TW202217692A - Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data - Google Patents

Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data Download PDF

Info

Publication number
TW202217692A
TW202217692A TW109137608A TW109137608A TW202217692A TW 202217692 A TW202217692 A TW 202217692A TW 109137608 A TW109137608 A TW 109137608A TW 109137608 A TW109137608 A TW 109137608A TW 202217692 A TW202217692 A TW 202217692A
Authority
TW
Taiwan
Prior art keywords
customer
consumption
store
data
item
Prior art date
Application number
TW109137608A
Other languages
Chinese (zh)
Inventor
林志叡
林建賢
陳鑑蓁
Original Assignee
中國信託商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國信託商業銀行股份有限公司 filed Critical 中國信託商業銀行股份有限公司
Priority to TW109137608A priority Critical patent/TW202217692A/en
Publication of TW202217692A publication Critical patent/TW202217692A/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided is a server end for generating a customer recommendation list, which stores a plurality of customer data respectively corresponding to a plurality of customers, a piece of shopkeeper data corresponding to a shopkeeper and a plurality of shopkeeper consumption data, wherein each shopkeeper consumption data corresponds to one of the customers; for each customer, the server end acquires, according to the shopkeeper consumption data and the customer data which correspond to the customer, a plurality of consumption parameter values corresponding to a plurality of preset consumption factors, and a consumption result value of a consumption result item relevant to the customer and affected by changes in the consumption factors, and an analysis by means of a variance is preformed to obtain at least one target factor; and for each target factor, a potential total score corresponding to the customer and a recommendation list for indicating a plurality of customers to be recommended are generated according to the consumption parameter value of each customer of the target factor.

Description

顧客推薦名單產生方法及用於產生顧客推薦名單的伺服端Method for generating customer recommendation list and server for generating customer recommendation list

本發明是有關於一種適用於商業的數據處理方法及系統,特別是指一種產生關於店家的顧客推薦名單的方法及系統。The present invention relates to a data processing method and system suitable for business, in particular to a method and system for generating a customer recommendation list about a store.

近年來,隨著資訊科技發展,許多民生消費領域業者,例如便利商店、餐廳,或是觀光景點商店,從以往在店家內進行各種行銷宣傳以刺激消費者進行消費的方式,演變為將行銷資訊傳送到消費者的行動裝置中吸引消費者前來消費,例如店家具有一對應該店家的行銷端,其中該行銷端通訊連接多個分別對應多名曾至該店家進行消費之消費者的行動裝置,當店家欲進行行銷宣傳時,則透過該行銷端傳送該行銷訊息至每一曾至該店家進行消費的消費者的行動裝置,當這些消費者透過行動裝置看到行銷訊息時,便能得知目前店家所進行中的行銷活動。雖然上述的宣傳方法能夠讓所有曾到店消費的消費者得知行銷訊息,但仍存在部分缺陷。在講求精準行銷的現代社會中,行銷活動強調的是提供行銷活動給特定的潛在目標受眾群,例如店家的主力客源,與此相比,上述將行銷訊息宣傳給所有消費者的宣傳方法不僅沒有效率同時也浪費許多金錢與時間成本。因此,相關領域業者莫不投注許多心血,致力於研發如何獲知主力客源的方法。In recent years, with the development of information technology, many businesses in the consumer sector, such as convenience stores, restaurants, or stores in tourist attractions, have evolved from the previous way of conducting various marketing promotions in stores to stimulate consumers to consume, to marketing information. It is transmitted to the consumer's mobile device to attract consumers to consume. For example, a store has a marketing terminal corresponding to the store, wherein the marketing terminal communicates with a plurality of mobile devices corresponding to a plurality of consumers who have visited the store for consumption. , when the store wants to carry out marketing promotion, it will send the marketing message to the mobile device of each consumer who has visited the store for consumption through the marketing terminal. When these consumers see the marketing message through the mobile device, they can get Know the current marketing activities of the store. Although the above-mentioned publicity method can inform all consumers who have visited the store to know the marketing message, there are still some drawbacks. In the modern society that emphasizes precision marketing, marketing activities emphasize the provision of marketing activities to specific potential target audiences, such as the main source of customers for stores. Inefficiency also wastes a lot of money and time cost. Therefore, industry players in related fields have invested a lot of effort to develop methods for how to know the main source of customers.

因此,本發明的目的,即在提供一種獲知店家主力客源的顧客推薦名單產生方法。Therefore, the purpose of the present invention is to provide a method for generating a customer recommendation list for knowing the main customer source of a store.

再者,本發明的另一目的,在於提供一種獲知店家主力客源的伺服端。Furthermore, another object of the present invention is to provide a server for learning the main customer sources of a store.

於是,本發明顧客推薦名單產生方法,藉由一伺服端來實施,該伺服端儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄,該顧客推薦名單產生方法包含一步驟A、一步驟B、一步驟C、一步驟D、一步驟E,及一步驟F。Therefore, the method for generating a customer recommendation list of the present invention is implemented by a server, which stores a plurality of customer data corresponding to multiple customers, a store data corresponding to a store, and a plurality of store consumption data, wherein Each customer data includes a plurality of customer attributes of the corresponding customer, each store consumption data corresponds to one of the corresponding customers and includes a consumption record of the corresponding customer's consumption at the store in a previous time interval. The method for generating a customer recommendation list includes a step A, a step B, a step C, a step D, a step E, and a step F.

在該步驟A中,對於每一客戶,根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值。In step A, for each customer, according to the store consumption data and customer data corresponding to the customer, a plurality of consumption parameter values related to the customer and corresponding to a plurality of predetermined consumption factors are obtained.

在該步驟B中,對於每一客戶,根據該客戶所對應之店家消費資料,獲得相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值。In the step B, for each customer, according to the store consumption data corresponding to the customer, obtain a corresponding consumption result item related to the customer and affected by the change of at least one of the consumption factors. Consumption result value.

在該步驟C中,以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子。In the step C, at least one target factor is obtained from the consumption factors by means of variance analysis using the consumption result item as a dependent variable.

在該步驟D中,對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差。In the step D, for each target factor, an average value and a standard deviation corresponding to each target factor are calculated according to the consumption parameter value of each customer of the target factor.

在該步驟E中,對於每一客戶,根據該客戶之對應每一目標因子的消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分。In this step E, for each customer, a total potential score of a corresponding customer is calculated according to the consumption parameter value of the customer corresponding to each target factor, the average value and the standard deviation corresponding to each target factor.

在該步驟F中,根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。In the step F, according to the total potential score of each customer, a plurality of customers to be recommended are obtained from the customers, and a recommendation list indicating the customers to be recommended is generated.

再者,本發明用於產生顧客推薦名單的伺服端,包含一儲存模組及一電連接該儲存模組的處理模組。Furthermore, the present invention is used for generating a customer recommendation list server, which includes a storage module and a processing module electrically connected to the storage module.

該儲存模組儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄。The storage module stores multiple pieces of customer data corresponding to multiple customers, one store data corresponding to one store, and multiple store consumption data, wherein each customer data includes multiple customer attributes of the corresponding customer, each The store's consumption data corresponds to one of the waiting customers and includes a consumption record of the corresponding customer's consumption at the store in a previous time interval.

其中,對於每一客戶,該處理模組根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值,以及相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值,並以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子,且對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差,並對於每一客戶,根據該客戶之對應每一目標因子的該消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分,以及根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。Wherein, for each customer, the processing module obtains a plurality of consumption parameter values related to the customer and corresponding to a plurality of preset consumption factors according to the store consumption data and customer data corresponding to the customer, and obtains a plurality of consumption parameter values related to the customer. And a consumption result value corresponding to a consumption result item that is affected by the change of at least one of the corresponding consumption factors, and using the consumption result item as the dependent variable to obtain at least one consumption result from the consumption factors by using variance analysis. target factor, and for each target factor, according to the consumption parameter value of each customer of the target factor, calculate a mean value and a standard deviation corresponding to each target factor, and for each customer, according to the corresponding customer The consumption parameter value of each target factor, the average value and the standard deviation corresponding to each target factor are used to calculate the potential total score of a pair of corresponding customers, and according to the potential total score of each customer, obtain from the customers A plurality of customers to be recommended are generated, and a recommendation list indicating the customers to be recommended is generated.

本發明的功效在於:藉由該伺服端根據該等店家消費資料及該等客戶資料,產生該等消費因子中對應該客戶的該等消費參數值以及該消費結果值,並利用變異數分析獲得該至少一目標因子,再根據該客戶之對應每一目標因子的該消費參數值、每一目標因子所對應的該平均值和該標準差,計算出對應該客戶的該潛力總分以獲得該等欲推薦顧客,藉此,能夠得知該店家的主力客源。The effect of the present invention is: the server generates the consumption parameter values and the consumption result value of the customer in the consumption factors according to the consumption data of the store and the customer data, and uses the variance analysis to obtain The at least one target factor, and then according to the customer's consumption parameter value corresponding to each target factor, the average value and the standard deviation corresponding to each target factor, the potential total score corresponding to the customer is calculated to obtain the If you want to recommend customers, you can know the main source of customers of the store.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated by the same reference numerals.

參閱圖1與圖2,本發明顧客推薦名單產生方法的一第一實施例,由如圖2所示的一顧客推薦名單產生系統9來實施,該顧客推薦名單產生系統9包含本發明用於產生顧客推薦名單的伺服端91,以及經由一通訊網路900與該伺服端91通訊連接的一銷售端92及一行銷端93。Referring to FIGS. 1 and 2, a first embodiment of the method for generating a customer recommendation list of the present invention is implemented by a system 9 for generating a customer recommendation list as shown in FIG. A server terminal 91 for generating a customer recommendation list, a sales terminal 92 and a sales terminal 93 communicatively connected to the server terminal 91 via a communication network 900 .

該伺服端91包含一儲存模組911、一連接至該通訊網路900的通訊模組913,及一電連接該儲存模組911及該通訊模組913的處理模組912,該儲存模組911儲存有對應一店家的一店家資料、多筆分別對應多名客戶的客戶資料,以及多筆店家消費資料。其中該店家資料包括相關於該店家的一店家位置、一店家營業時間、一店家聯絡方式等資料,每一筆客戶資料包括多個相關於該客戶的客戶屬性,例如性別、年齡、居住位置、工作位置等屬性,每一筆店家消費資料對應該等客戶之其中一者,並且包括所對應之客戶於該店家消費的一消費紀錄,而該消費紀錄包括一消費金額、一消費時間、一消費品項等資料。在此,該伺服端91例如為雲端伺服器、超級電腦、個人電腦,或是其他類似裝置之其中任一。The server 91 includes a storage module 911, a communication module 913 connected to the communication network 900, and a processing module 912 electrically connected to the storage module 911 and the communication module 913. The storage module 911 One store information corresponding to one store, multiple customer data corresponding to multiple customers, and multiple store consumption data are stored. The store information includes a store location, a store business hours, a store contact information and other information related to the store, and each customer information includes a plurality of customer attributes related to the customer, such as gender, age, living location, work Attributes such as location, each store consumption data corresponds to one of the corresponding customers, and includes a consumption record of the corresponding customer in the store, and the consumption record includes a consumption amount, a consumption time, a consumption item, etc. material. Here, the server 91 is, for example, a cloud server, a supercomputer, a personal computer, or any of other similar devices.

該銷售端92對應該店家,並在該等客戶之其中一者進行至該店家進行消費時,產生該店家消費資料。在此,該銷售端92例如為收銀機、服務式端點銷售系統(point of service, POS),或是其他類似裝置之其中任一。The sales terminal 92 corresponds to the store, and generates consumption data of the store when one of the customers makes purchases at the store. Here, the sales terminal 92 is, for example, a cash register, a point of service (POS), or any of other similar devices.

該行銷端93同樣對應該店家,並由一對應該店家的操作者所持有。在此,該行銷端93是例如個人電腦、筆記型電腦、平板電腦、智慧型手機,或其他類似裝置之其中任一。The marketing terminal 93 also corresponds to the store and is held by an operator of the store. Here, the marketing terminal 93 is, for example, any one of a personal computer, a notebook computer, a tablet computer, a smart phone, or other similar devices.

參閱圖1、圖2,本發明顧客推薦名單產生方法的該第一實施例包含一步驟1、一步驟2、一步驟3、一步驟4、一步驟5、一步驟6、一步驟7,及一步驟8,說明該伺服端91如何產生一指示出多位欲推薦顧客的推薦名單。Referring to FIG. 1 and FIG. 2, the first embodiment of the method for generating a customer recommendation list of the present invention includes a step 1, a step 2, a step 3, a step 4, a step 5, a step 6, a step 7, and A step 8 describes how the server 91 generates a recommendation list indicating a plurality of customers to be recommended.

在該步驟1中,該銷售端92在該等客戶之其中一者至該店家進行消費時,產生一筆包括對應本次消費的一目標消費紀錄的目標店家消費資料,而後將該目標店家消費資料傳送至該伺服端91。其中該銷售端92可以在產生該目標店家消費資料後立即傳送至該伺服端91,也可以在儲存有一先前時間區間內(例如一個禮拜前)的多筆目標店家消費資料後,一次將該等目標店家消費資料傳送至該伺服端91。In step 1, when one of the customers goes to the store for consumption, the sales terminal 92 generates a target store consumption data including a target consumption record corresponding to the current consumption, and then the target store consumption data sent to the server 91 . The sales terminal 92 may send the consumption data of the target store to the server terminal 91 immediately after generating the consumption data of the target store, or may store a plurality of consumption data of the target store within a previous time interval (for example, a week ago), and then store the consumption data of the target store at one time. The target store consumer data is sent to the server 91 .

在該步驟2中,當該伺服端91藉由該通訊模組913透過該通訊網路900接收到該目標店家消費資料後,該伺服端91的該處理模組912將該目標店家消費資料儲存至該儲存模組911中並作為該等店家消費資料之其中一者。In step 2, after the server 91 receives the consumption data of the target store through the communication network 900 through the communication module 913, the processing module 912 of the server 91 stores the consumption data of the target store in a The storage module 911 is used as one of the store consumer data.

搭配參閱圖3,在該步驟3中,對於每一客戶,該處理模組912根據該客戶所對應之店家消費資料及客戶資料,獲得在該先前時間區間中,相關於該客戶且對應於多個預設消費因子的多個消費參數值。詳細地說,該等消費因子包括居住距離項目、工作距離項目、消費次數項目、平均消費金額項目等等,當進行該步驟3時,對於每一客戶,該處理模組912根據每一店家消費資料中的該消費紀錄的該消費時間,獲得在該先前時間區間中(例如一個禮拜)該客戶所對應之店家消費資料及客戶資料,並獲得相關於該客戶且對應該等消費因子的多個消費參數值。其中該步驟3包括一子步驟31、一子步驟32、一子步驟33,及一子步驟34,說明如何獲得該等消費參數值。Referring to FIG. 3 , in step 3, for each customer, the processing module 912 obtains, in the previous time interval, the data related to the customer and corresponding to the customer according to the store consumption data and customer data corresponding to the customer. Multiple consumption parameter values for a preset consumption factor. Specifically, the consumption factors include living distance items, working distance items, consumption frequency items, average consumption amount items, etc. When performing step 3, for each customer, the processing module 912 consumes according to each store's consumption For the consumption time of the consumption record in the data, obtain the store consumption data and customer data corresponding to the customer in the previous time interval (for example, a week), and obtain a plurality of data related to the customer and corresponding consumption factors Consumption parameter value. The step 3 includes a sub-step 31, a sub-step 32, a sub-step 33, and a sub-step 34, explaining how to obtain the consumption parameter values.

在該子步驟31中,對於每一客戶,該處理模組912將對應該客戶之店家消費資料的筆數作為相關於該客戶且對應該消費次數項目的消費參數值。舉例來說,在前一個禮拜中,該客戶來店消費五次並產生五筆店家消費資料,其中消費金額分別為200元、150元、300元、250元,及400元,則該處理模組912將該等對應該客戶在前一個禮拜中的店家消費資料的筆數,亦即五筆,作為相關於該客戶且對應消費次數項目的消費參數值。In this sub-step 31 , for each customer, the processing module 912 takes the number of transactions of the customer's store consumption data as a consumption parameter value related to the customer and corresponding to the item of consumption times. For example, in the previous week, the customer visited the store for five times and generated five store consumption data. The consumption amounts were 200 yuan, 150 yuan, 300 yuan, 250 yuan, and 400 yuan respectively. 912 takes the number of transactions corresponding to the store's consumption data of the customer in the previous week, that is, five transactions, as the consumption parameter value of the item related to the customer and corresponding to the number of consumptions.

在該子步驟32中,對於每一客戶,該處理模組912根據對應該客戶之客戶資料中的居住位置及該店家資料中的該店家位置,計算出該居住位置與該店家位置的距離以作為相關於該客戶且對應該居住距離項目的消費參數值。In this sub-step 32, for each customer, the processing module 912 calculates the distance between the residential location and the store location according to the residential location in the customer data corresponding to the customer and the store location in the store data to obtain As the consumption parameter value related to the customer and corresponding to the living distance item.

在該子步驟33中,對於每一客戶,該處理模組912根據對應該客戶之客戶資料中的工作位置及該店家資料中的該店家位置,計算出該工作位置與該店家位置的距離以作為相關於該客戶且對應該工作距離項目的消費參數值。In this sub-step 33, for each customer, the processing module 912 calculates the distance between the work location and the store location according to the work location in the customer data corresponding to the customer and the store location in the store data to obtain As the consumption parameter value related to the customer and corresponding to the working distance item.

在該子步驟34中,對於每一客戶,該處理模組912將對應該客戶之店家消費資料中的消費金額取平均以作為相關於該客戶且對應該平均消費金額項目的消費參數值。接續前述的例子,該處理模組912將200元、150元、300元、250元,及400元取平均所得的數值260元,作為相關於該客戶且對應平均消費金額項目的消費參數值。In the sub-step 34, for each customer, the processing module 912 averages the consumption amount in the store consumption data of the customer as a consumption parameter value related to the customer and corresponding to the average consumption amount item. Continuing the above example, the processing module 912 takes the average value of 200 yuan, 150 yuan, 300 yuan, 250 yuan, and 400 yuan to obtain a value of 260 yuan as the consumption parameter value of the item related to the customer and corresponding to the average consumption amount.

值得一提的是,在該第一實施例中,該等消費因子包括居住距離項目、工作距離項目、消費次數項目,及平均消費金額項目,但在其他實施方式中,該等消費因子還可以包括例如,年齡項目或消費時間項目,年齡項目對應的消費參數值可藉由每一客戶資料中的年齡屬性獲得,消費時間項目對應的消費參數值可藉由統計相關於該客戶所對應的店家消費資料而得知,例如相關於該客戶的該五筆店家消費資料中消費時間分別為上午10點、下午7點、下午8點、下午6點30分,及下午90點,該處理模組912則統計出相關於該客戶且對應該消費時間項目的該消費參數值為0時至6時0次、6時至12時1次、12時至18時0次,以及18時至24時4次。It is worth mentioning that, in the first embodiment, the consumption factors include the living distance item, the working distance item, the consumption frequency item, and the average consumption amount item, but in other embodiments, the consumption factors can also be Including, for example, age item or consumption time item. The consumption parameter value corresponding to the age item can be obtained from the age attribute in each customer data, and the consumption parameter value corresponding to the consumption time item can be related to the store corresponding to the customer through statistics. According to the consumption data, for example, in the consumption data of the five stores related to the customer, the consumption time is 10:00 am, 7:00 pm, 8:00 pm, 6:30 pm, and 90:00 pm, respectively, the processing module 912 Then the consumption parameter values related to the customer and corresponding to the consumption time item are 0:0 to 6:00, 1 to 12:00, 12:00 to 18:00, and 18:00 to 24:4 Second-rate.

在該步驟4中,對於每一客戶,該處理模組912根據該客戶所對應之店家消費資料,獲得相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值。詳細地說,該消費結果項目為一消費總金額項目,且該處理模組912是將對應該客戶之店家消費資料中的消費金額加總以作為相關於該客戶且對應該消費總金額項目的該消費結果值,例如接續前述的例子,該處理模組912將200元、150元、300元、250元,及400元加總得到1300元,並將1300元作為相關於該客戶且對應消費總金額項目的該消費結果值。In step 4, for each customer, the processing module 912 obtains a consumption result related to the customer and affected by the change of at least one of the consumption factors according to the consumption data of the store corresponding to the customer A consumption result value corresponding to the item. In detail, the consumption result item is a total consumption amount item, and the processing module 912 sums up the consumption amount in the store consumption data of the corresponding customer as the item related to the customer and corresponding to the total consumption amount For the consumption result value, for example, following the previous example, the processing module 912 adds up 200 yuan, 150 yuan, 300 yuan, 250 yuan, and 400 yuan to obtain 1300 yuan, and regards 1300 yuan as related to the customer and corresponding consumption The consumption result value of the total amount item.

在該步驟5中,該處理模組912以該消費結果項目為應變數利用變異數分析(Analysis of variance, ANOVA)自該等消費因子中獲得至少一目標因子,詳細地說,該等消費因子係作為變異數分析中的自變數,該至少一目標因子是代表在該目標因子中的差異對於該消費結果項目的影響具有顯著差異,例如當該消費次數項目為該至少一目標因子之其中一者時,代表該等客戶在該先前時間區間中,來店消費的次數將會影響到每一客戶在該先前時間區間中的該消費總金額項目。In step 5, the processing module 912 uses the consumption result item as a dependent variable to obtain at least one target factor from the consumption factors by analysis of variance (ANOVA). Specifically, the consumption factors As the independent variable in the variance analysis, the at least one target factor represents that the difference in the target factor has a significant impact on the consumption result item, for example, when the consumption frequency item is one of the at least one target factor In the case of the above, it means that the number of times the customers visit the store for consumption in the previous time interval will affect the total consumption item of each customer in the previous time interval.

在該步驟6中,對於每一目標因子,該處理模組912根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差。In step 6, for each target factor, the processing module 912 calculates an average value and a standard deviation corresponding to each target factor according to the consumption parameter value of each customer of the target factor.

在該步驟7中,對於每一客戶,該處理模組912根據該客戶之對應每一目標因子的消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分,詳細地說,對於每一客戶,該處理模組912是根據以下公式對應該客戶的該潛力總分Z:

Figure 02_image001
In step 7, for each customer, the processing module 912 calculates a pair of corresponding customers according to the customer's consumption parameter value corresponding to each target factor, the average value and the standard deviation corresponding to each target factor The potential total score of , in detail, for each customer, the processing module 912 corresponds to the potential total score Z of the customer according to the following formula:
Figure 02_image001

其中,n為該至少一目標因子的數量,

Figure 02_image003
為第i個目標因子的該平均值,
Figure 02_image005
為該客戶對應第i個目標因子的該消費參數值,
Figure 02_image007
為第i個目標因子的該標準差,
Figure 02_image009
為第i個目標因子的一權重,代表第i個目標因子在該潛力總分Z中的重要性,例如多個目標因子中包括該消費次數項目及該居住距離項目,而該消費次數項目的該權重及該居住距離項目的該權重分別為2與1時,代表在該潛力總分Z中,該消費次數項目的影響比該居住距離項目的影響來的重要。 where n is the number of the at least one target factor,
Figure 02_image003
is the average of the ith target factor,
Figure 02_image005
is the consumption parameter value of the customer corresponding to the i-th target factor,
Figure 02_image007
is the standard deviation of the ith target factor,
Figure 02_image009
is a weight of the i-th target factor, representing the importance of the i-th target factor in the potential total score Z, for example, multiple target factors include the consumption frequency item and the living distance item, and the consumption frequency item of When the weight and the weight of the living distance item are respectively 2 and 1, it means that in the total potential score Z, the influence of the consumption frequency item is more important than the influence of the living distance item.

在該步驟8中,該處理模組912根據每一客戶的潛力總分,自該等客戶獲得該等欲推薦顧客,並產生指示出該等欲推薦顧客的該推薦名單,並經由該通訊模組913透過該通訊網路900傳送該推薦名單至該行銷端93,詳細地說,對於每一客戶,該處理模組912判斷該客戶的該潛力總分是否大於一閾值,當判斷出該客戶的該潛力總分大於該閾值時,該處理模組912將該客戶作為一欲推薦顧客。直到對所有客戶進行判斷後,該處理模組912產生指示出有所欲推薦顧客的該推薦名單,其中該推薦名單還包括一相關於該至少一目標因子與該消費結果項目的分析結果,例如該店家的主力客源,亦即對應有較高該消費總金額的該等客戶,其在該先前時間區間中具有較多的消費次數。藉此,當該操作者藉由對該行銷端93的輸入操作,獲得該推薦名單時,便能得知該店家的主力客源屬於何種族群的客戶,例如較常來店消費的客戶、居住距離與該店家較近的客戶,或是工作區域離該店家較近的客戶等等,進而能夠對於屬於主力客源的該等客戶進行行銷宣傳,達到精準行銷的目標。In step 8, the processing module 912 obtains the customers to be recommended from the customers according to the potential total score of each customer, and generates the recommendation list indicating the customers to be recommended, and sends the recommendation list through the communication module. The group 913 transmits the recommendation list to the marketing terminal 93 through the communication network 900. Specifically, for each customer, the processing module 912 determines whether the total potential score of the customer is greater than a threshold. When the potential total score is greater than the threshold, the processing module 912 regards the customer as a customer to be recommended. After judging all customers, the processing module 912 generates the recommendation list indicating the customers to be recommended, wherein the recommendation list also includes an analysis result related to the at least one target factor and the consumption result item, such as The main customer sources of the store, that is, the customers corresponding to the higher total consumption amount, have more consumption times in the previous time interval. In this way, when the operator obtains the recommendation list through the input operation of the marketing terminal 93, he can know which ethnic group the main customer source of the store belongs to, such as customers who visit the store more frequently, Customers who live close to the store, or customers whose work area is closer to the store, etc., can then carry out marketing promotions for these customers who belong to the main source of customers, so as to achieve the goal of precise marketing.

參閱圖2、圖4,進一步地,本發明顧客推薦名單產生方法的一第二實施例,是由如圖4所示的另一顧客推薦名單產生系統9來實施,該另一顧客推薦名單產生系統9相似於圖2所示的該顧客推薦名單產生系統9,其相異之處在於:該伺服端91還透過該通訊模組913經由該通訊網路900通訊連接多個分別對應該等客戶的客戶端94。Referring to FIG. 2 and FIG. 4 , further, a second embodiment of the method for generating a customer recommendation list of the present invention is implemented by another customer recommendation list generating system 9 as shown in FIG. 4 . The other customer recommendation list generates The system 9 is similar to the customer recommendation list generation system 9 shown in FIG. 2 , the difference is that the server 91 also communicates with a plurality of corresponding customers through the communication module 913 via the communication network 900 . Client 94.

參閱圖4、圖5,本發明顧客推薦名單產生方法的該第二實施例實質上是該第一實施例的變化,並包含一步驟11、一步驟12、一步驟13、一步驟14、一步驟15、一步驟16、一步驟17、一步驟18、一步驟19,及一步驟20,其中該步驟11、該步驟12、該步驟13、該步驟14、該步驟15、該步驟16,及該步驟17分別相似於該第一實施例中的該步驟1、該步驟2、該步驟3、該步驟4、該步驟5、該步驟6,及該步驟7。以下說明本第二實施例相異於該第一實施例之處。Referring to FIGS. 4 and 5 , the second embodiment of the method for generating a customer recommendation list of the present invention is substantially a variation of the first embodiment, and includes a step 11 , a step 12 , a step 13 , a step 14 , and a step 15, a step 16, a step 17, a step 18, a step 19, and a step 20 of which the step 11, the step 12, the step 13, the step 14, the step 15, the step 16, and The step 17 is respectively similar to the step 1 , the step 2 , the step 3 , the step 4 , the step 5 , the step 6 , and the step 7 in the first embodiment. The differences between the second embodiment and the first embodiment will be described below.

參閱圖4、圖5,在該步驟18中,該處理模組912根據每一客戶的潛力總分,自該等客戶獲得該等欲推薦顧客,並產生相關於該等欲推薦顧客且包括多個分別對應該等欲推薦顧客之客戶代碼的該推薦名單,並經由該通訊模組913透過該通訊網路900傳送該推薦名單至該行銷端93,其中,每一客戶代碼對應所對應之欲推薦顧客的客戶資料。Referring to FIG. 4 and FIG. 5, in step 18, the processing module 912 obtains the customers to be recommended from the customers according to the total potential score of each customer, and generates information about the customers to be recommended and includes multiple each of the recommendation lists corresponding to the client codes of the customers to be recommended, and the recommendation list is transmitted to the marketing terminal 93 through the communication network 900 through the communication module 913, wherein each client code corresponds to the corresponding client codes to be recommended Customer profile of the customer.

在該步驟19中,該行銷端93藉由該操作者的輸入操作,產生並傳送一包括一行銷訊息的行銷請求至該伺服端91。In step 19 , the marketing terminal 93 generates and transmits a marketing request including a marketing message to the server terminal 91 through the input operation of the operator.

在該步驟20中,該伺服端91在經由該通訊模組913透過該通訊網路900接收到來自該行銷端93的該行銷請求時,該伺服端91的該處理模組912根據該行銷請求、該推薦名單中的該等客戶代碼,及每一客戶代碼所對應的客戶資料,經由該通訊模組913透過該通訊網路900傳送該行銷訊息至該等客戶端94中的多個目標客戶端941,其中該等目標客戶端941分別對應該等欲推薦客戶。In step 20, when the server 91 receives the marketing request from the marketing terminal 93 through the communication network 900 via the communication module 913, the processing module 912 of the server 91 according to the marketing request, The client codes in the recommendation list, and the client information corresponding to each client code, transmit the marketing message to a plurality of target clients 941 in the clients 94 through the communication module 913 through the communication network 900 , wherein the target clients 941 respectively correspond to the clients to be recommended.

詳細地說,在該第二實施例中,該處理模組912所產生的該推薦名單為一去識別化的名單,亦即從該推薦名單中僅能得知該等客戶代碼,而無法直接或間接辨識出該等欲推薦客戶為何人,此時該行銷端93便無法直接傳送該行銷訊息至對應該等欲推薦客戶的該等目標客戶端941,而須傳送包括該行銷訊息的該行銷請求至該伺服端91,該伺服端91的該處理模組912則能夠根據該等客戶代碼與每一客戶代碼所對應的客戶資料得知該等欲推薦客戶的聯繫方式,並經由該通訊模組913透過該通訊網路900傳送該行銷訊息至該等目標客戶端941,藉此,在傳送以及顯示該推薦名單時,能夠有效地保護該等欲推薦客戶的個人資料隱私權,避免造成個資外洩的風險。In detail, in the second embodiment, the recommendation list generated by the processing module 912 is a de-identified list, that is, only the client codes can be known from the recommendation list, but not directly Or indirectly identify who the customers to recommend are, at this time, the marketing terminal 93 cannot directly transmit the marketing message to the target clients 941 corresponding to the customers to be recommended, but must transmit the marketing message including the marketing message request to the server 91, the processing module 912 of the server 91 can obtain the contact information of the customers to be recommended according to the customer codes and the customer information corresponding to each customer code, and through the communication module The group 913 transmits the marketing message to the target clients 941 through the communication network 900, thereby effectively protecting the privacy of the personal data of the recommending clients when transmitting and displaying the recommendation list, so as to avoid causing personal information risk of leakage.

綜上所述,本發明顧客推薦名單產生方法,藉由該伺服端91根據該店家資料、該等店家消費資料,及該等客戶資料,利用變異數分析獲得多個欲推薦顧客並產生指示出該等欲推薦顧客的該推薦名單,藉此,該操作者能夠透過該推薦名單確實得知該店家的主力客源為該等欲推薦顧客,進而對該等欲推薦顧客進行精準行銷,此外,當該推薦名單屬於去識別化的名單時,還能夠有效地保護該等欲推薦客戶的個人資料隱私權,避免在傳送該推薦名單時產生侵犯個人隱私的顧慮,故確實能達成本發明的目的。To sum up, in the method for generating a customer recommendation list of the present invention, the server 91 obtains a plurality of customers to be recommended by using variance analysis according to the store information, the store consumption data, and the customer data, and generates an instruction list. The recommendation list of the customers to be recommended, whereby the operator can know that the main source of customers of the store is the customers to be recommended through the recommendation list, and then conduct accurate marketing for the customers to be recommended. In addition, When the recommendation list is a de-identified list, it can also effectively protect the privacy rights of the personal data of the customers who want to recommend, and avoid the concern of infringing personal privacy when transmitting the recommendation list, so the purpose of the present invention can indeed be achieved. .

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.

1~8:步驟 31~34:子步驟 11~20:步驟 9:顧客推薦名單產生系統 900:通訊網路 91:伺服端 911:儲存模組 912:處理模組 913:通訊模組 92:銷售端 93:行銷端 94:客戶端 941:目標客戶端 1~8: Steps 31~34: Substeps 11~20: Steps 9: Customer recommendation list generation system 900: Communication Network 91: Servo end 911: Storage Module 912: Processing Modules 913: Communication module 92: Sales side 93: Marketing side 94: Client 941: target client

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一流程圖,說明本發明顧客推薦名單產生方法的一第一實施例; 圖2是一方塊圖,說明實施本發明顧客推薦名單產生方法的該第一實施例的一顧客推薦名單產生系統; 圖3是一流程圖,說明該第一實施例中一步驟3的子步驟; 圖4是一方塊圖,說明實施本發明顧客推薦名單產生方法的一第二實施例的另一顧客推薦名單產生系統;及 圖5是一流程圖,說明本發明顧客推薦名單產生方法的該第二實施例。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: 1 is a flowchart illustrating a first embodiment of a method for generating a customer recommendation list of the present invention; FIG. 2 is a block diagram illustrating a customer recommendation list generation system implementing the first embodiment of the customer recommendation list generation method of the present invention; 3 is a flow chart illustrating the sub-steps of a step 3 in the first embodiment; 4 is a block diagram illustrating another customer recommendation list generation system implementing a second embodiment of the customer recommendation list generation method of the present invention; and FIG. 5 is a flow chart illustrating the second embodiment of the method for generating a customer recommendation list of the present invention.

1~8:步驟 1~8: Steps

Claims (10)

一種顧客推薦名單產生方法,藉由一伺服端來實施,該伺服端儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄,該顧客推薦名單產生方法包含以下步驟: (A)對於每一客戶,根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值; (B)對於每一客戶,根據該客戶所對應之店家消費資料,獲得相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值; (C)以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子; (D)對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差; (E)對於每一客戶,根據該客戶之對應每一目標因子的消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分;及 (F)根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。 A method for generating a customer recommendation list is implemented by a server. The server stores multiple pieces of customer data corresponding to multiple customers, one store information corresponding to one store, and multiple store consumption data, wherein each customer The data includes a plurality of customer attributes of the corresponding customer, the consumption data of each store corresponds to one of the corresponding customers and includes a consumption record of the corresponding customer in the store in a previous time interval, the customer recommendation list The generation method includes the following steps: (A) for each customer, according to the store consumption data and customer data corresponding to the customer, obtain a plurality of consumption parameter values related to the customer and corresponding to a plurality of preset consumption factors; (B) For each customer, obtain a consumption result value corresponding to a consumption result item related to the customer and affected by the change of at least one of the consumption factors according to the consumption data of the store corresponding to the customer ; (C) obtaining at least one target factor from the consumption factors by using the variance analysis with the consumption result item as the dependent variable; (D) for each target factor, calculate a mean value and a standard deviation corresponding to each target factor according to the consumption parameter value of each customer of the target factor; (E) For each customer, calculate a potential total score for the corresponding customer according to the consumption parameter value of the customer corresponding to each target factor, the average value and the standard deviation corresponding to each target factor; and (F) According to the potential total score of each customer, obtain a plurality of customers to be recommended from the customers, and generate a recommendation list indicating the customers to be recommended. 如請求項1所述的顧客推薦名單產生方法,該店家資料包括一對應該店家的店家位置,每一客戶資料中的該等客戶屬性包括所對應之客戶的一居住位置及一工作位置,每一店家消費資料中的該消費紀錄包括所對應之客戶於該店家消費的一消費金額,其中,在步驟(A)中,該等消費因子包括居住距離項目、工作距離項目、消費次數項目,及平均消費金額項目,且該步驟(A)包括以下子步驟: (A-1)對於每一客戶,將對應該客戶之店家消費資料的筆數作為相關於該客戶且對應該消費次數項目的消費參數值; (A-2)對於每一客戶,根據對應該客戶之客戶資料中的居住位置及該店家資料中的該店家位置,計算出該居住位置與該店家位置的距離以作為相關於該客戶且對應該居住距離項目的消費參數值; (A-3)對於每一客戶,根據對應該客戶之客戶資料中的工作位置及該店家資料中的該店家位置,計算出該工作位置與該店家位置的距離以作為相關於該客戶且對應該工作距離項目的消費參數值;及 (A-4)對於每一客戶,將對應該客戶之店家消費資料中的消費金額取平均以作為相關於該客戶且對應該平均消費金額項目的消費參數值。 According to the method for generating a customer recommendation list according to claim 1, the store information includes a pair of store locations corresponding to the store, and the customer attributes in each customer data include a residence location and a work location of the corresponding customer. The consumption record in the consumption data of a store includes a consumption amount consumed by the corresponding customer at the store, wherein, in step (A), the consumption factors include a living distance item, a work distance item, a consumption frequency item, and Average consumption amount item, and this step (A) includes the following sub-steps: (A-1) For each customer, take the number of transactions of the customer's store consumption data as the consumption parameter value related to the customer and corresponding to the consumption frequency item; (A-2) For each customer, calculate the distance between the residence and the store location based on the residence location in the customer profile corresponding to the customer and the store location in the store profile as a reference to the customer and for the store location. The consumption parameter value of the project that should live in distance; (A-3) For each customer, according to the work location in the customer data corresponding to the customer and the store location in the store data, calculate the distance between the work location and the store location as a reference to the customer and to the store location. The value of the consumption parameter for the distance item that should be worked; and (A-4) For each customer, the consumption amount in the store's consumption data of the corresponding customer is averaged as the consumption parameter value related to the customer and corresponding to the average consumption amount item. 如請求項1所述的顧客推薦名單產生方法,每一店家消費資料中的該消費紀錄包括所對應之客戶於該店家消費的一消費金額,其中,在該步驟(B)中,該消費結果項目為一消費總金額項目,對於每一客戶,將對應該客戶之店家消費資料中的消費金額加總以作為相關於該客戶且對應該消費總金額項目的該消費結果值。According to the method for generating a customer recommendation list according to claim 1, the consumption record in the consumption data of each store includes a consumption amount of the corresponding customer in the store, wherein, in the step (B), the consumption result The item is an item of total consumption amount. For each customer, the consumption amount in the store consumption data of the corresponding customer is summed up as the consumption result value related to the customer and corresponding to the total consumption amount item. 如請求項1所述的顧客推薦名單產生方法,其中,在該步驟(E)中,對於每一客戶,是根據以下公式計算出對應該客戶的該潛力總分Z:
Figure 03_image001
其中,n為該至少一目標因子的數量,
Figure 03_image011
為第i個目標因子的該平均值,
Figure 03_image013
為該客戶對應第i個目標因子的該消費參數值,
Figure 03_image015
為第i個目標因子的該標準差,
Figure 03_image017
為第i個目標因子的一權重。
The method for generating a customer recommendation list according to claim 1, wherein, in the step (E), for each customer, the total potential score Z corresponding to the customer is calculated according to the following formula:
Figure 03_image001
where n is the number of the at least one target factor,
Figure 03_image011
is the average of the ith target factor,
Figure 03_image013
is the consumption parameter value of the customer corresponding to the i-th target factor,
Figure 03_image015
is the standard deviation of the ith target factor,
Figure 03_image017
is a weight of the i-th target factor.
如請求項1所述的顧客推薦名單產生方法,該伺服端還通訊連接一對應該店家的行銷端,及多個分別對應該等客戶的客戶端,其中,在該步驟(F)後,還包含以下步驟: (G)該伺服端在接收到一來自該行銷端且包括一行銷訊息的行銷請求時,該伺服端根據該行銷請求及該推薦名單,傳送該行銷訊息至該等客戶端中的多個目標客戶端,其中該等目標客戶端分別對應該等欲推薦客戶。 According to the method for generating a customer recommendation list as described in claim 1, the server terminal is further connected to a marketing terminal of a corresponding store, and a plurality of clients corresponding to the corresponding customers, wherein, after the step (F), further Contains the following steps: (G) When the server receives a marketing request including a marketing message from the marketing, the server sends the marketing message to a plurality of targets in the clients according to the marketing request and the recommendation list Clients, wherein the target clients respectively correspond to the clients who want to recommend. 一種用於產生顧客推薦名單的伺服端,包含: 一儲存模組,儲存有多筆分別對應多名客戶的客戶資料、對應一店家的一店家資料,及多筆店家消費資料,其中每一客戶資料包括所對應之客戶的多個客戶屬性,每一店家消費資料對應該等客戶之其中一者且包含所對應之客戶在一先前時間區間中於該店家消費的一消費紀錄;及 一處理模組,電連接該儲存模組; 其中,對於每一客戶,該處理模組根據該客戶所對應之店家消費資料及客戶資料,獲得相關於該客戶且對應於多個預設消費因子的多個消費參數值,以及相關於該客戶且因應該等消費因子之至少一者之變化而被影響之一消費結果項目所對應的一消費結果值,並以該消費結果項目為應變數利用變異數分析自該等消費因子中獲得至少一目標因子,且對於每一目標因子,根據該目標因子之每一客戶的消費參數值,計算每一目標因子所對應的一平均值和一標準差,並對於每一客戶,根據該客戶之對應每一目標因子的該消費參數值、每一目標因子所對應的該平均值和該標準差計算出一對應該客戶的潛力總分,以及根據每一客戶的潛力總分,自該等客戶獲得多位欲推薦顧客,並產生一指示出該等欲推薦顧客的推薦名單。 A server for generating customer recommendation lists, including: a storage module, storing multiple pieces of customer data corresponding to multiple customers, one store data corresponding to one store, and multiple store consumption data, wherein each customer data includes multiple customer attributes of the corresponding customer, each A store's consumption data corresponds to one of the corresponding customers and includes a consumption record of the corresponding customer's consumption at the store in a previous time interval; and a processing module, electrically connected to the storage module; Wherein, for each customer, the processing module obtains a plurality of consumption parameter values related to the customer and corresponding to a plurality of preset consumption factors according to the store consumption data and customer data corresponding to the customer, and obtains a plurality of consumption parameter values related to the customer. And a consumption result value corresponding to a consumption result item that is affected by the change of at least one of the corresponding consumption factors, and using the consumption result item as the dependent variable to obtain at least one consumption result from the consumption factors by using variance analysis. target factor, and for each target factor, according to the consumption parameter value of each customer of the target factor, calculate a mean value and a standard deviation corresponding to each target factor, and for each customer, according to the corresponding customer The consumption parameter value of each target factor, the average value and the standard deviation corresponding to each target factor are used to calculate the potential total score of a pair of corresponding customers, and according to the potential total score of each customer, obtain from the customers A plurality of customers to be recommended are generated, and a recommendation list indicating the customers to be recommended is generated. 如請求項6所述的用於產生顧客推薦名單的伺服端,其中,該店家資料包括一對應該店家的店家位置,每一客戶資料中的該等客戶屬性包括所對應之客戶的一居住位置及一工作位置,每一店家消費資料中的該消費紀錄包括所對應之客戶於該店家消費的一消費金額,其中,該等消費因子包括居住距離項目、工作距離項目、消費次數項目,及平均消費金額項目,對於每一客戶,該處理模組將對應該客戶之店家消費資料的筆數作為相關於該客戶且對應該消費次數項目中的消費參數值,並根據對應該客戶之客戶資料中的居住位置及該店家資料中的該店家位置,計算出該居住位置與該店家位置的距離以作為相關於該客戶且對應該居住距離項目的消費參數值,且根據對應該客戶之客戶資料中的該工作位置及該店家資料中的該店家位置,計算出該工作位置與該店家位置的距離以作為相關於該客戶且對應該工作距離項目的消費參數值,以及將對應該客戶之店家消費資料中的消費金額取平均以作為相關於該客戶且對應該平均消費金額項目的消費參數值。The server for generating a customer recommendation list according to claim 6, wherein the store data includes a store location of a corresponding store, and the customer attributes in each customer data include a residence location of the corresponding customer and a work location, the consumption record in the consumption data of each store includes a consumption amount consumed by the corresponding customer at the store, wherein the consumption factors include the living distance item, the work distance item, the consumption frequency item, and the average Consumption amount item, for each customer, the processing module takes the number of transactions of the customer's store consumption data as the consumption parameter value in the item related to the customer and the corresponding consumption times, and according to the customer data corresponding to the customer. The living location and the store location in the store information, calculate the distance between the residence location and the store location as the consumption parameter value related to the customer and corresponding to the living distance item, and according to the customer data corresponding to the customer. The work location and the store location in the store information, calculate the distance between the work location and the store location as a consumption parameter value related to the customer and corresponding to the work distance item, and will consume the store for the customer. The consumption amount in the data is averaged as the consumption parameter value related to the customer and corresponding to the average consumption amount item. 如請求項6所述的用於產生顧客推薦名單的伺服端,其中,每一店家消費資料中的該消費紀錄包括所對應之客戶於該店家消費的一消費金額,其中,該消費結果項目為一消費總金額項目,對於每一客戶,該處理模組將對應該客戶之店家消費資料中的消費金額加總以作為相關於該客戶且對應該消費總金額項目的該消費結果值。The server for generating a customer recommendation list according to claim 6, wherein the consumption record in each store's consumption data includes a consumption amount of the corresponding customer's consumption at the store, wherein the consumption result item is A consumption total amount item. For each customer, the processing module adds the consumption amount in the store consumption data of the corresponding customer as the consumption result value related to the customer and corresponding to the consumption total amount item. 如請求項6所述的用於產生顧客推薦名單的伺服端,其中,對於每一客戶,該處理模組根據以下公式計算出對應該客戶的該潛力總分Z:
Figure 03_image019
其中,n為該至少一目標因子的數量,
Figure 03_image011
為第i個目標因子的該平均值,
Figure 03_image013
為該客戶對應第i個目標因子的該消費參數值,
Figure 03_image015
為第i個目標因子的該標準差,
Figure 03_image017
為第i個目標因子的一權重。
The server for generating a customer recommendation list according to claim 6, wherein, for each customer, the processing module calculates the potential total score Z corresponding to the customer according to the following formula:
Figure 03_image019
where n is the number of the at least one target factor,
Figure 03_image011
is the average of the ith target factor,
Figure 03_image013
is the consumption parameter value of the customer corresponding to the i-th target factor,
Figure 03_image015
is the standard deviation of the ith target factor,
Figure 03_image017
is a weight of the i-th target factor.
如請求項6所述的用於產生顧客推薦名單的伺服端,經由一通訊網路連接一對應該店家的行銷端,及多個分別對應該等客戶的客戶端,該伺服端還包含一連接至該通訊網路的通訊模組,該處理模組在經由該通訊模組接收到一來自該行銷端且包括一行銷訊息的行銷請求時,該處理模組根據該行銷請求及該推薦名單,經由該通訊模組傳送該行銷訊息至該等客戶端中的多個目標客戶端,其中該等目標客戶端分別對應該等欲推薦客戶。The server for generating a customer recommendation list according to claim 6 is connected to a marketing terminal of a corresponding store and a plurality of clients corresponding to the corresponding customers via a communication network, and the server further includes a connection to In the communication module of the communication network, when the processing module receives a marketing request including a marketing message from the marketing terminal via the communication module, the processing module sends a message to the processing module through the marketing request and the recommendation list according to the marketing request and the recommendation list. The communication module transmits the marketing message to a plurality of target clients among the clients, wherein the target clients respectively correspond to the clients to be recommended.
TW109137608A 2020-10-29 2020-10-29 Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data TW202217692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109137608A TW202217692A (en) 2020-10-29 2020-10-29 Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109137608A TW202217692A (en) 2020-10-29 2020-10-29 Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data

Publications (1)

Publication Number Publication Date
TW202217692A true TW202217692A (en) 2022-05-01

Family

ID=82558818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137608A TW202217692A (en) 2020-10-29 2020-10-29 Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data

Country Status (1)

Country Link
TW (1) TW202217692A (en)

Similar Documents

Publication Publication Date Title
US11610232B2 (en) Systems and methods for using server side cookies by a demand side platform
US11023921B2 (en) Providing data and analysis for advertising on networked devices
JP6788667B2 (en) Advertising lift measurement
US10282748B2 (en) System and method for measuring advertising effectiveness
US9324093B2 (en) Measuring the effects of social sharing on online content and advertising
US20170061500A1 (en) Systems and methods for data service platform
US20160103758A1 (en) Online product testing using bucket tests
US20170228811A1 (en) Providing content based on abandonment of an item in a physical shopping cart
US20160210656A1 (en) System for marketing touchpoint attribution bias correction
US20150142514A1 (en) System and method for payment transaction receipt management
JP2012048360A (en) Id value evaluation device, id value evaluation system and id value evaluation method
JP2023160990A (en) Store usage information distribution device, store usage information distribution system including the same, and store usage information distribution method
US20160180374A1 (en) Viewable impressions system
CN113327146B (en) Information tracking method and device
US12079262B2 (en) Computerized system and method for interest profile generation and digital content dissemination based therefrom
US20140122221A1 (en) Optimizing bidding with multiple campaign types
KR101966214B1 (en) Marketing platform system for matching customer and suppier and method using thereof
CN106228390A (en) The monitoring of the advertisement method and the corresponding reward voucher that utilize electronic coupons use terminal
US9208509B1 (en) System, method, and computer program for personalizing content for a user based on a size of a working vocabulary of the user
KR20200065781A (en) Promotional Video Production Linkage System for Sales Products
US9972027B1 (en) System and method of tracking the effectiveness of viewing resources on electronic devices in causing transaction activity to subsequently occur at a physical location associated with the resources
JP2020091869A (en) Sns system, computer program, marketing automation method using sns, and display method
TW202217692A (en) Customer recommendation list generation method and server end for generating customer recommendation list storing a plurality of customer data, a piece of shopkeeper data and a plurality of shopkeeper consumption data
KR20100123502A (en) Point of service information based advertisement system and advertisement method thereof
CN114638635A (en) Method and device for determining user rights and interests information