TW202209353A - Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same - Google Patents

Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same Download PDF

Info

Publication number
TW202209353A
TW202209353A TW109128117A TW109128117A TW202209353A TW 202209353 A TW202209353 A TW 202209353A TW 109128117 A TW109128117 A TW 109128117A TW 109128117 A TW109128117 A TW 109128117A TW 202209353 A TW202209353 A TW 202209353A
Authority
TW
Taiwan
Prior art keywords
modified cellulose
cellulose nanofiber
film
agnws
tocn
Prior art date
Application number
TW109128117A
Other languages
Chinese (zh)
Other versions
TWI818191B (en
Inventor
林柏辰
闕居振
陳文章
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW109128117A priority Critical patent/TWI818191B/en
Publication of TW202209353A publication Critical patent/TW202209353A/en
Application granted granted Critical
Publication of TWI818191B publication Critical patent/TWI818191B/en

Links

Images

Abstract

The present invention relates to a modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same. The modified cellulose nanofiber-nanosilver wire conductive film has low coefficient of thermal expansion, excellent transparency, and maintaining certain sheet resistance after many times of bending. The photovoltaic device comprises the modified cellulose nanofiber-nanosilver wire conductive film as conductive film, providing bendability and great power conversion efficiency.

Description

改質纖維素奈米纖維-奈米銀線導電薄膜及其製造方法及含其之光伏裝置Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

本發明係關於一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法及含其之光伏裝置,本發明之光伏裝置具有可彎折性。The present invention relates to a method for manufacturing a modified cellulose nanofiber-nanosilver wire conductive film and a photovoltaic device containing the same. The photovoltaic device of the present invention has bendability.

為因應使用者需求,許多新商品已發展為曲面或可彎折性的光電產品,例如曲面螢幕、折疊式智慧型手機等。隨著此潮流趨勢,光伏供電科技也開始發展可彎折性有機光伏(flexible organic photovoltaics, OPVs)。除具備可彎折性之優勢以外,可彎折性有機光伏輕量及可列印性,同時,易於與布料或生物相容基質整合,極具有發展性及市場價值。In response to user needs, many new products have been developed into curved or bendable optoelectronic products, such as curved screens and foldable smartphones. Following this trend, photovoltaic power supply technology has also begun to develop flexible organic photovoltaics (OPVs). In addition to the advantages of bendability, bendable organic photovoltaics are lightweight and printable, and at the same time, they are easy to integrate with fabrics or biocompatible substrates, and have great development and market value.

目前效能最好的可彎折性有機光伏係使用塑料作為可彎折性基板,例如聚對苯二甲酸(PET)及聚萘二甲酸乙二醇酯(PEN)。過去研究發現,使用網格狀聚對苯二甲酸/奈米銀線(AgNWs)作為可彎折性基板時,可彎折性有機光伏的功率轉換效率(power conversion efficiency, PCE)可高於13%,而可彎折性有機光伏焊接至聚對苯二甲酸(PET)時,功率轉換效率可再提高至15%。然而,塑料可彎折性基板係聚合物基板,熱膨脹係數高,在大範圍的溫度變化下,容易有嚴重膨脹或收縮,進而產生裂縫並降低功率轉換效率。The most efficient bendable organic photovoltaics today use plastics as bendable substrates, such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Previous studies have found that the power conversion efficiency (PCE) of bendable organic photovoltaics can be higher than 13 when using grid-like polyterephthalic acid/silver nanowires (AgNWs) as bendable substrates. %, while the power conversion efficiency can be further increased to 15% when the bendable organic photovoltaics are welded to polyethylene terephthalic acid (PET). However, plastic bendable substrates are polymer substrates with high thermal expansion coefficients, which are prone to severe expansion or contraction under a wide range of temperature changes, resulting in cracks and reduced power conversion efficiency.

鑒於聚合物基板的缺陷,應開發出更利於可彎折性有機光伏使用的可彎折性基板或可彎折性導電基板,材料性質上需具低熱膨脹係數,以因應使用時,可彎折性有機光伏能承受大範圍溫度變化,不易膨脹或收縮,降低功率轉換效率。In view of the defects of polymer substrates, it is necessary to develop a bendable substrate or a bendable conductive substrate that is more conducive to the use of bendable organic photovoltaics. Organic photovoltaics can withstand a wide range of temperature changes, and are not easy to expand or contract, reducing power conversion efficiency.

是以,本發明之目的為提供一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含:(a)提供一基板;(b)噴塗一奈米銀線溶液至該基板的表面,經加熱後形成一奈米銀線導電層;(c)使一改質纖維素奈米纖維溶液分布於該奈米銀線導電層的表面,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層;(d)將該改質纖維素奈米纖維層-奈米銀線導電層由該基板的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜。Therefore, the purpose of the present invention is to provide a method for manufacturing a modified cellulose nanofiber-nanosilver wire conductive film, comprising: (a) providing a substrate; (b) spraying a nanosilver wire solution onto the substrate (c) distribute a modified cellulose nanofiber solution on the surface of the silver nanowire conductive layer, and form a modified cellulose nanofiber after heating nanofiber layer-nanosilver wire conductive layer; (d) peeling the modified cellulose nanofiber layer-nanosilver wire conductive layer from the surface of the substrate to obtain the modified cellulose nanofiber-nanometer Silver wire conductive film.

於較佳實施例中,該製造方法進一步包含:(e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜。In a preferred embodiment, the manufacturing method further comprises: (e) hot pressing the modified cellulose nanofiber-nanosilver wire conductive film.

於較佳實施例中,該基板為矽基板,且其表面經過矽烷化合物處理。In a preferred embodiment, the substrate is a silicon substrate, and its surface is treated with a silane compound.

於較佳實施例中,該矽烷化合物為十八烷基三氯矽烷(octadecyltrichlorosilane;ODTS)。In a preferred embodiment, the silane compound is octadecyltrichlorosilane (ODTS).

於較佳實施例中,該改質纖維素奈米纖維溶液中的改質纖維素奈米纖維係TEMPO氧化纖維素奈米纖維(TOCN)。In a preferred embodiment, the modified cellulose nanofibers in the modified cellulose nanofiber solution are TEMPO oxidized cellulose nanofibers (TOCN).

於較佳實施例中,該奈米銀線溶液包含奈米銀線及有機溶劑,該奈米銀線及有機溶劑的比例為1:10~1:15(v/v)。In a preferred embodiment, the silver nanowire solution comprises silver nanowires and an organic solvent, and the ratio of the silver nanowires and the organic solvent is 1:10-1:15 (v/v).

於較佳實施例中,該奈米銀線及有機溶劑的比例為1:12.5 (v/v)。In a preferred embodiment, the ratio of the silver nanowires and the organic solvent is 1:12.5 (v/v).

於較佳實施例中,該有機溶劑為異丙醇。In a preferred embodiment, the organic solvent is isopropanol.

本發明另一目的為提供一種改質纖維素奈米纖維-奈米銀線導電薄膜,其係使用如本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法所獲得。Another object of the present invention is to provide a modified cellulose nanofiber-nanosilver wire conductive film, which is obtained by using the manufacturing method of the modified cellulose nanofiber-nanosilver wire conductive film of the present invention.

本發明之另一目的為提供一種光伏裝置,依序包含一第一電極、一電子傳輸層、一活性層、一電洞傳輸層及一第二電極;其中,該第一電極為本發明之改質纖維素奈米纖維-奈米銀線導電薄膜。Another object of the present invention is to provide a photovoltaic device including a first electrode, an electron transport layer, an active layer, a hole transport layer and a second electrode in sequence; wherein the first electrode is one of the present invention Modified cellulose nanofibers-nanosilver wire conductive film.

相較於習知技術,本發明之製造方法可以將奈米銀線牢固地限制於基材表面上,並提供強大的附著力,避免熱誘導的聚集,使能與後續成膜的改質纖維素奈米纖維層完整附著,不易分離。本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜具有低熱膨脹係數,良好的光穿透性,不易散射,經過多次彎折後仍維持一定的薄膜電阻。比起其他使用生物相容材料作為導電薄膜的光伏裝置,本發明之光伏裝置係使用該改質纖維素奈米纖維-奈米銀線導電薄膜作為導電薄膜,具有可彎折性及良好的功率轉換效率。Compared with the prior art, the manufacturing method of the present invention can firmly confine the silver nanowires on the surface of the substrate, and provide strong adhesion, avoid heat-induced aggregation, and enable the modified fibers to be formed with subsequent films. The pure nanofiber layer is completely attached and not easy to separate. The modified cellulose nanofiber-nanosilver wire conductive film obtained by the manufacturing method of the present invention has a low thermal expansion coefficient, good light penetration, is not easy to scatter, and still maintains a certain film resistance after being bent for many times. Compared with other photovoltaic devices using biocompatible materials as conductive films, the photovoltaic device of the present invention uses the modified cellulose nanofiber-silver nanowire conductive films as conductive films, which has bendability and good power conversion efficiency.

以下實施方式不應視為過度地限制本發明。本發明所屬技術領域中具有通常知識者可在不背離本發明之精神或範疇的情況下對本文所討論之實施例進行修改及變化,而仍屬於本發明之範圍。以下,將配合圖式,說明本發明之自動化萃取核酸之機台的整體結構及相關使用流程。The following embodiments should not be construed to unduly limit the invention. Modifications and variations of the embodiments discussed herein can be made by those of ordinary skill in the art to which this invention pertains without departing from the spirit or scope of the invention, and still fall within the scope of the invention. Hereinafter, the overall structure of the machine for automatic nucleic acid extraction according to the present invention and related use procedures will be described with reference to the drawings.

請參閱圖1,係本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法的流程示意圖。Please refer to FIG. 1 , which is a schematic flowchart of the manufacturing method of the modified cellulose nanofiber-nanosilver wire conductive film of the present invention.

本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含:(a)提供一基板S,於較佳實施態樣中,該基板S具有改質表面B;(b)噴塗一奈米銀線溶液1至該基板S的改質表面B(如圖1所示,噴塗噴嘴SP噴塗該奈米銀線溶液1至該改質表面B),經加熱後形成一奈米銀線導電層1’;(c)使一改質纖維素奈米纖維溶液2分布於該奈米銀線導電層1’上,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層3’;(d)將該改質纖維素奈米纖維層-奈米銀線導電層3’由該基板S的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜3;進一步地,(e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜3(如圖1所示,使用熱壓機HP熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜3)。The manufacturing method of the modified cellulose nanofiber-nanosilver wire conductive film of the present invention comprises: (a) providing a substrate S, in a preferred embodiment, the substrate S has a modified surface B; (b) ) spray a nano-silver wire solution 1 to the modified surface B of the substrate S (as shown in FIG. 1 , the spray nozzle SP sprays the nano-silver wire solution 1 to the modified surface B), and forms a nano-silver wire after heating The silver wire conductive layer 1'; (c) a modified cellulose nanofiber solution 2 is distributed on the nanosilver wire conductive layer 1', and a modified cellulose nanofiber layer-nanofiber layer is formed after heating The silver wire conductive layer 3'; (d) the modified cellulose nanofiber layer-nanosilver wire conductive layer 3' is peeled off from the surface of the substrate S to obtain the modified cellulose nanofiber-nanometer Silver wire conductive film 3; further, (e) hot pressing the modified cellulose nanofiber-nano silver wire conductive film 3 (as shown in Figure 1, using a hot press HP to hot press the modified cellulose nanofiber Rice fiber-nanosilver wire conductive film 3).

所述的基板S可為矽基板,其表面改質可為使用矽烷化合物進行,以利於後續膜之剝離。該矽烷化合物可為烷基氯矽烷類、烷基烷氧基矽烷類、氟化烷基氯矽烷類或氟化烷基烷氧基矽烷類等,具體例如十八烷基三氯矽烷、六甲基二矽氮烷、辛基三氯矽烷、苯乙基三氯矽烷、正十八烷基三甲氧基矽烷、正十八烷基三乙氧基矽烷、正十八烷基三(正丙基)氧基矽烷、正十八烷基三(異丙基)氧基矽烷、三乙氧基胺基丙基矽烷、N[(3-三乙氧基矽基)丙基]乙二胺、3-縮水甘油基三乙氧基丙基醚矽烷、烯丙基三甲氧基矽烷或三烷氧基(異氰酸基烷基)矽烷,且本發明並不限於此等;其中,以十八烷基三氯矽烷為較佳。於較佳實施態樣中,步驟(a)之基板S係先經預熱,再行步驟(b)。The substrate S can be a silicon substrate, and its surface can be modified by using a silane compound, so as to facilitate the subsequent peeling of the film. The silane compound can be alkyl chlorosilanes, alkyl alkoxy silanes, fluorinated alkyl chlorosilanes or fluorinated alkyl alkoxy silanes, etc. disilazane, octyltrichlorosilane, phenethyltrichlorosilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltris(n-propyl) ) oxysilane, n-octadecyltri(isopropyl)oxysilane, triethoxyaminopropylsilane, N[(3-triethoxysilyl)propyl]ethylenediamine, 3 - Glycidyl triethoxypropyl ether silane, allyl trimethoxy silane or trialkoxy (isocyanatoalkyl) silane, and the present invention is not limited to these; Trichlorosilane is preferred. In a preferred embodiment, the substrate S in step (a) is preheated first, and then step (b) is performed.

該步驟(b)中,使用噴塗完成的奈米銀線導電層1’, 其奈米銀線具有良好的覆蓋率,可均勻性分布而無聚集體,能與後續成膜的改質纖維素奈米纖維層完整附著,不易分離,利於本發明之改質纖維素奈米纖維-奈米銀線導電薄膜3作為可彎折性之導電基板或導電薄膜時,承受多次彎折,不易有膜層分離而損害光伏性質。該步驟(b)中,該加熱係在溫度約90~120°C,例如90°C、95°C、100°C、105°C、110°C、115°C或120°C,且本發明並不限於此等;其中,以100°C為較佳。In this step (b), the nano-silver wire conductive layer 1' completed by spraying is used, and the nano-silver wire has a good coverage, can be uniformly distributed without agglomerates, and can be combined with the modified cellulose that forms a subsequent film. The nanofiber layer is completely attached and is not easy to be separated, which is beneficial for the modified cellulose nanofiber-nanosilver wire conductive film 3 of the present invention as a bendable conductive substrate or conductive film. The layers are separated and the photovoltaic properties are impaired. In this step (b), the heating system is at a temperature of about 90 to 120°C, such as 90°C, 95°C, 100°C, 105°C, 110°C, 115°C or 120°C, and the present The invention is not limited to these; among them, 100°C is preferred.

該步驟(c)中,該改質纖維素奈米纖維溶液2的分布方式可為塗佈(例如噴塗或旋轉塗佈)、或將該改質纖維素奈米纖維溶液2傾倒至該奈米銀線導電層1’後均勻分布。該加熱係在溫度約70~100°C,例如70°C、75°C、80°C、85°C、90°C、95°C或100°C等,且本發明並不限於此等;其中,以80°C為較佳。經加熱後的該改質纖維素奈米纖維層-奈米銀線導電層3’會有殘留水分,可使用低於該加熱溫度的溫度(例如60°C或以下)進行退火處理,使殘留水分完全蒸發。In this step (c), the distribution of the modified cellulose nanofiber solution 2 can be coating (eg spraying or spin coating), or pouring the modified cellulose nanofiber solution 2 onto the nanofibers The silver wire conductive layer 1' is uniformly distributed. The heating system is at a temperature of about 70-100°C, such as 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, etc., and the present invention is not limited to these ; Among them, 80 ° C is better. After heating, the modified cellulose nanofiber layer-nanosilver wire conductive layer 3' will have residual moisture, which can be annealed at a temperature lower than the heating temperature (for example, 60 ° C or below), so that the residual moisture is Moisture evaporates completely.

本發明之較佳實施態樣之該步驟(e)中,該熱壓的壓力約700~800psi,溫度約50~80°C;較佳為壓力約730~780psi,溫度約55~75°C;更佳為壓力約750psi,溫度約60°C。該熱壓的時間約40~80分鐘,較佳為60分鐘。經過熱壓後,薄膜的光滑表面可更有利於後續的設備製造,因較光滑的表面可避免短路。In this step (e) of the preferred embodiment of the present invention, the pressure of the hot pressing is about 700~800 psi, and the temperature is about 50~80 ℃; preferably the pressure is about 730~780 psi, and the temperature is about 55~75 ℃ ; more preferably a pressure of about 750 psi and a temperature of about 60°C. The hot pressing time is about 40 to 80 minutes, preferably 60 minutes. After hot pressing, the smooth surface of the film can be more beneficial to subsequent device fabrication, as the smoother surface can avoid short circuits.

所述的奈米銀線具有直徑55~75µm及寬度20~40µm,直徑的具體例如55µm、60µm、65µm、70µm或75µm,寬度的具體例如20µm、25µm、30µm、35µm或40µm,且本發明並不限於此等。The nano-silver wire has a diameter of 55-75 µm and a width of 20-40 µm, the diameter is 55 µm, 60 µm, 65 µm, 70 µm or 75 µm, and the width is 20 µm, 25 µm, 30 µm, 35 µm or 40 µm. Not limited to this.

所述的奈米銀線溶液的溶劑為水或有機溶劑,例如醇類,具體例如異丙醇、甲醇或乙醇等,且本發明並不限於此等;其中,以異丙醇為較佳。該奈米銀線及該有機溶劑的比例為1:10~1:15(v/v),例如1:10(v/v)、1:11(v/v)、1:12(v/v)、1:12.5(v/v)、1:13(v/v)、1:13(v/v)、1:14(v/v)或1:15(v/v),且本發明並不限於此等;其中,以1:12.5(v/v)為較佳。The solvent of the nano-silver wire solution is water or an organic solvent, such as alcohols, such as isopropanol, methanol or ethanol, etc., and the present invention is not limited to these; wherein, isopropanol is preferred. The ratio of the nanosilver wire to the organic solvent is 1:10~1:15(v/v), such as 1:10(v/v), 1:11(v/v), 1:12(v/v) v), 1:12.5(v/v), 1:13(v/v), 1:13(v/v), 1:14(v/v) or 1:15(v/v), and this The invention is not limited to these; among them, 1:12.5 (v/v) is preferred.

所述的改質纖維素奈米纖維溶液2可使用水作為溶劑,濃度約0.1~30wt%,較佳為0.5wt%。其中,所述的改質纖維素奈米纖維可為TEMPO氧化纖維素奈米纖維(TOCN)。TEMPO氧化纖維素奈米纖維係使用2,2,6,6-四甲基哌啶-1-氧基 (TEMPO)氧化木材紙漿等天然纖維素,使纖維更微細化,並具有高結晶度及高縱橫比。The modified cellulose nanofiber solution 2 can use water as a solvent, and the concentration is about 0.1-30 wt %, preferably 0.5 wt %. Wherein, the modified cellulose nanofibers can be TEMPO oxidized cellulose nanofibers (TOCN). TEMPO oxidized cellulose nanofibers use 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) to oxidize natural cellulose such as wood pulp to make the fibers more fine, and have high crystallinity and High aspect ratio.

本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜3由於使用改質纖維素奈米纖維形成薄膜層,比起未改質纖維素奈米纖維,改質纖維素奈米纖維的長度及寬度都相對較小,與奈米銀線有較佳的分散性及同質性,能緊密與奈米銀線纏繞,利於混成(hybrid),使獲致的改質纖維素奈米纖維層及奈米銀線導電薄膜層1’之間能緊密不鬆散,不易分離,進而,使該改質纖維素奈米纖維-奈米銀線導電薄膜3能具有良好的光穿透性,不會有嚴重散射,此外,經過多次彎曲仍可維持一定的薄膜電阻。另外,該改質纖維素奈米纖維-奈米銀線導電薄膜3的熱膨脹係數低於5 (10-6 /K),明顯低於習知的聚合性基板(熱膨脹係數約20 (10-6 /K))。因此,本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜3利於作為可彎折性光伏裝置的導電薄膜或導電基板。The modified cellulose nanofiber-nanosilver wire conductive film 3 obtained by the production method of the present invention uses modified cellulose nanofibers to form a film layer, and the modified fibers are more efficient than unmodified cellulose nanofibers. The length and width of the plain nanofibers are relatively small, and they have better dispersion and homogeneity with the silver nanowires. The nanofiber layer and the nanosilver wire conductive film layer 1' can be tightly and not loose, and not easy to separate, and further, the modified cellulose nanofiber-nanosilver wire conductive film 3 can have good light penetration In addition, it can maintain a certain sheet resistance after many times of bending. In addition, the thermal expansion coefficient of the modified cellulose nanofiber-nanosilver wire conductive film 3 is lower than 5 (10 -6 /K), which is significantly lower than that of the conventional polymeric substrate (the thermal expansion coefficient is about 20 (10 -6 ) /K)). Therefore, the modified cellulose nanofiber-nanosilver wire conductive film 3 obtained by the manufacturing method of the present invention is advantageously used as a conductive film or a conductive substrate of a bendable photovoltaic device.

請參閱圖2,係本發明之光伏裝置的剖視圖。Please refer to FIG. 2 , which is a cross-sectional view of the photovoltaic device of the present invention.

本發明之光伏裝置依序包含一本發明之改質纖維素奈米纖維-奈米銀線導電薄膜3之第一電極、一電子傳輸層4、一活性層5、一電洞傳輸層6及一第二電極7。The photovoltaic device of the present invention sequentially comprises a first electrode of the modified cellulose nanofiber-nanosilver wire conductive film 3 of the present invention, an electron transport layer 4, an active layer 5, a hole transport layer 6 and A second electrode 7 .

所述的電子傳輸層4可為n型半導體金屬氧化物,例如ZnO、TiO2 、SnO2 、WO3 、Fe2 O3 、SnO3 、BaTiO3 及BaSnO3 ,且本發明並不限於此等;其中,以ZnO為較佳。The electron transport layer 4 can be an n-type semiconductor metal oxide, such as ZnO, TiO 2 , SnO 2 , WO 3 , Fe 2 O 3 , SnO 3 , BaTiO 3 and BaSnO 3 , and the present invention is not limited to these ; Among them, ZnO is preferred.

所述的活性層5可為光伏通用的活性層材料,例如PBDB-T-2F、PTB7-Th、PCBM、IT-4F、Y6,且本發明並不限於此等;較佳為非富勒烯衍生物。The active layer 5 can be a general photovoltaic active layer material, such as PBDB-T-2F, PTB7-Th, PCBM, IT-4F, Y6, and the present invention is not limited to these; preferably non-fullerene derivative.

所述的電洞傳輸層6可為p型半導體金屬化合物,例如MoO3 、V2 O5 、VO3 、WO3 、CuO、CuO2 、NiO、NiO2 、ReO3 、Re2 O7 、AuNP、AgNP、石墨烯層或碳奈米管層,且本發明並不限於此等;其中,以MoO3 為較佳。The hole transport layer 6 can be a p-type semiconductor metal compound, such as MoO 3 , V 2 O 5 , VO 3 , WO 3 , CuO, CuO 2 , NiO, NiO 2 , ReO 3 , Re 2 O 7 , AuNP , AgNP, graphene layer or carbon nanotube layer, and the present invention is not limited to these; among them, MoO 3 is preferred.

所述的第二電極7可為金屬,例如銀、鎂、鈣、鈉、鉀、鈦、銦、釔、鋰、釓、鋁、錫、鉛或其組合,且本發明並不限於此等;其中,以銀為較佳。[ 具體實施例 ] The second electrode 7 can be metal, such as silver, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, tin, lead or a combination thereof, and the present invention is not limited to these; Among them, silver is preferred. [ specific embodiment ]

在下文中,將進一步以詳細說明與實施例描述本發明。然而,應理解這些實施例僅用於幫助可更加容易理解本發明而非用於限制本發明之範圍。In the following, the invention will be further described with detailed description and examples. However, it should be understood that these examples are only for helping to make the present invention easier to understand and not for limiting the scope of the present invention.

實施例Example 1.1. 改質纖維素Modified cellulose 奈米纖維nanofibers -- 奈米銀線導電膜Nano silver wire conductive film (TOCN/AgNWs(TOCN/AgNWs membrane )) ( 使用use 1:10(v/v)1:10(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

使用異丙醇稀釋含有奈米銀線的異丙醇溶液(奈米銀線的平均直徑為55~75µm,長度為20~40µm),以配製奈米銀線及異丙醇比例為1:10(v/v)的奈米銀線溶液,超音波震盪15分鐘。使用水及TEMPO氧化纖維素奈米纖維(TOCN)配製濃度為0.5wt%的改質纖維素奈米纖維溶液,超音波震盪30分鐘,以均勻混合。使用十八烷基三氯矽烷(ODTS)表面處理矽基板,隨後,預熱該矽基板,使其表面達到100°C。噴塗該奈米銀線溶液至該矽基板表面(面積大小:1.5×2.5 cm2 )上,以形成奈米銀線導電層。倒入該改質纖維素奈米纖維溶液至該奈米銀線導電層,使該改質纖維素奈米纖維溶液分布在該奈米銀線導電層的表面,在80°C下加熱4.5小時後,以60°C退火處理使水分蒸發,即獲得改質纖維素奈米纖維層-奈米銀線導電層。將該改質纖維素奈米纖維層-奈米銀線導電層由該矽基板表面剝離,即獲得TOCN/AgNWs膜。最後,該將TOCN/AgNWs膜在60°C下熱壓30分鐘。Dilute the isopropanol solution containing the silver nanowires with isopropanol (the average diameter of the silver nanowires is 55~75µm and the length is 20~40µm) to prepare the silver nanowires and isopropanol in a ratio of 1:10 (v/v) nanosilver wire solution, ultrasonically shaken for 15 minutes. A modified cellulose nanofiber solution with a concentration of 0.5 wt % was prepared using water and TEMPO oxidized cellulose nanofibers (TOCN), and ultrasonically oscillated for 30 minutes to uniformly mix. The silicon substrate was surface-treated with octadecyltrichlorosilane (ODTS), and subsequently, the silicon substrate was preheated to bring the surface to 100°C. The nano-silver wire solution was sprayed onto the surface of the silicon substrate (area size: 1.5×2.5 cm 2 ) to form a nano-silver wire conductive layer. Pour the modified cellulose nanofiber solution onto the silver nanowire conductive layer, so that the modified cellulose nanofiber solution is distributed on the surface of the silver nanowire conductive layer, and heated at 80 ° C for 4.5 hours Then, annealing at 60°C to evaporate the water to obtain the modified cellulose nanofiber layer-nanosilver wire conductive layer. The modified cellulose nanofiber layer-nanosilver wire conductive layer is peeled off from the surface of the silicon substrate to obtain a TOCN/AgNWs film. Finally, the TOCN/AgNWs film was hot-pressed at 60 °C for 30 min.

實施例Example 2. TOCN/AgNWs2. TOCN/AgNWs membrane ( 使用use 1:12.5(v/v)1:12.5(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

實施例2 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,僅有差異使用奈米銀線及異丙醇比例為1:12.5(v/v)的奈米銀線溶液。The preparation process of the TOCN/AgNWs film in Example 2 is the same as that of the TOCN/AgNWs film in Example 1, except that the silver nanowires and the nanosilver solution with the isopropanol ratio of 1:12.5 (v/v) are used differently.

實施例Example 3. TOCN/AgNWs3. TOCN/AgNWs 膜(使用membrane (using 1:15(v/v)1:15(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

實施例3 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,僅有差異在於使用奈米銀線及異丙醇比例為1:15(v/v)的奈米銀線溶液。Example 3 The preparation process of the TOCN/AgNWs film is the same as that of the TOCN/AgNWs film in Example 1, the only difference is that the silver nanowires and the nanosilver solution with the isopropanol ratio of 1:15 (v/v) are used.

比較例Comparative example 1. TOCN/AgNWs1. TOCN/AgNWs 膜;使用film; use 1:12.5(v/v)1:12.5(v/v) 奈米銀線溶液及滴落塗佈法Nano silver wire solution and drop coating method (drop coating)(drop coating) 製備奈米銀線導電層Preparation of nanosilver wire conductive layer

比較例1 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,差異在於奈米銀線溶液的奈米銀線及異丙醇比例為1:12.5(v/v),且奈米銀線溶液係使用滴落塗佈法塗佈在矽基板的表面。The preparation process of the TOCN/AgNWs film of Comparative Example 1 is the same as that of the TOCN/AgNWs film of Example 1. The difference is that the ratio of nano-silver wires and isopropanol in the nano-silver wire solution is 1:12.5 (v/v), and the nano-silver The silver wire solution is applied on the surface of the silicon substrate using the drop coating method.

比較例Comparative example 2.2. 纖維素奈米纖維Cellulose Nanofibers -- 奈米銀線導電膜Nano silver wire conductive film (CNF/AgNWs(CNF/AgNWs membrane ))

比較例2 CNF/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,差異在係使用0.5wt%纖維素奈米纖維水溶液取代0.5wt%TEMPO氧化纖維素奈米纖維水溶液,以製造CNF/AgNWs膜。Comparative Example 2 The preparation process of CNF/AgNWs film is the same as that of Example 1 TOCN/AgNWs film, the difference is that 0.5wt% cellulose nanofiber aqueous solution is used instead of 0.5wt% TEMPO oxidized cellulose nanofiber aqueous solution to fabricate CNF/AgNWs film. AgNWs film.

I.i. 奈米銀線溶液濃度及塗佈方式對Nano-silver wire solution concentration and coating method TOCN/AgNWsTOCN/AgNWs 膜之影響Membrane influence

使用掃描電子顯微鏡(SEM)觀察實施例1至3及比較例1的TOCN/AgNWs膜,如圖3(a)至(c)所示(圖3(a)至(c)依序為實施例1至3),實施例1至3 TOCN/AgNWs膜的奈米銀線導電層係使用噴塗所完成,其等奈米銀線分布均勻且無聚集體,特別係實施例2 TOCN/AgNWs膜的奈米銀線導電層具有最高的覆蓋率及均勻性。相較之下,如圖3(d)所示,比較例1 TOCN/AgNWs膜的奈米銀線導電層係使用滴落塗佈所完成,其奈米銀線分布不均並糾結成團,有聚集體。The TOCN/AgNWs films of Examples 1 to 3 and Comparative Example 1 were observed using a scanning electron microscope (SEM), as shown in Figure 3 (a) to (c) (Figure 3 (a) to (c) are examples in sequence 1 to 3), the nano-silver wire conductive layers of the TOCN/AgNWs films of Examples 1 to 3 are completed by spraying, and the nano-silver wires are uniformly distributed and have no aggregates, especially the TOCN/AgNWs film of Example 2. The silver nanowire conductive layer has the highest coverage and uniformity. In contrast, as shown in Figure 3(d), the conductive layer of silver nanowires of the TOCN/AgNWs film of Comparative Example 1 was completed by drop coating, and the silver nanowires were unevenly distributed and tangled into clusters. There are aggregates.

II. TOCN/AgNWsII. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及film and PEN/ITOPEN/ITO 表面粗糙度及膜層間差異Surface roughness and interlayer differences

使用掃描電子顯微鏡(SEM)及原子力顯微鏡(AFM)觀察實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的聚萘二甲酸乙二醇酯/氧化銦錫基材(PEN/ITO)的表面及剖面。如圖4(a)所示,實施例2 TOCN/AgNWs膜的表面光滑均勻,且無聚集體,而比較例2 CNF/AgNWs膜並不均勻且多處有聚集體。如圖4(b)所示,實施例2 TOCN/AgNWs膜的膜層係逐層堆疊的緊湊結構,與市售的PEN/ITO相似,而比較例2 CNF/AgNWs膜的膜層之間為鬆散不僅密。如圖4(c)所示,實施例2 TOCN/AgNWs膜的表面襯底比較光滑,經量測,實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的PEN/ITO的表面均方根粗糙度(RMS)分別為28.0nm、35.5nm及2.39nm。造成實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜之間的差異原因在於,比起未改質的纖維素奈米纖維(CNF),改質纖維素奈米纖維(即TOCN)由於長度及寬度縮小,成膜時,較利於與奈米銀線導電層的奈米銀線混成(hybrid),具有較佳的分散性及同質性,能緊密纏繞,使獲致的膜層不易有聚集體。Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to observe the TOCN/AgNWs film of Example 2, the CNF/AgNWs film of Comparative Example 2, and the commercially available polyethylene naphthalate/indium tin oxide substrate (PEN/ ITO) surface and section. As shown in Fig. 4(a), the surface of the TOCN/AgNWs film of Example 2 is smooth and uniform without aggregates, while the CNF/AgNWs film of Comparative Example 2 is not uniform and has aggregates in many places. As shown in Figure 4(b), the TOCN/AgNWs film of Example 2 has a compact structure stacked layer-by-layer, which is similar to the commercially available PEN/ITO, while the CNF/AgNWs film of Comparative Example 2 has a Loose is not only dense. As shown in Figure 4(c), the surface substrate of the TOCN/AgNWs film of Example 2 is relatively smooth. After measurement, the TOCN/AgNWs film of Example 2, the CNF/AgNWs film of Comparative Example 2 and the commercially available PEN/ITO have The surface root mean square roughness (RMS) was 28.0 nm, 35.5 nm and 2.39 nm, respectively. The reason for the difference between Example 2 TOCN/AgNWs film and Comparative Example 2 CNF/AgNWs film is that compared with unmodified cellulose nanofibers (CNF), modified cellulose nanofibers (ie TOCN) The length and width are reduced. When forming a film, it is more favorable to mix with the silver nanowires of the conductive layer of the nanosilver wire, which has better dispersion and homogeneity, and can be tightly wound, so that the obtained film layer is not easy to aggregate body.

III. TOCN/AgNWsIII. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及film and PEN/ITOPEN/ITO 的導電性及熱性質The electrical conductivity and thermal properties of

如表1所示,實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜的薄膜電阻分別為2.62及6.89,即薄膜電阻皆不高,已符合可作為光伏裝置構件的條件。值得注意的是,實施例2 TOCN/AgNWs膜的薄膜電阻為最低,且明顯低於市售的PEN/ITO。另外,實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜的熱膨脹係數也明顯低於市售的PEN/ITO,特別係實施例2 TOCN/AgNWs膜的熱膨脹係數可低至3.37,係比較例2 CNF/AgNWs膜的2.2倍低及市售的PEN/ITO的5.5倍低。如圖5所示,三種膜的熱機械分析(TMA)的曲線圖,L0 為初始長度;ΔL為長度變化量;在溫度升高的情況下,TOCN/AgNWs膜的長度變化最小,其次為CNF/AgNWs膜,市售的PEN/ITO會隨溫度升高而長度增加,即市售的PEN/ITO會隨溫度升高而膨脹。因此,比起市售的PEN/ITO,實施例2 TOCN/AgNWs膜具有低熱膨脹係數,更利於作為導電薄膜或導電基板。As shown in Table 1, the sheet resistances of the TOCN/AgNWs film of Example 2 and the CNF/AgNWs film of Comparative Example 2 are 2.62 and 6.89, respectively, that is, the sheet resistances are not high, and have met the conditions for being used as photovoltaic device components. It is worth noting that the sheet resistance of the TOCN/AgNWs film of Example 2 is the lowest and significantly lower than that of the commercially available PEN/ITO. In addition, the thermal expansion coefficient of the TOCN/AgNWs film of Example 2 and the CNF/AgNWs film of Comparative Example 2 is also significantly lower than that of the commercially available PEN/ITO, especially the thermal expansion coefficient of the TOCN/AgNWs film of Example 2 can be as low as 3.37, which is relatively Example 2 The CNF/AgNWs film was 2.2 times lower and the commercially available PEN/ITO was 5.5 times lower. As shown in Figure 5, the thermomechanical analysis (TMA) curves of the three films, L 0 is the initial length; ΔL is the length change; under the condition of increasing temperature, the TOCN/AgNWs film has the smallest length change, followed by For CNF/AgNWs films, commercially available PEN/ITO will increase in length with increasing temperature, that is, commercially available PEN/ITO will expand with increasing temperature. Therefore, compared with the commercially available PEN/ITO, the TOCN/AgNWs film of Example 2 has a low thermal expansion coefficient, which is more favorable as a conductive film or a conductive substrate.

表1   薄膜電阻 (Ω/sq) 分解溫度 (Td, 5%) (℃) 熱膨脹係數(10-6 /K) 拉伸強度 (MPa) 彈性模量 (GPa) 實施例2 TOCN/AgNWs膜 2.62 192.9 3.37 70.1 5.59 比較例2 CNF/AgNWs膜 6.89 279.1 7.37 63.2 3.37 市售的PEN/ITO 5.08 394.3 18.45 113.1 3.87 Table 1 Sheet resistance (Ω/sq) Decomposition temperature (Td, 5%) (℃) Thermal expansion coefficient (10 -6 /K) Tensile strength (MPa) Elastic Modulus (GPa) Example 2 TOCN/AgNWs film 2.62 192.9 3.37 70.1 5.59 Comparative Example 2 CNF/AgNWs film 6.89 279.1 7.37 63.2 3.37 Commercially available PEN/ITO 5.08 394.3 18.45 113.1 3.87

IV. TOCN/AgNWsIV. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及film and PEN/ITOPEN/ITO 的光穿透性light penetration

使用UV穿透性光譜量測實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的PEN/ITO光穿透性;如圖6所示,比起市售的PEN/ITO,實施例2 TOCN/AgNWs膜在整體上,具有較佳的光穿透性。在波長550nm下,實施例2 TOCN/AgNWs膜的光穿透性為78.5%,市售的PEN/ITO光穿透性為76.1%,即實施例2 TOCN/AgNWs膜略勝於市售的PEN/ITO。相較下,比較例2 CNF/AgNWs膜的光穿透性最差,在550nm下,比較例2 CNF/AgNWs膜的光穿透性最高只有55%。值得注意的是,在440nm以下(即短波長區域),實施例2 TOCN/AgNWs膜的光穿透性明顯高於市售的PEN/ITO,顯見實施例2 TOCN/AgNWs膜更適於作為室內光伏裝置的導電薄膜或導電基板。另外,如圖7所示(圖7(a)至(c)依序為市售的PEN/ITO、比較例2 CNF/AgNWs膜及實施例2 TOCN/AgNWs膜),當圖像置於實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜後方時,皆可看到圖像,比較例2 CNF/AgNWs膜則無法清楚看到圖像。如圖8所示(圖8(a)及(b)分別為實施例2 TOCN/AgNWs膜及市售的PEN/ITO),實施例2 TOCN/AgNWs膜的清晰度明顯高於比較例2 CNF/AgNWs膜,可證實施例2 TOCN/AgNWs膜的光穿透性較佳。造成實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜之間的差異原因在於,比較例2 CNF/AgNWs膜係使用未改質的纖維素奈米纖維(CNF),長度及寬度比改質纖維素奈米纖維(即TOCN)較大,不利與奈米銀線導電層的奈米銀線混成(hybrid),致使纖維素奈米纖維層及奈米銀線導電層之間鬆散不緊密,光穿透到該膜層之間時則嚴重散射。The optical transmittance of Example 2 TOCN/AgNWs film, Comparative Example 2 CNF/AgNWs film and commercially available PEN/ITO was measured using UV transmittance spectroscopy; as shown in Figure 6, compared with commercially available PEN/ITO, Example 2 The TOCN/AgNWs film as a whole has better light transmittance. At a wavelength of 550 nm, the light transmittance of the TOCN/AgNWs film of Example 2 is 78.5%, and the light transmittance of the commercially available PEN/ITO is 76.1%, that is, the TOCN/AgNWs film of Example 2 is slightly better than the commercially available PEN. /ITO. In contrast, the CNF/AgNWs film of Comparative Example 2 had the worst light transmittance, and at 550 nm, the light transmittance of the CNF/AgNWs film of Comparative Example 2 was only 55% at the highest. It is worth noting that the light transmittance of the TOCN/AgNWs film in Example 2 is significantly higher than that of the commercially available PEN/ITO below 440 nm (ie, the short wavelength region). It is obvious that the TOCN/AgNWs film in Example 2 is more suitable for indoor Conductive thin films or conductive substrates for photovoltaic devices. In addition, as shown in Figure 7 (Figure 7(a) to (c) are the commercially available PEN/ITO, Comparative Example 2 CNF/AgNWs film and Example 2 TOCN/AgNWs film in sequence), when the image is placed in the Images can be seen behind the TOCN/AgNWs film of Example 2 and the CNF/AgNWs film of Comparative Example 2, but the images of the CNF/AgNWs film of Comparative Example 2 cannot be clearly seen. As shown in Figure 8 (Figure 8(a) and (b) are the TOCN/AgNWs film of Example 2 and the commercially available PEN/ITO, respectively), the clarity of the TOCN/AgNWs film of Example 2 is significantly higher than that of Comparative Example 2 CNF /AgNWs film, which proves that the light transmittance of the TOCN/AgNWs film in Example 2 is better. The reason for the difference between the TOCN/AgNWs film in Example 2 and the CNF/AgNWs film in Comparative Example 2 is that the CNF/AgNWs film in Comparative Example 2 uses unmodified cellulose nanofibers (CNF), and the length and width ratios are changed. The cellulose nanofibers (ie TOCN) are large, which is unfavorable to mix with the silver nanowires in the nanosilver conductive layer, resulting in looseness and tightness between the cellulose nanofiber layer and the nanosilver conductive layer. , the light is severely scattered when it penetrates between the layers.

V. TOCN/AgNWsV. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及film and PEN/ITOPEN/ITO 的機械強度mechanical strength

除了具有可接受的導電性和光學透明性之外,具有良好的機械強度和穩定性也是對柔性導電基板的關鍵要求。首先檢查了這些膜的機械性能,圖9(a)顯示了它們相應的應力-應變曲線。根據該曲線,計算出各基材的拉伸強度和彈性模量,並彙總在表1中。由於增加了結晶度,因此如表1所示,實施例2 TOCN/AgNWs膜的拉伸強度從63.2 MPa(相對於比較例2 CNF/AgNWs膜)增加到70.1 MPa,但是,相應地,實施例2 TOCN / AgNWs膜的彈性模量從3.37 GPa(相對於比較例2 CNF / AgNWs膜)增加到5.59 GPa。通常,高彈性模量不利於彎曲,並且可能在彎曲過程中降低導電性和機械穩定性,然而,幸運的是,此增加的彈性模量並不會對實施例2 TOCN/AgNWs膜的柔韌性產生很大影響。如圖9(b)所示,在彎曲半徑為0.8mm的彎曲試驗下,實施例2 TOCN/AgNWs膜的薄膜電阻並無太大變化,儘管市售的PEN/ITO具有最高的拉伸強度和較低的彈性模量,但是ITO的脆性可能會在彎曲過程中產生潛在的裂紋,導致500次彎曲實驗後的薄層電阻大幅增加,即實施例2 TOCN/AgNWs膜在多次彎曲下仍可維持一定的薄膜電阻,比起市售的PEN/ITO,因此更適於作為光伏裝置的可彎折性導電基板。In addition to having acceptable electrical conductivity and optical transparency, good mechanical strength and stability are also key requirements for flexible conductive substrates. The mechanical properties of these films were first examined, and Figure 9(a) shows their corresponding stress-strain curves. From this curve, the tensile strength and elastic modulus of each substrate were calculated and summarized in Table 1. Due to the increased crystallinity, as shown in Table 1, the tensile strength of the Example 2 TOCN/AgNWs film increased from 63.2 MPa (relative to the Comparative Example 2 CNF/AgNWs film) to 70.1 MPa, however, the Example 2 accordingly The elastic modulus of the 2 TOCN/AgNWs film increased from 3.37 GPa (relative to the Comparative Example 2 CNF/AgNWs film) to 5.59 GPa. In general, high elastic modulus is not conducive to bending and may reduce electrical conductivity and mechanical stability during bending, however, fortunately, this increased elastic modulus does not affect the flexibility of Example 2 TOCN/AgNWs film have a great impact. As shown in Fig. 9(b), the sheet resistance of the TOCN/AgNWs film of Example 2 did not change much under the bending test with a bending radius of 0.8 mm, although the commercially available PEN/ITO had the highest tensile strength and Lower elastic modulus, but the brittleness of ITO may generate potential cracks during bending, resulting in a large increase in sheet resistance after 500 bending experiments, that is, the TOCN/AgNWs film of Example 2 can still be maintained under multiple bendings. It maintains a certain sheet resistance and is more suitable as a bendable conductive substrate for photovoltaic devices than commercially available PEN/ITO.

VI.VI. 塗佈方式對coating method TOCN/AgNWsTOCN/AgNWs 膜的機械強度影響Membrane mechanical strength

為探討改質纖維素奈米纖維素層及奈米銀線導電層之間的附著力,利用3M透明膠帶進行膠帶-剝離試驗,如圖10所示,比較例1 TOCN/AgNWs膜的奈米銀線導電層在第1次剝離時即與該改質纖維素奈米纖維素層分離,而實施例2 TOCN/AgNWs膜經過15次的剝離,其奈米銀線導電層及改質纖維素奈米纖維素層仍未分離。因此,當奈米銀線導電層係使用噴塗所完成時,該奈米銀線導電層及該改質纖維素奈米纖維素層之間可具有良好的附著性,相較之下,當奈米銀線導電層係使用習知的滴落塗佈所完成時,該奈米銀線導電層及該改質纖維素奈米纖維素層之間的附著性差。In order to explore the adhesion between the modified cellulose nanocellulose layer and the nanosilver conductive layer, a tape-peel test was performed using 3M transparent tape, as shown in Figure 10. The silver wire conductive layer was separated from the modified cellulose nanocellulose layer at the first peeling off, while the TOCN/AgNWs film of Example 2 was peeled off 15 times, the nanosilver wire conductive layer and the modified cellulose nanocellulose layer were separated. The nanocellulose layer is still not separated. Therefore, when the nano-silver wire conductive layer is completed by spraying, the nano-silver wire conductive layer and the modified cellulose nano-cellulose layer can have good adhesion. When the silver nanowire conductive layer is completed by conventional drop coating, the adhesion between the nanosilver wire conductive layer and the modified cellulose nanocellulose layer is poor.

VII. TOCN/AgNWsVII. TOCN/AgNWs 膜的品質因素Membrane quality factor (FOM)(FOM)

本發明之品質因素(FOM)係為直流電導率(

Figure 02_image001
)及光導性(
Figure 02_image003
)的比例(
Figure 02_image005
)所界定,其係藉由以下公式所獲得:
Figure 02_image007
,其中,
Figure 02_image009
為波長550nm時的穿透度,Rs為薄膜電阻;光波長設定為波長550nm係因人眼對此波長最為敏感。The figure of merit (FOM) of the present invention is the DC conductivity (
Figure 02_image001
) and photoconductivity (
Figure 02_image003
)proportion(
Figure 02_image005
), which is obtained by the following formula:
Figure 02_image007
,in,
Figure 02_image009
is the transmittance at a wavelength of 550nm, and Rs is the sheet resistance; the light wavelength is set to a wavelength of 550nm because the human eye is most sensitive to this wavelength.

分別量測實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及其他習知導電基板或導電薄膜的薄膜電阻及波長550nm光穿透性,並經由以上公式計算品質因素。結果如表2及圖11所示,相較於其他材料的導電基板或導電薄膜,實施例2 TOCN/AgNWs膜具有最高的品質因素,顯示實施例2 TOCN/AgNWs膜適於作為光伏裝置的導電薄膜。The sheet resistance and 550 nm light transmittance of the TOCN/AgNWs film of Example 2, the CNF/AgNWs film of Comparative Example 2 and other conventional conductive substrates or conductive films were measured respectively, and the quality factor was calculated by the above formula. The results are shown in Table 2 and Figure 11. Compared with the conductive substrates or conductive films of other materials, the TOCN/AgNWs film of Example 2 has the highest quality factor, indicating that the TOCN/AgNWs film of Example 2 is suitable for use as a conductive substrate for photovoltaic devices. film.

表2   薄膜電阻 ( Ω /sq) 550nm 時的光穿透性 (%) 品質因素 (FOM) 實施例2 TOCN/AgNWs 2.62 78.5 559 比較例2 CNF/AgNWs 6.89 52.9 73 PEN/ITO 5.08 76.1 254 PET/AgNWs 14.1 92.8 351 PET/PEDOT:PSS 75 86 32 PVA/AgNWs 63 87.5 43 奈米紙/AgNWs 12 88 238 奈米紙/ITO 12 65 65 PEN/ITO:聚萘二甲酸乙二醇酯/氧化銦錫基材 PET/AgNWs:聚對苯二甲酸/奈米銀線 PET/PEDOT:PSS:聚對苯二甲酸/聚(3,4-乙撐二氧噻吩)聚苯乙烯磺酸鹽 PVA/AgNWs:聚乙烯醇/奈米銀線 奈米紙/AgNWs:奈米紙/奈米銀線 奈米紙/ITO:奈米紙/氧化銦錫基材 Table 2 Sheet resistance ( Ω /sq) Light transmittance (%) at 550nm Quality Factor (FOM) Example 2 TOCN/AgNWs 2.62 78.5 559 Comparative Example 2 CNF/AgNWs 6.89 52.9 73 PEN/ITO 5.08 76.1 254 PET/AgNWs 14.1 92.8 351 PET/PEDOT:PSS 75 86 32 PVA/AgNWs 63 87.5 43 Nanopaper/AgNWs 12 88 238 Nanopaper/ITO 12 65 65 PEN/ITO: polyethylene naphthalate/indium tin oxide substrate ethylenedioxythiophene) polystyrene sulfonate PVA/AgNWs: polyvinyl alcohol/nanosilver wire nanopaper/AgNWs: nanopaper/nanosilver wire nanopaper/ITO: nanopaper/indium oxide Tin substrate

實施例Example 4. TOCN/AgNWs/ZnO/4. TOCN/AgNWs/ZnO/ 活性層active layer /MoO3 /Ag/MoO 3 /Ag 光伏裝置Photovoltaic installation

TOCN/AgNWs膜製備光伏裝置時,係做為第一電極,為維持性質穩定,本實施例係使用含有乙醯丙酮鋅水合物的乙醇溶液製備ZnO電子傳輸層,其所需的固化溫度約為130℃,低於TOCN/AgNWs膜的分解溫度(Td)(如表1所示之192.9℃),即固化成膜時不會影響TOCN/AgNWs膜之性質。光伏裝置之製造方法如下:The TOCN/AgNWs film is used as the first electrode when preparing the photovoltaic device. In order to maintain stable properties, the ZnO electron transport layer is prepared by using an ethanol solution containing zinc acetone acetone hydrate in this example. The required curing temperature is about 130°C, which is lower than the decomposition temperature (Td) of TOCN/AgNWs film (192.9°C as shown in Table 1), that is, it will not affect the properties of TOCN/AgNWs film during curing. The manufacturing method of the photovoltaic device is as follows:

將乙醯丙酮鋅水合物20mg溶解在1ml乙醇中,以配製ZnO前驅物。噴塗該ZnO前驅物至實施例2- TOCN/AgNWs膜上,以5分鐘130°C退火處裡,形成ZnO層。在無其他添加物下,使用氯仿配製PM6:Y6層的前驅物溶液,其中PM6及Y6的重量比例為1:1.5;將該前驅物溶液會放置於含N2 手套箱中,在50°C下劇烈攪拌過夜。隨後,以60秒4000rpm的速度旋轉塗佈該前驅物溶液至該ZnO層上,以形成活性層。最後,在高真空(<10-6 torr)下,熱沉積形成依序形成厚度10nm的MoO3 及厚度100nm的Ag在該活性層上,以作為頂部電極,即完成光伏裝置TOCN/AgNWs/ZnO/活性層/MoO3 /Ag。經測試,如圖12(a)及(b)所示,係分別為光伏裝置的電流-電壓特性曲線圖及彎曲試驗下的光伏各種特性曲線圖。A ZnO precursor was prepared by dissolving 20 mg of zinc acetone acetone hydrate in 1 ml of ethanol. The ZnO precursor was sprayed onto the TOCN/AgNWs film of Example 2, and annealed at 130°C for 5 minutes to form a ZnO layer. In the absence of other additives, use chloroform to prepare a PM6:Y6 layer precursor solution, wherein the weight ratio of PM6 and Y6 is 1 :1.5; the precursor solution will be placed in a glove box containing N at 50°C Stir vigorously overnight. Subsequently, the precursor solution was spin-coated on the ZnO layer at a speed of 4000 rpm for 60 seconds to form an active layer. Finally, under high vacuum (<10 -6 torr), thermal deposition is performed to sequentially form MoO3 with a thickness of 10 nm and Ag with a thickness of 100 nm on the active layer to serve as the top electrode, that is, to complete the photovoltaic device TOCN/AgNWs/ZnO /active layer/MoO3/ Ag . After testing, as shown in Figures 12(a) and (b), they are the current-voltage characteristic curves of the photovoltaic device and various photovoltaic characteristic curves under the bending test, respectively.

比較例Comparative example 4. ITO4. ITO 玻璃基板glass substrate /ZnO//ZnO/ 活性層active layer /MoO3 /Ag/MoO 3 /Ag 光伏裝置Photovoltaic installation

為比較TOCN/AgNWs膜及ITO玻璃基板的光伏性質,比較例4同樣選擇使用固化溫度相對低的ZnO製備電子傳輸層,係使用含有醋酸鋅及乙醇胺的2-甲基氧乙醇溶液以製備ZnO電子傳輸層,其固化溫度約80~180°C。In order to compare the photovoltaic properties of the TOCN/AgNWs film and the ITO glass substrate, in Comparative Example 4, ZnO with a relatively low curing temperature was also selected to prepare the electron transport layer, and the 2-methyloxyethanol solution containing zinc acetate and ethanolamine was used to prepare the ZnO electron transport layer. For the transmission layer, the curing temperature is about 80~180°C.

依序使用去離子水、丙酮及異丙醇超音波震盪ITO玻璃基板,每次震盪15分鐘,超音波震盪結束後,使用N2 氣流乾燥ITO玻璃基板,並電漿處理20分鐘。溶解醋酸鋅0.1g於2-甲基氧乙醇1ml中,並添加乙醇胺28μL,以配置ZnO前驅物溶液。旋轉噴塗ZnO前驅物溶液於ITO玻璃基板上,隨後置於手套箱內,於含空氣環境下依序以10分鐘80°C及30分鐘180°C退火處理。使用氯仿及氯萘為添加物配製PM6:Y6層的前驅物溶液,其中PM6及Y6的重量比例為1:1.5,氯仿及氯萘的體積比例為99.5/0.5(v/v);將該前驅物溶液會放置於含N2 手套箱中,在50°C下劇烈攪拌過夜。隨後,以60秒4000rpm的速度旋轉塗佈該前驅物溶液至該ZnO層上,以形成活性層,以以10分鐘100°C退火處理。最後,在高真空(<10-6 torr)下,熱沉積形成依序形成厚度10nm的MoO3 及厚度100nm的Ag在該活性層上,以作為頂部電極,即完成光伏裝置ITO玻璃基板/ZnO/活性層/MoO3 /Ag。Deionized water, acetone, and isopropanol were used to ultrasonically vibrate the ITO glass substrates in sequence for 15 minutes each time. After the ultrasonic oscillations were over, the ITO glass substrates were dried using N 2 air flow and treated by plasma for 20 minutes. 0.1 g of zinc acetate was dissolved in 1 ml of 2-methyloxyethanol, and 28 μL of ethanolamine was added to prepare a ZnO precursor solution. The ZnO precursor solution was spin-sprayed on the ITO glass substrate, then placed in a glove box, and annealed at 80° C. for 10 minutes and 180° C. for 30 minutes in an air-containing environment in sequence. Use chloroform and chloronaphthalene as additives to prepare the precursor solution of PM6:Y6 layer, wherein the weight ratio of PM6 and Y6 is 1:1.5, and the volume ratio of chloroform and chloronaphthalene is 99.5/0.5 (v/v); The compound solution was placed in a glove box containing N and stirred vigorously at 50 °C overnight. Subsequently, the precursor solution was spin-coated on the ZnO layer at a speed of 4000 rpm for 60 seconds to form an active layer, which was annealed at 100° C. for 10 minutes. Finally, under high vacuum (<10 -6 torr), thermal deposition forms MoO3 with a thickness of 10 nm and Ag with a thickness of 100 nm on the active layer in sequence to serve as the top electrode, that is, to complete the photovoltaic device ITO glass substrate/ZnO /active layer/MoO3/ Ag .

如表3所示,實施例4光伏裝置的最大功率轉化效率已可達到市售光伏裝置55%((7.47/13.6) ×100%)及比較例4光伏裝置的64%((7.47/11.7) ×100%)。此外,如圖13所示,不同生物相容材料作為導電薄膜時,實施例4光伏裝置的功率轉換效率最好;使用TOCN/AgNWs作為導電薄膜時,其功率轉換效率明顯高於聚左乳酸(PLLA)、奈米紙(N-paper)、二種習知的纖維素奈米纖維(CNC)及角蛋白(keratin)。As shown in Table 3, the maximum power conversion efficiency of the photovoltaic device of Example 4 has reached 55% ((7.47/13.6) × 100%) of the commercially available photovoltaic device and 64% ((7.47/11.7) of the photovoltaic device of Comparative Example 4 ×100%). In addition, as shown in Figure 13, when different biocompatible materials were used as the conductive film, the power conversion efficiency of the photovoltaic device in Example 4 was the best; when TOCN/AgNWs was used as the conductive film, the power conversion efficiency was significantly higher than that of PLA ( PLLA), nanopaper (N-paper), two conventional cellulose nanofibers (CNC) and keratin.

surface 33    電極electrode 電子傳輸層electron transport layer 開路電壓Open circuit voltage (Voc ) (V oc ) (V)(V) 短路電流short circuit current (Jsc )( Jsc ) (mA cm-2 )(mA cm -2 ) 填充因子fill factor (FF)(FF) (%)(%) 最大功率轉換效率Maximum power conversion efficiency , PCEmax, PCEmax (( 平均功率轉換效率Average power conversion efficiency , PCEavg), PCEavg) (%)(%) 市售光伏裝置Commercially available photovoltaic devices ITO玻璃基板ITO glass substrate 一般固化溫度 ZnOTypical curing temperature ZnO 0.800 (0.800

Figure 02_image011
0.0081)0.800 (0.800
Figure 02_image011
0.0081) 24.1 (24.6
Figure 02_image011
0.61 )
24.1 (24.6
Figure 02_image011
0.61 )
70.3 (67.3
Figure 02_image011
2.0)
70.3 (67.3
Figure 02_image011
2.0)
13.6 (13.2
Figure 02_image011
0.17)
13.6 (13.2
Figure 02_image011
0.17)
比較例Comparative example 44 ITO玻璃基板ITO glass substrate 低固化溫度ZnOLow curing temperature ZnO 0.821 (0.822
Figure 02_image011
0.0050)
0.821 (0.822
Figure 02_image011
0.0050)
23.1 (22.2
Figure 02_image011
0.96)
23.1 (22.2
Figure 02_image011
0.96)
61.8 (61.5
Figure 02_image011
2.2)
61.8 (61.5
Figure 02_image011
2.2)
11.7 (11.2
Figure 02_image011
0.24)
11.7 (11.2
Figure 02_image011
0.24)
實施例Example 44 TOCN/AgNWs膜TOCN/AgNWs film 低固化溫度ZnOLow curing temperature ZnO 0.811 (0.813
Figure 02_image011
0.012)
0.811 (0.813
Figure 02_image011
0.012)
17.0 (16.5
Figure 02_image011
0.69)
17.0 (16.5
Figure 02_image011
0.69)
54.2 (51.3
Figure 02_image011
2.5)
54.2 (51.3
Figure 02_image011
2.5)
7.47 (6.88
Figure 02_image011
0.39)
7.47 (6.88
Figure 02_image011
0.39)

綜上所述,本發明提供一種便捷且可印刷的轉移方法,將Ag NWs嵌入到化學修飾的CNF中,從而可成功開發基於CNF的柔性導電基板。由上開實施例的結果可知,TOCN的奈米級纖維及其更緊密的纏繞網絡不僅能夠與Ag NWs均勻混合,而且還可以使大部分的可見光穿過此膜。此外,本發明之轉移方法可以將Ag NWs牢固地限制在基材表面上,以提供強大的附著力,並避免熱誘導的聚集。所製成的TOCN / AgNWs膜在可見光和紅外光區域顯示出優異的導電性和高透明度,這由其高FoM值可得到證明。此外,由於其較高的縱橫比和結晶度,TOCN / AgNWs導電基材具有較低的CTE和較高的機械穩定性,可以承受15個剝離循環和彎曲半徑為0.8 mm 之500次彎曲循環,而薄層電阻沒有任何降低。使用該TOCN / AgNWs膜製造了柔性OPV,該設備可提供7.47%的高PCE。此外,經過200次彎曲後,製成的柔性OPV可以保留其原始PCE的43.5%。綜上所述,本發明為製造高性能基於生物材料的導電基材提供了一種簡便的方法,並且可以促進柔性OPV的持續發展。In summary, the present invention provides a facile and printable transfer method to embed Ag NWs into chemically modified CNFs, thereby enabling the successful development of CNF-based flexible conductive substrates. From the results of the above examples, it can be seen that the nanoscale fibers of TOCN and its tighter entangled network can not only be uniformly mixed with Ag NWs, but also allow most of the visible light to pass through this film. Furthermore, the transfer method of the present invention can firmly confine Ag NWs on the substrate surface to provide strong adhesion and avoid thermally induced aggregation. The as-fabricated TOCN/AgNWs films exhibited excellent electrical conductivity and high transparency in the visible and infrared regions, as evidenced by their high FoM values. Furthermore, due to its higher aspect ratio and crystallinity, the TOCN/AgNWs conductive substrate has lower CTE and higher mechanical stability, which can withstand 15 peeling cycles and 500 bending cycles with a bending radius of 0.8 mm, The sheet resistance did not decrease in any way. Flexible OPVs were fabricated using this TOCN/AgNWs film, and the device delivered a high PCE of 7.47%. Furthermore, the fabricated flexible OPV can retain 43.5% of its original PCE after 200 bends. In summary, the present invention provides a facile method for fabricating high-performance biomaterial-based conductive substrates and can facilitate the sustainable development of flexible OPVs.

以上已將本發明做一詳細說明,惟以上所述者,僅惟本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The present invention has been described in detail above, but what has been described above is only a preferred embodiment of the present invention, which should not limit the scope of the present invention. Changes and modifications should still fall within the scope of the patent of the present invention.

S:基板 B:改質表面 SP:噴塗噴嘴 HP:熱壓機 1:奈米銀線溶液 1’:奈米銀線導電層 2:改質纖維素奈米纖維溶液 3’:改質纖維素奈米纖維層-奈米銀線導電層 3:改質纖維素奈米纖維-奈米銀線導電薄膜 4:電子傳輸層 5:活性層 6:電洞傳輸層 7:第二電極層S: substrate B: Modified surface SP: Spray Nozzle HP: Heat Press 1: Nano silver wire solution 1': Nano silver wire conductive layer 2: Modified cellulose nanofiber solution 3': Modified cellulose nanofiber layer - nanosilver wire conductive layer 3: Modified cellulose nanofiber-nanosilver wire conductive film 4: electron transport layer 5: Active layer 6: hole transport layer 7: Second electrode layer

圖1係本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法的流程示意圖。FIG. 1 is a schematic flow chart of the manufacturing method of the modified cellulose nanofiber-nanosilver wire conductive film of the present invention.

圖2係本發明之光伏裝置的剖視圖。2 is a cross-sectional view of the photovoltaic device of the present invention.

圖3係使用不同奈米銀線溶液濃度及塗佈方法所製備的改質纖維素奈米纖維-奈米銀線導電薄膜(TOCN/AgNWs膜)表面的掃描電子顯微鏡(SEM)拍攝圖:(a)使用1:10(v/v)奈米銀線溶液製備奈米銀線導電層;(b)使用1:12.5(v/v)奈米銀線溶液製備奈米銀線導電層;(c)使用1:15(v/v)奈米銀線溶液製備奈米銀線導電層;及(d)使用1:12.5(v/v) 奈米銀線溶液及滴落塗佈法(drop coating)製備奈米銀線導電層。Figure 3 is a scanning electron microscope (SEM) image of the surface of the modified cellulose nanofiber-nanosilver conductive film (TOCN/AgNWs film) prepared by using different nanosilver solution concentrations and coating methods: ( a) Using 1:10 (v/v) nano-silver wire solution to prepare nano-silver wire conductive layer; (b) using 1:12.5 (v/v) nano-silver wire solution to prepare nano-silver wire conductive layer; ( c) using 1:15 (v/v) nano-silver wire solution to prepare nano-silver wire conductive layer; and (d) using 1:12.5 (v/v) nano-silver wire solution and drop coating method (drop coating method) coating) to prepare the nano-silver wire conductive layer.

圖4係TOCN/AgNWs膜、纖維素奈米纖維-奈米銀線導電薄膜(CNF/AgNWs膜)及聚萘二甲酸乙二醇酯/氧化銦錫基材(PEN/ITO)的掃描電子顯微鏡(SEM)拍攝圖及原子力顯微鏡(AFM)拍攝圖;圖4(a)為表面SEM拍攝圖;圖4(b)為剖面SEM拍攝圖;圖4(c)為表面AFM拍攝圖。Figure 4. Scanning electron microscope of TOCN/AgNWs film, cellulose nanofiber-silver nanowire conductive film (CNF/AgNWs film) and polyethylene naphthalate/indium tin oxide substrate (PEN/ITO) (SEM) photograph and atomic force microscope (AFM) photograph; Fig. 4(a) is a surface SEM photograph; Fig. 4(b) is a cross-sectional SEM photograph; Fig. 4(c) is a surface AFM photograph.

圖5係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO的熱機械分析(TMA)的曲線圖。Figure 5 is a graph of thermomechanical analysis (TMA) of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO.

圖6係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO在不同波長下的光穿透性曲線圖。Figure 6 is a graph showing the light transmittance of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO at different wavelengths.

圖7係同一圖像放置於TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO後方的透視照片:(a) PEN/ITO;(b) CNF/AgNWs膜;及(c) TOCN/AgNWs膜。Figure 7 is a perspective photograph of the same image placed behind TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO: (a) PEN/ITO; (b) CNF/AgNWs film; and (c) TOCN/AgNWs film.

圖8係圖像放置於TOCN/AgNWs膜及PEN/ITO後方的透視照片:(a) TOCN/AgNWs膜及(b) PEN/ITO。Figure 8 is a perspective photograph of images placed behind TOCN/AgNWs film and PEN/ITO: (a) TOCN/AgNWs film and (b) PEN/ITO.

圖9係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO的應力-應變曲線圖,及彎曲試驗下薄膜電阻的變化量曲線圖:(a)應力-應變曲線圖;(b) 薄膜電阻的變化量曲線圖。Figure 9 shows the stress-strain curves of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO, and the change curve of sheet resistance under bending test: (a) stress-strain curve; (b) the variation of sheet resistance Variation graph.

圖10係使用不同奈米銀線溶液塗佈方法所製備的TOCN/AgNWs膜的剝離試驗下薄膜電阻的變化量曲線圖。FIG. 10 is a graph showing the change of sheet resistance under peeling test of TOCN/AgNWs films prepared by different nano-silver wire solution coating methods.

圖11係不同導電薄膜的依據光穿透性及薄膜電阻計算的品質因素分布圖。FIG. 11 is a distribution diagram of figure of merit calculated according to light transmittance and sheet resistance of different conductive films.

圖12係本發明之光伏裝置的電流-電壓特性曲線圖及彎曲試驗下光伏的各種特性曲線圖:(a) 光伏裝置的電流-電壓特性曲線圖;(b) 彎曲試驗下光伏的各種特性曲線圖。Figure 12 is the current-voltage characteristic curve of the photovoltaic device of the present invention and various photovoltaic characteristic curves under the bending test: (a) the current-voltage characteristic curve of the photovoltaic device; (b) the various characteristic curves of the photovoltaic under the bending test picture.

圖13係不同生物相容基質作為光伏裝置的導電薄膜的功率轉換效率分布圖。Figure 13 is a graph showing the power conversion efficiency distribution of different biocompatible substrates as conductive thin films for photovoltaic devices.

3:改質纖維素奈米纖維-奈米銀線導電薄膜3: Modified cellulose nanofiber-nanosilver wire conductive film

4:電子傳輸層4: electron transport layer

5:活性層5: Active layer

6:電洞傳輸層6: hole transport layer

7:第二電極層7: Second electrode layer

Claims (10)

一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含: (a)提供一基板; (b)噴塗一奈米銀線溶液至該基板的表面,經加熱後形成一奈米銀線導電層; (c)使一改質纖維素奈米纖維溶液分布於該奈米銀線導電層的表面,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層; (d)將該改質纖維素奈米纖維層-奈米銀線導電層由該基板的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜。A method for manufacturing a modified cellulose nanofiber-nanosilver wire conductive film, comprising: (a) providing a substrate; (b) spraying a nano-silver wire solution onto the surface of the substrate, and forming a nano-silver wire conductive layer after heating; (c) distributing a modified cellulose nanofiber solution on the surface of the silver nanowire conductive layer, and forming a modified cellulose nanofiber layer-silver nanowire conductive layer after heating; (d) peeling the modified cellulose nanofiber layer-nanosilver wire conductive layer from the surface of the substrate to obtain the modified cellulose nanofiber-nanosilver wire conductive film. 如請求項1所述之製造方法,進一步包含: (e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜。The manufacturing method as described in claim 1, further comprising: (e) Hot pressing the modified cellulose nanofiber-nanosilver wire conductive film. 如請求項1所述之製造方法,其中該基板為矽基板,且其表面經過矽烷化合物處理。The manufacturing method of claim 1, wherein the substrate is a silicon substrate, and the surface thereof is treated with a silane compound. 如請求項3所述之製造方法,其中該矽烷化合物為十八烷基三氯矽烷(octadecyltrichlorosilane;ODTS)。The manufacturing method of claim 3, wherein the silane compound is octadecyltrichlorosilane (ODTS). 如請求項1至4任一項所述之製造方法,其中該改質纖維素奈米纖維溶液中的改質纖維素奈米纖維係TEMPO氧化纖維素奈米纖維(TOCN)。The manufacturing method according to any one of claims 1 to 4, wherein the modified cellulose nanofibers in the modified cellulose nanofiber solution are TEMPO oxidized cellulose nanofibers (TOCN). 如請求項1至4任一項所述之製造方法,其中該奈米銀線溶液包含奈米銀線及有機溶劑,該奈米銀線及有機溶劑的比例為1:10~1:15(v/v)。The manufacturing method according to any one of claims 1 to 4, wherein the silver nanowire solution comprises silver nanowires and an organic solvent, and the ratio of the silver nanowires to the organic solvent is 1:10-1:15 ( v/v). 如請求項6所述之製造方法,其中該奈米銀線及有機溶劑的比例為1:12.5 (v/v)。The manufacturing method of claim 6, wherein the ratio of the silver nanowires and the organic solvent is 1:12.5 (v/v). 如請求項7所述之製造方法,其中該有機溶劑為異丙醇。The production method according to claim 7, wherein the organic solvent is isopropanol. 一種改質纖維素奈米纖維-奈米銀線導電薄膜,其係使用如請求項1至8任一項之製造方法所獲得。A modified cellulose nanofiber-nanosilver wire conductive film, which is obtained by using the manufacturing method according to any one of claims 1 to 8. 一種光伏裝置,依序包含一第一電極、一電子傳輸層、一活性層、一電洞傳輸層及一第二電極;其中,該第一電極為請求項9之改質纖維素奈米纖維-奈米銀線導電薄膜。A photovoltaic device, comprising in sequence a first electrode, an electron transport layer, an active layer, a hole transport layer and a second electrode; wherein the first electrode is the modified cellulose nanofiber of claim 9 -Nanosilver wire conductive film.
TW109128117A 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same TWI818191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Publications (2)

Publication Number Publication Date
TW202209353A true TW202209353A (en) 2022-03-01
TWI818191B TWI818191B (en) 2023-10-11

Family

ID=81747120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Country Status (1)

Country Link
TW (1) TWI818191B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040752A2 (en) * 2009-09-29 2011-04-07 Korea Advanced Institute Of Science And Technology Conductive polymer adhesive using nanofiber and method for preparing the same
JP5834539B2 (en) * 2011-04-26 2015-12-24 住友化学株式会社 Organic electroluminescence device and method for producing the same
CN104134484B (en) * 2014-07-31 2017-09-19 中国电子科技集团公司第五十五研究所 Flexible transparent conductive film and preparation method based on nano-silver thread
CN104217788A (en) * 2014-08-26 2014-12-17 南京邮电大学 Silver nanowire based transparent conductive film and production method thereof
TWI601867B (en) * 2016-07-22 2017-10-11 國立臺北科技大學 Elastic conductive fiber structure and optoelectronics comprising the same
KR101910858B1 (en) * 2017-02-13 2018-10-23 울산과학기술원 Manufacturing apparatus of flexible transparent film and manufacturing method of flexible transparent film

Also Published As

Publication number Publication date
TWI818191B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
CN106782769B (en) Flexible and transparent conductive laminated film of low roughness low square resistance and preparation method thereof
Choi et al. Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method
Tang et al. Recent progress of flexible perovskite solar cells
Liu et al. Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires
US8840954B2 (en) Transparent carbon nanotube electrode with net-like carbon nanotube film and preparation method thereof
CN107393979B (en) A kind of transparent electrode and its preparation method and application based on ultrathin metallic film
CN111341497B (en) Preparation method of silver nanowire-MXene composite transparent conductive film
US9576707B2 (en) Conductive thin film and transparent electrode including graphene oxide and carbon nanotube, and methods of producing the same
Bao et al. Facile preparation of TiO X film as an interface material for efficient inverted polymer solar cells
JP5290926B2 (en) Conductive film manufacturing method using conductive structure
Lin et al. Fabricating efficient flexible organic photovoltaics using an eco-friendly cellulose nanofibers/silver nanowires conductive substrate
KR101285415B1 (en) Piezoelectric composite material
US20210016349A1 (en) Scalable electrically conductive nanowires bundle-ring-network for deformable transparent conductor
Wang et al. Smooth ZnO: Al-AgNWs composite electrode for flexible organic light-emitting device
Duan et al. Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?
Jing et al. Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique
JP6849673B2 (en) Solid-state junction type photoelectric conversion element and its manufacturing method
Su et al. Fabrication, mechanisms, and properties of high-performance flexible transparent conductive gas-barrier films based on Ag nanowires and atomic layer deposition
TWI818191B (en) Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same
KR101514743B1 (en) The method for manufacturing patterned metal nanowire transparent electrode and the patterned metal nanowire transparent electrode thereby
KR101534298B1 (en) a composition for electro-magnetic interference shielding film, a method of fabricating a electro-magnetic interference shielding film therewith and an electro-magnetic interference shielding film fabricated thereby
KR101328427B1 (en) Complex conductive thin film using metal nano wire and cnt, method of manufacturing thereof
KR20160130017A (en) Method for manufacturing transparent electrode and transparent electrode manufatured by the same
CN115418028A (en) Preparation method of modified barium titanate nanowire and high-dielectric composite material thereof
Yuan Low-temperature synthesis of ZnO nanoparticles for inverted polymer solar cell application