TW202213944A - Method for startup of crystal oscillator with aid of external clock injection, crystal oscillator and monitoring circuit - Google Patents

Method for startup of crystal oscillator with aid of external clock injection, crystal oscillator and monitoring circuit Download PDF

Info

Publication number
TW202213944A
TW202213944A TW110119928A TW110119928A TW202213944A TW 202213944 A TW202213944 A TW 202213944A TW 110119928 A TW110119928 A TW 110119928A TW 110119928 A TW110119928 A TW 110119928A TW 202213944 A TW202213944 A TW 202213944A
Authority
TW
Taiwan
Prior art keywords
frequency
injection
voltage
demodulation
signal
Prior art date
Application number
TW110119928A
Other languages
Chinese (zh)
Other versions
TWI746412B (en
Inventor
陳建瑋
薛育理
黃柏鈞
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/026,275 external-priority patent/US11183971B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Application granted granted Critical
Publication of TWI746412B publication Critical patent/TWI746412B/en
Publication of TW202213944A publication Critical patent/TW202213944A/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A method for startup of a crystal oscillator (XO) with aid of external clock injection, XO and a monitoring circuit therein are provided. The XO includes an XO core circuit, an external oscillator, and an injection switch, where a quality factor of the external oscillator is lower than a quality factor of the XO core circuit. The method includes: utilizing the external oscillator to generate an injected signal; turning on the injection switch to make energy of the injected signal be injected into the XO core circuit, where an amplitude modulation (AM) signal is generated according to combination of the injected signal and an intrinsic oscillation signal from the XO core circuit; and controlling the external oscillator to selectively change an injection frequency of the injected signal according to the AM signal. More particularly, the injection switch is not turned off until the startup process is completed.

Description

借助外部時鐘注入啟動晶體振盪器的方法、晶體振盪器及監視電路Method for starting crystal oscillator by external clock injection, crystal oscillator and monitoring circuit

本發明涉及晶體振盪器(crystal oscillator,XO)的快速啟動,並且更具體地,涉及借助於外部時鐘注入來啟動XO的方法、相關聯的XO以及監視電路(monitoring circuit)。The present invention relates to fast start-up of a crystal oscillator (XO), and more particularly, to a method of starting an XO by means of external clock injection, an associated XO and a monitoring circuit.

對於未來的通信應用(例如,占空比的(duty-cycled)無線/有線系統),當沒有資料要發送或接收時,通信設備內的晶體振盪器(crystal oscillator,XO)可以進入睡眠模式(例如,禁止XO的振盪)以節省電量;當有資料要發送或接收時,XO可以進入喚醒模式以啟動振盪,然後進入具有穩定振盪的監聽(listen)模式,使得通信設備可以正常發送或接收資料。For future communication applications (e.g. duty-cycled wireless/wired systems), the crystal oscillator (XO) within the communication device may enter a sleep mode when there is no data to transmit or receive ( For example, disable the XO's oscillation) to save power; when there is data to send or receive, the XO can enter the wake-up mode to start the oscillation, and then enter the listen mode with stable oscillation, so that the communication device can send or receive data normally .

例如,對應於監聽模式的時間段可以是1毫秒(ms),並且對應於喚醒模式的時間段(可以稱為啟動時間TSTART)可以是5ms,其中,喚醒模式會消耗功率(例如,消耗總功率的42.7%)。因此,XO的啟動時間可能成為降低平均功率的瓶頸。設計人員可以通過控制XO內的負電阻來嘗試減少啟動時間,但這可能會帶來額外的功耗。因此,需要一種新穎的XO的啟動方法和相關架構,以解決相關技術的問題。For example, the period of time corresponding to the listen mode may be 1 millisecond (ms), and the period of time corresponding to the wake-up mode (which may be referred to as the start-up time TSTART) may be 5ms, where the wake-up mode consumes power (eg, consumes total power) 42.7%). Therefore, the startup time of the XO can become a bottleneck for reducing the average power. Designers can try to reduce startup time by controlling the negative resistance within the XO, but this may introduce additional power dissipation. Therefore, a novel XO startup method and related architecture are required to solve the problems of related technologies.

本發明的目的是提供一種借助於外部時鐘注入來啟動晶體振盪器(XO)的方法,相關的XO和監視電路,以加速XO的啟動而不會大大增加額外的能量消耗。It is an object of the present invention to provide a method of starting a crystal oscillator (XO) by means of external clock injection, the associated XO and monitoring circuits, to speed up the start-up of the XO without greatly increasing the additional power consumption.

本發明的至少一個實施例提供了一種借助於外部時鐘注入來啟動XO的方法。該方法可以包括:利用XO內XO核心電路外部的外部振盪器來產生注入信號,其中XO包括XO核心電路,位於XO核心電路外部的外部振盪器以及至少一個注入開關。所述至少一個注入開關耦接於所述XO的注入節點與所述XO核心電路的輸出端之間,所述外部振盪器耦接至所述注入節點,且所述外部振盪器的品質因數低於XO核心電路的品質因數;接通至少一個注入開關以使注入信號的能量注入到XO核心電路中,從而在XO的啟動過程中增加XO核心電路的固有振盪信號的能量,其中根據注入信號與固有振盪信號的組合,在注入節點上產生調製信號;根據調製信號控制外部振盪器選擇性的改變注入信號的注入頻率。更特別地,當外部振盪器選擇性地改變注入信號的注入頻率時,至少一個注入開關被接通。At least one embodiment of the present invention provides a method of enabling an XO by means of external clock injection. The method may include generating the injection signal using an external oscillator external to the XO core circuit within the XO, wherein the XO includes the XO core circuit, the external oscillator external to the XO core circuit, and at least one injection switch. The at least one injection switch is coupled between the injection node of the XO and the output terminal of the XO core circuit, the external oscillator is coupled to the injection node, and the quality factor of the external oscillator is low It depends on the quality factor of the XO core circuit; at least one injection switch is turned on to inject the energy of the injection signal into the XO core circuit, thereby increasing the energy of the natural oscillation signal of the XO core circuit during the startup process of the XO, wherein according to the injection signal and The combination of natural oscillation signals generates a modulation signal on the injection node; according to the modulation signal, the external oscillator is controlled to selectively change the injection frequency of the injection signal. More particularly, when the external oscillator selectively changes the injection frequency of the injection signal, at least one injection switch is turned on.

本發明的至少一個實施例提供了一種XO。 XO可包括XO核心電路,外部振盪器,至少一個注入開關和頻率控制器,其中外部振盪器耦接到XO的注入節點,至少一個注入開關耦接在XO的注入節點和XO核心電路的輸出端之間, 頻率控制器耦接到外部振盪器。XO核心電路可以被配置為在XO核心電路內生成固有振盪信號。外部振盪器可以被配置為在外部振盪器內生成注入信號,其中,外部振盪器的品質因數低於XO核心電路的品質因數。例如,當至少一個注入開關被接通時,注入信號的能量被注入到XO核心電路中,以在XO的啟動過程中增加固有振盪信號的能量,並且根據注入信號與固有振盪信號的組合在注入節點上產生調製信號。頻率控制器可以被配置為接收調製信號並根據調製信號控制外部振盪器選擇性地改變注入信號的注入頻率。更特別地,當外部振盪器選擇性地改變注入信號的注入頻率時,至少一個注入開關被接通。At least one embodiment of the present invention provides an XO. The XO may include an XO core circuit, an external oscillator, at least one injection switch, and a frequency controller, wherein the external oscillator is coupled to the injection node of the XO, and the at least one injection switch is coupled to the injection node of the XO and the output of the XO core circuit In between, the frequency controller is coupled to the external oscillator. The XO core circuit may be configured to generate a natural oscillation signal within the XO core circuit. The external oscillator may be configured to generate the injection signal within the external oscillator, wherein the external oscillator has a lower quality factor than the XO core circuit. For example, when at least one injection switch is turned on, the energy of the injection signal is injected into the XO core circuit to increase the energy of the natural oscillation signal during the startup process of the XO, and according to the combination of the injection signal and the natural oscillation signal, the injection A modulated signal is generated on the node. The frequency controller may be configured to receive the modulation signal and control the external oscillator to selectively vary the injection frequency of the injection signal according to the modulation signal. More particularly, when the external oscillator selectively changes the injection frequency of the injection signal, at least one injection switch is turned on.

本發明的至少一個實施例提供了一種監視電路,該監視電路用於生成解調電壓序列的連續比較結果,該解調電壓序列攜帶有XO的注入信號和固有振盪信號之間的相對相位的資訊。監視電路可以包括放大器,電容器和回路開關。放大器可以被配置為通過放大器的第一輸入端接收解調電壓序列,其中,解調電壓序列包括第一電壓和跟隨第一電壓的第二電壓。電容器耦接到放大器的第二輸入端,並且電容器可以被配置為順序地存儲解調電壓序列。回路開關耦接在放大器的第二輸入端和輸出端之間,並且回路開關被配置為控制放大器的配置。例如,當回路開關被接通時,放大器被配置為單位增益緩衝器,以將第一電壓從放大器的第一輸入端傳輸到電容器。當所述回路開關斷開時,所述放大器被配置為比較器,用於將所述放大器的第一輸入端上的第二電壓與所述電容器上存儲的第一電壓進行比較,並生成所述連續比較結果的比較結果,其中,比較結果攜帶注入信號與XO的固有振盪信號之間的相對相位的資訊,用於控制注入信號的注入頻率。At least one embodiment of the present invention provides a monitoring circuit for generating successive comparisons of demodulated voltage sequences that carry information on the relative phase between an injected signal of XO and a natural oscillation signal . The monitoring circuit may include amplifiers, capacitors and loop switches. The amplifier may be configured to receive, through a first input of the amplifier, a sequence of demodulated voltages, wherein the sequence of demodulated voltages includes a first voltage and a second voltage following the first voltage. A capacitor is coupled to the second input of the amplifier, and the capacitor may be configured to sequentially store the sequence of demodulated voltages. A loop switch is coupled between the second input terminal and the output terminal of the amplifier, and the loop switch is configured to control the configuration of the amplifier. For example, when the loop switch is turned on, the amplifier is configured as a unity gain buffer to transfer the first voltage from the first input of the amplifier to the capacitor. When the loop switch is open, the amplifier is configured as a comparator for comparing the second voltage on the first input of the amplifier with the first voltage stored on the capacitor and generating the resulting The comparison result of the continuous comparison results, wherein the comparison result carries the information of the relative phase between the injection signal and the natural oscillation signal of the XO, and is used to control the injection frequency of the injection signal.

本發明實施例提供的啟動方法及相關的XO可以利用外部振盪器向XO核心電路注入能量,以加速XO的啟動過程。有利的是,在啟動過程中,可以一直接通耦接在外部振盪器和XO核心電路之間的注入開關,從而可以優化時鐘注入的效率。在一些實施例中,當調整注入頻率(鎖定到XO核心電路的固有頻率)時,注入開關可以始終接通,至少接通一段時間,或者交替的接通和斷開以優化或提高時鐘注入效率。與先前技術相比,可以大大減少XO的總體啟動時間。因此,本發明可以優化XO的整體性能而不會引起任何副作用,或者以不太可能引起副作用的方式優化XO的整體性能。The startup method and the related XO provided by the embodiments of the present invention can use an external oscillator to inject energy into the XO core circuit, so as to speed up the XO startup process. Advantageously, during the startup process, the injection switch coupled between the external oscillator and the XO core circuit can always be turned on, so that the efficiency of clock injection can be optimized. In some embodiments, when adjusting the injection frequency (locked to the natural frequency of the XO core circuit), the injection switch may be always on, at least for a period of time, or alternately on and off to optimize or improve clock injection efficiency . The overall startup time of the XO can be greatly reduced compared to the prior art. Therefore, the present invention can optimize the overall performance of the XO without causing any side effects, or optimize the overall performance of the XO in a way that is less likely to cause side effects.

在閱讀了在各個附圖和附圖中示出的優選實施例的以下詳細描述之後,本發明的這些和其他目的無疑對於所屬領域具有通常知識者將變得顯而易見。These and other objects of the present invention will no doubt become apparent to those of ordinary skill in the art after reading the various drawings and the following detailed description of the preferred embodiments shown in the accompanying drawings.

在整個以下描述和請求項中使用指示特定組件的某些術語。如所屬領域具有通常知識者將理解的,電子設備製造商可以用不同的名稱來指代組件。本文檔無意區分名稱不同但功能相同的組件。在以下描述和請求項中,術語“包括”和“包含”以開放式方式使用,因此應解釋為表示“包括但不限於...”。同樣,術語“耦接”旨在表示間接或直接的電連接。因此,如果一個設備耦接到另一設備,則該連接可以是通過直接電連接,或者是通過經由其他設備和連接的間接電連接。Certain terms referring to specific components are used throughout the following description and claims. As will be understood by those of ordinary skill in the art, electronic device manufacturers may refer to components by different names. This document does not intend to distinguish between components with different names but the same function. In the following description and claims, the terms "including" and "comprising" are used in an open-ended fashion and should therefore be interpreted to mean "including but not limited to...". Likewise, the term "coupled" is intended to mean an indirect or direct electrical connection. Thus, if one device is coupled to another device, the connection may be through a direct electrical connection, or through an indirect electrical connection via the other device and connection.

第1圖是示出根據本發明實施例的關於借助於外部時鐘注入的晶體振盪器10(XO)的啟動(例如,快速啟動)的概念的示意圖。對於具有高品質因數的振盪器(可以稱為高Q振盪器),與雜訊(例如相位雜訊)相關的性能要比具有低品質因數的振盪器(可以稱為低Q振盪器)好得多,但高Q振盪器所需的啟動時間可能比低Q振盪器所需的啟動時間長得多。高Q振盪器的示例可以包括但不限於:Pierce XO和Colpitts XO。低Q振盪器的示例可以包括但不限於:環形(ring)振盪器和電阻電容(resistor-capacitor,RC)振盪器。第1圖中所示的快速啟動技術可以在時段T INJ期間接通耦接在低Q振盪器和高Q振盪器之間的注入開關,並且將低Q振盪器的注入信號V INJ的能量注入高Q振盪器(例如,包括主動器件(active device)11(其中具有跨導(transconductance)Gm和負載電容器C L),電容器C m和C o,電阻器R m和電感L m),從而在XO的啟動過程中增加了高Q振盪器的固有振盪信號(intrinsic oscillation signal)的能量(例如V m,ss和I m,ss),以加速XO的啟動並允許XO輸出固有振盪信號。 FIG. 1 is a schematic diagram illustrating a concept regarding start-up (eg, fast start-up) of a crystal oscillator 10 (XO) by means of external clock injection, according to an embodiment of the present invention. For oscillators with a high quality factor (which may be called high-Q oscillators), performance related to noise (eg phase noise) is much better than for oscillators with a low quality factor (which may be called low-Q oscillators) many, but the startup time required for a high-Q oscillator may be much longer than that required for a low-Q oscillator. Examples of high-Q oscillators may include, but are not limited to: Pierce XOs and Colpitts XOs. Examples of low-Q oscillators may include, but are not limited to, ring oscillators and resistor-capacitor (RC) oscillators. The fast-start technique shown in Figure 1 may turn on the injection switch coupled between the low-Q oscillator and the high-Q oscillator during time period T INJ and inject the energy of the low-Q oscillator's injection signal V INJ A high-Q oscillator (eg, comprising active device 11 (with transconductance Gm and load capacitor CL therein), capacitors Cm and Co , resistor Rm and inductance Lm ), thereby The energy of the intrinsic oscillation signal of the high-Q oscillator (eg, V m,ss and Im,ss ) is increased during the startup of the XO to accelerate the startup of the XO and allow the XO to output the intrinsic oscillation signal.

實際上,在啟動過程開始時,低Q振盪器的注入頻率通常與高Q振盪器的固有頻率(intrinsic frequency)不同,例如±6000 ppm(parts per million),因此注入信號和固有振盪信號之間的相位誤差可能會逐漸累積。在一些實施例中,第1圖中所示的快速啟動技術還可以利用回饋控制機制,該機制檢測固有頻率並相應地修改低Q振盪器,以使注入頻率接近固有頻率。詳細地,可以在第一注入時段期間接通注入開關,並且固有振盪信號的能量可以增加,其中,由於固有振盪信號在開始時不夠強,注入信號可以支配低Q振盪器和高Q振盪器的連接節點上的整體波形(例如,注入信號和固有振盪信號的組合)。為了檢測固有頻率(intrinsic frequency),然後在第一注入時段之後的鎖定/同步時段期間斷開注入開關,以允許檢測固有頻率以控制低Q振盪器。在注入頻率接近固有頻率之後,在鎖定/同步時段之後的第二注入時段期間注入開關再次接通,並且時鐘注入繼續進行。In fact, at the beginning of the start-up process, the injection frequency of the low-Q oscillator is usually different from the intrinsic frequency of the high-Q oscillator, eg ±6000 ppm (parts per million), so the difference between the injected signal and the intrinsic oscillation signal is The phase error of , may gradually accumulate. In some embodiments, the fast-start technique shown in Figure 1 may also utilize a feedback control mechanism that detects the natural frequency and modifies the low-Q oscillator accordingly to bring the injection frequency close to the natural frequency. In detail, the injection switch may be turned on during the first injection period, and the energy of the natural oscillation signal may increase, wherein since the natural oscillation signal is not strong enough at the beginning, the injection signal may dominate the low-Q oscillator and the high-Q oscillator. The overall waveform at the connection node (for example, the combination of the injected signal and the natural oscillation signal). To detect the intrinsic frequency, the injection switch is then opened during the lock/sync period following the first injection period to allow detection of the intrinsic frequency to control the low-Q oscillator. After the injection frequency approaches the natural frequency, the injection switch is turned on again during the second injection period after the lock/synchronization period, and the clock injection continues.

第2圖是示出根據本發明實施例的XO 20的示意圖。如第2圖所示,XO 20可以包括XO核心電路100,XO核心電路100的外部振盪器200(特別地,外部振盪器200位於XO核心電路100的外部),至少一個注入開關(例如一個或多個,其統稱為由信號INJ EN控制的注入開關)和頻率控制器300,其中,注入開關耦接在XO 20的注入節點N INJ和XO核心電路的輸出端N OUT之間,外部振盪器耦接到注入節點N INJ,並且頻率控制器300耦接到外部振盪器200。在該實施例中,外部振盪器200的品質因數低於XO核心電路100的品質因數。其中,XO核心電路100可以是高Q振盪器的示例,而外部振盪器200可以是低Q振盪器的示例。第3圖是示出根據本發明實施例的借助於外部時鐘注入的快速啟動第2圖中所示XO 20的方法的流程圖。應當注意的是,第3圖所示的工作流程僅出於說明性目的,而不是對本發明的限制。在第3圖所示的工作流程中,可以添加,刪除或修改一個或多個步驟。此外,如果可以獲得相同的結果,則不必按照第3圖所示的確切順序執行這些步驟。為了更好的理解,請結合第2圖參考第3圖。 FIG. 2 is a schematic diagram illustrating an XO 20 according to an embodiment of the present invention. As shown in FIG. 2, the XO 20 may include the XO core circuit 100, an external oscillator 200 of the XO core circuit 100 (in particular, the external oscillator 200 is located outside the XO core circuit 100), at least one injection switch (eg, an or multiple, which are collectively referred to as the injection switch controlled by the signal INJ EN ) and the frequency controller 300, wherein the injection switch is coupled between the injection node N INJ of the XO 20 and the output terminal N OUT of the XO core circuit, the external oscillator is coupled to the injection node N INJ , and the frequency controller 300 is coupled to the external oscillator 200 . In this embodiment, the quality factor of the external oscillator 200 is lower than that of the XO core circuit 100 . Among them, the XO core circuit 100 may be an example of a high-Q oscillator, and the external oscillator 200 may be an example of a low-Q oscillator. FIG. 3 is a flow chart illustrating a method of quickly starting the XO 20 shown in FIG. 2 by means of external clock injection, according to an embodiment of the present invention. It should be noted that the workflow shown in Figure 3 is for illustrative purposes only, and is not a limitation of the present invention. In the workflow shown in Figure 3, one or more steps can be added, deleted or modified. Furthermore, the steps do not have to be performed in the exact order shown in Figure 3 if the same result can be obtained. For better understanding, please refer to Figure 3 in conjunction with Figure 2.

在步驟S310中,外部振盪器200可以在外部振盪器200內產生注入信號(例如,低Q信號)。在該實施例中,頻率控制器300的工作頻率由外部振盪器控制(例如,頻率控制器300的工作頻率可以等於注入信號的注入頻率),但是本發明不限於此。In step S310 , the external oscillator 200 may generate an injection signal (eg, a low-Q signal) within the external oscillator 200 . In this embodiment, the operating frequency of the frequency controller 300 is controlled by an external oscillator (eg, the operating frequency of the frequency controller 300 may be equal to the injection frequency of the injection signal), but the present invention is not limited thereto.

在步驟S320中,包括XO 20的系統(例如,占空比無線/有線系統)可以利用信號INJ EN接通注入開關,以使注入信號的能量注入XO核心電路100中,從而在XO 20的啟動過程中增加了XO核心電路100的固有振盪信號的能量(例如,諧振器的能量Im(t))。當注入開關被接通時,輸出端N OUT耦接到注入節點N INJ,注入信號和固有振盪信號都存在於注入節點N INJ處,並且根據注入信號和固有振盪信號的組合在注入節點N INJ上產生調幅(amplitude modulation,AM)信號。例如,注入信號(例如,輸出方波)可以被固有振盪信號調製以生成AM信號,如第4圖所示的信號V GATE(t)的波形所示。 In step S320 , the system including the XO 20 (eg, duty cycle wireless/wired system) may use the signal INJ EN to turn on the injection switch, so that the energy of the injection signal is injected into the XO core circuit 100 , so as to start the XO 20 The energy of the natural oscillation signal of the XO core circuit 100 (eg, the energy Im(t) of the resonator) is increased in the process. When the injection switch is turned on, the output terminal N OUT is coupled to the injection node N INJ , and both the injection signal and the natural oscillation signal are present at the injection node N INJ and at the injection node N INJ according to the combination of the injection signal and the natural oscillation signal to generate an amplitude modulation (AM) signal. For example, the injected signal (eg, the output square wave) may be modulated by the natural oscillation signal to generate an AM signal, as shown by the waveform of the signal V GATE (t) shown in FIG. 4 .

在步驟S330中,頻率控制器300可以接收AM信號並根據諸如信號V GATE(t)的波形的AM信號控制外部振盪器200來選擇性地改變注入信號的注入頻率。更具體地說,在啟動過程中,當外部振盪器選擇性的改變注入信號的注入頻率時,注入開關總是接通(例如,不關斷)或至少接通一段時間。 In step S330, the frequency controller 300 may receive the AM signal and control the external oscillator 200 to selectively change the injection frequency of the injection signal according to the AM signal such as the waveform of the signal V GATE (t). More specifically, during startup, when the external oscillator selectively changes the injection frequency of the injection signal, the injection switch is always turned on (eg, not turned off) or at least for a period of time.

應該注意的是,注入信號與固有振盪信號之間的不同相對相位(例如,相位誤差)可能導致第4圖所示信號V GATE(t)的不同波形模式,其中還示出了XO核心電路100內的諧振器的能量I m(t)。例如,當注入頻率(例如F INJ)不等於固有頻率(例如F XO)時,相位誤差可能隨時間累積,並且可能出現跳動行為(beating behavior),其中可以計算出跳動行為的包絡週期T envelope如下:

Figure 02_image001
It should be noted that different relative phases (eg, phase errors) between the injected signal and the natural oscillation signal may result in different waveform patterns for the signal V GATE (t) shown in Figure 4, which also shows the XO core circuit 100 The energy Im (t) of the resonator inside. For example, when the injection frequency (eg, F INJ ) is not equal to the natural frequency (eg, F XO ), the phase error may accumulate over time and a beating behavior may occur, where the envelope period T envelope of the beating behavior can be calculated as follows :
Figure 02_image001

Δf可以表示注入頻率與固有頻率之間的頻率差。在該實施例中,信號V GATE(t)的波形可以被認為是來自外部振盪器200的方波被來自XO核心電路100的固有振盪信號(可以由I m(t)表示)失真,並且不同的失真(例如,跳動的包絡線)可能對應於注入信號和固有振盪信號之間的不同相對相位。因此,與注入信號和固有振盪信號之間的相對相位有關的資訊由諸如信號V GATE(t)的AM信號攜帶。 Δf can represent the frequency difference between the injected frequency and the natural frequency. In this embodiment, the waveform of the signal V GATE (t) can be considered as the square wave from the external oscillator 200 is distorted by the natural oscillation signal from the XO core circuit 100 (which can be represented by Im (t)), and is different Distortions of (eg, bouncing envelopes) may correspond to different relative phases between the injected signal and the intrinsic oscillatory signal. Therefore, information about the relative phase between the injected signal and the natural oscillation signal is carried by the AM signal such as the signal V GATE (t).

第5圖示出了根據本發明實施例的固有振盪信號的增長率與相對相位之間的關係。如第5圖所示,當相對相位落在+90度與-90度之間的間隔中時,回應於外部時鐘注入,固有振盪信號的增長率可能為正。當相對相位落在此間隔之外(例如,相對相位> + 90°或相對相位<-90°)時,回應於外部時鐘注入,增長率可能為負,這意味著當相對相位落在+ 90°和-90°之間的間隔之外時,低Q振盪器會阻礙XO的啟動。FIG. 5 shows the relationship between the growth rate and the relative phase of the natural oscillation signal according to an embodiment of the present invention. As shown in Figure 5, when the relative phase falls within the interval between +90 degrees and -90 degrees, the growth rate of the natural oscillation signal may be positive in response to external clock injection. When the relative phase falls outside this interval (e.g. relative phase > +90° or relative phase < -90°), the growth rate may be negative in response to external clock injection, meaning that when relative phase falls +90 Outside the interval between ° and -90°, the low-Q oscillator prevents the XO from starting.

基於此,在第2圖所示的實施例中,在啟用XO 20的啟動過程之後(例如,在接通注入開關之後),注入開關不會斷開直到啟動過程完成。雖然本發明在所需要的鎖定/同步時段內不中斷XO 20的時鐘注入,但是可以根據失真從信號V GATE中提取與相對相位有關的資訊,以控制注入頻率。另外,頻率控制器300可以利用控制機制來確保相對相位總是落在+ 90°和-90°之間的間隔中,從而防止注入信號阻礙啟動過程。因此,提高了時鐘注入的效率,並且可以大大減少啟動時間。 Based on this, in the embodiment shown in FIG. 2, after the start-up process of the XO 20 is enabled (eg, after the injection switch is turned on), the injection switch is not turned off until the start-up process is completed. Although the present invention does not interrupt the clock injection of the XO 20 during the desired lock/sync period, relative phase-related information can be extracted from the signal V GATE based on distortion to control the injection frequency. Additionally, the frequency controller 300 may utilize a control mechanism to ensure that the relative phase always falls within the interval between +90° and -90°, thereby preventing the injected signal from hindering the start-up process. Therefore, the efficiency of clock injection is improved, and the startup time can be greatly reduced.

在一個實施例中,第2圖中所示的頻率控制器300可以包括:解調電路,其中該解調電路可以被配置為接收AM信號並根據該AM信號生成解調電壓序列。第6圖是示出根據本發明實施例的通過解調電路310生成解調電壓序列的詳細實施方式的示意圖,其中,解調電路310可以是上述解調電路的示例。在該實施例中,第2圖中所示的外部振盪器200可以包括第6圖中所示的低Q振盪器210(例如,環形振盪器或RC振盪器)和至少一個輸出緩衝器(例如,一個或多個輸出緩衝器,其統稱為輸出緩衝器220),其中緩衝器220可以耦接在低Q振盪器210和注入節點N INJ之間。在一些實施例中,可以省略緩衝器220。 In one embodiment, the frequency controller 300 shown in FIG. 2 may include a demodulation circuit, wherein the demodulation circuit may be configured to receive an AM signal and generate a sequence of demodulation voltages based on the AM signal. FIG. 6 is a schematic diagram illustrating a detailed implementation of a demodulation voltage sequence generated by a demodulation circuit 310 according to an embodiment of the present invention, wherein the demodulation circuit 310 may be an example of the above-mentioned demodulation circuit. In this embodiment, the external oscillator 200 shown in Figure 2 may include the low-Q oscillator 210 shown in Figure 6 (eg, a ring oscillator or RC oscillator) and at least one output buffer (eg, , one or more output buffers, collectively referred to as output buffers 220), where buffer 220 may be coupled between low-Q oscillator 210 and injection node N INJ . In some embodiments, buffer 220 may be omitted.

在該實施例中,可以通過使用具有採樣和保持機制的二極體來實現解調電路310,如第6圖所示,從諸如信號V GATE(t)的AM信號中提取與相對相位有關的資訊(例如,跳動包絡)。詳細地,解調電路310可以包括二極體D0,由信號RST控制的重置(reset)開關,由信號RSTB控制的採樣開關和採樣電容器C S,其中,二極體D0的陰極(cathode)耦接至解調電路310的採樣節點。在解調電路310中,重置開關耦接在採樣節點與解調電路310的參考端(例如地電壓端)之間,採樣開關耦接在二極體D0的陽極(anode)與注入節點N INJ之間(或在其他實施例中,其耦接在二極體D0的陽極與XO核心電路100的輸出端N OUT之間),以及採樣電容器C S耦接在採樣節點與參考端之間。例如,在解調電路310的重置時段(reset period),當重置開關為接通(turned on)而採樣開關為斷開(turned off)時,採樣節點的電壓電平被重置為參考端的參考電平。當在採樣時段中重置開關斷開並且採樣開關接通時,回應於AM信號的電壓電平超過對應於二極體D0的閾值,電荷在採樣節點上累積(例如,回應於信號V GATE(t)的電壓電平使二極體D0的陰極和陽極之間的電壓差大於二極體D0的閾值電壓),以在採樣節點上生成解調電壓序列中的解調電壓。解調電路310的操作類似於積分器,因此與失真有關的資訊可以對應於解調電壓序列,其中解調電壓序列可以由信號V De-MOD表示。注意,通過相同的二極體(即,二極體D0)產生解調電壓序列中的每個解調電壓,並且在解調電壓序列中不引入失配問題。 In this embodiment, the demodulation circuit 310 can be implemented by using a diode with a sample and hold mechanism, as shown in FIG. 6, to extract relative phase dependent signals from an AM signal such as signal V GATE (t) Information (eg, beating envelope). In detail, the demodulation circuit 310 may include a diode D0, a reset switch controlled by the signal RST, a sampling switch controlled by the signal RSTB, and a sampling capacitor CS , wherein the cathode of the diode D0 is coupled to the sampling node of the demodulation circuit 310 . In the demodulation circuit 310 , the reset switch is coupled between the sampling node and the reference terminal (eg, the ground voltage terminal) of the demodulation circuit 310 , and the sampling switch is coupled between the anode of the diode D0 and the injection node N Between INJ (or in other embodiments, it is coupled between the anode of diode D0 and the output terminal N OUT of XO core circuit 100 ), and the sampling capacitor CS is coupled between the sampling node and the reference terminal . For example, in the reset period of the demodulation circuit 310, when the reset switch is turned on and the sampling switch is turned off, the voltage level of the sampling node is reset to the reference terminal reference level. When the reset switch is off and the sampling switch is on during the sampling period, in response to the voltage level of the AM signal exceeding the threshold corresponding to diode D0, charge accumulates on the sampling node (eg, in response to the signal V GATE ( t) such that the voltage difference between the cathode and anode of diode D0 is greater than the threshold voltage of diode D0) to generate the demodulated voltages in the demodulated voltage sequence on the sampling node. The demodulation circuit 310 operates like an integrator, so the distortion-related information can correspond to a sequence of demodulated voltages, which can be represented by the signal V De-MOD . Note that each demodulation voltage in the sequence of demodulation voltages is generated by the same diode (ie, diode D0), and no mismatch problem is introduced in the sequence of demodulation voltages.

第7圖示出了根據本發明實施例的相對相位和失真(例如,跳動包絡)之間的關係的一些細節。為了更好地理解,假設諸如信號V XO的固有振盪信號的能量(例如信號V XO的幅度)不變。具有不同的相對相位

Figure 02_image003
的跳動包絡可以如下計算:
Figure 02_image005
Figure 7 shows some details of the relationship between relative phase and distortion (eg, jitter envelope) according to an embodiment of the present invention. For better understanding, assume that the energy of a natural oscillation signal such as signal VXO (eg, the amplitude of signal VXO ) does not change. have different relative phases
Figure 02_image003
The beating envelope of can be calculated as follows:
Figure 02_image005

根據此等式,當

Figure 02_image003
分別為-90°,-45°,0°,+45°和90°時,由
Figure 02_image007
表示的跳動包絡可以為0,
Figure 02_image009
,
Figure 02_image011
,
Figure 02_image009
和0,其中A 0可以代表信號V XO的幅度。基於此,導致跳動包絡
Figure 02_image007
最小的相對相位
Figure 02_image013
可以是0°。因此,如第8圖所示,當相對相位
Figure 02_image015
時,諸如信號V De-MOD的解調電壓序列可以具有最小電壓。 According to this equation, when
Figure 02_image003
at -90°, -45°, 0°, +45° and 90°, respectively, by
Figure 02_image007
The represented beating envelope can be 0,
Figure 02_image009
,
Figure 02_image011
,
Figure 02_image009
and 0, where A 0 can represent the amplitude of the signal V XO . Based on this, resulting in a bouncing envelope
Figure 02_image007
minimum relative phase
Figure 02_image013
Can be 0°. Therefore, as shown in Figure 8, when the relative phase
Figure 02_image015
, a demodulated voltage sequence such as signal V De-MOD may have a minimum voltage.

實際上,如第9圖所示,諸如信號V XO的固有振盪信號的能量(例如,信號V XO的幅度)可能隨時間增長。具有不同相對相位

Figure 02_image003
的跳動包絡可作如下修改:
Figure 02_image017
In fact, as shown in Figure 9, the energy of a natural oscillation signal such as signal VXO (eg, the amplitude of signal VXO ) may increase over time. with different relative phases
Figure 02_image003
The beating envelope of can be modified as follows:
Figure 02_image017

具有信號V XO幅度增大的跳動包絡可以由

Figure 02_image007
表示。根據此等式,當
Figure 02_image003
分別為-90°,-45°,0°,+ 45°和+ 90°時,跳動包絡
Figure 02_image007
可以為0,
Figure 02_image019
,
Figure 02_image021
,
Figure 02_image019
和0,其中k可以代表信號V XO幅度的增長率。基於此,當相對相位
Figure 02_image003
在正方向上累積時,當A 0和k為正值時,導致跳動包絡
Figure 02_image007
最小的相對相位
Figure 02_image013
可能落在0°至90°之間的間隔內。因此,如第10圖所示,當
Figure 02_image023
時,諸如信號V De-MOD的解調電壓序列可以具有最小電壓。類似地,當相對相位
Figure 02_image003
在負方向上累積時,當A 0和k為正值時,導致跳動包絡
Figure 02_image007
最小的相對相位
Figure 02_image013
可能落在0°至-90°之間的間隔內。根據以上描述,可以知道,導致出現了解調電壓序列中的最小電壓(更具體地,局部最小電壓)出現的注入信號與固有振盪信號之間的相對相位,落入+ 90°和-90°之間的間隔。其中,局部最小電壓可以是在解調電壓序列中解調電壓降低的變化趨勢出現反轉時的電壓。 The bouncing envelope with increased amplitude of the signal V XO can be given by
Figure 02_image007
express. According to this equation, when
Figure 02_image003
Runout envelope at -90°, -45°, 0°, +45° and +90° respectively
Figure 02_image007
can be 0,
Figure 02_image019
,
Figure 02_image021
,
Figure 02_image019
and 0, where k can represent the growth rate of the amplitude of the signal V XO . Based on this, when the relative phase
Figure 02_image003
When accumulating in the positive direction, when A0 and k are positive, resulting in a jumpy envelope
Figure 02_image007
minimum relative phase
Figure 02_image013
May fall within the interval between 0° and 90°. Therefore, as shown in Figure 10, when
Figure 02_image023
, a demodulated voltage sequence such as signal V De-MOD may have a minimum voltage. Similarly, when the relative phase
Figure 02_image003
When accumulating in the negative direction, when A0 and k are positive, resulting in a bouncing envelope
Figure 02_image007
minimum relative phase
Figure 02_image013
May fall within the interval between 0° and -90°. From the above description, it can be known that the relative phase between the injected signal and the natural oscillation signal, which leads to the occurrence of the minimum voltage (more specifically, the local minimum voltage) in the demodulated voltage sequence, falls between +90° and -90° interval between. Wherein, the local minimum voltage may be the voltage when the variation trend of demodulation voltage reduction in the demodulation voltage sequence is reversed.

第11圖是示出根據本發明實施例的XO 20的詳細實施方式的示意圖。注意,在啟動過程中注入開關接通,為簡潔起見在第11圖中被省略。除了第6圖所示的解調電路310之外,第3圖中所示的頻率控制器300可以進一步包括:耦接到解調電路的監視電路320,以及耦接到監視電路320和外部振盪器200(例如,低Q振盪器210)的有限狀態機(finite state machine,FSM)330(具有計數器的FSM)。在該實施例中,FSM 330可以利用注入的信號作為用於FSM的計數時鐘(例如,CLK counting),但是本發明不限於此。在該實施例中,監視電路320可以被配置為根據解調電壓序列來生成監視結果,並且FSM 330可以被配置為通過信號V control來控制外部振盪器200(例如,低Q振盪器210),以便根據監視結果選擇性的改變注入頻率,以確保相對相位落在+90度和-90度之間的間隔中。在第11圖的實施例中,監視電路320可以包括放大器AMP COMP,電容器C COMP和由信號LOOP EN控制的回路開關,其中,放大器AMP COMP的第一輸入端(在第11圖所示的放大器AMP COMP上標記為“ +”)可以耦接到解調電路310(例如其中的採樣節點),電容器C COMP可以耦接在參考端和放大器AMP COMP的第二輸入端(在第11圖中示出的放大器AMP COMP上標記為“-”)之間,並且回路開關可以耦接在放大器AMP COMP的第二輸入端和輸出端之間。在該實施例中,由信號LOOP EN控制的D觸發器(D flip-flop,DFF)322可以被包括在監視電路320中,其中DFF耦接在放大器AMP COMP的輸出端和FSM 330之間,以使FSM 330僅接收數字結果,但是本發明不限於此。 FIG. 11 is a schematic diagram illustrating a detailed implementation of an XO 20 according to an embodiment of the present invention. Note that the injection switch is turned on during start-up and is omitted in Figure 11 for brevity. In addition to the demodulation circuit 310 shown in FIG. 6, the frequency controller 300 shown in FIG. 3 may further include: a monitoring circuit 320 coupled to the demodulation circuit, and coupled to the monitoring circuit 320 and an external oscillator A finite state machine (FSM) 330 (FSM with counter) of the oscillator 200 (eg, the low-Q oscillator 210 ). In this embodiment, the FSM 330 may utilize the injected signal as a counting clock (eg, CLK counting ) for the FSM, but the present invention is not limited thereto. In this embodiment, monitoring circuit 320 may be configured to generate monitoring results from the demodulated voltage sequence, and FSM 330 may be configured to control external oscillator 200 (eg, low-Q oscillator 210 ) via signal V control , In order to selectively change the injection frequency according to the monitoring results to ensure that the relative phase falls within the interval between +90 degrees and -90 degrees. In the embodiment of FIG. 11, the monitoring circuit 320 may include an amplifier AMP COMP , a capacitor C COMP , and a loop switch controlled by a signal LOOP EN , wherein the first input of the amplifier AMP COMP (in the amplifier shown in FIG. 11) AMP COMP labeled "+") may be coupled to demodulation circuit 310 (eg, a sampling node therein), capacitor C COMP may be coupled at the reference terminal and a second input of amplifier AMP COMP (shown in Figure 11) output amplifier AMP COMP marked with "-"), and a loop switch may be coupled between a second input terminal and an output terminal of the amplifier AMP COMP . In this embodiment, a D flip-flop (DFF) 322 controlled by the signal LOOP EN may be included in the monitoring circuit 320, wherein the DFF is coupled between the output of the amplifier AMP COMP and the FSM 330, so that the FSM 330 only receives digital results, but the invention is not so limited.

詳細地,放大器AMP COMP可以被配置為通過其第一輸入端接收解調電壓序列,電容器C COMP可以被配置為順序存儲解調電壓序列,並且回路開關被配置為控制監視電路320的配置。為了更好地理解,請參考第12圖和第13圖,其中,第12圖示出了在預設置階段第11圖所示的監視電路320的操作。第13圖示出了在評估階段第11圖所示的監視電路320的操作。在監視電路320的預設置階段期間,回路開關被接通,監視電路320被配置為單位增益緩衝器,以從放大器AMP COMP的第一輸入端到電容器C COMP(例如,放大器AMP COMP的第二輸入端)傳輸解調電壓序列內的第一解調電壓。在評估階段,將回路開關斷開,將監視電路320配置為比較器,以將放大器AMP COMP的第一輸入端上的第二解調電壓與電容器上存儲的第一解調電壓(放大器AMP COMP的第二輸入端上的)進行比較,並產生比較結果,其中,監視結果包括比較結果。以此類推,可以生成解調電壓序列的連續比較結果,其中這些連續比較結果可以表示監視結果。 In detail, the amplifier AMP COMP may be configured to receive the demodulated voltage sequence through its first input, the capacitor C COMP may be configured to sequentially store the demodulated voltage sequence, and the loop switch may be configured to control the configuration of the monitoring circuit 320 . For a better understanding, please refer to FIGS. 12 and 13, wherein FIG. 12 shows the operation of the monitoring circuit 320 shown in FIG. 11 in the preset stage. Figure 13 illustrates the operation of the monitoring circuit 320 shown in Figure 11 during the evaluation phase. During the pre-setup phase of the monitoring circuit 320, the loop switch is turned on, and the monitoring circuit 320 is configured as a unity gain buffer to connect from the first input of the amplifier AMP COMP to the capacitor C COMP (eg, the second input of the amplifier AMP COMP ). input terminal) transmits the first demodulated voltage within the sequence of demodulated voltages. During the evaluation phase, the loop switch is opened and the monitoring circuit 320 is configured as a comparator to compare the second demodulated voltage on the first input of the amplifier AMP COMP with the first demodulated voltage stored on the capacitor (amplifier AMP COMP ) on the second input terminal of , and generate a comparison result, wherein the monitoring result includes the comparison result. By analogy, successive comparisons of demodulated voltage sequences can be generated, where these successive comparisons can represent monitoring results.

假設監視電路320的比較結果為“ 0”表示解調電壓序列內兩個連續解調電壓的先前的解調電壓(例如,上述的第一解調電壓)大於解調電壓序列內這兩個連續解調電壓的後面的解調電壓(例如上述的第二解調電壓),並且監視電路320的比較結果為“ 1”指示這兩個連續解調電壓中的先前的解調電壓小於後面的解調電壓。因此,當比較結果從“ 0”變為“ 1”時,意味著檢測到解調電壓序列的局部最小值。Assuming that the comparison result of the monitoring circuit 320 is "0", it means that the previous demodulation voltage (eg, the first demodulation voltage described above) of the two consecutive demodulation voltages in the demodulation voltage sequence is greater than the two consecutive demodulation voltages in the demodulation voltage sequence. The demodulation voltage following the demodulation voltage (eg, the second demodulation voltage described above), and the comparison result of the monitoring circuit 320 being "1" indicates that the former demodulation voltage of the two consecutive demodulation voltages is smaller than the latter demodulation voltage. Adjust the voltage. Therefore, when the comparison result changes from "0" to "1", it means that a local minimum of the demodulated voltage sequence is detected.

實際上,可能存在由放大器AMP COMP的第一輸入端和第二輸入端的不匹配引起的固有偏移V OS。基於第12圖和第13圖所示的操作,可以從比較結果中去除來自固有偏移V OS的影響。例如,當在預設置階段將第一解調電壓(可以由“ V [n]”表示)從放大器AMP COMP的第一輸入端傳輸到放大器AMP COMP的第二輸入端時,固有偏移量V OS可以與第一電壓一起存儲在電容器C COMP上,因此電容器C COMP可以存儲電壓V [n] -V OS;在評估階段,第二解調電壓(可以由V [n + 1]表示)可以與固有偏移V OS一起存在於放大器AMP COMP的第一端上。由於放大器AMP COMP的第一輸入端和第二輸入端在各自端上都具有固有偏移,因此比較結果(例如,第13圖所示的AD RESULT)將不受固有偏移的影響。 In practice, there may be an inherent offset VOS caused by the mismatch of the first and second inputs of the amplifier AMP COMP . Based on the operations shown in Figures 12 and 13, the influence from the inherent offset V OS can be removed from the comparison results. For example, when the first demodulation voltage (which may be denoted by "V[n]") is transferred from the first input of the amplifier AMP COMP to the second input of the amplifier AMP COMP in the pre-set stage, the inherent offset V OS can be stored on capacitor C COMP together with the first voltage, so capacitor C COMP can store the voltage V[n] - V OS ; in the evaluation phase, the second demodulation voltage (which can be represented by V[n+1]) can be Present on the first terminal of amplifier AMP COMP together with the intrinsic offset V OS . Since both the first and second inputs of amplifier AMP COMP have inherent offsets on their respective terminals, the comparison results (eg AD RESULT shown in Figure 13) will not be affected by the inherent offset.

應當注意,監視電路320不限於在第11圖中所示的XO 20中使用。任何需要連續比較操作的系統(例如,生成關於資料(或者電壓)序列內相鄰資料(或電壓)的比較結果)可以由監視電路320實施。It should be noted that the monitoring circuit 320 is not limited to use in the XO 20 shown in FIG. 11 . Any system that requires continuous comparison operations (eg, generating comparison results with respect to adjacent data (or voltages) within a sequence of data (or voltages)) may be implemented by monitoring circuit 320 .

在另一個實施例中,解調電路310中的二極體D0可以用如第14圖所示的電晶體M0(例如N型電晶體)代替,其中電晶體M0的閘極端耦接到電晶體M0的漏極端,以使電晶體起二極體的作用,但是本發明不限於此。注意,在啟動過程中注入開關接通,並且在第11圖中為簡潔起見而被省略。In another embodiment, the diode D0 in the demodulation circuit 310 may be replaced with a transistor M0 (eg, an N-type transistor) as shown in FIG. 14, wherein the gate terminal of the transistor M0 is coupled to the transistor The drain terminal of M0 makes the transistor function as a diode, but the present invention is not limited thereto. Note that the injection switch is on during start-up and is omitted in Figure 11 for brevity.

在另一個實施例中,監視電路320可以被監視電路320A代替,如第15圖中示出的XO 30所示,其中監視電路320A可以包括比較器COMP,由信號SH控制的第一採樣開關,由信號SHB控制的第二採樣開關,第一採樣電容器C 1和第二採樣電容器C 2。注意,在啟動過程中注入開關是接通的,並且為簡潔起見在第11圖中被省略。如第15圖所示,第一採樣開關和第一採樣電容器C 1形成第一採樣和保持電路,該第一採樣和保持電路耦接到比較器COMP的第一輸入端子(在比較器COMP上標記為“ +”),第二採樣開關和第二採樣電容器C 2形成第二採樣和保持電路,該第二採樣和保持電路耦接到比較器COMP的第二輸入端(在比較器COMP上標記為“ -”),其中信號VA和VB表示比較器COMP的第一輸入端和第二輸入端上的電壓。 In another embodiment, monitoring circuit 320 may be replaced by monitoring circuit 320A, as indicated by XO 30 shown in FIG. 15, wherein monitoring circuit 320A may include a comparator COMP, a first sampling switch controlled by signal SH, A second sampling switch controlled by the signal SHB, the first sampling capacitor C 1 and the second sampling capacitor C 2 . Note that the injection switch is on during start-up and is omitted in Figure 11 for brevity. As shown in Figure 15, the first sampling switch and the first sampling capacitor C1 form a first sample and hold circuit, which is coupled to the first input terminal of the comparator COMP (on the comparator COMP marked "+"), the second sampling switch and the second sampling capacitor C2 form a second sample and hold circuit which is coupled to the second input of the comparator COMP (on the comparator COMP marked "-"), where the signals VA and VB represent the voltages on the first and second inputs of the comparator COMP.

第16圖是根據本發明實施例示出的第15圖所示的XO 20內的一些信號(例如,計數時鐘CLK counting,信號RST,RSTB,SH,SHB以及信號VA和VB)的時序圖。在本實施例中,信號RST,RSTB,SH和SHB可以由定時控制器(timing controller)(未示出)根據計數時鐘CLKcounting產生,但是本發明不限於此。根據第16圖所示的時序,可以交替/輪流的在採樣電容器C1和C2上對解調電壓序列的解調電壓進行採樣,並且可以從比較器COMP輸出解調電壓序列的相應監視結果。例如,採樣電容器C1對第一解調電壓進行採樣,採樣電容器C2對第二解調電壓進行採樣,採樣電容器C1對第三解調電壓進行採樣,採樣電容器C2對第四解調電壓進行採樣。 FIG. 16 is a timing diagram of some signals (eg, counting clock CLK counting , signals RST, RSTB, SH, SHB, and signals VA and VB) in the XO 20 shown in FIG. 15 according to an embodiment of the present invention. In this embodiment, the signals RST, RSTB, SH and SHB may be generated by a timing controller (not shown) according to the counting clock CLKcounting, but the present invention is not limited thereto. According to the timing shown in FIG. 16, the demodulated voltages of the demodulated voltage sequence can be sampled alternately/alternately on the sampling capacitors C1 and C2, and the corresponding monitoring result of the demodulated voltage sequence can be output from the comparator COMP. For example, the sampling capacitor C1 samples the first demodulated voltage, the sampling capacitor C2 samples the second demodulated voltage, the sampling capacitor C1 samples the third demodulated voltage, and the sampling capacitor C2 samples the fourth demodulated voltage.

在另一實施例中,如第17圖中的XO 40所示,可以將監視電路320替換為模數轉換器(analog-to-digital converter,ADC)320B。請注意,在啟動過程中注入開關接通,並且為了簡潔起見在第17圖中被省略。例如,ADC 320B可以順序地將解調電壓序列轉換成數位代碼,其中這些數位代碼可以表示前述的監視結果,並且FSM 330可以控制低Q振盪器210根據這些數位代碼來選擇性地改變注入頻率。In another embodiment, the monitoring circuit 320 may be replaced by an analog-to-digital converter (ADC) 320B, as shown by XO 40 in FIG. 17 . Note that the injection switch is turned on during start-up and is omitted in Figure 17 for brevity. For example, ADC 320B may sequentially convert the sequence of demodulated voltages into digital codes, which may represent the aforementioned monitoring results, and FSM 330 may control low-Q oscillator 210 to selectively vary the injection frequency according to these digital codes.

第18圖示出了根據本發明實施例的與注入頻率的控制有關的一些細節。如第18圖中所示,FSM 330可以根據監視結果控制外部振盪器(例如,低Q振盪器210)將注入頻率交替/輪流地切換到多個候選頻率中的一個或多個目標頻率,以使注入頻率逐步(stepwise)接近固有振盪信號的固有頻率,其中多個候選頻率分別對應於FSM 330的多個狀態。在該實施例中,假設固有頻率(可以被認為是目標頻率)等於多個候選頻率中的中心頻率(例如,相對於中心頻率具有0ppm的頻率誤差)。當注入頻率最初處於第一頻率時,該第一頻率相對於多個候選頻率中的中心頻率具有-5000ppm的頻率誤差,固有振盪信號和注入信號之間的相對相位(例如相位誤差)可以開始在正方向上累積,其中,固有振盪信號的能量在增加,而解調電壓序列(例如信號V De-MOD)的電平在降低,因此,監視電路320的比較結果在開始時保持為“ 0” 。當監視結果表明在時間點t1處後面的解調電壓大於先前的解調電壓時(例如,來自監視電路320的比較結果從“ 0”變為“ 1”),這意味著檢測到解調電壓序列的局部最小電壓(例如,信號V De-MOD),其中,FSM 330可以確定小於第一頻率的候選頻率不可用,並控制外部振盪器200(例如,低Q振盪器)將注入頻率從第一頻率切換到第二頻率,該第二頻率相對於中心頻率具有+ 5000ppm的頻率誤差,然後比較結果返回到“ 0”。類似地,當監視結果指示比較結果在時間點t2從“ 0”變為“ 1”時,FSM 330可以確定大於第二頻率的候選頻率不可用,並控制外部振盪器200(例如低Q振盪器)將注入頻率從第二頻率切換到第三頻率,該第三頻率相對於中心頻率具有-4000ppm頻率誤差。以此類推,注入頻率可以分別在時間點t3,t4,t5和t6切換到第四頻率,第五頻率,第六頻率和第七頻率。為簡潔起見,在此不再重複類似的描述。據此,每當解調電壓序列內的解調電壓達到最小值時,就可以適當地調整注入頻率,使得相對相位可以在交替的方向上累積,從而確保相對相位被限制在±90°以內,(通常在±40°或更小範圍內),因此固有振盪信號的能量始終會增加。 Figure 18 shows some details related to the control of the injection frequency according to an embodiment of the present invention. As shown in Figure 18, the FSM 330 may control an external oscillator (eg, the low-Q oscillator 210) to alternately/alternately switch the injection frequency to one or more target frequencies among a plurality of candidate frequencies based on the monitoring results to The injection frequency is made stepwise close to the natural frequency of the natural oscillation signal, where the plurality of candidate frequencies respectively correspond to the plurality of states of the FSM 330 . In this embodiment, it is assumed that the natural frequency (which can be considered the target frequency) is equal to the center frequency (eg, with a frequency error of 0 ppm relative to the center frequency) among the plurality of candidate frequencies. When the injected frequency is initially at the first frequency, which has a frequency error of -5000 ppm with respect to the center frequency of the plurality of candidate frequencies, the relative phase (eg, phase error) between the natural oscillation signal and the injected signal can start at Accumulates in the positive direction, where the energy of the natural oscillation signal is increasing and the level of the demodulation voltage sequence (eg, signal V De-MOD ) is decreasing, so the comparison result of the monitoring circuit 320 initially remains "0". When the monitoring result indicates that the subsequent demodulation voltage is greater than the previous demodulation voltage at time point t1 (eg, the comparison result from the monitoring circuit 320 changes from "0" to "1"), it means that the demodulation voltage is detected A sequence of local minimum voltages (eg, signal V De-MOD ) where FSM 330 can determine that candidate frequencies less than the first frequency are unavailable and control external oscillator 200 (eg, a low-Q oscillator) to inject frequencies from the first A frequency is switched to a second frequency that has a frequency error of +5000ppm relative to the center frequency, and the comparison returns to "0". Similarly, when the monitoring result indicates that the comparison result changes from "0" to "1" at time point t2, the FSM 330 may determine that a candidate frequency greater than the second frequency is unavailable, and control the external oscillator 200 (eg, a low-Q oscillator) ) switches the injection frequency from a second frequency to a third frequency with a -4000ppm frequency error relative to the center frequency. By analogy, the injection frequency can be switched to the fourth frequency, the fifth frequency, the sixth frequency and the seventh frequency at time points t3, t4, t5 and t6, respectively. For the sake of brevity, similar descriptions are not repeated here. Accordingly, whenever the demodulation voltage within the demodulation voltage sequence reaches the minimum value, the injection frequency can be adjusted appropriately so that the relative phase can be accumulated in alternating directions, thus ensuring that the relative phase is limited to within ±90°, (usually in the range of ±40° or less), so the energy of the inherent oscillatory signal always increases.

第19圖示出了根據本發明另一實施例的與注入頻率的控制有關的一些細節。在該實施例中,假設固有頻率(可以被認為是目標頻率)相對於中心頻率具有+ 4500ppm的頻率誤差。如第19圖所示,監視結果指示比較結果在時間點t7從“ 0”變為“ 1”(即,解調電壓V1小於解調電壓V2),FSM 330可以確定小於該第三頻率(具有-4000ppm頻率誤差)的候選頻率不可用,並且控制外部振盪器200(例如低Q振盪器)以將注入頻率從第三頻率切換為相對於中心頻率具有+ 4000ppm頻率誤差的第四頻率。然而,因為解調電壓V3大於解調電壓V2,比較結果在時間點t8仍保持為“ 1”,這意味著從第三頻率到第四頻率的切換無法改變相對相位的累加方向。因此,FSM 330可以控制外部振盪器200(例如,低Q振盪器)進一步將注入頻率從第四頻率切換到大於第四頻率(具有+ 4000ppm頻率誤差)的第八頻率(具有+ 4500ppm頻率誤差),以改變相對相位的累積方向。類似地,如果在注入頻率從第九頻率切換到小於第九頻率的第十頻率之後比較結果仍保持在“ 1”,則FSM 330可以控制外部振盪器200(例如,低Q振盪器)進一步將注入頻率從第十頻率切換到小於第十頻率的第十一頻率。Figure 19 shows some details related to the control of the injection frequency according to another embodiment of the present invention. In this example, it is assumed that the natural frequency (which can be considered the target frequency) has a frequency error of +4500ppm with respect to the center frequency. As shown in FIG. 19, the monitoring result indicates that the comparison result changes from "0" to "1" at time point t7 (ie, the demodulation voltage V1 is less than the demodulation voltage V2), the FSM 330 may determine that the third frequency (with A candidate frequency of -4000ppm frequency error) is not available, and an external oscillator 200 (eg, a low-Q oscillator) is controlled to switch the injection frequency from a third frequency to a fourth frequency with a +4000ppm frequency error relative to the center frequency. However, because the demodulation voltage V3 is greater than the demodulation voltage V2, the comparison result remains "1" at time point t8, which means that switching from the third frequency to the fourth frequency cannot change the accumulation direction of the relative phases. Therefore, the FSM 330 can control the external oscillator 200 (eg, a low-Q oscillator) to further switch the injection frequency from the fourth frequency to an eighth frequency (with a +4500ppm frequency error) greater than the fourth frequency (with a +4000ppm frequency error) , to change the accumulation direction of the relative phase. Similarly, if the comparison result remains at "1" after the injection frequency is switched from the ninth frequency to a tenth frequency less than the ninth frequency, the FSM 330 may control the external oscillator 200 (eg, a low-Q oscillator) to further set the The injection frequency is switched from the tenth frequency to an eleventh frequency which is smaller than the tenth frequency.

在一些實施例中,根據監視結果,FSM 330可以控制外部振盪器200(例如,低Q振盪器210)將注入頻率交替地切換到第一候選頻率(例如,第一頻率具有-5000ppm頻率誤差)或第二候選頻率(例如,第二頻率具有+ 5000ppm的頻率誤差)。注意,第一頻率大於固有振盪信號的固有頻率,並且第二頻率小於固有頻率,因此,在第一候選頻率和第二候選頻率之間的每次切換確實能夠改變相對相位的累積方向。因此,相對相位仍然可以被限制在±90°以內,並且可以確保在啟動過程期間僅借助於兩個候選頻率固有振盪信號的能量一直增加。In some embodiments, based on the monitoring results, the FSM 330 may control the external oscillator 200 (eg, the low-Q oscillator 210 ) to alternately switch the injection frequency to a first candidate frequency (eg, the first frequency has a -5000ppm frequency error) or a second candidate frequency (eg, the second frequency has a frequency error of +5000ppm). Note that the first frequency is greater than the natural frequency of the natural oscillation signal, and the second frequency is smaller than the natural frequency, so each switch between the first candidate frequency and the second candidate frequency can indeed change the accumulation direction of the relative phase. Therefore, the relative phase can still be limited to within ±90°, and it can be ensured that the energy of the natural oscillation signal only increases at all times during the start-up process by means of only two candidate frequencies.

在一些實施例中,可以接通注入開關預定時間段。即,可以預先確定斷開注入開關的時間點(或完成啟動過程的時間)。在其他實施例中,包括XO 20的系統可以監視XO 20內的至少一個信號,以響應於上述至少一個信號滿足特定條件來觸發系統完成啟動過程(例如,斷開注入開關)。在一個實施例中,假設初始解調電壓代表在啟動過程開始處的解調電壓序列的第一解調電壓,則當檢測到解調電壓序列的目標解調電壓時,系統可以確定啟動過程完成,並且注入開關可以被斷開(turned off),其中目標解調電壓與初始解調電壓之間的電壓差大於或等於預定值。因此,當固有振盪信號的能量增長到導致目標解調電壓出現的特定值時,可以認為啟動過程已經完成,並且注入開關被斷開。In some embodiments, the injection switch may be turned on for a predetermined period of time. That is, the point of time at which the injection switch is turned off (or the time at which the start-up process is completed) can be predetermined. In other embodiments, the system including the XO 20 may monitor at least one signal within the XO 20 to trigger the system to complete the startup process (eg, open the injection switch) in response to the at least one signal satisfying a certain condition. In one embodiment, the system may determine that the startup process is complete when the target demodulation voltage of the sequence of demodulation voltages is detected, assuming that the initial demodulation voltage represents the first demodulation voltage of the sequence of demodulation voltages at the beginning of the startup process , and the injection switch may be turned off, wherein the voltage difference between the target demodulation voltage and the initial demodulation voltage is greater than or equal to a predetermined value. Therefore, when the energy of the natural oscillation signal grows to a certain value that causes the target demodulation voltage to appear, it can be considered that the start-up process has been completed and the injection switch is turned off.

本發明實施例提供的啟動方法及相關的XO架構,可以根據注入信號和固有振盪信號的幅度調製引起的失真方波,控制注入頻率的切換,以使注入信號和固有振盪信號之間的相對相位限制在期望的間隔內(例如,±90°)。基於此,在前述的鎖定/同步時段中不需要斷開注入開關,並且進一步確保了固有振盪信號的能量總是增加。假設當注入信號的注入頻率與XO核心電路的固有頻率相同時,啟動過程需要一參考時間段。關於在以前鎖定/同步時段暫時中斷時鐘注入的方法,對於啟動過程可能需要參考時間段的17.4倍至90.6倍。關於直到完成啟動過程才斷開注入的啟動方法,可能需要1.05到1.5倍的參考時間段,這意味著本發明確實大大提高了時鐘注入效率,並且啟動時間可以被大大的減少。The startup method and the related XO architecture provided by the embodiments of the present invention can control the switching of the injection frequency according to the distorted square wave caused by the amplitude modulation of the injection signal and the natural oscillation signal, so that the relative phase between the injection signal and the natural oscillation signal is Confine to the desired interval (eg, ±90°). Based on this, it is not necessary to open the injection switch during the aforementioned lock/synchronization period, and it is further ensured that the energy of the natural oscillation signal always increases. It is assumed that when the injection frequency of the injection signal is the same as the natural frequency of the XO core circuit, a reference time period is required for the start-up process. Regarding the method of temporarily interrupting the clock injection during the previous lock/sync period, 17.4 times to 90.6 times the reference period may be required for the start-up process. Regarding the start-up method of not disconnecting injection until the start-up process is completed, 1.05 to 1.5 times the reference time period may be required, which means that the present invention does greatly improve the clock injection efficiency, and the start-up time can be greatly reduced.

所屬領域具有通常知識者將容易地觀察到,在保持本發明的教導的同時,可以對裝置和方法進行多種修改和變更。因此,以上公開內容應被解釋為僅由所附請求項的界限來限定。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 Those of ordinary skill in the art will readily observe that various modifications and variations can be made in the apparatus and method while maintaining the teachings of the present invention. Accordingly, the above disclosure should be construed as being limited only by the bounds of the appended claims. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:XO 11:主動器件 20:XO 200:外部振盪器 100:XO核心電路 300:頻率控制器 S310, S320, S330:步驟 210:低Q振盪器 220:輸出緩衝器 310:解調電路 D0:二極體 C S:採樣電容器 330:有限狀態機 320:監視電路 322:D觸發器 AMP COMP:放大器 C COMP:電容器 30:XO COMP:比較器 320A:監視電路 RST, RSTB, SH, SHB, VA, VB:信號 CLK counting:計數時鐘 40: XO 320B:ADC 10: XO 11: Active device 20: XO 200: External oscillator 100: XO core circuit 300: Frequency controller S310, S320, S330: Step 210: Low Q oscillator 220: Output buffer 310: Demodulation circuit D0: Diode C S : Sampling Capacitor 330: Finite State Machine 320: Monitoring Circuit 322: D flip-flop AMP COMP : Amplifier C COMP : Capacitor 30: XO COMP: Comparator 320A: Monitoring Circuit RST, RSTB, SH, SHB, VA , VB: signal CLK counting : counting clock 40: XO 320B: ADC

第1圖是示出根據本發明實施例的關於借助於外部時鐘注入來啟動晶體振盪器(crystal oscillator,XO)的概念的示意圖。 第2圖是示出根據本發明實施例的XO的示意圖。 第3圖是根據本發明實施例的借助於外部時鐘注入的啟動第2圖所示XO的方法的流程圖。 第4圖是示出根據本發明實施例的具有變化的相對相位的一些信號的波形圖案的示意圖。 第5圖示出了根據本發明實施例的固有(intrinsic)振盪信號的增長率與相對相位之間的關係。 第6圖是示出根據本發明實施例的通過解調電路生成一系列解調電壓的詳細實施方式的示意圖。 第7圖示出了根據本發明實施例的相對相位與失真之間的關係的一些細節。 第8圖示出了根據本發明實施例的相對相位和解調電壓之間的關係的一些細節。 第9圖示出了根據本發明實施例的相對相位與失真之間的關係的一些細節。 第10圖示出了根據本發明實施例的相對相位與解調電壓之間的關係的一些細節。 第11圖是示出根據本發明的實施例的第2圖所示XO的詳細實施方式的示意圖。 第12圖示出了在預設置階段(preset phase),第11圖所示的監視電路的操作。 第13圖示出了在評估階段(evaluation phase),第11圖所示的監視電路的操作。 第14圖示出根據本發明實施例的第2圖中所示XO的詳細實施方式的示意圖。 第15圖示出根據本發明另一實施例的第2圖中所示XO的詳細實施方式的示意圖。 第16圖是根據本發明實施例的第15圖所示實施方式內的一些信號的時序圖。 第17圖是示出根據本發明另一實施例的第2圖中所示XO的詳細實施方式的示意圖。 第18圖示出根據本發明實施例的與控制注入頻率有關的一些細節。 第19圖示出了根據本發明另一實施例的與控制注入頻率有關的一些細節。 FIG. 1 is a schematic diagram illustrating a concept regarding starting a crystal oscillator (XO) by means of external clock injection, according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating an XO according to an embodiment of the present invention. FIG. 3 is a flowchart of a method of enabling the XO shown in FIG. 2 by means of external clock injection according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating waveform patterns of some signals with varying relative phases according to an embodiment of the present invention. FIG. 5 shows the relationship between the growth rate and the relative phase of an intrinsic oscillation signal according to an embodiment of the present invention. FIG. 6 is a schematic diagram illustrating a detailed implementation of generating a series of demodulated voltages by a demodulation circuit according to an embodiment of the present invention. Figure 7 shows some details of the relationship between relative phase and distortion according to an embodiment of the invention. Figure 8 shows some details of the relationship between relative phase and demodulation voltage according to an embodiment of the present invention. Figure 9 shows some details of the relationship between relative phase and distortion according to an embodiment of the present invention. Figure 10 shows some details of the relationship between relative phase and demodulation voltage according to an embodiment of the present invention. FIG. 11 is a schematic diagram illustrating a detailed implementation of the XO shown in FIG. 2 according to an embodiment of the present invention. Fig. 12 shows the operation of the monitoring circuit shown in Fig. 11 in a preset phase. Fig. 13 shows the operation of the monitoring circuit shown in Fig. 11 during the evaluation phase. Figure 14 shows a schematic diagram of a detailed implementation of the XO shown in Figure 2 according to an embodiment of the present invention. Figure 15 shows a schematic diagram of a detailed implementation of the XO shown in Figure 2 according to another embodiment of the present invention. Figure 16 is a timing diagram of some of the signals within the implementation shown in Figure 15 in accordance with an embodiment of the present invention. Fig. 17 is a schematic diagram showing a detailed implementation of the XO shown in Fig. 2 according to another embodiment of the present invention. Figure 18 illustrates some details related to controlling the injection frequency in accordance with an embodiment of the present invention. Figure 19 shows some details related to controlling the injection frequency according to another embodiment of the present invention.

S310,S320,S330:步驟 S310, S320, S330: Steps

Claims (20)

一種借助於外部時鐘注入來啟動晶體振盪器(XO)的方法,該方法包括: 利用在所述晶體振盪器的晶體振盪器核心電路外部的外部振盪器產生注入信號,其中所述晶體振盪器包括晶體振盪器核心電路,位於所述晶體振盪器核心電路外部的所述外部振盪器,以及至少一個注入開關,所述至少一個注入開關耦接在所述晶體振盪器的注入節點與所述晶體振盪器核心電路的輸出端之間,所述外部振盪器耦接至所述注入節點,且所述外部振盪器的品質因數低於所述晶體振盪器核心電路的品質因數; 接通所述至少一個注入開關,使所述注入信號的能量注入到所述晶體振盪器核心電路中,從而增加所述晶體振盪器核心電路的固有振盪信號的能量,其中,根據所述注入信號和所述固有振盪信號的組合,在所述注入節點上產生調製信號;以及 根據所述調製信號控制所述外部振盪器選擇性的改變所述注入信號的注入頻率;其中,當所述外部振盪器選擇性的改變所述注入信號的注入頻率時,所述至少一個注入開關接通。 A method of starting a crystal oscillator (XO) by means of external clock injection, the method comprising: The injection signal is generated using an external oscillator external to the crystal oscillator core circuit of the crystal oscillator, wherein the crystal oscillator includes a crystal oscillator core circuit, the external oscillator external to the crystal oscillator core circuit , and at least one injection switch coupled between an injection node of the crystal oscillator and an output of the crystal oscillator core circuit to which the external oscillator is coupled , and the quality factor of the external oscillator is lower than the quality factor of the crystal oscillator core circuit; Turning on the at least one injection switch, so that the energy of the injection signal is injected into the crystal oscillator core circuit, thereby increasing the energy of the natural oscillation signal of the crystal oscillator core circuit, wherein according to the injection signal and the natural oscillation signal in combination to produce a modulated signal at the injection node; and The external oscillator is controlled to selectively change the injection frequency of the injection signal according to the modulation signal; wherein, when the external oscillator selectively changes the injection frequency of the injection signal, the at least one injection switch connected. 如請求項1所述的方法,其中,根據所述調製信號控制所述外部振盪器以選擇性地改變所述注入信號的注入頻率的步驟包括: 利用所述晶體振盪器的解調電路根據所述調製信號生成解調電壓序列,所述解調電壓序列攜帶所述注入信號與所述固有振盪信號之間的相對相位的資訊; 利用所述晶體振盪器的監視電路,根據所述解調電壓序列生成監視結果;以及 根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率。 The method of claim 1, wherein the step of controlling the external oscillator to selectively change the injection frequency of the injection signal according to the modulation signal comprises: Using the demodulation circuit of the crystal oscillator to generate a demodulation voltage sequence according to the modulation signal, the demodulation voltage sequence carrying information about the relative phase between the injection signal and the natural oscillation signal; generating a monitoring result from the demodulated voltage sequence using a monitoring circuit of the crystal oscillator; and The external oscillator is controlled to selectively change the injection frequency according to the monitoring result. 如請求項2所述的方法,其中,根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率的步驟包括: 根據所述監視結果交替地將所述注入頻率切換為第一頻率或第二頻率,以使所述相對相位落在+90度和-90度之間的間隔中,其中,所述第一頻率大於所述固有振盪信號的固有頻率,以及所述第二頻率小於所述固有頻率; 或者,根據所述監視結果交替地將所述注入頻率切換為第一組頻率中的頻率或者第二組頻率中的頻率,其中,所述第一組頻率大於所述固有振盪信號的固有頻率,以及所述第二組頻率小於所述固有頻率。 The method of claim 2, wherein the step of controlling the external oscillator to selectively change the injection frequency according to the monitoring result comprises: The injection frequency is alternately switched to a first frequency or a second frequency according to the monitoring result, so that the relative phase falls within an interval between +90 degrees and -90 degrees, wherein the first frequency is greater than the natural frequency of the natural oscillation signal, and the second frequency is smaller than the natural frequency; Alternatively, the injection frequency is alternately switched to a frequency in a first group of frequencies or a frequency in a second group of frequencies according to the monitoring result, wherein the first group of frequencies is greater than the natural frequency of the natural oscillation signal, and the second set of frequencies is less than the natural frequency. 如請求項2所述的方法,其中,根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率的步驟包括: 根據所述監視結果,在多個候選頻率中切換所述注入頻率,以使所述注入頻率接近所述固有振盪信號的固有頻率,其中所述多個候選頻率分別對應於有限狀態機FSM的多個狀態。 The method of claim 2, wherein the step of controlling the external oscillator to selectively change the injection frequency according to the monitoring result comprises: According to the monitoring result, the injection frequency is switched among a plurality of candidate frequencies, so that the injection frequency is close to the natural frequency of the natural oscillation signal, wherein the plurality of candidate frequencies respectively correspond to multiple frequencies of the finite state machine FSM. a state. 如請求項2所述的方法,其中,所述解調電壓序列包括第一解調電壓和跟隨所述第一解調電壓的第二解調電壓,並且根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率的步驟包括: 回應於所述監視結果指示所述第二解調電壓大於所述第一解調電壓,將所述注入頻率從第一頻率切換到第二頻率。 The method of claim 2, wherein the demodulation voltage sequence includes a first demodulation voltage and a second demodulation voltage following the first demodulation voltage, and the external oscillation is controlled according to the monitoring result The step of selectively changing the injection frequency includes: The injection frequency is switched from a first frequency to a second frequency in response to the monitoring result indicating that the second demodulation voltage is greater than the first demodulation voltage. 如請求項5所述的方法,其中,所述解調電壓序列還包括跟隨所述第二解調電壓的第三解調電壓,並且根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率的步驟還包括: 回應於所述監視結果指示所述第三解調電壓大於所述第二解調電壓,將所述注入頻率從所述第二頻率切換為所述第三頻率; 其中,所述第一頻率大於所述第二頻率,所述第二頻率大於所述第三頻率;或者,所述第一頻率小於所述第二頻率,所述第二頻率小於所述第三頻率。 The method of claim 5, wherein the demodulation voltage sequence further includes a third demodulation voltage following the second demodulation voltage, and the external oscillator is controlled to selectively vary according to the monitoring result The step of injecting frequency also includes: in response to the monitoring result indicating that the third demodulation voltage is greater than the second demodulation voltage, switching the injection frequency from the second frequency to the third frequency; Wherein, the first frequency is greater than the second frequency, and the second frequency is greater than the third frequency; or, the first frequency is less than the second frequency, and the second frequency is less than the third frequency frequency. 如請求項2所述的方法,其中,所述解調電壓序列包括第一解調電壓和跟隨所述第一解調電壓的第二解調電壓,所述監視電路包括放大器和電容器,以及利用所述監視電路根據所述解調電壓序列生成監視結果的步驟包括: 通過接通耦接在所述放大器的第二輸入端和輸出端之間的回路開關,將所述監視電路配置為單位增益緩衝器,以將所述第一解調電壓從所述放大器的第一輸入端傳輸到與所述放大器的第二輸入端耦接的電容器;以及 將所述監視電路配置為比較器,以通過斷開所述回路開關來將所述放大器的所述第一輸入端上的第二解調電壓與存儲在所述電容器上的第一解調電壓進行比較,並相應地產生比較結果,其中,所述監視結果包括:所述比較結果。 The method of claim 2, wherein the sequence of demodulation voltages includes a first demodulation voltage and a second demodulation voltage following the first demodulation voltage, the monitoring circuit includes an amplifier and a capacitor, and utilizing The step of the monitoring circuit generating a monitoring result according to the demodulated voltage sequence includes: The monitoring circuit is configured as a unity gain buffer by turning on a loop switch coupled between a second input and an output of the amplifier to convert the first demodulated voltage from the amplifier's second input an input is transmitted to a capacitor coupled to a second input of the amplifier; and configuring the monitoring circuit as a comparator to compare a second demodulated voltage on the first input of the amplifier with a first demodulated voltage stored on the capacitor by opening the loop switch A comparison is made, and a comparison result is generated accordingly, wherein the monitoring result includes: the comparison result. 如請求項2所述的方法,其中,利用所述解調電路根據所述調製信號生成所述解調電壓序列的步驟包括: 接通所述解調電路的重置開關並斷開所述解調電路的採樣開關,以在重置時段內將所述解調電路的採樣節點的電壓電平重置為參考電平;以及 在採樣時段中,回應於所述調製信號的電壓電平超過與所述解調電路的二極體相對應的閾值,斷開所述重置開關並接通所述採樣開關,以在所述採樣節點上累積電荷,以在所述採樣節點上生成所述解調電壓序列的解調電壓。 The method of claim 2, wherein the step of using the demodulation circuit to generate the demodulation voltage sequence according to the modulation signal comprises: turning on a reset switch of the demodulation circuit and turning off a sampling switch of the demodulation circuit to reset the voltage level of the sampling node of the demodulation circuit to a reference level within a reset period; and During the sampling period, in response to the voltage level of the modulated signal exceeding a threshold value corresponding to the diode of the demodulation circuit, the reset switch is turned off and the sampling switch is turned on to Charges are accumulated on the sampling nodes to generate demodulated voltages of the sequence of demodulated voltages on the sampling nodes. 如請求項2所述的方法,其中,初始解調電壓表示所述解調電壓序列中的第一解調電壓,並且所述方法還包括: 回應於檢測到解調電壓序列中目標解調電壓以指示啟動過程完成,斷開至少一個注入開關,其中所述目標解調電壓與所述初始解調電壓之間的電壓差大於或等於預定值。 The method of claim 2, wherein the initial demodulation voltage represents a first demodulation voltage in the sequence of demodulation voltages, and the method further comprises: in response to detecting a target demodulation voltage in the sequence of demodulation voltages to indicate completion of the start-up process, opening at least one injection switch, wherein the voltage difference between the target demodulation voltage and the initial demodulation voltage is greater than or equal to a predetermined value . 一種晶體振盪器(XO),包括: 晶體振盪器核心電路,用於產生固有振盪信號; 外部振盪器,耦接至所述晶體振盪器的注入節點,用於產生注入信號,其中,所述外部振盪器的品質因數低於所述晶體振盪器核心電路的品質因數; 至少一個注入開關,耦接在所述注入節點與所述晶體振盪器核心電路的輸出端之間,其中,當至少一個注入開關接通時,所述注入信號的能量注入所述晶體振盪器核心電路,以增加固有振盪信號的能量,根據所述注入信號和所述固有振盪信號的組合,在所述注入節點上產生調製信號;以及 頻率控制器,耦接至所述外部振盪器,用於根據所述調製信號控制所述外部振盪器選擇性地改變所述注入信號的注入頻率; 其中,當所述外部振盪器選擇性地改變所述注入信號的注入頻率時,所述至少一個注入開關接通。 A crystal oscillator (XO) comprising: The core circuit of crystal oscillator is used to generate natural oscillation signal; an external oscillator, coupled to the injection node of the crystal oscillator, for generating an injection signal, wherein the quality factor of the external oscillator is lower than the quality factor of the crystal oscillator core circuit; at least one injection switch, coupled between the injection node and the output terminal of the crystal oscillator core circuit, wherein when the at least one injection switch is turned on, the energy of the injection signal is injected into the crystal oscillator core a circuit to increase the energy of the natural oscillation signal to generate a modulation signal at the injection node based on the combination of the injected signal and the natural oscillation signal; and a frequency controller, coupled to the external oscillator, for controlling the external oscillator to selectively change the injection frequency of the injection signal according to the modulation signal; Wherein, when the external oscillator selectively changes the injection frequency of the injection signal, the at least one injection switch is turned on. 如請求項10所述的晶體振盪器,其中,所述頻率控制器包括: 解調電路,用於接收調製信號,並根據所述調製信號生成解調電壓序列,所述解調電壓序列中攜帶所述注入信號與所述固有振盪信號之間的相對相位的資訊; 監視電路,耦接至所述解調電路,用於根據所述解調電壓序列產生監視結果;以及 有限狀態機(FSM),耦接到所述監視電路和所述外部振盪器,被配置為根據所述監視結果控制所述外部振盪器選擇性地改變所述注入頻率。 The crystal oscillator of claim 10, wherein the frequency controller comprises: a demodulation circuit, configured to receive a modulation signal and generate a demodulation voltage sequence according to the modulation signal, where the demodulation voltage sequence carries information about the relative phase between the injection signal and the natural oscillation signal; a monitoring circuit, coupled to the demodulation circuit, for generating a monitoring result according to the demodulated voltage sequence; and A finite state machine (FSM), coupled to the monitoring circuit and the external oscillator, is configured to control the external oscillator to selectively vary the injection frequency according to the monitoring results. 如請求項11所述的晶體振盪器,其中,所述有限狀態機根據所述監視結果控制所述外部振盪器交替地將所述注入頻率切換為第一頻率或第二頻率,以使所述相對相位落入+90度與-90度之間的間隔內,其中所述第一頻率大於所述固有振盪信號的固有頻率,所述第二頻率小於所述固有頻率。The crystal oscillator of claim 11, wherein the finite state machine controls the external oscillator to alternately switch the injection frequency to the first frequency or the second frequency according to the monitoring result, so that the The relative phase falls within the interval between +90 degrees and -90 degrees, wherein the first frequency is greater than the natural frequency of the natural oscillation signal and the second frequency is less than the natural frequency. 如請求項11所述的晶體振盪器,其中,所述有限狀態機根據所述監視結果控制所述外部振盪器在多個候選頻率中切換所述注入頻率,以使所述注入頻率接近所述固有振盪信號的固有頻率,其中,所述多個候選頻率分別對應於 所述有限狀態機的多個狀態。The crystal oscillator of claim 11, wherein the finite state machine controls the external oscillator to switch the injection frequency among a plurality of candidate frequencies according to the monitoring result so that the injection frequency is close to the injection frequency The natural frequency of the natural oscillation signal, wherein the plurality of candidate frequencies respectively correspond to the plurality of states of the finite state machine. 如請求項11所述的晶體振盪器,其中,所述解調電壓序列包括第一解調電壓和跟隨所述第一解調電壓的第二解調電壓;以及當所述監視結果指示所述第二解調電壓大於所述第一解調電壓時,所述有限狀態機控制所述外部振盪器將所述注入頻率從第一頻率切換到第二頻率。The crystal oscillator of claim 11, wherein the demodulation voltage sequence includes a first demodulation voltage and a second demodulation voltage following the first demodulation voltage; and when the monitoring result indicates the When the second demodulation voltage is greater than the first demodulation voltage, the finite state machine controls the external oscillator to switch the injection frequency from the first frequency to the second frequency. 如請求項14所述的晶體振盪器,其中,所述解調電壓序列還包括跟隨所述第二解調電壓的第三解調電壓,當監視結果指示第三解調電壓大於第二解調電壓時,所述有限狀態機控制外部振盪器將所述注入頻率從第二頻率切換為第三頻率,其中,所述第一頻率大於第二頻率,所述第二頻率大於所述第三頻率;或者,所述第一頻率小於所述第二頻率所述,第二頻率小於所述第三頻率。The crystal oscillator of claim 14, wherein the demodulation voltage sequence further includes a third demodulation voltage following the second demodulation voltage, when the monitoring result indicates that the third demodulation voltage is greater than the second demodulation voltage voltage, the finite state machine controls an external oscillator to switch the injection frequency from a second frequency to a third frequency, wherein the first frequency is greater than the second frequency, and the second frequency is greater than the third frequency or, the first frequency is smaller than the second frequency, and the second frequency is smaller than the third frequency. 如請求項11所述的晶體振盪器,其中,所述解調電壓序列包括第一解調電壓和跟隨所述第一解調電壓的第二解調電壓,所述監視電路包括: 放大器,耦接至所述解調電路,用於通過所述放大器的第一輸入端接收所述解調電壓序列; 電容器,耦接到所述放大器的第二輸入端,用於順序存儲所述解調電壓序列;以及 回路開關,耦接於所述放大器的所述第二輸入端與輸出端之間,用以控制所述監視電路的配置; 其中,當所述回路開關接通時,所述監視電路被配置為單位增益緩衝器,以將所述第一解調電壓從所述放大器的第一輸入端傳輸至所述電容器;以及當所述回路開關斷開時,所述監視電路被配置為比較器,用於將所述放大器的第一輸入端上的第二解調電壓與所述電容器上存儲的第一解調電壓進行比較,並產生比較結果,其中,所述監視結果包括所述比較結果。 The crystal oscillator of claim 11, wherein the demodulation voltage sequence includes a first demodulation voltage and a second demodulation voltage following the first demodulation voltage, and the monitoring circuit includes: an amplifier, coupled to the demodulation circuit, for receiving the demodulated voltage sequence through a first input of the amplifier; a capacitor coupled to the second input of the amplifier for sequentially storing the sequence of demodulated voltages; and a loop switch, coupled between the second input terminal and the output terminal of the amplifier, for controlling the configuration of the monitoring circuit; wherein, when the loop switch is turned on, the monitoring circuit is configured as a unity gain buffer to transmit the first demodulated voltage from the first input of the amplifier to the capacitor; and when all the when the loop switch is open, the monitoring circuit is configured as a comparator for comparing the second demodulated voltage on the first input of the amplifier with the first demodulated voltage stored on the capacitor, and generate a comparison result, wherein the monitoring result includes the comparison result. 如請求項11所述的晶體振盪器,其中,所述解調電路包括: 二極體,該二極體的陰極耦接到所述解調電路的採樣節點; 重置開關,耦接在所述採樣節點與所述解調電路的參考端之間; 採樣開關,耦接到所述二極體的陽極;以及 採樣電容器,耦接到所述採樣節點; 其中,當在復位時段所述重置開關接通且所述採樣開關斷開時,所述採樣節點的電壓電平被重置為所述參考端的參考電平;以及當在採樣時段所述重置開關斷開且所述採樣開關接通時,回應於所述調製信號的電壓電平超過對應於所述二極體的閾值,電荷在所述採樣節點上累積,在所述採樣節點上產生所述解調電壓序列的解調電壓。 The crystal oscillator of claim 11, wherein the demodulation circuit comprises: A diode, the cathode of the diode is coupled to the sampling node of the demodulation circuit; a reset switch, coupled between the sampling node and the reference terminal of the demodulation circuit; a sampling switch coupled to the anode of the diode; and a sampling capacitor coupled to the sampling node; Wherein, when the reset switch is turned on and the sampling switch is turned off in the reset period, the voltage level of the sampling node is reset to the reference level of the reference terminal; and when the reset switch is in the sampling period When the set switch is off and the sampling switch is on, in response to the voltage level of the modulating signal exceeding the threshold corresponding to the diode, a charge is accumulated on the sampling node, which is generated at the sampling node The demodulation voltage of the sequence of demodulation voltages. 如請求項11所述的晶體振盪器,其中,初始解調電壓表示所述解調電壓序列中的第一解調電壓;當檢測到所述解調電壓序列中的目標解調電壓以指示啟動過程完成時,所述至少一個注入開關斷開,其中,所述目標解調電壓與所述初始解調電壓之間的電壓差大於或等於預定值。The crystal oscillator of claim 11, wherein an initial demodulation voltage represents a first demodulation voltage in the sequence of demodulation voltages; when a target demodulation voltage in the sequence of demodulation voltages is detected to indicate start-up When the process is complete, the at least one injection switch is turned off, wherein the voltage difference between the target demodulation voltage and the initial demodulation voltage is greater than or equal to a predetermined value. 一種監視電路,用於產生解調電壓序列的連續比較結果,所述解調電壓序列攜帶注入信號和晶體振盪器的固有振盪信號之間的相對相位的資訊,所述監視電路包括: 放大器,用於通過所述放大器的第一輸入端接收所述解調電壓序列,其中,所述解調電壓序列包括第一電壓和跟隨所述第一電壓的第二電壓; 電容器,耦接到所述放大器的第二輸入端,用於順序的存儲所述解調電壓序列;以及 回路開關,耦接於所述放大器的第二輸入端與輸出端之間,用於控制所述監視電路的配置; 其中,當所述回路開關接通時,所述監視電路被配置為單位增益緩衝器,用於將所述第一電壓從所述放大器的第一輸入端傳輸至所述電容器;當所述回路開關斷開時,所述監視電路被配置為比較器,用於將所述放大器的第一輸入端上的第二電壓與所述電容器上存儲的第一電壓進行比較,並生成所述連續比較結果中的比較結果;其中,所述比較結果攜帶所述注入信號與晶體振盪器的固有振盪信號之間的相對相位的資訊,用於控制所述注入信號的注入頻率。 A monitoring circuit for generating successive comparison results of demodulated voltage sequences carrying information on the relative phase between an injected signal and a natural oscillation signal of a crystal oscillator, the monitoring circuit comprising: an amplifier for receiving the demodulated voltage sequence through a first input terminal of the amplifier, wherein the demodulated voltage sequence includes a first voltage and a second voltage following the first voltage; a capacitor, coupled to the second input of the amplifier, for sequentially storing the sequence of demodulated voltages; and a loop switch, coupled between the second input terminal and the output terminal of the amplifier, for controlling the configuration of the monitoring circuit; Wherein, when the loop switch is turned on, the monitoring circuit is configured as a unity gain buffer for transmitting the first voltage from the first input terminal of the amplifier to the capacitor; when the loop When the switch is open, the monitoring circuit is configured as a comparator for comparing the second voltage on the first input of the amplifier with the first voltage stored on the capacitor and generating the continuous comparison The comparison result in the result; wherein, the comparison result carries the information of the relative phase between the injection signal and the natural oscillation signal of the crystal oscillator, and is used to control the injection frequency of the injection signal. 如請求項19所述的監視電路,其中,當所述回路開關接通時,由所述放大器的第一輸入端和第二輸入端的不匹配引起的固有偏移與所述第一電壓一起存儲在所述電容器上,從而防止所述比較結果受到固有偏移的影響。The monitoring circuit of claim 19, wherein an inherent offset caused by a mismatch of the first and second inputs of the amplifier is stored with the first voltage when the loop switch is turned on on the capacitor, thereby preventing the comparison result from being affected by an inherent offset.
TW110119928A 2020-09-20 2021-06-02 Method for startup of crystal oscillator with aid of external clock injection, crystal oscillator and monitoring circuit TWI746412B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/026,275 2020-09-20
US17/026,275 US11183971B2 (en) 2019-09-25 2020-09-20 Method for startup of crystal oscillator with aid of external clock injection, associated crystal oscillator and monitoring circuit therein

Publications (2)

Publication Number Publication Date
TWI746412B TWI746412B (en) 2021-11-11
TW202213944A true TW202213944A (en) 2022-04-01

Family

ID=79907495

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119928A TWI746412B (en) 2020-09-20 2021-06-02 Method for startup of crystal oscillator with aid of external clock injection, crystal oscillator and monitoring circuit

Country Status (2)

Country Link
CN (1) CN114257207A (en)
TW (1) TWI746412B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625304A (en) * 1995-04-21 1997-04-29 Lucent Technologies Inc. Voltage comparator requiring no compensating offset voltage
US7482888B1 (en) * 2007-07-12 2009-01-27 Zerog Wireless, Inc. Fast startup resonant element oscillator
US7579919B1 (en) * 2007-10-13 2009-08-25 Weixun Cao Method and apparatus for compensating temperature changes in an oscillator-based frequency synthesizer
JP5737834B2 (en) * 2008-08-23 2015-06-17 シーウェア・システムズSi−Ware Systems Method, system, and apparatus for accurate and stable LC-type reference oscillator
US8976822B2 (en) * 2012-03-27 2015-03-10 Oewaves, Inc. Tunable opto-electronic oscillator having optical resonator filter operating at selected modulation sideband
US9246435B1 (en) * 2015-02-09 2016-01-26 Qualcomm Incorporated Method to pre-charge crystal oscillators for fast start-up
US10312860B2 (en) * 2015-03-13 2019-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Reducing duration of start-up period for a crystal oscillator circuit
US10050585B2 (en) * 2015-06-18 2018-08-14 Microchip Technology Incorporated Ultra-low power crystal oscillator with adaptive self-start
US10439556B2 (en) * 2016-04-20 2019-10-08 Microchip Technology Incorporated Hybrid RC/crystal oscillator
EP3687063B1 (en) * 2019-01-24 2022-08-24 Nxp B.V. Crystal oscillator circuit and method of operation

Also Published As

Publication number Publication date
CN114257207A (en) 2022-03-29
TWI746412B (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US9525543B2 (en) Clock and data recovery circuit using an injection locked oscillator
US7839228B2 (en) Low-noise high-stability crystal oscillator
US7689190B2 (en) Controlling the frequency of an oscillator
US20100091921A1 (en) Fast powering-up of data commuication system
US7536164B2 (en) Controlling the frequency of an oscillator
CN101622814A (en) Fast powering-up of data communication system
JP3649194B2 (en) PLL circuit and optical communication receiver
TW202110098A (en) Phase-locked loop circuit and clock generator
JP2011160279A (en) Phase locked loop circuit and electronic apparatus employing the same
US11183971B2 (en) Method for startup of crystal oscillator with aid of external clock injection, associated crystal oscillator and monitoring circuit therein
TW202213944A (en) Method for startup of crystal oscillator with aid of external clock injection, crystal oscillator and monitoring circuit
JP2008035451A (en) Frequency synthesizer and loop filter therefor
WO2008144152A1 (en) Injection-locked clock multiplier
JP2004515957A (en) Phase locked loop for recovering clock signal from data signal
EP1233568A1 (en) Phase comparator circuit
JP2010206720A (en) Pll device and method of controlling the same
JP2008131122A (en) Rubidium atomic oscillator
JP3854908B2 (en) Digital VCO and PLL circuit using the digital VCO
JP5642615B2 (en) Oscillator
JP2019096936A (en) Variable delay circuit, PLL frequency synthesizer, electronic equipment
KR100632673B1 (en) Wireless telecommunication terminal and method for controlling lock time of phase locked loop
US11885619B2 (en) Microelectromechanical gyroscope having a resonant driving loop with controlled oscillation amplitude and method of controlling a microelectromechanical gyroscope
JPH08139594A (en) Clock signal reproducing circuit and load capacitance control circuit for voltage controlled oscillator
JP2008271291A (en) Pll circuit
JP2004343636A (en) Ring oscillation circuit and pll circuit