TW202217851A - Coated fuel pellets with enhanced water and steam oxidation resistance - Google Patents

Coated fuel pellets with enhanced water and steam oxidation resistance Download PDF

Info

Publication number
TW202217851A
TW202217851A TW110137314A TW110137314A TW202217851A TW 202217851 A TW202217851 A TW 202217851A TW 110137314 A TW110137314 A TW 110137314A TW 110137314 A TW110137314 A TW 110137314A TW 202217851 A TW202217851 A TW 202217851A
Authority
TW
Taiwan
Prior art keywords
uranium
coating
fuel
containing ceramic
water
Prior art date
Application number
TW110137314A
Other languages
Chinese (zh)
Other versions
TWI814102B (en
Inventor
愛德華 J 拉赫達
許鵬
蔡露
Original Assignee
美商西屋電器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/065,374 external-priority patent/US11488730B2/en
Application filed by 美商西屋電器公司 filed Critical 美商西屋電器公司
Publication of TW202217851A publication Critical patent/TW202217851A/en
Application granted granted Critical
Publication of TWI814102B publication Critical patent/TWI814102B/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • G21C7/04Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect of burnable poisons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors
    • Y10S376/901Fuel
    • Y10S376/902Fuel with external lubricating or absorbing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Physical Water Treatments (AREA)

Abstract

Disclosed herein is a method comprising coating a fissile, uranium-containing ceramic material with a water-resistant layer, the layer being non-reactive with the fissile, uranium-containing ceramic material. The coating is applied to a surface of the fissile, uranium-containing ceramic material. Also disclosed is a fuel for use in a nuclear reactor.

Description

具有增強之抗水及蒸汽氧化性的經塗覆燃料丸Coated fuel pellets with enhanced water and steam oxidation resistance

本發明係關於用於核反應器之燃料,及更特定言之,係關於改良核燃料之抗水性的方法。The present invention relates to fuels for nuclear reactors and, more particularly, to methods of improving the water resistance of nuclear fuels.

二氧化鈾(UO2)係當前在全球用於核燃料中的主要鈾化合物。增進輕水反應器之安全性及效能的努力是對替代事故耐受性燃料的研究。若干高密度鈾燃料已被考慮用於現有的輕水反應器。一種具有前景的燃料為矽化鈾(U3Si2),此歸因於其高鈾密度(較UO2高17%)、高導熱性、及高熔化溫度(1665 ℃)。參見K.E. Metzger等人,Model of U3Si2 Fuel System Using Bison Fuel Code,Proceedings of ICAPP,2014年4月6-9日,Paper No. 14343,pp. 1-5。然而,近來的測試顯示U3Si2可能遭受某些環境因素問題,因而可能需要額外特徵來補救此等潛在問題。Uranium dioxide (UO2) is the main uranium compound currently used globally in nuclear fuel. Efforts to improve the safety and efficiency of light water reactors are research into alternative accident tolerant fuels. Several high-density uranium fuels have been considered for existing light water reactors. One promising fuel is uranium silicide (U3Si2) due to its high uranium density (17% higher than UO2), high thermal conductivity, and high melting temperature (1665 °C). See K.E. Metzger et al., Model of U3Si2 Fuel System Using Bison Fuel Code, Proceedings of ICAPP, April 6-9, 2014, Paper No. 14343, pp. 1-5. However, recent testing has shown that U3Si2 may suffer from certain environmental factors and additional features may be required to remedy these potential problems.

本申請案主張2020年10月7日提出申請標題為「具有增強之抗水及蒸汽氧化性的經塗覆燃料丸(COATED FUEL PELLETS WITH ENHANCED WATER AND STEAM OXIDATION RESISTANCE)」之美國專利申請案序號17/065,374的權利,其係根據35 U.S.C. § 120 主張 2018年2月16日提出申請之先前同在申請中之美國專利申請案序號15/898,308之優先權的部分續案申請案,該案主張 2017年3月17日提出申請之美國臨時專利申請案序號62/472,659的權利。美國申請案15/898,308及62/472,659的內容皆以全文引用的方式併入本文,其等內容藉此以引用的方式全文併入本文。This application claims US Patent Application Serial No. 17, filed on October 7, 2020, entitled "COATED FUEL PELLETS WITH ENHANCED WATER AND STEAM OXIDATION RESISTANCE," entitled "COATED FUEL PELLETS WITH ENHANCED WATER AND STEAM OXIDATION RESISTANCE" /065,374, which is a continuation-in-part application claiming priority under 35 U.S.C. § 120 to copending U.S. Patent Application Serial No. 15/898,308 filed on February 16, 2018, claiming 2017 U.S. Provisional Patent Application Serial No. 62/472,659, filed March 17, 2009. The contents of US applications 15/898,308 and 62/472,659 are both incorporated herein by reference in their entirety, the contents of which are hereby incorporated by reference in their entirety.

本發明是在能源部(Department of Energy)授予的合同編號DE-NE0008222的政府支持下完成的。美國政府擁有本發明的某些權利。This invention was made with government support under Contract No. DE-NE0008222 awarded by the Department of Energy. The US Government has certain rights in this invention.

本文描述一種保護裂變材料免於因暴露至水或蒸汽而氧化的方法。已發現,雖然許多核燃料在300 ℃下具有良好的抗水性,類似於廣泛使用的裂變材料諸如UO2,但隨著水溫升高,許多核燃料的顆粒邊界優先受到水和蒸汽的攻擊。Described herein is a method of protecting fissile material from oxidation by exposure to water or steam. It has been found that while many nuclear fuels have good water resistance at 300 °C, similar to widely used fissile materials such as UO2, the particle boundaries of many nuclear fuels are preferentially attacked by water and steam as the water temperature increases.

近來的測試指示,該等脆弱的燃料組成物(諸如U3Si2)在高於360 ℃的溫度下會遭受過度氧化,並會在低於600 ℃的蒸汽中在短時間內完全氧化,如圖1所示,該圖顯示U3Si2在水蒸氣氛圍中之熱重分析結果。熱重(TG)分析通常用來確定材料由於(例如)隨著溫度變化的分解或氧化而呈現質量損失或增加的選定特徵。商售TG分析儀在將樣品加熱至高達約2000 ℃之標的溫度時連續稱重樣品。隨著溫度升高,樣品的各種組分經分解或氧化並可測量各所得質量變化的重量百分比。結果以在X軸上的溫度及在Y軸上的總質量變化作圖。加熱期間質量的顯著變化指示材料不再熱穩定。如圖1所示,對於16.87%之質量變化,U3Si2完全氧化成為氧化鈾(UO2 及U3O8)。裂變材料之氧化會導致設計基礎事故(諸如冷卻劑損失事故及假設反應性插入事故)中的顯著安全性顧慮。Recent tests indicate that these fragile fuel compositions, such as U3Si2, suffer from over-oxidation at temperatures above 360 °C and complete oxidation in a short period of time in steam below 600 °C, as shown in Figure 1. The figure shows the results of thermogravimetric analysis of U3Si2 in a water vapor atmosphere. Thermogravimetric (TG) analysis is commonly used to determine selected characteristics of a material that exhibit mass loss or gain due to, for example, decomposition or oxidation as a function of temperature. Commercially available TG analyzers continuously weigh samples while heating them to a target temperature of up to about 2000°C. As the temperature increases, the various components of the sample decompose or oxidize and the weight percent change in each resulting mass can be measured. Results are plotted as temperature on the X-axis and total mass change on the Y-axis. A significant change in mass during heating indicates that the material is no longer thermally stable. As shown in Figure 1, for a mass change of 16.87%, U3Si2 is completely oxidized to uranium oxide (UO2 and U3O8). Oxidation of fissile material can lead to significant safety concerns in design basis accidents such as coolant loss accidents and hypothetical reactive insertion accidents.

在各種態樣中,一種保護裂變材料免於氧化的方法包括塗覆裂變材料。塗覆U3Si2丸或保護U3Si2顆粒邊界,例如,將防止丸碎裂及丸被在反應器操作期間洩漏通過包覆障蔽至燃料上後之冷卻劑及在設計基礎事故條件中在發生包覆層破裂時被高溫蒸汽過度氧化。為改良U3Si2或其他適當裂變材料在高於360 ℃之溫度下的抗水及蒸汽氧化性,使用任何適當的塗覆方法將抗水性塗層塗覆至材料表面。例示性的塗覆方法包括原子層沉積、熱噴塗(thermal spray)技術諸如電漿弧噴塗及物理氣相沉積、化學氣相沉積、無電電鍍、及電鍍。塗覆材料可係將塗覆(即黏著至)所選裂變材料之表面、不與裂變材料反應、具有至少與UO2一樣低且較佳低於UO2之溶解度、且具足夠撓性而可在裂變材料於使用中膨脹時實質上保持於定位、不自U3Si2剝落的任何材料。為提高商業可行性,塗覆材料較佳係易於塗覆。在各種態樣中,適宜的塗覆材料可選自由以下所組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。In various aspects, a method of protecting fissile material from oxidation includes coating the fissile material. Coating U3Si2 pellets or protecting U3Si2 particle boundaries, for example, will prevent pellet breakage and coolant after pellets are leaked through the cladding barrier to the fuel during reactor operation and cladding rupture occurs in design basis accident conditions Over-oxidized by high temperature steam. To improve the water and steam oxidation resistance of U3Si2 or other suitable fissile material at temperatures above 360°C, a water resistant coating is applied to the surface of the material using any suitable coating method. Exemplary coating methods include atomic layer deposition, thermal spray techniques such as plasma arc spraying and physical vapor deposition, chemical vapor deposition, electroless plating, and electroplating. The coating material may be one that will coat (ie, adhere to) the surface of the selected fissile material, be non-reactive with the fissile material, have a solubility at least as low as UO2 and preferably less than UO2, and be flexible enough to survive fission. Any material that remains substantially in place and does not peel off from U3Si2 when the material expands in use. For increased commercial viability, the coating material is preferably easy to apply. In various aspects, suitable coating materials may be selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3- SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof.

亦描述一種核燃料材料。該材料包括諸如U3Si2的裂變材料,其經抗水性層塗覆。在各種態樣中,塗覆層可選自由以下所組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。A nuclear fuel material is also described. The material includes a fissile material such as U3Si2 coated with a water repellent layer. In various aspects, the coating layer may be selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3-SiO2- Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof.

抗水性塗層可位於用來控制核反應器操作中之核心反應性的整體燃料可燃吸收劑(IFBA)層下方。IFBA層可係一薄層的鋯化合物(諸如二硼化鋯(ZrB2))、硼化合物(諸如B2O3-SiO2 玻璃)、及鋯化合物和硼化合物之組合。參見,例如,以引用的方式併入本文的美國專利第4,751,041號。The water-repellent coating can be located below the integral fuel flammable absorbent (IFBA) layer used to control core reactivity in nuclear reactor operation. The IFBA layer can be a thin layer of zirconium compounds such as zirconium diboride (ZrB2), boron compounds such as B2O3-SiO2 glass, and combinations of zirconium and boron compounds. See, eg, US Patent No. 4,751,041, incorporated herein by reference.

除非上下文另外清楚地規定,否則如本文中所使用之單數形式「一(a)」、「一個(an)」及「該(the)」包括複數個參考物。因此,本文中使用的冠詞「一」及「一個」係指一個或一個以上(即,至少一個)該冠詞的文法對象。舉例來說,「一元件」意指一個元件或多於一個元件。As used herein, the singular forms "a (a)," "an (an)," and "the (the)" include plural references unless the context clearly dictates otherwise. Thus, the articles "a" and "an" as used herein refer to one or more (ie, at least one) of the grammatical object of the article. For example, "an element" means one element or more than one element.

除非另外明確地陳述,否則本文中所使用之方向性片語,諸如但不限於頂部、底部、左、右、下部、上部、前部、背部及其變化形式,應關於附圖中所展示之元件之定向且不對申請專利範圍造成限制。Unless expressly stated otherwise, directional phraseology used herein, such as, but not limited to, top, bottom, left, right, lower, upper, front, back, and variations thereof, shall refer to the The orientation of the elements is not intended to limit the scope of the claims.

在本申請案中,包括申請專利範圍,除非另外指示,否則表示數量、值或特性之所有數字應被理解為在所有情況下均由「約」字修飾。因此,即使字詞「約」可能未與數字一起明確地出現,但亦可將數字讀成如同前面具有「約」字。因此,除非有相反指示,否則在以下描述中所闡述之任何數值參數可取決於試圖在根據本揭示之組合物及方法中獲得的所需性質而變化。至少且不試圖將等效物原則之應用限制於申請專利範圍之範圍,本說明書中所描述之每一數值參數應至少鑒於所報告之有效數位的數目且藉由應用一般捨入技術來解釋。In this application, including the claimed scope, unless otherwise indicated, all numbers indicating quantities, values or properties should be understood to be modified in all instances by the word "about". Thus, numbers may be read as if preceded by the word "about" even though the word "about" may not explicitly appear with the number. Accordingly, unless indicated to the contrary, any numerical parameters set forth in the following description may vary depending upon the desired properties sought to be obtained in the compositions and methods according to the present disclosure. At the very least, and without attempting to limit the application of the doctrine of equivalence to the scope of the claimed scope, each numerical parameter described in this specification should be construed at least in light of the number of reported significant digits and by applying ordinary rounding techniques.

此外,本文所列舉的任何數值範圍意欲包括其中涵蓋的所有子範圍。例如,範圍「1至10」意欲包括介於(且包括)所列舉的最小值1和所列舉的最大值10之間的任何及所有子範圍,亦即,具有等於或大於1的最小值及等於或小於10的最大值。Furthermore, any numerical range recited herein is intended to include all subranges subsumed therein. For example, the range "1 to 10" is intended to include any and all subranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and A maximum value equal to or less than 10.

一種在使用於水冷卻核反應器中之裂變材料上形成抗水性邊界的方法包括利用適當的塗覆材料塗覆裂變材料至期望厚度。裂變材料可係任何適當的裂變材料。U3Si2係用於此製程的例示性裂變材料,且基於以上表述的理由,係在許多態樣中的較佳材料。雖然文中描述的塗覆方法可用於其他裂變材料,諸如UO2和下面列出的其他材料,但為了方便起見,可將裂變材料稱為U3Si2。One method of forming a water-resistant boundary on fissile material for use in a water-cooled nuclear reactor includes coating the fissile material to a desired thickness with a suitable coating material. The fissile material can be any suitable fissile material. U3Si2 is an exemplary fissile material for this process, and is the preferred material in many aspects for the reasons stated above. Although the coating methods described herein can be used for other fissile materials, such as UO2 and others listed below, for convenience the fissile material may be referred to as U3Si2.

合適的裂變材料可包括含鈾陶瓷裂變材料。含鈾陶瓷裂變材料可包括,例如,矽化鈾(例如,U3Si2、U3Si5、U3Si);氮化鈾(例如,UN、U15N);碳化鈾(例如,UC);硼化鈾(例如,UBx、UB2、UB4),其中X係整數(金屬硼化物(例如,硼化鈾)可能具有各種各樣的金屬:硼比);磷化鈾(例如,UP);硫化鈾(例如,US2);氧化鈾(例如,UO2、UCO);或此等中任何者之混合物。Suitable fissile material may include uranium-containing ceramic fissile material. Uranium-containing ceramic fissile material may include, for example, uranium silicide (eg, U3Si2, U3Si5, U3Si); uranium nitride (eg, UN, U15N); uranium carbide (eg, UC); uranium boride (eg, UBx, UB2) , UB4), where X-series integers (metal borides (eg, uranium boride) may have a wide variety of metal:boron ratios); uranium phosphide (eg, UP); uranium sulfide (eg, US2); uranium oxide (eg, UO2, UCO); or a mixture of any of these.

作為下一代燃料之具有前景的候選者,U3Si2提供:1. 較UO2高之導熱性;2. 較UO2高之鈾裝載量;及3. 容許燃料在輕水反應器正常操作及瞬時條件下保持固態的熔化溫度。為了應對U3Si2在較高溫度(例如,360 ℃及以上)之下的不良抗水性,在各種態樣中,可將抗水性塗層塗覆至U3Si2丸和U3Si2顆粒邊界的一或兩者,此將防止、或至少實質地減緩U3Si2與水的接觸,及因此改良在燃料包覆層發生洩漏時燃料丸的抗水性。As a promising candidate for next-generation fuels, U3Si2 provides: 1. higher thermal conductivity than UO2; 2. higher uranium loading than UO2; and 3. allows the fuel to be maintained under normal operating and transient conditions of light water reactors The melting temperature of the solid state. To address the poor water resistance of U3Si2 at higher temperatures (eg, 360 °C and above), in various aspects, a water resistant coating can be applied to one or both of the U3Si2 pellets and the U3Si2 particle boundaries, which will Preventing, or at least substantially slowing, U3Si2 contact with water, and thus improving the water resistance of the fuel pellets in the event of leakage of the fuel coating.

在各種態樣中,塗覆材料應於裂變材料之至少經暴露部分上方,諸如於丸及顆粒邊界上形成堅固的塗層。如文中所使用之術語「堅固塗層」係一種於冷卻劑中具低溶解度、容易塗覆、不與所選裂變材料反應、且在丸於輻射期間膨脹時具有一些可撓性的塗層。如文中所使用之「低溶解度」係相對術語及對於本申請案之目的意謂塗覆材料之溶解度至少與UO2(當使用UO2作為裂變材料時)之溶解度一樣低,且在各種態樣中較UO2之溶解度低。In various aspects, the coating material should form a robust coating over at least exposed portions of the fissile material, such as on pellet and particle boundaries. The term "robust coating" as used herein refers to a coating that has low solubility in coolant, is easy to apply, does not react with the selected fissile material, and has some flexibility as the pellet expands during irradiation. "Low solubility" as used herein is a relative term and for the purposes of this application means that the coating material has a solubility at least as low as that of UO2 (when UO2 is used as the fissile material), and in various aspects less soluble The solubility of UO2 is low.

塗覆材料可係將塗覆(即黏著至)所選裂變材料之表面且不與裂變材料反應的任何材料。如所陳述,在各種態樣中之塗覆材料具有至少與UO2之溶解度一樣良好,及較佳為比UO2之溶解度低的溶解度。UO2之溶解度值可於文獻中獲得。The coating material may be any material that will coat (ie adhere to) the surface of the selected fissile material and will not react with the fissile material. As stated, the coating material in various aspects has a solubility at least as good as that of UO2, and preferably a solubility lower than that of UO2. Solubility values for UO2 are available in the literature.

在各種態樣中,塗覆材料具足夠可撓性而可在裂變材料於使用中膨脹時實質上保持於定位。熟悉技藝人士明瞭裂變材料於使用中由於發生分裂,原始原子形成較原始原子密度低之材料的兩個原子而膨脹。此外,氣體可被捕獲於顆粒邊界,其將導致更多膨脹。熟悉技藝人士可粗略計算膨脹程度,但由於捕獲的氣體,在反應器中在使用前的膨脹計算可能不精確。塗層應充分地可撓以避免在裂變材料膨脹時的脫層。然而,可容許一些偏差,從而容許在裂變材料膨脹時塗層中的龜裂或脫層部分。在該等情況中,塗層仍發揮作用以減少裂變材料之暴露於水或蒸汽,藉此減緩氧化及增進裂變材料的有效壽命。降低裂變材料在暴露於水或蒸汽情況中之氧化速率將容許在超過設計基礎事故情況中用於校正動作的時間。In various aspects, the coating material is sufficiently flexible to substantially remain in place when the fissile material expands in use. Those skilled in the art understand that fissile materials expand in use by splitting, the original atoms forming two atoms of the material having a lower density than the original atoms. In addition, gas can be trapped at particle boundaries, which will cause more expansion. Those skilled in the art can roughly calculate the degree of expansion, but the expansion calculation prior to use in the reactor may be inaccurate due to trapped gas. The coating should be sufficiently flexible to avoid delamination as the fissile material expands. However, some deviation may be tolerated to allow for cracked or delaminated portions in the coating as the fissile material expands. In such cases, the coating still functions to reduce exposure of the fissile material to water or steam, thereby slowing oxidation and increasing the effective life of the fissile material. Reducing the rate of oxidation of fissile material in conditions of exposure to water or steam will allow time for corrective action in accident conditions beyond the design basis.

在各種態樣中,適宜的塗覆材料可選自由以下所組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Cr、Ni、及其組合。U3Si2顆粒之塗覆可經由將FeCrAl、CrAl、或Na2O-B2O3-SiO2-Al2O3玻璃固體添加至U3Si2粉末,將其在低於U3Si2之溫度(1662 ℃)但在U3Si2丸之燒結溫度(1200至1600 ℃)下熔化來完成。在各種態樣中,塗層可經由沉積選自由以下組成之群的粒子來形成:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。此等材料中之各者具有優於U3Si2的抗水性。可將塗層塗覆至各U3Si2丸的周邊、或側面、表面及視情況塗覆至其頂表面及底表面。燃料丸可係任何形狀且提及周邊或其他表面輪廓係為方便起見而不具限制性。在使用中,燃料丸通常呈大致圓柱形丸形式,其於末端上堆疊形成大致圓柱形柱,該柱藉由彈簧抵靠燃料棒的端塞固持,該彈簧位在置於頂部丸與燃料棒之頂部端塞之間之棒中之丸堆疊的頂端。在此組態中,丸的頂部及底部未暴露至任何可能洩漏至燃料棒中的水。若有之任何暴露至氧化流體將係最小的。In various aspects, suitable coating materials may be selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3- SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Cr, Ni, and combinations thereof. Coating of U3Si2 particles can be achieved by adding FeCrAl, CrAl, or Na2O-B2O3-SiO2-Al2O3 glass solids to U3Si2 powder at a temperature lower than that of U3Si2 (1662 °C) but at the sintering temperature of U3Si2 pellets (1200 to 1600 °C). °C) to complete melting. In various aspects, the coating can be formed by depositing particles selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O- B2O3-SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof. Each of these materials has better water resistance than U3Si2. Coatings can be applied to the perimeter, or sides, surfaces, and top and bottom surfaces of each U3Si2 pellet as appropriate. The fuel pellets can be of any shape and references to perimeter or other surface contours are for convenience and not limitation. In use, the fuel pellets are generally in the form of generally cylindrical pellets that are stacked on the ends to form a generally cylindrical post that is held against the end plug of the fuel rod by a spring positioned between the top pellet and the fuel rod. The top end of the stick between the top end of the pill stack. In this configuration, the top and bottom of the pellet are not exposed to any water that could leak into the fuel rods. Any exposure to oxidizing fluids will be minimal, if any.

為提高商業可行性,塗覆材料較佳係易於塗覆。在方法中使用的塗覆步驟可係任何適當的塗覆製程。舉例來說,塗覆可藉由物理氣相沉積製程或藉由原子層沉積(ALD)進行。塗覆製程可,例如,係熱噴塗製程,諸如熱或冷噴製程或電漿弧噴塗製程。For increased commercial viability, the coating material is preferably easy to apply. The coating step used in the method can be any suitable coating process. For example, coating can be performed by a physical vapor deposition process or by atomic layer deposition (ALD). The coating process can, for example, be a thermal spray process, such as a thermal or cold spray process or a plasma arc spray process.

原子層沉積(ALD)係薄膜沉積方法,其中藉由將基板之表面暴露至交替的氣態物種而使膜生長於基板上。ALD係基於氣相化學製程的依序使用。大多數的ALD反應使用兩種化學物質,稱為前驅物。此等前驅物以依序、自限制方式逐一地與材料表面反應,使得一旦表面上的所有反應性位點經消耗,反應即終止。因此,在單次暴露於所有前驅物(所謂的ALD循環)之後沉積於表面上之材料的最大量係由前驅物-表面交互作用的性質決定。通過重複暴露至個別前驅物,緩慢地沉積薄膜。經由改變循環數目,可於任意複雜且大的基板上均勻地且以高精度生長材料。相對於化學氣相沉積,前驅物從未同時存在於沉積室中,反而其係作為一系列依序、非重疊脈衝插入。在ALD中,抗水性塗層將經由使U3Si2丸暴露至期望塗覆材料之氣態前驅物而生長於U3Si2丸表面上。Atomic layer deposition (ALD) is a thin film deposition method in which films are grown on a substrate by exposing the surface of the substrate to alternating gaseous species. ALD is based on the sequential use of gas phase chemical processes. Most ALD reactions use two chemicals, called precursors. These precursors react one by one with the surface of the material in a sequential, self-limiting manner such that the reaction terminates once all reactive sites on the surface are consumed. Therefore, the maximum amount of material deposited on the surface after a single exposure to all precursors (so-called ALD cycle) is determined by the nature of the precursor-surface interaction. Thin films are slowly deposited by repeated exposure to individual precursors. By varying the number of cycles, material can be grown uniformly and with high precision on arbitrarily complex and large substrates. In contrast to chemical vapor deposition, the precursors are never simultaneously present in the deposition chamber, but are instead inserted as a series of sequential, non-overlapping pulses. In ALD, a water resistant coating will be grown on the surface of the U3Si2 pellets by exposing the U3Si2 pellets to a gaseous precursor of the desired coating material.

經選擇用於沉積的前驅物亦包含載體氣體。沉積中使用的溫度可在25 ℃至600 ℃、較佳200 ℃至450 ℃、及更佳265 ℃至350 ℃之範圍內,或其他具有任何前述範圍的溫度。應避免大於600 ℃之溫度。The precursor selected for deposition also includes a carrier gas. The temperature used in deposition may be in the range of 25°C to 600°C, preferably 200°C to 450°C, and more preferably 265°C to 350°C, or other temperatures having any of the foregoing ranges. Temperatures above 600°C should be avoided.

或者,塗層的沉積可係藉由濺鍍或化學氣相沉積。在典型的化學氣相沉積製程中,使基板暴露至一或多種反應性前驅物,其於基板表面上反應及/或分解而產生期望沉積物。亦經常產生副產物,其藉由通過反應室的氣流移除。Alternatively, deposition of the coating may be by sputtering or chemical vapor deposition. In a typical chemical vapor deposition process, the substrate is exposed to one or more reactive precursors, which react and/or decompose on the surface of the substrate to produce the desired deposits. By-products are also often produced, which are removed by gas flow through the reaction chamber.

在各種態樣中,適當的熱沉積方法包括熱噴或冷噴方法。在熱式熱噴塗製程中,藉由熱源或藉由於陽極與鎢陰極間之高頻電弧所產生之電漿(即電漿弧噴塗)使塗覆原料材料熔化。此經軟化的液體或熔化材料接著藉由製程氣體遞送且將噴塗於U3Si2丸表面上。此材料於U3Si2丸表面上固化並形成固體層。In various aspects, suitable thermal deposition methods include thermal spray or cold spray methods. In the thermal spraying process, the coating raw material is melted by a heat source or by a plasma generated by a high frequency electric arc between an anode and a tungsten cathode (ie, plasma arc spraying). This softened liquid or molten material is then delivered by the process gas and will be sprayed on the surface of the U3Si2 pellets. This material solidified and formed a solid layer on the surface of the U3Si2 pellets.

冷噴方法可經由將載體氣體遞送至加熱器,在此將載體氣體加熱至在氣體通過噴嘴時膨脹後足以將氣體維持於期望溫度(例如,100 ℃ 至1200 ℃)之溫度來進行。在各種態樣中,可在(例如)5.0 MPa之壓力下將載體氣體預熱至介於200 ℃及1200 ℃間之溫度。在某些態樣中,可將載體氣體預熱至介於200 ℃ 與1000 ℃間之溫度,或在某些態樣中,300 ℃ 與900 ℃之間,及在其他態樣中,介於500 ℃與800 ℃之間。溫度將取決於使用作為載體之特定氣體的焦耳-湯姆森(Joule–Thomson)冷卻係數。氣體當受到壓力變化而膨脹或壓縮時是否冷卻係取決於其焦耳-湯姆森係數之值。就正的焦耳-湯姆森係數而言,載體氣體冷卻且必須經預熱以防止會影響冷噴製程之效能的過度冷卻。熟悉技藝人士可使用熟知計算確定加熱程度以防止過度冷卻。參見,例如,就作為載體氣體的N2而言,如入口溫度為130 ℃,則焦耳-湯姆森係數為為0.1 ℃/巴(bar)。為使氣體在130 ℃下影響管,如其起始壓力為10巴(~146.9 磅/每平方吋絕對壓(psia))及最終壓力為1巴(~14.69 磅/每平方吋絕對壓(psia)),則需將氣體預熱至約9巴* 0.1 ℃/巴或約0.9 C至約130.9 ℃。Cold spray methods can be performed by delivering the carrier gas to a heater where the carrier gas is heated to a temperature sufficient to maintain the gas at a desired temperature (eg, 100°C to 1200°C) after expansion as the gas passes through the nozzle. In various aspects, the carrier gas can be preheated to a temperature between 200°C and 1200°C at a pressure of, for example, 5.0 MPa. In some aspects, the carrier gas may be preheated to a temperature between 200°C and 1000°C, or in some aspects, between 300°C and 900°C, and in other aspects, between Between 500 °C and 800 °C. The temperature will depend on the Joule-Thomson cooling coefficient of the particular gas used as the carrier. Whether or not a gas cools as it expands or compresses under pressure changes depends on the value of its Joule-Thomson coefficient. For a positive Joule-Thomson coefficient, the carrier gas is cooled and must be preheated to prevent excessive cooling that can affect the performance of the cold spray process. Those skilled in the art can use well-known calculations to determine the degree of heating to prevent excessive cooling. See, for example, for N2 as the carrier gas, the Joule-Thomson coefficient is 0.1°C/bar if the inlet temperature is 130°C. For the gas to affect the tube at 130°C, such as its initial pressure is 10 bar (~146.9 pounds per square inch absolute (psia)) and the final pressure is 1 bar (~14.69 pounds per square inch absolute (psia)) ), the gas needs to be preheated to about 9 bar * 0.1 °C/bar or about 0.9 °C to about 130.9 °C.

舉例而言,作為載體之氦氣的溫度較佳係在3.0至4.0 MPa之壓力下450 ℃,及作為載體之氮氣的溫度可係在5.0 MPa之壓力下1100 ℃,但亦可係在3.0至4.0 MPa之壓力下 600 ℃ – 800 ℃。熟悉技藝人士將知曉溫度及壓力變數可根據使用設備之類型改變且可修改該設備以調整溫度、壓力及體積參數。For example, the temperature of the helium gas as the carrier is preferably 450°C under the pressure of 3.0 to 4.0 MPa, and the temperature of the nitrogen gas as the carrier may be 1100°C under the pressure of 5.0 MPa, but can also be set at 3.0 to 600 ℃ – 800 ℃ under the pressure of 4.0 MPa. Those skilled in the art will know that temperature and pressure variables can vary depending on the type of equipment used and that equipment can be modified to adjust temperature, pressure and volume parameters.

適宜的載體氣體係為惰性或不為反應性的彼等氣體,及特定而言將不會與顆粒或基板反應的彼等氣體。例示性的載體氣體包括氮氣(N2)、氫氣(H2)、氬氣(Ar)、二氧化碳(CO2)、及氦氣(He)。Suitable carrier gas systems are those that are inert or non-reactive, and in particular those that will not react with the particles or the substrate. Exemplary carrier gases include nitrogen (N2), hydrogen (H2), argon (Ar), carbon dioxide (CO2), and helium (He).

關於選定的載體氣體而言存在顯著的彈性。可使用氣體的混合物。選擇係由物理學及經濟學來決定。舉例來說,較低分子量氣體提供較高速度,但應避免最高速度,因其可導致粒子反彈及因此減少沉積粒子的數目。There is significant elasticity with respect to the selected carrier gas. Mixtures of gases can be used. The choice is determined by physics and economics. For example, lower molecular weight gases provide higher velocities, but the highest velocities should be avoided as they can cause particle bounce and thus reduce the number of deposited particles.

冷噴製程仰賴經加熱載體氣體之受控膨脹來將粒子推進至基板上。粒子衝擊基板或先前的沉積層且通過絕熱剪切經歷塑性變形。後續的粒子衝擊累積形成塗層。粒子亦可在進入流動載體氣體之前經升溫至以凱氏溫度(degrees Kelvin)表示之粉末熔點之三分之一至一半的溫度。噴嘴掃描(即以圖案噴塗,其中一區域係以自頂部至底部之線條自一側噴塗至另一側)跨越待塗覆之區域或需要材料累積處。The cold spray process relies on controlled expansion of a heated carrier gas to propel particles onto the substrate. The particles impact the substrate or previously deposited layers and undergo plastic deformation by adiabatic shear. Subsequent particle impacts accumulate to form a coating. The particles may also be heated to a temperature of one-third to one-half the melting point of the powder in degrees Kelvin before entering the flowing carrier gas. The nozzle scans (ie, sprays in a pattern where an area is sprayed from side to side in a line from top to bottom) across the area to be coated or where material accumulation is desired.

參照圖3,其顯示熱噴塗總成10。總成10包括加熱器12、粉末或粒子料斗14、槍16、噴嘴18及傳送導管34、26、32及28。高壓氣體進入導管34用於傳送至加熱器12,在此快速、實質上立即地發生加熱。當經加熱至期望溫度時,氣體經引導通過導管26至槍16。固持於料斗14中之粒子經釋放並通過導管28引導至槍16,在此其藉由加壓氣體噴射20被壓迫通過噴嘴18朝向基板22。經噴塗粒子36沉積於基板22上而形成包含粒子24的塗層。此製程大致描述冷噴及熱噴總成。熱噴製程係在足夠高而可軟化或熔化所沉積粒子的溫度下發生。Referring to Figure 3, a thermal spray assembly 10 is shown. Assembly 10 includes heater 12 , powder or particle hopper 14 , gun 16 , nozzle 18 , and delivery conduits 34 , 26 , 32 and 28 . High pressure gas enters conduit 34 for delivery to heater 12 where heating occurs rapidly, substantially immediately. When heated to the desired temperature, the gas is directed through conduit 26 to gun 16 . Particles held in hopper 14 are released and directed through conduit 28 to gun 16 where they are forced through nozzle 18 towards substrate 22 by means of a jet of pressurized gas 20 . The sprayed particles 36 are deposited on the substrate 22 to form a coating comprising the particles 24 . This process generally describes the cold spray and hot spray assemblies. The thermal spray process occurs at a temperature high enough to soften or melt the deposited particles.

在各種態樣中,替代的塗覆方法包括電漿弧噴塗製程,諸如圖4中所顯示者。電漿炬40產生熱氣體噴射50。典型的電漿炬40包括氣體埠56、陰極44、陽極46、及水冷卻噴嘴42,其皆被外殼68中的絕緣體48環繞。在電極之間,即在陽極46與鎢陰極44之間點燃高頻電弧。流動通過電極44/46之間之埠56的載體氣體經游離形成電漿羽。載體氣體可係氦氣(He)、氫氣(H2)、氮氣(N2)、或其任何組合。噴射50係由當加壓氣體膨脹通過噴嘴42時加熱氣體的電弧所產生。經加熱氣體形成,例如,在12,000 ℃至16,000 ℃下操作之弧電漿核心。氣體作為噴射50膨脹通過水冷卻噴嘴42。粉末、或粒子通過埠52射出成為熱噴射50,在此其經軟化或熔化,並被壓向基板60上從而形成塗層54。噴塗速率可在,例如,約450 m/s或以下的粒子速度之下,為2至10 kg/小時。藉由熱噴塗(諸如電漿弧噴塗)所達成的塗層厚度視所噴塗材料而變化,但可在,例如,0.005至5 mm之範圍內。文中描述之塗層的典型厚度可係5至1000微米,及在各種態樣中,塗層之厚度可係10至100微米。In various aspects, alternative coating methods include plasma arc spray processes, such as that shown in FIG. 4 . The plasma torch 40 produces a jet of hot gas 50 . A typical plasma torch 40 includes a gas port 56 , a cathode 44 , an anode 46 , and a water cooling nozzle 42 , all surrounded by an insulator 48 in a housing 68 . A high frequency arc is ignited between the electrodes, ie between the anode 46 and the tungsten cathode 44 . The carrier gas flowing through the port 56 between the electrodes 44/46 dissociates to form a plasma plume. The carrier gas can be helium (He), hydrogen (H2), nitrogen (N2), or any combination thereof. The jet 50 is produced by an electric arc that heats the gas as the pressurized gas expands through the nozzle 42 . The heated gas forms, for example, an arc plasma core operating at 12,000°C to 16,000°C. The gas expands through the water cooling nozzles 42 as jets 50 . The powder, or particles, are ejected through port 52 as thermal jet 50 where it is softened or melted and pressed against substrate 60 to form coating 54 . The spray rate can be, for example, 2 to 10 kg/hour below a particle velocity of about 450 m/s or less. Coating thicknesses achieved by thermal spraying, such as plasma arc spraying, vary depending on the material being sprayed, but can range, for example, from 0.005 to 5 mm. Typical thicknesses of the coatings described herein may be 5 to 1000 microns, and in various aspects, the thickness of the coatings may be 10 to 100 microns.

抗水性塗層之厚度就電漿弧噴塗塗覆塗層而言自10微米變化至200微米,及就物理氣相沉積塗層而言係1微米至20微米及就ALD而言係自0.5微米至2微米。塗覆材料包括ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、及SiC、及其組合。U3Si2 歸因於高得多的導熱性而在操作中與UO2相比具有較少龜裂。即使產生龜裂,塗層仍可覆蓋U3Si2丸的實質表面積以防止其過度氧化。The thickness of the water repellent coating varies from 10 microns to 200 microns for plasma arc spray coated coatings, and from 1 to 20 microns for physical vapor deposition coatings and from 0.5 microns for ALD to 2 microns. Coating materials include ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3-SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, and SiC, and their combination. U3Si2 has less cracking in operation than UO2 due to the much higher thermal conductivity. Even if cracking occurs, the coating can still cover the substantial surface area of the U3Si2 pellets to prevent excessive oxidation.

抗水性塗層亦可經由無電電鍍塗覆技術來塗覆。無電電鍍塗覆技術可包括使待塗覆之物體(例如,基板、裂變材料)浸沒於包含金屬陽離子的化學浴中。可使金屬陽離子化學還原以於基板上形成金屬性塗層。還原可係通過金屬陽離子與諸如次磷酸鹽及/或硼氫化物之還原劑之間的自催化反應完成。化學浴亦可包含下列中之一或多者:錯合劑(用來提高磷酸鹽溶解度及/或減緩反應)、穩定劑(用來經由與經還原金屬共沉積而減慢還原)、緩衝劑(用來維持浴之酸度)、增亮劑(用來改良表面光度)、表面活性劑(用來使沉積層保持親水性以降低凹痕及染色)、及加速劑(用來抗衡由錯合劑所引起之電鍍速率的降低)。基板表面可在無電電鍍製程之前經活化,以確保可進行自催化還原製程。Water resistant coatings can also be applied via electroless plating techniques. Electroless plating coating techniques may include immersing the object to be coated (eg, substrate, fissile material) in a chemical bath containing metal cations. The metal cations can be chemically reduced to form a metallic coating on the substrate. Reduction can be accomplished by autocatalytic reaction between metal cations and reducing agents such as hypophosphite and/or borohydride. The chemical bath may also contain one or more of the following: complexing agents (to increase phosphate solubility and/or slow down the reaction), stabilizers (to slow reduction through co-deposition with reduced metals), buffers ( To maintain the acidity of the bath), brighteners (to improve surface gloss), surfactants (to keep the deposited layer hydrophilic to reduce pitting and staining), and accelerators (to counteract the effects of The resulting reduction in plating rate). The substrate surface can be activated prior to the electroless plating process to ensure that the autocatalytic reduction process can be performed.

當採用無電電鍍塗覆技術時,抗水性塗層可包含金屬性鎳(Ni)及/或金屬性鉻(Cr)。因此,化學浴中之金屬陽離子可包含Ni陽離子或Cr陽離子中之一或兩者。可使用無電電鍍塗覆技術來將抗水性塗層塗覆於本揭示之任何裂變材料上。When the electroless plating coating technique is employed, the water resistant coating may comprise metallic nickel (Ni) and/or metallic chromium (Cr). Thus, the metal cations in the chemical bath may comprise one or both of Ni cations or Cr cations. Water resistant coatings can be applied to any of the fissile materials of the present disclosure using electroless plating coating techniques.

通過無電電鍍塗覆技術塗覆至本揭示之裂變材料的抗水性塗層可包含5微米至20微米之厚度,諸如,比方說,5微米至15微米、5微米至10微米、10微米至20微米、10微米至15微米、或15微米至20微米。參照下文描述的圖2,抗水性塗層74亦可如前所述包含Ni及/或Cr。The water-resistant coating applied to the fissile material of the present disclosure by electroless plating coating techniques may comprise a thickness of 5 microns to 20 microns, such as, for example, 5 microns to 15 microns, 5 microns to 10 microns, 10 microns to 20 microns microns, 10 microns to 15 microns, or 15 microns to 20 microns. Referring to FIG. 2 described below, the water-resistant coating 74 may also include Ni and/or Cr as previously described.

抗水性塗層亦可通過電鍍塗覆技術來塗覆。電鍍塗覆技術可包括藉由直流電經由還原金屬陽離子而於待塗覆之物體(例如,基板、裂變材料)上產生抗水性金屬塗層。可使金屬陽離子還原而於基板上形成金屬性塗層。基板可充作電解電池之陰極,且陽極可包括待塗覆成為塗層的金屬及/或惰性傳導性材料。電解質溶液可與基板接觸且可包括含有待還原及塗覆於基板上之金屬陽離子的鹽溶液。基板可係導電性的。Water resistant coatings can also be applied by electroplating techniques. Electroplating coating techniques can include the generation of water-repellent metal coatings on objects to be coated (eg, substrates, fissile materials) via reduction of metal cations by direct current. The metal cation can be reduced to form a metallic coating on the substrate. The substrate can act as the cathode of the electrolytic cell, and the anode can include the metal and/or inert conductive material to be applied as a coating. The electrolyte solution can be contacted with the substrate and can include a salt solution containing the metal cations to be reduced and coated on the substrate. The substrate may be conductive.

當採用電鍍塗覆技術時,抗水性塗層可包括金屬性鎳(Ni)及/或金屬性鉻(Cr)。因此,電解質溶液中之金屬陽離子可包含Ni陽離子或Cr陽離子中之一或兩者。可使用電鍍塗覆技術來將抗水性塗層塗覆於本揭示之任何裂變材料上。裂變材料可包括導電性裂變材料。When electroplating coating techniques are employed, the water resistant coating may include metallic nickel (Ni) and/or metallic chromium (Cr). Thus, the metal cations in the electrolyte solution may comprise one or both of Ni cations or Cr cations. A water-resistant coating can be applied to any of the fissile materials of the present disclosure using electroplating coating techniques. The fissile material may include conductive fissile material.

通過無電電鍍塗覆技術塗覆至本揭示之裂變材料的抗水性塗層可包含1微米至20微米之厚度,諸如,比方說,1微米至5微米、2微米至20微米、3微米至20微米、4微米至20微米、5微米至20微米、5微米至15微米、5微米至10微米、10微米至20微米、10微米至15微米、或15微米至20微米。參照下文描述的圖2,抗水性塗層74亦可如前所述包含Ni及/或Cr。The water-resistant coating applied to the fissile material of the present disclosure by electroless plating coating techniques may comprise a thickness of 1 to 20 microns, such as, for example, 1 to 5 microns, 2 to 20 microns, 3 to 20 microns microns, 4 microns to 20 microns, 5 microns to 20 microns, 5 microns to 15 microns, 5 microns to 10 microns, 10 microns to 20 microns, 10 microns to 15 microns, or 15 microns to 20 microns. Referring to FIG. 2 described below, the water-resistant coating 74 may also include Ni and/or Cr as previously described.

此外,亦可經由使用ALD製程或熱噴塗製程將可燃吸收劑塗覆於經塗覆U3Si2丸的周邊表面上。整體燃料可燃吸收劑可係在塗覆抗水性塗覆層後塗覆於燃料丸上之一薄層的鋯化合物(諸如二硼化鋯(ZrB2))、硼化合物(諸如B2O3-SiO2 玻璃)、及鋯化合物和硼化合物之組合。參見,例如,以引用的方式併入本文的美國專利第4,751,041號。In addition, the flammable absorbent can also be coated on the peripheral surface of the coated U3Si2 pellets by using an ALD process or a thermal spray process. The bulk fuel combustible absorbent may be a zirconium compound (such as zirconium diboride (ZrB2)), a boron compound (such as B2O3-SiO2 glass), and combinations of zirconium compounds and boron compounds. See, eg, US Patent No. 4,751,041, incorporated herein by reference.

可燃吸收劑係用來控制核反應器操作中之核心反應性之一種類型的可燃毒物。此等可燃吸收劑提供主要在反應器循環之開始期間有效之暫時性反應性控制並補償由於載入新鮮燃料而於循環早期中出現之過度反應性。在塗覆抗水性層之後塗覆可燃吸收劑材料層,使得其覆蓋抗水性塗覆層。Combustible absorbents are a type of combustible poison used to control the core reactivity in nuclear reactor operation. These combustible absorbents provide temporary reactivity control that is effective primarily during the beginning of the reactor cycle and compensate for the excess reactivity that occurs early in the cycle due to fresh fuel loading. The layer of combustible absorbent material is applied after applying the water-repellent layer so that it covers the water-repellent coating layer.

U3Si2之氧化係潛在的安全顧慮及在輕水反應器中用來實施U3Si2燃料的其中一個關鍵問題。塗覆於U3Si2上將減緩尤其在較高蒸汽溫度下的氧化,且係用來解決潛在安全顧慮的其中一個經濟方法。Oxidation of U3Si2 is a potential safety concern and one of the key issues for implementing U3Si2 fuels in light water reactors. Coating on U3Si2 will slow oxidation especially at higher steam temperatures and is one of the economical ways to address potential safety concerns.

如文中所述之方法產生經塗覆的裂變材料,諸如圖2中顯示的經塗覆燃料丸。通常將複數個丸堆疊於燃料棒70中。在各種態樣中之裂變材料72包含經塗覆選自由以下組成之群之抗水性層74的U3Si2:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。燃料丸亦可包含可燃吸收劑材料,諸如二硼化鋯(ZrB2)、硼化合物(諸如B2O3-SiO2 玻璃)、及鋯化合物和硼化合物之組合的覆蓋層76。在覆蓋層76與燃料包覆層80之間可存在經填充氣體(諸如氦氣)的間隙78。包覆層80的外部經冷卻劑82(通常係水冷卻反應器中之水)包圍。Methods as described herein produce coated fissile material, such as the coated fuel pellets shown in FIG. 2 . A plurality of pellets are typically stacked in the fuel rod 70 . The fissile material 72 in various aspects comprises U3Si2 coated with a water repellent layer 74 selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2 , ZrB2, Na2O-B2O3-SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof. The fuel pellet may also include a cover layer 76 of combustible absorbent material such as zirconium diboride (ZrB2), boron compounds (such as B2O3-SiO2 glass), and combinations of zirconium and boron compounds. A gas-filled, such as helium, gas-filled gap 78 may exist between the capping layer 76 and the fuel capping layer 80 . The exterior of the cladding 80 is surrounded by a coolant 82 (usually the water in the water cooling reactor).

下列實施例中闡述本說明書所述標的之各種態樣。Various aspects of the subject matter described in this specification are illustrated in the following examples.

實施例1 - 一種方法,其包括:將裂變、含鈾陶瓷材料塗覆抗水性層,該層不與該裂變、含鈾陶瓷材料反應,其中該塗層係塗覆至該裂變、含鈾陶瓷材料之表面。Embodiment 1 - A method comprising: coating a fissile, uranium-containing ceramic material with a water-resistant layer that does not react with the fissile, uranium-containing ceramic material, wherein the coating is applied to the fissile, uranium-containing ceramic material the surface of the material.

實施例2 - 實施例1中所述之方法,其中該裂變、含鈾陶瓷材料包含矽化鈾、氮化鈾、碳化鈾、硼化鈾、磷化鈾、硫化鈾、氧化鈾、或其組合。Embodiment 2 - The method described in Embodiment 1, wherein the fissile, uranium-containing ceramic material comprises uranium silicide, uranium nitride, uranium carbide, uranium boride, uranium phosphide, uranium sulfide, uranium oxide, or a combination thereof.

實施例3 - 實施例1或2中所述之方法,其中該裂變、含鈾陶瓷材料包括U3Si2、U3Si5、U3Si、UN、U15N、UC、UB2、UB4、UP、US2、UO2、UCO、或其組合。Embodiment 3 - The method of Embodiment 1 or 2, wherein the fissionable, uranium-containing ceramic material comprises U3Si2, U3Si5, U3Si, UN, U15N, UC, UB2, UB4, UP, US2, UO2, UCO, or the like combination.

實施例4 - 實施例1至3中任一者所述之方法,其中該裂變、含鈾陶瓷材料係呈丸形式。Embodiment 4 - The method of any of Embodiments 1-3, wherein the fissionable, uranium-containing ceramic material is in pellet form.

實施例5 - 實施例1至4中任一者所述之方法,其中該抗水性層係選自由以下組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。Embodiment 5 - The method of any one of Embodiments 1 to 4, wherein the water repellent layer is selected from the group consisting of: ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2 , SiO2, UO2, ZrB2, Na2O-B2O3-SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof.

實施例6 - 實施例1至5中任一者所述之方法,其中該塗層係藉由原子層沉積來塗覆。Embodiment 6 - The method of any of embodiments 1-5, wherein the coating is applied by atomic layer deposition.

實施例7 - 實施例1至5中任一者所述之方法,其中該塗層係藉由無電電鍍塗覆技術來塗覆。Embodiment 7 - The method of any of Embodiments 1-5, wherein the coating is applied by an electroless plating coating technique.

實施例8 - 實施例1至5中任一者所述之方法,其中該塗層係藉由熱噴塗製程來塗覆。Embodiment 8 - The method of any of embodiments 1-5, wherein the coating is applied by a thermal spray process.

實施例9 - 實施例8中所述之方法,其中該熱噴塗製程係物理氣相沉積。Embodiments 9 - The method described in Embodiment 8, wherein the thermal spray process is physical vapor deposition.

實施例10 - 實施例1至5中任一者所述之方法,其中該塗層係藉由電鍍塗覆技術來塗覆,且其中該裂變、含鈾陶瓷材料係導電性的。Embodiment 10 - The method of any of Embodiments 1-5, wherein the coating is applied by an electroplating coating technique, and wherein the fissile, uranium-containing ceramic material is conductive.

實施例11 - 實施例8中所述之方法,其中該熱噴塗製程係電漿弧噴塗。Embodiment 11 - The method described in Embodiment 8, wherein the thermal spraying process is plasma arc spraying.

實施例12 - 實施例11中所述之方法,其中該塗層之厚度係1微米至200微米。Embodiment 12 - The method described in Embodiment 11, wherein the thickness of the coating is 1 micron to 200 microns.

實施例13 - 實施例8中所述之方法,其中該熱噴塗製程係冷噴製程。Embodiment 13 - The method described in Embodiment 8, wherein the thermal spray process is a cold spray process.

實施例14 - 實施例8中所述之方法,其中該熱噴塗製程係熱噴製程。Embodiment 14 - The method described in Embodiment 8, wherein the thermal spray process is a thermal spray process.

實施例15 - 實施例1至14中任一者所述之方法,其進一步包括將一層可燃吸收劑塗覆於該抗水性層上方。Embodiment 15 - The method of any one of Embodiments 1-14, further comprising applying a layer of a combustible absorbent over the water repellent layer.

實施例16 - 實施例15中所述之方法,其中該可燃吸收劑係選自由ZrB2、B2O3-SiO2玻璃、及其組合所組成之群。Embodiment 16 - The method described in Embodiment 15, wherein the combustible absorbent is selected from the group consisting of ZrB2, B2O3-SiO2 glass, and combinations thereof.

實施例17 - 一種用於核反應器中之燃料,其包含:經塗覆抗水性層之裂變、含鈾陶瓷材料,其中該塗層係塗覆至該裂變、含鈾陶瓷材料之表面。Example 17 - A fuel for use in a nuclear reactor comprising: a fissile, uranium-containing ceramic material coated with a water-resistant layer, wherein the coating is applied to the surface of the fissile, uranium-containing ceramic material.

實施例18 - 實施例17中所述之燃料,其中該抗水性層係選自由以下組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr及其組合。Embodiment 18 - The fuel described in Embodiment 17, wherein the water resistant layer is selected from the group consisting of ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3-SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr and combinations thereof.

實施例19 - 實施例17至18中任一者所述之燃料,其中該裂變、含鈾陶瓷材料包含矽化鈾、氮化鈾、碳化鈾、硼化鈾、磷化鈾、硫化鈾、氧化鈾、或其組合。Embodiment 19 - The fuel of any one of Embodiments 17-18, wherein the fissile, uranium-containing ceramic material comprises uranium silicide, uranium nitride, uranium carbide, uranium boride, uranium phosphide, uranium sulfide, uranium oxide , or a combination thereof.

實施例20 - 實施例17至19中任一者所述之燃料,其中該裂變、含鈾陶瓷材料包括U3Si2、U3Si5、U3Si、UN、U15N、UC、UB2、UB4、UP、US2、UO2、UCO、或其組合。Embodiment 20 - The fuel of any one of embodiments 17-19, wherein the fissionable, uranium-containing ceramic material comprises U3Si2, U3Si5, U3Si, UN, U15N, UC, UB2, UB4, UP, US2, UO2, UCO , or a combination thereof.

實施例21 - 實施例17至20中任一者所述之燃料,其進一步包括位於該抗水性層上方用於控制核反應器操作中之核心反應性的整體燃料可燃吸收劑層。Embodiment 21 - The fuel of any one of Embodiments 17-20, further comprising an integral fuel combustible absorbent layer over the water-resistant layer for controlling core reactivity in nuclear reactor operation.

實施例22 - 實施例21中所述之燃料,其中該吸收劑層係選自由ZrB2、B2O3-SiO2玻璃、及其組合所組成之群。Embodiment 22 - The fuel of Embodiment 21, wherein the absorber layer is selected from the group consisting of ZrB2, B2O3-SiO2 glass, and combinations thereof.

本發明已根據若干實施例進行說明,該等實施例意欲在所有態樣中為說明性而非限制性。因此,本發明可於詳細實施中存在許多變化,熟悉技藝人士可由文中包含的說明衍生該等變化。The present invention has been described in terms of several embodiments, which are intended in all aspects to be illustrative and not restrictive. Accordingly, the invention is capable of many variations in detailed implementation, which can be derived by those skilled in the art from the description contained herein.

本文中所提及的所有專利、專利申請案、公開案或其他揭示材料皆特此以全文引用之方式併入,如同每一個別參考文獻分別以引用方式明確地併入一般。據稱以引用之方式併入本文中的所有參考文獻及其任何材料或其部分僅在併入之材料不會與本揭示中所闡述之現有定義、陳述或其他揭示材料矛盾之程度上併入本文中。因而且在必要程度上,如本文中所闡述之揭示內容取代以引用方式併入本文中之任何矛盾的材料及在本申請案對照中明確闡述之揭示內容。All patents, patent applications, publications, or other disclosed materials mentioned herein are hereby incorporated by reference in their entirety, as if each individual reference were individually expressly incorporated by reference. All references herein incorporated by reference and any material or portion thereof are said to be incorporated by reference only to the extent that the incorporated material does not contradict existing definitions, statements or other disclosed material set forth in this disclosure in this article. Accordingly, and to the extent necessary, the disclosure as set forth herein supersedes any conflicting material incorporated herein by reference and the disclosure expressly set forth in the comparison of this application.

已參考各種例示性及說明性具體例描述本發明。本文中所描述之具體例應理解為提供本發明之各種具體例之不同細節的說明性特徵;且因此,除非另外指定,否則應理解,在可能之情況下,所揭示具體例之一或多個特徵、元件、組件、組份、成份、結構、模組及/或態樣可與或相對於所揭示具體例之一或多個其他特徵、元件、組件、組份、成份、結構、模組及/或態樣組合、分開、互換及/或重新配置,而不脫離本發明之範圍。因此,一般熟悉本技藝者將認識到,可在不脫離本發明範圍之情況下進行例示性具體例中之任一者的各種替代、修改或組合。此外,熟悉本技藝者將認識到或能夠在審閱本說明書後僅使用常規實驗確定本文中所描述之本發明之各種具體例的許多等效物。因此,本發明不受各種具體例之描述限制,而是受申請專利範圍限制。The present invention has been described with reference to various illustrative and illustrative specific examples. The embodiments described herein are to be understood as providing illustrative features of various details of the various embodiments of the invention; and, therefore, unless otherwise specified, it is to be understood that, where possible, one or more of the disclosed embodiments A feature, element, component, component, composition, structure, module, and/or aspect may be combined with or relative to one or more of the other features, elements, components, components, components, structures, modules, and/or aspects of the disclosed embodiments. Groups and/or aspects may be combined, separated, interchanged and/or reconfigured without departing from the scope of the present invention. Accordingly, those of ordinary skill in the art will recognize that various substitutions, modifications, or combinations of any of the illustrative embodiments can be made without departing from the scope of the invention. Furthermore, those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, after reviewing this specification, many equivalents to the various embodiments of the invention described herein. Therefore, the present invention is not limited by the description of various specific examples, but is limited by the scope of the patent application.

10:熱噴塗總成 12:加熱器 14:粉末或粒子料斗 16:槍 18:噴嘴 20:加壓氣體噴射 22:基板 24:粒子 26:傳送導管 28:傳送導管 32:傳送導管 34:傳送導管 36:經噴塗粒子 40:電漿炬 42:水冷卻噴嘴 44:陰極 46:陽極 48:絕緣體 50:熱氣體噴射 52:埠 54:塗層 56:氣體埠 60:基板 68:外殼 70:燃料棒 72:裂變材料 74:抗水性塗層 76:覆蓋層 78:間隙 80:燃料包覆層 82:冷卻劑 10: Thermal spray assembly 12: Heater 14: Powder or particle hopper 16: Gun 18: Nozzle 20: Pressurized gas jet 22: Substrate 24: Particles 26: Delivery catheter 28: Delivery catheter 32: Delivery catheter 34: Delivery catheter 36: Sprayed particles 40: Plasma Torch 42: Water cooling nozzle 44: Cathode 46: Anode 48: Insulator 50: Hot Gas Jet 52: port 54: Coating 56: Gas port 60: Substrate 68: Shell 70: Fuel rods 72: Fissile material 74: Water resistant coating 76: Overlay 78: Gap 80: fuel cladding 82: Coolant

可藉由參看附圖較佳地理解本揭示之特性及優點。The features and advantages of the present disclosure may be better understood by reference to the accompanying drawings.

圖1係U3Si2丸的熱重(TG)分析,其中測量U3Si2丸在水蒸氣氛圍中於2.5 ℃/分鐘之加熱速率下隨著溫度變化的質量增加。Figure 1 is a thermogravimetric (TG) analysis of U3Si2 pellets in which the mass increase of U3Si2 pellets in a water vapor atmosphere with a heating rate of 2.5°C/min was measured as a function of temperature.

圖2係燃料棒中例示性燃料丸之橫截面的示意圖,其顯示保護性塗覆層和燃料燃燒器吸收劑層的相對位置。2 is a schematic diagram of a cross-section of an exemplary fuel pellet in a fuel rod showing the relative positions of the protective coating layer and the fuel burner absorbent layer.

圖3係例示性熱沉積噴塗製程的示意圖。3 is a schematic diagram of an exemplary thermal deposition spray process.

圖4係例示性電漿弧製程的示意圖。4 is a schematic diagram of an exemplary plasma arc process.

70:燃料棒 70: Fuel rods

72:裂變材料 72: Fissile material

74:抗水性塗層 74: Water resistant coating

76:覆蓋層 76: Overlay

78:間隙 78: Gap

80:燃料包覆層 80: fuel cladding

82:冷卻劑 82: Coolant

Claims (22)

一種方法,包括: 將裂變、含鈾陶瓷材料塗覆抗水性層,該層不與該裂變、含鈾陶瓷材料反應, 其中該塗層係塗覆至該裂變、含鈾陶瓷材料之表面。 A method that includes: The fission, uranium-containing ceramic material is coated with a water-resistant layer, and the layer does not react with the fission, uranium-containing ceramic material, Wherein the coating is applied to the surface of the fission, uranium-containing ceramic material. 如請求項1之方法,其中該裂變、含鈾陶瓷材料包含矽化鈾、氮化鈾、碳化鈾、硼化鈾、磷化鈾、硫化鈾、氧化鈾、或其組合。The method of claim 1, wherein the fissile, uranium-containing ceramic material comprises uranium silicide, uranium nitride, uranium carbide, uranium boride, uranium phosphide, uranium sulfide, uranium oxide, or combinations thereof. 如請求項2之方法,其中該裂變、含鈾陶瓷材料包括U3Si2、U3Si5、U3Si、UN、U15N、UC、UB2、UB4、UP、US2、UO2、UCO、或其組合。The method of claim 2, wherein the fissionable, uranium-containing ceramic material comprises U3Si2, U3Si5, U3Si, UN, U15N, UC, UB2, UB4, UP, US2, UO2, UCO, or a combination thereof. 如請求項1之方法,其中該裂變、含鈾陶瓷材料係呈丸形式。The method of claim 1, wherein the fissile, uranium-containing ceramic material is in pellet form. 如請求項1之方法,其中該抗水性層係選自由以下組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、SiC、Ni、Cr、及其組合。The method of claim 1, wherein the water-repellent layer is selected from the group consisting of ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3- SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, SiC, Ni, Cr, and combinations thereof. 如請求項1之方法,其中該塗層係藉由原子層沉積來塗覆。The method of claim 1, wherein the coating is applied by atomic layer deposition. 如請求項1之方法,其中該塗層係藉由無電電鍍塗覆技術來塗覆。The method of claim 1, wherein the coating is applied by an electroless plating coating technique. 如請求項1之方法,其中該塗層係藉由熱噴塗(thermal spray)製程來塗覆。The method of claim 1, wherein the coating is applied by a thermal spray process. 如請求項8之方法,其中該熱噴塗製程係物理氣相沉積。The method of claim 8, wherein the thermal spray process is physical vapor deposition. 如請求項1之方法,其中該塗層係藉由電鍍塗覆技術來塗覆,且其中該裂變、含鈾陶瓷材料係導電性的。The method of claim 1, wherein the coating is applied by an electroplating coating technique, and wherein the fissile, uranium-containing ceramic material is conductive. 如請求項8之方法,其中該熱噴塗製程係電漿弧噴塗。The method of claim 8, wherein the thermal spraying process is plasma arc spraying. 如請求項11之方法,其中該塗層之厚度係1微米至200微米。The method of claim 11, wherein the thickness of the coating is 1 to 200 microns. 如請求項8之方法,其中該熱噴塗製程係冷噴(cold spray )製程。The method of claim 8, wherein the thermal spray process is a cold spray process. 如請求項8之方法,其中該熱噴塗製程係熱噴(hot spray)製程。The method of claim 8, wherein the thermal spray process is a hot spray process. 如請求項1之方法,其進一步包括將一層可燃吸收劑塗覆於該抗水性層上方。The method of claim 1, further comprising applying a layer of a combustible absorbent over the water repellent layer. 如請求項15之方法,其中該等可燃吸收劑係選自由ZrB2、B2O3-SiO2 玻璃、及其組合所組成之群。The method of claim 15, wherein the combustible absorbents are selected from the group consisting of ZrB2, B2O3-SiO2 glass, and combinations thereof. 一種用於核反應器中之燃料,其包含: 經塗覆抗水性層之裂變、含鈾陶瓷材料, 其中該塗層係塗覆至該裂變、含鈾陶瓷材料之表面。 A fuel for use in a nuclear reactor, comprising: Fission, uranium-containing ceramic materials coated with a water-resistant layer, Wherein the coating is applied to the surface of the fission, uranium-containing ceramic material. 如請求項17之燃料,其中該抗水性層係選自由以下組成之群:ZrSiO4、FeCrAl、Cr、Zr、Al-Cr、CrAl、ZrO2、CeO2、TiO2、SiO2、UO2、ZrB2、Na2O-B2O3-SiO2-Al2O3玻璃、Al2O3、Cr2O3、碳、及SiC、及其組合。The fuel of claim 17, wherein the water-repellent layer is selected from the group consisting of ZrSiO4, FeCrAl, Cr, Zr, Al-Cr, CrAl, ZrO2, CeO2, TiO2, SiO2, UO2, ZrB2, Na2O-B2O3- SiO2-Al2O3 glass, Al2O3, Cr2O3, carbon, and SiC, and combinations thereof. 如請求項17之燃料,其中該裂變、含鈾陶瓷材料包含U3Si2、U3Si5、U3Si、UN、U15N、UC、UB2、UB4、UP、US2、UO2、UCO、或其組合。The fuel of claim 17, wherein the fissile, uranium-containing ceramic material comprises U3Si2, U3Si5, U3Si, UN, U15N, UC, UB2, UB4, UP, US2, UO2, UCO, or a combination thereof. 如請求項17之燃料,其中該裂變、含鈾陶瓷材料包含矽化鈾、氮化鈾、碳化鈾、硼化鈾、磷化鈾、硫化鈾、氧化鈾、或其組合。The fuel of claim 17, wherein the fissile, uranium-containing ceramic material comprises uranium silicide, uranium nitride, uranium carbide, uranium boride, uranium phosphide, uranium sulfide, uranium oxide, or combinations thereof. 如請求項17之燃料,其進一步包括位於該抗水性層上方用於控制核反應器操作中之核心反應性的整體燃料可燃吸收劑層。The fuel of claim 17, further comprising an integral fuel combustible absorbent layer over the water-resistant layer for controlling core reactivity in nuclear reactor operation. 如請求項21之燃料,其中該吸收劑層係選自由ZrB2、B2O3-SiO2 玻璃、及其組合所組成之群。The fuel of claim 21, wherein the absorbent layer is selected from the group consisting of ZrB2, B2O3-SiO2 glass, and combinations thereof.
TW110137314A 2020-10-07 2021-10-07 Coated fuel pellets with enhanced water and steam oxidation resistance and methods for improving water resistance of fissile fuels TWI814102B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/065,374 US11488730B2 (en) 2017-03-17 2020-10-07 Coated fuel pellets with enhanced water and steam oxidation resistance
US17/065,374 2020-10-07

Publications (2)

Publication Number Publication Date
TW202217851A true TW202217851A (en) 2022-05-01
TWI814102B TWI814102B (en) 2023-09-01

Family

ID=79287920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137314A TWI814102B (en) 2020-10-07 2021-10-07 Coated fuel pellets with enhanced water and steam oxidation resistance and methods for improving water resistance of fissile fuels

Country Status (6)

Country Link
EP (1) EP4226393A1 (en)
JP (1) JP2023545059A (en)
KR (1) KR20230079094A (en)
CA (1) CA3195120A1 (en)
TW (1) TWI814102B (en)
WO (1) WO2022077014A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338215A (en) * 1979-09-24 1982-07-06 Kennecott Corporation Conversion of radioactive wastes to stable form for disposal
US4751041A (en) 1986-01-15 1988-06-14 Westinghouse Electric Corp. Burnable neutron absorber element
US20070064861A1 (en) * 2005-08-22 2007-03-22 Battelle Energy Alliance, Llc High-density, solid solution nuclear fuel and fuel block utilizing same
FR2953637B1 (en) * 2009-12-04 2012-03-23 Commissariat Energie Atomique NUCLEAR FUEL PEN AND METHOD OF MANUFACTURING PELLETS OF SUCH A PENCIL
US9620248B2 (en) * 2011-08-04 2017-04-11 Ultra Safe Nuclear, Inc. Dispersion ceramic micro-encapsulated (DCM) nuclear fuel and related methods
CN105139898B (en) * 2015-06-30 2017-08-25 清华大学 A kind of coated fuel particles and preparation method thereof
US10803999B2 (en) * 2017-03-17 2020-10-13 Westinghouse Electric Company Llc Coated U3Si2 pellets with enhanced water and steam oxidation resistance
WO2019125604A2 (en) * 2017-10-31 2019-06-27 Westinghouse Electric Company Llc High temperature nuclear fuel system for thermal neutron reactors
CN108335760B (en) * 2018-02-01 2020-08-11 中国工程物理研究院材料研究所 Preparation method of high-uranium-loading-capacity dispersed fuel pellet

Also Published As

Publication number Publication date
TWI814102B (en) 2023-09-01
CA3195120A1 (en) 2022-04-14
WO2022077014A1 (en) 2022-04-14
JP2023545059A (en) 2023-10-26
KR20230079094A (en) 2023-06-05
EP4226393A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
US11488730B2 (en) Coated fuel pellets with enhanced water and steam oxidation resistance
Yang et al. High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment
Kashkarov et al. Oxidation kinetics of Cr-coated zirconium alloy: Effect of coating thickness and microstructure
JP2022177239A (en) COATED U3Si2 PELLETS WITH ENHANCED WATER AND STEAM OXIDATION RESISTANCE
Michau et al. High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes
EP3884503B1 (en) Coatings and surface modifications to mitigate sic cladding during operation in light water reactors
US9421740B2 (en) Zirconium alloy for improving resistance to oxidation at very high temperature and fabrication method thereof
US20060188056A1 (en) Method for forming coatings on structural components with corrosion-mitigating materials
Ch et al. A review of ceramic coatings for high temperature uranium melting applications
TWI814102B (en) Coated fuel pellets with enhanced water and steam oxidation resistance and methods for improving water resistance of fissile fuels
Tang et al. Metallic and ceramic coatings for enhanced accident tolerant fuel cladding
Vorkötter et al. Additive Manufacturing of Columnar Thermal Barrier Coatings by Laser Cladding of Ceramic Feedstock
Weber et al. Crack engineering in thick coatings prepared by spray pyrolysis deposition
Langley et al. First-wall coatings for Tokamak fusion reactors
Brossa et al. TiC coatings on stainless steel, Inconel and Mo: Fabrication and testing
RU2561975C1 (en) Device and method for application of shells of fuel elements
RU2191218C2 (en) Method of obtaining protective coating on product manufactured from heat- resistant refractory alloy
Hong et al. Analysis of SiC-layer for graphite crucible coating for casting of metal fuel slugs for sodium-cooled fast reactor
Neall et al. Application of Selective Area Laser Deposition to the Manufacture of SiC‐SiC Composite Nuclear Fuel Cladding
KR20240014490A (en) Random grain structure coating applied by cathode arc on zirconium alloy nuclear fuel cladding
Lahoda et al. Cold spray chromium coating for nuclear fuel rods
Sunil The application of plasma assisted chemical vapour deposition of ZrC onto a Zr-alloy substrate
Whitley et al. Thermal fatigue of a TiB/sub 2/-coated, long-pulse, high-heat-flux component
JP2018017664A (en) Reactor pressure vessel, reactor and reactor pressure vessel production method
CN115679263A (en) Corrosion-resistant coating and cladding material for nuclear reactor and preparation method of corrosion-resistant coating and cladding material