TW202211734A - 加速器組件之過電壓保護技術 - Google Patents

加速器組件之過電壓保護技術 Download PDF

Info

Publication number
TW202211734A
TW202211734A TW110117174A TW110117174A TW202211734A TW 202211734 A TW202211734 A TW 202211734A TW 110117174 A TW110117174 A TW 110117174A TW 110117174 A TW110117174 A TW 110117174A TW 202211734 A TW202211734 A TW 202211734A
Authority
TW
Taiwan
Prior art keywords
varistor
voltage
protection system
electrodes
accelerator
Prior art date
Application number
TW110117174A
Other languages
English (en)
Inventor
泰勒 R 威爾斯
威廉 H 帕克
Original Assignee
美商中子療法股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商中子療法股份有限公司 filed Critical 美商中子療法股份有限公司
Publication of TW202211734A publication Critical patent/TW202211734A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/003Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electrostatic apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/04Direct voltage accelerators; Accelerators using single pulses energised by electrostatic generators
    • H05H5/045High voltage cascades, e.g. Greinacher cascade
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/04Direct voltage accelerators; Accelerators using single pulses energised by electrostatic generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/06Multistage accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/22DC, AC or pulsed generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Particle Accelerators (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一種用於一加速器的過電壓保護系統可以包括:多個DC電源,經組配以提供多個電壓位準直至一所需的電壓位準;以及一加速管,電連接至該等多個DC電源且經組配以對一帶電粒子進行加速。該加速管可以包括多個級。每個級可以包括多個電極及多個變阻器,該等多個變阻器經組配以回應於一過電壓事件釋放能量。該等多個電極中的一個電極可以電耦合至該等多個電壓位準中的一電壓位準。該等多個電極及該等多個變阻器可以彼此電耦合且以一交替方式配置。

Description

加速器組件之過電壓保護技術
本發明係有關於加速器組件之過電壓保護技術。
發明背景
加速器廣泛用於需要高能粒子束或離子的領域。此類領域包括如放射治療或中子俘獲治療的醫學應用、離子注入、工業加工、生物醫學用途及核物理研究。但無論應用係基於研究抑或基於工業,加速器通常皆涉及高電壓、電敏感組件,且因此容易發生電擊穿。
絕緣材料常用於包圍、隔離及保護電敏感組件。然而,此等材料可能歸因於過電壓而經歷電擊穿及/或電閃絡。當電流以超過材料的擊穿電壓的電壓流過絕緣體時,電擊穿出現。該電擊穿可能會損壞材料且/或使其變得更導電,從而去除與電敏感組件的隔離層。在沒有隔離層的情況下,電敏感組件可能經歷嚴重的損壞及故障。電閃絡可以沿絕緣體的表面出現。閃絡可以導致表面(導電)局部碳化,且可以導致失控狀態,從而導致短路。過電壓可以導致加速器系統中的電路或電路的部分的電壓移至超過設計極限或擊穿電壓,從而導致潛在的危險及破壞性條件。過電壓可以採取電壓尖峰或電源浪湧的形式。
發明概要
根據本揭示的一個態樣,一種用於加速器的過電壓保護系統可以包括:多個DC電源,經組配以提供多個電壓位準直至所需的電壓位準;以及加速管,電連接至多個DC電源且經組配以對帶電粒子進行加速。加速管可以包括多個級。每個級可以包括多個電極及多個變阻器,該等多個變阻器經組配以回應於過電壓事件釋放能量。多個電極中的一個電極可以電耦合至多個電壓位準中的電壓位準。多個電極及多個變阻器可以彼此電耦合且以交替方式配置。
在一些實施例中,每個級可以包括多個絕緣體,每個絕緣體與變阻器並聯配置。在一些實施例中,每個級可以包括多個水電阻器,每個水電阻器與變阻器及絕緣體並聯配置。在一些實施例中,每個變阻器可以連接在電源的輸出端與電源的相對接地(relative ground)之間。在一些實施例中,每個變阻器可以是金屬氧化物變阻器。在一些實施例中,每個變阻器可以包括變阻器總成。變阻器總成可以包括變阻器元件的線性堆疊。在一些實施例中,每個變阻器元件可為盤狀的。
在一些實施例中,多個DC電源中的每個DC電源可以與變阻器並聯連接。在一些實施例中,多個DC電源中的每個DC電源可以包括Cockcroft-Walton倍增器。在一些實施例中,多個DC電源中的每個DC電源可以串聯連接。在一些實施例中,每個變阻器可以包括臨限值電壓。每個變阻器可以經組配以回應於跨過變阻器的電壓超過臨限值電壓,而限制電流到達電源。在一些實施例中,限制電流到達電源可以包括釋放多個電源內的至少一個電容器中所儲存的能量。
根據本揭示的另一態樣,一種用於加速器的保護系統可以包括:多個DC電源,經組配以提供多個電壓位準直至所需的電壓位準;多個變阻器;以及加速管,電連接至多個電源且經組配以對帶電粒子進行加速。多個變阻器中的每個變阻器可以與DC電源並聯連接。加速管可以包括多個級。每個級可以包括多個電極;多個絕緣體;以及多個水電阻器,經組配以回應於跨過多個絕緣體的過電壓事件及等級電壓而釋放能量。多個電極中的一個電極可以電耦合至多個電壓位準中的電壓位準。多個絕緣體與多個水電阻器可以電並聯。
在一些實施例中,每個變阻器可以包括變阻器總成。變阻器總成可以包括變阻器元件的線性堆疊。在一些實施例中,每個DC電源可以包括Cockcroft-Walton倍增器。在一些實施例中,每個變阻器可以包括臨限值電壓。每個變阻器可以經組配以回應於跨過變阻器的電壓超過臨限值電壓,釋放多個電源內的至少一個電容器中所儲存的能量。
根據本揭示的另一態樣,一種用於保護加速器的組件的方法可以包括:經由多個DC電源,提供多個電壓位準直至所需的電壓位準;經由電連接至多個DC電源的加速管,對一或多個帶電粒子進行加速;以及經由多個變阻器釋放多個DC電源內的至少一個電容器中所儲存的能量。加速管可以包括多個級。每個級可以包括多個電極及多個變阻器,該等多個變阻器經組配以回應於過電壓事件釋放能量。多個電極中的一個電極可以電耦合至多個電壓位準中的電壓位準。多個電極及多個變阻器可以彼此電耦合且以交替方式配置。
在一些實施例中,回應於過電壓事件,釋放多個DC電源內的至少一個電容器中所儲存的能量可以出現。在一些實施例中,每個級可以包括多個絕緣體。每個絕緣體可以與變阻器並聯連接。在一些實施例中,每個變阻器可以包括變阻器總成。變阻器總成可以包括變阻器元件的線性堆疊。
較佳實施例之詳細說明
以下詳細描述本質上僅為示例性的,而不旨在限制本發明或其使用的應用。
本揭示的實施例係關於一種用於保護粒子加速器中的絕緣體及高壓電源免受在過電壓事件期間可能出現的電擊穿及/或電閃絡的系統。加速器可以為靜電加速器,且可以為單端或串聯的。在一些實施例中,加速器可以包括串聯連接的多個高壓電源,其中每個高壓電源可以為後續的電源供電。在一些實施例中,加速器總成可以包括在加速管的每個絕緣部件之間的變阻器(例如金屬氧化物變阻器或MOV)的線性鏈。變阻器的線性鏈可以為每個絕緣部件及電源提供針對過電壓事件的實質保護。
加速器系統具有絕緣體,應保護絕緣體免受過電壓擊穿及/或閃絡事件的影響。通常,其他各種應用中的絕緣體皆使用火花隙進行保護。火花隙可以為充滿氣體(例如空氣、六氟化硫)的兩個傳導電極之間的間隙;間隙可能允許電火花在導體之間通過。當導體之間的電壓超過擊穿電壓(例如由於電壓浪湧或過電壓事件)時,火花形成,從而使間隙中的氣體電離,耗散能量,且降低電阻,此保護了敏感組件。雖然火花隙廣泛使用且便宜,但該等火花隙亦可能具有顯著的缺點,尤其與加速器有關的缺點。SF6 (六氟化硫)火花隙可以具有廣泛的影響設計變量,諸如氣體純度、氣體壓力、間隙距離、幾何形狀等。在設計具有火花隙保護系統的加速器系統時可能需要考慮及控制的大量變量可能使得難以控制每個火花隙的定時及電壓設定點。另外,火花隙可能容易受到時滯的影響。隨著事件的上升時間變快且火花隙點火的電壓增加,火花隙點火之前的時間亦可以增加,此可能無法保護絕緣體。
另外,某些類型的加速器可能具有對過電壓事件敏感且容易受影響的額外組件(絕緣體除外)。例如,靜電加速器利用高壓電源組件,過電壓事件可能嚴重損壞此等高壓電源組件。與線性加速器(直線性加速器)、磁感應加速器及迴旋加速器中所使用的交變及動態電位相反,靜電加速器使用DC電壓來對粒子進行加速。然而,在加速器內產生足夠高的DC電壓以將粒子加速至必要的能級通常涉及複雜的電路系統及敏感組件(例如二極體及電容器)來升高電壓。該電路系統及敏感組件的實例為Cockcroft-Walton電路或倍增器。在一些實施例中,Cockcroft-Walton倍增器可以包括高壓二極體的鏈或梯以升高電壓位準。高壓電源中的組件可能亦容易受到過電壓事件及電擊穿的影響。保護加速器總成中的敏感組件(諸如絕緣材料)的許多嘗試無法保護高壓電源;此等嘗試通常亦僅包括單個大型高壓電源。因此,除了無法保護單個高壓電源外,此等嘗試更無法為同一系統中的多個高壓電源提供保護。
金屬氧化物變阻器(MOV)可用作靜電加速器中的過電壓保護裝置。MOV具有可隨電壓而變化的電阻,因此保護其他組件免受接收過大電流的影響。MOV可以具有正向區域,該正向區域係具有高電阻且在電壓低時傳導極小的電流。然而,當電壓增加超過變阻器電壓時,MOV的電阻可能顯著降低且大大增加流過MOV的電流。MOV材料的本征回應時間可為大約五百皮秒,且MOV裝置可在1納秒至10納秒量級上操作。MOV的使用亦可以提供準確的電壓臨限值,其中過電壓將啟動加速器總成且保護絕緣體免受環境改變的影響。MOV的電阻特性及MOV可以在過電壓條件期間釋放系統內所儲存的能量的速度可以幫助抑制所儲存的能量的釋放,從而保護加速器總成內的絕緣體及高壓電源兩者。在電源的輸出端與其相對接地之間串聯連接MOV會在MOV傳導時使電源短路。因此,短路可以釋放電源內的電容器中所儲存的能量。儘管系統內所儲存的能量並非全部皆在電源電容器中,但整個結構系統的電容可以通過MOV鏈進行放電。
圖1為根據本揭示的一些實施例的用於保護加速器中的高壓電源的系統100。系統100亦可以保護絕緣體。系統100可以包括加速器支撐結構101 (有時稱為立柱)及加速管103。加速器支撐結構101可以包括電源102a-b (本文中通常稱為電源102)、第一多個結構絕緣體110a-n (通常為結構絕緣體110)及第二多個結構絕緣體112a-n (通常為結構絕緣體112)。
加速器支撐結構101可以為加速管103提供結構支撐及各級電壓位準。在操作期間,加速管103可用於將帶電粒子或帶電粒子束加速至所需的能級。加速管103亦可稱為真空管。每個電源單元102可以包括對總成的所需量的功率。例如,每個電源102可以向總成提供10 kW或200 kV及50 mA。每個電源102可以包括各種感測電路來控制電源。感測電路系統亦可以容易受到過電壓事件的損壞,且因此可以受到本揭示的MOV配置的保護。注意,系統100不限於兩個電源102a及102b,且因此不限於兩個電壓位準。在一些實施例中,加速器支撐結構101可以包括十五個或更多個電源或級以產生十五個或更多個電壓位準。在一些實施例中,每個電源可以沿加速器結構101均勻地間隔開。在一些實施例中,電源102可以包括Cockcroft-Walton倍增器。可以自標準電壓源提供某一電壓位準,且電源電路的每個級(例如電源102a、電源102b等)可以將電壓升高某一預定義的量。例如,假設輸入電壓為100 kV,每個電源隨後可能會將電壓升高100 kV。如下文進一步描述,電壓位準的不斷增加可以在加速管103內產生電場,隨後該電場可以用於對粒子進行加速。每個電源102的電壓位準可以基於粒子的所需最終能級來確定。
在一些實施例中,加速管103可以包括多個電壓設定電極104a-n (通常為電壓設定電極104)、多個MOV 106a-n (通常為MOV 106)、多個電絕緣體108a–n (通常為絕緣體108)及多個次級電極114a-n (通常為次級電極114)。在一些實施例中,次級電極114可以對在加速管103內行進的質子(或其他帶電粒子)的軌跡進行輸送、塑形及控制。次級電極114亦可以對電場進行分級以幫助提供線性加速度。在一些實施例中,MOV 106的置放可以保護兩個電源102、結構絕緣體110及112以及絕緣體108在過電壓事件期間免於經歷電擊穿及/或閃絡。例如,如前所述,當跨過變阻器(例如MOV或任何其他類型的變阻器)的電壓增加時,材料的電阻降低。在變阻器的情況下,存在臨限值電壓,在臨限值電壓下,變阻器可以自高阻切換為高導電(即變阻器自以低電流操作切換至極高電流),因此,回應於過電壓事件及大高壓浪湧,每個MOV的電阻可以降低,從而增加流過MOV的電流。此情況的益處可以來自MOV及絕緣體的並聯配置。因為通過並聯組件的總電流(例如通過兩個並聯組件的電流之和)將保持一致,且變阻器經組配以吸收大量電流(例如回應於過電壓事件),此可以防止過多電流流過絕緣體。過多電流通過絕緣體可以導致嚴重的損壞及故障,尤其在粒子加速器的操作級別。MOV的回應時間使MOV快速且有效地防止電流損毀此等組件。
在一些實施例中,每個電壓設定電極104可以電連接至電源102且在該電源102的電壓位準下操作。例如,點A處的電壓可為100 kV;進而,電壓設定電極104a處的電壓亦將為100 kV。電源102a可以將電壓自100 kV升高至200 kV,因此將點B及電壓設定電極104b處的電壓設定為200 kV。類似地,電源102b可以將電壓自200 kV升高至300 kV,因此將點C及電壓設定電極104n處的電壓設定為300 kV。儘管加速管沒有明確及/或圖示地在圖1中示出,但電壓設定電極104因此沿管的內部區域產生均一或接近均一的電壓差,從而在加速管的水平方向上感應均一或接近均一的電場。所得電場可用於對粒子進行加速。
電源及相關聯的電壓設定電極在本文中可以稱為級。級可以進一步包括MOV及在相關聯的電壓設定電極與前一級的電壓設定電極之間的次級電極。例如,電源102a及電壓設定電極104b可以形成第一級,且電源102b及電壓設定電極104n可以形成第二級。第一級可以包括MOV 106a-106g、次級電極114a-f及絕緣體108a-g。第二級可以包括MOV 106h-n、次級電極114g-n及絕緣體108h-n。在一些實施例中,次級電極114及MOV 106可以交替方式連接。注意,圖1僅為示例性本質且加速器系統不限於兩個級。在一些實施例中,加速器可以包括至多十五個或更多個級。每個級可以包括交替的MOV及次級電極。在一些實施例中,每個級亦可以包括與每個MOV並聯的絕緣體。在一些實施例中,MOV 106可為MOV總成,諸如圖4A及4B的總成400。換言之,MOV 106可包括一或多個單獨的MOV。在每個MOV 106包括多個MOV的實施例中,MOV可以串聯或以線性鏈配置。
圖2為根據本揭示的一些實施例的具有過電壓保護系統200的加速管的透視圖。系統200可以包括加速管103及級206a-g (通常為級206)。注意,圖1的加速器結構101在此圖中未示出。每個級206可以包括電壓設定電極104及多個交替的MOV以及次級電極204 (例如圖1的次級電極114及MOV 106)。在一些實施例中,每個級亦可以包括絕緣體,諸如圖1的絕緣體108,與MOV並聯。例如,級206a可以包括電壓設定電極104a及多個交替的MOV以及次級電極204a。每個電壓設定電極104可以經組配以電耦合至單獨的高壓電源(例如單獨的Cockcroft-Walton倍增器及電源)且因此可以設定在某個電壓位準,如關於圖1所描述。每個電壓設定電極104可以經組配以設定加速管103內的電壓位準,因此在加速管103內產生均一或接近均一的電場。隨後可以在加速管103內對粒子進行加速。
圖3為根據本揭示的一些實施例的具有過電壓保護系統300的加速器的側視圖。系統300可以包括加速器結構101、加速管103及多個電絕緣體302a-n (例如圖1中的絕緣體110a-n)。在一些實施例中,加速器結構101可以包括多個高壓電源102a-e,與圖1中所描述的高壓電源類似或相同。加速管103可以經組配以經由DC電場對粒子進行加速。電壓設定電極104a-d可以電耦合至電源102以設定在相關聯的電壓下,且因此設定加速管103內的各種電壓位準。級可以如關於圖1及2所描述定義。例如,電源102b及電壓設定電極104b可以形成級;該級亦可以包括MOV 106a-c及至少次級電極114a-c。級亦可以包括電絕緣體。例如,包括電源102a及電壓設定電極104a的級亦可以包括電絕緣體302b。電絕緣體302可以實體地覆蓋次級電極114。
圖4A為根據本揭示的一些實施例的MOV總成400的透視圖。圖4B為根據本揭示的一些實施例的MOV總成的分解圖。在一些實施例中,MOV總成400可用作圖1至3中任一者中的MOV 106。MOV總成400可以包括MOV盤402a-h、拉桿404a-d、端部安裝件406a-b及中間安裝件408。在一些實施例中,MOV盤402a-h可以配置在「堆疊」中。堆疊配置可以在導電期間確保良好的電連接。因為堆疊中的每個變阻器盤可能「被迫」彼此連接,所以增加的機械壓力可以幫助增加電連接。在一些實施例中,MOV盤可以以其他幾何方式配置。在一些實施例中,每個MOV (例如MOV 402)可以為盤狀以外的形狀;例如,每個MOV可以為立方體、棱柱體或任何其他橫截面形狀。中間安裝件408及端部安裝件406a-b可以經組配以收納拉桿404,在結構上將MOV總成固定至加速管,諸如加速管103。中間安裝件408及端部安裝件406a-b亦可以經組配以將MOV盤402收納及固持在適當位置。
MOV盤402可以包括任何金屬氧化物材料。在一些實施例中,變阻器總成的電壓觸發點可以為每個電極/絕緣體24 kV。MOV盤的實例可以為Dean Technologies的BHD1375-AL。作為實例,該變阻器可以提供每個絕緣體24 kV Vrms 的總額定電壓。在一些實施例中,單獨的MOV盤可以包括電特性/額定值,諸如6 kV及55 kA。在一些實施例中,MOV盤可以具有32**的直徑及42**的長度。在一些實施例中,MOV總成400可以包括少於或多於八個MOV盤,此取決於每個組件的所需保護位準。在一些實施例中,MOV盤402可以串聯配置。串聯組件的總電阻為每個組件的電阻之和。關於圖4A及4B,MOV總成400的總電阻因此可以為MOV 402a-h中的每一者的電阻之和。
在一些實施例中,MOV總成400可以跨越三個電極。總成400的中心可具有附接至電極的內置夾具。總成可以以微小的角度定位,以使得MOV總成400的每一端皆可以使用具有針對電極的夾具的鋁棒附接至相鄰的電極。MOV總成400可以保護兩個串聯的絕緣體。
圖5為根據本揭示的一些實施例的具有過電壓保護系統500的加速管的前側透視圖。系統500可以包括加速管103及與關於圖2所描述的級206類似或相同的多個級206a-d。在一些實施例中,每個級206可以包括多個交替的MOV及次級電極204 (例如圖1的次級電極114及MOV 106)。儘管不可見,但每個MOV可以與絕緣材料並聯配置,以保護絕緣材料。在發生過電壓事件時,一或多個MOV可能通過降低其電阻及增加流過MOV的電流量來回應電壓浪湧。本質上,一或多個MOV可能開始作為電氣短路操作,且可以防止受保護的組件(例如絕緣材料或高壓電源)接收過量電流且受到損壞。
圖6為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統600。與系統100類似,系統600可以包括加速器支撐結構101及加速管103。加速器支撐結構101可以包括電源102、第一多個結構絕緣體110及第二多個結構絕緣體112。
與圖1的系統100類似,加速器支撐結構101可以為加速管103提供結構支撐及各級電壓位準。在操作期間,加速管103可用於將帶電粒子加速至所需的能級。電源102可以包括用以升高及產生各種DC電壓位準的電路系統,直至某個所需位準。注意,系統600亦不限於兩個電源102a及102b,且因此不限於兩個電壓位準。在一些實施例中,加速器支撐結構101可以包括十五個或更多個電源或級以產生十五個或更多個電壓位準。在一些實施例中,每個電源可以沿加速器結構101均勻地間隔開。在一些實施例中,電源102可以包括Cockcroft-Walton倍增器。可以自標準電壓源提供某一電壓位準,且電源電路的每個級(例如電源102a、電源102b等)可以將電壓升高某一預定義的量。例如,假設輸入電壓為100 kV,每個電源隨後可能會將電壓升高100 kV。如下文進一步描述,電壓位準的不斷增加可以在加速管103內產生電場,隨後該電場可以用於對粒子進行加速。每個電源102的電壓位準可以基於粒子的所需最終能級來確定。
系統600可以包括多個功率電阻器601a-n (本文中通常稱為功率電阻器601)。在一些實施例中,每個功率電阻器601可以電定位在電壓設定電極104與相關聯的電源之間。例如,功率電阻器601b可以定位在電壓設定電極104b與電源102a (向電壓設定電極104b供應電壓位準的電源)之間。在一些實施例中,在過電壓事件期間,每個功率電阻器601可以阻止加速器結構101與加速管103之間的電壓浪湧。功率電阻器通常設計用於承受及耗散大量功率,且可以包括具有高熱導率的材料。
圖7為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統700。與系統100類似,系統700可以包括加速器支撐結構101及加速管103。加速器支撐結構101可以包括電源102、第一多個結構絕緣體110及第二多個結構絕緣體112。
系統700可以包括多個MOV 106a-n及多個電絕緣體108a-n。如本文中先前所描述,MOV 106的置放可以保護兩個電源102、結構絕緣體110及112以及絕緣體108在過電壓事件期間免於經歷電擊穿及/或閃絡。在一些實施例中,系統700亦可以包括多個水電阻器701a-n (通常為701,如本文中所描述)。在一些實施例中,每個水電阻器701可以作為可變電阻器(例如變阻器)操作且可以具有隨電壓而變化的電阻。除了MOV 106外,水電阻器701亦可以幫助保護電源102、結構絕緣體110及112以及絕緣體108在過電壓事件期間免於電擊穿及/或閃絡。在一些實施例中,水電阻器701可以確保跨過絕緣體108的電壓的均勻分級。在一些實施例中,MOV (例如106a)、電絕緣體(例如108a)及水電阻器(例如701a)中的每一者可以並聯連接在兩個電極(例如104a及114a)之間。在一些實施例中,此情況可以幫助確保沿加速管103的長度的均勻分級及保護。
圖8為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統800。與系統100類似,系統800可以包括加速器支撐結構101及加速管103。加速器支撐結構101可以包括電源102、第一多個結構絕緣體110及第二多個結構絕緣體112。
與如上文關於圖7所描述類似,系統800可以包括多個MOV 106a-n、多個電絕緣體108a-n及多個水電阻器701a-n。額外地,系統800可以包括多個功率電阻器601a-n。如上文關於圖6所描述,每個功率電阻器601可以電定位在電壓設定電極104與相關聯的電源之間。例如,功率電阻器601b可以定位在電壓設定電極104b與電源102a (向電壓設定電極104b供應電壓位準的電源)之間。在一些實施例中,在過電壓事件期間,每個功率電阻器601可以阻止加速器結構101與加速管103之間的電壓浪湧。功率電阻器通常設計用於承受及耗散大量功率,且可以包括具有高熱導率的材料。
圖9為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統900。系統900可以包括多個電絕緣體108a-n及多個水電阻器701a-n。額外地,系統900可以包括多個MOV 901及902。如關於圖7及8所描述,水電阻器701a-n可以與絕緣體108串聯連接在電極114之間。在一些實施例中,水電阻器可以在過電壓事件期間提供針對電擊穿及/或閃絡的保護,且可以對跨過絕緣體108的電壓進行分級。在一些實施例中,MOV 901及902可以為絕緣體110及112以及電源102a-b提供保護。注意,系統900不限於兩個MOV 901及902,且可以包括用於每個電源的MOV。例如,若加速器具有十五個電源以在加速管103內產生十五個電壓位準,則系統可以包括十五個MOV,每個MOV與電源及絕緣體並聯連接。在一些實施例中,電源側MOV 901及902可以保護每個電源102內所含的敏感組件。
圖10為根據本揭示的一些實施例的用於保護加速器中的高壓電源系統的另一系統1000。與上文所描述的圖9類似,系統1000可以包括多個電絕緣體108a-n、多個水電阻器701a-n、多個電源側MOV 901及902以及多個功率電阻器601a-n,與關於圖6所描述的彼等組件類似。在一些實施例中,除了水電阻器701a-n可以提供的保護及電壓分級性質外,MOV 901及901與功率電阻器601a-n的組合可以為電源102提供改進的保護。
圖11為根據本揭示的一些實施例的用於保護加速器中的高壓電源系統的另一系統1100。系統1100可以包括圖1、7及9中所描述的各種組件的組合。在一些實施例中,系統1100可以包括多個MOV 106a-n、多個電絕緣體108a-n、多個水電阻701a-n及多個電源側MOV 901及902。與如先前的圖中所描述類似,MOV 106、電絕緣體108及水電阻器701可以並聯連接在電極之間且可以在過電壓事件期間提供針對電擊穿及/或電閃絡的保護。水電阻器701亦可以幫助絕緣體108內的電壓分級。
圖12為根據本揭示的一些實施例的用於保護加速器中的高壓電源系統的另一系統1200。系統1200可以包括與圖11中所描述的彼等組件類似的組件,但亦可以包括多個功率電阻器601a-n。在一些實施例中,功率電阻器601可以與關於圖6所描述類似或相同地操作。每個功率電阻器601可以電定位在電壓設定電極104與相關聯的電源之間。例如,功率電阻器601b可以定位在電壓設定電極104b與電源102a (向電壓設定電極104b供應電壓位準的電源)之間。在一些實施例中,在過電壓事件期間,每個功率電阻器601可以阻止加速器結構101與加速管103之間的電壓浪湧。功率電阻器通常設計用於承受及耗散大量功率,且可以包括具有高熱導率的材料。
應當理解,所揭示的主題不將其應用限於以下描述中所闡述或附圖中所說明的構造細節及組件的配置。所揭示的主題能夠有其他實施例且能夠以各種方式實踐及實施。此外,應當理解,本文中所採用的措辭及術語係出於描述的目的,而不應視為限制。如此,熟習此項技術者將瞭解,本揭示所基於的概念可以容易地用作設計用於實施所揭示的主題的若干目的的其他結構、方法及系統的基礎。因此,重要的係,申請專利範圍視為包括此類等效構造,只要此等等效構造不脫離所揭示的主題的精神及範疇即可。
儘管在前述說明性實施例中已經描述及說明了所揭示的主題,但應當理解,本揭示僅藉助於示例做出,且所揭示的主題的實施細節的許多改變可以在不脫離所揭示的主題的精神及範疇的情況下做出。
100,600,700,800,900,1000,1100,1200:系統 101:加速器支撐結構 102,102a-e:電源 103:加速管 104,104a-n:電壓設定電極 106,106a-n,402,901,902:MOV 108,108a–n,302,302a-n:電絕緣體 110,110a-n,112、112a-n:結構絕緣體 114,114a-n,204,204a:次級電極 200,300,500:過電壓保護系統 206,206a-g:級 400:MOV總成; 總成 402a-h:MOV盤 404a-d:拉桿 406a-b:端部安裝件 408:中間安裝件 601,601a-n:功率電阻器 701,701a-n:水電阻器 A,B,C:點
當結合以下附圖考慮時,參考所揭示的主題的以下詳細描述,可以更充分地瞭解所揭示的主題的各種目的、特徵及優點,在附圖中相似附圖標記標識相似元件。
圖1為根據本揭示的一些實施例的用於保護加速器中的高壓電源的系統。
圖2為根據本揭示的一些實施例的具有過電壓保護系統的加速管的透視圖。
圖3為根據本揭示的一些實施例的具有過電壓保護系統的加速器的透視圖。
圖4A為根據本揭示的一些實施例的MOV總成的透視圖。
圖4B為根據本揭示的一些實施例的MOV總成的分解圖。
圖5為根據本揭示的一些實施例的具有過電壓保護系統的加速管的前側透視圖。
圖6為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖7為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖8為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖9為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖10為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖11為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
圖12為根據本揭示的一些實施例的用於保護加速器中的高壓電源的另一系統。
附圖不一定按比例繪製,或包括系統的所有元件,相反重點通常放在說明本文中尋求保護的概念、結構及技術。
100:系統
101:加速器支撐結構
102a-b:電源
103:加速管
104a-n:電壓設定電極
106a-n:MOV
108a-n:電絕緣體
110a-n,112a-n:結構絕緣體
114a-n:次級電極
A,B,C:點

Claims (20)

  1. 一種用於一加速器的過電壓保護系統,其包含: 多個DC電源,其經組配以提供多個電壓位準直至一所需的電壓位準;以及 一加速管,其電連接至該等多個DC電源且經組配以對一帶電粒子進行加速,該加速管包含多個級,每個級包含: 多個電極,其中該等多個電極中的一個電極係電耦合至該等多個電壓位準中的一電壓位準;以及 多個變阻器,其經組配以回應於一過電壓事件而釋放能量; 其中該等多個電極及該等多個變阻器彼此電耦合且以一交替方式配置。
  2. 如請求項1所述的過電壓保護系統,其中每個級包含多個絕緣體,每個絕緣體與一變阻器呈並聯配置。
  3. 如請求項2所述的過電壓保護系統,其中每個級包含多個水電阻器,每個水電阻器與一變阻器及一絕緣體呈並聯配置。
  4. 如請求項1所述的過電壓保護系統,其中每個變阻器連接在一電源的一輸出端與該電源的一相對接地之間。
  5. 如請求項1所述的過電壓保護系統,其中每個變阻器為一金屬氧化物變阻器。
  6. 如請求項1所述的過電壓保護系統,其中每個變阻器包含一變阻器總成,該變阻器總成包含變阻器元件的一線性堆疊。
  7. 如請求項6所述的過電壓保護系統,其中每個變阻器元件為盤狀的。
  8. 如請求項1所述的過電壓保護系統,其中該等多個DC電源中的每個DC電源與一變阻器呈並聯連接。
  9. 如請求項1所述的過電壓保護系統,其中該等多個DC電源中的每個DC電源包含一Cockcroft-Walton倍增器。
  10. 如請求項1所述的過電壓保護系統,其中該等多個DC電源中的每個DC電源呈串聯連接。
  11. 如請求項1所述的過電壓保護系統,其中每個變阻器包含一臨限值電壓,其中每個變阻器經組配以回應於跨過該變阻器的一電壓超過該臨限值電壓,而限制電流到達一電源。
  12. 如請求項11所述的過電壓保護系統,其中限制電流到達該電源包含:釋放該等多個電源內的至少一個電容器中所儲存的能量。
  13. 一種用於一加速器的保護系統,其包含: 多個DC電源,其經組配以提供多個電壓位準直至一所需的電壓位準; 多個變阻器,其中該等多個變阻器中的每個變阻器與一DC電源呈並聯連接;以及 一加速管,其電連接至該等多個電源且經組配以對一帶電粒子進行加速,該加速管包含多個級,每個級包含: 多個電極,其中該等多個電極中的一個電極係電耦合至該等多個電壓位準中的一電壓位準; 多個絕緣體;以及 多個水電阻器,其經組配以回應於跨過該等多個絕緣體的一過電壓事件及等級電壓而釋放能量; 其中該等多個絕緣體與該等多個水電阻器呈電並聯。
  14. 如請求項13所述的保護系統,其中每個變阻器包含一變阻器總成,該變阻器總成包含變阻器元件的一線性堆疊。
  15. 如請求項13所述的保護系統,其中每個DC電源包含一Cockcroft-Walton倍增器。
  16. 如請求項13所述的保護系統,其中每個變阻器包含一臨限值電壓,其中每個變阻器經組配以回應於跨過該變阻器的一電壓超過該臨限值電壓,而釋放該等多個電源內的至少一個電容器中所儲存的能量。
  17. 一種用於保護一加速器的組件的方法,其包含: 經由多個DC電源,提供多個電壓位準直至一所需的電壓位準; 經由電連接至該等多個DC電源的一加速管,對一或多個帶電粒子進行加速,其中該加速管包含多個級,每個級包含: 多個電極,其中該等多個電極中的一個電極係電耦合至該等多個電壓位準中的一電壓位準;以及 多個變阻器,其經組配以回應於一過電壓事件而釋放能量; 其中該等多個電極及該等多個變阻器彼此電耦合且以一交替方式配置;以及 經由該等多個變阻器,釋放該等多個DC電源內的至少一個電容器中所儲存的能量。
  18. 如請求項17所述的方法,其中回應於一過電壓事件,使釋放該等多個DC電源內的至少一個電容器中所儲存的能量之步驟發生。
  19. 如請求項17所述的方法,其中每個級包含多個絕緣體,其中每個絕緣體與一變阻器呈並聯配置。
  20. 如請求項17所述的方法,其中每個變阻器包含一變阻器總成,該變阻器總成包含變阻器元件的一線性堆疊。
TW110117174A 2020-05-13 2021-05-12 加速器組件之過電壓保護技術 TW202211734A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063024102P 2020-05-13 2020-05-13
US63/024,102 2020-05-13

Publications (1)

Publication Number Publication Date
TW202211734A true TW202211734A (zh) 2022-03-16

Family

ID=78524922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117174A TW202211734A (zh) 2020-05-13 2021-05-12 加速器組件之過電壓保護技術

Country Status (7)

Country Link
US (1) US20230208130A1 (zh)
EP (1) EP4129017A4 (zh)
JP (1) JP2023526275A (zh)
KR (1) KR20230008872A (zh)
CN (1) CN115553071A (zh)
TW (1) TW202211734A (zh)
WO (1) WO2021231514A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1454985A (en) * 1975-07-17 1976-11-10 Inst Yadernoi Fiziki Sibirskog Charged particle accelerators
JPS6070976A (ja) * 1983-09-27 1985-04-22 Toshiba Corp 加速電源装置
JP2820722B2 (ja) * 1989-06-29 1998-11-05 日立金属株式会社 高電圧パルス発生回路及びこれを用いた放電励起レーザならびに加速器
US5175506A (en) * 1991-03-19 1992-12-29 United States Department Of Energy Voltage regulation in linear induction accelerators
JP2008226683A (ja) * 2007-03-14 2008-09-25 Hitachi High-Technologies Corp 荷電粒子線装置
US8723452B2 (en) * 2010-12-08 2014-05-13 Gtat Corporation D.C. charged particle accelerator and a method of accelerating charged particles
US8558486B2 (en) * 2010-12-08 2013-10-15 Gtat Corporation D. c. Charged particle accelerator, a method of accelerating charged particles using d. c. voltages and a high voltage power supply apparatus for use therewith
US9750122B1 (en) * 2014-08-21 2017-08-29 National Technology & Engineering Solutions Of Sandia, Llc Compact particle accelerator
TWI653800B (zh) * 2018-01-09 2019-03-11 咸瑞科技股份有限公司 Water resistance overvoltage protection circuit

Also Published As

Publication number Publication date
US20230208130A1 (en) 2023-06-29
WO2021231514A1 (en) 2021-11-18
KR20230008872A (ko) 2023-01-16
EP4129017A4 (en) 2024-05-22
JP2023526275A (ja) 2023-06-21
EP4129017A1 (en) 2023-02-08
CN115553071A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
AU2018200789B2 (en) Overvoltage protection for power systems
US8508326B2 (en) Surge protection device using metal oxide varistors (MOVs) as the active energy control multiple gap discharging chain
US7817395B2 (en) Overvoltage protection element and ignition element for an overvoltage protection element
GB2345390A (en) Compact varistor and spark gap surge arrester
JP2011510508A (ja) 高電圧サージ・アレスター及びそれを動作させる方法
US20220200245A1 (en) Spark gap assembly for overvoltage protection and surge arrester
JP5650914B2 (ja) 直列コンデンサバンクを保護するシステムおよび方法
US6493201B1 (en) Spark gap retrofit module for surge arrester
TW202211734A (zh) 加速器組件之過電壓保護技術
EP4327424A1 (en) Arrester assembly providing enhanced protection against short circuits and fire risk
Woodworth Externally gapped line arresters a critical design review
US11824350B1 (en) Clamping circuit for protecting FACTs
EP4057457A1 (en) Bimetallic spark gap arrangement
US4945442A (en) Protective circuitry for high-energy transients
CN213401856U (zh) 具有用于接触和触发的多接触式元件的堆叠布置的多重火花隙
RU2034386C1 (ru) Дуговой разрядник
Ehrhardt et al. Spark gaps for DC applications
JP3119938B2 (ja) タンク形避雷器
Glasa et al. The destruction influence of pulse and surge currents on overvoltage protection
MXPA06007488A (en) Device for protection against voltage surges with parallel simultaneously triggered spark-gaps
JPS5850758A (ja) 半導体装置