TW202212945A - Environmental adjustment using artificial intelligence - Google Patents

Environmental adjustment using artificial intelligence Download PDF

Info

Publication number
TW202212945A
TW202212945A TW110117790A TW110117790A TW202212945A TW 202212945 A TW202212945 A TW 202212945A TW 110117790 A TW110117790 A TW 110117790A TW 110117790 A TW110117790 A TW 110117790A TW 202212945 A TW202212945 A TW 202212945A
Authority
TW
Taiwan
Prior art keywords
enclosure
virtual
sensors
transitory computer
readable medium
Prior art date
Application number
TW110117790A
Other languages
Chinese (zh)
Inventor
艾婕 麥里克
盧明珠
凱文 艾布拉希姆
路易斯 卡丹朵伊巴拉
巴哈班尼 娜亞
阿努拉格 古塔
尼泰許 特雷哈
布蘭登 蒂尼諾夫
阿迪亞 達亞爾
Original Assignee
美商視野公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2021/015378 external-priority patent/WO2021154915A1/en
Priority claimed from PCT/US2021/017603 external-priority patent/WO2021163287A1/en
Priority claimed from PCT/US2021/030798 external-priority patent/WO2021226182A1/en
Application filed by 美商視野公司 filed Critical 美商視野公司
Publication of TW202212945A publication Critical patent/TW202212945A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25011Domotique, I-O bus, home automation, building automation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/14Jamming or countermeasure used for a particular application for the transfer of light or images, e.g. for video-surveillance, for television or from a computer screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/68Jamming involving special techniques using passive jamming, e.g. by shielding or reflection

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Abstract

Changing environmental characteristics of an enclosure are controlled to promote health, wellness, and/or performance for occupant(s) of the enclosure using sensor data, three-dimensional modeling, physical properties of the enclosure, and machine learning (e.g., Artificial Intelligence).

Description

使用人工智慧進行環境調整Environmental adjustments using artificial intelligence

相關申請案related applications

本申請案主張2020年5月22日申請之題為「使用人工智慧進行環境調整(ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE)」的美國臨時專利申請案第63/029,301號及2020年6月2日申請之題為「使用人工智慧進行環境調整(ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE)」的美國臨時專利申請案第63/033,474號的優先權。本申請案亦為2021年5月5日申請之題為「裝置集及裝置共存管理(DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES)」的國際專利申請案第PCT/US21/30798號之部分接續申請案,該國際專利申請案主張2020年9月17日申請之題為「裝置集及裝置共存管理(DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES)」的美國臨時專利申請案第63/079,851號、2020年6月4日申請之題為「裝置集及裝置共存管理(DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES)」的美國臨時專利申請案第63/034,792號及2020年5月6日申請之題為「裝置集及裝置共存管理(DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES)」的美國臨時專利申請案第63/020,819號的優先權。本申請案亦為2019年6月20日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國專利申請案第16/447,169號之部分接續申請案,該美國專利申請案主張以下申請案之優先權:(I)2018年6月22日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國臨時專利申請案第62/688,957號;(II)2019年6月6日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國臨時專利申請案第62/858,100號;(III)2019年2月8日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國臨時專利申請案第62/803,324號;(IV)2018年11月16日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國臨時專利申請案第62/768,775號。本申請案亦為2021年1月28日申請之題為「感測器校準及操作(Sensor Calibration and Operation)」的國際專利申請案第PCT/US21/15378號之部分接續申請案,該國際專利申請案主張2020年1月29日申請之題為「感測器校準及操作(SENSOR CALIBRATION AND OPERATION)」的美國臨時專利申請案第62/967,204號之優先權。本申請案亦為2021年2月11日申請之題為「用於可著色窗之預測模型化(PREDICTIVE MODELING FOR TINTABLE WINDOWS)」的國際專利申請案第PCT/US21/17603號之部分接續申請案,該國際專利申請案主張2021年2月3日申請之題為「用於可著色窗之預測模型化(PREDICTIVE MODELING FOR TINTABLE WINDOWS)」的63/145,333、2020年9月8日申請之題為「用於可著色窗之預測模型化(PREDICTIVE MODELING FOR TINTABLE WINDOWS)」的63/075,569及2020年2月12日申請之題為「用於天氣模型化之虛擬天空感測器及感測器輻射之受監督分類(VIRTUAL SKY SENSORS AND SUPERVISED CLASSIFICATION OF SENSOR RADIATION FOR WEATHER MODELING)」的62/975,677。本申請案亦為2021年2月5日申請之題為「使用外部3D模型化及神經網路之控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)」的美國專利申請案第17/250,586號之部分接續申請案,該美國專利申請案為2019年8月14日申請之題為「使用外部3D模型化及神經網路之控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)」的國際專利申請案第PCT/US19/46524號之國家進入階段,該國際專利申請案主張以下申請案之優先權:(I)2018年8月15日申請之題為「使用外部3D模型化及神經網路之控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)」的美國臨時專利申請案第62/764,821號;(II)2018年10月15日申請之題為「使用外部3D模型化及神經網路之控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)」的美國臨時專利申請案第62/745,920號;及(III)2019年2月14日申請之題為「使用外部3D模型化及神經網路之控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)」的美國臨時專利申請案第62/805,841號;國際專利申請案第PCT/US19/46524號亦為2019年3月20日申請之題為「使用外部3D模型化及基於排程之計算的控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING)」的國際專利申請案第PCT/US19/23268號之部分接續申請案,該國際專利申請案主張2018年3月21日申請之題為「用於運用雲端偵測來控制可著色窗之方法及系統(METHODS AND SYSTEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION)」的美國臨時專利申請案第62/646,260號及2018年5月3日申請之題為「使用外部3D模型化及基於排程之計算的控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING)」的美國臨時專利申請案第62/666,572號之權益。本申請案亦為2020年9月18日申請之題為「使用外部3D模型化及基於排程之計算的控制方法及系統(CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING)」的美國專利申請案第16/982,535號之部分接續申請案,該美國專利申請案為2019年3月20日申請之PCT/US19/23268的國家進入階段。上述專利申請案中之每一者以全文引用的方式併入本文中。This application claims U.S. Provisional Patent Application No. 63/029,301, filed on May 22, 2020, and entitled "ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE" and filed on June 2, 2020 Priority to US Provisional Patent Application No. 63/033,474 for "ENVIRONMENTAL ADJUSTMENT USING ARTIFICIAL INTELLIGENCE". This application is also a continuation-in-part of the International Patent Application No. PCT/US21/30798 filed on May 5, 2021, entitled "DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES", The international patent application claims U.S. Provisional Patent Application No. 63/079,851, filed on September 17, 2020, entitled "DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES," June 4, 2020 U.S. Provisional Patent Application Serial No. 63/034,792, entitled "DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES", filed on May 6, 2020, and entitled "DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES" Priority of U.S. Provisional Patent Application No. 63/020,819 in DEVICE ENSEMBLES AND COEXISTENCE MANAGEMENT OF DEVICES. This application is also US Patent Application Serial No. 16/447,169, filed on June 20, 2019, entitled "SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS" A continuation-in-part application of No. , which claims priority to the following applications: (I) filed on June 22, 2018, entitled "SENSING AND COMMUNICATION UNIT FOR OPTICAL SWITCHABLE WINDOW SYSTEM" COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS" U.S. Provisional Patent Application No. 62/688,957; (II) filed June 6, 2019, entitled "SENSING AND COMMUNICATION UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS" AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYS SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)" U.S. Provisional Patent Application No. 62/803,324; (IV) filed on November 16, 2018, entitled "Sensing and Communication Unit for Optical Switchable Window Systems" (SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)" U.S. Provisional Patent Application No. 62/768,775. This application is also a continuation-in-part application of International Patent Application No. PCT/US21/15378 filed on January 28, 2021, entitled "Sensor Calibration and Operation". The application claims priority to US Provisional Patent Application Serial No. 62/967,204, filed January 29, 2020, entitled "SENSOR CALIBRATION AND OPERATION." This application is also a continuation-in-part of International Patent Application No. PCT/US21/17603, filed on February 11, 2021, entitled "PREDICTIVE MODELING FOR TINTABLE WINDOWS" , the international patent application claims 63/145,333, filed on February 3, 2021, entitled "PREDICTIVE MODELING FOR TINTABLE WINDOWS," filed on September 8, 2020, entitled "PREDICTIVE MODELING FOR TINTABLE WINDOWS" 63/075,569 of "PREDICTIVE MODELING FOR TINTABLE WINDOWS" and filed February 12, 2020, entitled "Virtual Sky Sensor and Sensor Radiation for Weather Modeling 62/975,677 of VIRTUAL SKY SENSORS AND SUPERVISED CLASSIFICATION OF SENSOR RADIATION FOR WEATHER MODELING. This application is also the No. 1 US patent application entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS" filed on February 5, 2021 17/250,586, a continuation-in-part of US patent application filed on August 14, 2019, entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS)” in the national entry phase of International Patent Application No. PCT/US19/46524, which claims priority to the following applications: (I) filed on August 15, 2018, entitled “Using US Provisional Patent Application No. 62/764,821 of "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS"; (II) filed on October 15, 2018 U.S. Provisional Patent Application No. 62/745,920, entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS"; and (III) 2019 2 U.S. Provisional Patent Application No. 62/805,841, filed on March 14, entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND NEURAL NETWORKS"; International Patent Application No. PCT/US19/46524, also filed on March 20, 2019, is entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE- BASED COMPUTING)", a continuation-in-part of International Patent Application No. PCT/US19/23268, which claims filed on March 21, 2018, entitled "Use of Cloud Detection to Control Tintable Windows" METHODS AND SY STEMS FOR CONTROLLING TINTABLE WINDOWS WITH CLOUD DETECTION)" U.S. Provisional Patent Application No. 62/646,260 and filed on May 3, 2018, entitled "Control Method and System Using External 3D Modeling and Schedule-Based Computation ( CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING)" of U.S. Provisional Patent Application No. 62/666,572. This application is also filed on September 18, 2020 in the United States entitled "CONTROL METHODS AND SYSTEMS USING EXTERNAL 3D MODELING AND SCHEDULE-BASED COMPUTING" A continuation-in-part of Patent Application No. 16/982,535, which is the national entry phase of PCT/US19/23268 filed on March 20, 2019. Each of the aforementioned patent applications is incorporated herein by reference in its entirety.

封閉體(例如,設施、建築物或辦公室)之佔用者可受益於某些環境特性。舉例而言,當例如就諸如光(例如,視覺舒適性)、熱量(例如,熱舒適性)、空氣品質、雜訊(例如,雜訊隱私)、二氧化碳含量、VOC、濕度、潛在病原體負荷、通風及其類似者之環境特性而言調整環境時,可改善在封閉體之環境中的個人之健康狀況、保健狀況及/或表現。可調整環境特性以匹配所請求舒適性、健康狀況及/或安全標準。封閉體可包括工作場所、醫院、交通樞紐、建築物、載具或設施。對諸如HVAC系統之環境輸入的習知感測器反饋可能不足以達成此目標。舉例而言,此感測器反饋不考慮不斷改變的環境條件,諸如封閉體內之人數及/或活動。舉例而言,傳統的感測器網路可能不考慮可導致次佳、不健康及/或危險條件之使用案例及/或佔用者行為,包括例如佔用者接近度、病原體負荷、病毒曝露增加、視覺眩光、熱不適及/或隱私減少。在一些情況下,以足夠高的密度提供感測器置放從而針對封閉體內之所有關注部位而準確地特性化所感測環境條件可能為困難及/或昂貴的。Occupants of enclosures (eg, facilities, buildings, or offices) may benefit from certain environmental characteristics. For example, when factors such as light (eg, visual comfort), heat (eg, thermal comfort), air quality, noise (eg, noise privacy), carbon dioxide levels, VOCs, humidity, potential pathogen load, The environmental properties of ventilation and the like can improve the health, wellness and/or performance of an individual in an enclosed environment when the environment is adjusted. Environmental characteristics may be adjusted to match requested comfort, health, and/or safety standards. Enclosures may include workplaces, hospitals, transportation hubs, buildings, vehicles or facilities. Aware sensor feedback of environmental inputs such as HVAC systems may not be sufficient to achieve this goal. For example, this sensor feedback does not take into account changing environmental conditions, such as the number of people and/or activity in an enclosure. For example, conventional sensor networks may not consider use cases and/or occupant behavior that can lead to sub-optimal, unhealthy, and/or hazardous conditions, including, for example, occupant proximity, pathogen load, increased virus exposure, visual Glare, thermal discomfort and/or reduced privacy. In some cases, it may be difficult and/or expensive to provide sensor placement at a density high enough to accurately characterize the sensed environmental conditions for all sites of interest within the enclosure.

本文中所揭示之各種態樣緩解了與監測及調整封閉體之環境特性相關的缺點之至少部分。The various aspects disclosed herein alleviate at least some of the disadvantages associated with monitoring and adjusting the environmental characteristics of enclosures.

本文中所揭示之各種態樣可係關於封閉體之環境特性及其控制(例如,監測及/或調整)。可監測及調整封閉體之環境特性以促進封閉體佔用者之增強的健康狀況、保健狀況、疾病減少及/或污染風險及/或表現。該控制可利用機器學習。該機器學習可包括至少一個人工智慧(AI)引擎。環境特性可藉由安置於封閉體中之一個或多個感測器監測。可使用來自感測器之基線讀數、封閉體之三維(本文中縮寫為「3D」)示意圖及/或封閉體之固定物的物理屬性(例如,材料屬性及/或組態)來建構模型。控制系統可使用AI引擎來使用封閉體環境之感測器讀數改進模型,監測及調整封閉體之環境。AI引擎可至少部分地基於趨勢及/或預期物理參數例如使用預測性外推來改進模型。環境可例如藉由直接系統管理對各種裝置(例如,照明;加熱、通風及空氣調節系統,本文中縮寫為「HVAC」)調整之環境調整及/或藉由使用建築物管理系統(本文中縮寫為「BMS」)來調整。封閉體之AI模型化可包括使用網格上之部位。網格可為可調整的。網格可具有高於感測器之間隔的空間解析度。網格可在其部分中之一些上具有恆定解析度或變化解析度。網格可為均質或非均質的。Various aspects disclosed herein may relate to environmental characteristics of the enclosure and its control (eg, monitoring and/or adjustment). Environmental characteristics of the enclosure can be monitored and adjusted to promote enhanced health, wellness, disease reduction, and/or contamination risk and/or performance of the enclosure's occupants. The control can utilize machine learning. The machine learning may include at least one artificial intelligence (AI) engine. Environmental characteristics can be monitored by one or more sensors placed in the enclosure. Models can be constructed using baseline readings from sensors, a three-dimensional (abbreviated "3D") schematic view of the enclosure, and/or physical properties (eg, material properties and/or configuration) of the enclosure's fixtures. The control system can use the AI engine to improve the model using sensor readings of the enclosure's environment, monitor and adjust the enclosure's environment. The AI engine may refine the model based at least in part on trends and/or expected physical parameters, eg, using predictive extrapolation. The environment can be regulated, for example, by direct system management to various devices (eg, lighting; heating, ventilation, and air conditioning systems, abbreviated herein as "HVAC") and/or by using a building management system (abbreviated herein). for "BMS"). AI modeling of closed bodies can include using parts on a mesh. The grid may be adjustable. The grid may have a higher spatial resolution than the spacing between the sensors. The mesh can have constant resolution or varying resolution over some of its parts. The mesh can be homogeneous or heterogeneous.

在另一態樣中,一種環境調整方法,該方法包含:(a)使用(i)實體封閉體之虛擬表示、(ii)頂點之虛擬網格及(iii)實體封閉體之一個或多個材料屬性來產生實體封閉體之虛擬封閉體模型;(b)使用虛擬封閉體模型來產生實體封閉體之一個或多個環境特性的地圖;及(c)使用該地圖來控制實體封閉體之一個或多個環境特性。In another aspect, a method of environment adjustment, the method comprising: (a) using one or more of (i) a virtual representation of a physical enclosure, (ii) a virtual mesh of vertices, and (iii) a physical enclosure material properties to generate a virtual enclosure model of the physical enclosure; (b) use the virtual enclosure model to generate a map of one or more environmental properties of the physical enclosure; and (c) use the map to control one of the physical enclosures or multiple environmental properties.

在一些實施例中,該方法進一步包含接收將來自虛擬網格之第一頂點作為第一關注點的選擇。在一些實施例中,該方法進一步包含分析虛擬網格之第一頂點及第二頂點處的一個或多個環境特性。在一些實施例中,相對於第二頂點,將較大精確度用於第一頂點。在一些實施例中,該方法進一步包含接收對並非虛擬網格之頂點的第二關注點之選擇。在一些實施例中,該方法進一步包含執行(a)回應於接收到對第二關注點之選擇而更改虛擬網格及/或(b)將第二關注點遷移至虛擬網格之最近頂點。在一些實施例中,將來自虛擬網格之第一頂點識別為第一關注點。在一些實施例中,在虛擬網格之第一頂點及第二頂點處獲取一個或多個環境特性。在一些實施例中,相對於第二頂點,將較大精確度應用於第一頂點。在一些實施例中,識別並非虛擬網格之頂點的第二關注點。在一些實施例中,第一關注點在實體封閉體中具有類似的第一部位,該第一部位包括感測器。在一些實施例中,第一關注點與最近感測器相距一定距離。在一些實施例中,第二關注點在實體封閉體中具有類似的第一部位,該第一部位與最近感測器相距一定距離。在一些實施例中,該方法進一步包含自安置在類似於鄰近第一關注點之虛擬網格頂點之實體部位處的一個或多個感測器將資料輸入至虛擬封閉體模型中,以用於外推第一關注點處之所感測屬性。在一些實施例中,頂點之虛擬網格為非均質網格。在一些實施例中,虛擬網格之非均質性與關注區域相關。在一些實施例中,虛擬網格之非均質性與網格密度相關。在一些實施例中,虛擬網格之非均質性與網格解析度相關。在一些實施例中,虛擬封閉體模型包含實體封閉體之一個或多個結構特徵的考慮。在一些實施例中,虛擬封閉體模型包含實體封閉體之一個或多個固定物的考慮。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,該方法進一步包含自一個或多個感測器接收基線讀數。在一些實施例中,該方法進一步包含使用基線讀數來建構虛擬封閉體模型。在一些實施例中,該方法進一步包含使用實體封閉體之三維示意圖來建構虛擬封閉體模型。在一些實施例中,該方法進一步包含使用建築物資訊模型來建構虛擬封閉體模型。在一些實施例中,該方法進一步包含使用實體封閉體之一個或多個固定物的一個或多個物理屬性來建構虛擬封閉體模型。在一些實施例中,該方法進一步包含使用實體封閉體之一個或多個固定物的一個或多個材料屬性來建構虛擬封閉體模型。在一些實施例中,該方法進一步包含使用人工智慧引擎來改進虛擬封閉體模型。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,該人工智慧引擎自一個或多個感測器接收讀數。在一些實施例中,該方法進一步包含使用人工智慧引擎以模型化(i)一個或多個感測器之部位、(ii)一個或多個感測器之操作、(iii)由一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由一個或多個感測器感測到之至少一個屬性隨時間的演進。在一些實施例中,該方法進一步包含使用預測性外推來改進模型化。在一些實施例中,預測性外推至少部分地基於感測器資料中之趨勢。在一些實施例中,預測性外推至少部分地基於預期物理參數。在一些實施例中,一個或多個感測器不在類似於虛擬網格之頂點的部位處。在一些實施例中,該方法進一步包含使用階層式控制系統來控制實體封閉體之一個或多個環境特性。在一些實施例中,該方法進一步包含控制系統控制實體封閉體之一個或多個環境特性。在一些實施例中,控制實體封閉體之一個或多個環境特性係藉由調整(i)加熱、通風及空氣調節(HVAC)系統,(ii)調整安全系統、(iii)照明系統及/或(iv)可著色窗之色調來進行。在一些實施例中,控制實體封閉體之一個或多個環境特性係藉由調節經由通風口流動至封閉體及/或自封閉體流動之空氣的速度。在一些實施例中,控制實體封閉體之一個或多個環境特性係藉由控制建築物管理系統進行。在一些實施例中,該階層式控制系統包含經組態以控制一個或多個樓層控制器之主控制器。在一些實施例中,一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制一個或多個可著色窗。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制一個或多個感測器。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制一個或多個輸出裝置。在一些實施例中,主控制器經組態以操作性地耦接至建築物管理系統。在一些實施例中,主控制器經組態以操作性地耦接至資料庫。在一些實施例中,主控制器經組態以操作性地耦接至網路。在一些實施例中,主控制器及/或該樓層控制器在雲端中。在一些實施例中,主控制器安置於實體封閉體中。在一些實施例中,樓層控制器安置於實體封閉體中。在一些實施例中,主控制器安置在不同於實體封閉體之部位的部位處。在一些實施例中,樓層控制器安置在不同於實體封閉體之部位的部位處。在一些實施例中,建築物管理系統經組態以控制實體封閉體之一個或多個環境特性。在一些實施例中,控制實體封閉體之一個或多個環境特性包含為操作實體封閉體提供能量消耗節省。在一些實施例中,該封閉體為設施。在一些實施例中,該封閉體為建築物。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分的三維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的表面之至少一部分的二維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的線之至少一部分的一維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分且隨時間改變的四維網格。在一些實施例中,該方法進一步包含使虛擬網格隨時間變化。In some embodiments, the method further includes receiving a selection of the first vertex from the virtual mesh as the first point of interest. In some embodiments, the method further includes analyzing one or more environmental properties at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is used for the first vertex relative to the second vertex. In some embodiments, the method further includes receiving a selection of a second point of interest that is not a vertex of the virtual mesh. In some embodiments, the method further includes performing (a) altering the virtual mesh in response to receiving the selection of the second point of interest and/or (b) migrating the second point of interest to the nearest vertex of the virtual mesh. In some embodiments, the first vertex from the virtual mesh is identified as the first point of interest. In some embodiments, one or more environmental properties are obtained at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is applied to the first vertex relative to the second vertex. In some embodiments, a second point of interest that is not a vertex of the virtual mesh is identified. In some embodiments, the first point of interest has a similar first location in the physical enclosure, the first location including the sensor. In some embodiments, the first point of interest is a distance from the closest sensor. In some embodiments, the second point of interest has a similar first location in the physical enclosure, the first location being at a distance from the closest sensor. In some embodiments, the method further includes inputting data into the virtual closed volume model from one or more sensors disposed at physical locations similar to virtual mesh vertices adjacent to the first point of interest for use in The sensed attribute at the first point of interest is extrapolated. In some embodiments, the virtual mesh of vertices is an inhomogeneous mesh. In some embodiments, the heterogeneity of the virtual grid is related to the region of interest. In some embodiments, the heterogeneity of the virtual mesh is related to mesh density. In some embodiments, the heterogeneity of the virtual grid is related to the grid resolution. In some embodiments, the virtual enclosure model includes consideration of one or more structural features of the physical enclosure. In some embodiments, the virtual enclosure model includes consideration of one or more fixtures of the physical enclosure. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, the method further includes receiving baseline readings from one or more sensors. In some embodiments, the method further includes constructing a virtual closed volume model using the baseline readings. In some embodiments, the method further includes constructing a virtual closed volume model using the three-dimensional schematic representation of the physical closed volume. In some embodiments, the method further includes constructing a virtual closed volume model using the building information model. In some embodiments, the method further includes constructing a virtual enclosure model using one or more physical properties of one or more fixtures of the physical enclosure. In some embodiments, the method further includes constructing a virtual enclosure model using one or more material properties of one or more fixtures of the physical enclosure. In some embodiments, the method further includes using an artificial intelligence engine to refine the virtual closed volume model. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, the artificial intelligence engine receives readings from one or more sensors. In some embodiments, the method further includes using an artificial intelligence engine to model (i) the location of the one or more sensors, (ii) the operation of the one or more sensors, (iii) the operation of the one or more sensors Spatial distribution of at least one attribute sensed by a plurality of sensors and/or (iv) evolution over time of at least one attribute sensed by one or more sensors. In some embodiments, the method further comprises using predictive extrapolation to improve the modeling. In some embodiments, the predictive extrapolation is based at least in part on trends in sensor data. In some embodiments, the predictive extrapolation is based at least in part on expected physical parameters. In some embodiments, the one or more sensors are not at locations similar to the vertices of the virtual mesh. In some embodiments, the method further includes controlling one or more environmental properties of the physical enclosure using the hierarchical control system. In some embodiments, the method further includes the control system controlling one or more environmental characteristics of the physical enclosure. In some embodiments, one or more environmental properties of the physical enclosure are controlled by adjusting (i) heating, ventilation, and air conditioning (HVAC) systems, (ii) security systems, (iii) lighting systems, and/or (iv) It can be done by tinting the hue of the window. In some embodiments, one or more environmental properties of the physical enclosure are controlled by adjusting the velocity of air flowing through the vents to and/or from the enclosure. In some embodiments, controlling one or more environmental properties of the physical enclosure is performed by controlling a building management system. In some embodiments, the hierarchical control system includes a master controller configured to control one or more floor controllers. In some embodiments, one of the one or more floor controllers is configured to control one or more home controllers. In some embodiments, one of the one or more home controllers is configured to control one or more tintable windows. In some embodiments, one of the one or more local controllers is configured to control one or more sensors. In some embodiments, one of the one or more home controllers is configured to control one or more output devices. In some embodiments, the master controller is configured to be operatively coupled to the building management system. In some embodiments, the master controller is configured to be operatively coupled to the database. In some embodiments, the master controller is configured to be operatively coupled to the network. In some embodiments, the master controller and/or the floor controller are in the cloud. In some embodiments, the main controller is disposed in a physical enclosure. In some embodiments, the floor controller is disposed in a physical enclosure. In some embodiments, the main controller is positioned at a location other than that of the physical enclosure. In some embodiments, the floor controller is positioned at a location other than the location of the physical enclosure. In some embodiments, the building management system is configured to control one or more environmental characteristics of the physical enclosure. In some embodiments, controlling one or more environmental characteristics of the physical enclosure includes providing energy consumption savings for operating the physical enclosure. In some embodiments, the enclosure is a facility. In some embodiments, the enclosure is a building. In some embodiments, the virtual grid is a three-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a two-dimensional grid spanning at least a portion of the surface of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a one-dimensional grid spanning at least a portion of the line of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a time-varying four-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the method further includes varying the virtual grid over time.

在另一態樣中,一種用於環境調整之設備,該設備包含一個或多個控制器,該一個或多個控制器包含至少一個電路系統且經組態以:(a)使用(i)實體封閉體之虛擬表示、頂點之虛擬網格及(iii)實體封閉體之一個或多個材料屬性來產生或指導產生實體封閉體之虛擬封閉體模型;(b)使用或指導利用虛擬封閉體模型以產生實體封閉體之一個或多個環境特性的地圖;及(c)使用或指導利用地圖以控制實體封閉體之一個或多個環境特性。In another aspect, an apparatus for environmental conditioning, the apparatus comprising one or more controllers comprising at least one circuitry and configured to: (a) use (i) A virtual representation of the solid enclosure, a virtual mesh of vertices, and (iii) one or more material properties of the physical enclosure to generate or direct the generation of a virtual enclosure model of the physical enclosure; (b) use or direct the utilization of the virtual enclosure modeling to generate a map of one or more environmental properties of the physical enclosure; and (c) using or directing utilization of the map to control one or more environmental properties of the physical enclosure.

在一些實施例中,一個或多個控制器經組態以用於接收將來自虛擬網格之第一頂點作為第一關注點的選擇。在一些實施例中,一個或多個控制器經組態以用於分析虛擬網格之第一頂點及第二頂點處的一個或多個環境特性。在一些實施例中,相對於第二頂點,將較大精確度用於第一頂點。在一些實施例中,一個或多個控制器經組態以用於接收對並非虛擬網格之頂點中之任一者的第二關注點之選擇。在一些實施例中,一個或多個控制器經組態以用於執行或指導執行(a)回應於接收到對第二關注點之選擇而更改虛擬網格及/或(b)將第二關注點遷移至虛擬網格之最近頂點。在一些實施例中,將來自虛擬網格之第一頂點識別為第一關注點。在一些實施例中,在虛擬網格之第一頂點及第二頂點處獲取一個或多個環境特性。在一些實施例中,相對於第二頂點,將較大精確度應用於第一頂點。在一些實施例中,第二關注點不在虛擬網格之頂點上。在一些實施例中,第一關注點對應於實體封閉體中安置感測器之各別部位。在一些實施例中,第一關注點對應於實體封閉體中與最近感測器相距一定距離之各別部位。在一些實施例中,第二關注點對應於實體封閉體中與最近感測器相距一定距離之各別部位。在一些實施例中,一個或多個控制器經組態以用於自安置於鄰近第一關注點之網格頂點處的一個或多個感測器將資料輸入至虛擬封閉體模型中。在一些實施例中,資料之輸入用於外推第一關注點處之所感測屬性。在一些實施例中,頂點之虛擬網格為非均質網格。在一些實施例中,虛擬網格之非均質性與關注區域相關。在一些實施例中,虛擬網格之非均質性與網格密度相關。在一些實施例中,虛擬網格之非均質性與網格解析度相關。在一些實施例中,虛擬封閉體模型包含實體封閉體之一個或多個結構特徵的考慮。在一些實施例中,虛擬封閉體模型包含實體封閉體之一個或多個固定物的考慮。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,一個或多個控制器經組態以用於自一個或多個感測器接收基線讀數。在一些實施例中,該設備進一步包含經組態以用於使用基線讀數來建構虛擬封閉體模型之電路系統。在一些實施例中,一個或多個控制器經組態以用於使用實體封閉體之三維示意圖來建構虛擬封閉體模型。在一些實施例中,一個或多個控制器經組態以用於使用建築物資訊模型來建構虛擬封閉體模型。在一些實施例中,一個或多個控制器經組態以用於使用實體封閉體之一個或多個固定物的一個或多個物理屬性來建構虛擬封閉體模型。在一些實施例中,一個或多個控制器經組態以用於使用實體封閉體之一個或多個固定物的一個或多個材料屬性來建構虛擬封閉體模型。在一些實施例中,一個或多個控制器經組態以用於使用人工智慧引擎來改進或指導改進實體封閉體模型。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,人工智慧引擎經組態以用於自一個或多個感測器接收讀數。在一些實施例中,人工智慧引擎經組態以用於模型化(i)一個或多個感測器之部位、(ii)一個或多個感測器之操作、(iii)由一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由一個或多個感測器感測到之至少一個屬性隨時間的演進。在一些實施例中,操作包括包含一個或多個感測器中之至少一者之標準操作或故障的狀態。在一些實施例中,人工智慧引擎經組態以用於使用預測性外推來改進模型化。在一些實施例中,預測性外推至少部分地基於趨勢。在一些實施例中,預測性外推至少部分地基於預期物理參數。在一些實施例中,一個或多個感測器不處於虛擬網格之頂點處。在一些實施例中,一個或多個控制器經組態以用於使用階層式控制系統來控制實體封閉體之一個或多個環境特性。在一些實施例中,一個或多個控制器經組態以用於控制實體封閉體之一個或多個環境特性。在一些實施例中,一個或多個控制器經組態以藉由調整(a)加熱、通風及空氣調節(HVAC)系統、(b)安全系統、(c)照明系統及/或(d)可著色窗來控制一個或多個環境特性。在一些實施例中,一個或多個控制器經組態以用於藉由調節或指導調節經由通風口流動至實體封閉體及/或自實體封閉體流動之空氣的速度來控制實體封閉體之一個或多個環境特性。在一些實施例中,一個或多個控制器經組態以用於藉由控制建築物管理系統來控制實體封閉體之一個或多個環境特性。在一些實施例中,一個或多個控制器包含控制一個或多個樓層控制器之主控制器。在一些實施例中,一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制包含可著色窗之一個或多個裝置。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制包含一個或多個感測器之裝置。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制包含一個或多個輸出裝置之裝置。在一些實施例中,主控制器經組態以操作性地耦接至建築物管理系統。在一些實施例中,主控制器經組態以操作性地耦接至資料庫。在一些實施例中,主控制器經組態以操作性地耦接至網路。在一些實施例中,主控制器安置於雲端中。在一些實施例中,樓層控制器安置於雲端中。在一些實施例中,主控制器安置於實體封閉體中。在一些實施例中,樓層控制器安置於實體封閉體中。在一些實施例中,主控制器安置在不同於實體封閉體之部位處。在一些實施例中,樓層控制器安置在不同於實體封閉體之部位處。在一些實施例中,建築物管理系統經組態以控制實體封閉體之一個或多個環境特性。在一些實施例中,建築物管理系統經組態以控制一個或多個環境特性,從而為實體封閉體提供能量消耗節省。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分的三維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的表面之至少一部分的二維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的線之至少一部分的一維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分且隨時間改變的四維網格。在一些實施例中,一個或多個控制器經組態以使虛擬網格隨時間變化或指導使虛擬網格隨時間變化。In some embodiments, the one or more controllers are configured to receive a selection from a first vertex of the virtual mesh as the first point of interest. In some embodiments, the one or more controllers are configured for analyzing one or more environmental characteristics at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is used for the first vertex relative to the second vertex. In some embodiments, the one or more controllers are configured for receiving a selection of a second point of interest that is not any of the vertices of the virtual mesh. In some embodiments, one or more controllers are configured to perform or direct the execution of (a) changing the virtual grid in response to receiving a selection of the second point of interest and/or (b) changing the second point of interest The focus is shifted to the nearest vertex of the virtual mesh. In some embodiments, the first vertex from the virtual mesh is identified as the first point of interest. In some embodiments, one or more environmental properties are obtained at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is applied to the first vertex relative to the second vertex. In some embodiments, the second point of interest is not on a vertex of the virtual mesh. In some embodiments, the first points of interest correspond to respective locations in the physical enclosure where the sensors are placed. In some embodiments, the first point of interest corresponds to a respective location in the physical enclosure that is at a distance from the nearest sensor. In some embodiments, the second point of interest corresponds to a respective location in the physical enclosure that is at a distance from the closest sensor. In some embodiments, the one or more controllers are configured for inputting data into the virtual closed volume model from one or more sensors positioned at mesh vertices adjacent to the first point of interest. In some embodiments, the input of the data is used to extrapolate the sensed attribute at the first point of interest. In some embodiments, the virtual mesh of vertices is an inhomogeneous mesh. In some embodiments, the heterogeneity of the virtual grid is related to the region of interest. In some embodiments, the heterogeneity of the virtual mesh is related to mesh density. In some embodiments, the heterogeneity of the virtual grid is related to the grid resolution. In some embodiments, the virtual enclosure model includes consideration of one or more structural features of the physical enclosure. In some embodiments, the virtual enclosure model includes consideration of one or more fixtures of the physical enclosure. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, one or more controllers are configured to receive baseline readings from one or more sensors. In some embodiments, the apparatus further includes circuitry configured to construct a virtual closed volume model using the baseline readings. In some embodiments, the one or more controllers are configured for constructing a virtual enclosed volume model using a three-dimensional schematic representation of the physical enclosed volume. In some embodiments, one or more controllers are configured for constructing a virtual enclosed volume model using the building information model. In some embodiments, the one or more controllers are configured for constructing a virtual enclosure model using one or more physical properties of one or more fixtures of the physical enclosure. In some embodiments, the one or more controllers are configured for constructing a virtual enclosure model using one or more material properties of one or more fixtures of the physical enclosure. In some embodiments, the one or more controllers are configured for using an artificial intelligence engine to improve or direct the improvement of the solid closed volume model. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, the artificial intelligence engine is configured to receive readings from one or more sensors. In some embodiments, the artificial intelligence engine is configured to model (i) the location of one or more sensors, (ii) the operation of one or more sensors, (iii) the operation of one or more sensors Spatial distribution of at least one attribute sensed by a plurality of sensors and/or (iv) evolution over time of at least one attribute sensed by one or more sensors. In some embodiments, the operation includes a state including standard operation or failure of at least one of the one or more sensors. In some embodiments, the artificial intelligence engine is configured for improving modeling using predictive extrapolation. In some embodiments, the predictive extrapolation is based at least in part on trends. In some embodiments, the predictive extrapolation is based at least in part on expected physical parameters. In some embodiments, the one or more sensors are not at the vertices of the virtual mesh. In some embodiments, one or more controllers are configured for controlling one or more environmental properties of the physical enclosure using a hierarchical control system. In some embodiments, one or more controllers are configured for controlling one or more environmental characteristics of the physical enclosure. In some embodiments, one or more controllers are configured to adjust (a) heating, ventilation and air conditioning (HVAC) systems, (b) security systems, (c) lighting systems, and/or (d) You can shade windows to control one or more environmental properties. In some embodiments, the one or more controllers are configured to control the flow of the physical enclosure by adjusting or directing adjustment of the speed of air flowing to and/or from the physical enclosure through the vents One or more environmental properties. In some embodiments, one or more controllers are configured for controlling one or more environmental characteristics of the physical enclosure by controlling the building management system. In some embodiments, the one or more controllers include a master controller that controls one or more floor controllers. In some embodiments, one of the one or more floor controllers is configured to control one or more home controllers. In some embodiments, one of the one or more home controllers is configured to control one or more devices that include tintable windows. In some embodiments, one of the one or more local controllers is configured to control a device including one or more sensors. In some embodiments, one of the one or more local controllers is configured to control a device that includes one or more output devices. In some embodiments, the master controller is configured to be operatively coupled to the building management system. In some embodiments, the master controller is configured to be operatively coupled to the database. In some embodiments, the master controller is configured to be operatively coupled to the network. In some embodiments, the master controller is located in the cloud. In some embodiments, the floor controller is located in the cloud. In some embodiments, the main controller is disposed in a physical enclosure. In some embodiments, the floor controller is disposed in a physical enclosure. In some embodiments, the main controller is positioned at a location other than the physical enclosure. In some embodiments, the floor controller is positioned at a location other than the physical enclosure. In some embodiments, the building management system is configured to control one or more environmental characteristics of the physical enclosure. In some embodiments, the building management system is configured to control one or more environmental characteristics to provide energy consumption savings for the physical enclosure. In some embodiments, the virtual grid is a three-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a two-dimensional grid spanning at least a portion of the surface of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a one-dimensional grid spanning at least a portion of the line of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a time-varying four-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the one or more controllers are configured to vary or direct the virtual grid to vary over time.

在另一態樣中,一種包括用於環境調整之指令的非暫時性電腦可讀媒體,當該等指令由一個或多個處理器執行時,使該一個或多個處理器執行包含以下各者之操作:(a)使用(i)實體封閉體之虛擬表示、頂點之網格及(iii)實體封閉體之一個或多個材料屬性來產生實體封閉體之虛擬封閉體模型;(b)使用虛擬封閉體模型以產生實體封閉體之一個或多個環境特性的地圖;及(c)使用地圖以控制實體封閉體之一個或多個環境特性。In another aspect, a non-transitory computer-readable medium comprising instructions for environmental adjustment, when the instructions are executed by one or more processors, cause the one or more processors to execute the following: The operation of: (a) use (i) a virtual representation of the physical enclosure, a mesh of vertices, and (iii) one or more material properties of the physical enclosure to generate a virtual enclosure model of the physical enclosure; (b) using the virtual enclosure model to generate a map of one or more environmental properties of the physical enclosure; and (c) using the map to control one or more environmental properties of the physical enclosure.

在一些實施例中,非暫時性電腦可讀媒體進一步包含用於接收將來自虛擬網格之第一頂點作為第一關注點的選擇的指令。在一些實施例中,非暫時性電腦可讀媒體進一步包含用於分析或指導分析虛擬網格之第一頂點及第二頂點處之一個或多個環境特性的指令。在一些實施例中,相對於第二頂點,將較大精確度用於第一頂點。在一些實施例中,非暫時性電腦可讀媒體進一步包含用於接收對並非虛擬網格之頂點中之任一者的第二關注點之選擇的指令。在一些實施例中,非暫時性電腦可讀媒體進一步包含用於執行或指導執行(a)回應於接收到對第二關注點之選擇而更改虛擬網格及/或(b)將第二關注點遷移至虛擬網格之最近頂點的指令。在一些實施例中,將來自虛擬網格之第一頂點識別為第一關注點。在一些實施例中,在虛擬網格之第一頂點及第二頂點處獲取一個或多個環境特性。在一些實施例中,相對於第二頂點,將較大精確度應用於第一頂點。在一些實施例中,識別不與虛擬網格之頂點重合的第二關注點。在一些實施例中,第一關注點包括實體封閉體中安置感測器之對應部位。在一些實施例中,第一關注點與實體封閉體中安置最近感測器之對應部位相距一定距離。在一些實施例中,第二關注點在實體封閉體中安置最近感測器之對應部位處。在一些實施例中,非暫時性電腦可讀媒體進一步包含自安置於實體封閉體中對應於鄰近第一關注點之網格頂點之部位處的一個或多個感測器將資料輸入或指導將資料輸入至虛擬封閉體模型中。在一些實施例中,非暫時性電腦可讀媒體進一步包含利用或指導利用資料以用於外推第一關注點處之所感測屬性。在一些實施例中,頂點之虛擬網格為非均質網格。在一些實施例中,虛擬網格之非均質性與關注區域及/或關注點相關。在一些實施例中,虛擬網格之非均質性與虛擬網格之密度相關。在一些實施例中,虛擬網格之非均質性與虛擬網格之解析度相關。在一些實施例中,虛擬封閉體模型之建構及/或使用包含實體封閉體之一個或多個結構特徵的考慮。在一些實施例中,虛擬封閉體模型之建構及/或使用包含實體封閉體之一個或多個固定物的考慮。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,操作包含接收或指導接收來自一個或多個感測器之基線讀數。在一些實施例中,操作包含使用基線讀數來建構或指導建構實體封閉體模型。在一些實施例中,操作包含使用實體封閉體之三維示意圖來建構或指導建構虛擬封閉體模型。在一些實施例中,操作包含使用建築物資訊模型來建構或指導建構虛擬封閉體模型。在一些實施例中,操作包含使用實體封閉體之一個或多個固定物的一個或多個物理屬性來建構或指導建構虛擬封閉體模型。在一些實施例中,操作包含使用實體封閉體之一個或多個固定物的一個或多個材料屬性來建構或指導建構虛擬封閉體模型。在一些實施例中,操作包含使用人工智慧引擎來改進或指導改進虛擬封閉體模型。在一些實施例中,實體封閉體包括一個或多個感測器。在一些實施例中,人工智慧引擎經組態以自一個或多個感測器接收讀數。在一些實施例中,非暫時性電腦可讀媒體進一步包含用於人工智慧引擎模型化以下各者之指令:(i)一個或多個感測器之部位、(ii)一個或多個感測器之操作、(iii)由一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由一個或多個感測器感測到之至少一個屬性隨時間的演進。在一些實施例中,非暫時性電腦可讀媒體進一步包含用於人工智慧引擎藉由使用預測性外推來改進人工智慧引擎模型的指令。在一些實施例中,預測性外推至少部分地基於趨勢。在一些實施例中,預測性外推至少部分地基於預期物理參數。在一些實施例中,一個或多個感測器安置於實體封閉體中不對應於虛擬網格之頂點的一個或多個部位處。在一些實施例中,操作包含指導階層式控制系統控制實體封閉體之一個或多個環境特性。在一些實施例中,操作包含指導階層式控制系統調整(I)加熱、通風及空氣調節系統(HVAC)、(II)安全系統、(III)照明系統及/或(IV)可著色窗之色調。在一些實施例中,操作包含指導建築物管理系統控制實體封閉體之一個或多個環境特性。在一些實施例中,操作包含指導階層式控制系統調節或指導調節至及/或自實體封閉體之空氣流(例如,經由通風口)的速度。在一些實施例中,階層式控制系統包含控制一個或多個樓層控制器之主控制器。在一些實施例中,一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制一個或多個可著色窗。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制包括一個或多個感測器之裝置。在一些實施例中,一個或多個本端控制器中之一本端控制器經組態以控制包括一個或多個輸出裝置之裝置。在一些實施例中,主控制器經組態以操作性地耦接至建築物管理系統。在一些實施例中,主控制器經組態以操作性地耦接至資料庫。在一些實施例中,主控制器經組態以操作性地耦接至網路。在一些實施例中,主控制器安置於雲端中。在一些實施例中,樓層控制器安置於雲端中。在一些實施例中,主控制器安置於實體封閉體中。在一些實施例中,樓層控制器安置於實體封閉體中。在一些實施例中,主控制器安置在不同於實體封閉體之部位處。在一些實施例中,樓層控制器安置在不同於實體封閉體之部位處。在一些實施例中,操作包含指導建築物管理系統控制實體封閉體之一個或多個環境特性。在一些實施例中,控制實體封閉體之一個或多個環境特性包含在實體封閉體之(例如,與環境相關聯之裝置及/或控制環境之裝置)的操作中提供能量消耗節省。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分的三維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的表面之至少一部分的二維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的線之至少一部分的一維網格。在一些實施例中,虛擬網格為橫跨實體封閉體之虛擬表示的體積之至少一部分且隨時間改變的四維網格。在一些實施例中,操作包含使虛擬網格隨時間變化或指導使虛擬網格隨時間變化。In some embodiments, the non-transitory computer-readable medium further includes instructions for receiving a selection of a first vertex from the virtual mesh as the first point of interest. In some embodiments, the non-transitory computer-readable medium further comprises instructions for analyzing or directing analysis of one or more environmental properties at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is used for the first vertex relative to the second vertex. In some embodiments, the non-transitory computer-readable medium further includes instructions for receiving a selection of a second point of interest that is not any of the vertices of the virtual mesh. In some embodiments, the non-transitory computer-readable medium further comprises means for performing or directing the execution of (a) changing the virtual grid in response to receiving the selection of the second point of interest and/or (b) placing the second point of interest Command for point migration to the nearest vertex of the virtual mesh. In some embodiments, the first vertex from the virtual mesh is identified as the first point of interest. In some embodiments, one or more environmental properties are obtained at the first vertex and the second vertex of the virtual mesh. In some embodiments, greater precision is applied to the first vertex relative to the second vertex. In some embodiments, a second point of interest that does not coincide with a vertex of the virtual mesh is identified. In some embodiments, the first point of interest includes a corresponding location in the physical enclosure where the sensor is placed. In some embodiments, the first point of interest is a certain distance from the corresponding portion of the physical enclosure where the closest sensor is located. In some embodiments, the second point of interest is at the corresponding location in the physical enclosure where the closest sensor is located. In some embodiments, the non-transitory computer-readable medium further includes inputting data or directing data from one or more sensors disposed in the physical enclosure at locations corresponding to mesh vertices adjacent to the first point of interest Data is entered into a virtual closed body model. In some embodiments, the non-transitory computer-readable medium further includes utilization or instruction utilization data for extrapolating the sensed attribute at the first point of interest. In some embodiments, the virtual mesh of vertices is an inhomogeneous mesh. In some embodiments, the heterogeneity of the virtual grid is related to regions and/or points of interest. In some embodiments, the heterogeneity of the virtual grid is related to the density of the virtual grid. In some embodiments, the heterogeneity of the virtual grid is related to the resolution of the virtual grid. In some embodiments, the construction and/or use of the virtual enclosure model includes consideration of one or more structural features of the physical enclosure. In some embodiments, the construction and/or use of the virtual enclosure model includes consideration of one or more fixtures of the physical enclosure. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, the operations include receiving or directing receipt of baseline readings from one or more sensors. In some embodiments, the operations include using the baseline readings to construct or guide the construction of a solid closed body model. In some embodiments, the operations include using a three-dimensional representation of the physical enclosure to construct or guide the construction of a virtual enclosure model. In some embodiments, the operations include using the building information model to construct or guide the construction of a virtual enclosed volume model. In some embodiments, the operations include using one or more physical properties of one or more fixtures of the physical enclosure to construct or direct construction of a virtual enclosure model. In some embodiments, the operations include constructing or directing construction of a virtual enclosure model using one or more material properties of one or more fixtures of the physical enclosure. In some embodiments, the operations include using an artificial intelligence engine to refine or direct refinement of the virtual closed volume model. In some embodiments, the physical enclosure includes one or more sensors. In some embodiments, the artificial intelligence engine is configured to receive readings from one or more sensors. In some embodiments, the non-transitory computer-readable medium further comprises instructions for the artificial intelligence engine to model (i) the location of one or more sensors, (ii) one or more sensing operation of the sensor, (iii) spatial distribution of at least one attribute sensed by one or more sensors and/or (iv) evolution of at least one attribute sensed by one or more sensors over time . In some embodiments, the non-transitory computer-readable medium further comprises instructions for the artificial intelligence engine to improve the artificial intelligence engine model by using predictive extrapolation. In some embodiments, the predictive extrapolation is based at least in part on trends. In some embodiments, the predictive extrapolation is based at least in part on expected physical parameters. In some embodiments, the one or more sensors are positioned at one or more locations in the physical enclosure that do not correspond to vertices of the virtual mesh. In some embodiments, operating includes directing the hierarchical control system to control one or more environmental characteristics of the physical enclosure. In some embodiments, the operation includes directing the hierarchical control system to adjust the hue of (I) heating, ventilation, and air conditioning systems (HVAC), (II) security systems, (III) lighting systems, and/or (IV) tintable windows . In some embodiments, the operations include directing the building management system to control one or more environmental characteristics of the physical enclosure. In some embodiments, the operation includes directing the hierarchical control system to adjust or directing the adjustment of the speed of air flow to and/or from the physical enclosure (eg, via a vent). In some embodiments, the hierarchical control system includes a master controller that controls one or more floor controllers. In some embodiments, one of the one or more floor controllers is configured to control one or more home controllers. In some embodiments, one of the one or more home controllers is configured to control one or more tintable windows. In some embodiments, one of the one or more local controllers is configured to control a device including one or more sensors. In some embodiments, one of the one or more home controllers is configured to control a device that includes one or more output devices. In some embodiments, the master controller is configured to be operatively coupled to the building management system. In some embodiments, the master controller is configured to be operatively coupled to the database. In some embodiments, the master controller is configured to be operatively coupled to the network. In some embodiments, the master controller is located in the cloud. In some embodiments, the floor controller is located in the cloud. In some embodiments, the main controller is disposed in a physical enclosure. In some embodiments, the floor controller is disposed in a physical enclosure. In some embodiments, the main controller is positioned at a location other than the physical enclosure. In some embodiments, the floor controller is positioned at a location other than the physical enclosure. In some embodiments, the operations include directing the building management system to control one or more environmental characteristics of the physical enclosure. In some embodiments, controlling one or more environmental characteristics of the physical enclosure includes providing energy consumption savings in the operation of the physical enclosure (eg, devices associated with the environment and/or devices controlling the environment). In some embodiments, the virtual grid is a three-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a two-dimensional grid spanning at least a portion of the surface of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a one-dimensional grid spanning at least a portion of the line of the virtual representation of the solid enclosure. In some embodiments, the virtual grid is a time-varying four-dimensional grid spanning at least a portion of the volume of the virtual representation of the solid enclosure. In some embodiments, the operations include causing or directing the virtual grid to vary over time.

在一些實施例中,網路為區域網路。在一些實施例中,網路包含經組態以在單個纜線中傳輸電力及通信之纜線。通信可為一種或多種類型之通信。通信可包含遵守至少第二代(2G)、第三代(3G)、第四代(4G)或第五代(5G)蜂巢式通信協定之蜂巢式通信。在一些實施例中,通信包含促進靜止圖像、音樂或動畫串流(例如,電影或視訊)之媒體通信。在一些實施例中,通信包含資料通信(例如,感測器資料)。在一些實施例中,通信包含控制通信,例如以控制操作性地耦接至網路之一個或多個節點。在一些實施例中,網路包含裝設於設施中之第一(例如,佈纜)網路。在一些實施例中,網路包含裝設於設施之圍護結構中(例如,包括於設施中之建築物之圍護結構中)的(例如,佈纜)網路。In some embodiments, the network is a local area network. In some embodiments, the network includes cables configured to transmit power and communications in a single cable. The communication can be one or more types of communication. The communication may include cellular communication complying with at least second generation (2G), third generation (3G), fourth generation (4G) or fifth generation (5G) cellular communication protocols. In some embodiments, the communication includes media communication that facilitates still images, music or animation streaming (eg, movies or video). In some embodiments, the communication includes data communication (eg, sensor data). In some embodiments, the communication includes control communication, eg, to control one or more nodes operatively coupled to a network. In some embodiments, the network includes a first (eg, cabling) network installed in the facility. In some embodiments, the network includes a (eg, cabling) network installed in the envelope of the facility (eg, in the envelope of a building included in the facility).

在另一態樣中,本揭示案提供經組態以用於促進本文中所揭示之任一操作的任何通信(例如,信號)及/或(例如,電)功率之傳輸的網路。通信可包含控制通信、蜂巢式通信、媒體通信及/或資料通信。資料通信可包含感測器資料通信及/或經處理資料通信。網路可經組態以遵守促進此通信之一個或多個協定。舉例而言,由網路(例如,由BMS)使用之通信協定可為建築物自動化及控制網路協定(BACnet)。舉例而言,通信協定可促進遵守至少第2、第3、第4或第5代蜂巢式通信協定之蜂巢式通信。In another aspect, the present disclosure provides a network configured for facilitating the transfer of any communication (eg, signals) and/or (eg, electrical) power of any of the operations disclosed herein. Communications may include control communications, cellular communications, media communications, and/or data communications. Data communications may include sensor data communications and/or processed data communications. The network can be configured to adhere to one or more protocols that facilitate this communication. For example, the communication protocol used by the network (eg, by the BMS) may be the Building Automation and Control Network Protocol (BACnet). For example, the communication protocol may facilitate cellular communications that adhere to at least 2nd, 3rd, 4th, or 5th generation cellular communication protocols.

在另一態樣中,本揭示案提供實施本文中所揭示之任一種方法的系統、設備(例如,控制器)及/或一個或多個非暫時性電腦可讀媒體(例如,軟體)。In another aspect, the present disclosure provides a system, apparatus (eg, controller) and/or one or more non-transitory computer-readable media (eg, software) implementing any of the methods disclosed herein.

在另一態樣中,本揭示案提供使用本文中所揭示之系統、電腦可讀媒體及/或設備中之任一者的方法,例如出於其預期目的。In another aspect, the present disclosure provides methods of using any of the systems, computer-readable media, and/or devices disclosed herein, eg, for their intended purposes.

在另一態樣中,一種設備包含至少一個控制器,該至少一個控制器經程式化以指導用以實施(例如,實行)本文中所揭示之任一種方法的機構,該至少一個控制器經組態以操作性地耦接至該機構。在一些實施例中,(例如,方法之)至少兩個操作由同一控制器指導/執行。在一些實施例中,至少兩個操作由不同控制器指導/執行。In another aspect, an apparatus includes at least one controller programmed to direct a mechanism for implementing (eg, performing) any of the methods disclosed herein, the at least one controller being programmed configured to be operatively coupled to the mechanism. In some embodiments, at least two operations (eg, of the method) are directed/performed by the same controller. In some embodiments, at least two operations are directed/performed by different controllers.

在另一態樣中,一種設備包含經組態(例如,經程式化)以實施(例如,實行)本文中所揭示之任一種方法的至少一個控制器。至少一個控制器可實施本文中所揭示之任一種方法。在一些實施例中,(例如,方法之)至少兩個操作由同一控制器指導/執行。在一些實施例中,至少兩個操作由不同控制器指導/執行。In another aspect, an apparatus includes at least one controller configured (eg, programmed) to implement (eg, perform) any of the methods disclosed herein. At least one controller can implement any of the methods disclosed herein. In some embodiments, at least two operations (eg, of the method) are directed/performed by the same controller. In some embodiments, at least two operations are directed/performed by different controllers.

在一些實施例中,至少一個控制器中之一個控制器經組態以執行兩個或更多個操作。在一些實施例中,至少一個控制器中之兩個不同控制器經組態以各自執行不同操作。In some embodiments, one of the at least one controllers is configured to perform two or more operations. In some embodiments, two different ones of the at least one controller are configured to each perform different operations.

在另一態樣中,一種系統包含至少一個控制器,該至少一個控制器經程式化以指導至少一個另一設備(或其組件)及該設備(或其組件)之操作,其中該至少一個控制器操作性地耦接至設備(或其組件)。該設備(或其組件)可包括本文中所揭示之任何設備(或其組件)。至少一個控制器可經組態以指導本文中所揭示之任何設備(或其組件)。至少一個控制器可經組態以操作性地耦接至本文中所揭示之任何設備(或其組件)。在一些實施例中,(例如,設備之)至少兩個操作由同一控制器指導。在一些實施例中,至少兩個操作由不同控制器指導。In another aspect, a system includes at least one controller programmed to direct operation of at least one other device (or component thereof) and the device (or component thereof), wherein the at least one The controller is operatively coupled to the device (or components thereof). The apparatus (or components thereof) may include any apparatus (or components thereof) disclosed herein. At least one controller can be configured to direct any of the devices (or components thereof) disclosed herein. At least one controller can be configured to be operatively coupled to any of the devices (or components thereof) disclosed herein. In some embodiments, at least two operations (eg, of a device) are directed by the same controller. In some embodiments, at least two operations are directed by different controllers.

在另一態樣中,一種儲存有程式指令之電腦軟體產品(例如,記錄於一個或多個非暫時性媒體上),該等指令在由至少一個處理器(例如,電腦)讀取時使至少一個處理器指導本文中所揭示之機構實施(例如,實行)本文中所揭示之任一種方法,其中至少一個處理器經組態以操作性地耦接至該機構。該機構可包含本文中所揭示之任何設備(其任何組件)。在一些實施例中,(例如,設備之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, a computer software product storing program instructions (eg, recorded on one or more non-transitory media) that, when read by at least one processor (eg, a computer), cause the At least one processor directs a mechanism disclosed herein to implement (eg, perform) any of the methods disclosed herein, wherein the at least one processor is configured to be operatively coupled to the mechanism. The mechanism may include any device disclosed herein (any component thereof). In some embodiments, at least two operations (eg, of a device) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.

在另一態樣中,本揭示案提供一種包含機器可執行程式碼之非暫時性電腦可讀程式指令(包括於包含一個或多個非暫時性媒體之程式產品中),該機器可執行程式碼在由一個或多個處理器執行時實施本文中所揭示之任一種方法。在一些實施例中,(例如,方法之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, the present disclosure provides non-transitory computer-readable program instructions comprising machine-executable code (included in a program product comprising one or more non-transitory media), the machine-executable program The code, when executed by one or more processors, implements any of the methods disclosed herein. In some embodiments, at least two operations (eg, of a method) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.

在另一態樣中,本揭示案提供包含機器可執行程式碼之一個或多個非暫時性電腦可讀媒體,該機器可執行程式碼在由一個或多個處理器執行時實行對控制器(例如,如本文中所揭示)之指導。在一些實施例中,(例如,控制器之)至少兩個操作由同一處理器指導/執行。在一些實施例中,至少兩個操作由不同處理器指導/執行。In another aspect, the present disclosure provides one or more non-transitory computer-readable media comprising machine-executable code that, when executed by one or more processors, executes control of a controller (eg, as disclosed herein). In some embodiments, at least two operations (eg, of a controller) are directed/performed by the same processor. In some embodiments, at least two operations are directed/performed by different processors.

在另一態樣中,本揭示案提供一種電腦系統,其包含一個或多個電腦處理器及耦接至其的一個或多個非暫時性電腦可讀媒體該非暫時性電腦可讀媒體包含機器可執行程式碼,該機器可執行程式碼在由一個或多個處理器執行時實施本文中所揭示之任一種方法及/或實行對本文中所揭示之一個或多個控制器的指導。In another aspect, the present disclosure provides a computer system comprising one or more computer processors and one or more non-transitory computer-readable media coupled thereto, the non-transitory computer-readable media comprising a machine Executable code that, when executed by one or more processors, implements any of the methods disclosed herein and/or executes instructions for one or more controllers disclosed herein.

在另一態樣中,本揭示案提供一種非暫時性電腦可讀程式指令,該等非暫時性電腦可讀程式指令在由一個或多個處理器讀取時使該一個或多個處理器執行本文中所揭示之方法的任何操作、由本文中所揭示之設備執行(或經組態以執行)的任何操作及/或由本文中所揭示之設備指導(或經組態以指導)的任何操作。In another aspect, the present disclosure provides non-transitory computer-readable program instructions that, when read by one or more processors, cause the one or more processors to performing any operation of the methods disclosed herein, performed (or configured to perform) by the apparatus disclosed herein, and/or directed (or configured to direct) by the apparatus disclosed herein any operation.

在一些實施例中,該等程式指令係記錄於一個或多個非暫時性電腦可讀媒體中。在一些實施例中,操作中之至少兩者由一個或多個處理器中之一者執行。在一些實施例中,操作中之至少兩者各自由一個或多個處理器中之不同處理器執行。In some embodiments, the program instructions are recorded on one or more non-transitory computer-readable media. In some embodiments, at least two of the operations are performed by one of the one or more processors. In some embodiments, at least two of the operations are each performed by a different one of the one or more processors.

此發明內容章節之內容係作為本揭示案之簡化介紹而提供,且並不意欲用以限制本文中所揭示之任何發明的範圍或隨附申請專利範圍之範圍。The contents of this Summary section are provided as a simplified introduction to the present disclosure and are not intended to limit the scope of any invention disclosed herein or the scope of the appended claims.

根據以下實施方式,本揭示案之額外態樣及優點對於本領域中熟習此項技術者將變得顯而易見,其中僅展示及描述本揭示案之說明性實施例。應認識到,本揭示案能夠具有其他及不同實施例,且其若干細節能夠在各種顯而易見的方面進行修改,該等修改皆不背離本揭示案。因此,圖式及描述在本質上應視為說明性而非限制性的。Additional aspects and advantages of the present disclosure will become apparent to those skilled in the art from the following description, in which only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modification in various obvious respects, all without departing from the present disclosure. Accordingly, the drawings and descriptions are to be regarded as illustrative and not restrictive in nature.

將參看圖式更詳細地描述此等及其他特徵以及實施例。 以引用之方式併入 本說明書中所提及之所有公開案、專利及專利申請案均以引用的方式併入本文中,其引用的程度如同每一個別公開案、專利或專利申請案經特定且個別地指示以引用的方式併入一般。 These and other features and embodiments will be described in more detail with reference to the drawings. incorporated by reference All publications, patents and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be by reference way incorporated into the general.

雖然本發明之各種實施例已展示且描述於本文中,但本領域中熟習此項技術者將顯而易知,此等實施例僅作為實例而提供。本領域中熟習此項技術者可在不脫離本發明之情況下想到眾多變化、改變及取代。應理解,可使用本文中所描述之本發明實施例的各種替代例。While various embodiments of the invention have been shown and described herein, it will be apparent to those skilled in the art that these embodiments are provided by way of example only. Numerous changes, changes, and substitutions can occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be used.

諸如「一(a/an)」及「該(the)」之術語並不意欲僅指單數實體,而是包括可用於說明之特定實例的一般類別。本文中之術語用以描述本發明之特定實施例,但其使用並不限定本發明。Terms such as "a/an" and "the" are not intended to refer to only the singular entity, but rather include the general class of particular instances that can be used for description. The terminology herein is used to describe specific embodiments of the invention, but their use does not delimit the invention.

除非另外指定,否則當提及範圍時,範圍意欲為包括性的。舉例而言,介於值1與值2之間的範圍意欲為包括性的且包括值1及值2。包括性範圍將橫跨自約值1至約值2之任何值。如本文中所使用的術語「鄰近」或「鄰近於」包括「緊鄰」、「鄰接」、「接觸」及「接近」。Unless otherwise specified, when referring to a range, the range is intended to be inclusive. For example, a range between value 1 and value 2 is intended to be inclusive and includes both value 1 and value 2. An inclusive range will span any value from about 1 to about 2. The terms "adjacent" or "adjacent to" as used herein include "proximate," "adjacent," "contacting," and "proximity."

如本文中所使用,包括於申請專利範圍中,諸如「包括X、Y及/或Z」之片語中的連接詞「及/或」係指包括X、Y及Z之任何組合或其中的複數者。舉例而言,此片語意欲包括X。舉例而言,此片語意欲包括Y。舉例而言,此片語意欲包括Z。舉例而言,此片語意欲包括X及Y。舉例而言,此片語意欲包括X及Z。舉例而言,此片語意欲包括Y及Z。舉例而言,此片語意欲包括複數個X。舉例而言,此片語意欲包括複數個Y。舉例而言,此片語意欲包括複數個Z。舉例而言,此片語意欲包括複數個X及複數個Y。舉例而言,此片語意欲包括複數個X及複數個Z。舉例而言,此片語意欲包括複數個Y及複數個Z。舉例而言,此片語意欲包括複數個X及Y。舉例而言,此片語意欲包括複數個X及Z。舉例而言,此片語意欲包括複數個Y及Z。舉例而言,此片語意欲包括X及複數個Y。舉例而言,此片語意欲包括X及複數個Z。舉例而言,此片語意欲包括Y及複數個Z。連接詞「及/或」意欲具有與片語「X、Y、Z或其任何組合或其中的複數者」相同的效應。連接詞「及/或」意欲具有與片語「一個或多個X、Y、Z或其任何組合」相同的效應。As used herein, including within the scope of the claims, the conjunction "and/or" in a phrase such as "including X, Y, and/or Z" is meant to include any combination or combination of X, Y, and Z. plural. For example, this phrase is intended to include X. For example, this phrase is intended to include Y. For example, this phrase is intended to include Z. For example, this phrase is intended to include X and Y. For example, this phrase is intended to include X and Z. For example, this phrase is intended to include Y and Z. For example, this phrase is intended to include multiple X's. For example, this phrase is intended to include plural Ys. For example, this phrase is intended to include multiple Z's. For example, this phrase is intended to include plural X and plural Y. For example, this phrase is intended to include plural X and plural Z. For example, this phrase is intended to include Y's and Z's. For example, this phrase is intended to include a plurality of X and Y. For example, this phrase is intended to include a plurality of X and Z. For example, this phrase is intended to include a plurality of Y and Z. For example, this phrase is intended to include X and Y's. For example, this phrase is intended to include X and Z. For example, this phrase is intended to include Y and a plurality of Z. The conjunction "and/or" is intended to have the same effect as the phrase "X, Y, Z, or any combination or plural thereof." The conjunction "and/or" is intended to have the same effect as the phrase "one or more of X, Y, Z, or any combination thereof."

術語「操作性地耦接」或「操作性地連接」係指第一元件(例如,機構)耦接(例如,連接)至第二元件,以允許第二及/或第一元件之預期操作。耦接可包含實體或非實體耦接(例如,通信耦接)。非實體耦接可包含信號誘發耦接(例如,無線耦接)。耦接可包括實體耦接(例如,實體連接)或非實體耦接(例如,經由無線通信)。操作性地耦接可包含通信耦接。The terms "operatively coupled" or "operatively connected" refer to the coupling (eg, connection) of a first element (eg, mechanism) to a second element to allow intended operation of the second and/or first element . Coupling may include physical or non-physical coupling (eg, communicative coupling). Non-physical coupling may include signal-induced coupling (eg, wireless coupling). Coupling may include physical coupling (eg, a physical connection) or non-physical coupling (eg, via wireless communication). Operationally coupled may include communicative coupling.

「經組態以」執行功能的元件(例如,機構)包括使元件執行此功能的結構特徵。結構特徵可包括電特徵,諸如電路系統或電路元件。結構特徵可包括致動器。結構特徵可包括電路系統(例如,包含電或光學電路系統)。電路系統可包含一根或多根電線。光學電路系統可包含至少一個光學元件(例如,光束分光器、鏡面、透鏡及/或光纖)。結構特徵可包括機械特徵。機械特徵可包含閂鎖、彈簧、閉合件、鉸鏈、底盤、支撐件、緊固件或懸臂等。執行功能可包含利用邏輯特徵。邏輯特徵可包括程式化指令。程式化指令可由至少一個處理器執行。程式化指令可儲存或編碼於可由一個或多個處理器存取之媒體上。另外,在以下描述中,片語「可操作以」、「經調適以」、「經組態以」、「經設計以」、「經程式化以」或「能夠」可在適當時互換地使用。An element (eg, mechanism) that is "configured to" perform a function includes structural features that cause the element to perform that function. Structural features may include electrical features, such as circuitry or circuit elements. Structural features may include actuators. Structural features may include circuitry (eg, including electrical or optical circuitry). A circuit system may contain one or more wires. Optical circuitry may include at least one optical element (eg, a beam splitter, mirror, lens, and/or optical fiber). Structural features may include mechanical features. Mechanical features may include latches, springs, closures, hinges, chassis, supports, fasteners or cantilevers, and the like. Performing functions may include utilizing logical features. Logical features may include programmed instructions. The programmed instructions are executable by at least one processor. Programming instructions can be stored or encoded on a medium that can be accessed by one or more processors. Additionally, in the following description, the phrases "operable with," "adapted with," "configured with," "designed with," "programmed with," or "capable of" may be used interchangeably as appropriate use.

在一些實施例中,封閉體包含由至少一個結構界定的區域。至少一個結構可包含至少一個壁。封閉體可包含及/或封閉一個或多個子封閉體。至少一個壁可包含金屬(例如,鋼)、黏土、石頭、塑膠、玻璃、灰泥(例如,石膏)、聚合物(例如,聚胺基甲酸酯、苯乙烯或乙烯基)、石棉、纖維玻璃、混凝土(例如,鋼筋混凝土)、木材、紙張或陶瓷。至少一個壁可包含電線、磚、塊(例如,煤渣塊)、瓷磚、乾壁或框架(例如,鋼架)。In some embodiments, the enclosure includes an area bounded by at least one structure. At least one structure may comprise at least one wall. An enclosure may contain and/or enclose one or more sub-closures. At least one wall may comprise metal (eg, steel), clay, stone, plastic, glass, plaster (eg, gypsum), polymer (eg, polyurethane, styrene, or vinyl), asbestos, fibers Glass, concrete (eg reinforced concrete), wood, paper or ceramic. At least one wall may contain wires, bricks, blocks (eg, cinder blocks), tiles, drywall, or framing (eg, steel frames).

在一些實施例中,封閉體包含一個或多個開口。一個或多個開口可為可逆地封閉的。一個或多個開口可永久開放。一個或多個開口之基本長度尺度相對於界定封閉體之壁的基本長度尺度可較小。基本長度尺度可包含定界圓之直徑、長度、寬度或高度。一個或多個開口之表面相對於界定封閉體之壁的表面可較小。開口表面可為壁之總表面的百分比。舉例而言,開口表面可量測壁之至多約30%、20%、10%、5%或1%。壁可包含地板、天花板或側壁。可封閉開口可藉由至少一個窗或門封閉。封閉體可為設施之至少一部分。設施可包含建築物。封閉體可包含建築物之至少一部分。建築物可為私人建築物及/或商業建築物。建築物可包含一個或多個樓層。建築物(例如,其樓層)可包括以下各者中之至少一者:房間、大廳、門廳、閣樓、地下室、陽台(例如,內陽台或外陽台)、樓梯井、走廊、電梯井、立面、夾層、頂樓、車庫、門廊(例如,封閉門廊)、露台(例如,封閉露台)、自助餐廳及/或管道。在一些實施例中,封閉體可為靜止的及/或可移動的(例如,火車、飛機、輪船、載具或火箭)。In some embodiments, the closure includes one or more openings. One or more of the openings may be reversibly closed. One or more openings may be permanently open. The basic length dimension of the one or more openings may be relatively small relative to the basic length dimension of the walls defining the closure. The basic length dimension may include the diameter, length, width or height of the bounding circle. The surface of the one or more openings may be relatively small relative to the surface of the walls defining the enclosure. The open surface may be a percentage of the total surface of the wall. For example, the open surface may measure up to about 30%, 20%, 10%, 5%, or 1% of the wall. Walls can include floors, ceilings, or side walls. The closable opening may be closed by at least one window or door. The enclosure may be at least a portion of the facility. Facilities may contain buildings. The enclosure may contain at least a portion of the building. The buildings can be private buildings and/or commercial buildings. A building can contain one or more floors. A building (eg, its floors) may include at least one of: rooms, halls, foyers, attics, basements, balconies (eg, interior or exterior balconies), stairwells, hallways, elevator shafts, facades , mezzanine, attic, garage, porch (eg, enclosed porch), patio (eg, enclosed patio), cafeteria, and/or plumbing. In some embodiments, the enclosure may be stationary and/or movable (eg, a train, plane, ship, vehicle, or rocket).

在一些實施例中,封閉體封閉大氣。大氣可包含一種或多種氣體。氣體可包括惰性氣體(例如,包含氬氣或氮氣)及/或非惰性氣體(例如,包含氧氣或二氧化碳)。封閉體大氣可在至少一個外部大氣特性上類似於封閉體外部之大氣(例如,周圍環境大氣),該至少一個外部大氣特性包括溫度、相對氣體含量、氣體類型(例如,濕度及/或氧含量)、傳播劑(例如,污染物、揮發性有機化合物、灰塵及/或花粉)及/或氣體速度。封閉體大氣可在至少一個外部大氣特性上不同於封閉體外部之大氣,該至少一個外部大氣特性包括溫度、相對氣體含量、氣體類型(例如,濕度及/或氧含量)、傳播劑(例如,灰塵及/或花粉)及/或氣體速度。舉例而言,封閉體大氣相比於外部(例如,周圍環境)大氣可能較不潮濕(例如,較乾燥)。舉例而言,封閉體大氣與封閉體外部之大氣可含有相同(例如,或實質上類似)的氧氣與氮氣的比率。封閉體中氣體之速度貫穿封閉體可(例如,實質上)類似。封閉體中氣體之速度在封閉體之不同部分中可不同(例如,藉由使氣體流動通過與封閉體耦接之通風口)。In some embodiments, the enclosure encloses the atmosphere. The atmosphere may contain one or more gases. Gases may include inert gases (eg, including argon or nitrogen) and/or non-inert gases (eg, including oxygen or carbon dioxide). The enclosure atmosphere can be similar to the atmosphere outside the enclosure (eg, the ambient atmosphere) in at least one external atmospheric characteristic including temperature, relative gas content, gas type (eg, humidity and/or oxygen content) ), propagating agents (eg, pollutants, volatile organic compounds, dust and/or pollen), and/or gas velocity. The enclosure atmosphere may differ from the atmosphere outside the enclosure in at least one external atmospheric characteristic including temperature, relative gas content, gas type (eg, humidity and/or oxygen content), propagating agent (eg, dust and/or pollen) and/or gas velocity. For example, the enclosure atmosphere may be less humid (eg, drier) than the outer (eg, ambient) atmosphere. For example, the enclosure atmosphere and the atmosphere outside the enclosure may contain the same (eg, or substantially similar) ratio of oxygen to nitrogen. The velocity of the gas in the enclosure may be (eg, substantially) similar throughout the enclosure. The velocity of the gas in the enclosure can be different in different parts of the enclosure (eg, by flowing the gas through a vent coupled to the enclosure).

某些所揭示實施例在封閉體(例如,諸如建築物之設施)中提供網路基礎架構。網路基礎架構可用於各種目的,諸如用於提供通信及/或電力服務。通信服務可包含高頻寬(例如,無線及/或有線)通信服務。通信服務可面向設施之佔用者及/或設施(例如,建築物)外部之使用者。網路基礎架構可與一個或多個蜂巢運營商之基礎架構協同工作或作為其部分替換。網路基礎架構可設置於包括電可切換窗之設施中。網路基礎架構之組件的實例包括高速回程。網路基礎架構可包括至少一個纜線、交換器、實體天線、收發器、感測器、傳輸器、接收器、無線電、處理器及/或控制器(其可包含處理器)。網路基礎架構可操作性地耦接至及/或包括無線網路。網路基礎架構可包含佈線。作為裝設網路之部分及/或在裝設網路之後,可將一個或多個感測器部署(例如,裝設)於環境中。網路可為區域網路。網路可包含經組態以在單根纜線中傳輸電力及通信之纜線。通信可為一種或多種類型之通信。通信可包含遵守至少第二代(2G)、第三代(3G)、第四代(4G)或第五代(5G)蜂巢式通信協定之蜂巢式通信。通信可包含促進靜止圖像、音樂或動畫串流(例如,電影或視訊)之媒體通信。通信可包含資料通信(例如,感測器資料)。通信可包含控制通信,例如以控制操作性地耦接至網路之一個或多個節點。網路可包含裝設於設施中之第一(例如,佈纜)網路。網路可包含裝設於設施之圍護結構中(例如,設施之封閉體的圍護結構中。舉例而言,包括於設施中之建築物的圍護結構中)的(例如,佈纜)網路。Certain disclosed embodiments provide network infrastructure in an enclosure (eg, a facility such as a building). The network infrastructure may be used for various purposes, such as for providing communication and/or power services. Communication services may include high bandwidth (eg, wireless and/or wireline) communication services. Communication services may be directed to occupants of the facility and/or users external to the facility (eg, a building). The network infrastructure may work in conjunction with or replace part of the infrastructure of one or more cellular operators. The network infrastructure may be provided in a facility that includes electrically switchable windows. Examples of components of a network infrastructure include high-speed backhaul. The network infrastructure may include at least one cable, switch, physical antenna, transceiver, sensor, transmitter, receiver, radio, processor and/or controller (which may include a processor). The network infrastructure is operably coupled to and/or includes a wireless network. Network infrastructure can include cabling. One or more sensors may be deployed (eg, installed) in the environment as part of and/or after installing the network. The network may be a local area network. A network may include cables configured to transmit power and communications in a single cable. The communication can be one or more types of communication. The communication may include cellular communication complying with at least second generation (2G), third generation (3G), fourth generation (4G) or fifth generation (5G) cellular communication protocols. Communications may include media communications that facilitate streaming of still images, music, or animation (eg, movies or video). Communication may include data communication (eg, sensor data). Communication may include control communication, eg, to control one or more nodes operatively coupled to a network. The network may include the first (eg, cabling) network installed in the facility. The network may include (eg, cabling) installed in the envelope of the facility (eg, in the envelope of the enclosure of the facility. For example, included in the envelope of the building in the facility) network.

在各種實施例中,網路基礎架構支援用於諸如可著色(例如,電致變色)窗之一個或多個窗的控制系統。控制系統可包含操作性地耦接(例如,直接地或間接地)至一個或多個窗之一個或多個控制器。雖然所揭示實施例描述可著色窗(在本文中亦被稱作「光學可切換窗」或「智慧型窗」),諸如電致變色窗,但本文中所揭示之概念可應用於其他類型之可切換光學裝置,包含液晶裝置、電致變色裝置、懸浮顆粒裝置(SPD)、NanoChromics顯示器(NCD)、有機電致發光顯示器(OELD)、懸浮顆粒裝置(SPD)、NanoChromics顯示器(NCD)或有機電致發光顯示器(OELD)。顯示元件可附接至透明本體(諸如,窗)之一部分。可著色窗可安置於諸如建築物之(非暫時性)設施中,及/或安置於諸如汽車、RV、公共汽車、火車、飛機、直升機、輪船或船之暫時性設施(例如,載具)中。可著色窗可安置於諸如建築物之(非暫時性)設施中,及/或諸如汽車、RV、公共汽車、火車、飛機、直升機、輪船或船之暫時性載具中。In various embodiments, the network infrastructure supports a control system for one or more windows, such as tintable (eg, electrochromic) windows. The control system may include one or more controllers operatively coupled (eg, directly or indirectly) to the one or more windows. Although the disclosed embodiments describe tintable windows (also referred to herein as "optically switchable windows" or "smart windows"), such as electrochromic windows, the concepts disclosed herein may be applied to other types of Switchable optical devices, including liquid crystal devices, electrochromic devices, suspended particle devices (SPD), NanoChromics displays (NCD), organic electroluminescent displays (OELD), suspended particle devices (SPD), NanoChromics displays (NCD) or have Electroluminescent Displays (OELDs). The display element may be attached to a portion of the transparent body, such as a window. Tintable windows can be placed in (non-transitory) installations such as buildings, and/or in temporary installations such as automobiles, RVs, buses, trains, airplanes, helicopters, ships, or boats (eg, vehicles) middle. Tintable windows may be placed in (non-transitory) installations such as buildings, and/or in temporary vehicles such as automobiles, RVs, buses, trains, airplanes, helicopters, ships, or boats.

在一些實施例中,可著色窗展現窗之至少一個光學屬性的(例如,可控制及/或可逆)改變,例如在施加刺激時。改變可為連續改變。改變可針對離散的色調位準(例如,至少約2、4、8、16或32個色調位準)。光學屬性可包含色相或透射率。色相可包含色彩。透射率可具有一個或多個波長。波長可包含紫外線、可見光或紅外波長。刺激可包括光學、電及/或磁性刺激。舉例而言,刺激可包括施加電壓及/或電流。一個或多個可著色窗可用以例如藉由調節傳播通過其的太陽能之傳輸來控制照明及/或眩光條件。一個或多個可著色窗可用以例如藉由調節傳播通過窗的太陽能之傳輸來控制建築物內的溫度。太陽能之控制可控制強加於設施(例如,建築物)之內部上的熱負荷。控制可為手動及/或自動的。控制可用於維持一個或多個所請求(例如,環境)條件,例如佔用者舒適性。控制可包括減小加熱、通風、空氣調節及/或照明系統之能量消耗。加熱、通風及空氣調節中之至少兩者可藉由個別系統誘發。加熱、通風及空氣調節中之至少兩者可藉由一個系統誘發。加熱、通風及空氣調節可藉由單個系統(本文中縮寫為「HVAC」)誘發。在一些狀況下,可著色窗可回應於(例如,且通信耦接至)一個或多個環境感測器及/或使用者控制件。可著色窗可包含(例如,可為)電致變色窗。窗可位於自結構(例如,設施,例如建築物)之內部至外部的範圍中。然而,情況不必如此。可著色窗可使用液晶裝置、懸浮顆粒裝置、微機電系統(MEMS)裝置(諸如,微快門)或現已知或稍後開發之經組態以控制通過窗之光透射的任何技術來操作。窗(例如,具有用於著色之MEMS裝置)描述於2015年5月15日申請之在2019年7月23日發佈之題為「包括電致變色裝置及機電系統裝置之多窗格式窗(MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES)」的美國專利第10,359,681號中,且該專利以全文引用的方式併入本文中。在一些狀況下,一個或多個可著色窗可位於建築物之內部,例如位於會議室與走廊之間。在一些狀況下,一個或多個可著色窗可用於汽車、火車、飛機及其他載具中,例如代替被動及/或非著色窗。In some embodiments, a tintable window exhibits a (eg, controllable and/or reversible) change in at least one optical property of the window, eg, upon application of a stimulus. The changes may be continuous changes. The changes may be for discrete hue levels (eg, at least about 2, 4, 8, 16, or 32 hue levels). Optical properties can include hue or transmittance. Hue can contain color. Transmittance can have one or more wavelengths. The wavelengths may include ultraviolet, visible or infrared wavelengths. Stimulation may include optical, electrical and/or magnetic stimulation. For example, stimulation can include applying voltage and/or current. One or more tintable windows may be used to control lighting and/or glare conditions, eg, by adjusting the transmission of solar energy propagating therethrough. One or more tintable windows can be used to control the temperature within a building, for example, by regulating the transmission of solar energy propagating through the windows. Control of solar energy can control the thermal load imposed on the interior of a facility (eg, a building). Control can be manual and/or automatic. Controls may be used to maintain one or more requested (eg, environmental) conditions, such as occupant comfort. Controls may include reducing energy consumption of heating, ventilation, air conditioning and/or lighting systems. At least two of heating, ventilation and air conditioning can be induced by individual systems. At least two of heating, ventilation and air conditioning can be induced by a system. Heating, ventilation and air conditioning can be induced by a single system (abbreviated herein as "HVAC"). In some cases, the tintable window may be responsive to (eg, and communicatively coupled to) one or more environmental sensors and/or user controls. Tintable windows can include (eg, can be) electrochromic windows. Windows may be located in a range from the interior to the exterior of a structure (eg, a facility such as a building). However, this need not be the case. Tintable windows can be operated using liquid crystal devices, suspended particle devices, microelectromechanical systems (MEMS) devices (such as micro-shutters), or any technology now known or later developed that is configured to control the transmission of light through a window. Windows (eg, with MEMS devices for coloring) are described in "Multi-Window Format Windows Including Electrochromic Devices and Electromechanical Systems Devices (MULTI -PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES)" in US Patent No. 10,359,681, which is incorporated herein by reference in its entirety. In some cases, one or more tintable windows may be located inside the building, such as between a conference room and a hallway. In some cases, one or more tinted windows may be used in automobiles, trains, airplanes, and other vehicles, eg, in place of passive and/or non-tinted windows.

在一些實施例中,可著色窗包含電致變色裝置(在本文中被稱作「EC裝置」(本文中縮寫為ECD)或「EC」)。EC裝置可包含包括至少一個層之至少一個塗層。至少一個層可包含電致變色材料。在一些實施例中,電致變色材料展現自一個光學狀態至另一光學狀態之改變,例如當跨越EC裝置施加電位時。電致變色層自一個光學狀態至另一光學狀態之轉變可例如由至電致變色材料中之可逆、半可逆或不可逆離子插入(例如,藉助於嵌入)及電荷平衡電子之對應注入引起。舉例而言,電致變色層自一個光學狀態至另一光學狀態之轉變可例如由至電致變色材料中之可逆離子插入(例如,藉助於嵌入)及電荷平衡電子之對應注入引起。可逆可針對ECD之預期壽命。半可逆指窗之色調之可逆性在一個或多個著色循環內之可量測(例如,明顯)劣化。在一些情況下,負責光學轉變之離子的一部分不可逆地結合於電致變色材料中(例如,且因此窗之誘發(更改)的色調狀態對於其原始著色狀態不可逆)。在各種EC裝置中,不可逆地結合之離子中之至少一些(例如,全部)可用於補償材料(例如,ECD)中之「盲電荷」。In some embodiments, the tintable window comprises an electrochromic device (referred to herein as an "EC device" (abbreviated herein as ECD) or "EC"). The EC device may comprise at least one coating comprising at least one layer. At least one layer may contain an electrochromic material. In some embodiments, the electrochromic material exhibits a change from one optical state to another, such as when a potential is applied across the EC device. The transition of an electrochromic layer from one optical state to another can be caused, for example, by reversible, semi-reversible or irreversible ion insertion into the electrochromic material (eg, by means of intercalation) and corresponding injection of charge balancing electrons. For example, the transition of an electrochromic layer from one optical state to another can be caused, for example, by reversible ion insertion into the electrochromic material (eg, by means of intercalation) and corresponding injection of charge balancing electrons. Reversible can target the life expectancy of the ECD. A semi-reversible refers to a measurable (eg, significant) degradation in the reversibility of the hue of the window over one or more tinting cycles. In some cases, a portion of the ions responsible for the optical transition is irreversibly incorporated into the electrochromic material (eg, and thus the induced (altered) hue state of the window is irreversible to its original colored state). In various EC devices, at least some (eg, all) of the irreversibly bound ions can be used to compensate for "blind charges" in the material (eg, ECD).

在一些實施方案中,合適的離子包括陽離子。陽離子可包括鋰離子(Li+)及/或氫離子(H+)(亦即,質子)。在一些實施方案中,其他離子可為合適的。陽離子可嵌入至(例如,金屬)氧化物中。離子(例如,陽離子)至氧化物中之嵌入狀態之改變可誘發氧化物之色調(例如,色彩)之可見改變。舉例而言,氧化物可自無色狀態轉變至有色狀態。舉例而言,鋰離子至氧化鎢中之嵌入(WO3-y(0 < y ≤約0.3))可使得氧化鎢自透明狀態改變至有色(例如,藍色)狀態。如本文中所描述之EC裝置塗層位於可著色窗之可檢視部分內,使得EC裝置塗層之著色可用以控制可著色窗之光學狀態。In some embodiments, suitable ions include cations. Cations can include lithium ions (Li+) and/or hydrogen ions (H+) (ie, protons). In some embodiments, other ions may be suitable. Cations can be intercalated into (eg, metal) oxides. Changes in the intercalation state of ions (eg, cations) into the oxide can induce visible changes in the hue (eg, color) of the oxide. For example, oxides can transition from a colorless state to a colored state. For example, intercalation of lithium ions into tungsten oxide (WO3-y (0 < y <about 0.3)) can cause tungsten oxide to change from a transparent state to a colored (eg, blue) state. The EC device coating as described herein is located within the viewable portion of the tintable window so that the tint of the EC device coating can be used to control the optical state of the tintable window.

圖1展示電腦系統100之示意性實例,該電腦系統經程式化或以其他方式經組態以執行本文中所提供之任一種方法的一個或多個操作。電腦系統可控制(例如,指導、監測及/或調節)本揭示案之方法、設備及系統的各種特徵,諸如控制封閉體之加熱、冷卻、照明及/或通風,或其任何組合。電腦系統可為本文中所揭示之任何感測器或裝置集的部分或與本文中所揭示之任何感測器或裝置集通信。電腦可耦接至本文中所揭示之一個或多個機構及/或其任何部分。舉例而言,電腦可耦接至一個或多個感測器、閥、開關、燈、窗(例如,IGU)、馬達、泵、光學組件或其任何組合。1 shows a schematic example of a computer system 100 programmed or otherwise configured to perform one or more operations of any of the methods provided herein. The computer system may control (eg, direct, monitor, and/or adjust) various features of the methods, apparatus, and systems of the present disclosure, such as controlling heating, cooling, lighting, and/or ventilation of the enclosure, or any combination thereof. The computer system may be part of or in communication with any set of sensors or devices disclosed herein. A computer may be coupled to one or more of the mechanisms disclosed herein and/or any portion thereof. For example, a computer may be coupled to one or more sensors, valves, switches, lights, windows (eg, IGUs), motors, pumps, optical components, or any combination thereof.

電腦系統可包括處理單元(例如,106)(本文中亦使用「處理器」、「電腦」及「電腦處理器」)。電腦系統可包括記憶體或記憶體位置(例如,102)(例如,隨機存取記憶體、唯讀記憶體、快閃記憶體)、電子儲存單元(例如,104) (例如,硬碟)、用於與一個或多個其他系統通信之通信介面(例如,103)(例如,網路配接器),及周邊裝置(例如,105),諸如快取記憶體、其他記憶體、資料儲存器及/或電子顯示配接器。在圖1中所展示之實例中,記憶體102、儲存單元104、介面103及周邊裝置105經由諸如主機板之通信匯流排(實線)與處理單元106通信。儲存單元可為用於儲存資料之資料儲存單元(或資料儲存庫)。電腦系統可藉助於通信介面操作性地耦接至電腦網路(「網路」)(例如,101)。網路可為網際網路(Internet)、網際網路(internet)及/或企業間網路,或與網際網路通信之企業內部網路及/或企業間網路。在一些狀況下,該網路為電信及/或資料網路。網路可包括一個或多個電腦伺服器,該一個或多個電腦伺服器可使得能夠進行分佈式計算,諸如雲端計算。在一些狀況下,網路可藉助於電腦系統實施對等網路,其可使得耦接至電腦系統之裝置能夠充當用戶端或伺服器。A computer system may include a processing unit (eg, 106) ("processor", "computer" and "computer processor" are also used herein). A computer system may include memory or memory locations (eg, 102) (eg, random access memory, read-only memory, flash memory), electronic storage units (eg, 104) (eg, hard disks), Communication interfaces (eg, 103) (eg, network adapters) for communicating with one or more other systems, and peripheral devices (eg, 105), such as cache, other memory, data storage and/or electronic display adapter. In the example shown in FIG. 1, memory 102, storage unit 104, interface 103, and peripheral devices 105 communicate with processing unit 106 via a communication bus (solid line) such as a motherboard. The storage unit may be a data storage unit (or data repository) for storing data. The computer system may be operatively coupled to a computer network ("network") (eg, 101) by means of a communication interface. The network can be the Internet, the internet and/or an inter-enterprise network, or an intra-corporate and/or inter-enterprise network that communicates with the Internet. In some cases, the network is a telecommunications and/or data network. A network may include one or more computer servers that may enable distributed computing, such as cloud computing. In some cases, a network may implement a peer-to-peer network with the aid of a computer system, which may enable devices coupled to the computer system to act as clients or servers.

處理單元可執行可以程式或軟體體現之機器可讀取指令序列。指令可儲存於諸如記憶體102之記憶體部位中。可將該等指令引導至處理單元,該處理單元可隨後程式化或以其他方式組態處理單元,以實施本揭示案之方法。由處理單元執行之操作的實例可包括提取、解碼、執行及寫回。處理單元可解譯及/或執行指令。處理器可包括微處理器、資料處理器、中央處理單元(CPU)、圖形處理單元(GPU)、系統單晶片(SOC)、共處理器、網路處理器、特殊應用積體電路(ASIC)、特殊應用指令集處理器(ASIP)、控制器、可程式化邏輯裝置(PLD)、晶片組、場可程式化閘陣列(FPGA)或其任何組合。處理單元可為諸如積體電路之電路的部分。系統100之一個或多個其他組件可包括於電路中。The processing unit can execute a sequence of machine-readable instructions that can be embodied in a program or software. Instructions may be stored in a memory location such as memory 102 . The instructions may be directed to a processing unit, which may then be programmed or otherwise configured to implement the methods of the present disclosure. Examples of operations performed by a processing unit may include fetching, decoding, executing, and writing back. The processing unit may interpret and/or execute the instructions. Processors may include microprocessors, data processors, central processing units (CPUs), graphics processing units (GPUs), system-on-chips (SOCs), co-processors, network processors, application-specific integrated circuits (ASICs) , Application Specific Instruction Set Processor (ASIP), controller, Programmable Logic Device (PLD), Chipset, Field Programmable Gate Array (FPGA) or any combination thereof. The processing unit may be part of a circuit such as an integrated circuit. One or more other components of system 100 may be included in the circuit.

儲存單元可儲存檔案,諸如驅動程式、程式庫及保存的程式。儲存單元可儲存使用者資料(例如,使用者偏好及使用者程式)。在一些狀況下,電腦系統可包括一個或多個額外資料儲存單元,該一個或多個儲存單元在電腦系統外部,諸如位於經由企業內部網路或網際網路與電腦系統通信之遠端伺服器上。The storage unit can store files, such as drivers, libraries, and saved programs. The storage unit may store user data (eg, user preferences and user programs). In some cases, the computer system may include one or more additional data storage units external to the computer system, such as on remote servers that communicate with the computer system via an intranet or the Internet superior.

電腦系統可經由網路與一個或多個遠端電腦系統通信。舉例而言,電腦系統可與使用者(例如,操作者)之遠端電腦系統通信。遠端電腦系統之實例包括個人電腦(例如,攜帶型PC)、板式電腦或平板PC(例如,Apple® iPad、Samsung® Galaxy Tab)、電話、智慧型手機(例如,Apple® iPhone、具備Android功能之裝置、Blackberry®)或個人數位助理。使用者(例如,用戶端)可經由網路存取電腦系統。The computer system may communicate with one or more remote computer systems via a network. For example, a computer system may communicate with a remote computer system of a user (eg, an operator). Examples of remote computer systems include personal computers (eg, portable PCs), tablet or tablet PCs (eg, Apple® iPad, Samsung® Galaxy Tab), telephones, smart phones (eg, Apple® iPhone, Android-enabled device, Blackberry®) or personal digital assistant. A user (eg, a client) can access the computer system via a network.

如本文中所描述之方法可藉助於機器(例如,電腦處理器)可執行程式碼來實施,該可執行程式碼儲存於電腦系統之電子儲存部位上,諸如儲存於記憶體102或電子儲存單元104上。機器可執行或機器可讀取程式碼可以軟體形式來提供。在使用期間,處理器106可執行程式碼。在一些狀況下,可自儲存單元擷取程式碼且將其儲存於記憶體上以準備好供處理器存取。在一些情形中,可排除電子儲存單元,且將機器可執行指令儲存於記憶體上。The methods as described herein may be implemented by means of machine (eg, computer processor) executable code stored on an electronic storage location of a computer system, such as in memory 102 or an electronic storage unit 104 on. Machine-executable or machine-readable code may be provided in the form of software. During use, processor 106 can execute code. In some cases, the code may be retrieved from the storage unit and stored on memory ready for access by the processor. In some cases, the electronic storage unit may be eliminated, and the machine-executable instructions stored on memory.

程式碼可經預編譯且經組態以供具有經調適以執行程式碼之處理器的機器使用,或可在執行階段期間編譯。程式碼可用程式設計語言供應,該程式設計語言可經選擇以使得程式碼能夠以預編譯或編譯時(as-compiled)方式執行。The code may be precompiled and configured for use by a machine with a processor adapted to execute the code, or may be compiled during the execution phase. The code may be supplied in a programming language that may be selected to enable the code to be executed in a precompiled or as-compiled manner.

在一些實施例中,處理器包含程式碼。程式碼可為程式指令。程式指令可使至少一個處理器(例如,電腦)指導前饋及/或回饋控制迴路。在一些實施例中,程式指令使至少一個處理器指導封閉迴路及/或開放迴路控制方案。控制可至少部分地基於一個或多個感測器讀數(例如,感測器資料)。一個控制器可指導複數個操作。至少兩個操作可由不同控制器指導。在一些實施例中,一不同控制器可指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,多個不同控制器可指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,非暫時性電腦可讀媒體使每一不同電腦指導操作(a)、(b)及(c)中之至少兩者。在一些實施例中,不同的非暫時性電腦可讀媒體使每一不同電腦指導操作(a)、(b)及(c)中之至少兩者。控制器及/或電腦可讀媒體可指導本文中所揭示之設備或其組件中之任一者。控制器及/或電腦可讀媒體可指導本文中所揭示之方法的任何操作。In some embodiments, the processor includes program code. The code may be program instructions. Program instructions may cause at least one processor (eg, a computer) to direct the feedforward and/or feedback control loop. In some embodiments, the program instructions cause at least one processor to direct a closed loop and/or open loop control scheme. Control may be based, at least in part, on one or more sensor readings (eg, sensor data). One controller can direct multiple operations. At least two operations may be directed by different controllers. In some embodiments, a different controller may direct at least two of operations (a), (b), and (c). In some embodiments, a plurality of different controllers may direct at least two of operations (a), (b), and (c). In some embodiments, the non-transitory computer-readable medium causes each distinct computer to direct at least two of operations (a), (b), and (c). In some embodiments, different non-transitory computer-readable media cause each different computer to direct at least two of operations (a), (b), and (c). A controller and/or computer-readable medium may direct any of the apparatuses disclosed herein or components thereof. A controller and/or computer-readable medium may direct any operation of the methods disclosed herein.

在一些實施例中,至少一個感測器操作性地耦接至控制系統(例如,電腦控制系統)。感測器可包含光感測器、聲學感測器、振動感測器、化學感測器、電感測器、磁性感測器、流動性感測器、移動感測器、速度感測器、位置感測器、壓力感測器、力感測器、密度感測器、距離感測器或近接感測器。感測器可包括溫度感測器、重量感測器、材料(例如,粉末)含量感測器、度量衡感測器、氣體感測器或濕度感測器。度量衡感測器可包含量測感測器(例如,高度、長度、寬度、角度及/或體積)。度量衡感測器可包含磁性、加速度、定向或光學感測器。感測器可傳輸及/或接收聲音(例如,回音)、磁性、電子或電磁信號。該信號可包含無線電信號,其包含超寬頻無線電信號。該信號可包含可見光、紅外光或紫外光。紅外線感測器可偵測有生命的物件(例如,人)。該信號可包含音訊信號(例如,人類音訊信號)。電磁信號可包含可見光、紅外線、紫外線、超音波、無線電波或微波信號。氣體感測器可感測本文中所述之任一種氣體。距離感測器可為一種類型之度量衡感測器。距離感測器可包含光學感測器或電容感測器。溫度感測器可包含輻射熱計、雙金屬片、熱量計、排氣溫度計、火焰偵測、戈登(Gardon)計、戈萊盒(Golay cell)、熱通量感測器、紅外線溫度計、微輻射熱計、微波輻射計、淨輻射計、石英溫度計、電阻溫度偵測器、電阻溫度計、矽帶隙溫度感測器、特殊感測器微波/成像器、溫度計、熱敏電阻、熱電偶、溫度計(例如,電阻溫度計)或高溫計。溫度感測器可包含光學感測器。溫度感測器可包含影像處理。溫度感測器可包含攝影機(例如,IR攝影機、可見光攝影機、CCD攝像機)。攝影機可為高解析度攝影機(例如,解析度可為至少2千像素(K)、3K、4K或5K攝影機)。感測器可包含加速度計。感測器可感測人之部位及/或存在。感測器可感測及/或定位封閉體佔用者。壓力感測器可包含氣壓儀、氣壓計、增壓計、波爾登管式壓力計(Bourdon gauge)、熱燈絲電離計、電離計、麥克里德壓力計(McLeod gauge)、U形振盪管、永久井下壓力計、壓強計、皮拉尼壓力計(Pirani gauge)、壓力感測器、壓力計、觸覺感測器或時間壓力計。位置感測器可包含生長計、電容式位移感測器、電容感測、自由下落感測器、重力計、陀螺儀感測器、碰撞感測器、傾角計、積體電路壓電感測器、雷射測距儀、雷射表面速度計、雷射雷達、線性編碼器、線性可變差動變壓器(LVDT)、液體電容傾角計、里程錶、光電感測器、壓電加速度計、速率感測器、旋轉編碼器、旋轉可變差動變壓器、同步儀、衝擊偵測器、衝擊資料記錄器、傾斜感測器、轉速計、超音波厚度計、可變磁阻感測器或速度接收器。光學感測器可包含電荷耦合裝置、色度計、接觸式影像感測器、電光感測器、紅外感測器、動態電感偵測器、發光二極體(例如,光感測器)、光可定址電位感測器、尼科爾斯福射計(Nichols radiometer)、光纖感測器、光學位置感測器、光電偵測器、光電二極體、光電倍增管、光電晶體、光電感測器、光電離偵測器、光電倍增器、光電阻器、光電開關、光電管、閃爍計數器、夏克哈特曼波前感測器(Shack-Hartmann)、單光子突崩二極體、超導奈米線單光子偵測器、過渡邊緣感測器、可見光光子計數器或波前感測器。一個或多個感測器可連接至控制系統(例如,連接至處理器,連接至電腦)。In some embodiments, at least one sensor is operatively coupled to a control system (eg, a computerized control system). Sensors may include light sensors, acoustic sensors, vibration sensors, chemical sensors, electrical sensors, magnetic sensors, mobility sensors, motion sensors, speed sensors, position sensors sensor, pressure sensor, force sensor, density sensor, distance sensor or proximity sensor. Sensors may include temperature sensors, weight sensors, material (eg, powder) content sensors, metrology sensors, gas sensors, or humidity sensors. Metrology sensors may include measurement sensors (eg, height, length, width, angle, and/or volume). Metrology sensors may include magnetic, acceleration, orientation, or optical sensors. Sensors can transmit and/or receive acoustic (eg, echo), magnetic, electronic, or electromagnetic signals. The signal may include a radio signal, which includes an ultra-wideband radio signal. The signal may comprise visible light, infrared light or ultraviolet light. Infrared sensors can detect living objects (eg, people). The signal may include an audio signal (eg, a human audio signal). Electromagnetic signals may include visible light, infrared, ultraviolet, ultrasonic, radio waves, or microwave signals. The gas sensor can sense any of the gases described herein. The distance sensor may be one type of metrology sensor. Distance sensors may include optical sensors or capacitive sensors. Temperature sensors can include bolometers, bimetals, calorimeters, exhaust thermometers, flame detection, Gardon meters, Golay cells, heat flux sensors, infrared thermometers, micro- bolometers, microwave radiometers, net radiometers, quartz thermometers, resistance temperature detectors, resistance thermometers, silicon bandgap temperature sensors, special sensors microwave/imagers, thermometers, thermistors, thermocouples, thermometers (eg resistance thermometer) or pyrometer. The temperature sensor may include an optical sensor. The temperature sensor may include image processing. The temperature sensor may include a camera (eg, IR camera, visible light camera, CCD camera). The camera may be a high-resolution camera (eg, a resolution may be at least 2 kilopixel (K), 3K, 4K, or 5K camera). The sensors may include accelerometers. The sensor can sense the location and/or presence of a person. The sensor can sense and/or locate the enclosure occupant. Pressure sensors may include barometers, barometers, booster gauges, Bourdon gauges, hot filament ionization gauges, ionization gauges, McLeod gauges, U-shaped oscillating tubes , permanent downhole manometer, manometer, Pirani gauge, pressure sensor, manometer, tactile sensor or time pressure gauge. Position sensors may include growth meters, capacitive displacement sensors, capacitive sensing, free fall sensors, gravimeters, gyroscope sensors, crash sensors, inclinometers, integrated circuit piezoelectric sensing sensors, laser rangefinders, laser surface velocimeters, lidars, linear encoders, linear variable differential transformers (LVDTs), liquid capacitance inclinometers, odometers, photoelectric sensors, piezoelectric accelerometers, Rate Sensors, Rotary Encoders, Rotary Variable Differential Transformers, Synchronizers, Shock Detectors, Shock Data Loggers, Tilt Sensors, Tachometers, Ultrasonic Thickness Gauges, Variable Reluctance Sensors or speed receiver. Optical sensors can include charge-coupled devices, colorimeters, contact image sensors, electro-optical sensors, infrared sensors, dynamic inductance detectors, light emitting diodes (eg, light sensors), Optically addressable potentiometric sensors, Nichols radiometers, fiber optic sensors, optical position sensors, photodetectors, photodiodes, photomultipliers, phototransistors, photoinductors detectors, photoionization detectors, photomultipliers, photoresistors, photoswitches, photocells, scintillation counters, Shack-Hartmann wavefront sensors (Shack-Hartmann), single-photon burst diodes, super Conductive nanowire single-photon detectors, transition edge sensors, visible light photon counters or wavefront sensors. One or more sensors can be connected to the control system (eg, to a processor, to a computer).

在一些實施例中,一個或多個裝置包含感測器(例如,作為收發器之部分)。在一些實施例中,收發器可經組態以使用例如IEEE 802.15.4之個人區域網路(PAN)標準來傳輸及接收一個或多個信號。在一些實施例中,信號可包含藍牙、Wi-Fi或EnOcean信號(例如,寬頻帶)。一個或多個信號可包含超寬頻帶(UWB)信號(例如,具有在約2.4至約10.6吉兆赫(GHz)或約7.5 GHz至約10.6GHz之範圍內的頻率)。超寬頻信號可為具有大於約20%之部分頻寬的信號。超寬頻(UWB)射頻信號可具有至少約500兆赫(MHz)之頻寬。一個或多個信號可將極低能量位準用於短程。信號(例如,具有射頻)可使用能夠穿透固體結構(例如,壁、門及/或窗)之頻譜。低功率可為至多約25毫瓦(mW)、50 mW、75 mW或100 mW。低功率可為前述值之間的任何值(例如,自25 mW至100 mW、自25 mW至50 mW或自75 mW至100 mW)。感測器及/或收發器可經組態以支援用於在固定物與行動裝置之間例如在短距離內交換資料的無線技術標準。該信號可包含超高頻(UHF)無線電波,例如約2.402吉兆赫(GHz)至約2.480 GHz。該信號可經組態以用於建置個人區域網路(PAN)。In some embodiments, one or more of the devices includes a sensor (eg, as part of a transceiver). In some embodiments, the transceiver may be configured to transmit and receive one or more signals using a personal area network (PAN) standard such as IEEE 802.15.4. In some embodiments, the signals may include Bluetooth, Wi-Fi, or EnOcean signals (eg, broadband). The one or more signals may include ultra-wideband (UWB) signals (eg, having frequencies in the range of about 2.4 to about 10.6 gigahertz (GHz) or about 7.5 GHz to about 10.6 GHz). An ultra-wideband signal can be a signal having a partial bandwidth greater than about 20%. Ultra-wideband (UWB) radio frequency signals may have a bandwidth of at least about 500 megahertz (MHz). One or more signals may use very low energy levels for short range. Signals (eg, having radio frequencies) may use a spectrum capable of penetrating solid structures (eg, walls, doors, and/or windows). The low power may be up to about 25 milliwatts (mW), 50 mW, 75 mW, or 100 mW. The low power can be any value between the foregoing values (eg, from 25 mW to 100 mW, from 25 mW to 50 mW, or from 75 mW to 100 mW). Sensors and/or transceivers can be configured to support wireless technology standards for exchanging data between stationary and mobile devices, such as over short distances. The signal may comprise ultra high frequency (UHF) radio waves, such as about 2.402 gigahertz (GHz) to about 2.480 GHz. This signal can be configured for use in building a personal area network (PAN).

在一些實施例中,裝置經組態以啟用地理定位技術(例如,全球定位系統(GPS)、藍牙(BLE)、超寬頻(UWB)及/或航位推算)。地理定位技術可促進以至少100公分(cm)、75 cm、50 cm、25 cm、20 cm、10 cm或5 cm之準確度判定信號源之位置(例如,標籤之部位)。在一些實施例中,信號之電磁輻射包含超寬頻(UWB)無線電波、超高頻(UHF)無線電波或用於全球定位系統(GPS)中之無線電波。在一些實施例中,電磁輻射包含具有至少約300 MHz、500 MHz或1200 MHz之頻率的電磁波。在一些實施例中,該信號包含部位及/或時間資料。在一些實施例中,地理定位技術包含藍牙、UWB、UHF及/或全球定位系統(GPS)技術。在一些實施例中,該信號具有至少約1013個位元/秒/平方公尺(bit/s/m²)之空間容量。In some embodiments, the device is configured to enable geolocation technology (eg, Global Positioning System (GPS), Bluetooth (BLE), Ultra Wide Band (UWB), and/or dead reckoning). Geolocation techniques can facilitate determining the location of a signal source (eg, the location of a tag) with an accuracy of at least 100 centimeters (cm), 75 cm, 50 cm, 25 cm, 20 cm, 10 cm, or 5 cm. In some embodiments, the electromagnetic radiation of the signal includes ultra-wideband (UWB) radio waves, ultra-high frequency (UHF) radio waves, or radio waves used in global positioning systems (GPS). In some embodiments, the electromagnetic radiation includes electromagnetic waves having a frequency of at least about 300 MHz, 500 MHz, or 1200 MHz. In some embodiments, the signal includes location and/or time data. In some embodiments, the geolocation technology includes Bluetooth, UWB, UHF and/or Global Positioning System (GPS) technology. In some embodiments, the signal has a spatial capacity of at least about 1013 bits per second per square meter (bit/s/m²).

在一些實施例中,基於脈衝之超寬頻(UWB)技術(例如,ECMA-368或ECMA-369)為用於在短距離(例如,至多約300呎(')、250'、230'、200'或150')內以低功率(例如,小於約1毫伏(mW)、0.75 mW、0.5 mW或0.25 mW)傳輸大量資料的無線技術。UWB信號可佔用頻寬頻譜之至少約750 MHz、500 MHz或250 MHz,及/或其中心頻率之至少約30%、20%或10%。UWB信號可藉由一個或多個脈衝傳輸。廣播數位信號脈衝之組件可跨越數個頻道同時對載波信號進行計時(例如,精確地)。可例如藉由調變信號(例如,脈衝)之時序及/或定位來傳輸資訊。可藉由編碼信號(例如,脈衝)之極性、其振幅及/或藉由使用正交信號(例如,脈衝)來傳輸信號資訊。UWB信號可為低功率資訊傳送協定。UWB技術可用於(例如,室內)定位應用。UWB頻譜之寬範圍包含具有長波長之低頻率,其允許UWB信號穿透多種材料,包括各種建築物固定物(例如,壁)。寬頻率範圍(例如,包括低穿透頻率)可減少多路徑傳播錯誤之機會(不希望受到理論限制,此係因為一些波長可具有視線軌跡)。UWB通信信號(例如,脈衝)可為短的(例如,對於約600 MHz、500 MHz或400 MHz寬之脈衝,至多約70 cm、60 cm或50 cm;或對於具有約1 GHz、1.2 GHz、1.3 GHz或1.5 GHz之頻寬的脈衝,至多約20 cm、23 cm、25 cm或30 cm)。短通信信號(例如,脈衝)可減少反射信號(例如,脈衝)將與原始信號(例如,脈衝)重疊的機會。In some embodiments, pulse-based ultra-wideband (UWB) technology (eg, ECMA-368 or ECMA-369) is used for ' or 150') at low power (eg, less than about 1 millivolt (mW), 0.75 mW, 0.5 mW, or 0.25 mW) to transmit large amounts of data wireless technology. UWB signals may occupy at least about 750 MHz, 500 MHz, or 250 MHz of the bandwidth spectrum, and/or at least about 30%, 20%, or 10% of its center frequency. UWB signals can be transmitted by one or more pulses. Components that broadcast digital signal pulses can simultaneously time (eg, precisely) a carrier signal across several channels. Information may be conveyed, for example, by modulating the timing and/or positioning of signals (eg, pulses). Signal information may be transmitted by encoding the polarity of the signal (eg, pulses), its amplitude, and/or by using quadrature signals (eg, pulses). The UWB signal may be a low power information transfer protocol. UWB technology can be used for (eg, indoor) positioning applications. The broad range of the UWB spectrum includes low frequencies with long wavelengths that allow UWB signals to penetrate a variety of materials, including various building fixtures (eg, walls). A wide frequency range (eg, including low penetration frequencies) may reduce the chance of multipath propagation errors (without wishing to be bound by theory, since some wavelengths may have line-of-sight trajectories). UWB communication signals (eg, pulses) may be short (eg, up to about 70 cm, 60 cm, or 50 cm for pulses of about 600 MHz, 500 MHz, or 400 MHz wide; or up to about 1 GHz, 1.2 GHz, 1.3 GHz or 1.5 GHz bandwidth, up to approximately 20 cm, 23 cm, 25 cm or 30 cm). A short communication signal (eg, pulse) may reduce the chance that the reflected signal (eg, pulse) will overlap the original signal (eg, pulse).

在一些實施例中,複數個裝置可操作性地(例如,通信地)耦接至控制系統。複數個裝置可安置於設施中(例如,包括建築物及/或房間)。控制系統可包含控制器之階層。裝置可包含發射器、感測器或窗(例如,IGU)。裝置可損害無線電發射器及/或接收器(例如,寬頻帶或超寬頻帶無線電發射器及/或接收器)。裝置可包括定位裝置。裝置可包括全球定位系統(GPS)裝置。裝置可包括藍牙裝置。裝置可為如本文中所揭示之任何裝置。複數個裝置中之至少兩者可為相同類型。舉例而言,兩個或多於兩個IGU可耦接至控制系統。複數個裝置中之至少兩者可為不同類型。舉例而言,感測器及發射器可耦接至控制系統。複數個裝置有時可包含至少20、50、100、500、1000、2500、5000、7500、10000、50000、100000或500000個裝置。複數個裝置可具有前述數目之間的任何數目個裝置(例如,20個裝置至500000個裝置、20個裝置至50個裝置、50個裝置至500個裝置、500個裝置至2500個裝置、1000個裝置至5000個裝置、5000個裝置至10000個裝置、10000個裝置至100000個裝置,或100000個裝置至500000個裝置)。舉例而言,樓層中之窗的數目可為至少5、10、15、20、25、30、40或50。樓層中之窗的數目可為前述數目之間的任何數目(例如,5至50、5至25,或25至50)。有時,裝置可在多層建築物中。多層建築物之樓層的至少一部分可具有由控制系統控制之裝置(例如,多層建築物之樓層的至少一部分可由控制系統控制)。舉例而言,多層建築物可具有由控制系統控制之至少2、8、10、25、50、80、100、120、140或160個樓層。由控制系統控制之樓層(例如,其中之裝置)的數目可為前述數目之間的任何數目(例如,2至50、25至100,或80至160)。樓層可具有至少約150 m 2、250 m 2、500 m 2、1000 m 2、1500 m 2或2000平方公尺(m 2)的面積。樓層可具有任一前述樓層面積值之間的面積(例如,約150 m 2至約2000 m 2、約150 m 2至約500 m 2、約250 m 2至約1000 m 2或約1000 m 2至約2000 m 2)。建築物可包含至少約1000平方呎(sqft)、2000平方呎、5000平方呎、10000平方呎、100000平方呎、150000平方呎、200000平方呎或500000平方呎之面積。建築物可包含在任一上述面積之間的面積(例如,約1000平方呎至約5000平方呎、約5000平方呎至約500000平方呎或約1000平方呎至約500000平方呎)。建築物可包含至少約100 m 2、200 m 2、500 m 2、1000 m 2、5000 m 2、10000 m 2、25000 m 2或50000 m 2之面積。建築物可包含在任一上述面積之間的面積(例如,約100 m 2至約1000 m 2、約500 m 2至約25000 m 2、約100 m 2至約50000 m 2)。設施可包含商業或住宅建築物。商業建築物可包括租戶及/或所有者。住宅設施可包含多戶或單戶家庭建築物。住宅設施可包含綜合住宅大樓。住宅設施可包含單戶家庭住宅。住宅設施可包含多戶家庭住宅(例如,公寓)。住宅設施可包含聯排別墅。設施可包含住宅及商業部分。設施可包含至少約1、2、5、10、50、100、150、200、250、300、350、400、420、450、500或550個窗(例如,可著色窗)。該等窗可劃分成多個分區(例如,至少部分地基於安置有該等窗之封閉體(例如,房間)的部位、立面、樓面、所有權、利用率、任何其他指派量度、隨機指派或其任何組合。窗至分區之分配可為靜態或動態的(例如,基於試探法)。每分區可存在至少約2、5、10、12、15、30、40或46個窗。 In some embodiments, the plurality of devices are operably (eg, communicatively) coupled to the control system. A plurality of devices may be placed in a facility (eg, including buildings and/or rooms). A control system may include a hierarchy of controllers. A device may include a transmitter, a sensor, or a window (eg, an IGU). A device can damage radio transmitters and/or receivers (eg, broadband or ultra-wideband radio transmitters and/or receivers). The device may include a positioning device. The device may include a global positioning system (GPS) device. The device may include a Bluetooth device. The device can be any device as disclosed herein. At least two of the plurality of devices may be of the same type. For example, two or more IGUs may be coupled to the control system. At least two of the plurality of devices may be of different types. For example, sensors and transmitters can be coupled to a control system. The plurality of devices may sometimes comprise at least 20, 50, 100, 500, 1000, 2500, 5000, 7500, 10000, 50000, 100000 or 500000 devices. The plurality of devices can have any number of devices between the foregoing numbers (eg, 20 devices to 500,000 devices, 20 devices to 50 devices, 50 devices to 500 devices, 500 devices to 2500 devices, 1000 devices to 5,000 devices, 5,000 devices to 10,000 devices, 10,000 devices to 100,000 devices, or 100,000 devices to 500,000 devices). For example, the number of windows in a floor may be at least 5, 10, 15, 20, 25, 30, 40 or 50. The number of windows in a floor can be any number between the foregoing numbers (eg, 5 to 50, 5 to 25, or 25 to 50). In some cases, devices may be in multi-storey buildings. At least a portion of the floors of the multi-story building may have devices controlled by the control system (eg, at least a portion of the floors of the multi-story building may be controlled by the control system). For example, a multi-story building may have at least 2, 8, 10, 25, 50, 80, 100, 120, 140 or 160 floors controlled by the control system. The number of floors (eg, devices therein) controlled by the control system can be any number between the foregoing numbers (eg, 2 to 50, 25 to 100, or 80 to 160). A floor may have an area of at least about 150 m 2 , 250 m 2 , 500 m 2 , 1000 m 2 , 1500 m 2 or 2000 square meters (m 2 ). Floors can have an area between any of the foregoing floor area values (eg, about 150 m2 to about 2000 m2 , about 150 m2 to about 500 m2 , about 250 m2 to about 1000 m2 , or about 1000 m2 to about 2000 m 2 ). A building may comprise an area of at least about 1,000 square feet (sqft), 2,000 square feet, 5,000 square feet, 10,000 square feet, 100,000 square feet, 150,000 square feet, 200,000 square feet, or 500,000 square feet. A building may comprise an area between any of the foregoing areas (eg, from about 1,000 square feet to about 5,000 square feet, from about 5,000 square feet to about 500,000 square feet, or from about 1,000 square feet to about 500,000 square feet). A building may comprise an area of at least about 100 m 2 , 200 m 2 , 500 m 2 , 1000 m 2 , 5000 m 2 , 10000 m 2 , 25000 m 2 or 50000 m 2 . A building may comprise an area between any of the foregoing areas (eg, about 100 m 2 to about 1000 m 2 , about 500 m 2 to about 25,000 m 2 , about 100 m 2 to about 50,000 m 2 ). Facilities may contain commercial or residential buildings. Commercial buildings may include tenants and/or owners. Residential facilities may contain multi-family or single-family buildings. Residential facilities may include residential complexes. Residential facilities may include single-family dwellings. Residential facilities may include multi-family dwellings (eg, apartments). Residential facilities may include townhouses. Facilities may contain both residential and commercial components. A facility can include at least about 1, 2, 5, 10, 50, 100, 150, 200, 250, 300, 350, 400, 420, 450, 500, or 550 windows (eg, tintable windows). The windows may be divided into partitions (eg, based at least in part on the location, facade, floor, ownership, utilization, any other assignment measure, random assignment of the enclosure (eg, room) in which the windows are placed) Or any combination thereof. The assignment of windows to partitions may be static or dynamic (eg, based on heuristics). There may be at least about 2, 5, 10, 12, 15, 30, 40, or 46 windows per partition.

在一些實施例中,感測器操作性地耦接至至少一個控制器及/或處理器。感測器讀數可由一個或多個處理器及/或控制器獲得。控制器可包含處理單元(例如,CPU或GPU)。控制器可接收輸入(例如,自至少一個感測器)。控制器可包含電路系統、電佈線、光學佈線、通訊端及/或插座。控制器可遞送輸出。控制器可包含多個(例如,子)控制器。控制器可為控制系統之一部分。控制系統可包含主控制器、樓層(例如,包含網路控制器)控制器、本端控制器。本端控制器可為窗控制器(例如,控制光學可切換窗)、封閉體控制器或組件控制器。舉例而言,控制器可為階層式控制系統(例如,包含主控制器,該主控制器指導一個或多個控制器,例如樓層控制器、本端控制器(例如,窗控制器)、封閉體控制器及/或組件控制器)之一部分。階層式控制系統中之控制器類型的實體部位可發生改變。舉例而言:在第一時間:第一處理器可承擔主控制器的作用,第二處理器可承擔樓層控制器的作用,且第三處理器可承擔本端控制器的作用。在第二時間:第二處理器可承擔主控制器的作用,第一處理器可承擔樓層控制器的作用,且第三處理器可保持本端控制器的作用。在第三時間:第三處理器可承擔主控制器的作用,第二處理器可承擔樓層控制器的作用,且第一處理器可承擔本端控制器的作用。控制器可控制一個或多個裝置(例如,直接耦接至裝置)。控制器可接近其控制之一個或多個裝置而安置。舉例而言,控制器可控制光學可切換裝置(例如,IGU)、天線、感測器及/或輸出裝置(例如,光源、聲源、氣味源、氣體源、HVAC插座或加熱器)。In some embodiments, the sensor is operatively coupled to at least one controller and/or processor. Sensor readings may be obtained by one or more processors and/or controllers. A controller may include a processing unit (eg, a CPU or GPU). The controller can receive input (eg, from at least one sensor). The controller may include circuitry, electrical wiring, optical wiring, communication terminals and/or sockets. The controller can deliver output. A controller may contain multiple (eg, sub) controllers. The controller may be part of a control system. The control system may include a main controller, a floor (eg, including a network controller) controller, and a local controller. The local controller may be a window controller (eg, controlling an optically switchable window), an enclosure controller, or a component controller. For example, the controller may be a hierarchical control system (eg, including a master controller that directs one or more controllers, such as floor controllers, local controllers (eg, window controllers), closed body controller and/or component controller). The physical part of the controller type in a hierarchical control system can be changed. For example: at the first time: the first processor can assume the role of the main controller, the second processor can assume the role of the floor controller, and the third processor can assume the role of the local controller. At the second time: the second processor can assume the role of the main controller, the first processor can assume the role of the floor controller, and the third processor can maintain the role of the local controller. At the third time: the third processor can assume the role of the main controller, the second processor can assume the role of the floor controller, and the first processor can assume the role of the local controller. The controller may control one or more devices (eg, directly coupled to the devices). A controller may be positioned proximate one or more devices it controls. For example, the controller may control optically switchable devices (eg, IGUs), antennas, sensors, and/or output devices (eg, light sources, sound sources, odor sources, gas sources, HVAC outlets, or heaters).

在一個實施例中,樓層控制器可指示一個或多個窗控制器、一個或多個封閉體控制器、一個或多個組件控制器或其任何組合。樓層控制器可包含樓層控制器。舉例而言,樓層(例如,包含網路)控制器可控制複數個本端(例如,包含窗)控制器。複數個本端控制器可安置於設施之一部分中(例如,建築物之一部分中)。設施之部分可為設施之樓層。舉例而言,可將樓層控制器指派給樓層。在一些實施例中,樓層可包含複數個樓層控制器,例如取決於樓層大小及/或耦接至樓層控制器之本端控制器的數目。舉例而言,可將樓層控制器指派給樓層之一部分。舉例而言,可將樓層控制器指派給安置於設施中之本端控制器的一部分。舉例而言,可將樓層控制器指派給設施之樓層的一部分。In one embodiment, the floor controls may indicate one or more window controls, one or more enclosure controls, one or more component controls, or any combination thereof. Floor controllers may include floor controllers. For example, a floor (eg, including a network) controller may control a plurality of local (eg, including a window) controller. A plurality of local controllers may be located in a portion of a facility (eg, in a portion of a building). A portion of the facility may be the floor of the facility. For example, floor controllers can be assigned to floors. In some embodiments, a floor may include a plurality of floor controllers, eg, depending on the floor size and/or the number of local controllers coupled to the floor controllers. For example, a floor controller can be assigned to a portion of a floor. For example, a floor controller can be assigned to a portion of the local controllers located in the facility. For example, a floor controller can be assigned to a portion of a floor of a facility.

主控制器可耦接至一個或多個樓層控制器。樓層控制器可安置於設施中。主控制器可安置於設施中或安置於設施外部。主控制器可安置於雲端中。控制器可為建築物管理系統之部分或操作性地耦接至建築物管理系統。控制器可接收一個或多個輸入。控制器可產生一個或多個輸出。控制器可為單輸入單輸出控制器(SISO)或多輸入多輸出控制器(MIMO)。控制器可解譯所接收之輸入信號。控制器可自一個或多個組件(例如,感測器)獲取資料。獲取可包含接收或提取。資料可包含量測、估計、判定、產生或其任何組合。控制器可包含回饋控制。控制器可包含前饋控制。控制可包含開關控制、比例控制、比例-積分(PI)控制或比例-積分-導數(PID)控制。控制可包含開放迴路控制或封閉迴路控制。控制器可包含封閉迴路控制。控制器可包含開放迴路控制。控制器可包含使用者介面。使用者介面可包含(或操作性地耦接至)鍵盤、小鍵盤、滑鼠、觸控式螢幕、麥克風、語音辨識封裝、攝影機、成像系統或其任何組合。輸出可包括顯示器(例如,螢幕)、揚聲器或印表機。The master controller may be coupled to one or more floor controllers. Floor controllers can be placed in the facility. The main controller may be located in the facility or located outside the facility. The main controller can be located in the cloud. The controller may be part of or operatively coupled to the building management system. The controller can receive one or more inputs. A controller can generate one or more outputs. The controller may be a single-input single-output controller (SISO) or a multiple-input multiple-output controller (MIMO). The controller can interpret the received input signal. The controller may obtain data from one or more components (eg, sensors). Acquiring can include receiving or extracting. Data may include measurements, estimates, determinations, generation, or any combination thereof. The controller may contain feedback control. The controller may include feedforward control. Control may include on-off control, proportional control, proportional-integral (PI) control, or proportional-integral-derivative (PID) control. Control can include open loop control or closed loop control. The controller may contain closed loop control. The controller may contain open loop control. The controller may include a user interface. The user interface may include (or be operatively coupled to) a keyboard, keypad, mouse, touch screen, microphone, speech recognition package, camera, imaging system, or any combination thereof. The output may include a display (eg, a screen), speakers, or a printer.

圖2展示控制系統架構200之示意性實例,該控制系統架構包含控制樓層控制器206之主控制器208,該等樓層控制器又控制本端控制器204。在一些實施例中,本端控制器控制一個或多個IGU、一個或多個感測器、一個或多個輸出裝置(例如,一個或多個發射體)或其任何組合。在圖2之說明性組態中,主控制器操作性地耦接(例如,以無線及/或有線方式通信耦接)至建築物管理系統(BMS)224及資料庫220。圖2中之箭頭表示通信路徑。控制器可操作性地耦接(例如,直接/間接及/或有線及/無線地)至外部源210。外部源可包含網路。外部源可包含一個或多個感測器或輸出裝置。外部源可包含基於雲端之應用程式及/或資料庫。通信可為有線及/或無線的。外部源可安置於設施外部。舉例而言,外部源可包含安置於例如壁上或設施之天花板上的一個或多個感測器及/或天線。通信可為單向或雙向的。在圖2中所展示之實例中,所有通信箭頭可為雙向的。FIG. 2 shows a schematic example of a control system architecture 200 that includes a master controller 208 that controls floor controllers 206 , which in turn control local controllers 204 . In some embodiments, the local controller controls one or more IGUs, one or more sensors, one or more output devices (eg, one or more emitters), or any combination thereof. In the illustrative configuration of FIG. 2 , the master controller is operatively coupled (eg, wirelessly and/or communicatively coupled) to a building management system (BMS) 224 and database 220 . Arrows in FIG. 2 indicate communication paths. The controller is operably coupled (eg, directly/indirectly and/or wired and/wirelessly) to the external source 210 . External sources can include networks. The external source may include one or more sensors or output devices. External sources may include cloud-based applications and/or databases. Communication may be wired and/or wireless. External sources may be located outside the facility. For example, the external source may include one or more sensors and/or antennas disposed on, for example, a wall or ceiling of a facility. Communication can be one-way or two-way. In the example shown in Figure 2, all communication arrows may be bidirectional.

控制器可監測及/或指導本文中所描述之設備、軟體及/或方法之操作條件的(例如,實體)更改。控制可包含調節、操控、限制、指導、監測、調整、調變、改變、更改、約束、檢查、導引或管理。控制(例如,由控制器進行)可包括衰減、調變、改變、管理、抑制、規訓、調節、約束、監督、操縱及/或導引。控制可包含控制控制變數(例如,溫度、電力、電壓及/或剖面)。控制可包含即時或離線控制。可即時地及/或離線地進行由控制器利用之計算。控制器可為手動或非手動控制器。控制器可為自動控制器。控制器可應請求操作。控制器可為可程式化控制器。控制器可經程式化。控制器可包含處理單元(例如,CPU或GPU)。控制器可接收輸入(例如,自至少一個感測器)。控制器可遞送輸出。控制器可包含多個(例如,子)控制器。控制器可為控制系統之一部分。控制系統可包含主控制器、樓層控制器、本端控制器(例如,封閉體控制器或窗控制器)。控制器可接收一個或多個輸入。控制器可產生一個或多個輸出。控制器可為單輸入單輸出控制器(SISO)或多輸入多輸出控制器(MIMO)。控制器可解譯所接收之輸入信號。控制器可自一個或多個感測器獲取資料。獲取可包含接收或提取。資料可包含量測、估計、判定、產生或其任何組合。控制器可包含回饋控制。控制器可包含前饋控制。控制可包含開關控制、比例控制、比例積分(PI)控制或比例-積分-導數(PID)控制。控制可包含開放迴路控制或封閉迴路控制。控制器可包含封閉迴路控制。控制器可包含開放迴路控制。控制器可包含使用者介面。使用者介面可包含(或操作性地耦接至)鍵盤、小鍵盤、滑鼠、觸控式螢幕、麥克風、語音辨識封裝、攝影機、成像系統或其任何組合。輸出可包括顯示器(例如,螢幕)、揚聲器或印表機。A controller may monitor and/or direct (eg, physical) changes to the operating conditions of the apparatus, software, and/or methods described herein. Controlling may include regulating, manipulating, limiting, directing, monitoring, adjusting, modulating, altering, altering, restraining, checking, directing or managing. Controlling (eg, by a controller) may include attenuating, modulating, changing, managing, suppressing, discipline, regulating, constraining, supervising, manipulating, and/or directing. Controlling may include controlling control variables (eg, temperature, power, voltage, and/or profile). Control can include instant or offline control. Calculations utilized by the controller may be performed in real-time and/or off-line. The controller can be manual or non-manual. The controller may be an automatic controller. The controller can operate on request. The controller may be a programmable controller. The controller can be programmed. A controller may include a processing unit (eg, a CPU or GPU). The controller can receive input (eg, from at least one sensor). The controller can deliver output. A controller may contain multiple (eg, sub) controllers. The controller may be part of a control system. The control system may include master controllers, floor controllers, local controllers (eg, enclosure controllers or window controllers). The controller can receive one or more inputs. A controller can generate one or more outputs. The controller may be a single-input single-output controller (SISO) or a multiple-input multiple-output controller (MIMO). The controller can interpret the received input signal. The controller may obtain data from one or more sensors. Acquiring can include receiving or extracting. Data may include measurements, estimates, determinations, generation, or any combination thereof. The controller may contain feedback control. The controller may include feedforward control. Control may include on-off control, proportional control, proportional-integral (PI) control, or proportional-integral-derivative (PID) control. Control can include open loop control or closed loop control. The controller may contain closed loop control. The controller may contain open loop control. The controller may include a user interface. The user interface may include (or be operatively coupled to) a keyboard, keypad, mouse, touch screen, microphone, speech recognition package, camera, imaging system, or any combination thereof. The output may include a display (eg, a screen), speakers, or a printer.

本文中所描述之方法、系統及/或設備可包含控制系統。控制系統可與本文中所描述之任一設備(例如,感測器)通信。感測器可為相同類型或不同類型,例如,如本文中所描述。舉例而言,控制系統可與第一感測器及/或第二感測器通信。控制系統可控制一個或多個感測器。控制系統可控制建築物管理系統之一個或多個組件(例如,包括照明、安全、佔用、佔用者行為、HVAC、感測器、發射器、警報器及/或空氣調節系統)。控制器可調節封閉體之至少一個(例如,環境)特性。控制系統可使用建築物管理系統之任何組件來調節封閉體環境。舉例而言,控制系統可調節由加熱元件及/或冷卻元件供應之能量。舉例而言,控制系統可調節經由通風口流動至封閉體及/或自封閉體流動之空氣的速度。控制系統可包含處理器。處理器可為處理單元。控制器可包含處理單元。處理單元可為中央處理單元。處理單元可包含中央處理單元(本文中縮寫為「CPU」)。處理單元可為圖形處理單元(本文中縮寫為「GPU」)。控制器或控制機構(例如,包含電腦系統)可經程式化以實施本揭示案之一種或多種方法。處理器可經程式化以實施本揭示案之方法。控制器可控制形成本文中所揭示之系統及/或設備的至少一個組件。The methods, systems and/or apparatus described herein may include a control system. The control system can communicate with any of the devices (eg, sensors) described herein. The sensors may be of the same type or of different types, eg, as described herein. For example, the control system may communicate with the first sensor and/or the second sensor. The control system may control one or more sensors. The control system may control one or more components of the building management system (eg, including lighting, security, occupancy, occupant behavior, HVAC, sensors, transmitters, alarms, and/or air conditioning systems). The controller can adjust at least one (eg, environmental) characteristic of the enclosure. The control system may use any component of the building management system to regulate the enclosure environment. For example, the control system may regulate the energy supplied by the heating element and/or the cooling element. For example, the control system may regulate the speed of air flowing to and/or from the enclosure through the vent. The control system may include a processor. The processor may be a processing unit. The controller may include a processing unit. The processing unit may be a central processing unit. The processing unit may include a central processing unit (abbreviated herein as "CPU"). The processing unit may be a graphics processing unit (abbreviated herein as "GPU"). A controller or control mechanism (eg, including a computer system) can be programmed to implement one or more methods of the present disclosure. A processor can be programmed to implement the methods of the present disclosure. A controller may control at least one component forming the systems and/or apparatus disclosed herein.

在某些實施例中,建築物網路基礎架構具有豎直資料平面(在建築物樓層之間)及水平資料平面(單個樓層或多個(例如,連續)樓層內的全部)。在一些狀況下,水平及豎直資料平面具有攜載(例如,實質上)相同或類似資料之至少一個(例如,所有)資料攜載能力及/或組件。在其他狀況下,此等兩個資料平面具有至少一個(例如,所有)不同的資料攜載能力及/或組件。舉例而言,豎直資料平面可含有用於快速資料傳輸速率及/或頻寬之一個或多個組件。在一個實例中,豎直資料平面含有支援至少約10吉位元/秒(Gbit/s)或更快(例如,乙太網路)資料傳輸(例如,使用第一類型之佈線(例如,UTP電線及/或光纖纜線))之組件,而水平資料平面含有支援至少約8 Gbit/s、5 Gbit/s或1 Gbit/s(例如,乙太網路)資料傳輸(例如,經由第二類型之佈線(例如,同軸纜線))之組件。在一些狀況下,水平資料平面經由d.hn或MoCA標準(例如,MoCA 2.5或MoCA 3.0)支援資料傳輸。在某些實施例中,豎直資料平面上樓層之間的連接使用具有高速(例如,乙太網路)交換器之控制面板,該等交換器將水平資料平面與豎直資料平面之間及/或不同類型之佈線之間的通信配對。此等控制面板可經由通信(例如,d.hn或MoCA)介面及水平資料平面上之相關聯佈線(例如,同軸纜線、雙絞纜線或光學纜線)與給定樓層上之(例如,IP)可定址節點(例如,裝置)通信。單個建築物結構中之水平及豎直資料平面描繪於圖3中。In some embodiments, the building network infrastructure has vertical data planes (between building floors) and horizontal data planes (all within a single floor or multiple (eg, consecutive) floors). In some cases, the horizontal and vertical data planes have at least one (eg, all) data carrying capabilities and/or components that carry (eg, substantially) the same or similar data. In other cases, the two data planes have at least one (eg, both) different data carrying capabilities and/or components. For example, a vertical data plane may contain one or more components for fast data transfer rates and/or bandwidth. In one example, the vertical data plane contains support for at least about 10 gigabits per second (Gbit/s) or faster (eg, Ethernet) data transfer (eg, using a first type of wiring (eg, UTP) electrical and/or fiber optic cables)), while the horizontal data plane contains support for at least about 8 Gbit/s, 5 Gbit/s, or 1 Gbit/s (eg, Ethernet) data transfer (eg, via a second type of wiring (eg, coaxial cable). In some cases, the horizontal data plane supports data transfer via d.hn or MoCA standards (eg, MoCA 2.5 or MoCA 3.0). In some embodiments, the connections between floors on the vertical data plane use control panels with high-speed (eg, Ethernet) switches that connect the horizontal and vertical data planes to and from the /or communication pairing between different types of wiring. These control panels can communicate with those on a given floor (eg , IP) addressable node (eg, device) communication. Horizontal and vertical data planes in a single building structure are depicted in Figure 3.

可在建築物中經由無線及/或有線通信向建築物之佔用者及/或自建築物之佔用者提供資料傳輸提供及在一些實施例中的語音服務。在第三代、第四代或第五代(3G、4G或5G)蜂巢式通信中,資料傳輸及/或語音服務可能部分地由於諸如壁、地板、天花板及窗之建築物結構引起的衰減而變得困難。相對於3G及4G通信,使用諸如5G之較高頻率協定,衰減會變得更嚴重。為了解決此挑戰,建築物可配備有充當蜂巢式信號之閘道器或埠的組件。此類閘道器耦接至建築物內部提供無線服務之基礎架構(例如,經由內部天線及實施Wi-Fi、小型小區服務(例如,經由微型小區或超微型小區裝置)、CBRS等之其他基礎架構)。用於此類服務之閘道器或入口點可包括來自運營商總局之高速纜線(例如,地下)及/或在位於建築物外部上之關鍵位置處的天線(例如,建築物屋頂上之施主天線及/或天空感測器)處接收的無線信號。至建築物之高速度纜線可被稱作「回程」。Data transmission offerings and, in some embodiments, voice services may be provided in the building via wireless and/or wired communications to and/or from occupants of the building. In third, fourth or fifth generation (3G, 4G or 5G) cellular communications, data transmission and/or voice services may be attenuated in part by building structures such as walls, floors, ceilings and windows become difficult. Attenuation becomes more severe using higher frequency protocols such as 5G relative to 3G and 4G communications. To address this challenge, buildings can be equipped with components that act as gateways or ports for cellular signals. Such gateways are coupled to the infrastructure inside the building that provides wireless services (eg, via internal antennas and other infrastructure that implements Wi-Fi, small cell services (eg, via picocell or femtocell devices), CBRS, etc. architecture). Gateways or entry points for such services may include high-speed cables from the operator's central office (eg, underground) and/or antennas at strategic locations on the exterior of the building (eg, on the roof of the building). The wireless signal received at the donor antenna and/or sky sensor). High-speed cables to buildings may be referred to as "returns."

圖3展示具有裝置集(例如,總成)之建築物的實例。作為連接點,建築物可包括多個屋頂施主天線305、305b以及用於發送電磁輻射(例如,紅外線、紫外線及/或可見光)之天空感測器307。來自網路(例如,經由天線提供)之無線信號可允許建築物服務網路與一個或多個通信服務提供者系統無線地(至少部分地)介接。圖3中所展示之實例中描繪的建築物具有例如用於經由實體線309(例如,諸如單模光纖或同軸光纖之光纖)連接至提供者總局311的控制面板313。控制面板313可包括經組態以提供例如信號源載波頭端、光纖分佈頭端及/或(例如,雙向)放大器或中繼器之功能的硬體及/或軟體。屋頂施主天線305a及305b可允許建築物佔用者及/或裝置存取(例如,第3方)提供者之無線系統通信服務。天線及/或控制器可提供對同一服務提供者系統、不同服務提供者系統或某一變體之存取,諸如兩個介面元件提供對第一服務提供者之系統的存取,且不同介面元件提供對第二服務提供者之系統的存取。3 shows an example of a building with a collection of devices (eg, assemblies). As connection points, the building may include a plurality of rooftop donor antennas 305, 305b and a sky sensor 307 for transmitting electromagnetic radiation (eg, infrared, ultraviolet and/or visible light). Wireless signals from a network (eg, provided via an antenna) may allow the building services network to wirelessly (at least partially) interface with one or more communication service provider systems. The building depicted in the example shown in FIG. 3 has, for example, a control panel 313 for connecting to a provider central office 311 via a physical line 309 (eg, optical fiber such as single-mode fiber or coaxial fiber). Control panel 313 may include hardware and/or software configured to provide functions such as signal source carrier headends, fiber distribution headends, and/or (eg, bidirectional) amplifiers or repeaters. Rooftop donor antennas 305a and 305b may allow building occupants and/or devices to access (eg, a 3rd party) provider's wireless system communication services. The antenna and/or controller may provide access to the same service provider system, different service provider systems, or a variant, such as two interface elements providing access to the first service provider's system, and different interfaces The element provides access to the second service provider's system.

如圖3之實例中所展示,豎直資料平面可包括(例如,高容量或高速)資料攜載線319,諸如(例如,單模)光纖、同軸纜線及/或UTP銅線(規格足夠)。在一些實施例中,至少一個控制面板可設置於建築物之樓層的至少部分上(例如,在每一樓層上)。控制面板與控制器相關聯。控制器可為控制系統(例如,如本文中所揭示)之部分。在一些實施例中,一個(例如,高容量)通信線可將另一樓層中(例如,頂部樓層中)之控制面板與底部樓層中(或地下室層中)之(例如,主)控制面板313直接連接。應注意,線319直接連接至屋頂天線305a、305b及/或天空感測器307,而控制面板313亦直接連接(例如,第3方)服務提供者總局311。As shown in the example of FIG. 3, the vertical data plane may include (eg, high-capacity or high-speed) data-carrying wires 319, such as (eg, single-mode) optical fibers, coaxial cables, and/or UTP copper wires (sufficient gauge) ). In some embodiments, at least one control panel may be provided on at least a portion of the floors of the building (eg, on each floor). The control panel is associated with the controller. The controller may be part of a control system (eg, as disclosed herein). In some embodiments, one (eg, high-capacity) communication line may connect a control panel in another floor (eg, in the top floor) with the (eg, main) control panel 313 in the bottom floor (or in the basement floor) direct connection. It should be noted that wire 319 is directly connected to rooftop antennas 305a, 305b and/or sky sensor 307, while control panel 313 is also directly connected (eg, 3rd party) to service provider central office 311.

圖3展示水平資料平面之實例,該水平資料平面可包括控制面板以及資料及/或電力攜載佈線(例如,線)中之一者或多者,該資料及/或電力攜載佈線包括幹線321。在某些實施例中,幹線可由同軸纜線、光學纜線、雙絞線或其任何組合製成。幹線可包含本文中所揭示之任何佈線。控制面板可經組態以經由資料通信協定(諸如,MoCA及/或G.hn)在幹線321上提供資料。資料通信協定可包含(i)下一代本籍網路連接協定(本文中縮寫為「G.hn」協定)、(ii)經由傳統地用以(例如,僅)遞送電力之電力線傳輸數位資訊的通信技術,或(iii)經設計用於經由建築物之電佈線傳達及傳送資料(例如,乙太網路、USB及Wi-Fi)的硬體裝置。資料傳送協定可促進至少約1吉位元/秒(Gbit/s)、2 Gbit/s、3 Gbit/s、4 Gbit/s或5 Gbit/s之資料傳輸速率。資料傳送協定可在電話佈線、同軸纜線、電力線及/或(例如,塑膠或玻璃)光纖上操作。可使用晶片(例如,包含半導體裝置)來促進資料傳送協定。FIG. 3 shows an example of a horizontal data plane that may include one or more of a control panel and data and/or power-carrying wiring (eg, wires) that includes mains 321. In certain embodiments, the trunk may be made of coaxial cable, optical cable, twisted pair, or any combination thereof. Trunks can include any of the wiring disclosed herein. The control panel can be configured to provide data on trunk 321 via data communication protocols such as MoCA and/or G.hn. Data communication protocols may include (i) Next Generation Home Network Connectivity Protocol (abbreviated herein as the "G.hn" protocol), (ii) communications that transmit digital information over power lines traditionally used to deliver (eg, only) electrical power technology, or (iii) hardware devices designed to communicate and transmit data (eg, Ethernet, USB, and Wi-Fi) through the electrical wiring of a building. Data transfer protocols can facilitate data transfer rates of at least about 1 gigabit per second (Gbit/s), 2 Gbit/s, 3 Gbit/s, 4 Gbit/s, or 5 Gbit/s. Data transfer protocols can operate on telephone wiring, coaxial cables, power lines, and/or optical fibers (eg, plastic or glass). Data transfer protocols may be facilitated using chips (eg, including semiconductor devices).

每一水平資料平面可提供對一個或多個裝置集323(例如,包含裝置總成之外殼中的一個或多個裝置之集合)及/或天線325的高速網路存取,該等天線中之一些或全部視情況與裝置集323整合。天線325(及相關聯無線電,未示出)可經組態以藉由各種協定中之任一種提供無線存取,該等協定包括例如蜂巢式(例如,處於或接近28 GHz之一個或多個頻帶)、Wi-Fi(例如,處於2.4、5及60 GHz之一個或多個頻帶)、CBRS及其類似者。引入線可將裝置集323連接至幹線321。在一些實施例中,水平資料平面部署於建築物之樓層上。裝置集中之裝置可包含感測器、發射器、收發器、處理器、控制器、記憶體、網路連接性或天線。裝置集可包含電路系統(例如,安置於一個或多個電路板上)。裝置集中之裝置可操作性地耦接至電路系統。平面350展示建築物中之豎直平面。Each horizontal data plane may provide high-speed network access to one or more sets of devices 323 (eg, sets of one or more devices in a housing comprising a device assembly) and/or antennas 325 in which Some or all of them are optionally integrated with device set 323 . Antenna 325 (and associated radio, not shown) may be configured to provide wireless access by any of a variety of protocols, including, for example, cellular (eg, at or near 28 GHz, one or more of frequency bands), Wi-Fi (eg, in one or more of the 2.4, 5, and 60 GHz frequency bands), CBRS, and the like. A drop-in line may connect the device set 323 to the trunk line 321 . In some embodiments, horizontal data planes are deployed on floors of buildings. Devices in a device set may include sensors, transmitters, transceivers, processors, controllers, memory, network connectivity, or antennas. A set of devices may include circuitry (eg, disposed on one or more circuit boards). The devices in the device set are operably coupled to the circuitry. Plane 350 shows a vertical plane in the building.

一個或多個施主天線305a、305b可經由高速線(例如,單模光纖或銅)連接至控制面板313。在圖3之所描繪實例中,控制面板313位於建築物之下層中。至施主天線305a、305b之連接可經由一個或多個vRAN無線電及佈線(例如,同軸纜線)。通信服務提供者總局311經由高速線309(例如,充當回程之部分的光纖)連接至底層控制面板313。服務提供者至建築物之此入口點有時被稱作主入口點(MPOE),且其可經組態以准許建築物分佈語音及資料訊務兩者。One or more donor antennas 305a, 305b may be connected to the control panel 313 via high speed wires (eg, single mode fiber or copper). In the depicted example of Figure 3, the control panel 313 is located in the lower level of the building. Connections to the donor antennas 305a, 305b may be via one or more vRAN radios and wiring (eg, coaxial cables). The communications service provider's central office 311 is connected to the underlying control panel 313 via a high-speed line 309 (eg, optical fiber serving as part of the backhaul). This point of entry for the service provider to the building is sometimes referred to as the main point of entry (MPOE), and it can be configured to allow the building to distribute both voice and data traffic.

在一些狀況下,小型小區系統至少部分地經由一個或多個天線而可用於建築物。天線、天空感測器及控制系統之實例可見於2016年10月6日申請的美國專利申請案第15/287,646號中,該申請案以全文引用的方式併入本文中。使用屋頂天線可提供其他優點,諸如促進對增加區域(地理上)之蜂巢式涵蓋。在一些狀況下,小型小區系統至少部分地經由一個或多個施主天線而可用於建築物。圖4描繪用於建築物之建築物網路400的實施例之方塊圖。建築物網路400可使用任何數目個不同的通信協定,包括BACnet。如所展示,建築物網路400包括主網路控制器405、照明控制面板410、建築物管理系統415、安全控制系統420及使用者控制台425。建築物中之此等不同控制器及系統可用以自建築物之以下各者接收輸入及/或控制以下各者:HVAC系統430、燈435、安全感測器440、門鎖445、攝影機450及可著色窗455。In some cases, small cell systems are available to buildings, at least in part, via one or more antennas. Examples of antennas, sky sensors, and control systems can be found in US Patent Application Serial No. 15/287,646, filed October 6, 2016, which is incorporated herein by reference in its entirety. The use of rooftop antennas may provide other advantages, such as facilitating cellular coverage of increased areas (geographically). In some cases, small cell systems are available to buildings, at least in part, via one or more donor antennas. Figure 4 depicts a block diagram of an embodiment of a building network 400 for buildings. Building network 400 may use any number of different communication protocols, including BACnet. As shown, building network 400 includes main network controller 405 , lighting control panel 410 , building management system 415 , security control system 420 , and user console 425 . These various controllers and systems in the building may be used to receive input from and/or control the following in the building: HVAC system 430, lights 435, security sensors 440, door locks 445, cameras 450 and Tintable window 455.

主網路控制器405可按與關於圖2所描述之主控制器208類似的方式起作用。照明控制面板410(圖4)可包括用以控制本文中所揭示之任何裝置(例如,操作性地耦接至控制器之內部照明)的電路系統。裝置可包含內部照明、外部照明、緊急警告燈、緊急出口標誌及緊急樓層出口照明,該照明與建築物相關聯且操作性地耦接至控制器。照明控制面板410可包括其他裝置(例如,佔用感測器)。建築物管理系統(BMS)415可包括自操作性地耦接至網路400之其他系統及控制器接收資料及/或向該等其他系統及控制器發佈命令的電腦伺服器。舉例而言,BMS 415可自主網路控制器405、照明控制面板410及安全控制系統420中之每一者接收資料且向主網路控制器、照明控制面板及安全控制系統中之每一者發佈命令。安全控制系統420可包括磁卡存取、十字轉門(turnstile)、螺線管驅動式門鎖、監視攝影機、防盜警報器、金屬偵測器及其類似者。使用者控制台425可為電腦終端機,該電腦終端機可由建築物管理者使用以排程建築物之不同系統的操作,對該等系統進行控制、監測、最佳化及故障診斷。來自Tridium公司之軟體可為使用者控制台425產生來自不同系統之資料的視覺表示。The master network controller 405 may function in a similar manner as the master controller 208 described with respect to FIG. 2 . Lighting control panel 410 (FIG. 4) may include circuitry to control any of the devices disclosed herein (eg, interior lighting operatively coupled to the controller). The device may include interior lighting, exterior lighting, emergency warning lights, emergency exit signs, and emergency floor exit lighting associated with the building and operatively coupled to the controller. Lighting control panel 410 may include other devices (eg, occupancy sensors). Building management system (BMS) 415 may include computer servers that receive data from and/or issue commands to other systems and controllers operatively coupled to network 400 . For example, BMS 415 may receive data from each of network controller 405, lighting control panel 410, and security control system 420 and send data to each of the network controller, lighting control panel, and security control system Issue an order. Security control system 420 may include magnetic card access, turnstiles, solenoid actuated door locks, surveillance cameras, burglar alarms, metal detectors, and the like. User console 425 may be a computer terminal that can be used by building managers to schedule the operation of the various systems of the building, control, monitor, optimize, and troubleshoot such systems. Software from Tridium Corporation can generate visual representations of data from various systems for the user console 425 .

不同控制件中之每一者可控制個別裝置/設備。主網路控制器405可控制窗455。照明控制面板410可控制燈435。BMS 415可控制HVAC 430。安全控制系統420可控制安全感測器440、門鎖445及攝影機450。資料可在為建築物網路400之部分的(例如,所有)不同裝置與控制器之間交換及/或共用。Each of the different controls can control an individual device/apparatus. The main network controller 405 can control the window 455 . Lighting control panel 410 may control lights 435 . The BMS 415 can control the HVAC 430 . The security control system 420 can control the security sensor 440 , the door lock 445 and the camera 450 . Data may be exchanged and/or shared between different devices and controllers that are part of building network 400 (eg, all).

在一些狀況下,BMS 415及/或建築物網路400之系統的至少一部分可根據每日、每月、每季度或每年排程運行。舉例而言,照明控制系統、窗控制系統、HVAC及安全系統可按24小時排程操作,該排程考慮在工作日期間人何時在建築物中。至少兩個裝置類別(例如,430、435、440、445、450及455)可彼此根據不同排程運行。至少兩個裝置類別(例如,430、435、440、445、450及455)可根據(例如,實質上)相同排程運行。舉例而言,在夜間,建築物可進入能量節省模式,而在白天,系統可按最小化建築物之能量消耗同時提供佔用者舒適性、安全及健康之方式操作。作為另一實例,系統可在假期內關機或進入能量節省模式。In some cases, at least a portion of the system of BMS 415 and/or building network 400 may operate on a daily, monthly, quarterly, or annual schedule. For example, lighting control systems, window control systems, HVAC, and security systems may operate on a 24-hour schedule that takes into account when people are in the building during the workday. At least two device classes (eg, 430, 435, 440, 445, 450, and 455) may operate according to different schedules from each other. At least two device classes (eg, 430, 435, 440, 445, 450, and 455) may operate according to (eg, substantially) the same schedule. For example, at night, a building may enter an energy saving mode, while during the day, the system may operate in a manner that minimizes the building's energy consumption while providing occupant comfort, safety, and health. As another example, the system may shut down or enter an energy saving mode during a vacation.

排程資訊可與地理資訊組合。地理資訊可包括建築物之緯度及/或經度。地理資訊可包括關於建築物之至少一側所面向之方向的資訊。使用此資訊,可用不同方式控制建築物之不同側上的不同房間。舉例而言,在冬天,對於建築物之面向東的房間,窗控制器可指示窗在早晨不具有色調,使得房間由於陽光照射在房間裏而變暖,且因為來自陽光之照明,照明控制面板可指示燈調暗。面向西之窗在早晨可由房間之佔用者控制,此係因為西側上之窗的色調可能不會影響能量節省。面向東之窗及面向西之窗的操作模式可在晚間切換(例如,當太陽落下時,面向西之窗可能不著色以允許陽光進入,以帶來熱量及照明)。Scheduling information can be combined with geographic information. The geographic information may include the latitude and/or longitude of the building. The geographic information may include information about the direction in which at least one side of the building faces. Using this information, different rooms on different sides of the building can be controlled in different ways. For example, in winter, for an east-facing room of a building, the window controller may instruct the window to have no tint in the morning, causing the room to warm due to sunlight shining in the room, and because of the lighting from the sunlight, the lighting control panel The indicator light can be dimmed. The west facing windows can be controlled by the room occupants in the morning because the hue of the windows on the west side may not affect energy savings. The operating modes of the east-facing and west-facing windows can be switched at night (eg, when the sun sets, the west-facing windows may not be tinted to allow sunlight in for heat and illumination).

在一些實施例中,複數個總成(例如,裝置集)部署為遍及特定封閉體(例如,建築物)中、其部分(例如,房間或樓層)中或橫跨複數個此類封閉體的處理系統內之互連(例如,IP)的可定址節點(例如,裝置)。圖5展示具有複數個子封閉體(例如,樓層)之封閉體(例如,建築物)內的網路系統之示意性實例。在圖5之實例中,封閉體500為具有樓層1、樓層2及樓層3之建築物。封閉體500包括網路520(例如,有線網路),該網路經提供以通信耦接任何可定址電路系統(例如,可定址節點),諸如共同地由510表示之裝置或裝置集(在本文中亦被稱作「組件群集」(例如,裝置群集))。在圖5中所展示之實例中,三個樓層為封閉體500內之子封閉體。至少兩個裝置可為彼此不同的類型。至少兩個裝置可為相同類型。至少兩個裝置集可為彼此不同的類型。至少兩個裝置集可為相同類型。In some embodiments, a plurality of assemblies (eg, sets of devices) are deployed throughout a particular enclosure (eg, a building), in portions thereof (eg, rooms or floors), or across a plurality of such enclosures Addressable nodes (eg, devices) that handle interconnections (eg, IP) within a system. 5 shows a schematic example of a network system within an enclosure (eg, a building) having a plurality of sub-enclosures (eg, floors). In the example of FIG. 5, the enclosure 500 is a building with floor 1, floor 2, and floor 3. The enclosure 500 includes a network 520 (eg, a wired network) provided to communicatively couple any addressable circuitry (eg, an addressable node), such as a device or set of devices collectively represented by 510 (in the Also referred to herein as a "component cluster" (eg, a device cluster). In the example shown in FIG. 5 , three floors are sub-enclosures within enclosure 500 . At least two devices may be of different types from each other. At least two devices may be of the same type. At least two device sets may be of different types from each other. At least two device sets may be of the same type.

在一些實施例中,封閉體包括一個或多個感測器。感測器可促進控制封閉體之環境,例如使得封閉體之居民可具有較舒適、合意、美麗、健康、富有成效(例如,就居民表現而言)、較易於生活(例如,工作)或其任何組合的環境。感測器可經組態為低或高解析度感測器。感測器可提供環境事件之發生及/或存在的開/關指示(例如,一個像素感測器)。在一些實施例中,可經由人工智慧(本文中縮寫為「AI」)對感測器之量測的分析來改善感測器之準確度及/或解析度。可使用的人工智慧技術之實例包括:本領域中熟習此項技術者已知的反應性、有限記憶、心理理論及/或自感知技術。感測器(包括其電路系統)可經組態以處理、量測、分析、偵測以下各者及/或對以下各者作出反應:資料、溫度、濕度、聲音、力、壓力、濃度、電磁波、位置、距離、移動、流量、加速度、速度、振動、灰塵、光、眩光、色彩、氣體類型及/或(例如,封閉體)之環境的任何其他態樣(例如,特性)。氣體可包括揮發性有機化合物(VOC)。氣體可包括一氧化碳、二氧化碳、水蒸氣(例如,濕度)、氧氣、氡氣及/或硫化氫。一個或多個感測器可在工廠設置及/或設施中校準。感測器可經最佳化以執行存在於工廠設置及/或部署有該感測器之設施中的一個或多個環境特性之準確量測。控制環境及/或可著色窗、感測器、控制系統及網路之人工智慧技術、機器學習、其使用的實例可見於2021年2月11日申請之國際專利申請案第PCT/US21/17603號及2019年8月14日申請之國際專利申請案第PCT/US19/46524號中,該等申請案各自以全文引用的方式併入本文中。In some embodiments, the enclosure includes one or more sensors. Sensors can facilitate controlling the environment of an enclosure, eg, so that the occupants of the enclosure can be more comfortable, desirable, beautiful, healthy, productive (eg, in terms of resident performance), easier to live (eg, work), or any combination of environments. The sensors can be configured as low or high resolution sensors. A sensor can provide an on/off indication of the occurrence and/or presence of an environmental event (eg, a pixel sensor). In some embodiments, the accuracy and/or resolution of the sensor may be improved through analysis of the sensor's measurements by artificial intelligence (abbreviated herein as "AI"). Examples of artificial intelligence techniques that may be used include: reactivity, limited memory, theory of mind, and/or self-perception techniques known to those skilled in the art. A sensor (including its circuitry) can be configured to process, measure, analyze, detect and/or respond to: data, temperature, humidity, sound, force, pressure, concentration, Electromagnetic waves, location, distance, movement, flow, acceleration, velocity, vibration, dust, light, glare, color, gas type, and/or any other aspect (eg, property) of the environment (eg, enclosure). Gases may include volatile organic compounds (VOCs). Gases may include carbon monoxide, carbon dioxide, water vapor (eg, humidity), oxygen, radon, and/or hydrogen sulfide. One or more sensors may be calibrated at the factory and/or in the facility. A sensor can be optimized to perform accurate measurements of one or more environmental characteristics that exist in a factory setting and/or in the facility in which the sensor is deployed. Artificial intelligence technology, machine learning, and examples of its use to control environments and/or tintable windows, sensors, control systems and networks can be found in International Patent Application No. PCT/US21/17603 filed on February 11, 2021 and International Patent Application No. PCT/US19/46524 filed on August 14, 2019, each of which is incorporated herein by reference in its entirety.

耦接至網路之感測器可經組態以感測包含以下各者之屬性:溫度、相對濕度(RH)、照度(例如,以勒克司為單位)、溫度(以攝氏度為單位)、相關色溫(CCT,例如以凱氏溫度為單位)、二氧化碳(例如,以百萬分之幾為單位(ppm))、揮發性有機化合物(VOC,例如作為指標值)、壓力(例如,作為以分貝為單位之聲壓)、粉狀材料、紅外線、紫外線或可見光。感測器可具有準確度。感測器可具有隨機可變性。隨機可變性(例如,長期隨機可變性之統計度量)。溫度感測器之隨機可變性可為至多約0.5攝氏度(℃)、0.3℃、0.2℃或0.1℃。RH感測器之隨機可變性可為至多約3%、2%、1.5%或1%。照度感測器之隨機可變性可為至多約20勒克斯(LUX)、15 LUX、10 LUX或5 LUX。CCT感測器之隨機可變性可為至多約250凱爾文(K)、220K、210K、200K、190K或150K。二氧化碳感測器之隨機可變性可為至多約25 ppm、23 ppm、20 ppm、19 ppm或15 ppm。VOC感測器之隨機可變性可為至多約15個指標值(IV)、12IV、11IV、10IV或5IV。聲壓感測器之隨機可變性可為至多約10分貝(dB)、8 dB、5 dB、4 dB或2 dB。有時,感測器集可包含量測裝置集中之溫度(例如,內部裝置集溫度)及/或裝置集外之溫度(例如,外部裝置集溫度,諸如安置有裝置集之房間中的溫度)。在一些實施例中,來自感測器之資料經受處理及/或分析。資料處理可包含移除間隙、移除異常(例如,在範圍資料外)、執行空間外推或校準。資料處理對於由不同類型之感測器獲得的資料可能有所不同。舉例而言,來自溫度感測器之資料可經受與VOC感測器之資料不同的處理及/或分析。資料處理可包含資料設算。資料處理可包含資料過濾。資料過濾對於由不同類型之感測器獲得的資料可能有所不同。資料過濾可包含中值、均值、標準偏差或選擇最小值作為過濾機制。標準偏差之絕對值可為至多約1西格馬(σ)、2σ、3σ或4σ。資料過濾可包含得到絕對偏差(例如,均值絕對偏差及/或中值絕對偏差)。有時,基於中值之方法可優於基於均值之方法。媒體可包含絕對偏差之中值。有時,資料處理及/或分析可包含得到最小值之標準偏差,例如以導出長期變化(例如,在感測器之特定部位中)。中值絕對偏差可包含與中值之中值絕對距離。均值絕對偏差可包含與均值之均值絕對距離。過濾可包含移除環境雜訊(例如,波動)。空間外推可具有由感測器針對安置有感測器之空間量測到的屬性,例如以提供空間之感測器屬性映射。舉例而言,感測器資料可為溫度資料,空間映射可為安置有溫度感測器之房間的溫度映射。校準引擎可考慮基於裝置之長期漂移。感測器校準之實例可見於2021年1月28日申請之題為「感測器校準及操作(SENSOR CALIBRATION AND OPERATION)」的國際專利申請案第PCT/US21/15378號中,該申請案以全文引用的方式併入本文中。可例如週期性地再新資料處理及/或分析。舉例而言,可至多每10秒(s)、20 s、30 s、45 s、60 s、2分鐘(min)、5 min或10 min執行感測器取樣。可在任一前述值之間執行感測器取樣(例如,每10 s至每10 min)。舉例而言,可至多每1分鐘(min)、2.5 min、5 min或10 min執行所感測屬性之空間映射。可在任一前述值之間執行空間映射(例如,每1 min至每10 min)。感測器取樣及/或空間映射可在設施之高及/或低佔用率期間執行。可在設施(例如,人員及/或機器)之高及/或低活動時段期間執行感測器取樣及/或空間映射。可隨機地及/或隨心所欲地執行感測器取樣及/或空間映射。Sensors coupled to the network can be configured to sense properties including temperature, relative humidity (RH), illuminance (eg, in lux), temperature (in degrees Celsius), Correlated Color Temperature (CCT, e.g. in Kjeldahl), Carbon Dioxide (e.g., parts per million (ppm)), Volatile Organic Compounds (VOC, e.g. as an indicator value), Pressure (e.g., as a sound pressure in decibels), powdered materials, infrared, ultraviolet or visible light. The sensor can have accuracy. Sensors can have random variability. Stochastic variability (eg, a statistical measure of long-term stochastic variability). The random variability of the temperature sensor may be at most about 0.5 degrees Celsius (°C), 0.3°C, 0.2°C, or 0.1°C. The random variability of the RH sensor may be at most about 3%, 2%, 1.5%, or 1%. The random variability of the illuminance sensor can be up to about 20 lux (LUX), 15 LUX, 10 LUX, or 5 LUX. The random variability of the CCT sensor can be up to about 250 Kelvin (K), 220K, 210K, 200K, 190K or 150K. The random variability of the carbon dioxide sensor can be up to about 25 ppm, 23 ppm, 20 ppm, 19 ppm, or 15 ppm. The random variability of the VOC sensor can be up to about 15 index values (IV), 12IV, 11IV, 10IV, or 5IV. The random variability of the sound pressure sensor can be up to about 10 decibels (dB), 8 dB, 5 dB, 4 dB, or 2 dB. Occasionally, the sensor set may include measuring the temperature of the set of devices (eg, the temperature of the internal set of devices) and/or the temperature outside the set of devices (eg, the temperature of the set of external devices, such as the temperature in the room in which the set of devices is housed) . In some embodiments, data from the sensors is processed and/or analyzed. Data processing may include removing gaps, removing anomalies (eg, outside of range data), performing spatial extrapolation or calibration. Data processing may vary for data obtained by different types of sensors. For example, data from temperature sensors may be subject to different processing and/or analysis than data from VOC sensors. Data processing may include data manipulation. Data processing may include data filtering. Data filtering may vary for data obtained by different types of sensors. Data filtering can include median, mean, standard deviation, or select the minimum value as the filtering mechanism. The absolute value of the standard deviation can be at most about 1 sigma (σ), 2σ, 3σ, or 4σ. Data filtering may include obtaining absolute deviations (eg, mean absolute deviations and/or median absolute deviations). In some cases, median-based methods can be better than mean-based methods. Media may contain median absolute deviations. Sometimes, data processing and/or analysis may involve obtaining the standard deviation of the minimum value, eg, to derive long-term variation (eg, in a particular location of the sensor). The median absolute deviation may contain the absolute distance from the median median. The mean absolute deviation can include the mean absolute distance from the mean. Filtering may include removing ambient noise (eg, fluctuations). Spatial extrapolation may have properties measured by the sensor for the space in which the sensor is disposed, eg, to provide a sensor property map of the space. For example, the sensor data may be temperature data, and the spatial map may be a temperature map of the room in which the temperature sensor is placed. The calibration engine can account for device-based long-term drift. An example of sensor calibration can be found in International Patent Application No. PCT/US21/15378, entitled "SENSOR CALIBRATION AND OPERATION", filed on January 28, 2021, which starts with Incorporated herein by reference in its entirety. Data processing and/or analysis may be refreshed, for example, periodically. For example, sensor sampling may be performed at most every 10 seconds (s), 20 s, 30 s, 45 s, 60 s, 2 minutes (min), 5 min, or 10 min. Sensor sampling may be performed between any of the foregoing values (eg, every 10 s to every 10 min). For example, spatial mapping of sensed attributes may be performed at most every 1 minute (min), 2.5 min, 5 min, or 10 min. Spatial mapping can be performed between any of the foregoing values (eg, every 1 min to every 10 min). Sensor sampling and/or spatial mapping may be performed during periods of high and/or low occupancy of the facility. Sensor sampling and/or spatial mapping may be performed during periods of high and/or low activity of a facility (eg, people and/or machines). Sensor sampling and/or spatial mapping may be performed randomly and/or arbitrarily.

在一些實施例中,裝置(例如,感測器)可指明為黃金裝置,該裝置可用作參考(例如,用作黃金標準)以用於校準其他感測器(例如,在此或另一設施中之相同類型的感測器)。黃金裝置可為在設施或其部分中(例如,在建築物中、在樓層中及/或在房間中)校準最多的裝置。經校準及/或定位裝置可用作用於校準及/或定位其他裝置(例如,為相同類型)之標準。此類裝置可被稱作「黃金裝置」。黃金裝置用作參考裝置。黃金裝置可為在設施中(例如,在相同類型之裝置當中)校準最多及/或最準確地定位的裝置。In some embodiments, a device (eg, a sensor) may be designated as a gold device, which may be used as a reference (eg, as a gold standard) for calibrating other sensors (eg, here or another sensors of the same type in the facility). A golden device may be the device that is most calibrated in a facility or part thereof (eg, in a building, in a floor, and/or in a room). The calibrated and/or positioned device can be used as a standard for calibrating and/or positioning other devices (eg, of the same type). Such devices may be referred to as "golden devices". Gold fixtures are used as reference fixtures. A golden device may be the device that is most calibrated and/or most accurately positioned in a facility (eg, among devices of the same type).

在一些實施例中,相同類型之複數個感測器可分佈於複數個部位或外殼中。舉例而言,相同類型之複數個感測器中之至少一者可為集之部分。舉例而言,相同類型之複數個感測器中之至少兩者可為至少兩個不同集之部分。裝置集可分佈於封閉體中。封閉體可包含會議室或自助餐廳。舉例而言,相同類型之複數個感測器可量測會議室中之環境特性(例如,參數)。回應於對封閉體之環境參數的量測,可產生封閉體之參數拓樸。可利用來自例如如本文中所揭示之任何類型之感測器或裝置集的輸出信號來產生參數拓樸。可針對諸如會議室、走廊、盥洗室、自助餐廳、車庫、禮堂、雜物間、貯藏室、機房、戶間壁(例如,電及/或電梯戶間壁)及/或電梯之設施的任何封閉體產生參數拓樸。可使用的人工智慧技術之實例包括:本領域中熟習此項技術者已知的反應性、有限記憶、心理理論及/或自感知技術。感測器可經組態以處理、量測、分析、偵測以下各者中之一者或多者及/或對以下各者中之一者或多者作出反應:資料、溫度、濕度、聲音、力、壓力、電磁波、位置、距離、移動、流量、加速度、速度、振動、灰塵、光、眩光、色彩、氣體、病原體曝露(或可能的病原體曝露)及/或(例如,封閉體)之環境的其他態樣(例如,特性)。氣體可包括揮發性有機化合物(VOC)。氣體可包括一氧化碳、二氧化碳、甲醛、萘、牛磺酸、水蒸氣(例如,濕度)、氧氣、氡氣及/或硫化氫。一個或多個感測器可在工廠設置中校準。感測器可經最佳化以能夠執行存在於工廠設置中之一個或多個環境特性的準確量測。在一些情況下,經工廠校準之感測器可能不太適合在目標環境中操作。舉例而言,工廠設置可包含與目標環境不同的環境。目標環境可為部署有感測器的環境。目標環境可為預期及/或指定感測器操作所在的環境。目標環境可不同於工廠環境。工廠環境對應於組裝及/或建置感測器之部位。目標環境可包含未組裝及/或建置感測器之工廠。在一些情況下,就在目標環境中俘獲之感測器讀數為錯誤的(例如,在可量測範圍內)而言,工廠設置可不同於目標環境。在此上下文中,「錯誤」可指偏離指定準確度(例如,由感測器之製造商指定)之感測器讀數。在一些情形中,當在目標環境中操作時,工廠校準之感測器可提供不符合準確度規格(例如,由製造商提供)之讀數。In some embodiments, multiple sensors of the same type may be distributed in multiple locations or housings. For example, at least one of the plurality of sensors of the same type may be part of a set. For example, at least two of the plurality of sensors of the same type may be part of at least two different sets. The set of devices may be distributed in the enclosure. Enclosures may contain meeting rooms or cafeterias. For example, a plurality of sensors of the same type can measure environmental characteristics (eg, parameters) in a conference room. In response to measurements of environmental parameters of the enclosure, a parametric topology of the enclosure can be generated. The parametric topology can be generated using output signals from, for example, any type of sensor or set of devices as disclosed herein. Any facility that may be directed to facilities such as meeting rooms, hallways, bathrooms, cafeterias, garages, auditoriums, utility rooms, storage rooms, machine rooms, partitions (eg, electrical and/or elevator partitions) and/or elevators A closed volume produces a parametric topology. Examples of artificial intelligence techniques that may be used include: reactivity, limited memory, theory of mind, and/or self-perception techniques known to those skilled in the art. Sensors can be configured to process, measure, analyze, detect and/or respond to one or more of the following: data, temperature, humidity, Sound, force, pressure, electromagnetic waves, position, distance, movement, flow, acceleration, speed, vibration, dust, light, glare, color, gas, pathogen exposure (or possible pathogen exposure) and/or (eg, enclosures) other aspects (eg, properties) of the environment. Gases may include volatile organic compounds (VOCs). Gases may include carbon monoxide, carbon dioxide, formaldehyde, naphthalene, taurine, water vapor (eg, humidity), oxygen, radon, and/or hydrogen sulfide. One or more sensors can be calibrated in the factory settings. The sensors can be optimized to be able to perform accurate measurements of one or more environmental characteristics that exist in a factory setting. In some cases, a factory calibrated sensor may not be suitable for operation in the target environment. For example, the factory settings may contain a different environment than the target environment. The target environment may be the environment in which the sensor is deployed. The target environment may be the environment in which the sensor is expected and/or specified to operate. The target environment can be different from the factory environment. The factory environment corresponds to where the sensor is assembled and/or built. The target environment may include factories where sensors are not assembled and/or built. In some cases, the factory settings may differ from the target environment insofar as sensor readings captured in the target environment are erroneous (eg, within a measurable range). In this context, "error" may refer to a sensor reading that deviates from a specified accuracy (eg, as specified by the sensor's manufacturer). In some cases, factory calibrated sensors may provide readings that do not meet accuracy specifications (eg, provided by the manufacturer) when operating in the target environment.

在一些實施例中,處理感測器資料包含執行感測器資料分析。感測器資料分析可包含至少一個合理的決策製定程序及/或學習。感測器資料分析可用以例如藉由調整影響封閉體之環境的一個或多個組件來調整及環境。資料分析可藉由基於機器之系統(例如,電路系統)執行。該電路系統可屬於處理器。感測器資料分析可利用人工智慧。感測器資料分析可依賴於一個或多個模型(例如,數學模型)。在一些實施例中,感測器資料分析包含線性回歸、最小平方擬合、高斯程序回歸、核回歸、非參數乘法回歸(NPMR)、回歸樹、局部回歸、半參數回歸、等滲回歸、多變量自適應回歸樣條(MARS)、邏輯回歸、穩健回歸、多項式回歸、逐步回歸、脊回歸、套索回歸、彈性網回歸、主成份分析(PCA)、奇異值分解、模糊測度論、波萊爾(Borel)測度、漢(Han)測度、風險中性測度、勒貝格(Lebesgue)測度、分組資料處置方法(GMDH)、樸素貝葉斯分類器、k最近相鄰演算法(k-NN)、支援向量機(SVM)、神經網路、支援向量機、分類及回歸樹(CART)、隨機森林、梯度提昇、廣義線性模型(GLM)技術或深度學習技術。神經網路可包含密集神經網路或沿著短期記憶體(LSTM)網路。神經網路可包含LSTM網路或深度神經網路(DNN)。可用於一些實施方案中之實例DNN架構包括卷積神經網路(CNN)、遞迴神經網路(RNN)、深度信念網路(DBN)及其類似者。In some embodiments, processing sensor data includes performing sensor data analysis. Sensor data analysis may include at least one rational decision-making process and/or learning. Sensor data analysis can be used to adjust the environment, for example, by adjusting one or more components that affect the environment of the enclosure. Data analysis can be performed by machine-based systems (eg, circuitry). The circuitry may belong to a processor. Sensor data analysis can leverage artificial intelligence. Sensor data analysis may rely on one or more models (eg, mathematical models). In some embodiments, sensor data analysis includes linear regression, least squares fitting, Gaussian procedure regression, kernel regression, nonparametric multiplicative regression (NPMR), regression trees, local regression, semiparametric regression, isotonic regression, multiple Variable Adaptive Regression Splines (MARS), Logistic Regression, Robust Regression, Polynomial Regression, Stepwise Regression, Ridge Regression, Lasso Regression, Elastic Net Regression, Principal Component Analysis (PCA), Singular Value Decomposition, Fuzzy Measure Theory, Polet Borel measure, Han measure, Risk neutral measure, Lebesgue measure, Grouped data disposition method (GMDH), Naive Bayes classifier, k nearest neighbor algorithm (k-NN) ), support vector machines (SVM), neural networks, support vector machines, classification and regression trees (CART), random forests, gradient boosting, generalized linear model (GLM) techniques or deep learning techniques. Neural networks may include dense neural networks or along short-term memory (LSTM) networks. Neural networks may include LSTM networks or deep neural networks (DNNs). Example DNN architectures that can be used in some implementations include Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), and the like.

在一個實施例中,將輸入特徵(例如,兩百(200)個或多於兩百個輸入特徵之集合)饋入至神經網路中。神經網路架構之一個實例為深度密集神經網路,諸如具有至少七(7)個層及至少五十五(55)個總節點的網路。在一些DNN架構中,至少一個(例如,每一)輸入特徵與至少一個(例如,每一)第一層節點連接,且至少一個(例如,每一)節點為與至少一個(例如,每個)其他節點連接之占位符(變數X)。第一層中之節點模型化所有輸入特徵之間的關係。後續層中之節點學習在先前層中之至少一者中模型化的關係中之一關係。當執行DNN時,可例如藉由更新至少一個(例如,每一)節點占位符之係數權重來反覆地最小化誤差。In one embodiment, the input features (eg, a set of two hundred (200) or more input features) are fed into the neural network. One example of a neural network architecture is a deep dense neural network, such as a network with at least seven (7) layers and at least fifty-five (55) total nodes. In some DNN architectures, at least one (eg, each) input feature is connected to at least one (eg, each) first layer node, and at least one (eg, each) node is connected to at least one (eg, each) node ) placeholder for other node connections (variable X). Nodes in the first layer model the relationship between all input features. A node in a subsequent layer learns one of the relationships modeled in at least one of the previous layers. When performing a DNN, the error can be iteratively minimized, eg, by updating the coefficient weights of at least one (eg, each) node placeholder.

圖6展示分佈於封閉體當中的感測器之配置的圖600之實例。在圖6中所展示之實例中,控制器605與位於封閉體A中之感測器(感測器610A、610B、610C、……610Z)、封閉體B中之感測器(感測器615A、615B、615C、615Z)、封閉體C中之感測器(感測器620A、620B、620C、……620Z)及封閉體Z中之感測器(感測器685A、685B、685C、……685Z)通信鏈接(608)。通信鏈接包含有線及/或無線通信。在一些實施例中,裝置集包括不同類型之至少兩個感測器。在一些實施例中,裝置集包括不同類型之至少兩個發射器。在一些實施例中,裝置集包括相同類型之至少兩個感測器(例如,感測器陣列)。在一些實施例中,裝置集包括相同類型之至少兩個發射器(例如,發射器陣列,諸如發光二極體陣列)。6 shows an example of a diagram 600 of a configuration of sensors distributed among an enclosure. In the example shown in FIG. 6, the controller 605 is associated with sensors located in enclosure A (sensors 610A, 610B, 610C, ... 610Z), sensors in enclosure B (sensors 610Z) 615A, 615B, 615C, 615Z), sensors in enclosure C (sensors 620A, 620B, 620C, ... 620Z) and sensors in enclosure Z (sensors 685A, 685B, 685C, ... 685Z) communication link (608). Communication links include wired and/or wireless communications. In some embodiments, the set of devices includes at least two sensors of different types. In some embodiments, the set of devices includes at least two transmitters of different types. In some embodiments, the set of devices includes at least two sensors of the same type (eg, sensor arrays). In some embodiments, the set of devices includes at least two emitters of the same type (eg, an array of emitters, such as an array of light emitting diodes).

在一些實施例中,裝置集包括相同類型之至少兩個感測器。在圖6中所展示之實例中,封閉體A之感測器610A、610B、610C、……610Z表示集。感測器之集可指多種感測器之集合。在一些實施例中,集中之感測器中之至少兩者進行協作,以判定例如安置有該等感測器之封閉體的環境參數。舉例而言,裝置集可包括二氧化碳感測器、一氧化碳感測器、揮發性有機化學化合物感測器、環境雜訊感測器、光(可見光、UV及IR)感測器、溫度感測器及/或濕度感測器。裝置集可包含其他類型之感測器,且所主張主題不限於此。封閉體可包含並非感測器集之部分的一個或多個感測器。封閉體可包含複數個集。複數個集中之至少兩者可在其感測器中之至少一者上不同。複數個集中之至少兩者可具有其類似(例如,相同類型)之感測器中的至少一者。舉例而言,集可具有兩個運動感測器及一個溫度感測器。舉例而言,集可具有二氧化碳感測器及IR感測器。集可包括並非感測器的一個或多個裝置。並非感測器之一個或多個其他裝置可包括聲音發射器(例如,蜂鳴器)及/或電磁輻射發射器(例如,發光二極體)。在一些實施例中,單個感測器(例如,不在集中)可安置成鄰近(例如,緊鄰,諸如接觸)並非感測器之另一裝置。In some embodiments, the set of devices includes at least two sensors of the same type. In the example shown in FIG. 6, sensors 610A, 610B, 610C, . . . 610Z of enclosure A represent sets. A set of sensors may refer to a collection of various sensors. In some embodiments, at least two of the concentrated sensors cooperate to determine, for example, environmental parameters of the enclosure in which the sensors are located. For example, a set of devices may include carbon dioxide sensors, carbon monoxide sensors, VOC sensors, environmental noise sensors, light (visible, UV and IR) sensors, temperature sensors and/or humidity sensor. The set of devices may include other types of sensors, and the claimed subject matter is not so limited. The enclosure may contain one or more sensors that are not part of the sensor set. A closed volume can contain multiple sets. At least two of the plurality of sets may differ in at least one of their sensors. At least two of the plurality of sets can have at least one of their similar (eg, the same type) sensors. For example, a set may have two motion sensors and one temperature sensor. For example, a set may have a carbon dioxide sensor and an IR sensor. A set may include one or more devices that are not sensors. One or more other devices that are not sensors may include sound emitters (eg, buzzers) and/or electromagnetic radiation emitters (eg, light emitting diodes). In some embodiments, a single sensor (eg, not in a cluster) may be positioned adjacent (eg, in close proximity, such as in contact with) another device that is not a sensor.

裝置集中之感測器可彼此合作。一種類型之感測器可與至少一個其他類型之感測器相關。來自複數個感測器類型之資料可經合成以提供結果。結果可與由複數個感測器類型中之至少一者量測的屬性相關。結果可與未由複數個感測器類型中之任一者量測的屬性相關。設施中之各種感測器(例如,相同類型及/或不同類型)可一起工作,例如以產生所請求結果(例如,調整設施之環境)。感測器可包括於安置在設施中之感測器的陣列中。封閉體中之情形可影響不同感測器中之一者或多者。一個或多個不同感測器的感測器讀數可與該情形相關及/或受該情形影響。相關性可為預定的。可在一段時間內判定相關性(例如,使用學習程序)。該時段可為預定的。該時段可具有截止值。截止值可考慮例如在類似情形下的預測性感測器資料與所量測感測器資料之間的誤差臨限值(例如,百分比值)。時間可為持續的。可自學習集(在本文中亦被稱作「訓練集」)導出相關性。學習集可包含封閉體中之即時觀測結果及/或可自即時觀測結果導出。觀測結果可包括資料收集(例如,自感測器)。學習集可包含來自類似封閉體之感測器資料。學習集可包含(例如,感測器資料之)第三方資料集。學習集可自例如影響封閉體之一個或多個環境條件的模擬導出。學習集可構成添加了一種或多種類型之雜訊的已偵測(例如,歷史)信號資料。相關性可利用歷史資料、第三方資料及/或即時(例如,感測器)資料。兩種感測器類型之間的相關性可經指派有一值。該值可為相對值(例如,強相關性、中等相關性或弱相關性)。並非自即時量測導出之學習集可充當基準(例如,基線),以起始感測器及/或影響環境之各種組件(例如,HVAC系統及/或著色窗)之操作。即時感測器資料可例如在持續基礎上或在所界定時段內補充學習集。(例如,補充)學習集的大小在環境中部署感測器期間可增加。舉例而言,隨著包括額外(i)即時量測、(ii)來自其他(例如,類似)封閉體之感測器資料、(iii)第三方資料、(iv)其他及/或經更新模擬,初始學習集的大小可增加。The sensors in the device set can cooperate with each other. One type of sensor can be related to at least one other type of sensor. Data from multiple sensor types can be synthesized to provide results. The results may be related to properties measured by at least one of the plurality of sensor types. The results may be related to properties not measured by any of the plurality of sensor types. Various sensors in a facility (eg, of the same type and/or different types) can work together, eg, to produce a requested result (eg, to adjust the environment of the facility). The sensors may be included in an array of sensors disposed in the facility. The conditions in the enclosure can affect one or more of the different sensors. The sensor readings of one or more different sensors may be related to and/or affected by the situation. The correlation may be predetermined. Correlations can be determined over a period of time (eg, using a learning program). This period of time may be predetermined. The period can have a cutoff value. The cutoff value may consider, for example, an error threshold (eg, a percentage value) between the predicted sensor data and the measured sensor data in a similar situation. The time can be continuous. Correlations can be derived from a learning set (also referred to herein as a "training set"). A learning set may contain and/or may be derived from real-time observations in a closed volume. Observations may include data collection (eg, from sensors). The learning set may contain sensor data from similar closed bodies. A learning set may include third-party data sets (eg, of sensor data). A study set may be derived from, for example, a simulation that affects one or more environmental conditions within the enclosure. A learning set may constitute detected (eg, historical) signal data with the addition of one or more types of noise. Correlation can utilize historical data, third-party data, and/or real-time (eg, sensor) data. The correlation between two sensor types may be assigned a value. The value may be a relative value (eg, a strong correlation, a moderate correlation, or a weak correlation). Learning sets that are not derived from real-time measurements may serve as benchmarks (eg, baselines) to initiate operation of sensors and/or various components that affect the environment (eg, HVAC systems and/or tinting windows). The real-time sensor data may supplement the learning set, eg, on an ongoing basis or over a defined period of time. (eg, supplemental) The size of the learning set may increase during deployment of the sensor in the environment. For example, with the inclusion of additional (i) real-time measurements, (ii) sensor data from other (eg, similar) enclosures, (iii) third-party data, (iv) other and/or updated simulations , the size of the initial learning set can be increased.

在一些實施例中,來自感測器之資料可經相關。一旦建立了兩種或多於兩種感測器類型之間的相關性,則偏離相關性(例如,相關性值)可指示相關感測器中的感測器的不規則情形及/或故障。故障可包括校準存在偏移。故障可指示需要重新校準感測器。故障可包含感測器之完全故障。在一實例中,移動感測器可與二氧化碳感測器合作。在一實例中,回應於移動感測器偵測到封閉體中之一個或多個個體的移動,可啟動二氧化碳感測器以開始進行二氧化碳量測。封閉體中之移動的增加可與二氧化碳之含量增加相關。在另一實例中,運動感測器對封閉體中之個體的偵測可與由封閉體中之雜訊感測器偵測到的雜訊之增加相關。In some embodiments, data from sensors can be correlated. Once a correlation between two or more sensor types is established, deviating correlations (eg, correlation values) may indicate irregularities and/or malfunctions of the sensors of the related sensors . Failures can include calibration offsets. A failure may indicate that the sensor needs to be recalibrated. A failure can include a complete failure of the sensor. In one example, the motion sensor may cooperate with the carbon dioxide sensor. In one example, in response to the movement sensor detecting movement of one or more individuals in the enclosure, the carbon dioxide sensor may be activated to begin taking carbon dioxide measurements. An increase in movement in the enclosure can be correlated with an increase in the level of carbon dioxide. In another example, the detection of individuals in the enclosure by the motion sensor may be correlated with an increase in noise detected by the noise sensor in the enclosure.

在一些實施例中,第一類型之感測器進行的偵測未伴隨有第二類型之感測器進行的偵測可導致感測器發佈錯誤訊息。舉例而言,若運動感測器在未偵測到二氧化碳及/或雜訊增加之情況下偵測到封閉體中存在眾多個體,則二氧化碳感測器及/或雜訊感測器可識別為發生故障或具有不正確的輸出。可發佈錯誤訊息。第一集中的第一複數個不同的相關感測器可包括第一類型的一個感測器,及不同類型的第二複數個感測器。若第二複數個感測器指示相關性,且一個感測器指示不同於該相關性之讀數,則一個感測器發生故障之可能性增加。若第一集中的第一複數個感測器偵測到第一相關性,且第二集中的第三複數個相關感測器偵測到不同於第一相關性之第二相關性,則第一感測器集所曝露於的情形不同於第三感測器集所曝露於的情形的可能性增加。裝置集中之感測器可彼此合作。合作可包含考慮集中之(例如,不同類型之)另一感測器的感測器資料。合作可包含藉由集中之另一感測器(例如,類型)預計之趨勢。合作可包含藉由與集中之另一感測器(例如,類型)相關之資料預計的趨勢。其他感測器資料可自集中之另一感測器、其他集中之相同類型感測器或由集中之另一感測器收集的資料類型導出,該資料並非自另一感測器導出。舉例而言,第一集可包括壓力感測器及溫度感測器。壓力感測器與溫度感測器之間的合作可包含在分析及/或預計第一集中之溫度感測器的溫度資料時考慮壓力感測器資料。壓力資料可為(i)第一集中之壓力感測器的壓力資料、(ii)一個或多個其他集中之壓力感測器的壓力資料、(iii)其他感測器之壓力資料及/或(iv)第三方之壓力資料。圖7展示分佈於封閉體內之裝置集的配置之圖700的實例。在圖7中所展示之實例中,個體之群組710就座於會議室702中。會議室包括用以指示長度之「X」尺寸、用以指示高度之「Y」尺寸及用以指示深度之「Z」尺寸。XYZ為笛卡爾座標系統中之方向。裝置集705A、705B及705C包含可類似於參看圖3之裝置集323所描述之感測器操作的感測器。至少兩個裝置集(例如,705A、705B及705C)可整合至單個感測器模組中。裝置集705A、705B及705C可包括二氧化碳(CO 2)感測器、周圍環境雜訊感測器或本文中所揭示之任何其他感測器。在圖7中所展示之實例中,第一裝置集705A安置(例如,裝設)於點715A附近,該點可對應於天花板、壁中的部位或在個體群組710就座之桌子的一側的其他部位。在圖7中所展示之實例中,第二裝置集705B安置(例如,裝設)於點715B附近,該點可對應於天花板、壁中之部位或在個體群組710就座之桌子上方(例如,正上方)的其他部位。在圖7中所展示之實例中,第三裝置集705C安置(例如,裝設)於點715C附近,該點可對應於天花板、壁中的部位或在相對較小個體群組710就座之桌子側的其他部位。任何數目個額外感測器及/或感測器模組可定位於會議室702之其他部位處。裝置集可安置於封閉體中任何處。封閉體中之感測器集的部位可具有座標(例如,在笛卡爾座標系統中)。(例如,x、y及z之)至少一個座標在例如安置於封閉體中之兩個或多於兩個裝置集之間可能有所不同。(例如,x、y及z之)至少兩個座標在例如安置於封閉體中之兩個或多於兩個裝置集之間可能有所不同。(例如,x、y及z之)所有座標在例如安置於封閉體中之兩個或多於兩個裝置集之間可能有所不同。舉例而言,兩個裝置集可具有相同的x座標及不同的y及z座標。舉例而言,兩個裝置集可具有相同的x及y座標及不同的z座標。舉例而言,兩個裝置集可具有不同的x、y及z座標。在一些實施例中,裝置集之一個或多個感測器提供讀數。在一些實施例中,感測器經組態以感測參數。參數可包含溫度、微粒物質、揮發性有機化合物、電磁能、壓力、加速度、時間、雷達、雷射雷達、玻璃振動、玻璃破裂、移動或氣體。氣體可包含諾貝爾氣體。氣體可為對普通人有害的氣體。氣體可為周圍環境大氣中存在之氣體(例如,氧氣、二氧化碳、臭氧、氯化碳化合物或氮氣化合物)。氣體可包含氡氣、一氧化碳、硫化氫、氫氣、氧氣、水(例如,濕度)、一氧化氮(NO)或二氧化氮(NO 2)。電磁感測器可包含紅外線、可見光、紫外線感測器。紅外線輻射可為被動紅外線輻射(例如,黑體輻射)。電磁感測器可感測無線電波。無線電波可包含寬頻或超寬頻無線電信號。無線電波可包含脈衝無線電波。無線電波可包含用於通信之無線電波。無線電波可處於至少約300千赫(KHz)、500 KHz、800 KHz、1000 KHz、1500 KHz、2000 KHz或2500 KHz之中頻。無線電波可處於至多約500 KHz、800 KHz、1000 KHz、1500 KHz、2000 KHz、2500 KHz或3000 KHz之中頻。無線電波可處於在前述頻率範圍之間的任何頻率(例如,約300 KHz至約3000 KHz)。無線電波可處於至少約3兆赫(MHz)、5 MHz、8 MHz、10 MHz、15 MHz、20 MHz或25 MHz之高頻。無線電波可處於至多約5 MHz、8 MHz、10 MHz、15 MHz、20 MHz、25 MHz或30 MHz之高頻。無線電波可處於在前述頻率範圍之間的任何頻率(例如,約3 MHz至約30 MHz)。無線電波可處於至少約30兆赫(MHz)、50 MHz、80 MHz、100 MHz、150 MHz、200 MHz或250 MHz之極高頻。無線電波可處於至多約50 MHz、80 MHz、100 MHz、150 MHz、200 MHz、250 MHz或300 MHz之極高頻。無線電波可處於在前述頻率範圍之間的任何頻率(例如,約30 MHz至約300 MHz)。無線電波可處於至少約300千赫(MHz)、500 MHz、800 MHz、1000 MHz、1500 MHz、2000 MHz或2500 MHz之超高頻。無線電波可處於至多約500 MHz、800 MHz、1000 MHz、1500 MHz、2000 MHz、2500 MHz或3000 MHz之超高頻。無線電波可處於在前述頻率範圍之間的任何頻率(例如,約300 MHz至約3000 MHz)。無線電波可處於至少約3吉赫(GHz)、5 GHz、8 GHz、10 GHz、15 GHz、20 GHz或25 GHz之超高頻。無線電波可處於至多約5 GHz、8 GHz、10 GHz、15 GHz、20 GHz、25 GHz或30 GHz之超高頻。無線電波可處於在前述頻率範圍之間的任何頻率(例如,約3 GHz至約30 GHz)。 In some embodiments, a detection by a sensor of the first type not accompanied by a detection by a sensor of the second type may cause the sensor to issue an error message. For example, if the motion sensor detects a large number of individuals in the enclosure without detecting an increase in carbon dioxide and/or noise, the carbon dioxide sensor and/or noise sensor may be identified as malfunctions or has incorrect output. Error messages can be posted. The first plurality of different associated sensors in the first set may include one sensor of a first type, and a second plurality of sensors of a different type. If the second plurality of sensors indicate a correlation, and one sensor indicates a reading that differs from the correlation, the likelihood of one sensor failing increases. If the first correlation is detected by the first plurality of sensors in the first set, and the second correlation different from the first correlation is detected by the third plurality of correlation sensors in the second set There is an increased likelihood that one sensor set is exposed to a different situation than the third sensor set is exposed to. The sensors in the device set can cooperate with each other. Collaborating may include considering sensor data from another sensor in a concentration (eg, of a different type). Collaboration may include trends predicted by another sensor (eg, type) of focus. Collaboration can include trends predicted by data related to another sensor (eg, type) in the collection. Other sensor data may be derived from another sensor in the set, a sensor of the same type in another set, or the type of data collected by another sensor in the set that is not derived from another sensor. For example, the first set may include pressure sensors and temperature sensors. The cooperation between the pressure sensor and the temperature sensor may include considering the pressure sensor data when analyzing and/or predicting the temperature data of the temperature sensors in the first set. The pressure data may be (i) pressure data from a first set of pressure sensors, (ii) pressure data from one or more other sets of pressure sensors, (iii) pressure data from other sensors, and/or (iv) third party pressure information. FIG. 7 shows an example of a diagram 700 of a configuration of a set of devices distributed within an enclosure. In the example shown in FIG. 7 , a group 710 of individuals are seated in a conference room 702 . The meeting room includes an "X" dimension to indicate length, a "Y" dimension to indicate height, and a "Z" dimension to indicate depth. XYZ are directions in a Cartesian coordinate system. Device sets 705A, 705B, and 705C include sensors that may operate similar to those described with reference to device set 323 of FIG. 3 . At least two sets of devices (eg, 705A, 705B, and 705C) can be integrated into a single sensor module. Device sets 705A, 705B, and 705C may include carbon dioxide ( CO2 ) sensors, ambient noise sensors, or any other sensor disclosed herein. In the example shown in FIG. 7, the first set of devices 705A is positioned (eg, installed) near a point 715A, which may correspond to a ceiling, a location in a wall, or a table at a table where the group of individuals 710 is seated other parts of the side. In the example shown in FIG. 7, the second set of devices 705B is positioned (eg, mounted) near a point 715B, which may correspond to a ceiling, a location in a wall, or above a table where the group of individuals 710 is seated ( For example, directly above) other parts. In the example shown in FIG. 7, a third set of devices 705C is positioned (eg, installed) near a point 715C, which may correspond to a ceiling, a location in a wall, or where a relatively small group of individuals 710 are seated Other parts on the side of the table. Any number of additional sensors and/or sensor modules may be positioned elsewhere in conference room 702 . The set of devices can be placed anywhere in the enclosure. The locations of the sensor sets in the enclosure may have coordinates (eg, in a Cartesian coordinate system). At least one coordinate (eg, of x, y, and z) may differ between two or more sets of devices, eg, disposed in an enclosure. At least two coordinates (eg, of x, y, and z) may differ between two or more sets of devices, eg, disposed in an enclosure. All coordinates (eg, of x, y, and z) may differ between two or more sets of devices, eg, disposed in an enclosure. For example, two sets of devices may have the same x-coordinate and different y and z-coordinates. For example, two device sets may have the same x and y coordinates and different z coordinates. For example, the two sets of devices may have different x, y, and z coordinates. In some embodiments, one or more sensors of the set of devices provide readings. In some embodiments, the sensor is configured to sense the parameter. Parameters can include temperature, particulate matter, volatile organic compounds, electromagnetic energy, pressure, acceleration, time, radar, lidar, glass vibration, glass breakage, movement, or gas. The gas may comprise Nobel gas. The gas may be harmful to ordinary people. The gas may be a gas present in the surrounding atmosphere (eg, oxygen, carbon dioxide, ozone, chlorinated carbon compounds, or nitrogen compounds). The gas may include radon, carbon monoxide, hydrogen sulfide, hydrogen, oxygen, water (eg, humidity), nitric oxide (NO), or nitrogen dioxide (NO2). Electromagnetic sensors may include infrared, visible light, ultraviolet sensors. The infrared radiation may be passive infrared radiation (eg, blackbody radiation). Electromagnetic sensors can sense radio waves. Radio waves may include broadband or ultra-broadband radio signals. The radio waves may include pulsed radio waves. Radio waves may include radio waves used for communication. The radio waves can be at an intermediate frequency of at least about 300 kilohertz (KHz), 500 KHz, 800 KHz, 1000 KHz, 1500 KHz, 2000 KHz, or 2500 KHz. Radio waves can be at intermediate frequencies of up to about 500 KHz, 800 KHz, 1000 KHz, 1500 KHz, 2000 KHz, 2500 KHz, or 3000 KHz. The radio waves can be at any frequency between the aforementioned frequency ranges (eg, about 300 KHz to about 3000 KHz). Radio waves can be at high frequencies of at least about 3 megahertz (MHz), 5 MHz, 8 MHz, 10 MHz, 15 MHz, 20 MHz, or 25 MHz. Radio waves can be at high frequencies up to about 5 MHz, 8 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, or 30 MHz. The radio waves can be at any frequency between the aforementioned frequency ranges (eg, about 3 MHz to about 30 MHz). Radio waves can be at very high frequencies of at least about 30 megahertz (MHz), 50 MHz, 80 MHz, 100 MHz, 150 MHz, 200 MHz, or 250 MHz. Radio waves can be at very high frequencies of up to about 50 MHz, 80 MHz, 100 MHz, 150 MHz, 200 MHz, 250 MHz, or 300 MHz. The radio waves can be at any frequency between the aforementioned frequency ranges (eg, about 30 MHz to about 300 MHz). Radio waves can be at ultra-high frequencies of at least about 300 kilohertz (MHz), 500 MHz, 800 MHz, 1000 MHz, 1500 MHz, 2000 MHz, or 2500 MHz. Radio waves can be at ultra-high frequencies of up to about 500 MHz, 800 MHz, 1000 MHz, 1500 MHz, 2000 MHz, 2500 MHz, or 3000 MHz. The radio waves can be at any frequency between the aforementioned frequency ranges (eg, about 300 MHz to about 3000 MHz). Radio waves can be at ultra-high frequencies of at least about 3 gigahertz (GHz), 5 GHz, 8 GHz, 10 GHz, 15 GHz, 20 GHz, or 25 GHz. Radio waves may be at ultra-high frequencies of up to about 5 GHz, 8 GHz, 10 GHz, 15 GHz, 20 GHz, 25 GHz, or 30 GHz. Radio waves can be at any frequency between the aforementioned frequency ranges (eg, about 3 GHz to about 30 GHz).

氣體感測器可感測氣體類型、流量(例如,速度及/或加速度)、壓力及/或濃度。讀數可具有振幅範圍。讀數可具有參數範圍。舉例而言,參數可為電磁波長,且範圍可為偵測到之波長的範圍。Gas sensors can sense gas type, flow (eg, velocity and/or acceleration), pressure, and/or concentration. Readings can have amplitude ranges. Readings can have parameter ranges. For example, the parameter can be the electromagnetic wavelength and the range can be the range of detected wavelengths.

在一些實施例中,感測器資料係回應於封閉體中之環境及/或此環境中之改變的任何誘導物(例如,任何環境干擾者)。感測器資料可係回應於操作性地耦接至封閉體(例如,在封閉體中)之發射器(例如,佔用者、器具(例如,加熱器、冷卻器、通風設備及/或真空吸塵器)、開口)。舉例而言,感測器資料可係回應於空氣調節管道,或回應於開放之窗。感測器資料可係回應於房間中發生的活動。活動可包括人類活動及/或非人類活動。活動可包括電子活動、氣態活動及/或化學活動。活動可包括感覺活動(例如,視覺、觸覺、嗅覺、聽覺及/或味覺)。活動可包括電子及/或磁性活動。人員可能感覺到活動。人員可能感覺不到活動。感測器資料可係回應於封閉體中之佔用者、物質(例如,氣體)流量、物質(例如,氣體)壓力及/或溫度。在一個實例中,裝置集705A、705B及705C可包括二氧化碳(CO 2)感測器及周圍環境雜訊感測器。裝置集705A之二氧化碳感測器可提供如感測器輸出讀數分佈725A中所描繪之讀數。裝置集705A之雜訊感測器可提供感測器輸出讀數分佈725A中所描繪之讀數。裝置集705B之二氧化碳感測器可提供如感測器輸出讀數分佈725B中所描繪之讀數。裝置集705B之雜訊感測器可提供亦如感測器輸出讀數分佈725B中所描繪之讀數。相對於感測器輸出讀數分佈725A,感測器輸出讀數分佈725B可指示較高之二氧化碳含量及雜訊位準。相對於感測器輸出讀數分佈725B,感測器輸出讀數分佈725C可指示較低之二氧化碳含量及雜訊位準。感測器輸出讀數分佈725C可指示類似於感測器輸出讀數分佈725A之二氧化碳含量及雜訊位準。感測器輸出讀數分佈725A、725B及725C可包含表示其他感測器讀數之指示,諸如溫度、濕度、微粒物質、揮發性有機化合物、周圍環境光、壓力、加速度、時間、雷達、雷射雷達、超寬頻無線電信號、被動紅外線及/或玻璃破裂、移動偵測器。在一些實施例中,收集及/或處理(例如,分析)來自封閉體中(例如,及裝置集中)之感測器中之感測器的資料。資料處理可由感測器之處理器、由裝置集之處理器、由另一感測器、由雲端中之另一集、由控制器之處理器、由封閉體中之處理器、由封閉體外之處理器、由遠端處理器(例如,在不同設施中)、由(例如,感測器、窗及/或建築物網路之)製造商執行。感測器之資料可具有時間指示符(例如,可帶時間戳記)。感測器之資料可具有感測器部位標識(例如,帶部位戳記)。感測器可與一個或多個控制器可識別地耦接。在特定實施例中,可處理感測器輸出讀數分佈725A、725B及725C。舉例而言,作為處理(例如,分析)之部分,可將感測器輸出讀數分佈標繪於描繪感測器讀數隨封閉體(例如,會議室702)之尺寸(例如,「X」尺寸)而變的曲線圖上。在一實例中,感測器輸出讀數分佈725A中指示之二氧化碳含量可指示為圖7之CO 2曲線圖730的點735A。在一實例中,感測器輸出讀數分佈725B之二氧化碳含量可指示為CO 2曲線圖730之點735B。在一實例中,感測器輸出讀數分佈725C中指示之二氧化碳含量可指示為CO 2曲線圖730之點735C。在一實例中,感測器輸出讀數分佈725A中指示之周圍環境雜訊位準可指示為雜訊曲線圖740之點745A。在一實例中,感測器輸出讀數分佈725B中指示之周圍環境雜訊位準可指示為雜訊曲線圖740之點745B。在一實例中,感測器輸出讀數分佈725C中指示之周圍環境雜訊位準可指示為雜訊曲線圖740之點745C。在一些實施例中,處理自感測器導出之資料包含應用一個或多個模型。模型可包含數學模型。處理可包含模型之擬合(例如,曲線擬合)。模型可為多維的(例如,二維或三維)。模型可表示為曲線圖(例如,2或3維曲線圖)。舉例而言,模型可表示為等高圖(例如,如圖7中所描繪)。模型化可包含一個或多個矩陣。模型可包含拓樸模型。模型可與封閉體中之所感測參數的拓樸相關。模型可與封閉體中之所感測參數之拓樸的時間變化相關。模型可為環境及/或封閉體特定的。模型可考慮封閉體之一個或多個屬性(例如,尺寸、開口及/或環境干擾者(例如,發射器))。感測器資料之處理可利用歷史感測器資料及/或當前(例如,即時)感測器資料。資料處理(例如,利用模型)可用於預計封閉體中之環境改變,及/或建議緩解、調整或以其他方式對改變作出反應之動作。在特定實施例中,裝置集705A、705B及/或705C可能夠存取模型,以准許對隨封閉體之一個或多個尺寸而變的感測器讀數進行曲線擬合。在一實例中,可存取模型以利用CO 2曲線圖730之點735A、735B及735C產生感測器分佈曲線750A、750B、750C、750D及750E。在一實例中,可存取模型以利用雜訊曲線圖740之點745A、745B及745C產生感測器分佈曲線751A、751B、751C、751B及751E。額外模型可利用來自裝置集(例如,705A、705B及/或705C)之額外讀數以提供除圖7之感測器分佈曲線750及751以外的曲線。回應於模型之使用而產生的感測器分佈曲線可感測輸出讀數分佈,指示隨封閉體之尺寸(例如,「X」尺寸、「Y」尺寸及/或「Z」尺寸)而變之特定環境參數的值。在某些實施例中,用以形成曲線750A至750E及751A至751E之一個或多個模型可提供封閉體之參數拓樸。在一實例中,可自感測器輸出讀數分佈合成或產生參數拓樸(如由曲線750A至750E及751A至751E表示)。參數拓樸結構可為本文中所揭示之任何所感測參數的拓樸。在一實例中,用於會議室(例如,會議室702)之參數拓樸可包含在遠離會議室桌子之部位處具有相對較低值,且在會議室桌子上方(例如,正上方)之部位處具有相對較高值的二氧化碳分佈。在一實例中,用於會議室之參數拓樸可包含在遠離會議桌之部位處具有相對較低值,且在會議室桌子上方(例如,正上方)具有略微較高值的多維雜訊分佈。在一實例中,對於二氧化碳感測器,相關參數可對應於二氧化碳濃度。在一實例中,二氧化碳感測器可判定期間二氧化碳濃度之波動可最小的時間窗對應於兩小時時段,例如5:00 AM與7:00 AM之間。自校準可在5:00 AM起始且在搜尋此等兩個小時內期間量測穩定(例如,波動最小)之持續時間時繼續。在一些實施例中,該持續時間足夠長以允許信號與雜訊之間的分離。在一實例中,來自二氧化碳感測器之資料可促進判定5:00 AM與7:00 AM之間的時間窗內之5分鐘持續時間(例如,5:25 AM與5:30 AM之間)形成收集下基線之最佳時間段。判定可至少部分地(例如,完全)在感測器層級處執行。判定可由操作性地耦接至感測器之一個或多個處理器執行。在選定持續時間期間,感測器可收集讀數以建立可對應於下臨限值之基線。在一實例中,對於安置於房間中(例如,辦公室環境中)之氣體感測器,相關參數可對應於氣體(例如,CO 2)含量,其中所要含量通常在約1000 ppm或更小之範圍內。在一實例中,CO 2感測器可判定自校準應在CO 2含量最小之時間窗期間發生,諸如在感測器附近無佔用者時。期間CO 2含量之波動最小的時間窗可對應於例如在約12:00 PM至約1:00之午餐期間及在下班時間期間的一小時時段。圖8展示描繪各種CO 2濃度位準之辦公室環境之水平(例如,俯視)視圖的等高圖實例。辦公室環境可包括第一佔用者801、第二佔用者802、第三佔用者803、第四佔用者804、第五佔用者805、第六佔用者806、第七佔用者807、第八佔用者808及第九佔用者809。氣體(CO 2)濃度可由置放於封閉體(例如,辦公室)中之各種部位處的感測器量測。在一實例中,對於安置於諸如自助餐廳之擁擠區域中的周圍環境雜訊感測器,相關參數可對應於高於背景大氣壓之以分貝為單位量測的聲壓(例如,雜訊)位準。在一實例中,周圍環境雜訊感測器可判定自校準應在聲壓位準之波動最小的時間窗時期間發生。聲壓之波動最小的時間窗可對應於約12:00 AM至約1:00 AM之一小時時段。自校準可以感測器判定窗內的期間可建立基線(例如,上臨限值)之持續時間繼續。在一實例中,周圍環境雜訊感測器可判定約12:00 AM至約1:00 AM之時間窗內的10分鐘持續時間(例如,約12:30 AM至約12:40 AM)形成收集可對應於上臨限值之上基線的最佳時間。 In some embodiments, the sensor data is responsive to the environment in the enclosure and/or any inducers of changes in this environment (eg, any environmental disturbers). Sensor data may be in response to transmitters (eg, occupants, appliances (eg, heaters, coolers, ventilators, and/or vacuums) operatively coupled to the enclosure (eg, in the enclosure) ), opening). For example, sensor data may be in response to air conditioning ducts, or to open windows. Sensor data may be responsive to activity occurring in the room. Activities may include human activities and/or non-human activities. Activities may include electronic activities, gaseous activities, and/or chemical activities. Activities can include sensory activities (eg, sight, touch, smell, hearing, and/or taste). Activity may include electronic and/or magnetic activity. Personnel may sense activity. Personnel may not feel activity. The sensor data may be responsive to occupants in the enclosure, substance (eg, gas) flow, substance (eg, gas) pressure and/or temperature. In one example, sets of devices 705A, 705B, and 705C may include carbon dioxide ( CO2 ) sensors and ambient noise sensors. The carbon dioxide sensor of device set 705A may provide readings as depicted in sensor output reading distribution 725A. The noise sensor of device set 705A may provide the readings depicted in sensor output reading distribution 725A. The carbon dioxide sensor of device set 705B may provide readings as depicted in sensor output reading distribution 725B. The noise sensor of device set 705B may provide readings also as depicted in sensor output reading distribution 725B. Relative to sensor output reading distribution 725A, sensor output reading distribution 725B may indicate higher carbon dioxide levels and noise levels. Relative to sensor output reading distribution 725B, sensor output reading distribution 725C may indicate lower carbon dioxide levels and noise levels. Sensor output reading profile 725C may indicate carbon dioxide levels and noise levels similar to sensor output reading profile 725A. Sensor output reading distributions 725A, 725B, and 725C may include indications representing other sensor readings, such as temperature, humidity, particulate matter, volatile organic compounds, ambient light, pressure, acceleration, time, radar, lidar , UWB radio signals, passive infrared and/or glass breakage, motion detectors. In some embodiments, data is collected and/or processed (eg, analyzed) from sensors in sensors in enclosures (eg, and in device sets). Data processing can be done by the processor of the sensor, by the processor of the device set, by another sensor, by another set in the cloud, by the processor of the controller, by the processor in the enclosure, by outside the enclosure The processor is executed by a remote processor (eg, in a different facility), by a manufacturer (eg, of sensors, windows, and/or building networks). The sensor data may have a time indicator (eg, may be time stamped). Sensor data may have sensor site identification (eg, with site stamps). The sensors may be identifiably coupled to the one or more controllers. In certain embodiments, sensor output reading distributions 725A, 725B, and 725C may be processed. For example, as part of processing (eg, analysis), a distribution of sensor output readings can be plotted to depict sensor readings versus size (eg, "X" dimension) of an enclosure (eg, meeting room 702 ) and change on the graph. In one example, the carbon dioxide level indicated in the sensor output reading distribution 725A may be indicated as point 735A of the CO 2 graph 730 of FIG. 7 . In one example, the carbon dioxide content of sensor output reading distribution 725B may be indicated as point 735B of CO 2 graph 730 . In one example, the carbon dioxide level indicated in the sensor output reading distribution 725C may be indicated as point 735C of the CO 2 graph 730 . In one example, the ambient noise level indicated in sensor output reading distribution 725A may be indicated as point 745A of noise graph 740 . In one example, the ambient noise level indicated in sensor output reading distribution 725B may be indicated as point 745B of noise graph 740 . In one example, the ambient noise level indicated in sensor output reading distribution 725C may be indicated as point 745C of noise graph 740 . In some embodiments, processing data derived from the sensor includes applying one or more models. Models may contain mathematical models. Processing may include fitting of models (eg, curve fitting). Models can be multi-dimensional (eg, two-dimensional or three-dimensional). The model can be represented as a graph (eg, a 2- or 3-dimensional graph). For example, the model may be represented as a contour map (eg, as depicted in Figure 7). Modeling can contain one or more matrices. Models can contain topological models. The model can be related to the topology of the sensed parameter in the enclosure. The model can be related to the temporal variation of the topology of the sensed parameter in the enclosure. Models can be environment and/or enclosure specific. The model may take into account one or more properties of the enclosure (eg, size, openings, and/or environmental distractors (eg, transmitters)). The processing of sensor data may utilize historical sensor data and/or current (eg, real-time) sensor data. Data processing (eg, using models) can be used to predict environmental changes in enclosures, and/or suggest actions to mitigate, adjust, or otherwise respond to changes. In certain embodiments, the set of devices 705A, 705B, and/or 705C may have access to a model to allow curve fitting of sensor readings as a function of one or more dimensions of the enclosure. In one example, the model can be accessed to generate sensor profiles 750A, 750B, 750C, 750D, and 750E using points 735A, 735B, and 735C of the CO2 plot 730 . In one example, the model can be accessed to generate sensor profiles 751A, 751B, 751C, 751B, and 751E using points 745A, 745B, and 745C of noise graph 740 . Additional models may utilize additional readings from device sets (eg, 705A, 705B, and/or 705C) to provide curves other than sensor distribution curves 750 and 751 of FIG. 7 . A sensor profile generated in response to the use of the model can sense the output reading distribution, indicating specificity as a function of enclosure dimensions (eg, "X" dimension, "Y" dimension, and/or "Z" dimension) The value of the environment parameter. In certain embodiments, one or more of the models used to form curves 750A-750E and 751A-751E may provide a parametric topology of the closed volume. In one example, a parametric topology (as represented by curves 750A-750E and 751A-751E) can be synthesized or generated from the sensor output reading distribution. The parametric topology may be the topology of any sensed parameter disclosed herein. In one example, a parameter topology for a meeting room (eg, meeting room 702 ) may include locations with relatively low values at locations far from the meeting room table, and locations above (eg, directly above) the meeting room table distribution of carbon dioxide with relatively high values. In one example, a parametric topology for a conference room may include a multidimensional noise distribution with relatively low values at locations far from the conference table and slightly higher values above (eg, directly above) the conference room table . In one example, for a carbon dioxide sensor, the relevant parameter may correspond to carbon dioxide concentration. In one example, the time window during which the carbon dioxide sensor may determine that fluctuations in carbon dioxide concentration may be minimal corresponds to a two hour period, eg, between 5:00 AM and 7:00 AM. Self-calibration may begin at 5:00 AM and continue while searching for the duration of measurement stability (eg, minimal fluctuation) during these two hours. In some embodiments, the duration is long enough to allow separation between signal and noise. In one example, data from a carbon dioxide sensor may facilitate determining a 5-minute duration within a time window between 5:00 AM and 7:00 AM (eg, between 5:25 AM and 5:30 AM) Forms the optimal time period to collect the lower baseline. The determination may be performed at least partially (eg, fully) at the sensor level. Determining may be performed by one or more processors operatively coupled to the sensor. During the selected duration, the sensor may collect readings to establish a baseline that may correspond to a lower threshold value. In one example, for a gas sensor placed in a room (eg, in an office environment), the relevant parameter may correspond to gas (eg, CO 2 ) levels, where the desired levels are typically in the range of about 1000 ppm or less Inside. In one example, a CO 2 sensor may determine that self-calibration should occur during a time window in which CO 2 levels are at a minimum, such as when there are no occupants in the vicinity of the sensor. A time window during which fluctuations in CO2 levels are minimal may correspond to, for example, a one-hour period during lunch from about 12:00 PM to about 1:00 and during off hours. 8 shows an example of a contour map of a horizontal (eg, top) view of an office environment depicting various CO2 concentration levels. The office environment may include a first occupant 801, a second occupant 802, a third occupant 803, a fourth occupant 804, a fifth occupant 805, a sixth occupant 806, a seventh occupant 807, an eighth occupant 808 and ninth occupant 809. Gas (CO 2 ) concentrations can be measured by sensors placed at various locations in an enclosure (eg, an office). In one example, for an ambient noise sensor placed in a crowded area such as a cafeteria, the relevant parameter may correspond to a level of sound pressure (eg, noise) measured in decibels above background atmospheric pressure allow. In one example, the ambient noise sensor may determine that the self-calibration should occur during a time window during which fluctuations in the sound pressure level are minimal. The time window in which the fluctuation in sound pressure is minimal may correspond to a one-hour period from about 12:00 AM to about 1:00 AM. Self-calibration may continue for the duration that a baseline (eg, an upper threshold value) can be established during the period within the sensor decision window. In one example, the ambient noise sensor may determine that a 10 minute duration within a time window of about 12:00 AM to about 1:00 AM (eg, about 12:30 AM to about 12:40 AM) formed The best time that can correspond to a baseline above the upper threshold is collected.

複數個感測器中之至少兩個感測器可為不同類型(例如,經組態以量測不同屬性)。各種感測器類型可組裝在一起(例如,捆綁在一起)且形成裝置集。複數個感測器可耦接至一個電子板。感測器套件中之複數個感測器中之至少兩者的電連接可受控制(例如,手動地及/或自動地)。舉例而言,裝置集可操作性地耦接至或包含控制器(例如,微控制器)。控制器可控制及接通/斷開感測器至電力之連接性。控制器可因此控制感測器將可操作之時間(例如,時段)。At least two of the plurality of sensors may be of different types (eg, configured to measure different properties). Various sensor types can be assembled together (eg, bundled together) and form a device set. A plurality of sensors can be coupled to an electronic board. The electrical connection of at least two of the plurality of sensors in the sensor set may be controlled (eg, manually and/or automatically). For example, a set of devices is operably coupled to or includes a controller (eg, a microcontroller). The controller can control and switch on/off the connectivity of the sensor to power. The controller can thus control the time (eg, period) when the sensor will be operational.

在一些實施例中,裝置集之一個或多個感測器的基線可漂移。重新校準可包括裝置集之一個或多個(例如,但並非所有)感測器。舉例而言,在給定裝置集中,集體基線漂移可發生在至少兩種感測器類型中。裝置集之一個感測器中的基線漂移可指示感測器之故障。在裝置集中之複數個感測器中量測到的基線漂移可指示由裝置集中之感測器所感測到的環境改變(例如,而非此等基線漂移感測器之故障)。此等感測器資料基線漂移可用以偵測環境改變。舉例而言,(i)緊鄰裝置集修建/摧毀建築物,(ii)緊鄰裝置集變更(例如,損壞)通風通道、(iii)緊鄰裝置集裝設/拆除冰箱、(iv)相對(例如,且鄰近)於裝置集變更人員之工作部位、(v)裝置集經受電子改變(例如,故障)、(vi)結構(例如,內壁)已改變,或(vii)其任何組合。以此方式,資料可用以例如更新封閉體之三維(3D)模型。在一些實施例中,添加或自例如安置於封閉體中及/或裝置集中之感測器群集移除一個或多個感測器。新添加之感測器可向感測器群集之其他成員告知(例如,信標)其存在及在群集拓樸內的相對部位。感測器群集之實例可見於例如2020年1月8日申請之題為「感測器自動定位(SENSOR AUTOLOCATION)」的美國臨時專利申請案第62/958,653號中,該申請案以全文引用的方式併入本文中。裝置集之感測器可組織成感測器模組。裝置集可包含至少一個電路板,諸如印刷電路板,其中數個裝置(例如,感測器及/或發射器)黏附或貼附至至少一個電路板。可自裝置集移除裝置。舉例而言,可插入及/或自電路板拔出感測器。可個別地啟動及/或撤銷啟動感測器(例如,使用開關)。電路板可包含聚合物。電路板可為透明或不透明的。電路板可包含金屬(例如,元素金屬及/或金屬合金)。電路板可包含導體。電路板可包含絕緣體。電路板可包含任何幾何形狀(例如,矩形或橢圓形)。電路板可經組態(例如,可具有一形狀)以允許該集安置於(例如,窗之)豎框中。電路板可經組態(例如,可具有一形狀)以允許該集安置於框架(例如,門框及/或窗框)中。豎框、橫框及/或框架可包含一個或多個孔以允許感測器獲得(例如,準確)讀數。感測器集可包含外殼。外殼可包含一個或多個孔以有助於感測器讀數。電路板可包括電連接性埠(例如,插口)。電路板可連接至電源(例如,電力)。電源可包含可再生或非可再生電源。圖9展示包括組織成感測器模組之感測器集的系統900之實例。感測器910A、910B、910C及910D經展示為包括於裝置集905中。組織成感測器模組之裝置集(包括裝置集905)可包括至少1、2、4、5、8、10、20、50或500個感測器。感測器模組可包括數目在任一前述值之間的範圍內之感測器(例如,約1至約1000、約1至約500,或約500至約1000)。感測器模組中之感測器可包含經組態或經設計以用於感測參數之感測器,該參數包含溫度、濕度、二氧化碳、微粒物質(例如,在2.5 µm與10 µm之間)、總揮發性有機化合物(例如,經由揮發性有機化合物之表面吸附所引起的電壓電位之改變)、周圍環境光、音訊雜訊位準、壓力(例如,氣體及/或液體)、加速度、時間、雷達、雷射雷達、無線電信號(例如,超寬頻無線電信號)、被動紅外線、玻璃破裂或移動偵測器。裝置集(例如,905)可包含非感測器裝置,諸如蜂鳴器及發光二極體。裝置集及其使用之實例可見於2019年6月20日申請之題為「用於光學可切換窗系統之感測及通信單元(SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS)」的美國專利申請案第16/447169號中,該申請案以全文引用的方式併入本文中。在一些實施例中,感測器之數目及/或類型的增加可用以增加一個或多個所量測屬性準確及/或由一個或多個感測器量測到之特定事件已發生的機率。在一些實施例中,裝置集及/或不同裝置集中之感測器可彼此協作。在一實例中,裝置集之雷達感測器可判定封閉體中存在數個個體。處理器(例如,處理器915)可判定封閉體中存在數個個體之偵測與二氧化碳濃度之增加正相關。在一實例中,處理器可存取記憶體可判定偵測到之紅外線能量的增加與如由溫度感測器偵測到的溫度增加正相關。在一些實施例中,網路介面(例如,950)可與類似於裝置集之其他裝置集通信。網路介面可另外與控制器通信。裝置集之個別感測器(例如,感測器910A、感測器910D等)可包含及/或利用至少一個專用處理器。裝置集可利用遠端處理器(例如,954),其利用無線及/或有線通信鏈路。裝置集可利用至少一個處理器(例如,處理器952),其可包含經由雲端(例如,951)耦接至裝置集的基於雲端之處理器。處理器(例如,952及/或954)可位於同一建築物中、不同建築物中、由同一或不同實體所擁有之建築物中、由窗/控制器/裝置集之製造商所擁有的設施中或任何其他部位處。在各種實施例中,如由圖9之虛線指示,不需要裝置集905包含個別處理器及網路介面。此等實體可為個別實體且可操作性地耦接至集905。圖9中之虛線指明可選特徵。在一些實施例中,一個或多個感測器集之機載處理及/或記憶體可用以支援其他功能(例如,經由向建築物之網路基礎架構分配集記憶體及/或處理能力)。在一些實施例中,相同類型之複數個感測器可分佈於封閉體中。相同類型之複數個感測器中的至少一者可為集之部分。舉例而言,相同類型之複數個感測器中的至少兩者可為至少兩個集之部分。裝置集可分佈於封閉體中。封閉體可包含會議室。舉例而言,相同類型之複數個感測器可量測會議室中之環境參數。回應於對封閉體之環境參數的量測,可產生封閉體之參數拓樸。可利用來自例如如本文中所揭示之裝置集的任何類型之感測器的輸出信號來產生參數拓樸。可針對諸如會議室、走廊、盥洗室、自助餐廳、車庫、禮堂、雜物間、貯藏室、機房及/或電梯之設施的任何封閉體產生參數拓樸。圖10展示具有保護性外殼1001之裝置集(例如,總成) 1000的實例。外殼可包括使得其能夠在壁安裝式配接器、窗框部分區段(例如,豎框)或天花板安裝式配接器中俘獲的安裝特徵。外殼可(例如,僅)向封閉體中之檢視者曝露其正面,此係因為其主體可安置於壁安裝部分、天花板安裝部分或框架部分內,例如,如1002之實例中所展示。正面可為外殼之(例如,可逆地打開及關閉的)蓋板。外殼1001可包含對應部位中之模組之最佳效能所期望的一個或多個特徵,諸如用於容許外部環境特性進入外殼中以促進感測器對其進行感測的一個或多個開口。舉例而言,外殼可包含促進空氣接觸溫度、濕度、壓力及灰塵感測器之一個或多個開口(例如,孔1003)。開口可具有任何形狀。開口可包含直線或曲率。複數個開口可形成諸如花瓣之(例如,自然或抽象)形狀。外部外殼覆蓋物可包含光滑及/或粗糙部分。粗糙部分可在視覺上遮蓋孔。外部覆蓋物可具有包含粗糙紋理之至少一部分,該紋理例如包含螢幕、布、壓花、劃線或凹痕。外殼特徵之其他實例包括揚聲器或麥克風格柵,以及用於攝影機透鏡、運動感測器或或周圍環境光感測器的光圈。一個或多個開口可在外殼之面向封閉體之佔用者的前部中曝露。外殼可由圍繞及/或包圍開口之紋理化區域遮蓋。紋理化區域可為有圖案的或不規則的。圖案可包含任何幾何形狀,諸如空間填充多邊形(例如,正方形、矩形、六邊形或三角形)。圖案可能不含空間填充多邊形。空間填充多邊形可為單一類型或複數種類型(例如,至少2或3種類型)。紋理圖案可包含曲線或直線。紋理圖案可能不含曲線或直線。紋理圖案可為網狀物。紋理圖案可藉由與外殼之其餘部分相同或不同的材料形成。舉例而言,外殼可由塑膠形成,且紋理化區域可為至少部分地覆蓋外殼之開口部分的網狀物及/或布。紋理圖案可包含類似於開口之形狀。開口可類似於花瓣或葉子。紋理圖案可覆蓋外殼之前部部分的至少八分之一、五分之一、四分之一、三分之一或一半,該前部部分面向佔用者。外殼可使用框架及/或藉由柱或趕直接附接至固定物,諸如壁及/或天花板。在一些實施例中,外殼包圍至少一個電路板。電路板可經組態以容納(或容納)一個或多個裝置。該等裝置可按可翻轉方式整合至電路板中。舉例而言,可插入至少一個裝置或自電路板提取至少一個裝置(例如,用於維護、維修、更換或移除)。該板可具有安置有電路系統及/或裝置之一側。該側可面向外殼之前部。外殼之前部可面向安置有外殼之封閉體中的佔用者。該側可面向外殼之背部。外殼之背部可背離安置有外殼之封閉體中的佔用者。該板可具有上面安置有電路系統及/或裝置之兩側。該板可具有一個或多個孔。該等孔可促進至少一個環境特性通過。該等孔可促進氣體、聲音或電磁輻射通過。舉例而言,感測器可安置於電路板之背部處且感測自封閉體穿過一個或多個孔到達感測器之環境品質。該板可具有安置於第一側上之第一裝置及安置於第二側上之電路系統。該板可具有安置於第一側上之第一裝置及安置於第二側上之第二裝置。該板可包括一個或多個散熱片。散熱片可安置於易於產生及/或累積熱量之部位處。該板可操作性地耦接及/或包括隔板。隔板可用以減少外殼中及/或板上之裝置共存的非想要後果(例如,干擾)。外殼可包含一個或多個電路板。電路板彼此通信耦接(例如,直接或間接地)。電路板可藉由佈線及/或以無線方式彼此操作性地(例如,通信地)耦接。電路板可操作性地(例如,通信地)耦接至網路佈線及/或無線。外殼可包含元素金屬、金屬合金、聚合物、樹脂、玻璃或藍寶石。外殼可變為透明或不透明部分。對於本文中所揭示之任何電磁輻射範圍(例如,UV、IR及/或可見光輻射)可為透明的。In some embodiments, the baseline of one or more sensors of a set of devices may drift. Recalibration may include one or more (eg, but not all) sensors of a set of devices. For example, in a given set of devices, collective baseline drift can occur in at least two sensor types. A baseline drift in one sensor of a device set may indicate sensor failure. Baseline drift measured in a plurality of sensors in a device set may be indicative of a change in the environment sensed by the sensors in the device set (eg, rather than a failure of these baseline drift sensors). These sensor data baseline drifts can be used to detect environmental changes. For example, (i) building/destroying a building next to a set, (ii) changing (eg, damaging) ventilation passages next to a set, (iii) building/removing a refrigerator next to a set, (iv) opposing (eg, and proximate) the work site of the person changing the device set, (v) the device set has undergone an electronic change (eg, malfunction), (vi) the structure (eg, inner wall) has been changed, or (vii) any combination thereof. In this way, the data can be used, for example, to update a three-dimensional (3D) model of the enclosed volume. In some embodiments, one or more sensors are added or removed from, for example, sensor clusters disposed in enclosures and/or device sets. A newly added sensor can inform other members of the sensor cluster (eg, beacon) of its presence and relative location within the cluster topology. Examples of sensor clusters can be found, for example, in US Provisional Patent Application Serial No. 62/958,653, entitled "SENSOR AUTOLOCATION," filed on January 8, 2020, which is incorporated by reference in its entirety. manner is incorporated herein. The sensors of a device set can be organized into sensor modules. A set of devices may include at least one circuit board, such as a printed circuit board, to which several devices (eg, sensors and/or transmitters) are adhered or attached. Devices can be removed from the device set. For example, the sensor can be inserted and/or unplugged from the circuit board. The sensors can be individually activated and/or deactivated (eg, using switches). The circuit board may contain polymers. The circuit board may be transparent or opaque. Circuit boards may include metals (eg, elemental metals and/or metal alloys). The circuit board may contain conductors. The circuit board may contain insulators. The circuit board may contain any geometric shape (eg, rectangular or oval). The circuit board can be configured (eg, can have a shape) to allow the set to be placed in a mullion (eg, within a window). The circuit board can be configured (eg, can have a shape) to allow the set to be placed in a frame (eg, door and/or window frames). The mullion, traverse, and/or frame may include one or more apertures to allow the sensor to obtain (eg, accurate) readings. The sensor set may contain a housing. The housing may contain one or more holes to facilitate sensor readings. The circuit board may include electrical connectivity ports (eg, sockets). The circuit board can be connected to a power source (eg, electricity). The power source can include renewable or non-renewable power sources. 9 shows an example of a system 900 that includes a sensor set organized into sensor modules. Sensors 910A, 910B, 910C, and 910D are shown included in device set 905. A set of devices organized into sensor modules, including device set 905, may include at least 1, 2, 4, 5, 8, 10, 20, 50, or 500 sensors. A sensor module may include a number of sensors in a range between any of the foregoing values (eg, about 1 to about 1000, about 1 to about 500, or about 500 to about 1000). Sensors in a sensor module may include sensors configured or designed to sense parameters including temperature, humidity, carbon dioxide, particulate matter (eg, between 2.5 µm and 10 µm). time), total volatile organic compounds (eg, changes in voltage potential caused by surface adsorption of volatile organic compounds), ambient light, audio noise levels, pressure (eg, gases and/or liquids), acceleration , time, radar, lidar, radio signals (eg, UWB radio signals), passive infrared, glass breakage, or motion detectors. A set of devices (eg, 905) may include non-sensor devices such as buzzers and light emitting diodes. Examples of device sets and their use can be found in US patent application entitled "SENSING AND COMMUNICATIONS UNIT FOR OPTICALLY SWITCHABLE WINDOW SYSTEMS" filed on June 20, 2019 In Ser. No. 16/447169, this application is incorporated herein by reference in its entirety. In some embodiments, an increase in the number and/or type of sensors may be used to increase the probability that one or more measured attributes are accurate and/or that a particular event measured by one or more sensors has occurred. In some embodiments, sensors in a device set and/or different device sets may cooperate with each other. In one example, the radar sensor of the device set may determine that several individuals are present in the enclosure. A processor (eg, processor 915) may determine that the detection of the presence of several individuals in the enclosure is positively correlated with an increase in carbon dioxide concentration. In one example, the processor-accessible memory can determine that the detected increase in infrared energy is positively correlated with the temperature increase as detected by the temperature sensor. In some embodiments, the network interface (eg, 950) may communicate with other sets of devices similar to the set of devices. The network interface may additionally communicate with the controller. Individual sensors of a device set (eg, sensor 910A, sensor 910D, etc.) may include and/or utilize at least one dedicated processor. A set of devices may utilize a remote processor (eg, 954) that utilizes wireless and/or wired communication links. The set of devices may utilize at least one processor (eg, processor 952), which may include a cloud-based processor coupled to the set of devices via the cloud (eg, 951). The processors (eg, 952 and/or 954) may be located in the same building, in a different building, in a building owned by the same or different entities, in a facility owned by the manufacturer of the window/controller/device set in the middle or any other location. In various embodiments, as indicated by the dashed lines of FIG. 9, device set 905 is not required to include individual processors and network interfaces. These entities may be individual entities and are operably coupled to set 905 . The dashed lines in Figure 9 indicate optional features. In some embodiments, on-board processing and/or memory of one or more sensor sets may be used to support other functions (eg, by allocating set memory and/or processing power to a building's network infrastructure) . In some embodiments, a plurality of sensors of the same type may be distributed in the enclosure. At least one of the plurality of sensors of the same type may be part of a set. For example, at least two of the plurality of sensors of the same type may be part of at least two sets. The set of devices may be distributed in the enclosure. The enclosure may contain meeting rooms. For example, a plurality of sensors of the same type can measure environmental parameters in a conference room. In response to measurements of environmental parameters of the enclosure, a parametric topology of the enclosure can be generated. The parametric topology can be generated using output signals from any type of sensor, such as a set of devices as disclosed herein. A parametric topology can be generated for any enclosure of a facility such as conference rooms, hallways, bathrooms, cafeterias, garages, auditoriums, utility rooms, storage rooms, machine rooms, and/or elevators. FIG. 10 shows an example of a device set (eg, an assembly) 1000 with a protective housing 1001 . The housing may include mounting features that enable it to be captured in a wall mount adapter, a window frame portion section (eg, a mullion), or a ceiling mount adapter. The enclosure may expose its front face (eg, only) to a viewer in the enclosure because its main body may be positioned within a wall mount portion, ceiling mount portion, or frame portion, eg, as shown in the example of 1002. The front side can be a (eg, reversibly openable and closed) cover of the housing. The housing 1001 may include one or more features desired for optimum performance of the module in the corresponding location, such as one or more openings for admitting external environmental characteristics into the housing to facilitate sensing thereof by the sensor. For example, the housing may include one or more openings (eg, holes 1003) that facilitate air contact with temperature, humidity, pressure, and dust sensors. The opening can have any shape. The openings may contain straight lines or curvatures. The plurality of openings can form a (eg, natural or abstract) shape such as a petal. The outer shell cover may contain smooth and/or rough portions. The roughness can visually obscure the hole. The outer cover may have at least a portion that includes a rough texture, such as a screen, cloth, embossing, scoring, or dimples. Other examples of housing features include speaker or microphone grills, and apertures for camera lenses, motion sensors, or ambient light sensors. One or more openings may be exposed in the front of the housing facing the occupant of the enclosure. The housing may be covered by a textured area surrounding and/or surrounding the opening. The textured regions may be patterned or irregular. Patterns can include any geometric shape, such as space-filling polygons (eg, squares, rectangles, hexagons, or triangles). Patterns may not contain space-filling polygons. Space-filling polygons can be of a single type or of multiple types (eg, at least 2 or 3 types). Texture patterns can contain curved or straight lines. Texture patterns may not contain curved or straight lines. The textured pattern may be a mesh. The textured pattern can be formed from the same or different material as the rest of the housing. For example, the housing may be formed of plastic, and the textured region may be a mesh and/or cloth that at least partially covers the open portion of the housing. The textured pattern may include shapes similar to openings. The openings can resemble petals or leaves. The textured pattern may cover at least one eighth, one fifth, one quarter, one third or one half of the front portion of the housing, the front portion facing the occupant. The enclosure may be attached directly to fixtures, such as walls and/or ceilings, using a frame and/or by means of posts or rails. In some embodiments, the housing surrounds at least one circuit board. A circuit board can be configured to house (or house) one or more devices. These devices can be integrated into the circuit board in a reversible manner. For example, at least one device can be inserted or extracted from the circuit board (eg, for maintenance, repair, replacement, or removal). The board may have a side on which circuitry and/or devices are disposed. This side may face the front of the housing. The front of the enclosure may face an occupant in the enclosure in which the enclosure is placed. The side may face the back of the housing. The back of the shell may face away from the occupant in the enclosure in which the shell is positioned. The board may have two sides on which circuitry and/or devices are disposed. The plate may have one or more holes. The holes may facilitate passage of at least one environmental property. The holes facilitate the passage of gas, sound or electromagnetic radiation. For example, a sensor may be positioned at the back of the circuit board and sense environmental qualities from the enclosure through one or more holes to the sensor. The board can have a first device disposed on a first side and circuitry disposed on a second side. The board may have a first device disposed on a first side and a second device disposed on a second side. The board may include one or more heat sinks. The heat sinks can be placed at locations where heat is likely to be generated and/or accumulated. The plate is operably coupled to and/or includes a baffle. Spacers can be used to reduce undesired consequences (eg, interference) of coexistence of devices in the enclosure and/or on the board. The housing may contain one or more circuit boards. The circuit boards are communicatively coupled (eg, directly or indirectly) to each other. The circuit boards may be operatively (eg, communicatively) coupled to each other by wiring and/or wirelessly. The circuit board is operatively (eg, communicatively) coupled to network wiring and/or wireless. The housing may comprise elemental metals, metal alloys, polymers, resins, glass or sapphire. The shell can be made transparent or opaque. Can be transparent to any range of electromagnetic radiation disclosed herein (eg, UV, IR, and/or visible radiation).

在一些實施例中,可監測及調整封閉體之環境特性以促進封閉體佔用者之增強的健康狀況、保健狀況及/或表現。控制可利用至少一個人工智慧(AI)引擎。環境特性可藉由安置於封閉體中之一個或多個感測器監測。可使用來自感測器之基線讀數、封閉體之三維(本文中縮寫為「3D」)示意圖及/或封閉體之固定物的物理屬性(例如,材料屬性)來建構模型。控制系統可使用AI引擎來使用封閉體環境之感測器讀數改進模型,監測及調整封閉體之環境。AI引擎可至少部分地基於趨勢及/或預期物理參數例如使用預測性外推來改進模型。環境可例如藉由直接系統管理對各種裝置(例如,加熱、通風及空氣調節系統,本文中縮寫為「HVAC」)調整之環境調整及/或藉由使用建築物管理系統(本文中縮寫為「BMS」)來調整。封閉體之AI模型化可包括使用網格上之部位。網格可為可調整的。網格可具有高於感測器之間隔的空間解析度。網格可在其部分中之一些上具有變化解析度。網格可為非均質的。In some embodiments, environmental properties of the enclosure can be monitored and adjusted to promote enhanced health, wellness, and/or performance of the enclosure occupant. Control may utilize at least one artificial intelligence (AI) engine. Environmental characteristics can be monitored by one or more sensors placed in the enclosure. The model may be constructed using baseline readings from sensors, a three-dimensional (abbreviated "3D") schematic view of the enclosure, and/or physical properties (eg, material properties) of the enclosure's fixtures. The control system can use the AI engine to improve the model using sensor readings of the enclosure's environment, monitor and adjust the enclosure's environment. The AI engine may refine the model based at least in part on trends and/or expected physical parameters, eg, using predictive extrapolation. The environment can be regulated, for example, by direct system management of various devices (eg, heating, ventilation, and air conditioning systems, abbreviated herein as "HVAC") and/or by using a building management system (abbreviated herein as "HVAC"). BMS") to adjust. AI modeling of closed bodies can include using parts on a mesh. The grid may be adjustable. The grid may have a higher spatial resolution than the spacing between the sensors. The grid may have varying resolutions on some of its parts. The mesh may be heterogeneous.

在一些實施例中,人工智慧(AI)引擎可用於控制及/或預測環境中之環境特性。AI引擎可至少部分地基於AI引擎之結果(例如,預測)提供關於一個或多個環境特性之更改的建議。AI引擎可使用來自一個或多個建築物之資料。設施可包含一個或多個建築物。AI引擎可使用設施之結構資料(例如,建築物及/或佈局,諸如工作場所佈局)、(例如,即時)感測器資料、模擬資料、第三方資料及/或實驗(例如,感測器)資料。設施之結構資料可為當前規劃的歷史內部(例如,工作場所)組態及/或被即時更新。自建築物搜集之資料可由物理引擎接收。物理引擎可使用主題屬性特性(例如,其在時間及空間上的準備)、一個或多個建築物之材料屬性特性及主題屬性與一個或多個建築物之至少一個材料屬性相互作用的基於物理之模擬。物理模擬可使用能量分佈模擬。物理模型可利用佔用特性(例如,所預測佔用者之數目、其物理性質及/或所預測佔用時間)。物理引擎可利用可併有建築物之結構及建築物中之各種(例如,網路連接)裝置的建築物之數位雙生體。可例如使用藉由光線追蹤軟體程式化之處理系統來實施物理引擎。物理引擎可至少部分地基於建築物資料之材料屬性而產生模擬資料。可使用來自感測器之基線讀數、封閉體之三維(本文中縮寫為「3D」)示意圖及/或封閉體之固定物的物理屬性(例如,材料屬性及/或組態)來建構模型(由物理引擎及/或AI引擎使用)。在一些實施例中,物理引擎不使用來自感測器之基線讀數。舉例而言,模擬資料可用以建構第一模型以供AI引擎使用。實驗(例如,感測器)資料可用以建構第二模型以供AI引擎使用。實驗資料可藉由將感測主題屬性之複數個感測器置放於封閉體中(例如,當封閉體未被佔用及/或不在典型操作服務中(例如,未部署)時)或與實質上類似於主題封閉體(例如,建築物)之另一封閉體中來搜集。實驗資料可自一組測試感測裝置(例如,感測器)搜集。可使用實驗資料及/或由裝置集搜集之實驗資料來建構模型。原始資料可藉由感測器及/或裝置集搜集。舉例而言,結構可藉由信號及/或條件激發,由此複數個感測器量測回應信號,例如以開發準確的AI引擎。可清理原始資料(例如,使用至少一個濾波器清除雜訊)以產生清理過的資料(在本文中亦被稱作「銀資料」)以供AI引擎使用。頂點網格可在封閉體(例如,建築物或房間內)疊加。可參考頂點網格定義一個或多個關注點(POI)。AI引擎可使用一個或多個模型分析銀資料以產生結果(例如,一個或多個POI處之一個或多個值的集合)。一個或多個POI處之一個或多個值的集合可儲存於資料庫中。控制系統可使用資料庫,例如用於預測,用於建議,以使用封閉體環境之感測器讀數改進模型,及/或用於控制(例如,監測及調整)封閉體之環境。In some embodiments, an artificial intelligence (AI) engine may be used to control and/or predict environmental characteristics in the environment. The AI engine may provide recommendations for changes to one or more environmental characteristics based at least in part on the results (eg, predictions) of the AI engine. The AI engine can use data from one or more buildings. A facility can contain one or more buildings. The AI engine may use facility structural data (eg, buildings and/or layouts, such as workplace layouts), (eg, real-time) sensor data, simulated data, third-party data, and/or experiments (eg, sensors )material. Structural data for a facility may be configured and/or updated in real-time for historical interiors (eg, workplaces) of the current plan. Data collected from buildings may be received by a physics engine. The physics engine may use the subject property properties (eg, its preparation in time and space), the material property properties of one or more buildings, and the physics-based interaction of the topic properties with at least one material property of the one or more buildings. simulation. Physical simulations can use energy distribution simulations. The physical model may utilize occupancy characteristics (eg, predicted number of occupants, their physical properties, and/or predicted occupancy time). The physics engine may utilize the digital twin of the building that may incorporate the structure of the building and various (eg, network connections) devices in the building. The physics engine may be implemented, for example, using a processing system programmed with ray tracing software. The physics engine may generate simulation data based at least in part on material properties of the building data. The model (eg, material properties and/or configuration) can be constructed using baseline readings from sensors, a three-dimensional (abbreviated "3D") schematic diagram of the enclosure, and/or the physical properties (eg, material properties and/or configuration) of the enclosure's fixtures. Used by the physics engine and/or the AI engine). In some embodiments, the physics engine does not use baseline readings from sensors. For example, the simulation data can be used to construct a first model for use by an AI engine. Experimental (eg, sensor) data can be used to construct a second model for use by the AI engine. Experimental data can be obtained by placing a plurality of sensors that sense subject attributes in the enclosure (eg, when the enclosure is unoccupied and/or not in typical operational service (eg, undeployed)) or with substantial Collected in another enclosure similar to the subject enclosure (eg, building). Experimental data can be collected from a set of test sensing devices (eg, sensors). Models may be constructed using experimental data and/or experimental data collected from a set of devices. Raw data can be collected by sensors and/or device sets. For example, structures can be excited by signals and/or conditions, whereby a plurality of sensors measure the response signals, eg, to develop an accurate AI engine. The raw data may be cleaned (eg, using at least one filter to remove noise) to produce cleaned data (also referred to herein as "silver data") for use by the AI engine. Vertex meshes can be superimposed on closed volumes (eg, inside buildings or rooms). One or more points of interest (POIs) may be defined with reference to a vertex mesh. The AI engine may analyze the silver data using one or more models to produce a result (eg, a set of one or more values at one or more POIs). A set of one or more values at one or more POIs may be stored in a database. The control system may use the database, eg, for predictions, for recommendations, to improve models using sensor readings of the enclosure's environment, and/or to control (eg, monitor and adjust) the enclosure's environment.

圖11示意性地描繪人工智慧(AI)引擎1105。自第一建築物1111、第二建築物1112及第N建築物1115搜集之資料由物理引擎1121接收。N可為1或大於1之任何整數。可例如使用藉由光線追蹤軟體程式化之處理系統來實施物理引擎1121。物理引擎1121至少部分地基於建築物資料而準備模擬資料1117。可使用來自感測器之基線讀數、封閉體之三維(本文中縮寫為「3D」)示意圖及/或封閉體之固定物的物理屬性(例如,材料屬性)來建構模型(由物理引擎及/或AI引擎使用)。在一些實施例中,物理引擎不使用來自感測器之基線讀數。舉例而言,模擬資料1117可用以建構第一模型1119(例如,物理模擬模型)以供AI引擎1105使用。實驗(例如,感測器)資料1125可用以建構第二模型1127(例如,利用來自實驗及/或所部署感測器之真實感測器資料)以供AI引擎使用。自一組測試感測裝置1123(例如,用於測試之感測器)搜集實驗資料1125。使用實驗資料1125及由裝置集1101搜集之資料來建構第二模型1127。在圖11中所展示之實例中,原始資料由裝置集1101搜集。原始資料藉由清理及/或過濾模組1103清理及/或過濾以產生銀資料,以供AI引擎1105使用。頂點網格可在封閉體1107(例如,建築物、樓層或房間)之虛擬表示內疊加。包含網格頂點之虛擬封閉體模型可包括關注區域及/或關注點(POI)。可參考頂點網格定義一個或多個關注點(POI)。AI引擎1105使用第一模型1119及第二模型1127(例如,真實感測器資料驅動模型)分析銀資料以產生一個或多個POI處之一個或多個值的集合。一個或多個POI處之一個或多個值的集合可儲存於洞察(insights)資料庫1109中。AI引擎可計算感測器值(例如,在關注點處)之結果且將其儲存於洞察資料庫1109中。控制系統可使用洞察資料庫1109來使用封閉體環境之感測器讀數改進模型,監測及調整封閉體1107之環境。FIG. 11 schematically depicts an artificial intelligence (AI) engine 1105 . Data collected from the first building 1111 , the second building 1112 , and the Nth building 1115 is received by the physics engine 1121 . N can be 1 or any integer greater than 1. Physics engine 1121 may be implemented, for example, using a processing system programmed with ray tracing software. The physics engine 1121 prepares the simulation data 1117 based at least in part on the building data. Baseline readings from sensors, three-dimensional (herein abbreviated "3D") schematics of the enclosure, and/or physical properties (eg, material properties) of the enclosure's fixtures may be used to construct a model (by a physics engine and/or or AI engine use). In some embodiments, the physics engine does not use baseline readings from sensors. For example, the simulation data 1117 may be used to construct a first model 1119 (eg, a physical simulation model) for use by the AI engine 1105 . Experimental (eg, sensor) data 1125 may be used to construct a second model 1127 (eg, using real sensor data from experiments and/or deployed sensors) for use by the AI engine. Experimental data 1125 is collected from a set of test sensing devices 1123 (eg, sensors used for testing). A second model 1127 is constructed using the experimental data 1125 and the data collected by the device set 1101 . In the example shown in FIG. 11 , the raw data is collected by device set 1101 . Raw data is cleaned and/or filtered by cleaning and/or filtering module 1103 to generate silver data for use by AI engine 1105. The vertex mesh can be superimposed within a virtual representation of an enclosure 1107 (eg, a building, floor, or room). A virtual closed volume model including mesh vertices may include regions of interest and/or points of interest (POIs). One or more points of interest (POIs) may be defined with reference to a vertex mesh. The AI engine 1105 analyzes the silver data using a first model 1119 and a second model 1127 (eg, a real sensor data-driven model) to generate a set of one or more values at one or more POIs. A set of one or more values at one or more POIs may be stored in the insights database 1109 . The AI engine can compute the results of sensor values (eg, at points of interest) and store them in the insights database 1109 . The control system can use the insight database 1109 to improve the model using sensor readings of the enclosure environment, monitor and adjust the environment of the enclosure 1107.

在一些實施例中,使用一個或多個感測器在封閉體中量測一個或多個環境特性。虛擬(例如,電子)地圖用以模型化封閉體且控制環境特性。虛擬地圖可為地形類型圖。地圖可包含至少一個所感測環境特性之一個或多個位準。在一些實施例中,封閉體可劃分成形成網格之多個部分。網格可將封閉體分成網格部分(例如,網格片段)。在一些實施例中,網格包括數個頂點。使用者可定義封閉體中之關注點(本文中縮寫為「POI」)。POI可包括感測器及/或可與感測器相距一定距離。當POI處於不含感測器之部位中時,可將來自一個或多個感測器(例如,安置於鄰近關注點之網格頂點處)之資料輸入至模型中以用於外推關注點處之所感測屬性。In some embodiments, one or more environmental characteristics are measured within the enclosure using one or more sensors. Virtual (eg, electronic) maps are used to model enclosures and control environmental properties. The virtual map may be a terrain type map. The map may include one or more levels of at least one sensed environmental characteristic. In some embodiments, the enclosure may be divided into sections that form a mesh. A mesh may divide an enclosed volume into mesh parts (eg, mesh segments). In some embodiments, the mesh includes several vertices. The user can define a point of interest in the enclosure (abbreviated herein as "POI"). The POI may include a sensor and/or may be at a distance from the sensor. When the POI is in a sensor-free location, data from one or more sensors (eg, placed at mesh vertices adjacent to the point of interest) can be input into the model for extrapolation of the point of interest Location sensing properties.

圖12展示說明模擬設施之一組環境特性之一個實例的流程圖之實例。在區塊1201中,藉由使用頂點之網格模型化設施來模擬設施之環境特性集合。在區塊1202中,接收將來自網格之頂點指明為第一POI的第一選擇。在區塊1203中,相對於網格之非選定頂點,使用較大精確度模擬第一關注點處之環境特性之集合。在區塊1205中,接收指明不在網格上之第二POI的第二選擇。在區塊1209處,在一些實施例中,回應於第二選擇而變更網格。在區塊1207處,在一些實施例中,將第二POI遷移至網格上之最近頂點。12 shows an example of a flow diagram illustrating one example of a set of environmental properties for a simulated facility. In block 1201, the set of environmental properties of the facility is simulated by meshing the facility using the vertices. In block 1202, a first selection designating a vertex from the mesh as the first POI is received. In block 1203, the set of environmental properties at the first point of interest is simulated with greater accuracy relative to non-selected vertices of the mesh. In block 1205, a second selection is received specifying a second POI that is not on the grid. At block 1209, in some embodiments, the grid is altered in response to the second selection. At block 1207, in some embodiments, the second POI is migrated to the closest vertex on the mesh.

在一些實施例中,封閉體可劃分成形成網格之多個網格部分。網格可將封閉體分成多個網格部分。在一些實施例中,網格包括數個頂點。可依據座標系統定義網格。座標系統可包含笛卡爾座標系統、極座標系統、圓柱座標系統、正則座標系統或三線座標系統。舉例而言,可依據x、y、z笛卡爾座標系統定義網格。網格可包含空間填充多邊形。網格可包含鑲嵌。網格可包含(例如,封閉體之)邊界表示拓樸模型。可定義網格使得網格之任何兩個鄰近頂點之間存在最小距離及最大距離。網格之兩個鄰近頂點可安置於封閉體中。舉例而言,最小距離可為約1呎,且最大距離可為約3呎。可定義網格使得網格之任何兩個鄰近頂點之間存在恆定距離。舉例而言,恆定距離可為約2呎。網格可將封閉體劃分成多個部分。該等部分可具有相同的基本長度尺度。基本長度尺度可包含定界圓之長度、寬度、高度或半徑。基本長度尺度在本文中縮寫為「FLS」。網格部分之FLS可小於封閉體之FLS。在封閉體中可能存在複數個網格部分。In some embodiments, the enclosure may be divided into a plurality of mesh portions that form a mesh. A mesh divides a closed volume into mesh parts. In some embodiments, the mesh includes several vertices. A grid can be defined according to a coordinate system. The coordinate system may include a Cartesian coordinate system, a polar coordinate system, a cylindrical coordinate system, a canonical coordinate system, or a trilinear coordinate system. For example, a grid may be defined according to an x, y, z Cartesian coordinate system. The mesh can contain space-filling polygons. Grids can contain tessellation. A mesh may contain (eg, within a closed volume) a boundary representing a topology model. A mesh can be defined such that there is a minimum distance and a maximum distance between any two adjacent vertices of the mesh. Two adjacent vertices of the mesh can be placed in a closed volume. For example, the minimum distance may be about 1 foot, and the maximum distance may be about 3 feet. A mesh can be defined such that there is a constant distance between any two adjacent vertices of the mesh. For example, the constant distance can be about 2 feet. A mesh divides a closed volume into sections. The portions may have the same basic length dimension. The basic length dimension may include the length, width, height or radius of the bounding circle. The basic length scale is abbreviated herein as "FLS". The FLS of the mesh portion may be smaller than the FLS of the closed volume. There may be multiple mesh sections in a closed volume.

在一些實施例中,一個或多個感測器置放於整個封閉體(例如,設施)中。一個或多個部分之感測器可安置於網格座標處(例如,網格之頂點處)。感測器可位於(i)頂點處,或(ii)頂點之間。至少一個感測器可位於頂點處,其中一個或多個感測器位於頂點之間。使用者可定義封閉體中之關注點。POI包括感測器或與感測器相距一定距離。當關注點處於不含感測器之部位中時,可將來自一個或多個感測器(例如,安置於鄰近關注點之網格頂點處)之資料輸入至模型中以用於外推關注點處之所感測屬性。當網格點(例如,頂點)不含感測器時,可將來自一個或多個感測器(例如,安置於鄰近關注頂點之其他網格頂點處)之資料輸入至模型中以用於外推不含感測器之關注頂點處的所感測屬性。In some embodiments, one or more sensors are placed throughout the enclosure (eg, facility). Sensors of one or more portions may be positioned at grid coordinates (eg, at the vertices of the grid). The sensors may be located (i) at the vertices, or (ii) between the vertices. At least one sensor may be located at the vertices, with one or more sensors located between the vertices. The user can define the points of interest in the enclosure. The POI includes the sensor or is at a distance from the sensor. When the point of interest is in a location without sensors, data from one or more sensors (eg, placed at mesh vertices adjacent to the point of interest) can be input into the model for extrapolation of the point of interest Sensing property at the point. When mesh points (eg, vertices) do not contain sensors, data from one or more sensors (eg, placed at other mesh vertices adjacent to the vertex of interest) may be input into the model for use in The sensed attribute at the vertex of interest without the sensor is extrapolated.

在一些實施例中,執行使用網格對設施進行分割。可手動地及/或自動地執行分割。舉例而言,使用者可例如藉由將一個或多個頂點添加至網格來手動地更改網格。可例如回應於接收到指定並非網格頂點之POI的使用者輸入而自動地分割網格。網格可包括可被視為頂點的交叉點。可例如藉由指定及/或更改網格之網狀物大小來自動地分割網格。可例如藉由將一個或多個額外點添加至網格來自動地分割網格。網格之該等部分可具有相同FLS。網格之該等部分可具有不同FLS。網格可由空間填充多邊形形成。空間填充多邊形可為至少一種類型、兩種類型、三種類型或多於三種類型。可將POI可視化為網格(網狀物)上之精確點。可手動地(例如,對於諸如聲音之一些屬性)及/或自動地(例如,對於諸如溫度之其他屬性)置放網格。可根據屬性(例如,濕度、溫度、CO 2、VOC、大氣移動及/或通風速度)及/或資料之涵蓋(例如,顯著)可變性而執行手動抑或自動地置放網格的判定。可取決於房間(例如,大小、部位、開口)及/或取決於網格密度(例如,封閉體可具有多個感測器或單個感測器)而執行手動抑或自動地置放網格之判定。網格可具備封閉體中之多個頂點或單個頂點。此可最小化網格點之所需數目。 In some embodiments, segmenting the facility using a grid is performed. Segmentation can be performed manually and/or automatically. For example, a user can manually alter the mesh, eg, by adding one or more vertices to the mesh. The mesh may be automatically segmented, eg, in response to receiving user input specifying POIs that are not mesh vertices. A mesh can include intersections that can be considered vertices. The mesh can be automatically divided, eg, by specifying and/or changing the mesh size of the mesh. The mesh can be automatically divided, eg, by adding one or more additional points to the mesh. The parts of the grid can have the same FLS. The parts of the grid can have different FLSs. The mesh can be formed from space-filling polygons. Space-filling polygons can be of at least one type, two types, three types, or more than three types. POIs can be visualized as precise points on a grid (mesh). The grid may be placed manually (eg, for some properties such as sound) and/or automatically (eg, for other properties such as temperature). The determination of whether to place the grid manually or automatically can be performed based on attributes (eg, humidity, temperature, CO2 , VOC, atmospheric movement, and/or ventilation velocity) and/or covered (eg, significant) variability of the data. Manual or automatic grid placement can be performed depending on the room (eg, size, location, opening) and/or depending on grid density (eg, an enclosure may have multiple sensors or a single sensor). determination. A mesh can have multiple vertices or a single vertex in a closed volume. This minimizes the required number of grid points.

在一些實施例中,若POI不在網格上,則POI將遷移至最近網格點。可使用「對齊網格(snap to grid)」程序(例如,演算法)促進遷移。POI可與感測器之場所重合。POI可與不含感測器之場所重合。POI可與感測器相距一定距離。In some embodiments, if the POI is not on the grid, the POI will migrate to the closest grid point. Migration can be facilitated using "snap to grid" procedures (eg, algorithms). The POI may coincide with the location of the sensor. The POI can be coincident with the location without the sensor. The POI can be a certain distance from the sensor.

在一些實施例中,將來自相關感測器之感測器資料輸入至模型中以用於外推所感測屬性,例如補償在網格點(例如,頂點)處不存在感測器。可計算及/或估計屬性在空間及/或時間上之行為。計算及/或估計可利用所感測屬性之物理行為及/或關於所感測屬性之累積資料。累積資料可在封閉體中或在類似封閉體中。類似封閉體可在設施中或在設施外(例如,在遠端部位中)。類似封閉體可具有類似設置及/或經歷類似環境條件。可將由第一部位處之第一感測器感測的所感測屬性(例如,其資料)之行為外推至與第一感測器相距一定距離的第二部位,該第二部位不具有第二感測器。舉例而言,來自第一感測器之所量測屬性資料的第一集合可用以模擬屬性資料之虛擬第二集合,該屬性為由第一感測器感測到之環境特性。第一部位可為網格頂點。第二部位可為網格頂點,或可為在網格頂點外的部位。第三部位可具有感測屬性之第三感測器。來自第三感測器之資料可用以模擬第二部位處之屬性資料的虛擬第二集合。第三部位可在另一網格頂點處。可將自第一感測器資料導出之第二資料集與自第三感測器資料導出之第二資料集進行比較。該比較可量測可用以最佳化模型及/或虛擬感測器資料之外推的差異。可反覆地最佳化模型。反覆最佳化可使用(i)來自不同感測器之資料、(ii)來自感測不同時間之相同感測器的資料,或(iii)其任何組合。物理參數之預測模型可在自身之間進行比較(例如,使用所感測資料之不同集合以估計部位處之環境特性)及/或與來自感測器(例如,安置於網格頂點上及/或網格頂點外)之實際(例如,真實世界)讀數進行比較。此比較可用以進一步改進模型。In some embodiments, sensor data from relevant sensors is input into the model for extrapolation of sensed properties, such as to compensate for the absence of sensors at grid points (eg, vertices). The behavior of attributes in space and/or time can be calculated and/or estimated. The calculation and/or estimation may utilize the physical behavior of the sensed property and/or the accumulated data about the sensed property. Cumulative data can be in enclosures or in similar enclosures. Similar enclosures may be in the facility or outside the facility (eg, in the distal site). Similar enclosures may have similar settings and/or experience similar environmental conditions. The behavior of a sensed attribute (eg, its data) sensed by a first sensor at a first location can be extrapolated to a second location at a distance from the first sensor that does not have the first sensor. Two sensors. For example, a first set of measured attribute data from the first sensor can be used to simulate a virtual second set of attribute data, the attributes being environmental characteristics sensed by the first sensor. The first parts may be mesh vertices. The second location may be a mesh vertex, or may be a location outside the mesh vertex. The third portion may have a third sensor of sensing properties. Data from the third sensor can be used to simulate a virtual second set of attribute data at the second location. The third location may be at another mesh vertex. A second data set derived from the first sensor data can be compared to a second data set derived from the third sensor data. The comparison can measure differences that can be used to optimize model and/or extrapolation of virtual sensor data. The model can be optimized iteratively. Iterative optimization can use (i) data from different sensors, (ii) data from the same sensor sensing different times, or (iii) any combination thereof. Predictive models of physical parameters can be compared between themselves (eg, using different sets of sensed data to estimate environmental properties at the site) and/or with those from sensors (eg, placed on mesh vertices and/or the actual (eg, real-world) readings outside the mesh vertices. This comparison can be used to further improve the model.

在一些實施例中,進行初始物理模擬以模擬環境特性在封閉體中之傳播。可針對環境特性(例如,針對每一環境特性)而執行個別模擬。可將物理模擬之結果與環境之樣本(例如,自然發生及/或手動編排)即時感測器讀數進行比較。可在實驗階段期間執行此比較。可在物理模擬與環境中感測到之實境之間形成差量(例如,差)。回應於差量,可修正神經網路模型。根據比較結果,神經網路模型可考慮物理引擎(例如,模型)。物理引擎可包含數個模型。一個或多個感測器樣本可用以模擬額外樣本。可執行參數分析以饋入模型。分析可集中於代表性樣本。分析可利用來自轄區中建築物效能資料庫(BPD)之資訊,諸如由美國能源部維護之資料庫。BPD可組合、清理及/或匿名化由管轄當局(例如,聯邦、州及/或地方政府)、公用事業、能量效率程式、建築物所有者及/或私人公司自建築物收集之資料。BPD可使此資訊可用於公眾。用於複數個建築物類型之多種物理及操作特性可儲存於BPD中,例如以記載能量效能之趨勢。In some embodiments, an initial physics simulation is performed to simulate the propagation of environmental properties within the enclosure. Individual simulations may be performed for environmental characteristics (eg, for each environmental characteristic). The results of the physical simulation can be compared to sample (eg, naturally occurring and/or manually orchestrated) real-time sensor readings of the environment. This comparison can be performed during the experimental phase. A delta (eg, a difference) may be formed between the physical simulation and the reality sensed in the environment. In response to the delta, the neural network model can be modified. Based on the comparison results, the neural network model may take into account a physics engine (eg, a model). A physics engine can contain several models. One or more sensor samples can be used to simulate additional samples. Parametric analysis can be performed to feed into the model. Analysis can be focused on representative samples. The analysis may utilize information from the Building Performance Database (BPD) in the jurisdiction, such as the database maintained by the US Department of Energy. BPD may combine, cleanse, and/or anonymize information collected from buildings by jurisdictional authorities (eg, federal, state, and/or local governments), utilities, energy efficiency programs, building owners, and/or private companies. BPD makes this information available to the public. Various physical and operational characteristics for multiple building types can be stored in the BPD, for example to document trends in energy performance.

在一些實施例中,一個或多個感測器置放於網格頂點中以用於關聯(例如,驗證)量測之實驗。可使用學習模型(例如,使用人工智慧(AI),諸如神經網路、線性回歸或多項式)以根據感測器樣本且根據差量修正模型中之可調係數。在一些實施例中,物理模擬可能不用於學習模型中之更新程序。加權平均值可用以填充不含感測器之網格點的感測器讀數。In some embodiments, one or more sensors are placed in mesh vertices for experiments that correlate (eg, verify) measurements. Learning models (eg, using artificial intelligence (AI), such as neural networks, linear regression, or polynomials) can be used to modify tunable coefficients in the model based on sensor samples and based on deltas. In some embodiments, physical simulations may not be used to learn the update procedure in the model. A weighted average can be used to populate sensor readings for grid points that do not contain sensors.

圖13展示描繪學習模型之例示性改進的流程圖之實例。在區塊1301處,產生設施之學習模型。學習模型使建築固定物與對應材料相關聯。接下來,在區塊1302處,將設施之任何裝置(例如,感測器)併入至模型中。在區塊1305處,將任何非固定材料併入至模型中。在區塊1306處,將任何設施開口(例如,窗、門及/或通風開口)併入至模型中。在區塊1307處,將日期、時間、天氣條件、太陽部位及/或太陽輻射(例如,穿透至設施中)併入至模型中。在區塊1308處,在設施之至少一部分的環境中模擬環境特性。模型可利用節點(例如,頂點)之網格。13 shows an example of a flow diagram depicting an illustrative modification of the learning model. At block 1301, a learning model of the facility is generated. The learning model associates building fixtures with corresponding materials. Next, at block 1302, any devices of the facility (eg, sensors) are incorporated into the model. At block 1305, any non-fixed materials are incorporated into the model. At block 1306, any facility openings (eg, windows, doors, and/or ventilation openings) are incorporated into the model. At block 1307, the date, time, weather conditions, sun location, and/or solar radiation (eg, penetration into the facility) are incorporated into the model. At block 1308, environmental characteristics are simulated in the environment of at least a portion of the facility. A model may utilize a mesh of nodes (eg, vertices).

圖14展示流程圖之實例,該流程圖描繪使用頂點之網格的實例模型化。在區塊1401處,將來自學習模型之網格的節點(例如,頂點)指明為第一關注點(POI)。在區塊1403處,相對於非指明節點(例如,頂點),使用較大精確度模擬指明節點(例如,頂點)。接著,在區塊1405處,指明並非在網格上之第二關注點(POI)。根據一個實施例,在區塊1409處,回應於使用者輸入而變更網格。根據一個實施例,在區塊1407處,將第二關注點遷移至網格上之最近點。14 shows an example of a flowchart depicting instance modeling of a mesh using vertices. At block 1401, nodes (eg, vertices) of the mesh from the learning model are designated as first points of interest (POIs). At block 1403, specified nodes (eg, vertices) are simulated with greater accuracy relative to non-specified nodes (eg, vertices). Next, at block 1405, a second point of interest (POI) that is not on the grid is specified. According to one embodiment, at block 1409, the grid is changed in response to user input. According to one embodiment, at block 1407, the second point of interest is migrated to the closest point on the grid.

圖15展示描繪感測器資料之實例收集的流程圖之實例。在區塊1501處,自感測器收集第一資料集。在區塊1503處,使用第一資料集在網格頂點處模擬第一環境資料集。接下來,在區塊1505處,自感測器收集第二資料集。在區塊1507處,使用第二資料集在網格頂點處模擬第二環境資料集。接著,在區塊1509處,判定第一環境資料集與第二環境資料集之間的任何差異。在區塊1511處,使用所判定差異反覆地改進環境參數之預測模型,且操作序列迴圈回至區塊1501。視情況,操作序列流程形成區塊1511至區塊1513,其中將感測器讀數、歷史資料及/或第三方資料應用於模型以改進模型。操作序列接著迴圈回至區塊1501。15 shows an example of a flowchart depicting an example collection of sensor data. At block 1501, a first data set is collected from the sensor. At block 1503, a first environment dataset is simulated at mesh vertices using the first dataset. Next, at block 1505, a second data set is collected from the sensor. At block 1507, a second set of environmental data is simulated at mesh vertices using the second data set. Next, at block 1509, any differences between the first set of environmental data and the second set of environmental data are determined. At block 1511 , the predicted model of the environmental parameter is iteratively improved using the determined differences, and the sequence of operations loops back to block 1501 . Optionally, the operational sequence flow forms blocks 1511 through 1513, where sensor readings, historical data, and/or third-party data are applied to the model to improve the model. The sequence of operations then loops back to block 1501.

在一些實施例中,深度卷積神經網路(例如,深度學習)可用以填充不含感測器之網格點的感測器讀數。出於訓練、模型調整及/或模型驗證目的,可將一個或多個感測器置放於缺失的網格點中。此置放可發生在封閉體之空間的樣本中。可執行回歸分析以填充不含感測器之網格點的感測器讀數。可使用函數之輸入及輸出來執行分析。線性回歸(例如,加權平均值)可用以填充不含感測器之網格點的感測器讀數。非線性函數可用以填充不含感測器之網格點的感測器讀數。可例如在恆定變化之情形中(例如,光感測器在夜間量測到最少量的自然光,在夜間CO 2無波動)使用非線性函數。線性函數可用以填充不含感測器之網格點的感測器讀數,例如在存在不等變化之情形中(例如,在白天期間的非線性通量及溫度)。 In some embodiments, a deep convolutional neural network (eg, deep learning) may be used to populate sensor readings of grid points that do not contain sensors. One or more sensors may be placed in missing grid points for training, model tuning, and/or model validation purposes. This placement can occur in samples of enclosed volumes. Regression analysis can be performed to populate sensor readings for grid points that do not contain sensors. Analysis can be performed using the input and output of the function. Linear regression (eg, weighted average) can be used to populate sensor readings for grid points that do not contain sensors. A non-linear function can be used to populate sensor readings for grid points that do not contain sensors. Non-linear functions can be used, for example, in situations of constant variation (eg, light sensors measure a minimum amount of natural light at night, no fluctuations in CO 2 at night). A linear function can be used to populate sensor readings for grid points that do not contain sensors, such as where there are unequal variations (eg, non-linear flux and temperature during the day).

圖16展示描繪環境調整之例示性執行的流程圖之實例。在區塊1601處,判定設施之至少一部分中的模擬感測器讀數與即時(及/或 現場)感測器讀數之間的任何差異。在區塊1603處,使用此差異來調整學習模型中之係數集。接下來,在區塊1605處,在不含實體感測器之網格頂點中導出模擬的虛擬感測器讀數。視情況,在訓練階段期間,在區塊1607處,將實體感測器置放於不含實體感測器之網格頂點處。操作序列自區塊1605或區塊1607前進至區塊1609,其中使用模型以調整設施之至少一部分中的環境。在區塊1611處,藉由考慮環境之調整來更新模型。 16 shows an example of a flow diagram depicting an illustrative execution of environmental adjustments. At block 1601, any discrepancies between analog sensor readings and real-time (and/or on-site ) sensor readings in at least a portion of the facility are determined. At block 1603, this difference is used to adjust the set of coefficients in the learned model. Next, at block 1605, simulated virtual sensor readings are derived in mesh vertices that do not contain physical sensors. Optionally, during the training phase, at block 1607, physical sensors are placed at mesh vertices that do not contain physical sensors. The sequence of operations proceeds from block 1605 or block 1607 to block 1609, where the model is used to adjust the environment in at least a portion of the facility. At block 1611, the model is updated with adjustments to account for the environment.

在一些實施例中,在系統部署之後繼續使用學習模型來更新模型。藉由使用學習模型,控制系統可指導調整或可被指導調整封閉體之環境(例如,搶先地)。In some embodiments, the learned model continues to be used to update the model after system deployment. Using the learned model, the control system can be directed to adjust or can be directed to adjust the environment of the enclosure (eg, preemptively).

在一些實施例中,控制(例如,監測及/或調整)封閉體之各種環境特性。可控制此等特性以提供最佳的佔用者環境(例如,就保健狀況、健康狀況及/或舒適性而言)。可藉由感測器監測一個或多個環境特性。感測器可安置於封閉體中。可使用基線讀數及/或空間之3D示意圖來建構一個或多個模型。至少一個控制器(例如,控制系統)及/或處理器可使用AI演算法。AI演算法可包含預測性外推。預測性外推可至少部分地基於趨勢及/或預期物理參數。AI演算法可用以使用封閉體空間之感測器讀數進一步改進模型。AI演算法可用以控制封閉體之環境。控制環境可包括直接地或間接地控制任何裝置。裝置可與建築物(例如,HVAC)操作性地耦接。間接控制可包含使用建築物管理系統(BMS)。BMS可能或可能不通信耦接至控制器。BMS可能或可能不通信耦接至處理器。封閉體空間之AI模型化可包括網格上之部位。封閉體空間之AI模型化可利用網格上之部位。網格之部位可具有不同於(例如,高於或低於)感測器之間隔的空間解析度。In some embodiments, various environmental properties of the enclosure are controlled (eg, monitored and/or adjusted). These characteristics can be controlled to provide an optimal occupant environment (eg, in terms of hygiene, health, and/or comfort). One or more environmental characteristics can be monitored by sensors. The sensor may be placed in the enclosure. One or more models may be constructed using baseline readings and/or a 3D representation of the space. At least one controller (eg, a control system) and/or processor may use an AI algorithm. AI algorithms may include predictive extrapolation. Predictive extrapolation can be based, at least in part, on trends and/or expected physical parameters. AI algorithms can be used to further refine the model using sensor readings from enclosed volume spaces. AI algorithms can be used to control the environment of a closed body. Controlling the environment may include directly or indirectly controlling any device. The device may be operatively coupled to a building (eg, HVAC). Indirect control may include the use of a building management system (BMS). The BMS may or may not be communicatively coupled to the controller. The BMS may or may not be communicatively coupled to the processor. AI modeling of closed volume spaces can include locations on meshes. AI modeling of closed volume space can utilize the parts on the grid. Portions of the grid may have a different spatial resolution (eg, higher or lower) than the spacing between the sensors.

在一些實施例中,封閉體包括一個或多個感測器。感測器可促進控制封閉體之環境,例如使得封閉體之居民可具有較舒適、合意、美麗、健康、富有成效(例如,就居民表現而言)、較易於生活(例如,工作)或其任何組合的環境。感測器可經組態為低或高解析度感測器。感測器可提供環境事件(例如,一個像素感測器)之發生及/或存在的開/關指示。在一些實施例中,可經由人工智慧(本文中縮寫為「AI」)對感測器之量測的分析來改善感測器之準確度及/或解析度。可使用之人工智慧技術的實例包括:反應性、有限記憶、心理理論及/或自感知技術。In some embodiments, the enclosure includes one or more sensors. Sensors can facilitate controlling the environment of an enclosure, eg, so that the occupants of the enclosure can be more comfortable, desirable, beautiful, healthy, productive (eg, in terms of resident performance), easier to live (eg, work), or any combination of environments. The sensors can be configured as low or high resolution sensors. The sensor may provide an on/off indication of the occurrence and/or presence of an environmental event (eg, a pixel sensor). In some embodiments, the accuracy and/or resolution of the sensor may be improved through analysis of the sensor's measurements by artificial intelligence (abbreviated herein as "AI"). Examples of artificial intelligence techniques that may be used include: reactivity, limited memory, theory of mind, and/or self-awareness techniques.

在一些實施例中,感測器資料分析包含線性回歸、最小平方擬合、高斯程序回歸、核回歸、非參數乘法回歸(NPMR)、回歸樹、局部回歸、半參數回歸、等滲回歸、多變量自適應回歸樣條(MARS)、邏輯回歸、穩健回歸、多項式回歸、逐步回歸、脊回歸、套索回歸、彈性網回歸、主成份分析(PCA)、奇異值分解、模糊測度論、波萊爾(Borel)測度、漢(Han)測度、風險中性測度、勒貝格(Lebesgue)測度、分組資料處置方法(GMDH)、樸素貝葉斯分類器、k最近相鄰演算法(k-NN)、支援向量機(SVM)、神經網路、支援向量機、分類及回歸樹(CART)、隨機森林、梯度提昇或廣義線性模型(GLM)技術。感測器可經組態以處理、量測、分析、偵測以下各者及/或對以下各者作出反應:資料、溫度、濕度、聲音、力、壓力、濃度、電磁波、位置、距離、移動、流量、加速度、速度、振動、灰塵、光、眩光、色彩、氣體、類型及/或環境(例如,封閉體)之其他態樣(例如,特性)。氣體可包括揮發性有機化合物(VOC)。氣體可包括一氧化碳、二氧化碳、水蒸氣(例如,濕度)、氧氣、氡氣及/或硫化氫。一個或多個感測器可在工廠設置及/或設施中校準。感測器可經最佳化以執行存在於工廠設置及/或部署有該感測器之設施中的一個或多個環境特性之準確量測。In some embodiments, sensor data analysis includes linear regression, least squares fitting, Gaussian procedure regression, kernel regression, nonparametric multiplicative regression (NPMR), regression trees, local regression, semiparametric regression, isotonic regression, multiple Variable Adaptive Regression Splines (MARS), Logistic Regression, Robust Regression, Polynomial Regression, Stepwise Regression, Ridge Regression, Lasso Regression, Elastic Net Regression, Principal Component Analysis (PCA), Singular Value Decomposition, Fuzzy Measure Theory, Polet Borel measure, Han measure, Risk neutral measure, Lebesgue measure, Grouped data disposition method (GMDH), Naive Bayes classifier, k nearest neighbor algorithm (k-NN) ), support vector machine (SVM), neural network, support vector machine, classification and regression tree (CART), random forest, gradient boosting or generalized linear model (GLM) techniques. Sensors can be configured to process, measure, analyze, detect and/or respond to: data, temperature, humidity, sound, force, pressure, concentration, electromagnetic waves, location, distance, Movement, flow, acceleration, speed, vibration, dust, light, glare, color, gas, type, and/or other aspects (eg, properties) of the environment (eg, enclosure). Gases may include volatile organic compounds (VOCs). Gases may include carbon monoxide, carbon dioxide, water vapor (eg, humidity), oxygen, radon, and/or hydrogen sulfide. One or more sensors may be calibrated at the factory and/or in the facility. A sensor can be optimized to perform accurate measurements of one or more environmental characteristics that exist in a factory setting and/or in the facility in which the sensor is deployed.

在一些實施例中,處理器與致動器及/或感測器介接。可出於控制目的提供此介接。處理器可包括控制器之階層。處理器可控制諸如智慧型建築物之封閉體。智慧型建築物可為使用一個或多個自動化程序以自動地控制建築物之操作的任何結構。此等自動化程序可包括加熱、通風、空氣調節、照明、安全、窗簾控制及/或其他系統。智慧型建築物可使用感測器、致動器及/或微晶片來收集資料。智慧型建築物可使用此資料來管理建築物之環境。此基礎架構可幫助所有者、操作者及設施管理者以增強建築物佔用者之舒適性。可減少能量使用。可改善使用空間之方式。可減少建築物之環境影響。In some embodiments, the processor interfaces with actuators and/or sensors. This interface may be provided for control purposes. The processor may include a hierarchy of controllers. The processor can control enclosures such as smart buildings. A smart building can be any structure that uses one or more automation programs to automatically control the operation of the building. Such automated procedures may include heating, ventilation, air conditioning, lighting, security, shade control and/or other systems. Smart buildings can use sensors, actuators, and/or microchips to collect data. Smart buildings can use this data to manage the building's environment. This infrastructure helps owners, operators and facility managers to enhance the comfort of building occupants. Energy usage can be reduced. Improves the way space is used. It can reduce the environmental impact of the building.

在一些實施例中,封閉體可具有互動系統。封閉體可為設施、房間及/或多個建築物之部分的集合。封閉體可為本文中所揭示之任何封閉體。處理器可在網路環境中操作,例如處理器可操作性地(例如,通信地及/或實體地)耦接至網路。網路環境可經組態以用於遠端(例如,雲端)互動。遠端互動可包括使用者及/或服務提供者。網路環境可包括有線及/或無線通信。處理器可執行控制方案。控制方案可包括前饋、快速正向、開放迴路及/或封閉迴路。處理器可控制BMS及/或任何可控制裝置,諸如感測器、發射器、天線或可著色窗(例如,IGU)。可控制裝置可包括光學可控制電致變色裝置。處理器可通信耦接至感測器及/或發射器。多個感測器、發射器、致動器、傳輸器及/或接收器可整合至單個總成中。可用數位建築元件之形式提供單個總成。通用處理器可通信耦接至其他輸出裝置。其他輸出裝置可包括HVAC系統及/或一個或多個天線。In some embodiments, the enclosure may have an interactive system. An enclosure can be a collection of parts of a facility, room, and/or multiple buildings. The closure can be any of the closures disclosed herein. A processor may operate in a network environment, eg, the processor may be operatively (eg, communicatively and/or physically) coupled to a network. The network environment can be configured for remote (eg, cloud) interaction. Remote interactions may include users and/or service providers. The network environment may include wired and/or wireless communications. The processor may execute the control scheme. Control schemes may include feed forward, fast forward, open loop and/or closed loop. The processor may control the BMS and/or any controllable devices, such as sensors, transmitters, antennas, or tintable windows (eg, IGUs). The controllable device may comprise an optically controllable electrochromic device. The processor may be communicatively coupled to the sensor and/or the transmitter. Multiple sensors, transmitters, actuators, transmitters and/or receivers may be integrated into a single assembly. A single assembly is available as a digital building element. The general-purpose processor may be communicatively coupled to other output devices. Other output devices may include the HVAC system and/or one or more antennas.

在一些實施例中,處理自感測器導出之資料包含應用一個或多個模型。模型可包含數學模型。處理可包含模型擬合(例如,曲線擬合)。模型可為多維的(例如,二維或三維)。模型可包含線性或非線性等式。模型可包含指數或對數等式。模型可包含一個或多個布林運算。模型可考慮封閉體。考慮封閉體可包括封閉體之結構及/或組成。封閉體之組成可包含封閉體中之任何固定及/或非固定物模型的材料組成。模型可在其建構之前、期間及/或之後考慮封閉體之建築物資訊模型化(BIM)(例如,Revit檔案)。模型可考慮封閉體之二維(例如,樓層平面)及/或三維模型化(例如,3D模型呈現)。模型可能包含或可能不包含有限元分析。模型可包含模擬或用於模擬中。模擬可為封閉體之至少一部分的至少一個環境特性(例如,描繪封閉體中諸如POI之各種位置中的狀態)的模擬。模型可表示為曲線圖(例如,2或3維曲線圖)。舉例而言,模型可表示為等高圖。模型化可包含一個或多個矩陣。模型可包含拓樸模型。模型可與封閉體中之所感測參數的拓樸相關。模型可與封閉體中之所感測參數之拓樸的時間變化相關。模型可為環境及/或封閉體特定的。模型可考慮封閉體之一個或多個屬性(例如,尺寸、開口及/或環境干擾者(例如,發射器))。感測器資料之處理可利用歷史感測器資料及/或當前(例如,即時)感測器資料。資料處理(例如,利用模型)可用於預計封閉體中之環境改變,及/或建議緩解、調整或以其他方式對改變作出反應之動作。In some embodiments, processing data derived from the sensor includes applying one or more models. Models may contain mathematical models. Processing may include model fitting (eg, curve fitting). Models can be multi-dimensional (eg, two-dimensional or three-dimensional). Models can contain linear or nonlinear equations. Models can contain exponential or logarithmic equations. A model can contain one or more Boolean operations. The model can consider closed volumes. It is contemplated that the enclosure may include the structure and/or composition of the enclosure. The composition of the enclosure can include the material composition of any immobilized and/or non-immobilized form in the enclosure. The model may take into account building information modeling (BIM) (eg, a Revit file) of the enclosure before, during, and/or after its construction. Models may consider two-dimensional (eg, floor plans) and/or three-dimensional modeling (eg, 3D model renderings) of enclosed volumes. The model may or may not contain finite element analysis. Models can contain simulations or be used in simulations. The simulation may be a simulation of at least one environmental property of at least a portion of the enclosure (eg, depicting states in various locations within the enclosure, such as POIs). The model can be represented as a graph (eg, a 2- or 3-dimensional graph). For example, a model can be represented as a contour map. Modeling can contain one or more matrices. Models can contain topological models. The model can be related to the topology of the sensed parameter in the enclosure. The model can be related to the temporal variation of the topology of the sensed parameter in the enclosure. Models can be environment and/or enclosure specific. The model may take into account one or more properties of the enclosure (eg, size, openings, and/or environmental distractors (eg, transmitters)). Processing of sensor data may utilize historical sensor data and/or current (eg, real-time) sensor data. Data processing (eg, using models) may be used to predict environmental changes in enclosures and/or suggest actions to mitigate, adjust, or otherwise respond to changes.

在一些實施例中,封閉體之模型包含建築物(例如,包括一個或多個固定物)之架構。模型可為3D模型。模型可識別此等固定物所包含的一種或多種材料。模型可包含建築物資訊模型化(BIM)軟體(例如,Autodesk Revit)產品(例如,檔案)。BIM產品可允許使用者運用參數模型化及繪圖元件設計建築物。在一些實施例中,BIM為允許智慧、3D及/或參數化的基於物件之設計的電腦輔助設計(CAD)範例。BIM模型可含有關於建築物自概念至建構至停用之整個生命週期的資訊。此功能性可由可被稱作參數改變引擎之BIM模型的基礎關連式資料庫架構提供。BIM產品可使用.RVT檔案用於儲存BIM模型。參數化物件(無論為3D建築物物件(諸如,窗或門)抑或2D繪圖物件)可被稱作族,可保存於.RFA檔案中且可匯入至RVT資料庫中。存在預繪製RFA程式庫的許多源。In some embodiments, the model of the enclosure includes the architecture of the building (eg, including one or more fixtures). The model may be a 3D model. The model identifies one or more materials contained in these fixtures. The model may include a building information modeling (BIM) software (eg, Autodesk Revit) product (eg, file). BIM products allow users to design buildings using parametric modeling and drawing components. In some embodiments, BIM is a computer-aided design (CAD) paradigm that allows intelligent, 3D, and/or parametric object-based design. A BIM model can contain information about the entire life cycle of a building from concept to construction to decommissioning. This functionality may be provided by the underlying relational database architecture of the BIM model which may be referred to as a parameter change engine. BIM products can use .RVT files to store BIM models. Parametric objects (whether 3D building objects (such as windows or doors) or 2D drawing objects) can be called families and can be saved in .RFA files and imported into the RVT database. Many sources of pre-drawn RFA libraries exist.

BIM(例如,Revit)可允許使用者在圖形「族編輯器」中建立參數組件。模型可俘獲組件、視圖及註釋之間的關係,使得自動地傳播任何元件的改變以使模型保持一致。舉例而言,移動壁會更新相鄰壁、地板及屋頂,校正尺寸及註釋之置放及值,調整在排程中報告之樓層面積,重新繪製截面圖等。BIM可促進設施之模型與(例如,所有)文件之間的連續連接、更新及/或協調,例如用於簡化模型之即時更新及/或即刻修正。組件、視圖及註釋之間的雙向關聯性之概念可為BIM之特徵。BIM (eg, Revit) allows users to create parametric components in a graphical "family editor". The model captures the relationships between components, views, and annotations so that any component changes are automatically propagated to keep the model consistent. For example, moving walls updates adjacent walls, floors, and roofs, corrects placement and values of dimensions and annotations, adjusts floor areas reported in schedules, redraws sections, and more. BIM may facilitate continuous connection, update and/or coordination between models of a facility and (eg, all) documents, eg, to simplify instant updates and/or instant revisions of models. The concept of bidirectional associativity between components, views and annotations can be a feature of BIM.

BIM模型可使用可在多個使用者當中共用的單個檔案資料庫。平面圖、截面圖、立面圖、圖例及排程可互連。BIM可提供(例如,完全)雙向關聯性。因此,若使用者在一個視圖中作出改變,則可自動地更新其他視圖。同樣地,可回應於自感測器接收到之輸入而自動地更新BIM檔案。就圖式中所展示之建築物物件而言,可完全協調BIM圖式及/或排程。可視需要使用3D物件繪製基礎設施(例如,建築物)以建立固定物(例如,壁、地板、屋頂、結構、窗及/或門)及其他物件。BIM模型(例如,BIM虛擬模型或BIM虛擬檔案)可併有關於與設施相關聯之結構及/或材料的資訊。一般而言,若待在多於一個視圖中可見設計之組件,則可使用3D物件建立組件。使用者可出於模型化及繪圖目的而建立其自身的3D及2D物件。可使用3D及2D繪圖物件之組合或藉由例如經由DWG、DXF、DGN、SAT或SKP匯入在另一電腦輔助設計(CAD)平台中進行之繪圖工作來建立建築物組件之小尺度視圖。BIM models can use a single file database that can be shared among multiple users. Plans, sections, elevations, legends and schedules can be interconnected. BIM can provide (eg, full) two-way associativity. Therefore, if the user makes changes in one view, the other views can be automatically updated. Likewise, the BIM file can be automatically updated in response to input received from the sensor. The BIM schema and/or schedule can be fully coordinated as far as the building objects shown in the schema are concerned. 3D objects may be used to draw infrastructure (eg, buildings) to create fixtures (eg, walls, floors, roofs, structures, windows and/or doors) and other objects as desired. A BIM model (eg, a BIM virtual model or a BIM virtual file) may incorporate information about the structure and/or materials associated with the facility. In general, if components of the design are to be visible in more than one view, then the components can be created using 3D objects. Users can create their own 3D and 2D objects for modeling and drawing purposes. Small scale views of building components can be created using a combination of 3D and 2D drawing objects or by importing drawing work done in another computer aided design (CAD) platform, eg via DWG, DXF, DGN, SAT or SKP.

在一些實施例中,當使用BIM共用項目資料庫時,可建立將項目資料庫之母本儲存於檔案伺服器上的中心檔案。使用者可處理儲存於其工作站上之中心檔案的複本(被稱為本端檔案)。使用者可保存至中心檔案以運用其改變更新中心檔案,且自其他使用者接收改變。每當使用者開始處理資料庫中之物件,BIM模型便可運用中心檔案進行檢查以查看另一使用者是否正編輯該物件。此程序可防止兩人同時作出相同改變且造成衝突。一起處理同一項目之多個規則(Discipline)可產生其自身的項目資料庫,且自其他顧問連結資料庫以用於證實。BIM可執行干擾檢查,其可偵測建築物之不同組件是否正佔用同一實體空間。In some embodiments, when using BIM to share a project database, a central file may be created that stores the master of the project database on a file server. Users can work with copies of central files (called local files) stored on their workstations. Users can save to the central file to update the central file with their changes, and receive changes from other users. Whenever a user starts working on an object in the database, the BIM model can be checked against the central file to see if another user is editing the object. This procedure prevents two people from making the same changes at the same time and creating a conflict. Multiple Disciplines working on the same project together can generate their own project database and link the database from other consultants for validation. BIM can perform interference checks, which detect whether different components of a building are occupying the same physical space.

在一些實施例中,當結構改變發生在設施中時,BIM模型可能需要手動更新與設施相關聯之至少一個文件以記載改變且保持更新。控制系統(例如,使用設施之感測器)可(例如,自動地)將結構更新饋送至BIM模型、AI引擎及/或物理引擎。可即時(例如,在改變發生時)或在設施未被佔用時(例如,在夜間、在週末期間或在假期期間)進行由控制系統饋送之結構更新。可排程(例如,預排程)更新。更新可在最接近所作出之結構改變的時間範圍(例如,設施在結構改變已進行之後閒置的第一時間)內發生。可按預定(例如,預排程)間隔進行更新及/或感測器掃描。In some embodiments, when a structural change occurs in a facility, the BIM model may require manual updating of at least one file associated with the facility to document the change and keep it updated. The control system (eg, using the facility's sensors) may feed structural updates (eg, automatically) to the BIM model, AI engine, and/or physics engine. Structural updates fed by the control system can be done on-the-fly (eg, when changes occur) or when the facility is not occupied (eg, at night, during weekends, or during holidays). Updates can be scheduled (eg, pre-scheduled). The update may occur within the timeframe closest to the structural change made (eg, the first time the facility is idle after the structural change has been made). Updates and/or sensor scans may be performed at predetermined (eg, pre-scheduled) intervals.

在一些實施例中,一個或多個模型(如本文中所揭示)由AI引擎使用。模型可併有非固定材料,例如佔用管道之水、材料之熱容量、光學吸收率/反射率、熱特徵、聲學屬性及/或材料之排氣/VoC對比溫度。模型可併有開口、當日時間、太陽角度及/或穿透深度。可將模型應用於房間指派及/或壁未知的情境。可將模型應用於乾壁、走廊、開放區域、接待區域、樓梯及/或封閉區域已知的情境。模型可包括諸如固定物及非固定物之建築物元件。建築物元件可包含隔板、壁、地板、屋頂、結構、窗、門、天花板、櫥櫃、傢俱、桌子、隔間、台子、椅子、通風管、電導管、照明固定物、供水管線、屋頂通風口及/或用於公用設施之管道。模型可使固定物與一個或多個物理屬性相關聯,諸如固定物之材料、固定物之熱容量、固定物之聲學屬性及/或數個其他物理屬性中之任一者。In some embodiments, one or more models (as disclosed herein) are used by an AI engine. Models can incorporate non-fixed materials such as water occupied by pipes, heat capacity of materials, optical absorptivity/reflectivity, thermal characteristics, acoustic properties, and/or exhaust/VoC contrast temperatures of materials. Models may incorporate openings, time of day, sun angle and/or penetration depth. The model can be applied to situations where room assignments and/or walls are unknown. The model can be applied to situations known to drywall, corridors, open areas, reception areas, stairs and/or enclosed areas. Models may include building elements such as fixtures and non-fixes. Building elements may include partitions, walls, floors, roofs, structures, windows, doors, ceilings, cabinets, furniture, tables, compartments, benches, chairs, ventilation pipes, electrical conduits, lighting fixtures, water supply lines, roof ventilation Ports and/or pipes for utilities. The model may associate the fixture with one or more physical properties, such as the fixture's material, the fixture's heat capacity, the fixture's acoustic properties, and/or any of several other physical properties.

模型可包括關於商業及/或住宅建築物之能量相關特性的資訊。舉例而言,如先前所提及,模型可包括來自藉由美國能源部維護之建築物效能資料庫(BPD)的資訊。在一些實施例中,BPD可組合、清理及/或匿名化由管轄當局(例如,聯邦、州及/或地方政府)、公用事業、能量效率程式、建築物所有者及/或私人公司自建築物收集之資料。用於複數個建築物類型之多種物理及操作特性可儲存於BPD中,例如以記載能量效能之趨勢。BPD可允許使用者基於例如包括建築物類型、部位、大小、年齡、設備及/或操作特性之特定變數而建立及/或保存定製資料集。BPD可允許使用者使用統計或精算方法比較建築物。BPD可包含圖形網路介面及/或網路應用程式設計介面(API),其可允許應用程式及/或服務動態地查詢BPD。Models may include information on energy-related properties of commercial and/or residential buildings. For example, as previously mentioned, the model may include information from the Building Performance Database (BPD) maintained by the US Department of Energy. In some embodiments, BPD may be combined, cleaned, and/or anonymized from buildings by jurisdictional authorities (eg, federal, state, and/or local governments), utilities, energy efficiency programs, building owners, and/or private companies data collected. Various physical and operational characteristics for multiple building types can be stored in the BPD, for example to document trends in energy performance. BPD may allow users to create and/or save custom data sets based on certain variables including, for example, building type, location, size, age, equipment and/or operating characteristics. BPD may allow users to compare buildings using statistical or actuarial methods. The BPD may include a graphical web interface and/or a web application programming interface (API), which may allow applications and/or services to query the BPD dynamically.

在一些實施例中,進行初始物理模擬以模擬環境特性在封閉體中之傳播。可針對環境特性(例如,針對每一環境特性)而執行個別模擬。可使用物理模擬之輸出來組態AI模型。AI模型可為包含神經網路之AI引擎,或本文中所揭示之任何其他感測器分析方法及/或數學模型。物理模擬可為冗長的,例如約數小時或數日。物理模擬可模擬封閉體之內部以及外部。物理模擬可模擬封閉體之(例如,整個)內部環境。內部環境可涵蓋超出封閉體之周邊表層的區域。可至少部分地基於節點(例如,頂點)之網格模擬封閉體之內部。頂點之網格可為3D網格線之相交點。在網格中可存在任何數目個頂點。網格可具有恆定密度或變化密度。舉例而言,網格之至少一部分可具有較高密度(例如,鄰近於且包括POI)。一個或多個感測器可置放於整個封閉體中。感測器中之至少一者可包括於感測器集(例如,感測器套件)中。感測器集可包含本文中所揭示之任何裝置(例如,感測器、發射器、控制器及/或天線)。感測器可安置於網格之座標處。網格可具有由至少一個感測器佔用的頂點。網格可具有不含任何感測器之頂點。In some embodiments, an initial physics simulation is performed to simulate the propagation of environmental properties within the enclosure. Individual simulations may be performed for environmental characteristics (eg, for each environmental characteristic). The AI model can be configured using the output of the physical simulation. The AI model may be an AI engine including a neural network, or any other sensor analysis method and/or mathematical model disclosed herein. Physical simulations can be lengthy, eg, on the order of hours or days. Physics simulations can simulate the interior as well as the exterior of closed volumes. A physics simulation can simulate the (eg, entire) internal environment of an enclosed volume. The internal environment may encompass areas beyond the perimeter skin of the enclosure. The interior of the enclosed volume can be modeled based at least in part on a mesh of nodes (eg, vertices). The mesh of vertices may be the intersections of 3D mesh lines. There can be any number of vertices in the mesh. The grid can have constant density or varying density. For example, at least a portion of the grid can have a higher density (eg, adjacent to and including POIs). One or more sensors may be placed throughout the enclosure. At least one of the sensors can be included in a sensor set (eg, a sensor kit). A sensor set may include any of the devices disclosed herein (eg, sensors, transmitters, controllers, and/or antennas). Sensors can be placed at the coordinates of the grid. The mesh may have vertices occupied by at least one sensor. A mesh can have vertices that do not contain any sensors.

在一些實施例中,模型使用變值模型。變值模型可為單變值模型或多變值模型。單變值模型可適用於一種類型之環境特性(且使用對應的一種類型之感測器資料)。多變值模型可適用於複數種環境特性類型(且使用對應的多種類型之感測器資料)。多變值模型可適用於一種環境特性類型(且使用多種類型之感測器資料)。變值模型可判定缺失值設算。缺失值設算可用以增加對感測器讀數之信任度(例如,證實感測器讀數正確)。多變值模型可使用不同屬性(例如,不同環境特性)之感測器讀數。多變值模型可使用封閉體之不同部分(例如,樓層中之不同房間、建築物之不同樓層或設施之不同建築物)處的感測器讀數。單變值模型可使用(例如,僅)一個感測器屬性。變值模型可使用對突發峰值及/或離群值之異常偵測。In some embodiments, the model uses a variable value model. The variable value model may be a univariate value model or a multivariate value model. A univariate model can be applied to one type of environmental characteristic (and uses a corresponding one type of sensor data). Multivariate value models can be applied to multiple types of environmental characteristics (and use corresponding multiple types of sensor data). Multivariate value models can be applied to one type of environmental characteristic (and use multiple types of sensor data). Variable-value models determine missing value imputation. Missing value imputation can be used to increase confidence in sensor readings (eg, to verify that sensor readings are correct). A multivariate value model may use sensor readings for different properties (eg, different environmental characteristics). A multivariate model can use sensor readings at different parts of the enclosure (eg, different rooms in a floor, different floors in a building, or different buildings in a facility). A univariate model may use (eg, only) one sensor property. Variation models may use anomaly detection for sudden peaks and/or outliers.

圖17展示根據一些實施例之電致變色裝置1700的示意性橫截面之實例。EC裝置塗層附接至基板1702、透明導電層(TCL) 1704、電致變色層(EC) 1706(有時被稱作陰極染色層或陰極著色層)、離子傳導層或區(IC) 1708、相對電極層(CE) 1710(有時被稱作陽極染色層或陽極著色層),以及第二TCL 1714。元件1704、1706、1708、1710及1714統稱為電致變色堆疊1720。可操作以在電致變色堆疊1720上施加電位之電壓源1716實現電致變色塗層自例如清透狀態至著色狀態之轉變。在其他實施例中,相對於基板反轉層之次序。亦即,層呈以下次序:基板、TCL、相對電極層、離子傳導層、電致變色材料層、TCL。17 shows an example of a schematic cross-section of an electrochromic device 1700 in accordance with some embodiments. EC device coating is attached to substrate 1702, transparent conductive layer (TCL) 1704, electrochromic layer (EC) 1706 (sometimes referred to as cathodically colored layer or cathodically colored layer), ion conducting layer or zone (IC) 1708 , a counter electrode layer (CE) 1710 (sometimes referred to as an anodically colored layer or anodically colored layer), and a second TCL 1714. Elements 1704 , 1706 , 1708 , 1710 , and 1714 are collectively referred to as electrochromic stack 1720 . A voltage source 1716 operable to apply a potential across the electrochromic stack 1720 effects the transition of the electrochromic coating from, for example, a clear state to a colored state. In other embodiments, the order of the layers is reversed with respect to the substrate. That is, the layers are in the following order: substrate, TCL, opposing electrode layer, ion conducting layer, electrochromic material layer, TCL.

在各種實施例中,離子導體區(例如,1708)可自EC層(例如,1706)之一部分及/或自CE層(例如,1710)之一部分形成。在此類實施例中,電致變色堆疊(例如,1720)可經沉積以包括與陽極染色相對電極材料(CE層)直接實體接觸之陰極染色電致變色材料(EC層)。離子導體區域(有時被稱作界面區域或離子導電的實質上電子絕緣層或區域)可例如經由加熱及/或其他處理步驟形成於EC層與CE層會合之處。電致變色裝置(例如,包括在未沉積相異離子導體材料之情況下製造之彼等電致變色裝置)之實例可發現於2012年5月2日提交之標題為「電致變色裝置(ELECTROCHROMIC DEVICES)」之美國專利申請案第13/462,725號中,該美國專利申請案以全文引用的方式併入本文中。在一些實施例中,EC裝置塗層可包括一個或多個額外層,諸如一個或多個被動層。被動層可用於改善某些光學屬性,以提供水分及/或提供抗刮擦性。此等及/或其他被動層可用以氣密密封EC堆疊1720。包括透明導電層(諸如,1704及1714)之各種層可用抗反射及/或保護層(例如,氧化物及/或氮化物層)處理。In various embodiments, the ion conductor region (eg, 1708) may be formed from a portion of the EC layer (eg, 1706) and/or from a portion of the CE layer (eg, 1710). In such embodiments, an electrochromic stack (eg, 1720) may be deposited to include a cathodically dyed electrochromic material (EC layer) in direct physical contact with an anodically dyed counter electrode material (CE layer). Ionic conductor regions (sometimes referred to as interfacial regions or ionically conductive substantially electronically insulating layers or regions) can be formed where the EC and CE layers meet, eg, via heating and/or other processing steps. Examples of electrochromic devices (eg, including those fabricated without deposition of phase dissimilar ionic conductor materials) can be found in a May 2, 2012 filing entitled "ELECTROCHROMIC DEVICES)" in US Patent Application Serial No. 13/462,725, which is incorporated herein by reference in its entirety. In some embodiments, the EC device coating may include one or more additional layers, such as one or more passive layers. Passive layers can be used to improve certain optical properties, to provide moisture and/or to provide scratch resistance. These and/or other passive layers can be used to hermetically seal the EC stack 1720. Various layers including transparent conductive layers (such as 1704 and 1714) may be treated with anti-reflective and/or protective layers (eg, oxide and/or nitride layers).

在某些實施例中,電致變色裝置經組態以(例如,實質上)在透明狀態與經著色狀態之間可逆地循環。可逆可在ECD之預期壽命內。預期壽命可為至少約5、10、15、25、50、75或100年。預期壽命可為前述值之間的任何值(例如,約5年至約100年、約5年至約50年,或約50年至約100年)。可將電位施加至電致變色堆疊(例如,1720)使得堆疊中可導致電致變色材料(例如,1706)處於經著色狀態下之可用離子在窗處於第一色調狀態(例如,清透)下時主要駐存於相對電極(例如,1710)中。當施加至電致變色堆疊之電位反轉時,離子可跨越離子傳導層(例如,1708)輸送至電致變色材料且使材料進入第二色調狀態(例如,經著色狀態)。In certain embodiments, the electrochromic device is configured to cycle (eg, substantially) reversibly between a transparent state and a colored state. Reversible can be within the expected lifetime of the ECD. The life expectancy can be at least about 5, 10, 15, 25, 50, 75 or 100 years. The life expectancy can be any value between the foregoing values (eg, about 5 years to about 100 years, about 5 years to about 50 years, or about 50 years to about 100 years). A potential can be applied to the electrochromic stack (eg, 1720 ) such that available ions in the stack that can cause the electrochromic material (eg, 1706 ) to be in a colored state have the window in a first hue state (eg, clear) It resides primarily in the opposite electrode (eg, 1710). When the potential applied to the electrochromic stack is reversed, ions can be transported across the ion conducting layer (eg, 1708) to the electrochromic material and bring the material into a second hue state (eg, a colored state).

應理解,對清透狀態與經著色狀態之間的轉變之參考係非限制性的且建議可實施之電致變色轉變的許多實例當中之僅一個實例。除非另外指定,否則在本文中,每當參考清透至經著色轉變時,對應裝置或程序涵蓋其他光學狀態轉變,諸如非反射至反射及/或透明至不透明的轉變。在一些實施例中,術語「清透」及「漂白」指光學中性狀態,例如未經著色、透明及/或半透明。在一些實施例中,電致變色轉變之「色彩」或「色調」不限於任何波長或波長範圍。適當的電致變色材料及相對電極材料之選擇可控管相關光學轉變(例如,自經著色狀態至未經著色狀態)。It should be understood that the reference to the transition between the clear state and the colored state is non-limiting and suggests only one example of many examples of electrochromic transitions that may be implemented. Unless otherwise specified, herein, whenever a clear to colored transition is referenced, the corresponding device or procedure encompasses other optical state transitions, such as non-reflective to reflective and/or transparent to opaque transitions. In some embodiments, the terms "clear" and "bleached" refer to an optically neutral state, such as unpigmented, transparent, and/or translucent. In some embodiments, the "color" or "hue" of an electrochromic transition is not limited to any wavelength or range of wavelengths. Selection of appropriate electrochromic materials and opposing electrode materials can control the relative optical transition (eg, from a colored state to an uncolored state).

在某些實施例中,構成電致變色堆疊之材料之至少一部分(例如,所有)為無機的、固體的(亦即,呈固態),或為無機且固體的。因為各種有機材料隨著時間推移而傾向於降解,尤其當著色建築物窗曝露於熱及UV光時,無機材料給予可起作用歷時延長之時段的可靠之電致變色堆疊的優點。在一些實施例中,呈固態之材料可提供被最低限度地污染及最小化洩漏問題之優點,因為呈液態之材料有時確實發生。堆疊中之層中之一者或多者可含有一定量之有機材料(例如,可量測)。ECD或其任何部分(例如,層中之一者或多者)可含有極少或不含可量測有機物質。ECD或其任何部分(例如,層中之一者或多者)可含有可以極少量存在之一種或多種液體。極少可為ECD之至多約100 ppm、10 ppm或1 ppm。固態材料可使用一種或多種採用液態組分之程序(諸如,採用溶膠-凝膠之某些程序、物理氣相沉積及/或化學氣相沉積)來沉積(或以其他方式形成)。In certain embodiments, at least a portion (eg, all) of the materials that make up the electrochromic stack are inorganic, solid (ie, in a solid state), or both inorganic and solid. Because various organic materials tend to degrade over time, especially when tinted building windows are exposed to heat and UV light, inorganic materials give the advantage of reliable electrochromic stacks that can function for extended periods of time. In some embodiments, materials in a solid state may provide the advantage of minimal contamination and minimize leakage problems, as materials in a liquid state do sometimes. One or more of the layers in the stack may contain an amount of organic material (eg, measurable). The ECD or any portion thereof (eg, one or more of the layers) may contain little or no measurable organic matter. The ECD or any portion thereof (eg, one or more of the layers) may contain one or more liquids which may be present in very small amounts. Few can be at most about 100 ppm, 10 ppm or 1 ppm of ECD. Solid state materials may be deposited (or otherwise formed) using one or more procedures employing liquid components, such as certain procedures employing sol-gel, physical vapor deposition, and/or chemical vapor deposition.

圖18展示根據一些實施方案之體現於絕緣玻璃單元(「IGU」) 1800中的可著色窗之橫截面圖的實例。術語「IGU」、「可著色窗」及「光學可切換窗」在本文中可互換地使用。當IGU被提供以用於安設於建築物中時,可能期望使IGU充當用於保持電致變色窗格之基本構造(在本文中亦被稱作「窗片」)。IGU窗片可為單基板或多基板構造。窗片可包含例如兩個基板之層壓物。IGU(例如,具有雙窗格或三窗格組態)可提供優於單窗格組態之多個優點。舉例而言,多窗格組態可提供增強熱絕緣、雜訊絕緣、環境保護及/或耐用性,當相較於單窗格組態時。多窗格組態可為ECD提供增強之保護。舉例而言,電致變色膜(例如,以及相關聯層及導電互連件)可形成於多窗格IGU之內表面上且受填充IGU之內部體積(例如,1808)的惰性氣體保護。惰性氣體填充物可為IGU提供至少一定(熱)絕緣功能。電致變色IGU可例如藉助於吸收(及/或反射)熱及光之可著色塗層而具有熱阻擋能力。18 shows an example of a cross-sectional view of a tintable window embodied in an insulating glass unit ("IGU") 1800, according to some implementations. The terms "IGU", "tintable window" and "optically switchable window" are used interchangeably herein. When an IGU is provided for installation in a building, it may be desirable for the IGU to serve as the basic construct for holding the electrochromic pane (also referred to herein as a "window"). IGU windows can be of single-substrate or multi-substrate construction. The window may comprise, for example, a laminate of two substrates. An IGU (eg, having a two-pane or three-pane configuration) can provide several advantages over a single-pane configuration. For example, a multi-pane configuration may provide enhanced thermal isolation, noise isolation, environmental protection, and/or durability when compared to a single-pane configuration. A multi-pane configuration provides enhanced protection for ECDs. For example, an electrochromic film (eg, and associated layers and conductive interconnects) can be formed on the inner surface of a multi-pane IGU and protected by an inert gas filling the interior volume (eg, 1808) of the IGU. The inert gas filling can provide at least some (thermal) insulating function to the IGU. Electrochromic IGUs can have thermal barrier capabilities, for example, by means of colorable coatings that absorb (and/or reflect) heat and light.

在一些實施例中,「IGU」包括兩個(或更多個)實質上透明基板。舉例而言,IGU可包括兩個玻璃窗格。IGU之至少一個基底可包括安置於其上之電致變色裝置。IGU之一個或多個窗格可具有安置於其間之分離器。IGU可為氣密密封式構造,例如具有與周圍環境隔離之內部區域。「窗總成」可包括IGU。「窗總成」可包括(例如,獨立)層壓物。「窗總成」可包括一條或多條電導線,例如用於連接IGU及/或層壓物。電導線可將一個或多個電致變色裝置操作性地耦接(例如,連接)至電壓源、開關及其類似者,且可包括支撐IGU或層壓物之框架。窗總成可包括窗控制器,及/或窗控制器之組件(例如,對接件)。In some embodiments, an "IGU" includes two (or more) substantially transparent substrates. For example, an IGU may include two panes of glass. At least one substrate of the IGU can include electrochromic devices disposed thereon. One or more panes of the IGU may have separators disposed therebetween. The IGU may be of hermetically sealed construction, eg, having an interior region isolated from the surrounding environment. A "window assembly" may include an IGU. A "window assembly" may include (eg, stand alone) laminates. A "window assembly" may include one or more electrical leads, eg, for connecting to the IGU and/or laminate. The electrical leads can operatively couple (eg, connect) one or more electrochromic devices to voltage sources, switches, and the like, and can include a frame that supports the IGU or laminate. The window assembly may include a window control, and/or components of the window control (eg, a docking piece).

圖18展示IGU 1800之例示性實施方案,該IGU包括具有第一表面S1及第二表面S2之第一窗格1804。在一些實施中,第一窗格1804之第一表面S1面向外部環境,諸如戶外或外部環境。IGU 1800包括具有第一表面S3及第二表面S4之第二窗格1806。在一些實施中,第二窗格(例如,1806)之第二表面(例如,S4)面向內部環境,諸如房屋、建築物、載具或其隔室(例如,其中之封閉體,諸如房間)之內部環境。18 shows an exemplary implementation of an IGU 1800 that includes a first pane 1804 having a first surface S1 and a second surface S2. In some implementations, the first surface S1 of the first pane 1804 faces an external environment, such as an outdoor or external environment. The IGU 1800 includes a second pane 1806 having a first surface S3 and a second surface S4. In some implementations, the second surface (eg, S4 ) of the second pane (eg, 1806 ) faces the interior environment, such as a house, building, vehicle, or compartment thereof (eg, an enclosure therein, such as a room) the internal environment.

在一些實施方案中,第一窗格及第二窗格(例如,1804及1806)為透明或半透明的,例如至少對於可見光譜中之光為透明或半透明的。舉例而言,窗格(例如,1804及1806)中之每一者可由玻璃材料形成。玻璃材料可包括建築玻璃及/或防碎玻璃。玻璃可包含氧化矽(SO x)。玻璃可包含鈉鈣玻璃或浮法玻璃。玻璃可包含至少約75%之二氧化矽(SiO 2)。玻璃可包含氧化物,諸如Na 2O或CaO。玻璃可包含鹼金屬或鹼土氧化物。玻璃可包含一種或多種添加劑。第一及/或第二窗格可包括具有合適的光學、電氣、熱及/或機械屬性之任何材料。可包括於第一及/或第二窗格中之其他材料(例如,基板)為塑性、半塑性及/或熱塑性材料,例如聚(甲基丙烯酸甲酯)、聚苯乙烯、聚碳酸酯、烯丙基二乙二醇碳酸酯、苯乙烯丙烯腈共聚物(SAN)、聚(4-甲基-1-戊烯)、聚酯及/或聚醯胺。第一及/或第二窗格可包括鏡面材料(例如,銀)。在一些實施中,第一及/或第二窗格可經強化。強化可包括回火、加熱及/或化學強化。 In some implementations, the first and second panes (eg, 1804 and 1806) are transparent or translucent, eg, transparent or translucent at least for light in the visible spectrum. For example, each of the panes (eg, 1804 and 1806) may be formed from a glass material. Glass materials may include architectural glass and/or shatterproof glass. The glass may contain silicon oxide (SO x ). The glass may comprise soda lime glass or float glass. The glass may contain at least about 75% silicon dioxide (SiO 2 ). The glass may contain oxides such as Na2O or CaO. The glass may contain alkali metal or alkaline earth oxides. The glass may contain one or more additives. The first and/or second panes may comprise any material having suitable optical, electrical, thermal and/or mechanical properties. Other materials (eg, substrates) that may be included in the first and/or second panes are plastic, semi-plastic and/or thermoplastic materials such as poly(methyl methacrylate), polystyrene, polycarbonate, Allyl diethylene glycol carbonate, styrene acrylonitrile copolymer (SAN), poly(4-methyl-1-pentene), polyester and/or polyamide. The first and/or second panes may include a specular material (eg, silver). In some implementations, the first and/or second panes can be enhanced. Strengthening may include tempering, heating and/or chemical strengthening.

有時,所量測屬性(例如,藉由一個或多個感測器量測)與時間之間的關係展示重複行為。此類屬性可導致各種預測行為。當所預測行為並未如預測發生時(例如,在臨限值內),可提供警示。警示可發信未確認信號(例如,可表示未確認行為)。未確認信號可歸因於環境改變、感測器改變或其兩者。圖19展示在幾日內量測溫度之各種感測器的實例,感測器資料在圖19中所展示之曲線圖中疊加。相較於夜間,日間之溫度值更高,因此出現每日型樣。對於諸如1900之每一循環,相較於諸如1910之溫度下降的斜率,諸如1920之高程呈現為以更陡斜率(例如,斜率之較高絕對值)升高。諸如1930之每日最大值的時序及值亦可為可見的。Sometimes the relationship between a measured attribute (eg, measured by one or more sensors) and time exhibits repetitive behavior. Such properties can lead to various predictive behaviors. Alerts may be provided when the predicted behavior does not occur as predicted (eg, within a threshold). Alerts may signal unacknowledged behavior (eg, may indicate unacknowledged behavior). Unacknowledged signals may be due to environmental changes, sensor changes, or both. FIG. 19 shows examples of various sensors measuring temperature over several days, with the sensor data superimposed on the graph shown in FIG. 19 . Temperature values are higher during the day than at night, hence the daily pattern. For each cycle such as 1900, an elevation such as 1920 appears to increase with a steeper slope (eg, a higher absolute value of the slope) than the slope of temperature drop such as 1910. Time series and values such as the daily maximum of 1930 may also be visible.

雖然本發明之較佳實施例已展示且描述於本文中,但本領域中熟習此項技術者將顯而易見,此等實施例僅作為實例而提供。不希望本發明受本說明書內所提供之特定實例的限制。儘管已參考前述說明書描述了本發明,但本文中之實施例的描述及說明並不意欲以限制性意義來解釋。在不脫離本發明之情況下,本領域中熟習此項技術者現將想到大量變化形式、變化及替代。此外,應理解,本發明之所有態樣不限於本文中所闡述之特定描繪、組態或相對比例,此取決於多種條件及變數。應理解,可在實踐本發明時採用本文中所描述之本發明實施例的各種替代例。因此,預期本發明亦應涵蓋任何此類替代例、修改、變化或等效物。希望以下申請專利範圍界定本發明之範圍,且藉此涵蓋此等申請專利範圍及其等效物之範圍內的方法及結構。While preferred embodiments of the invention have been shown and described herein, it will be apparent to those skilled in the art that these embodiments are provided by way of example only. It is not intended that the present invention be limited to the specific examples provided within this specification. While the invention has been described with reference to the foregoing specification, the description and illustration of the embodiments herein are not intended to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it is to be understood that all aspects of the invention are not limited to the specific depictions, configurations, or relative proportions set forth herein, which depend upon various conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Accordingly, it is intended that the present invention also covers any such alternatives, modifications, variations or equivalents. It is intended that the following patent claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

100:電腦系統 101:電腦網路 102:記憶體/記憶體部位 103:通信介面 104:電子儲存單元 105:周邊裝置 106:處理單元/處理器 200:控制系統架構 204:本端控制器 206:樓層控制器 208:主控制器 210:外部源 220:資料庫 224:建築物管理系統(BMS) 305:屋頂施主天線 305a:屋頂施主天線 305b:屋頂施主天線 307:天空感測器 309:實體線/高速線 311:通信服務提供者總局 313:控制面板 319:資料攜載線 321:幹線 323:裝置集 325:天線 350:平面 400:建築物網路 405:主網路控制器 410:照明控制面板 415:建築物管理系統 420:安全控制系統 425:使用者控制台 430:HVAC系統/HVAC 435:燈 440:安全感測器 445:門鎖 450:攝影機 455:可著色窗 500:封閉體 510:裝置或裝置集 520:網路 600:圖 605:控制器 608:通信鏈接 610A:感測器 610B:感測器 610C:感測器 610Z:感測器 615A:感測器 615B:感測器 615C:感測器 615Z:感測器 620A:感測器 620B:感測器 620C:感測器 620Z:感測器 685A:感測器 685B:感測器 685C:感測器 685Z:感測器 700:圖 702:會議室 705A:第一裝置集 705B:第二裝置集 705C:第三裝置集 710:群組 715A:點 715B:點 715C:點 725A:感測器輸出讀數分佈 725B:感測器輸出讀數分佈 725C:感測器輸出讀數分佈 730:CO 2曲線圖 735A:點 735B:點 735C:點 740:雜訊曲線圖 745A:點 745B:點 745C:點 750:感測器分佈曲線 750A:曲線 750B:曲線 750C:曲線 750D:曲線 750E:曲線 751:感測器分佈曲線 751A:曲線 751B:曲線 751C:曲線 751D:曲線 751E:曲線 801:第一佔用者 802:第二佔用者 803:第三佔用者 804:第四佔用者 805:第五佔用者 806:第六佔用者 807:第七佔用者 808:第八佔用者 809:第九佔用者 900:系統 905:裝置集 910A:感測器 910B:感測器 910C:感測器 910D:感測器 915:處理器 950:網路介面 951:雲端 952:處理器 954:遠端處理器 1000:裝置集(例如,總成) 1001:保護性外殼 1002:實例 1003:孔 1101:裝置集 1103:清理及/或過濾模組 1105:人工智慧(AI)引擎 1107:封閉體 1109:洞察資料庫 1111:第一建築物 1113:第二建築物 1115:第N建築物 1117:模擬資料 1119:第一模型 1121:物理引擎 1123:測試感測裝置 1125:實驗資料 1127:第二模型 1201:區塊 1202:區塊 1203:區塊 1205:區塊 1207:區塊 1209:區塊 1301:區塊 1302:區塊 1305:區塊 1306:區塊 1307:區塊 1308:區塊 1401:區塊 1403:區塊 1405:區塊 1407:區塊 1409:區塊 1501:區塊 1503:區塊 1505:區塊 1507:區塊 1509:區塊 1511:區塊 1513:區塊 1601:區塊 1603:區塊 1605:區塊 1607:區塊 1609:區塊 1611:區塊 1700:電致變色裝置 1702:基板 1704:透明導電層(TCL) 1706:電致變色層(EC) 1708:離子傳導層或區(IC) 1710:相對電極層(CE) 1714:第二TCL 1716:電壓源 1720:電致變色堆疊 1800:絕緣玻璃單元 1804:第一窗格 1806:第二窗格 1808:內部體積 1900:循環 S1:第一表面 S2:第二表面 S3:第一表面 S4:第二表面 100: Computer system 101: Computer network 102: Memory/memory part 103: Communication interface 104: Electronic storage unit 105: Peripheral device 106: Processing unit/processor 200: Control system architecture 204: Local controller 206: Floor Controller 208: Main Controller 210: External Source 220: Database 224: Building Management System (BMS) 305: Roof Donor Antenna 305a: Roof Donor Antenna 305b: Roof Donor Antenna 307: Sky Sensor 309: Solid Line /High Speed Line 311: CSP 313: Control Panel 319: Data Carrying Line 321: Trunk Line 323: Device Collection 325: Antenna 350: Plane 400: Building Network 405: Main Network Controller 410: Lighting Control Panel 415: Building Management System 420: Security Control System 425: User Console 430: HVAC System/HVAC 435: Lights 440: Security Sensors 445: Door Locks 450: Cameras 455: Tintable Windows 500: Closures 510 : device or device set 520: network 600: graph 605: controller 608: communication link 610A: sensor 610B: sensor 610C: sensor 610Z: sensor 615A: sensor 615B: sensor 615C: Sensor 615Z: Sensor 620A: Sensor 620B: Sensor 620C: Sensor 620Z: Sensor 685A: Sensor 685B: Sensor 685C: Sensor 685Z: Sensor 700: Diagram 702: Meeting Room 705A: First Device Set 705B: Second Device Set 705C: Third Device Set 710: Group 715A: Point 715B: Point 715C: Point 725A: Sensor Output Reading Distribution 725B: Sensing Sensor Output Reading Distribution 725C: Sensor Output Reading Distribution 730: CO 2 Graph 735A: Dot 735B: Dot 735C: Dot 740: Noise Graph 745A: Dot 745B: Dot 745C: Dot 750: Sensor Distribution Curve 750A :Curve 750B:Curve 750C:Curve 750D:Curve 750E:Curve 751:Sensor Distribution Curve 751A:Curve 751B:Curve 751C:Curve 751D:Curve 751E:Curve 801:First Occupant 802:Second Occupant 803: Third occupant 804: Fourth occupant 805: Fifth occupant 806: Sixth occupant 807: Seventh occupant 808: Eighth occupant 809: Ninth occupant 900: System 905: Device set 910A: Sense Sensor 910B: Sensor 910C: Sensor 910D: Sensor 915: Processor 950: Network Interface 951: Cloud 952: Processor 954: Remote Processor 1000: Device Set (eg, Assembly) 1001 : Protective Enclosure 1002: Instance 1003: Hole 1101: Device Set 1103: Cleaning and/or Cleaning Filter Module 1105: Artificial Intelligence (AI) Engine 1107: Enclosure 1109: Insight Database 1111: First Building 1113: Second Building 1115: Nth Building 1117: Simulation Data 1119: First Model 1121: Physics Engine 1123: Test Sensing Device 1125: Experimental Data 1127: Second Model 1201: Block 1202: Block 1203: Block 1205: Block 1207: Block 1209: Block 1301: Block 1302: Block 1305: Block 1306: Block 1307: Block 1308: Block 1401: Block 1403: Block 1405: Block 1407: Block 1409: Block 1501: Block 1503: Block 1505: Block 1507: Block 1509: Block 1511: Block 1513: Block 1601: Block 1603: Block 1605: Block 1607: Block 1609: Block 1611: Block 1700: Electrochromic device 1702: Substrate 1704: Transparent conductive layer (TCL) 1706: Electrochromic Layer (EC) 1708: Ion Conductive Layer or Region (IC) 1710: Counter Electrode Layer (CE) 1714: Second TCL 1716: Voltage Source 1720: Electrochromic Stack 1800: Insulating Glass Unit 1804: First Pane 1806: Second Pane 1808: Internal Volume 1900: Loop S1: First Surface S2: Second Surface S3: First Surface S4: Second Surface

本發明之新穎特徵在隨附申請專利範圍中細緻闡述。將參考闡述利用本發明原理之說明性實施例的以下實施方式及隨附圖式(在本文中亦為「圖(FIG./FIGS.)」)來獲得對本發明之特徵及優點的較佳理解,其中:The novel features of the present invention are set forth in detail in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following description and accompanying drawings (also referred to herein as "FIG./FIGS.") illustrating illustrative embodiments utilizing the principles of the invention. ,in:

[圖1]示意性地展示處理系統;[FIG. 1] schematically shows a processing system;

[圖2]示意性地展示控制系統架構及建築物;[Fig. 2] Schematically shows the control system architecture and buildings;

[圖3]示意性地展示建築物及網路;[Figure 3] A schematic representation of buildings and networks;

[圖4]展示裝置之網路的方塊圖;[FIG. 4] A block diagram showing the network of the device;

[圖5]示意性地描繪安置於各種封閉體中之通信網路;[FIG. 5] Schematically depicts communication networks housed in various enclosures;

[圖6]展示感測器配置之示意性實例;[FIG. 6] shows a schematic example of a sensor configuration;

[圖7]展示感測器配置及感測器資料之示意性實例;[FIG. 7] shows a schematic example of sensor configuration and sensor data;

[圖8]展示所量測屬性值之地形圖;[Fig. 8] A topographic map showing the measured attribute values;

[圖9]展示設備、其組件及連接性選項;[Figure 9] Shows the device, its components and connectivity options;

[圖10]示意性地展示總成外殼之各種視圖及組態;[FIG. 10] schematically shows various views and configurations of the assembly housing;

[圖11]示意性地描繪人工智慧(AI)引擎及相關聯組件;[FIG. 11] schematically depicts an artificial intelligence (AI) engine and associated components;

[圖12]為描繪學習模型之建構的流程圖;[Fig. 12] is a flow chart depicting the construction of the learning model;

[圖13]為描繪學習模型之改進的流程圖;[FIG. 13] is a flowchart depicting the improvement of the learning model;

[圖14]為描繪使用頂點之網格之模型化的流程圖;[FIG. 14] is a flowchart depicting modeling of meshes using vertices;

[圖15]為描繪感測器資料之收集的流程圖;[FIG. 15] is a flowchart depicting the collection of sensor data;

[圖16]為描繪環境調整之執行的流程圖;[FIG. 16] is a flowchart depicting the execution of environmental adjustments;

[圖17]示意性地展示電致變色裝置;[FIG. 17] An electrochromic device is schematically shown;

[圖18]示意性地展示整合式玻璃單元(IGU)之橫截面;及[FIG. 18] schematically shows a cross-section of an integrated glass unit (IGU); and

[圖19]描繪溫度依據時間而變化之各種曲線圖。[FIG. 19] Various graphs depicting temperature changes with time.

諸圖及其中的組件可能未按比例繪製。本文中所描述之諸圖的各種組件可能未按比例繪製。The figures and components therein may not be drawn to scale. Various components of the figures described herein may not be drawn to scale.

1101:裝置集 1101: Device Set

1103:清理及/或過濾模組 1103: Cleaning and/or Filtering Modules

1105:人工智慧(AI)引擎 1105: Artificial Intelligence (AI) Engine

1107:封閉體 1107: Closure

1109:洞察資料庫 1109: Insight Repository

1111:第一建築物 1111: First Building

1113:第二建築物 1113: Second Building

1115:第N建築物 1115: Building N

1117:模擬資料 1117: Simulation data

1119:第一模型 1119: The first model

1121:物理引擎 1121: Physics Engine

1123:測試感測裝置 1123: Test Sensing Device

1125:實驗資料 1125: Experimental data

1127:第二模型 1127: Second Model

Claims (165)

一種環境調整之方法,該方法包含: (a)使用(i)一實體封閉體之一虛擬表示、(ii)頂點之一虛擬網格及(iii)該實體封閉體之一個或多個材料屬性來產生該實體封閉體之一虛擬封閉體模型; (b)使用該虛擬封閉體模型以產生該實體封閉體之一個或多個環境特性的一地圖;及 (c)使用該地圖以控制該實體封閉體之該一個或多個環境特性。 A method of environmental adjustment, the method includes: (a) use (i) a virtual representation of a physical enclosure, (ii) a virtual mesh of vertices, and (iii) one or more material properties of the physical enclosure to generate a virtual enclosure of the physical enclosure body model; (b) use the virtual enclosure model to generate a map of one or more environmental properties of the physical enclosure; and (c) using the map to control the one or more environmental properties of the physical enclosure. 如請求項1之方法,其進一步包含接收將來自該虛擬網格之一第一頂點作為一第一關注點的一選擇。The method of claim 1, further comprising receiving a selection from a first vertex of the virtual mesh as a first point of interest. 如請求項2之方法,其進一步包含分析該虛擬網格之該第一頂點及一第二頂點處的該一個或多個環境特性,其中相對於該第二頂點,將一較大精確度用於該第一頂點。The method of claim 2, further comprising analyzing the one or more environmental properties at the first vertex and a second vertex of the virtual mesh, wherein a greater accuracy is used with respect to the second vertex at the first vertex. 如請求項2之方法,其進一步包含接收對並非該虛擬網格之一頂點的一第二關注點之一選擇。The method of claim 2, further comprising receiving a selection of a second point of interest that is not a vertex of the virtual mesh. 如請求項4之方法,其進一步包含執行(a)回應於接收到對該第二關注點之該選擇而更改該虛擬網格及/或(b)將該第二關注點遷移至該虛擬網格之一最近頂點。The method of claim 4, further comprising performing (a) changing the virtual mesh in response to receiving the selection of the second point of interest and/or (b) migrating the second point of interest to the virtual mesh One of the nearest vertices of the lattice. 如請求項1之方法,其中將來自該虛擬網格之一第一頂點識別為一第一關注點。The method of claim 1, wherein a first vertex from the virtual mesh is identified as a first point of interest. 如請求項6之方法,其中在該虛擬網格之該第一頂點及一第二頂點處獲取該一個或多個環境特性,且其中相對於該第二頂點,將一較大精確度應用於該第一頂點。The method of claim 6, wherein the one or more environmental properties are obtained at the first vertex and a second vertex of the virtual mesh, and wherein a greater accuracy is applied to the second vertex relative to the second vertex the first vertex. 如請求項6之方法,其中識別並非該虛擬網格之一頂點的一第二關注點。The method of claim 6, wherein a second point of interest that is not a vertex of the virtual mesh is identified. 如請求項6之方法,其中該第一關注點在該實體封閉體中具有一類似的第一部位,該第一部位包括一感測器。6. The method of claim 6, wherein the first point of interest has a similar first location in the physical enclosure, the first location including a sensor. 如請求項6之方法,其中該第一關注點與最近感測器相距一距離。The method of claim 6, wherein the first point of interest is a distance from the closest sensor. 如請求項8之方法,其中該第二關注點在該實體封閉體中具有一類似的第一部位,該第一部位與最近感測器相距一距離。The method of claim 8, wherein the second point of interest has a similar first location in the physical enclosure, the first location being a distance from the closest sensor. 如請求項6之方法,其進一步包含自安置在類似於鄰近該第一關注點之虛擬網格頂點之一實體部位處的一個或多個感測器將資料輸入至該虛擬封閉體模型中,以用於外推該第一關注點處之一所感測屬性。The method of claim 6, further comprising inputting data into the virtual closed volume model from one or more sensors disposed at a physical location similar to a virtual mesh vertex adjacent to the first point of interest, for extrapolating one of the sensed attributes at the first point of interest. 如請求項1之方法,其中頂點之該虛擬網格為一非均質網格。The method of claim 1, wherein the virtual mesh of vertices is an inhomogeneous mesh. 如請求項13之方法,其中該虛擬網格之非均質性與一所關注區域相關。The method of claim 13, wherein the heterogeneity of the virtual grid is related to a region of interest. 如請求項13之方法,其中該虛擬網格之非均質性與一網格密度相關。The method of claim 13, wherein the heterogeneity of the virtual grid is related to a grid density. 如請求項13之方法,其中該虛擬網格之非均質性與一網格解析度相關。The method of claim 13, wherein the heterogeneity of the virtual grid is related to a grid resolution. 如請求項1之方法,其中該虛擬封閉體模型包含該實體封閉體之一個或多個結構特徵的一考慮。The method of claim 1, wherein the virtual enclosure model includes a consideration of one or more structural features of the physical enclosure. 如請求項1之方法,其中該虛擬封閉體模型包含該實體封閉體之一個或多個固定物的一考慮。The method of claim 1, wherein the virtual enclosure model includes a consideration of one or more fixtures of the physical enclosure. 如請求項1之方法,其中該實體封閉體包括一個或多個感測器。The method of claim 1, wherein the physical enclosure includes one or more sensors. 如請求項19之方法,其進一步包含自該一個或多個感測器接收基線讀數。The method of claim 19, further comprising receiving baseline readings from the one or more sensors. 如請求項19之方法,其進一步包含使用基線讀數來建構該虛擬封閉體模型。The method of claim 19, further comprising using the baseline readings to construct the virtual closed volume model. 如請求項1之方法,其進一步包含使用該實體封閉體之一三維示意圖來建構該虛擬封閉體模型。The method of claim 1, further comprising using a three-dimensional representation of the physical enclosure to construct the virtual enclosure model. 如請求項1之方法,其進一步包含使用一建築物資訊模型來建構該虛擬封閉體模型。The method of claim 1, further comprising using a building information model to construct the virtual closed volume model. 如請求項18之方法,其進一步包含使用該實體封閉體之該一個或多個固定物的一個或多個物理屬性來建構該虛擬封閉體模型。The method of claim 18, further comprising constructing the virtual enclosure model using one or more physical properties of the one or more fixtures of the physical enclosure. 如請求項18之方法,其進一步包含使用該實體封閉體之該一個或多個固定物的一個或多個材料屬性來建構該虛擬封閉體模型。The method of claim 18, further comprising constructing the virtual enclosure model using one or more material properties of the one or more fixtures of the physical enclosure. 如請求項1之方法,其進一步包含使用一人工智慧引擎來改進該虛擬封閉體模型。The method of claim 1, further comprising using an artificial intelligence engine to refine the virtual closed volume model. 如請求項26之方法,其中該實體封閉體包括一個或多個感測器。The method of claim 26, wherein the physical enclosure includes one or more sensors. 如請求項27之方法,其中該人工智慧引擎自該一個或多個感測器接收讀數。The method of claim 27, wherein the artificial intelligence engine receives readings from the one or more sensors. 如請求項28之方法,其進一步包含使用該人工智慧引擎以模型化(i)該一個或多個感測器之部位、(ii)該一個或多個感測器之操作、(iii)由該一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由該一個或多個感測器感測到之至少一個屬性隨時間的演進。The method of claim 28, further comprising using the artificial intelligence engine to model (i) the location of the one or more sensors, (ii) the operation of the one or more sensors, (iii) by Spatial distribution of at least one attribute sensed by the one or more sensors and/or (iv) evolution over time of at least one attribute sensed by the one or more sensors. 如請求項29之方法,其進一步包含該人工智慧引擎使用預測性外推來改進該模型化。The method of claim 29, further comprising the artificial intelligence engine using predictive extrapolation to improve the modeling. 如請求項30之方法,其中該預測性外推至少部分地基於感測器資料中之一趨勢。The method of claim 30, wherein the predictive extrapolation is based at least in part on a trend in sensor data. 如請求項30之方法,其中該預測性外推至少部分地基於一預期物理參數。The method of claim 30, wherein the predictive extrapolation is based at least in part on an expected physical parameter. 如請求項29之方法,其中該一個或多個感測器不在類似於該虛擬網格之一頂點的一部位處。The method of claim 29, wherein the one or more sensors are not at a location similar to a vertex of the virtual mesh. 如請求項1之方法,其進一步包含使用一階層式控制系統來控制該實體封閉體之該一個或多個環境特性。The method of claim 1, further comprising using a hierarchical control system to control the one or more environmental properties of the physical enclosure. 如請求項34之方法,其進一步包含該控制系統控制該實體封閉體之該一個或多個環境特性。The method of claim 34, further comprising the control system controlling the one or more environmental properties of the physical enclosure. 如請求項35之方法,其中控制該實體封閉體之該一個或多個環境特性係藉由調整(i)一加熱、通風及空氣調節(HVAC)系統;(ii)調整一安全系統、(iii)一照明系統及/或(iv)一可著色窗之一色調來進行。The method of claim 35, wherein the one or more environmental properties of the physical enclosure are controlled by adjusting (i) a heating, ventilation and air conditioning (HVAC) system; (ii) a security system; (iii) ) a lighting system and/or (iv) a tint of a tintable window. 如請求項35之方法,其中控制該實體封閉體之該一個或多個環境特性係藉由調節經由一通風口流動至該封閉體及/或自該封閉體流動之一空氣的一速度。The method of claim 35, wherein controlling the one or more environmental properties of the physical enclosure is by adjusting a velocity of an air flowing to and/or from the enclosure through a vent. 如請求項35之方法,其中控制該實體封閉體之該一個或多個環境特性係藉由控制一建築物管理系統進行。The method of claim 35, wherein controlling the one or more environmental properties of the physical enclosure is performed by controlling a building management system. 如請求項34之方法,其中該階層式控制系統包含經組態以控制一個或多個樓層控制器之一主控制器。The method of claim 34, wherein the hierarchical control system includes a master controller configured to control one or more floor controllers. 如請求項39之方法,其中該一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。The method of claim 39, wherein one of the one or more floor controllers is configured to control one or more local controllers. 如請求項40之方法,其中該一個或多個本端控制器中之一本端控制器經組態以控制一個或多個可著色窗。The method of claim 40, wherein a local controller of the one or more local controllers is configured to control one or more tintable windows. 如請求項40之方法,其中該一個或多個本端控制器中之一本端控制器經組態以控制一個或多個感測器。The method of claim 40, wherein a local controller of the one or more local controllers is configured to control one or more sensors. 如請求項40之方法,其中該一個或多個本端控制器中之一本端控制器經組態以控制一個或多個輸出裝置。The method of claim 40, wherein a local controller of the one or more local controllers is configured to control one or more output devices. 如請求項39之方法,其中該主控制器經組態以操作性地耦接至一建築物管理系統。The method of claim 39, wherein the master controller is configured to be operatively coupled to a building management system. 如請求項39之方法,其中該主控制器經組態以操作性地耦接至一資料庫。The method of claim 39, wherein the host controller is configured to be operatively coupled to a database. 如請求項39之方法,其中該主控制器經組態以操作性地耦接至一網路。The method of claim 39, wherein the host controller is configured to be operatively coupled to a network. 如請求項39之方法,其中該主控制器及/或該樓層控制器在雲端中。The method of claim 39, wherein the main controller and/or the floor controller are in the cloud. 如請求項39之方法,其中該主控制器安置於該實體封閉體中。The method of claim 39, wherein the main controller is disposed in the physical enclosure. 如請求項40之方法,其中該樓層控制器安置於該實體封閉體中。The method of claim 40, wherein the floor controller is disposed in the physical enclosure. 如請求項39之方法,其中該主控制器安置在不同於該實體封閉體之部位的一部位處。The method of claim 39, wherein the main controller is positioned at a location different from the location of the physical enclosure. 如請求項40之方法,其中該樓層控制器安置在不同於該實體封閉體之部位的一部位處。The method of claim 40, wherein the floor controller is positioned at a location different from the location of the physical enclosure. 如請求項38之方法,其中該建築物管理系統經組態以控制該實體封閉體之該一個或多個環境特性。The method of claim 38, wherein the building management system is configured to control the one or more environmental characteristics of the physical enclosure. 如請求項53之方法,其中控制該實體封閉體之該一個或多個環境特性包含為操作該實體封閉體提供一能量消耗節省。The method of claim 53, wherein controlling the one or more environmental characteristics of the physical enclosure includes providing an energy consumption savings for operating the physical enclosure. 如請求項1之方法,其中該封閉體為一設施。The method of claim 1, wherein the enclosure is a facility. 如請求項1之方法,其中該封閉體為一建築物。The method of claim 1, wherein the enclosure is a building. 一種用於環境調整之設備,該設備包含一個或多個控制器,該一個或多個控制器包含至少一個電路系統且經組態以: (a)使用(i)一實體封閉體之一虛擬表示、(ii)頂點之一虛擬網格及(iii)該實體封閉體之一個或多個材料屬性來產生或指導產生該實體封閉體之一虛擬封閉體模型; (b)使用或指導利用該虛擬封閉體模型以產生該實體封閉體之一個或多個環境特性的一地圖;及 (c)使用或指導利用該地圖以控制該實體封閉體之該一個或多個環境特性。 An apparatus for environmental conditioning, the apparatus comprising one or more controllers comprising at least one circuitry and configured to: (a) use (i) a virtual representation of a physical enclosure, (ii) a virtual mesh of vertices, and (iii) one or more material properties of the physical enclosure to generate or guide the creation of the physical enclosure a virtual closed body model; (b) use or direct the use of the virtual enclosure model to generate a map of one or more environmental properties of the physical enclosure; and (c) use or direct the use of the map to control the one or more environmental properties of the physical enclosure. 如請求項56之設備,其中該一個或多個控制器經組態以用於接收將來自該虛擬網格之一第一頂點作為一第一關注點的一選擇。The apparatus of claim 56, wherein the one or more controllers are configured for receiving a selection from a first vertex of the virtual mesh as a first point of interest. 如請求項56之設備,其中該一個或多個控制器經組態以用於分析該虛擬網格之一第一頂點及一第二頂點處的該一個或多個環境特性,其中相對於該第二頂點,將一較大精確度用於該第一頂點。The apparatus of claim 56, wherein the one or more controllers are configured for analyzing the one or more environmental properties at a first vertex and a second vertex of the virtual mesh, wherein relative to the For the second vertex, a greater precision is used for the first vertex. 如請求項57之設備,其中該一個或多個控制器經組態以用於接收對並非該虛擬網格之該等頂點中之任一者的一第二關注點之一選擇。The apparatus of claim 57, wherein the one or more controllers are configured for receiving a selection of a second point of interest that is not any of the vertices of the virtual mesh. 如請求項59之設備,其中該一個或多個控制器經組態以用於執行或指導執行(a)回應於接收到對該第二關注點之該選擇而更改該虛擬網格及/或(b)將該第二關注點遷移至該虛擬網格之一最近頂點。The apparatus of claim 59, wherein the one or more controllers are configured to execute or direct execution of (a) changing the virtual grid and/or responsive to receiving the selection of the second point of interest (b) Migrating the second point of interest to one of the closest vertices of the virtual mesh. 如請求項56之設備,其中將來自該虛擬網格之一第一頂點識別為一第一關注點。The apparatus of claim 56, wherein a first vertex from the virtual mesh is identified as a first point of interest. 如請求項61之設備,其中在該虛擬網格之該第一頂點及一第二頂點處獲取該一個或多個環境特性,且其中相對於該第二頂點,將一較大精確度應用於該第一頂點。The apparatus of claim 61, wherein the one or more environmental properties are obtained at the first vertex and a second vertex of the virtual mesh, and wherein a greater precision is applied to the second vertex relative to the second vertex the first vertex. 如請求項61之設備,其中一第二關注點不在該虛擬網格之一頂點上。The apparatus of claim 61, wherein a second point of interest is not on a vertex of the virtual mesh. 如請求項61之設備,其中該第一關注點對應於該實體封閉體中安置一感測器之一各別部位。The apparatus of claim 61, wherein the first point of interest corresponds to a respective portion of the physical enclosure where a sensor is disposed. 如請求項61之設備,其中該第一關注點對應於該實體封閉體中與最近感測器相距一距離之一各別部位。The apparatus of claim 61, wherein the first point of interest corresponds to a respective location in the physical enclosure that is at a distance from the nearest sensor. 如請求項63之設備,其中該第二關注點對應於該實體封閉體中與最近感測器相距一距離之一各別部位。The apparatus of claim 63, wherein the second point of interest corresponds to a respective location in the physical enclosure at a distance from the nearest sensor. 如請求項61之設備,其中該一個或多個控制器經組態以用於自安置於鄰近該第一關注點之網格頂點處的一個或多個感測器將資料輸入至虛擬封閉體模型中。The apparatus of claim 61, wherein the one or more controllers are configured for inputting data to the virtual enclosure from one or more sensors positioned at mesh vertices adjacent to the first point of interest in the model. 如請求項67之設備,其中該資料之輸入用於外推該第一關注點處之一所感測屬性。The apparatus of claim 67, wherein the input of the data is used to extrapolate a sensed attribute at the first point of interest. 如請求項56之設備,其中頂點之該虛擬網格為一非均質網格。The apparatus of claim 56, wherein the virtual mesh of vertices is an inhomogeneous mesh. 如請求項69之設備,其中該虛擬網格之非均質性與一所關注區域相關。The apparatus of claim 69, wherein the heterogeneity of the virtual grid is related to a region of interest. 如請求項69之設備,其中該虛擬網格之非均質性與一網格密度相關。The apparatus of claim 69, wherein the heterogeneity of the virtual grid is related to a grid density. 如請求項69之設備,其中該虛擬網格之非均質性與一網格解析度相關。The apparatus of claim 69, wherein the heterogeneity of the virtual grid is related to a grid resolution. 如請求項56之設備,其中該虛擬封閉體模型包含該實體封閉體之一個或多個結構特徵的一考慮。The apparatus of claim 56, wherein the virtual enclosure model includes an consideration of one or more structural features of the physical enclosure. 如請求項56之設備,其中該虛擬封閉體模型包含該實體封閉體之一個或多個固定物的一考慮。The apparatus of claim 56, wherein the virtual enclosure model includes a consideration of one or more fixtures of the physical enclosure. 如請求項56之設備,其中該實體封閉體包括一個或多個感測器。The apparatus of claim 56, wherein the physical enclosure includes one or more sensors. 如請求項75之設備,其中該一個或多個控制器經組態以用於自該一個或多個感測器接收基線讀數。The apparatus of claim 75, wherein the one or more controllers are configured for receiving baseline readings from the one or more sensors. 如請求項76之設備,其進一步包含經組態以用於使用該等基線讀數來建構該虛擬封閉體模型之電路系統。The apparatus of claim 76, further comprising circuitry configured for constructing the virtual closed volume model using the baseline readings. 如請求項56之設備,其中該一個或多個控制器經組態以用於使用該實體封閉體之一三維示意圖來建構該虛擬封閉體模型。The apparatus of claim 56, wherein the one or more controllers are configured for constructing the virtual enclosure model using a three-dimensional representation of the physical enclosure. 如請求項56之設備,其中該一個或多個控制器經組態以用於使用一建築物資訊模型來建構該虛擬封閉體模型。The apparatus of claim 56, wherein the one or more controllers are configured for constructing the virtual enclosed volume model using a building information model. 如請求項74之設備,其中該一個或多個控制器經組態以用於使用該實體封閉體之該一個或多個固定物的一個或多個物理屬性來建構該虛擬封閉體模型。The apparatus of claim 74, wherein the one or more controllers are configured for constructing the virtual enclosure model using one or more physical properties of the one or more fixtures of the physical enclosure. 如請求項74之設備,其中該一個或多個控制器經組態以用於使用該實體封閉體之該一個或多個固定裝置的一個或多個材料屬性來建構該虛擬封閉體模型。The apparatus of claim 74, wherein the one or more controllers are configured for constructing the virtual enclosure model using one or more material properties of the one or more fixtures of the physical enclosure. 如請求項56之設備,其中該一個或多個控制器經組態以用於使用一人工智慧引擎來改進或指導改進實體封閉體模型。The apparatus of claim 56, wherein the one or more controllers are configured for using an artificial intelligence engine to improve or direct the improvement of the physical closed body model. 如請求項82之設備,其中該實體封閉體包括一個或多個感測器。The apparatus of claim 82, wherein the physical enclosure includes one or more sensors. 如請求項83之設備,其中該人工智慧引擎經組態以用於自該一個或多個感測器接收讀數。The apparatus of claim 83, wherein the artificial intelligence engine is configured for receiving readings from the one or more sensors. 如請求項84之設備,其中該人工智慧引擎經組態以用於模型化(i)該一個或多個感測器之部位、(ii)該一個或多個感測器之操作、(iii)由該一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由該一個或多個感測器感測到之至少一個屬性隨時間的演進。The apparatus of claim 84, wherein the artificial intelligence engine is configured for modeling (i) the location of the one or more sensors, (ii) the operation of the one or more sensors, (iii) ) the spatial distribution of the at least one attribute sensed by the one or more sensors and/or (iv) the evolution of the at least one attribute sensed by the one or more sensors over time. 如請求項85之設備,其中操作包括包含該一個或多個感測器中之至少一者之標準操作或故障的一狀態。The apparatus of claim 85, wherein operation includes a state comprising standard operation or failure of at least one of the one or more sensors. 如請求項85之設備,其中該人工智慧引擎經組態以用於使用預測性外推來改進該模型化。The apparatus of claim 85, wherein the artificial intelligence engine is configured for improving the modeling using predictive extrapolation. 如請求項87之設備,其中該預測性外推至少部分地基於一趨勢。The apparatus of claim 87, wherein the predictive extrapolation is based at least in part on a trend. 如請求項87之設備,其中該預測性外推至少部分地基於一預期物理參數。The apparatus of claim 87, wherein the predictive extrapolation is based at least in part on an expected physical parameter. 如請求項85之設備,其中該一個或多個感測器不在該虛擬網格之一頂點處。The apparatus of claim 85, wherein the one or more sensors are not at a vertex of the virtual mesh. 如請求項56之設備,其中該一個或多個控制器經組態以用於使用一階層式控制系統來控制該實體封閉體之該一個或多個環境特性。The apparatus of claim 56, wherein the one or more controllers are configured for controlling the one or more environmental properties of the physical enclosure using a hierarchical control system. 如請求項91之設備,其中該一個或多個控制器經組態以用於控制該實體封閉體之該一個或多個環境特性。The apparatus of claim 91, wherein the one or more controllers are configured for controlling the one or more environmental properties of the physical enclosure. 如請求項92之設備,其中該一個或多個控制器經組態以藉由調整(a)一加熱、通風及空氣調節(HVAC)系統、(b)一安全系統、(c)一照明系統及/或(d)一可著色窗來控制該一個或多個環境特性。The apparatus of claim 92, wherein the one or more controllers are configured to adjust by adjusting (a) a heating, ventilation and air conditioning (HVAC) system, (b) a security system, (c) a lighting system and/or (d) a tintable window to control the one or more environmental properties. 如請求項91之設備,其中該一個或多個控制器經組態以用於藉由調節或指導調節經由一通風口流動至該實體封閉體及/或自該實體封閉體流動之一空氣的一速度來控制該實體封閉體之該一個或多個環境特性。The apparatus of claim 91, wherein the one or more controllers are configured for regulating or directing regulation of an air flow to and/or from the physical enclosure through a vent. A velocity controls the one or more environmental properties of the physical enclosure. 如請求項91之設備,其中該一個或多個控制器經組態以用於藉由控制一建築物管理系統來控制該實體封閉體之該一個或多個環境特性。The apparatus of claim 91, wherein the one or more controllers are configured for controlling the one or more environmental properties of the physical enclosure by controlling a building management system. 如請求項91之設備,其中該一個或多個控制器包含控制一個或多個樓層控制器之一主控制器。The apparatus of claim 91, wherein the one or more controllers comprise a master controller that controls the one or more floor controllers. 如請求項96之設備,其中該一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。The apparatus of claim 96, wherein one of the one or more floor controllers is configured to control one or more local controllers. 如請求項97之設備,其中該一個或多個本端控制器中之一本端控制器經組態以控制包含一可著色窗之一個或多個裝置。The apparatus of claim 97, wherein a local controller of the one or more local controllers is configured to control one or more devices including a tintable window. 如請求項97之設備,其中該一個或多個本端控制器中之一本端控制器經組態以控制包含一個或多個感測器之裝置。The apparatus of claim 97, wherein one of the one or more local controllers is configured to control a device including one or more sensors. 如請求項97之設備,其中該一個或多個本端控制器中之一本端控制器經組態以控制包含一個或多個輸出裝置之裝置。The apparatus of claim 97, wherein a local controller of the one or more local controllers is configured to control a device including one or more output devices. 如請求項96之設備,其中該主控制器經組態以操作性地耦接至一建築物管理系統。The apparatus of claim 96, wherein the master controller is configured to be operatively coupled to a building management system. 如請求項96之設備,其中該主控制器經組態以操作性地耦接至一資料庫。The apparatus of claim 96, wherein the host controller is configured to be operatively coupled to a database. 如請求項96之設備,其中該主控制器經組態以操作性地耦接至一網路。The apparatus of claim 96, wherein the host controller is configured to be operatively coupled to a network. 如請求項96之設備,其中該主控制器安置於雲端中。The apparatus of claim 96, wherein the host controller is located in the cloud. 如請求項97之設備,其中該樓層控制器安置於雲端中。The apparatus of claim 97, wherein the floor controller is located in the cloud. 如請求項96之設備,其中該主控制器安置於該實體封閉體中。The apparatus of claim 96, wherein the main controller is disposed in the physical enclosure. 如請求項97之設備,其中該樓層控制器安置於該實體封閉體中。The apparatus of claim 97, wherein the floor controller is disposed in the physical enclosure. 如請求項96之設備,其中該主控制器安置在不同於該實體封閉體之一部位處。The apparatus of claim 96, wherein the main controller is positioned at a location other than the physical enclosure. 如請求項97之設備,其中該樓層控制器安置在不同於該實體封閉體之一部位處。The apparatus of claim 97, wherein the floor controller is positioned at a location other than the physical enclosure. 如請求項95之設備,其中該建築物管理系統經組態以控制該實體封閉體之該一個或多個環境特性。The apparatus of claim 95, wherein the building management system is configured to control the one or more environmental characteristics of the physical enclosure. 如請求項110之設備,其中該建築物管理系統經組態以控制該一個或多個環境特性,從而為該實體封閉體提供一能量消耗節省。The apparatus of claim 110, wherein the building management system is configured to control the one or more environmental characteristics to provide an energy consumption savings for the physical enclosure. 一種非暫時性電腦可讀媒體,其包括用於環境調整之指令,該等指令在由一個或多個處理器執行使該一個或多個處理器執行包含以下各者之操作: (a)使用(i)一實體封閉體之一虛擬表示、(ii)頂點之一網格及(iii)該實體封閉體之一個或多個材料屬性來產生該實體封閉體之一虛擬封閉體模型; (b)使用實體封閉體模型以產生該實體封閉體之一個或多個環境特性的一地圖;及 (c)使用該地圖以控制該實體封閉體之該一個或多個環境特性。 A non-transitory computer-readable medium comprising instructions for environmental adjustment that, when executed by one or more processors, cause the one or more processors to perform operations comprising: (a) use (i) a virtual representation of a physical enclosure, (ii) a mesh of vertices, and (iii) one or more material properties of the physical enclosure to generate a virtual enclosure of the physical enclosure Model; (b) use the physical enclosure model to generate a map of one or more environmental properties of the physical enclosure; and (c) using the map to control the one or more environmental properties of the physical enclosure. 如請求項112之非暫時性電腦可讀媒體,其進一步包含用於接收將來自該虛擬網格之一第一頂點作為一第一關注點的一選擇的指令。The non-transitory computer-readable medium of claim 112, further comprising instructions for receiving a selection from a first vertex of the virtual mesh as a first point of interest. 如請求項113之非暫時性電腦可讀媒體,其進一步包含用於分析或指導分析該虛擬網格之該第一頂點及一第二頂點處的該一個或多個環境特性的指令,其中相對於該第二頂點,將一較大精確度用於該第一頂點。The non-transitory computer-readable medium of claim 113, further comprising instructions for analyzing or directing analysis of the one or more environmental properties at the first vertex and a second vertex of the virtual mesh, wherein the relative For the second vertex, a greater precision is used for the first vertex. 如請求項113之非暫時性電腦可讀媒體,其進一步包含用於接收對並非該虛擬網格之該等頂點中之任一者的一第二關注點之一選擇的指令。The non-transitory computer-readable medium of claim 113, further comprising instructions for receiving a selection of one of a second point of interest that is not any of the vertices of the virtual mesh. 如請求項115之非暫時性電腦可讀媒體,其進一步包含用於執行或指導執行(a)回應於接收到對該第二關注點之該選擇而更改該虛擬網格及/或(b)將該第二關注點遷移至該虛擬網格之一最近頂點的指令。The non-transitory computer-readable medium of claim 115, further comprising means for executing or directing execution of (a) changing the virtual grid in response to receiving the selection of the second point of interest and/or (b) An instruction to migrate the second point of interest to one of the closest vertices of the virtual mesh. 如請求項112之非暫時性電腦可讀媒體,其中將來自該虛擬網格之一第一頂點識別為一第一關注點。The non-transitory computer-readable medium of claim 112, wherein a first vertex from the virtual mesh is identified as a first point of interest. 如請求項117之非暫時性電腦可讀媒體,其中在該虛擬網格之該第一頂點及一第二頂點處獲取該一個或多個環境特性,且其中相對於該第二頂點,將一較大精確度應用於該第一頂點。The non-transitory computer-readable medium of claim 117, wherein the one or more environmental properties are obtained at the first vertex and a second vertex of the virtual mesh, and wherein relative to the second vertex, a Greater precision is applied to this first vertex. 如請求項117之非暫時性電腦可讀媒體,其中識別不與該虛擬網格之該等頂點重合的一第二關注點。The non-transitory computer-readable medium of claim 117, wherein a second point of interest that does not coincide with the vertices of the virtual mesh is identified. 如請求項117之非暫時性電腦可讀媒體,其中該第一關注點包括該實體封閉體中安置一感測器之一對應部位。The non-transitory computer-readable medium of claim 117, wherein the first point of interest includes a corresponding portion of the physical enclosure where a sensor is disposed. 如請求項117之非暫時性電腦可讀媒體,其中該第一關注點與該實體封閉體中安置一最近感測器之一對應部位相距一距離。The non-transitory computer-readable medium of claim 117, wherein the first point of interest is a distance from a corresponding portion of the physical enclosure where a closest sensor is located. 如請求項119之非暫時性電腦可讀媒體,其中該第二關注點在該實體封閉體中安置一最近感測器之一對應部位處。The non-transitory computer-readable medium of claim 119, wherein the second point of interest is located in the physical enclosure at a corresponding location of a closest sensor. 如請求項117之非暫時性電腦可讀媒體,其進一步包含自安置於該實體封閉體中對應於鄰近該第一關注點之網格頂點之部位處的一個或多個感測器將資料輸入或指導將資料輸入至該虛擬封閉體模型中。The non-transitory computer-readable medium of claim 117, further comprising inputting data from one or more sensors disposed in the physical enclosure at locations corresponding to mesh vertices adjacent to the first point of interest Or guide the input of data into the virtual closed body model. 如請求項123之非暫時性電腦可讀媒體,其進一步包含利用或指導利用該資料以用於外推該第一關注點處之一所感測屬性。The non-transitory computer-readable medium of claim 123, further comprising utilizing or directing utilizing the data for extrapolating a sensed attribute at the first point of interest. 如請求項112之非暫時性電腦可讀媒體,其中頂點之該虛擬網格為一非均質網格。The non-transitory computer-readable medium of claim 112, wherein the virtual mesh of vertices is an inhomogeneous mesh. 如請求項125之非暫時性電腦可讀媒體,其中該虛擬網格之非均質性與一所關注區域及/或一關注點相關。The non-transitory computer-readable medium of claim 125, wherein the heterogeneity of the virtual grid is associated with a region of interest and/or a point of interest. 如請求項125之非暫時性電腦可讀媒體,其中其中該虛擬網格之非均質性與該虛擬網格之一密度相關。The non-transitory computer-readable medium of claim 125, wherein the heterogeneity of the virtual grid is related to a density of the virtual grid. 如請求項125之非暫時性電腦可讀媒體,其中該虛擬網格之非均質性與該虛擬網格之一解析度相關。The non-transitory computer-readable medium of claim 125, wherein the heterogeneity of the virtual grid is related to a resolution of the virtual grid. 如請求項112之非暫時性電腦可讀媒體,其中該虛擬封閉體模型之建構及/或使用包含該實體封閉體之一個或多個結構特徵的一考慮。The non-transitory computer-readable medium of claim 112, wherein the construction and/or use of the virtual enclosure model includes a consideration of one or more structural features of the physical enclosure. 如請求項112之非暫時性電腦可讀媒體,其中該虛擬封閉體模型之建構及/或使用包含該實體封閉體之一個或多個固定物的一考慮。The non-transitory computer-readable medium of claim 112, wherein the construction and/or use of the virtual enclosure model includes a consideration of one or more fixtures of the physical enclosure. 如請求項112之非暫時性電腦可讀媒體,其中該實體封閉體包括一個或多個感測器。The non-transitory computer-readable medium of claim 112, wherein the physical enclosure includes one or more sensors. 如請求項131之非暫時性電腦可讀媒體,其中該等操作包含接收或指導接收來自一個或多個感測器之基線讀數。The non-transitory computer-readable medium of claim 131, wherein the operations comprise receiving or directing receipt of baseline readings from one or more sensors. 如請求項132之非暫時性電腦可讀媒體,其中該等操作包含使用該等基線讀數來建構或指導建構實體封閉體模型。The non-transitory computer-readable medium of claim 132, wherein the operations include using the baseline readings to construct or guide construction of a physical closed volume model. 如請求項112之非暫時性電腦可讀媒體,其中該等操作包含使用該實體封閉體之一三維示意圖來建構或指導建構該虛擬封閉體模型。The non-transitory computer-readable medium of claim 112, wherein the operations comprise using a three-dimensional representation of the physical enclosure to construct or direct construction of the virtual enclosure model. 如請求項112之非暫時性電腦可讀媒體,其中該等操作包含使用一建築物資訊模型來建構或指導建構該虛擬封閉體模型。The non-transitory computer-readable medium of claim 112, wherein the operations include using a building information model to construct or direct construction of the virtual enclosure model. 如請求項130之非暫時性電腦可讀媒體,其中該等操作包含使用該實體封閉體之該一個或多個固定物的一個或多個物理屬性來建構或指導建構該虛擬封閉體模型。The non-transitory computer-readable medium of claim 130, wherein the operations comprise using one or more physical properties of the one or more fixtures of the physical enclosure to construct or direct construction of the virtual enclosure model. 如請求項130之非暫時性電腦可讀媒體,其中該等操作包含使用該實體封閉體之該一個或多個固定物的一個或多個材料屬性來建構或指導建構該虛擬封閉體模型。The non-transitory computer-readable medium of claim 130, wherein the operations comprise using one or more material properties of the one or more fixtures of the physical enclosure to construct or direct construction of the virtual enclosure model. 如請求項112之非暫時性電腦可讀媒體,其中該等操作包含使用一人工智慧引擎來改進或指導改進該虛擬封閉體模型。The non-transitory computer-readable medium of claim 112, wherein the operations include using an artificial intelligence engine to refine or direct refinement of the virtual closed volume model. 如請求項138之非暫時性電腦可讀媒體,其中該實體封閉體包括一個或多個感測器。The non-transitory computer-readable medium of claim 138, wherein the physical enclosure includes one or more sensors. 如請求項139之非暫時性電腦可讀媒體,其中該人工智慧引擎經組態以自該一個或多個感測器接收讀數。The non-transitory computer-readable medium of claim 139, wherein the artificial intelligence engine is configured to receive readings from the one or more sensors. 如請求項140之非暫時性電腦可讀媒體,其進一步包含用於該人工智慧引擎模型化(i)該一個或多個感測器之部位、(ii)該一個或多個感測器之操作、(iii)由該一個或多個感測器感測到之至少一個屬性的空間分佈及/或(iv)由該一個或多個感測器感測到之至少一個屬性隨時間的演進的指令。The non-transitory computer-readable medium of claim 140, further comprising a portion for the artificial intelligence engine to model (i) the one or more sensors, (ii) the one or more sensors Operation, (iii) spatial distribution of at least one attribute sensed by the one or more sensors and/or (iv) evolution over time of at least one attribute sensed by the one or more sensors instruction. 如請求項141之非暫時性電腦可讀媒體,其進一步包含用於該人工智慧引擎藉由使用預測性外推來改進人工智慧引擎模型之指令。The non-transitory computer-readable medium of claim 141, further comprising instructions for the artificial intelligence engine to improve the artificial intelligence engine model by using predictive extrapolation. 如請求項142之非暫時性電腦可讀媒體,其中該預測性外推至少部分地基於一趨勢。The non-transitory computer-readable medium of claim 142, wherein the predictive extrapolation is based at least in part on a trend. 如請求項142之非暫時性電腦可讀媒體,其中該預測性外推至少部分地基於一預期物理參數。The non-transitory computer-readable medium of claim 142, wherein the predictive extrapolation is based at least in part on an expected physical parameter. 如請求項141之非暫時性電腦可讀媒體,其中該一個或多個感測器安置於該實體封閉體中不對應於該虛擬網格之該等頂點的一個或多個部位處。The non-transitory computer-readable medium of claim 141, wherein the one or more sensors are disposed at one or more locations in the physical enclosure that do not correspond to the vertices of the virtual mesh. 如請求項112之非暫時性電腦可讀媒體,其中該等操作包含指導一階層式控制系統控制該實體封閉體之該一個或多個環境特性。The non-transitory computer-readable medium of claim 112, wherein the operations include directing a hierarchical control system to control the one or more environmental characteristics of the physical enclosure. 如請求項146之非暫時性電腦可讀媒體,其中該等操作包含指導一階層式控制系統調整(I)一加熱、通風及空氣調節系統(HVAC)、(II)一安全系統、(III)一照明系統及/或(IV)一可著色窗之色調。The non-transitory computer readable medium of claim 146, wherein the operations comprise directing a hierarchical control system to adjust (I) a heating, ventilation and air conditioning system (HVAC), (II) a security system, (III) A lighting system and/or (IV) the tint of a tintable window. 如請求項146之非暫時性電腦可讀媒體,其中該等操作包含指導一建築物管理系統控制該實體封閉體之該一個或多個環境特性。The non-transitory computer-readable medium of claim 146, wherein the operations comprise directing a building management system to control the one or more environmental characteristics of the physical enclosure. 如請求項146之非暫時性電腦可讀媒體,其中該等操作包含指導一階層式控制系統調節或指導調節至及/或自該實體封閉體之一空氣流的一速度。The non-transitory computer-readable medium of claim 146, wherein the operations comprise directing a hierarchical control system to adjust or directing to adjust a speed of an air flow to and/or from the physical enclosure. 如請求項149之非暫時性電腦可讀媒體,其中該階層式控制系統包含控制一個或多個樓層控制器之一主控制器。The non-transitory computer readable medium of claim 149, wherein the hierarchical control system includes a master controller that controls one or more floor controllers. 如請求項150之非暫時性電腦可讀媒體,其中該一個或多個樓層控制器中之一樓層控制器經組態以控制一個或多個本端控制器。The non-transitory computer readable medium of claim 150, wherein one of the one or more floor controllers is configured to control one or more local controllers. 如請求項151之非暫時性電腦可讀媒體,其中該一個或多個本端控制器中之一本端控制器經組態以控制一個或多個可著色窗。The non-transitory computer-readable medium of claim 151, wherein one of the one or more local controllers is configured to control one or more tintable windows. 如請求項151之非暫時性電腦可讀媒體,其中該一個或多個本端控制器中之一本端控制器經組態以控制包括一個或多個感測器之裝置。The non-transitory computer-readable medium of claim 151, wherein one of the one or more local controllers is configured to control a device including one or more sensors. 如請求項151之非暫時性電腦可讀媒體,其中該一個或多個本端控制器中之一本端控制器經組態以控制包括一個或多個輸出裝置之裝置。The non-transitory computer-readable medium of claim 151, wherein one of the one or more local controllers is configured to control a device including one or more output devices. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器經組態以操作性地耦接至一建築物管理系統。The non-transitory computer-readable medium of claim 150, wherein the host controller is configured to be operatively coupled to a building management system. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器經組態以操作性地耦接至一資料庫。The non-transitory computer-readable medium of claim 150, wherein the host controller is configured to be operatively coupled to a database. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器經組態以操作性地耦接至一網路。The non-transitory computer-readable medium of claim 150, wherein the host controller is configured to be operatively coupled to a network. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器安置於雲端中。The non-transitory computer-readable medium of claim 150, wherein the host controller is located in the cloud. 如請求項151之非暫時性電腦可讀媒體,其中該樓層控制器安置於雲端中。The non-transitory computer-readable medium of claim 151, wherein the floor controller resides in the cloud. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器安置於該實體封閉體中。The non-transitory computer-readable medium of claim 150, wherein the host controller is disposed in the physical enclosure. 如請求項151之非暫時性電腦可讀媒體,其中該樓層控制器安置於該實體封閉體中。The non-transitory computer-readable medium of claim 151, wherein the floor controller is disposed in the physical enclosure. 如請求項150之非暫時性電腦可讀媒體,其中該主控制器安置在不同於該實體封閉體之一部位處。The non-transitory computer-readable medium of claim 150, wherein the host controller is disposed at a location other than the physical enclosure. 如請求項151之非暫時性電腦可讀媒體,其中該樓層控制器安置在不同於該實體封閉體之一部位處。The non-transitory computer-readable medium of claim 151, wherein the floor controller is disposed at a location other than the physical enclosure. 如請求項148之非暫時性電腦可讀媒體,其中該等操作包含指導一建築物管理系統控制該實體封閉體之該一個或多個環境特性。The non-transitory computer-readable medium of claim 148, wherein the operations comprise directing a building management system to control the one or more environmental characteristics of the physical enclosure. 如請求項164之非暫時性電腦可讀媒體,其中控制該實體封閉體之該一個或多個環境特性包含為該實體封閉體之操作提供一能量消耗節省。The non-transitory computer-readable medium of claim 164, wherein controlling the one or more environmental characteristics of the physical enclosure includes providing an energy consumption savings for operation of the physical enclosure.
TW110117790A 2020-05-22 2021-05-17 Environmental adjustment using artificial intelligence TW202212945A (en)

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
US202063029301P 2020-05-22 2020-05-22
US63/029,301 2020-05-22
US202063033474P 2020-06-02 2020-06-02
US63/033,474 2020-06-02
US202063034792P 2020-06-04 2020-06-04
US63/034,792 2020-06-04
US202063075569P 2020-09-08 2020-09-08
US63/075,569 2020-09-08
US202063079851P 2020-09-17 2020-09-17
US63/079,851 2020-09-17
US202016982535A 2020-09-18 2020-09-18
US16/982,535 2020-09-18
PCT/US2021/015378 WO2021154915A1 (en) 2020-01-29 2021-01-28 Sensor calibration and operation
WOPCT/US21/15378 2021-01-28
US202163145333P 2021-02-03 2021-02-03
US63/145,333 2021-02-03
US202117250586A 2021-02-05 2021-02-05
US17/250,586 2021-02-05
PCT/US2021/017603 WO2021163287A1 (en) 2020-02-12 2021-02-11 Predictive modeling for tintable windows
WOPCT/US21/17603 2021-02-11
PCT/US2021/030798 WO2021226182A1 (en) 2020-05-06 2021-05-05 Device ensembles and coexistence management of devices
WOPCT/US21/30798 2021-05-05

Publications (1)

Publication Number Publication Date
TW202212945A true TW202212945A (en) 2022-04-01

Family

ID=78708064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117790A TW202212945A (en) 2020-05-22 2021-05-17 Environmental adjustment using artificial intelligence

Country Status (5)

Country Link
EP (1) EP4154060A1 (en)
CN (1) CN115668048A (en)
CA (1) CA3169929A1 (en)
TW (1) TW202212945A (en)
WO (1) WO2021237019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795340B (en) * 2022-11-11 2023-03-01 台灣松下電器股份有限公司 Freezer control system and temperature control host

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191338A1 (en) * 2021-12-03 2023-06-07 ASML Netherlands B.V. Metrology calibration method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259778B2 (en) * 2003-07-01 2007-08-21 L-3 Communications Corporation Method and apparatus for placing sensors using 3D models
KR100734850B1 (en) * 2005-11-29 2007-07-03 한국전자통신연구원 Simulation apparatus and method for design of sensor network
CN103168278B (en) * 2010-08-06 2017-01-18 加利福尼亚大学董事会 Systems and methods for analyzing building operations sensor data
US8442306B2 (en) * 2010-08-13 2013-05-14 Mitsubishi Electric Research Laboratories, Inc. Volume-based coverage analysis for sensor placement in 3D environments
US9292972B2 (en) * 2011-05-17 2016-03-22 Autodesk, Inc. Occupant centric capture and visualization of building performance data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795340B (en) * 2022-11-11 2023-03-01 台灣松下電器股份有限公司 Freezer control system and temperature control host

Also Published As

Publication number Publication date
CA3169929A1 (en) 2021-11-25
WO2021237019A1 (en) 2021-11-25
EP4154060A1 (en) 2023-03-29
CN115668048A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US20230161212A1 (en) Automated commissioning of controllers in a window network
US20200387041A1 (en) Automated commissioning of controllers in a window network
US20230194115A1 (en) Environmental adjustment using artificial intelligence
US20230176669A1 (en) Device ensembles and coexistence management of devices
TW202147074A (en) Interaction between and enclosure and one or more occupants
TW202202924A (en) Sensor calibration and operation
CA3044823A1 (en) Automated commissioning of controllers in a window network
TW202212945A (en) Environmental adjustment using artificial intelligence
TW202225941A (en) Virtually viewing devices in a facility
TW202219665A (en) Atmospheric adjustment in an enclosure
US20230393443A1 (en) Virtually viewing devices in a facility
TW202227890A (en) Mapping acoustic properties in an enclosure
CN115968454A (en) Device aggregate and coexistence management of devices
TW202314652A (en) Locally initiated wireless emergency alerts
WO2022221234A1 (en) Temperature and thermal comfort mapping of an enclosed environment
US20230288770A1 (en) Atmospheric adjustment in an enclosure
CN116848380A (en) Multi-sensor synergy
US20240013162A1 (en) Failure prediction of at least one tintable window
TW202225807A (en) Failure prediction of at least one tintable window
CN117178227A (en) Failure prediction for at least one tintable window
EP4237908A1 (en) Failure prediction of at least one tintable window
US20240201314A1 (en) Automatic location of devices of a facility
TW202210920A (en) Device ensembles and coexistence management of devices
US20230333434A1 (en) Mapping acoustic properties in an enclosure
WO2022197912A1 (en) Targeted messaging in a facility