TW202217692A - Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data - Google Patents
Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data Download PDFInfo
- Publication number
- TW202217692A TW202217692A TW109137608A TW109137608A TW202217692A TW 202217692 A TW202217692 A TW 202217692A TW 109137608 A TW109137608 A TW 109137608A TW 109137608 A TW109137608 A TW 109137608A TW 202217692 A TW202217692 A TW 202217692A
- Authority
- TW
- Taiwan
- Prior art keywords
- customer
- consumption
- store
- data
- item
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明是有關於一種適用於商業的數據處理方法及系統,特別是指一種產生關於店家的顧客推薦名單的方法及系統。The present invention relates to a data processing method and system suitable for business, in particular to a method and system for generating a customer recommendation list about a store.
近年來,隨著資訊科技發展,許多民生消費領域業者,例如便利商店、餐廳,或是觀光景點商店,從以往在店家內進行各種行銷宣傳以刺激消費者進行消費的方式,演變為將行銷資訊傳送到消費者的行動裝置中吸引消費者前來消費,例如店家具有一對應該店家的行銷端,其中該行銷端通訊連接多個分別對應多名曾至該店家進行消費之消費者的行動裝置,當店家欲進行行銷宣傳時,則透過該行銷端傳送該行銷訊息至每一曾至該店家進行消費的消費者的行動裝置,當這些消費者透過行動裝置看到行銷訊息時,便能得知目前店家所進行中的行銷活動。雖然上述的宣傳方法能夠讓所有曾到店消費的消費者得知行銷訊息,但仍存在部分缺陷。在講求精準行銷的現代社會中,行銷活動強調的是提供行銷活動給特定的潛在目標受眾群,例如店家的主力客源,與此相比,上述將行銷訊息宣傳給所有消費者的宣傳方法不僅沒有效率同時也浪費許多金錢與時間成本。因此,相關領域業者莫不投注許多心血,致力於研發如何獲知主力客源的方法。In recent years, with the development of information technology, many businesses in the consumer sector, such as convenience stores, restaurants, or stores in tourist attractions, have evolved from the previous way of conducting various marketing promotions in stores to stimulate consumers to consume, to marketing information. It is transmitted to the consumer's mobile device to attract consumers to consume. For example, a store has a marketing terminal corresponding to the store, wherein the marketing terminal communicates with a plurality of mobile devices corresponding to a plurality of consumers who have visited the store for consumption. , when the store wants to carry out marketing promotion, it will send the marketing message to the mobile device of each consumer who has visited the store for consumption through the marketing terminal. When these consumers see the marketing message through the mobile device, they can get Know the current marketing activities of the store. Although the above-mentioned publicity method can inform all consumers who have visited the store to know the marketing message, there are still some drawbacks. In the modern society that emphasizes precision marketing, marketing activities emphasize the provision of marketing activities to specific potential target audiences, such as the main source of customers for stores. Inefficiency also wastes a lot of money and time cost. Therefore, industry players in related fields have invested a lot of effort to develop methods for how to know the main source of customers.
因此,本發明的目的,即在提供一種獲知店家主力客源的顧客推薦名單產生方法。Therefore, the purpose of the present invention is to provide a method for generating a customer recommendation list for knowing the main customer source of a store.
再者,本發明的另一目的,在於提供一種獲知店家主力客源的伺服端。Furthermore, another object of the present invention is to provide a server for learning the main customer sources of a store.
於是,本發明顧客推薦名單產生方法,藉由一伺服端來實施,該伺服端儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄,該顧客推薦名單產生方法包含一步驟A、一步驟B、一步驟C、一步驟D、一步驟E,及一步驟F。Therefore, the method for generating a customer recommendation list of the present invention is implemented by a server, which stores a plurality of customer data corresponding to multiple customers, a store data corresponding to a store, and a plurality of store consumption data, wherein Each customer data includes a plurality of customer attributes of the corresponding customer, each store consumption data corresponds to one of the corresponding customers and includes a consumption record of the corresponding customer's consumption at the store in a previous time interval. The method for generating a customer recommendation list includes a step A, a step B, a step C, a step D, a step E, and a step F.
在該步驟A中,對於每一客戶,根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值。In step A, for each customer, according to the store consumption data and customer data corresponding to the customer, a plurality of consumption parameter values related to the customer and corresponding to a plurality of predetermined consumption factors are obtained.
在該步驟B中,對於每一客戶,根據該客戶所對應之店家消費資料,獲得相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值。In the step B, for each customer, according to the store consumption data corresponding to the customer, obtain a corresponding consumption result item related to the customer and affected by the change of at least one of the consumption factors. Consumption result value.
在該步驟C中,以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子。In the step C, at least one target factor is obtained from the consumption factors by means of variance analysis using the consumption result item as a dependent variable.
在該步驟D中,對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差。In the step D, for each target factor, an average value and a standard deviation corresponding to each target factor are calculated according to the consumption parameter value of each customer of the target factor.
在該步驟E中,對於每一客戶,根據該客戶之對應每一目標因子的消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分。In this step E, for each customer, a total potential score of a corresponding customer is calculated according to the consumption parameter value of the customer corresponding to each target factor, the average value and the standard deviation corresponding to each target factor.
在該步驟F中,根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。In the step F, according to the total potential score of each customer, a plurality of customers to be recommended are obtained from the customers, and a recommendation list indicating the customers to be recommended is generated.
再者,本發明用於產生顧客推薦名單的伺服端,包含一儲存模組及一電連接該儲存模組的處理模組。Furthermore, the present invention is used for generating a customer recommendation list server, which includes a storage module and a processing module electrically connected to the storage module.
該儲存模組儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄。The storage module stores multiple pieces of customer data corresponding to multiple customers, one store data corresponding to one store, and multiple store consumption data, wherein each customer data includes multiple customer attributes of the corresponding customer, each The store's consumption data corresponds to one of the waiting customers and includes a consumption record of the corresponding customer's consumption at the store in a previous time interval.
其中,對於每一客戶,該處理模組根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值,以及相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值,並以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子,且對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差,並對於每一客戶,根據該客戶之對應每一目標因子的該消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分,以及根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。Wherein, for each customer, the processing module obtains a plurality of consumption parameter values related to the customer and corresponding to a plurality of preset consumption factors according to the store consumption data and customer data corresponding to the customer, and obtains a plurality of consumption parameter values related to the customer. And a consumption result value corresponding to a consumption result item that is affected by the change of at least one of the corresponding consumption factors, and using the consumption result item as the dependent variable to obtain at least one consumption result from the consumption factors by using variance analysis. target factor, and for each target factor, according to the consumption parameter value of each customer of the target factor, calculate a mean value and a standard deviation corresponding to each target factor, and for each customer, according to the corresponding customer The consumption parameter value of each target factor, the average value and the standard deviation corresponding to each target factor are used to calculate the potential total score of a pair of corresponding customers, and according to the potential total score of each customer, obtain from the customers A plurality of customers to be recommended are generated, and a recommendation list indicating the customers to be recommended is generated.
本發明的功效在於:藉由該伺服端根據該等店家消費資料及該等客戶資料,產生該等消費因子中對應該客戶的該等消費參數值以及該消費結果值,並利用變異數分析獲得該至少一目標因子,再根據該客戶之對應每一目標因子的該消費參數值、每一目標因子所對應的該平均值和該標準差,計算出對應該客戶的該潛力總分以獲得該等欲推薦顧客,藉此,能夠得知該店家的主力客源。The effect of the present invention is: the server generates the consumption parameter values and the consumption result value of the customer in the consumption factors according to the consumption data of the store and the customer data, and uses the variance analysis to obtain The at least one target factor, and then according to the customer's consumption parameter value corresponding to each target factor, the average value and the standard deviation corresponding to each target factor, the potential total score corresponding to the customer is calculated to obtain the If you want to recommend customers, you can know the main source of customers of the store.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated by the same reference numerals.
參閱圖1與圖2,本發明顧客推薦名單產生方法的一第一實施例,由如圖2所示的一顧客推薦名單產生系統9來實施,該顧客推薦名單產生系統9包含本發明用於產生顧客推薦名單的伺服端91,以及經由一通訊網路900與該伺服端91通訊連接的一銷售端92及一行銷端93。Referring to FIGS. 1 and 2, a first embodiment of the method for generating a customer recommendation list of the present invention is implemented by a
該伺服端91包含一儲存模組911、一連接至該通訊網路900的通訊模組913,及一電連接該儲存模組911及該通訊模組913的處理模組912,該儲存模組911儲存有對應一店家的一店家資料、多筆分別對應多名客戶的客戶資料,以及多筆店家消費資料。其中該店家資料包括相關於該店家的一店家位置、一店家營業時間、一店家聯絡方式等資料,每一筆客戶資料包括多個相關於該客戶的客戶屬性,例如性別、年齡、居住位置、工作位置等屬性,每一筆店家消費資料對應該等客戶之其中一者,並且包括所對應之客戶於該店家消費的一消費紀錄,而該消費紀錄包括一消費金額、一消費時間、一消費品項等資料。在此,該伺服端91例如為雲端伺服器、超級電腦、個人電腦,或是其他類似裝置之其中任一。The
該銷售端92對應該店家,並在該等客戶之其中一者進行至該店家進行消費時,產生該店家消費資料。在此,該銷售端92例如為收銀機、服務式端點銷售系統(point of service, POS),或是其他類似裝置之其中任一。The
該行銷端93同樣對應該店家,並由一對應該店家的操作者所持有。在此,該行銷端93是例如個人電腦、筆記型電腦、平板電腦、智慧型手機,或其他類似裝置之其中任一。The
參閱圖1、圖2,本發明顧客推薦名單產生方法的該第一實施例包含一步驟1、一步驟2、一步驟3、一步驟4、一步驟5、一步驟6、一步驟7,及一步驟8,說明該伺服端91如何產生一指示出多位欲推薦顧客的推薦名單。Referring to FIG. 1 and FIG. 2, the first embodiment of the method for generating a customer recommendation list of the present invention includes a step 1, a
在該步驟1中,該銷售端92在該等客戶之其中一者至該店家進行消費時,產生一筆包括對應本次消費的一目標消費紀錄的目標店家消費資料,而後將該目標店家消費資料傳送至該伺服端91。其中該銷售端92可以在產生該目標店家消費資料後立即傳送至該伺服端91,也可以在儲存有一先前時間區間內(例如一個禮拜前)的多筆目標店家消費資料後,一次將該等目標店家消費資料傳送至該伺服端91。In step 1, when one of the customers goes to the store for consumption, the
在該步驟2中,當該伺服端91藉由該通訊模組913透過該通訊網路900接收到該目標店家消費資料後,該伺服端91的該處理模組912將該目標店家消費資料儲存至該儲存模組911中並作為該等店家消費資料之其中一者。In
搭配參閱圖3,在該步驟3中,對於每一客戶,該處理模組912根據該客戶所對應之店家消費資料及客戶資料,獲得在該先前時間區間中,相關於該客戶且對應於多個預設消費因子的多個消費參數值。詳細地說,該等消費因子包括居住距離項目、工作距離項目、消費次數項目、平均消費金額項目等等,當進行該步驟3時,對於每一客戶,該處理模組912根據每一店家消費資料中的該消費紀錄的該消費時間,獲得在該先前時間區間中(例如一個禮拜)該客戶所對應之店家消費資料及客戶資料,並獲得相關於該客戶且對應該等消費因子的多個消費參數值。其中該步驟3包括一子步驟31、一子步驟32、一子步驟33,及一子步驟34,說明如何獲得該等消費參數值。Referring to FIG. 3 , in
在該子步驟31中,對於每一客戶,該處理模組912將對應該客戶之店家消費資料的筆數作為相關於該客戶且對應該消費次數項目的消費參數值。舉例來說,在前一個禮拜中,該客戶來店消費五次並產生五筆店家消費資料,其中消費金額分別為200元、150元、300元、250元,及400元,則該處理模組912將該等對應該客戶在前一個禮拜中的店家消費資料的筆數,亦即五筆,作為相關於該客戶且對應消費次數項目的消費參數值。In this
在該子步驟32中,對於每一客戶,該處理模組912根據對應該客戶之客戶資料中的居住位置及該店家資料中的該店家位置,計算出該居住位置與該店家位置的距離以作為相關於該客戶且對應該居住距離項目的消費參數值。In this
在該子步驟33中,對於每一客戶,該處理模組912根據對應該客戶之客戶資料中的工作位置及該店家資料中的該店家位置,計算出該工作位置與該店家位置的距離以作為相關於該客戶且對應該工作距離項目的消費參數值。In this
在該子步驟34中,對於每一客戶,該處理模組912將對應該客戶之店家消費資料中的消費金額取平均以作為相關於該客戶且對應該平均消費金額項目的消費參數值。接續前述的例子,該處理模組912將200元、150元、300元、250元,及400元取平均所得的數值260元,作為相關於該客戶且對應平均消費金額項目的消費參數值。In the
值得一提的是,在該第一實施例中,該等消費因子包括居住距離項目、工作距離項目、消費次數項目,及平均消費金額項目,但在其他實施方式中,該等消費因子還可以包括例如,年齡項目或消費時間項目,年齡項目對應的消費參數值可藉由每一客戶資料中的年齡屬性獲得,消費時間項目對應的消費參數值可藉由統計相關於該客戶所對應的店家消費資料而得知,例如相關於該客戶的該五筆店家消費資料中消費時間分別為上午10點、下午7點、下午8點、下午6點30分,及下午90點,該處理模組912則統計出相關於該客戶且對應該消費時間項目的該消費參數值為0時至6時0次、6時至12時1次、12時至18時0次,以及18時至24時4次。It is worth mentioning that, in the first embodiment, the consumption factors include the living distance item, the working distance item, the consumption frequency item, and the average consumption amount item, but in other embodiments, the consumption factors can also be Including, for example, age item or consumption time item. The consumption parameter value corresponding to the age item can be obtained from the age attribute in each customer data, and the consumption parameter value corresponding to the consumption time item can be related to the store corresponding to the customer through statistics. According to the consumption data, for example, in the consumption data of the five stores related to the customer, the consumption time is 10:00 am, 7:00 pm, 8:00 pm, 6:30 pm, and 90:00 pm, respectively, the
在該步驟4中,對於每一客戶,該處理模組912根據該客戶所對應之店家消費資料,獲得相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值。詳細地說,該消費結果項目為一消費總金額項目,且該處理模組912是將對應該客戶之店家消費資料中的消費金額加總以作為相關於該客戶且對應該消費總金額項目的該消費結果值,例如接續前述的例子,該處理模組912將200元、150元、300元、250元,及400元加總得到1300元,並將1300元作為相關於該客戶且對應消費總金額項目的該消費結果值。In step 4, for each customer, the
在該步驟5中,該處理模組912以該消費結果項目為應變數利用變異數分析(Analysis of variance, ANOVA)自該等消費因子中獲得至少一目標因子,詳細地說,該等消費因子係作為變異數分析中的自變數,該至少一目標因子是代表在該目標因子中的差異對於該消費結果項目的影響具有顯著差異,例如當該消費次數項目為該至少一目標因子之其中一者時,代表該等客戶在該先前時間區間中,來店消費的次數將會影響到每一客戶在該先前時間區間中的該消費總金額項目。In
在該步驟6中,對於每一目標因子,該處理模組912根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差。In step 6, for each target factor, the
在該步驟7中,對於每一客戶,該處理模組912根據該客戶之對應每一目標因子的消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分,詳細地說,對於每一客戶,該處理模組912是根據以下公式對應該客戶的該潛力總分Z:
In
其中,n為該至少一目標因子的數量, 為第i個目標因子的該平均值, 為該客戶對應第i個目標因子的該消費參數值, 為第i個目標因子的該標準差, 為第i個目標因子的一權重,代表第i個目標因子在該潛力總分Z中的重要性,例如多個目標因子中包括該消費次數項目及該居住距離項目,而該消費次數項目的該權重及該居住距離項目的該權重分別為2與1時,代表在該潛力總分Z中,該消費次數項目的影響比該居住距離項目的影響來的重要。 where n is the number of the at least one target factor, is the average of the ith target factor, is the consumption parameter value of the customer corresponding to the i-th target factor, is the standard deviation of the ith target factor, is a weight of the i-th target factor, representing the importance of the i-th target factor in the potential total score Z, for example, multiple target factors include the consumption frequency item and the living distance item, and the consumption frequency item of When the weight and the weight of the living distance item are respectively 2 and 1, it means that in the total potential score Z, the influence of the consumption frequency item is more important than the influence of the living distance item.
在該步驟8中,該處理模組912根據每一客戶的潛力總分,自該等客戶獲得該等欲推薦顧客,並產生指示出該等欲推薦顧客的該推薦名單,並經由該通訊模組913透過該通訊網路900傳送該推薦名單至該行銷端93,詳細地說,對於每一客戶,該處理模組912判斷該客戶的該潛力總分是否大於一閾值,當判斷出該客戶的該潛力總分大於該閾值時,該處理模組912將該客戶作為一欲推薦顧客。直到對所有客戶進行判斷後,該處理模組912產生指示出有所欲推薦顧客的該推薦名單,其中該推薦名單還包括一相關於該至少一目標因子與該消費結果項目的分析結果,例如該店家的主力客源,亦即對應有較高該消費總金額的該等客戶,其在該先前時間區間中具有較多的消費次數。藉此,當該操作者藉由對該行銷端93的輸入操作,獲得該推薦名單時,便能得知該店家的主力客源屬於何種族群的客戶,例如較常來店消費的客戶、居住距離與該店家較近的客戶,或是工作區域離該店家較近的客戶等等,進而能夠對於屬於主力客源的該等客戶進行行銷宣傳,達到精準行銷的目標。In step 8, the
參閱圖2、圖4,進一步地,本發明顧客推薦名單產生方法的一第二實施例,是由如圖4所示的另一顧客推薦名單產生系統9來實施,該另一顧客推薦名單產生系統9相似於圖2所示的該顧客推薦名單產生系統9,其相異之處在於:該伺服端91還透過該通訊模組913經由該通訊網路900通訊連接多個分別對應該等客戶的客戶端94。Referring to FIG. 2 and FIG. 4 , further, a second embodiment of the method for generating a customer recommendation list of the present invention is implemented by another customer recommendation
參閱圖4、圖5,本發明顧客推薦名單產生方法的該第二實施例實質上是該第一實施例的變化,並包含一步驟11、一步驟12、一步驟13、一步驟14、一步驟15、一步驟16、一步驟17、一步驟18、一步驟19,及一步驟20,其中該步驟11、該步驟12、該步驟13、該步驟14、該步驟15、該步驟16,及該步驟17分別相似於該第一實施例中的該步驟1、該步驟2、該步驟3、該步驟4、該步驟5、該步驟6,及該步驟7。以下說明本第二實施例相異於該第一實施例之處。Referring to FIGS. 4 and 5 , the second embodiment of the method for generating a customer recommendation list of the present invention is substantially a variation of the first embodiment, and includes a
參閱圖4、圖5,在該步驟18中,該處理模組912根據每一客戶的潛力總分,自該等客戶獲得該等欲推薦顧客,並產生相關於該等欲推薦顧客且包括多個分別對應該等欲推薦顧客之客戶代碼的該推薦名單,並經由該通訊模組913透過該通訊網路900傳送該推薦名單至該行銷端93,其中,每一客戶代碼對應所對應之欲推薦顧客的客戶資料。Referring to FIG. 4 and FIG. 5, in
在該步驟19中,該行銷端93藉由該操作者的輸入操作,產生並傳送一包括一行銷訊息的行銷請求至該伺服端91。In
在該步驟20中,該伺服端91在經由該通訊模組913透過該通訊網路900接收到來自該行銷端93的該行銷請求時,該伺服端91的該處理模組912根據該行銷請求、該推薦名單中的該等客戶代碼,及每一客戶代碼所對應的客戶資料,經由該通訊模組913透過該通訊網路900傳送該行銷訊息至該等客戶端94中的多個目標客戶端941,其中該等目標客戶端941分別對應該等欲推薦客戶。In step 20, when the
詳細地說,在該第二實施例中,該處理模組912所產生的該推薦名單為一去識別化的名單,亦即從該推薦名單中僅能得知該等客戶代碼,而無法直接或間接辨識出該等欲推薦客戶為何人,此時該行銷端93便無法直接傳送該行銷訊息至對應該等欲推薦客戶的該等目標客戶端941,而須傳送包括該行銷訊息的該行銷請求至該伺服端91,該伺服端91的該處理模組912則能夠根據該等客戶代碼與每一客戶代碼所對應的客戶資料得知該等欲推薦客戶的聯繫方式,並經由該通訊模組913透過該通訊網路900傳送該行銷訊息至該等目標客戶端941,藉此,在傳送以及顯示該推薦名單時,能夠有效地保護該等欲推薦客戶的個人資料隱私權,避免造成個資外洩的風險。In detail, in the second embodiment, the recommendation list generated by the
綜上所述,本發明顧客推薦名單產生方法,藉由該伺服端91根據該店家資料、該等店家消費資料,及該等客戶資料,利用變異數分析獲得多個欲推薦顧客並產生指示出該等欲推薦顧客的該推薦名單,藉此,該操作者能夠透過該推薦名單確實得知該店家的主力客源為該等欲推薦顧客,進而對該等欲推薦顧客進行精準行銷,此外,當該推薦名單屬於去識別化的名單時,還能夠有效地保護該等欲推薦客戶的個人資料隱私權,避免在傳送該推薦名單時產生侵犯個人隱私的顧慮,故確實能達成本發明的目的。To sum up, in the method for generating a customer recommendation list of the present invention, the
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.
1~8:步驟
31~34:子步驟
11~20:步驟
9:顧客推薦名單產生系統
900:通訊網路
91:伺服端
911:儲存模組
912:處理模組
913:通訊模組
92:銷售端
93:行銷端
94:客戶端
941:目標客戶端
1~8:
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:
圖1是一流程圖,說明本發明顧客推薦名單產生方法的一第一實施例;
圖2是一方塊圖,說明實施本發明顧客推薦名單產生方法的該第一實施例的一顧客推薦名單產生系統;
圖3是一流程圖,說明該第一實施例中一步驟3的子步驟;
圖4是一方塊圖,說明實施本發明顧客推薦名單產生方法的一第二實施例的另一顧客推薦名單產生系統;及
圖5是一流程圖,說明本發明顧客推薦名單產生方法的該第二實施例。
Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein:
1 is a flowchart illustrating a first embodiment of a method for generating a customer recommendation list of the present invention;
FIG. 2 is a block diagram illustrating a customer recommendation list generation system implementing the first embodiment of the customer recommendation list generation method of the present invention;
3 is a flow chart illustrating the sub-steps of a
1~8:步驟 1~8: Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137608A TW202217692A (en) | 2020-10-29 | 2020-10-29 | Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137608A TW202217692A (en) | 2020-10-29 | 2020-10-29 | Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202217692A true TW202217692A (en) | 2022-05-01 |
Family
ID=82558818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109137608A TW202217692A (en) | 2020-10-29 | 2020-10-29 | Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW202217692A (en) |
-
2020
- 2020-10-29 TW TW109137608A patent/TW202217692A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11610232B2 (en) | Systems and methods for using server side cookies by a demand side platform | |
US11023921B2 (en) | Providing data and analysis for advertising on networked devices | |
JP6788667B2 (en) | Advertising lift measurement | |
US10282748B2 (en) | System and method for measuring advertising effectiveness | |
US9324093B2 (en) | Measuring the effects of social sharing on online content and advertising | |
US20170061500A1 (en) | Systems and methods for data service platform | |
US20160103758A1 (en) | Online product testing using bucket tests | |
US20170228811A1 (en) | Providing content based on abandonment of an item in a physical shopping cart | |
US20160210656A1 (en) | System for marketing touchpoint attribution bias correction | |
US20150142514A1 (en) | System and method for payment transaction receipt management | |
JP2012048360A (en) | Id value evaluation device, id value evaluation system and id value evaluation method | |
JP2023160990A (en) | Store usage information distribution device, store usage information distribution system including the same, and store usage information distribution method | |
US20160180374A1 (en) | Viewable impressions system | |
CN113327146B (en) | Information tracking method and device | |
US12079262B2 (en) | Computerized system and method for interest profile generation and digital content dissemination based therefrom | |
US20140122221A1 (en) | Optimizing bidding with multiple campaign types | |
KR101966214B1 (en) | Marketing platform system for matching customer and suppier and method using thereof | |
CN106228390A (en) | The monitoring of the advertisement method and the corresponding reward voucher that utilize electronic coupons use terminal | |
US9208509B1 (en) | System, method, and computer program for personalizing content for a user based on a size of a working vocabulary of the user | |
KR20200065781A (en) | Promotional Video Production Linkage System for Sales Products | |
US9972027B1 (en) | System and method of tracking the effectiveness of viewing resources on electronic devices in causing transaction activity to subsequently occur at a physical location associated with the resources | |
JP2020091869A (en) | Sns system, computer program, marketing automation method using sns, and display method | |
TW202217692A (en) | Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data | |
KR20100123502A (en) | Point of service information based advertisement system and advertisement method thereof | |
CN114638635A (en) | Method and device for determining user rights and interests information |