦接於該溫度感測單元。 Another aspect of the present application is to provide a method of manufacturing a sensing device, comprising the steps of: providing a substrate having a first side and a second side opposite to the first side, and the first side has a trench; an infrared energy absorption unit is formed on the trench, wherein the infrared energy absorption unit includes a plurality of metal layers, a plurality of dielectric layers and a thermocouple, and the uppermost metal layer includes an array of metal layers. a geometric pattern combination, and the array metal geometric pattern combination includes a plurality of array metal geometric patterns with a specific size and shape; and a temperature sensing unit is formed on the first side around, wherein the thermoelectric coupling is coupled to the temperature sensing unit.

本案之又一面向係提供一種感測裝置,包含一基板;一紅外線能量吸收單元,具一上部,其中該上部包含一上金屬層;一下金屬層;一介電層,設置於該上及下金屬層間;以及複數電偶極矩共振媒介,設置於該上及下金屬層間,俾各該電偶極矩共振媒介分別使該介電層能在吾人所欲之光譜範圍吸收光能;以及一熱電耦,設置於該基板與該紅外線能量吸收單元之間。 Another aspect of the present application is to provide a sensing device including a substrate; an infrared energy absorption unit having an upper part, wherein the upper part includes an upper metal layer; a lower metal layer; and a dielectric layer disposed on the upper and lower parts between metal layers; and a plurality of electric dipole moment resonant media, disposed between the upper and lower metal layers, so that each of the electric dipole moment resonance media respectively enables the dielectric layer to absorb light energy in the spectral range we desire; and a The thermocouple is arranged between the substrate and the infrared energy absorption unit.

10:感測裝置 10: Sensing device

11:基板 11: Substrate

13:金屬層 13: Metal layer

14:外接金屬走線 14: External metal traces

15:上金屬層 15: Upper metal layer

16:介電層 16: Dielectric layer

17:下金屬層 17: Lower metal layer

19:連通金屬 19: Connecting Metals

20:紅外線吸收單元 20: Infrared absorption unit

21:紅外線吸收單元上部 21: The upper part of the infrared absorption unit

22:電漿子超材料吸收層 22: Plasmonic metamaterial absorber layer

30:溫度感測單元 30: Temperature sensing unit

31:熱電耦 31: Thermocouple

32:熱傳結構 32: Heat transfer structure

33:繞折熱電阻 33: Winding thermal resistance

35:溝槽 35: Groove

圖1為本發明之一實施例的溫度感測裝置之立體示意圖。 FIG. 1 is a three-dimensional schematic diagram of a temperature sensing device according to an embodiment of the present invention.

圖2為圖1之剖面示意圖。 FIG. 2 is a schematic cross-sectional view of FIG. 1 .

圖3顯示圖1之熱電耦。 FIG. 3 shows the thermocouple of FIG. 1 .

圖4為陣列金屬幾何圖案組合之示意圖。 FIG. 4 is a schematic diagram of an array metal geometric pattern combination.

圖5為陣列金屬幾何圖案組合之剖面示意圖。 FIG. 5 is a schematic cross-sectional view of an array metal geometric pattern combination.

圖6A-6B顯示上金屬層為十字形圖案。 6A-6B show that the upper metal layer is in a cross-shaped pattern.

圖7A-7B顯示上金屬層為圓形圖案。 7A-7B show that the upper metal layer is in a circular pattern.

圖8A-8D顯示熱電式紅外線溫度感測裝置之製 程。 8A-8D show the fabrication of a pyroelectric infrared temperature sensing device Procedure.

圖9A顯示陣列金屬十字形圖案之模擬光譜 Figure 9A shows the simulated spectrum of the array metal cross pattern

圖9B顯示陣列金屬圓形圖案之模擬光譜 Figure 9B shows the simulated spectrum of the array metal circular pattern

圖10顯示超材料吸收層的波段設計在8至14微米 Figure 10 shows the band design of the metamaterial absorber layer between 8 and 14 μm

本案之構想是使用現有的CMOS製程平台。CMOS製程平台具有多層金屬層與多層多晶矽層交錯堆疊的結構,以製作微機電熱電式溫度感測單元,其中CMOS製程平台的金屬層、介電層、金屬層堆疊成一三明治結構,利用微機電結構特性,製作出電漿子超材料吸收層,仿造介電材料中的電耦極矩共振,可藉由調整微機電結構的幾何尺寸大小,來改變吸收波段或吸收度,進而增進元件吸收紅外線的能力,並提升溫度感測單元的靈敏度。原本結構中的介電層,可以是SíO2、Sí3N4等,介電層本身也可藉本身分子鍵共振的性質來吸收紅外光。 The idea of this case is to use the existing CMOS process platform. The CMOS process platform has a structure in which multi-layer metal layers and multi-layer polysilicon layers are alternately stacked to fabricate a MEMS thermoelectric temperature sensing unit. The metal layer, dielectric layer, and metal layer of the CMOS process platform are stacked into a sandwich structure, and the MEMS structure is used. It can make a plasmonic metamaterial absorption layer, imitate the electric coupling moment resonance in the dielectric material, and adjust the geometric size of the micro-electromechanical structure to change the absorption band or absorption, thereby improving the absorption of infrared rays. capability, and improve the sensitivity of the temperature sensing unit. The dielectric layer in the original structure can be SíO 2 , Sí 3 N 4 , etc. The dielectric layer itself can also absorb infrared light by virtue of its own molecular bond resonance properties.

請參閱圖1,其為本發明之一實施例的溫度感測裝置(10)之立體示意圖。溫度感測裝置(10)包含一基板(11)、一溫度感測單元(30)、及一紅外線吸收單元(20)。 Please refer to FIG. 1, which is a three-dimensional schematic diagram of a temperature sensing device (10) according to an embodiment of the present invention. The temperature sensing device (10) comprises a substrate (11), a temperature sensing unit (30), and an infrared absorption unit (20).

請參閱圖2及圖3,圖2為圖1之剖面示意圖,而圖3顯示圖1之熱電耦。溫度感測裝置(10)包含一基板(11)及一紅外線能量吸收單元(20)。該基板(11)的其中一側具有一溝槽(35),該紅外線能量吸收單元(20)設置在溝槽(35)上,溝槽(35)是用來隔絕基板(11)和該紅外線能量吸收單元(20),使紅外線能量吸收單元(20)所吸收的熱能集中,減少從基板(11)散出。該紅外線能量吸收單元(20)包含彼此交錯堆疊之複數金屬層(13)及複數介電層(16)、以及一熱電耦(31),且該紅外線能量吸收單元的上部(21)具有由上金屬層(15)、介電層(16)、及下金屬層(17)所堆疊成的三明治結構,稱為電漿子超材料吸收層(22)。最上層之上金屬層(15)包含一陣列金屬幾何圖案組合(40),如第4圖所示。該陣列金屬幾何圖案組合(40)包含複數具有特定尺寸及形狀之陣列金屬幾何圖案(41)、(42),陣列金屬幾何圖案(41)、(42)係作為電偶極矩共振媒介,以增進元件吸收紅外線的能力,並提升感測裝置的靈敏度。 Please refer to FIG. 2 and FIG. 3 , FIG. 2 is a schematic cross-sectional view of FIG. 1 , and FIG. 3 shows the thermocouple of FIG. 1 . The temperature sensing device (10) comprises a substrate (11) and an infrared energy absorption unit (20). One side of the substrate (11) has a groove (35), the infrared energy absorption unit (20) is arranged on the groove (35), and the groove (35) is used to isolate the substrate (11) from the infrared rays The energy absorbing unit (20) concentrates the thermal energy absorbed by the infrared energy absorbing unit (20) and reduces the dissipation from the substrate (11). The infrared energy absorbing unit (20) comprises a plurality of metal layers (13) and a plurality of dielectric layers (16) stacked alternately with each other, and a thermocouple (31), and the upper part (21) of the infrared energy absorbing unit has a The sandwich structure formed by stacking the metal layer (15), the dielectric layer (16), and the lower metal layer (17) is called a plasmonic metamaterial absorption layer (22). The uppermost metal layer (15) comprises an array of metal geometric pattern combinations (40), as shown in FIG. 4 . The array metal geometric pattern combination (40) includes a plurality of array metal geometric patterns (41), (42) with specific sizes and shapes, and the array metal geometric patterns (41), (42) are used as electric dipole moment resonance media, so as to Improve the ability of the component to absorb infrared rays and improve the sensitivity of the sensing device.

當紅外線能量吸收單元(20)吸收紅外線後,其溫度會上升,因熱電效應,其內部的載子濃度亦會隨之上升而產生電流,並藉由溫度感測單元(30)來進行溫度量測。該溫度感測單元(30)具有一熱電耦結構(31)及一熱傳結構(32),其中該熱傳結構(32)係為一多晶矽層。該熱電耦結構(31)包含一鋁銅金屬、一N型多晶矽、或一P型多晶 矽,且為一長條狀熱電阻或一繞折熱電阻(33)。該熱傳結構(32)將電流藉由連通金屬(19)接通多層金屬層(13),並藉由外接金屬走線(14)將訊號傳送至該溫度感測裝置(10)之外部。 When the infrared energy absorption unit (20) absorbs infrared rays, its temperature will rise, and due to the pyroelectric effect, the carrier concentration inside the infrared energy absorption unit (20) will also increase accordingly to generate current, and the temperature sensing unit (30) is used to measure the temperature. Measurement. The temperature sensing unit (30) has a thermocouple structure (31) and a heat transfer structure (32), wherein the heat transfer structure (32) is a polysilicon layer. The thermocouple structure (31) includes an aluminum-copper metal, an N-type polysilicon, or a P-type polysilicon silicon, and is a long strip thermal resistance or a winding thermal resistance (33). The heat transfer structure (32) connects the current to the multi-layer metal layer (13) through the connecting metal (19), and transmits the signal to the outside of the temperature sensing device (10) through the external metal wiring (14).

該紅外線能量吸收單元(20)的上部(21)如第2圖所示,其具有由上金屬層(15)、介電層(16)、及下金屬層(17)所堆疊成的三明治結構,如第5圖所示,稱為電漿子超材料吸收層(22)。電漿子超材料是藉由陣列化的次波長結構所建構的人工材料,可以藉由改變幾何尺寸或材料選用來改變光學性質。本案的電漿子超材料吸收層(22)是由上層次波長金屬天線、中層介電層與下層金屬反射層所組成。上層次波長金屬天線內的電子變化朝電場反方向運動,形成電漿子共振,並與下層金屬反射層產生電耦極矩共振,可依據吸收波段需求,設計上金屬層(15)、介電層(16)、及下金屬層(17)的幾何圖形和尺寸。 The upper part (21) of the infrared energy absorption unit (20) is shown in Fig. 2, which has a sandwich structure formed by stacking an upper metal layer (15), a dielectric layer (16), and a lower metal layer (17). , as shown in Figure 5, is called the plasmonic metamaterial absorber layer (22). Plasmonic metamaterials are artificial materials constructed by arrayed subwavelength structures, which can alter optical properties by changing geometric dimensions or material selection. The plasmonic metamaterial absorption layer (22) in this case is composed of an upper-layer wavelength metal antenna, a middle-layer dielectric layer and a lower-layer metal reflection layer. The electrons in the upper-layer wavelength metal antenna move in the opposite direction of the electric field, forming plasmonic resonance, and generating electric coupling moment resonance with the lower metal reflective layer. According to the requirements of the absorption band, the upper metal layer (15), the dielectric Layer (16), and underlying metal layer (17) geometry and dimensions.

而電漿子超材料吸收層(22)設計在偶合區時,即電漿子超材料吸收層(22)和中層介電層的電偶極矩同時產生,兩者有庫倫作用力而產生耦合現象,其吸收波長不會隨天線幾何尺寸線性增加,而是由兩電偶極矩耦合後,產生兩個特徵頻率所決定。可利用以下公式推算調整電漿子超材料吸收層(22)的吸收峰值和峰值間距。 When the plasmonic metamaterial absorption layer (22) is designed in the coupling region, that is, the electric dipole moments of the plasmonic metamaterial absorption layer (22) and the intermediate dielectric layer are generated at the same time, and the two have Coulomb force to generate coupling It is a phenomenon that the absorption wavelength does not increase linearly with the geometric size of the antenna, but is determined by the coupling of the two electric dipole moments to generate two characteristic frequencies. The absorption peak and peak spacing of the plasmonic metamaterial absorption layer (22) can be calculated and adjusted using the following formulas.

Figure 109137960-A0101-12-0007-1
△ω為兩特徵頻率的間距,在偶合區的吸收頻率將受偶合強度V及金 屬層-介電層-金屬層(MIM)超材吸收層(22)與介電層(16)在非偶合區的性質(ωMIM、ω0、γMIM、γ0)影響,因此可透過設計這些參數來調整超材料吸收層(22)在偶合區的吸收峰值和峰值間距。
Figure 109137960-A0101-12-0007-1
△ω is the distance between the two characteristic frequencies, the absorption frequency in the coupling region will be affected by the coupling strength V and the metal-dielectric-metal (MIM) metamaterial absorption layer (22) and the dielectric layer (16) in the non-coupling region. The properties of the region (ω MIM , ω 0 , γ MIM , γ 0 ) are affected, so the absorption peak and peak spacing of the metamaterial absorber layer (22) in the coupling region can be adjusted by designing these parameters.

最上層之上金屬層(15)包含一陣列金屬幾何圖案組合(40),如第4圖所示。該陣列金屬幾何圖案組合(40)包含複數具有特定尺寸及形狀之陣列金屬幾何圖案(41)、(42),其圖案可以是十字形圖案(41)或圓形圖案(42),但不已此為限。該十字形圖案(41)為一對垂直軸線,該軸線的線寬d在0.5~1.5微米之間,而線長l為1.5~4微米之間;而該圓形圖案(42)之直徑D為1.5~4微米之間,其模擬光譜顯示有三個吸收峰值,如圖9A-9B所示。 The uppermost metal layer (15) comprises an array of metal geometric pattern combinations (40), as shown in FIG. 4 . The array metal geometric pattern combination (40) includes a plurality of array metal geometric patterns (41), (42) with specific sizes and shapes, and the pattern may be a cross pattern (41) or a circular pattern (42), but not only limited. The cross-shaped pattern (41) is a pair of vertical axes, the line width d of the axes is between 0.5 and 1.5 micrometers, and the line length l is between 1.5 and 4 micrometers; and the diameter D of the circular pattern (42) It is between 1.5 and 4 microns, and its simulated spectrum shows three absorption peaks, as shown in Figures 9A-9B.

當該軸線的線寬d在0.5~1.5微米之間,而線長l為1.5~4微米之間,或該圓形圖案之直徑D為1.5~4微米之間時,且位於上金屬層(15)和下金屬層(17)之間的介電層(16)為二氧化矽時(如圖5所示),產生的偶合吸收峰值介於12至19微米之間,而二氧化矽介電層(16)利用分子鍵共振特性吸收紅外光,在波長8.14微米與9.51微米的位置具有吸收現象。由此可知,若將超材料吸收層(22)的波段設計在8至14微米波段(如圖10所示),位於上金屬層(15)與下金屬層(17)中間的介電層(16)本身也會有吸收現象,因此製作電漿子超材料吸收層(22)時,可以將偶合效應納入考量。 When the line width d of the axis is between 0.5 and 1.5 microns, and the line length l is between 1.5 and 4 microns, or the diameter D of the circular pattern is between 1.5 and 4 microns, and the upper metal layer ( When the dielectric layer (16) between 15) and the lower metal layer (17) is silicon dioxide (as shown in Figure 5), the resulting coupling absorption peak is between 12 and 19 microns, while the silicon dioxide dielectric The electric layer (16) absorbs infrared light by utilizing the resonance characteristic of molecular bonds, and has an absorption phenomenon at wavelengths of 8.14 microns and 9.51 microns. It can be seen from this that if the wavelength band of the metamaterial absorption layer (22) is designed to be in the 8 to 14 micron band (as shown in Figure 10), the dielectric layer ( 16) There will also be an absorption phenomenon, so the coupling effect can be taken into consideration when fabricating the plasmonic metamaterial absorption layer (22).

因此,十字形圖案(41)(如圖6A-6B所示)是選用軸線線寬d在0.5~1.5微米之間,線長l在2.5微米,並搭配直徑D在1.5微米的圓形圖案(42)(如圖7A-7B所示),透過光譜線性疊加,達到波長在8到14微米波段內有較平坦的吸收光譜。8到14微米波段為人體感測相關所需的波段,而軸線線寬d在1微米,線長l在2.5微米,並搭配直徑D在1.5微米的圓形圖案(42),為最佳值。透過不同圖形陣列的電漿子超材料吸收層(22),可在目標波段8到14微米之間,提升紅外線吸收率,和沒有電漿子超材料吸收層(22)的設計相比,能提升20%以上的元件響度,且和沒有電漿子超材料吸收層(22)的設計相比,其檢出能力進步21%。 Therefore, the cross-shaped pattern (41) (as shown in Figs. 6A-6B) is selected to have an axis line width d between 0.5 and 1.5 microns, a line length l of 2.5 microns, and a circular pattern with a diameter D of 1.5 microns ( 42) (as shown in Figures 7A-7B), the transmission spectrum is linearly superimposed to achieve a relatively flat absorption spectrum in the wavelength range of 8 to 14 microns. The 8 to 14 micron waveband is required for human body sensing, and the axis line width d is 1 micron, the line length l is 2.5 microns, and with a circular pattern (42) with a diameter D of 1.5 microns, it is the best value . Through the plasmonic metamaterial absorbing layer (22) of different pattern arrays, the infrared absorption rate can be improved in the target wavelength band between 8 and 14 microns, and compared with the design without the plasmonic metamaterial absorbing layer (22), the absorption rate of infrared rays can be improved. The loudness of the element is improved by more than 20%, and the detection capability is improved by 21% compared with the design without the plasmonic metamaterial absorption layer (22).

該紅外線能量吸收單元(20)中的上金屬層(15)及上金屬層(17)可以是鋁銅合金,但不以此為限。介電層(16)可以是二氧化矽SiO2或氮化矽Si3N4,但不以此為限,且常用二氧化矽SiO2作為介電層(16)之材料,二氧化矽SiO2的吸收波長介於8.14微米到9.51微米之間。為了增加吸收波長的範圍,利用紅外線能量吸收單元(20)中的電漿子超材料吸收層(22),使入射光在吸收層(22)內反覆共振來達到特定波段的吸收。而本發明正是利用最上層之上金屬層(15),蝕刻成具有特定尺寸及形狀之金屬幾何圖案(41)、(42),並調整金屬幾何圖案(41)、(42)的尺寸及形狀,來達到特定波段的吸收。 The upper metal layer (15) and the upper metal layer (17) in the infrared energy absorption unit (20) may be aluminum-copper alloys, but not limited thereto. The dielectric layer (16) can be silicon dioxide SiO 2 or silicon nitride Si 3 N 4 , but not limited thereto, and silicon dioxide SiO 2 is commonly used as the material of the dielectric layer ( 16 ), and silicon dioxide SiO 2 2 has an absorption wavelength between 8.14 microns and 9.51 microns. In order to increase the range of absorption wavelengths, the plasmonic metamaterial absorption layer (22) in the infrared energy absorption unit (20) is used to repeatedly resonate the incident light in the absorption layer (22) to achieve absorption in a specific wavelength band. In the present invention, the metal layer (15) on the uppermost layer is used to etch metal geometric patterns (41), (42) with specific sizes and shapes, and the size and size of the metal geometric patterns (41) and (42) are adjusted. shape to achieve the absorption of a specific waveband.

熱電式紅外線溫度感測單元(30)之製程如圖 8A-8D所示。如圖8A所示,對一CMOS晶片使用硫酸蝕刻液與雙氧水,在攝氏150度下進行金屬濕蝕刻,將晶片中的金屬犧牲層移除以定義出熱電式紅外線感測器的區域,如圖8B所示。接著,對前一道製程所定義出的區域作氟化氙(XeF2)等向性乾蝕刻,將紅外線吸收單元(20)下方的矽基材藉由乾蝕刻而掏空,使紅外線吸收單元(20)懸浮,達到薄膜絕熱的效果,如圖8C所示,如此可使溫度感測單元(30)的靈敏度提升。最後,再用反應離子蝕刻將紅外線吸收單元(20)上方的二氧化矽移除,以形成上金屬層(15),並讓具有特殊形狀和尺寸的金屬幾何圖案(41)、(42)露出,如圖8D所示,之後接上外接金屬走線(14),以進行訊號量測。 The manufacturing process of the pyroelectric infrared temperature sensing unit (30) is shown in the figure 8A-8D shown. As shown in FIG. 8A , a CMOS wafer is subjected to wet etching of metal using sulfuric acid etchant and hydrogen peroxide at 150 degrees Celsius, and the metal sacrificial layer in the wafer is removed to define the area of the pyroelectric infrared sensor, as shown in the figure 8B. Then, isotropic dry etching of xenon fluoride (XeF2) is performed on the area defined by the previous process, and the silicon substrate under the infrared absorption unit (20) is hollowed out by dry etching, so that the infrared absorption unit (20) is hollowed out by dry etching. ) is suspended to achieve the effect of thin film thermal insulation, as shown in FIG. 8C , so that the sensitivity of the temperature sensing unit (30) can be improved. Finally, the silicon dioxide above the infrared absorption unit (20) is removed by reactive ion etching to form an upper metal layer (15), and the metal geometric patterns (41), (42) with special shapes and sizes are exposed , as shown in FIG. 8D, then connect the external metal trace (14) for signal measurement.

實施例:Example:

1.一種感測裝置,包含: 1. A sensing device comprising:

一基板,具有一第一側及相對於該第一側之一第二側,其中該第一側具有一溝槽; a substrate having a first side and a second side opposite to the first side, wherein the first side has a groove;

一紅外線能量吸收單元,設置於該溝槽上,且包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,其中最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具 有特定尺寸及形狀之陣列金屬幾何圖案;以及 An infrared energy absorbing unit is disposed on the trench, and includes a plurality of metal layers and a plurality of dielectric layers stacked alternately with each other, and a thermocouple, wherein the uppermost metal layer includes an array of metal geometric pattern combinations, and the array Metal geometric pattern set contains multiple tools Arrayed metallic geometric patterns of specified size and shape; and

一溫度感測單元,設置於該第一側之周圍,其中該熱電耦耦接於該溫度感測單元。 A temperature sensing unit is disposed around the first side, wherein the thermoelectric coupling is coupled to the temperature sensing unit.

2.如實施例1所述的感測裝置,其中: 2. The sensing device of embodiment 1, wherein:

該溫度感測單元具有一熱電耦結構及一熱傳結構; The temperature sensing unit has a thermocouple structure and a heat transfer structure;

該熱電耦結構包含一鋁銅金屬、一N型多晶矽、或一P型多晶矽,且為一長條狀熱電阻或一繞折熱電阻;以及 The thermocouple structure includes an aluminum-copper metal, an N-type polysilicon, or a P-type polysilicon, and is a long strip thermal resistance or a winding thermal resistance; and

該熱傳結構將電流傳導至該感測裝置之外部。 The heat transfer structure conducts current to the outside of the sensing device.

3.如實施例1~2所述的感測裝置,其中該介電層的材料為SiO2或Si3N43. The sensing device according to embodiments 1-2, wherein the material of the dielectric layer is SiO 2 or Si 3 N 4 .

4.如實施例1~3所述的感測裝置,其中該陣列金屬幾何圖案為一十字形圖案或一圓形圖案。 4. The sensing device according to embodiments 1-3, wherein the array metal geometric pattern is a cross-shaped pattern or a circular pattern.

5.如實施例1~4所述的感測裝置,其中: 5. The sensing device of embodiments 1-4, wherein:

該十字形圖案之大小為1.5~4微米; The size of the cross-shaped pattern is 1.5-4 microns;

該十字形圖案之線寬為0.5~1.5微米;以及 The line width of the cross-shaped pattern is 0.5-1.5 microns; and

該圓形圖案之直徑為1.5~4微米。 The diameter of the circular pattern is 1.5-4 microns.

6.如實施例1~5所述的感測裝置,其中該紅外線能量吸收單元經由使用該陣列金屬幾何圖案陣列而使該介電層吸收波長介於7~15微米的紅外線的能量。 6. The sensing device of embodiments 1-5, wherein the infrared energy absorption unit enables the dielectric layer to absorb infrared energy with wavelengths ranging from 7 to 15 microns by using the array of metal geometric patterns.

7.一種製造一感測裝置之方法,包含下列步驟: 7. A method of manufacturing a sensing device, comprising the steps of:

提供一基板,該基板具有一第一側及相對於該第一側之一第二側,且該第一側具有一溝槽; providing a substrate, the substrate has a first side and a second side opposite to the first side, and the first side has a groove;

形成一紅外線能量吸收單元於該溝槽上,其中該紅外線能量吸收單元包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具有特定尺寸及形狀之陣列金屬幾何圖案;以及 forming an infrared energy absorbing unit on the trench, wherein the infrared energy absorbing unit includes a plurality of metal layers and a plurality of dielectric layers and a thermocouple stacked alternately with each other, and the uppermost metal layer includes an array of metal geometric pattern combinations, and the array metal geometric pattern combination includes a plurality of array metal geometric patterns having a specific size and shape; and

形成一溫度感測單元於該第一側之周圍,其中該熱電耦耦接於該溫度感測單元。 A temperature sensing unit is formed around the first side, wherein the thermoelectric coupling is coupled to the temperature sensing unit.

8.如實施例7所述的方法,其中: 8. The method of embodiment 7, wherein:

該溫度感測單元具有一熱電耦結構及一熱傳結構; The temperature sensing unit has a thermocouple structure and a heat transfer structure;

該熱電耦結構包含一鋁銅金屬、一N型多晶矽、或一P型多晶矽,且為一長條狀熱電阻或一繞折熱電阻; The thermocouple structure includes an aluminum-copper metal, an N-type polysilicon, or a P-type polysilicon, and is a long strip thermal resistance or a winding thermal resistance;

該熱傳結構將電流傳導至該感測裝置之外部; the heat transfer structure conducts current to the outside of the sensing device;

該介電層的材料為SiO2或Si3N4The material of the dielectric layer is SiO 2 or Si 3 N 4 ;

該陣列金屬幾何圖案為一十字形圖案或一圓形圖案; The array metal geometric pattern is a cross pattern or a circular pattern;

該紅外線能量吸收單元經由使用該陣列金屬幾何圖案陣列而使該介電層吸收波長介於7~15微米的紅外線的能量; The infrared energy absorption unit enables the dielectric layer to absorb infrared energy with wavelengths ranging from 7 to 15 microns by using the array metal geometric pattern array;

該十字形圖案之大小為1.5~4微米; The size of the cross-shaped pattern is 1.5-4 microns;

該十字形圖案之線寬為0.5~1.5微米;以及 The line width of the cross-shaped pattern is 0.5-1.5 microns; and

該圓形圖案之直徑為1.5~4微米。 The diameter of the circular pattern is 1.5-4 microns.

9.一種感測裝置,包含: 9. A sensing device comprising:

一基板; a substrate;

一紅外線能量吸收單元,具一上部,其中該上部包含: An infrared energy absorbing unit having an upper portion, wherein the upper portion includes:

一上金屬層; a metal layer;

一下金屬層; next metal layer;

一介電層,設置於該上及下金屬層間;以及 a dielectric layer disposed between the upper and lower metal layers; and

複數電偶極矩共振媒介,設置於該上及下金屬層間,俾各該電偶極矩共振媒介分別使該介電層能在吾人所欲之光譜範圍吸收光能;以及 a plurality of electric dipole moment resonant media, disposed between the upper and lower metal layers, so that each of the electric dipole moment resonance media respectively enables the dielectric layer to absorb light energy in a desired spectral range; and

一熱電耦,設置於該基板與該紅外線能量吸收單元之間。 A thermocouple is arranged between the substrate and the infrared energy absorption unit.

10.如實施例9所述的感測裝置,其中各該電偶極矩共振媒介為在該上金屬層上之一圖案化胞元。 10. The sensing device of embodiment 9, wherein each of the electric dipole moment resonance mediators is a patterned cell on the upper metal layer.

11:基板 11: Substrate

13:金屬層 13: Metal layer

14:外接金屬走線 14: External metal traces

15:上金屬層 15: Upper metal layer

16:介電層 16: Dielectric layer

17:下金屬層 17: Lower metal layer

19:連通金屬 19: Connecting Metals

20:紅外線吸收單元 20: Infrared absorption unit

21:紅外線吸收單元上部 21: The upper part of the infrared absorption unit

22:電漿子超材料吸收層 22: Plasmonic metamaterial absorber layer

35:溝槽 35: Groove

Claims (10)

一種感測裝置,包含: A sensing device, comprising: 一基板,具有一第一側及相對於該第一側之一第二側,其中該第一側具有一溝槽; a substrate having a first side and a second side opposite to the first side, wherein the first side has a groove; 一紅外線能量吸收單元,設置於該溝槽上,且包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,其中最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具有特定尺寸及形狀之陣列金屬幾何圖案;以及 An infrared energy absorbing unit is disposed on the trench, and includes a plurality of metal layers and a plurality of dielectric layers stacked alternately with each other, and a thermocouple, wherein the uppermost metal layer includes an array of metal geometric pattern combinations, and the array The metal geometric pattern combination includes a plurality of arrayed metal geometric patterns having a specific size and shape; and 一溫度感測單元,設置於該第一側之周圍,其中該熱電耦耦接於該溫度感測單元。 A temperature sensing unit is disposed around the first side, wherein the thermoelectric coupling is coupled to the temperature sensing unit. 如請求項1所述的感測裝置,其中: The sensing device of claim 1, wherein: 該溫度感測單元具有一熱電耦結構及一熱傳結構; The temperature sensing unit has a thermocouple structure and a heat transfer structure; 該熱電耦結構包含一鋁銅金屬、一N型多晶矽、或一P型多晶矽,且為一長條狀熱電阻或一繞折熱電阻;以及 The thermocouple structure includes an aluminum-copper metal, an N-type polysilicon, or a P-type polysilicon, and is a long strip thermal resistance or a winding thermal resistance; and 該熱傳結構將電流傳導至該感測裝置之外部。 The heat transfer structure conducts current to the outside of the sensing device. 如請求項1所述的感測裝置,其中該介電層的材料為SiO2或Si3N4The sensing device according to claim 1, wherein the material of the dielectric layer is SiO 2 or Si 3 N 4 . 如請求項1所述的感測裝置,其中該陣列金屬幾何圖案為一十字形圖案或一圓形圖案。 The sensing device of claim 1, wherein the array metal geometric pattern is a cross-shaped pattern or a circular pattern. 如請求項4所述的感測裝置,其中: The sensing device of claim 4, wherein: 該十字形圖案之大小為1.5~4微米; The size of the cross-shaped pattern is 1.5-4 microns; 該十字形圖案之線寬為0.5~1.5微米;以及 The line width of the cross-shaped pattern is 0.5-1.5 microns; and 該圓形圖案之直徑為1.5~4微米。 The diameter of the circular pattern is 1.5-4 microns. 如請求項1所述的感測裝置,其中該紅外線能量吸收單元經由使用該陣列金屬幾何圖案陣列而使該介電層吸收波長介於7~15微米的紅外線的能量。 The sensing device of claim 1, wherein the infrared energy absorption unit enables the dielectric layer to absorb infrared energy with wavelengths ranging from 7 to 15 microns by using the array metal geometric pattern array. 一種製造一感測裝置之方法,包含下列步驟: A method of manufacturing a sensing device, comprising the following steps: 提供一基板,該基板具有一第一側及相對於該第一側之一第二側,且該第一側具有一溝槽; providing a substrate, the substrate has a first side and a second side opposite to the first side, and the first side has a groove; 形成一紅外線能量吸收單元於該溝槽上,其中該紅外線能量吸收單元包含彼此交錯堆疊之複數金屬層及複數介電層、以及一熱電耦,最上層之金屬層包含一陣列金屬幾何圖案組合,且該陣列金屬幾何圖案組合包含複數具有特定尺寸及形狀之陣列金屬幾何圖案;以及 forming an infrared energy absorbing unit on the trench, wherein the infrared energy absorbing unit includes a plurality of metal layers and a plurality of dielectric layers and a thermocouple stacked alternately with each other, and the uppermost metal layer includes an array of metal geometric pattern combinations, and the array metal geometric pattern combination includes a plurality of array metal geometric patterns having a specific size and shape; and 形成一溫度感測單元於該第一側之周圍,其中該熱電耦耦接於該溫度感測單元。 A temperature sensing unit is formed around the first side, wherein the thermoelectric coupling is coupled to the temperature sensing unit. 如請求項7所述的方法,其中: The method of claim 7, wherein: 該溫度感測單元具有一熱電耦結構及一熱傳結構; The temperature sensing unit has a thermocouple structure and a heat transfer structure; 該熱電耦結構包含一鋁銅金屬、一N型多晶矽、或一P型多晶矽,且為一長條狀熱電阻或一繞折熱電阻; The thermocouple structure includes an aluminum-copper metal, an N-type polysilicon, or a P-type polysilicon, and is a long strip thermal resistance or a winding thermal resistance; 該熱傳結構將電流傳導至該感測裝置之外部; the heat transfer structure conducts current to the outside of the sensing device; 該介電層的材料為SiO2或Si3N4The material of the dielectric layer is SiO 2 or Si 3 N 4 ; 該陣列金屬幾何圖案為一十字形圖案或一圓形圖案; The array metal geometric pattern is a cross pattern or a circular pattern; 該紅外線能量吸收單元經由使用該陣列金屬幾何圖案陣列而使該介電層吸收波長介於7~15微米的紅外線的能量; The infrared energy absorption unit enables the dielectric layer to absorb infrared energy with wavelengths ranging from 7 to 15 microns by using the array metal geometric pattern array; 該十字形圖案之大小為1.5~4微米; The size of the cross-shaped pattern is 1.5-4 microns; 該十字形圖案之線寬為0.5~1.5微米;以及 The line width of the cross-shaped pattern is 0.5-1.5 microns; and 該圓形圖案之直徑為1.5~4微米。 The diameter of the circular pattern is 1.5-4 microns. 一種感測裝置,包含: A sensing device, comprising: 一基板; a substrate; 一紅外線能量吸收單元,具一上部,其中該上部包含: An infrared energy absorbing unit having an upper portion, wherein the upper portion includes: 一上金屬層; a metal layer; 一下金屬層; next metal layer; 一介電層,設置於該上及下金屬層間;以及 a dielectric layer disposed between the upper and lower metal layers; and 複數電偶極矩共振媒介,設置於該上及下金屬層間,俾各該電偶極矩共振媒介分別使該介電層能在吾人所欲之光譜範圍吸收光能;以及 a plurality of electric dipole moment resonant media, disposed between the upper and lower metal layers, such that each of the electric dipole moment resonance media respectively enables the dielectric layer to absorb light energy in our desired spectral range; and 一熱電耦,設置於該基板與該紅外線能量吸收單元之間。 A thermocouple is arranged between the substrate and the infrared energy absorption unit. 如請求項9所述的感測裝置,其中各該電偶極矩共振媒介為在該 上金屬層上之一圖案化胞元。 The sensing device of claim 9, wherein each of the electric dipole moment resonant media is at the One of the patterned cells on the upper metal layer.
TW109137960A 2020-10-30 2020-10-30 Temperature sensing device and the manufacturing method thereof TWI782347B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109137960A TWI782347B (en) 2020-10-30 2020-10-30 Temperature sensing device and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109137960A TWI782347B (en) 2020-10-30 2020-10-30 Temperature sensing device and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202218197A true TW202218197A (en) 2022-05-01
TWI782347B TWI782347B (en) 2022-11-01

Family

ID=82558621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137960A TWI782347B (en) 2020-10-30 2020-10-30 Temperature sensing device and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI782347B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530274B2 (en) * 2010-06-30 2014-06-25 パナソニック株式会社 Temperature sensor

Also Published As

Publication number Publication date
TWI782347B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CN111525023B (en) Infrared detector and preparation method thereof
CN111947788B (en) Infrared detector and preparation method thereof
US9417134B2 (en) Microbolometer array with improved performance
EP2181463B1 (en) A pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption
US9698281B2 (en) CMOS bolometer
US20140326883A1 (en) Nanowire thermoelectric infrared detector
CN111947787B (en) Infrared detector and preparation method thereof
CN113432725B (en) Infrared detector with multilayer structure based on CMOS (complementary Metal oxide semiconductor) process
JP2016528498A (en) Pyroelectric aluminum nitride MEMS infrared sensor with selective wavelength infrared absorber
CN111952394B (en) Infrared detector and preparation method thereof
CN110577188B (en) Method for manufacturing suspended infrared thermopile on substrate
CN113447141B (en) Infrared microbridge detector based on CMOS (complementary Metal oxide semiconductor) process
CN204271111U (en) Thermopile IR detector
CN113447146A (en) Step type infrared detector
CN113447148B (en) Infrared focal plane detector
CN113340436B (en) Uncooled CMOS infrared detector
WO2016110135A1 (en) Fold film temperature sensor and manufacturing method therefor
TWI782347B (en) Temperature sensing device and the manufacturing method thereof
CN113432727B (en) Non-refrigeration solid focal plane detector
CN113432724B (en) Uncooled tuned infrared detector
CN113432726B (en) Infrared detector with combined columnar structure
CN113432728B (en) Single-layer hollow infrared microbridge detector
CN113447142A (en) Reinforced CMOS infrared detector
CN113428833A (en) MEMS thermopile infrared sensor and preparation method thereof
CN113447143A (en) Thermal symmetry type infrared detector