TW202209153A - 檢查方案的自動最佳化 - Google Patents

檢查方案的自動最佳化 Download PDF

Info

Publication number
TW202209153A
TW202209153A TW110119349A TW110119349A TW202209153A TW 202209153 A TW202209153 A TW 202209153A TW 110119349 A TW110119349 A TW 110119349A TW 110119349 A TW110119349 A TW 110119349A TW 202209153 A TW202209153 A TW 202209153A
Authority
TW
Taiwan
Prior art keywords
inspection
classifier
images
features
defect
Prior art date
Application number
TW110119349A
Other languages
English (en)
Inventor
艾莫 巴爾
Original Assignee
以色列商應用材料以色列公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 以色列商應用材料以色列公司 filed Critical 以色列商應用材料以色列公司
Publication of TW202209153A publication Critical patent/TW202209153A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems
    • G03F7/706841Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

提供了檢查方案的自動最佳化的系統和方法。該方法包括:獲得一或多個檢驗圖像,每個檢驗圖像表示半導體取樣的至少一部分,一或多個檢驗圖像指示使用包括在檢查方案中的第一分類器從缺陷圖選擇的相應缺陷候選;獲得分別與一或多個檢驗圖像相關聯並且提供相應缺陷候選的類型的資訊的標籤資料;提取表徵一或多個檢驗圖像的檢驗特徵;使用第一特徵和標籤資料重新訓練第一分類器,從而產生第二分類器;及藉由用第二分類器替換第一分類器來最佳化檢查方案;其中經最佳化的檢查方案可用於檢查後續的半導體取樣。

Description

檢查方案的自動最佳化
當前公開的主題整體上涉及取樣檢查領域,並且更具體地涉及檢查方案的最佳化。
當前對與所製造裝置的超大規模集成相關聯的高密度和效能的需求需要亞微米特徵、增加的電晶體和電路速度、以及改善的可靠性。隨著半導體製程進展,諸如線寬之類的圖案尺寸和其他類型的關鍵尺寸持續收縮。這類需求需要形成具有高精度和均勻性的裝置特徵,這繼而有必要小心監控製造製程,包括在裝置仍處於半導體晶片的形式時自動檢查裝置。
作為非限制性示例,運行時檢查可以採用兩階段程序,例如,檢驗取樣接著審查潛在缺陷的取樣位置。檢查整體上涉及藉由將光或電子引導至晶片並偵測來自晶片的光或電子來產生針對取樣的某個輸出(例如,圖像、信號等)。在第一階段期間,以高速和相對低的解析度檢驗取樣的表面。缺陷偵測通常藉由將缺陷偵測演算法應用於檢驗輸出來執行。產生缺陷圖以示出具有高缺陷概率的取樣上的可疑位置。最經常地,檢驗的目的是提供對偵測感興趣的缺陷的高敏感度,同時抑制對晶片上噪擾(nuisance)和雜訊的偵測。在第二階段期間,以相對高的解析度更透徹地分析可疑位置中的至少一些可疑位置。在一些情況下,兩個階段都可以由相同檢驗工具來實現,並且在一些其他情況下,這兩個階段由不同的檢驗工具來實現。
檢查製程可以包括複數個檢查步驟。在製造製程期間,例如,在製造或處理某些層之後等,檢查步驟可以執行多次。附加地或替代地,例如針對不同的晶片位置或針對具有不同檢查設置的相同晶片位置,每個檢查步驟可以重複多次。
檢查製程在半導體製造期間的各個步驟處使用來偵測和分類取樣上的缺陷、以及執行計量相關的操作。檢查的有效性可以藉由(多個)製程的自動化來提高,所述(多個)製程例如,缺陷偵測、自動缺陷分類(ADC)、自動缺陷審查(ADR)、圖像分割、自動的計量相關的操作等。
根據當前公開的主題的某些態樣,提供了一種可用於檢查半導體取樣的檢查方案的自動最佳化的電腦化系統,所述系統包括:儲存單元,所述儲存單元經配置為儲存:i)一或多個檢驗圖像,每個檢驗圖像表示半導體取樣的至少一部分,一或多個檢驗圖像指示使用包括在檢查方案中的第一分類器從缺陷圖中選擇的相應缺陷候選;ii)標籤資料,所述標籤資料分別與一或多個檢驗圖像相關聯並且提供相應缺陷候選的類型的資訊;及處理和記憶體電路系統(PMC),所述處理和記憶體電路系統(PMC)操作地連接到儲存單元並且被配置為:提取表徵一或多個檢驗圖像的檢驗特徵;使用檢驗特徵和標籤資料重新訓練第一分類器,從而產生第二分類器;及藉由用第二分類器替換第一分類器來最佳化檢查方案;其中經最佳化的檢查方案可用於檢查後續的半導體取樣。
除了以上特徵之外,根據當前公開的主題的這個態樣的系統可以包括以技術上可能的任何期望組合或排列的下文列出的特徵(i)至(xiv)中的一或多個: (i).缺陷圖可以由檢驗工具產生並且可指示半導體取樣上的缺陷候選分佈。 (ii).標籤資料可以由審查工具產生,包括:在相應缺陷候選的位置處擷取一或多個審查圖像,並且審查一或多個審查圖像以獲得與其相關聯的標籤資料。 (iii).相應缺陷候選的類型中的每一者指示以下各項中的至少一項:感興趣的缺陷(DOI)、噪擾和相應缺陷候選的類別。 (iv).檢驗特徵包括由使用一組訓練檢驗圖像預先訓練以提取所述一組訓練檢驗圖像的代表性特徵的無監督模型提取的第一特徵。 (v).第一分類器使用具有相應關聯的標籤資料的一組訓練檢驗圖像中的一或多個訓練檢驗圖像來預先訓練。 (vi).檢驗特徵可以進一步包括由監督模型提取的第二特徵,所述監督模型使用具有相應關聯的標籤資料的一組訓練檢驗圖像中的一或多個訓練檢驗圖像來預先訓練以決定缺陷候選的類型。 (vii).第二特徵包括以下各項中的至少一項:i)表徵一或多個檢驗圖像的特徵向量,以及ii)指示檢驗圖像上的每個給定缺陷候選屬於特定類型的概率的標籤預測特徵。 (viii).PMC可以經配置為除了檢驗特徵和標籤資料之外,還使用包括以下各項中的至少一項的第三特徵來重新訓練第一分類器:工具特徵、缺陷特徵和取樣特徵。 (ix).PMC可以進一步經配置為在重新訓練第一分類器之前使用一或多個檢驗圖像和標籤資料來重新訓練無監督模型及/或監督模型。 (x).PMC可以進一步經配置為基於一或多個參數來決定是否最佳化檢查方案,並且回應於肯定的決定來執行最佳化和使用。 (xi).一或多個參數可以包括方案更新頻率、方案效能歷史、客戶策略和情況分析。 (xii).檢查方案進一步包括至少附加的第一分類器,並且PMC進一步經配置為執行獲得、提取和重新訓練以用於產生對應於至少附加的第一分類器的至少附加的第二分類器,並且用第二分類器和至少附加的第二分類器最佳化檢查方案。 (xiii).儲存單元可以儲存由多個檢驗工具擷取的複數個檢驗圖像,並且第一分類器的重新訓練根據基於複數個效能參數選擇的工作點,所述複數個效能參數包括指示多個檢驗工具之間的變化的工具間差異參數。 (xiv).取樣可以包括多個層,並且PMC經配置為對每個層執行檢查方案的提取、重新訓練和最佳化,並且PMC進一步經配置為基於來自多個層的訓練資料來訓練通用分類器,其中通用分類器可用於對一或多個新的層執行分類。
根據當前公開的主題的其他態樣,提供了一種可用於檢查半導體取樣的檢查方案的自動最佳化的方法,所述方法包括:獲得一或多個檢驗圖像,每個檢驗圖像表示半導體取樣的至少一部分,一或多個檢驗圖像指示使用包括在檢查方案中的第一分類器從缺陷圖中選擇的相應缺陷候選;獲得分別與一或多個檢驗圖像相關聯並且提供相應缺陷候選的類型的資訊的標籤資料;提取表徵一或多個檢驗圖像的檢驗特徵;使用第一特徵和標籤資料重新訓練第一分類器,從而產生第二分類器;及藉由用第二分類器替換第一分類器來最佳化檢查方案;其中經最佳化的檢查方案可用於檢查後續的半導體取樣。
所揭示的主題的這態樣可以包括以技術上可能的任何期望組合或排列的加以必要修改的上文關於所述系統列出的特徵(i)至(xiv)中的一或多個。
根據當前公開的主題的其他態樣,提供了一種包括指令的非暫時性電腦可讀取媒體,該等指令在由電腦執行時使電腦執行可用於檢查半導體取樣的檢查方案的自動最佳化的方法,所述方法包括:獲得一或多個檢驗圖像,每個檢驗圖像表示半導體取樣的至少一部分,一或多個檢驗圖像指示使用包括在檢查方案中的第一分類器從缺陷圖選擇的相應缺陷候選;獲得分別與一或多個檢驗圖像相關聯並且提供相應缺陷候選的類型的資訊的標籤資料;提取表徵一或多個檢驗圖像的檢驗特徵;使用第一特徵和標籤資料重新訓練第一分類器,從而產生第二分類器;及藉由用第二分類器替換第一分類器來最佳化檢查方案;其中經最佳化的檢查方案可用於檢查後續的半導體取樣。
所揭示的主題的這態樣可以包括以技術上可能的任何期望組合或排列的加以必要修改的上文關於所述系統列出的特徵(i)至(xiv)中的一或多個。
在以下詳細描述中,闡述眾多具體細節來提供對本案內容的透徹理解。然而,本領域的技藝人士將理解,當前公開的主題可以在沒有這些具體細節的情況下實踐。在其他實例中,未詳細描述熟知的方法、程式、部件和電路,以便不混淆當前公開的主題。
除非另作具體聲明,如從以下討論顯而易見的,應理解,在整個本說明書的討論中,採用諸如「檢查」、「獲得」、「提取」、「重新訓練」、「最佳化」、「決定」、「產生」、「訓練」、「擷取」、「審查」、「執行」、「儲存」、「選擇」等等術語是指將資料操縱及/或變換為其他資料的電腦的(多個)動作及/或(多個)處理,所述資料表示為物理的,諸如電子、數量及/或表示物理物體的所述資料。術語「電腦」應當被廣泛地解釋為涵蓋任何種類的具有資料處理能力的基於硬體的電子裝置,作為非限制性示例,所述電子裝置包括在本案中公開的檢查系統、方案最佳化系統及其相應部分。
本文使用的術語「非暫時性記憶體」和「非暫時性儲存媒體」應當被廣泛地解釋為涵蓋適用於當前公開的主題的任何揮發性或非揮發性電腦記憶體。
本說明書中使用的術語「取樣」應當被廣泛地解釋為涵蓋用於製造半導體積體電路、磁頭、平板顯示器、和其他半導體製造的製品的任何種類的物理物體或基板,包括晶片、遮罩、遮罩版和其他結構、其組合及/或部分。取樣在本文中也稱為半導體取樣,並且可以藉由執行對應製造製程的製造設備來產生。
本說明書中使用的術語「檢查」應被廣泛地解釋為涵蓋與取樣中的缺陷的偵測及/或分類相關的任何種類的操作,以及在取樣製造期間的計量相關的操作。藉由在製造要檢查的取樣期間或之後使用非破壞性檢查工具來提供檢查。作為非限制性示例,檢查程序可以包括使用相同或不同的檢驗工具來進行運行時掃瞄(以單次或多次掃瞄)、取樣、審查、測量、分類及/或關於取樣或其部分提供的其他操作。同樣,檢查可以在製造待檢查的取樣之前提供,並且可以包括例如產生(多個)檢查方案及/或其他設置操作。應當注意到,除非另外具體聲明,否則本說明書中使用的術語「檢查」或其衍生詞不限於關於檢驗區域的解析度或大小。作為非限制性示例,各種非破壞性檢查工具包括掃瞄電子顯微鏡(SEM)、原子力顯微鏡(AFM)、光學檢驗工具等。
本說明書中使用的術語「缺陷」應當被廣泛地解釋為涵蓋在取樣上或取樣內形成的任何種類的異常或不期望的特徵。
本說明書中使用的術語「設計資料」應當被廣泛地解釋為涵蓋指示取樣的分層物理設計(佈局)的任何資料。設計資料可以由相應設計者提供及/或可以從物理設計(例如,藉由複雜模擬、簡單幾何和布耳運算等)匯出。設計資料可以以不同格式提供,作為非限制性示例,如GDSII格式、OASIS格式等。設計資料可以以向量格式、灰階強度圖像格式或其他格式呈現。
應理解,除非另外具體聲明,否則在獨立實施例的上下文中描述的當前公開的主題的某些特徵也可以在單個實施例中組合提供。相反,在單個實施例的上下文中描述的當前公開的主題的各種特徵也可以單獨地或以任何合適的子群組合來提供。在以下詳細描述中,闡述眾多具體細節以便提供對方法和設備的透徹理解。
考慮到這一點,將注意轉向圖1,圖1圖示根據當前公開的主題的某些實施例的用於檢查半導體取樣的檢查系統和用於自動最佳化可由檢查系統使用的檢查方案的系統的功能方塊圖。
圖1中示出的檢查系統100可以用於檢查(例如,晶片及/或其部分的)半導體取樣作為取樣製造(FAB)程序的部分。系統100可以使用檢查方案來檢查半導體取樣。本文使用的術語「檢查方案」應當被廣泛地解釋為涵蓋可以用於檢查取樣的任何種類的方案,包括可用於檢驗、偵測、分類以及計量相關的操作等的(多個)方案。檢查系統100可以包括一或多個檢查工具,所述檢查工具經配置成擷取圖像及/或審查所擷取的(多個)圖像及/或實現或提供與所擷取的(多個)圖像有關的測量。
本文使用的術語「(多個)檢查工具」應當被廣泛地解釋為涵蓋可以在檢查相關的程序中使用的任何工具,作為非限制性示例,所述檢查相關的程序包括成像、掃瞄(以單次或多次掃瞄)、取樣、審查、測量、分類及/或關於取樣或其部分提供的其他程序。檢查工具可以包括(多個)檢驗工具及/或(多個)審查工具。檢驗工具經配置為掃瞄取樣(例如,整個晶片、整個晶粒或其部分)以擷取檢驗圖像(通常,以相對高速度及/或低解析度)來用於偵測潛在缺陷。審查工具經配置為擷取由(多個)檢驗工具偵測到的缺陷中的至少一些缺陷的審查圖像,以用於確認潛在缺陷是否確實為缺陷。這種審查工具通常經配置為一次一個地檢驗晶粒的片段(通常,以相對低速度及/或高解析度)。檢驗工具和審查工具可以是位於相同或不同位置的不同工具或在兩種不同模式下操作的單個工具。在一些情況下,至少一個檢查工具可以具有計量能力。
根據某些實施例,檢查系統100可以包括如圖1所示的一或多個檢驗工具110和一或多個審查工具114。檢驗工具110經配置為使用檢查方案111來偵測取樣上的缺陷。作為示例,檢查方案111可以是包括缺陷偵測和分類功能(在圖1中示出為偵測模組112和分類器模組113)的檢驗方案。檢查方案以及包括在其中的功能模組可以實現為在非暫時性電腦可讀記憶體上體現的電腦可讀取指令,所述非暫時性電腦可讀記憶體包括在檢驗工具110中的處理器或處理單元(在圖1中未分別示出)中。處理器可以經配置為根據電腦可讀取指令執行功能模組以執行缺陷偵測。
具體地,檢驗工具110可以根據缺陷偵測模組112來掃瞄取樣以擷取檢驗圖像並且偵測潛在缺陷。偵測模組的輸出是指示半導體取樣上的缺陷候選分佈的缺陷圖。分類器113經配置為從缺陷圖中選擇缺陷候選的列表作為具有更高的概率是感興趣的缺陷(DOI)的候選。下文參考圖2描述缺陷偵測模組和分類器模組的細節。
本文使用的術語「感興趣的缺陷(DOI)」指使用者所感興趣的待偵測的任何真實缺陷。例如,如與也是真實缺陷但不影響產量並由此應當忽略的噪擾類型的缺陷相比,可導致產量損失的任何「致命」缺陷可以被指示為DOI。
本文使用的術語「噪擾」應當被廣泛地解釋為包括任何不希望的或不感興趣的缺陷,以及在檢驗期間由不同變化(例如,程序變化、顏色變化、機械和電氣變化等)導致的隨機雜訊。噪擾有時也稱為錯誤警報。
由分類器選擇的缺陷候選的列表可以被提供給審查工具113。審查工具113經配置為擷取清單中的各個缺陷候選的位置處的審查圖像,並且審查審查圖像以決定缺陷候選是否確實是DOI。審查工具的輸出可以包括分別與缺陷候選的清單相關聯的標籤資料,所述標籤資料提供缺陷候選類型的資訊。
在不以任何方式限制本案內容的範圍的情況下,還應當注意到,(多個)檢驗工具110及/或(多個)審查工具114可以被實現為各種類型的檢查機器,諸如光學成像機器、電子束機器等等。在一些情況下,相同的檢查工具可以提供低解析度圖像資料和高解析度圖像資料。
根據某些實施例,檢驗圖像及/或審查圖像可以從包括以下各項的群組中選擇:在製造程序期間擷取的取樣的複數個圖像,以及藉由各種預處理階段獲得的擷取圖像的衍生物。作為示例,檢驗圖像可以是由光學檢驗工具或SEM擷取的晶片或光遮罩的部分的圖像。作為另一示例,審查圖像可以是下列各項中的一項或多項:大致以將由ADC分類的缺陷為中心的SEM圖像;較大區域的SEM圖像,在所述較大區域中缺陷將由ADR定位;對應於相同遮罩位置的不同檢查形態的配准圖像;分割圖像;高度圖圖像等。應當注意,在一些情況下,檢驗圖像及/或審查圖像可以包括圖像資料(例如,所擷取的圖像、所處理的圖像等)和相關聯的數位資料(例如,中繼資料、手工製造的(hand-crafted)屬性等)。還應當注意,圖像資料可以包括關於感興趣的層及/或取樣的一或多個層的資料。
根據當前公開的主題的某些實施例,檢查系統100可以包括能夠使用從檢查工具獲得的檢查資料來自動最佳化檢查方案的基於電腦的系統101。因此,系統101在本文中也稱為方案最佳化系統或方案最佳化器。如圖1所示,系統101可以操作地連接到一或多個檢驗工具111和一或多個審查工具114。
系統101包括處理器和記憶體電路系統(PMC)102(也稱為處理單元),處理器和記憶體電路系統(PMC)102操作地連接到基於硬體的I/O介面126。如參考圖2進一步詳述,PMC 102經配置為提供作業系統101所必需的處理,並且包括處理器(未單獨示出)和記憶體(未單獨示出)。PMC 102的處理器可以經配置為根據電腦可讀取指令執行若干功能模組,所述電腦可讀取指令在PMC中包括的非暫時性電腦可讀記憶體上實現。這種功能模組在後文被稱為包括在PMC中。
根據某些實施例,PMC 102中所包括的功能模組可以包括特徵提取器104、訓練引擎106、分類器113、和方案更新模組108。PMC 102可以經配置為例如經由I/O介面126從檢驗工具110接收一或多個檢驗圖像,每個檢驗圖像表示半導體取樣的至少一部分。一或多個檢驗圖像指示使用包括在檢查方案111中的分類器113(也稱為第一分類器)從缺陷圖中選擇的相應缺陷候選。PMC 102可以經配置為例如從審查工具114接收分別與一或多個檢驗圖像相關聯並且提供相應缺陷候選的類型的資訊的標籤資料。
特徵提取器104可以經配置為提取表徵一或多個檢驗圖像的檢驗特徵。在一些情況下,如下文將參考圖2詳述的,可以將特徵提取器實現為無監督學習模型,而在一些其他情況下,可以將特徵提取器實現為監督學習模型。訓練引擎106可以經配置為使用第一特徵和標籤資料重新訓練第一分類器113,從而產生第二分類器。方案更新模組108可以經配置為藉由用第二分類器替換第一分類器來最佳化檢查方案。並且檢驗工具110可以使用最佳化的檢查方案來檢查後續的半導體取樣。
應當注意,如在整個說明書、附圖和申請專利範圍中使用的術語「第一」並不意味著第一實例/實體等。而是所述術語用於與「第二」實例/實體等相區分。作為示例,第二分類器是基於第一分類器重新訓練和更新的分類器,因此不同於第一分類器。在本案內容的某些實施例中,術語「分類器」和「更新的分類器」被等效地用作術語「第一分類器」和「第二分類器」。作為另一示例,第二特徵是指與第一特徵不同的特徵。
將參考圖2進一步詳述系統100、系統101、PMC 102及其中的功能模組的操作。
根據某些實施例,系統101可以包括儲存單元122。儲存單元122可以經配置為儲存作業系統101所必需的任何資料(例如,關於系統101的輸入和輸出的資料),以及由系統101產生的中間處理結果。作為示例,儲存單元122可以經配置為儲存由檢查工具產生的圖像及/或其衍生物,以及與其相關聯的標籤資料。在一些實施例中,儲存單元122可以經配置為儲存用於訓練分類器及/或其他機器學習模型的訓練資料。由此,所儲存的資料可以從儲存單元122檢取並且被提供給PMC 102用於進一步處理。
在一些實施例中,系統101可以可選地包括基於電腦的圖形化使用者介面(GUI) 124,圖形化使用者介面124經配置為實現關於系統101的使用者指定的輸入及/或呈現處理輸出。例如,可以為使用者提供取樣的視覺表示(例如,藉由形成GUI 124的部分的顯示器),所述視覺表示包括取樣的圖像資料。可選地,可以藉由GUI為用戶提供定義某些指令引數的選項。用戶也可以在GUI上查看某些操作結果,諸如例如,缺陷圖、標籤資料、分類器輸出,例如,缺陷候選列表等。系統101進一步經配置為經由I/O介面126向檢驗工具發送更新的分類器。在一些情況下,系統101可以進一步經配置為將結果中的一些發送到儲存單元122、及/或外部系統(例如,FAB的產量管理系統(YMS))。
根據某些實施例,本文提及的機器學習模型(諸如特徵提取器、分類器等)可以被實現為各種類型的機器學習模型,諸如例如,統計模型、神經網路、決策樹、支援向量機、以及遺傳模型、或其整體/組合等。由學習模型使用的學習演算法可以是下列各項中的任何一項:監督學習、無監督學習、或半監督學習等。作為示例,特徵提取器可以實現為無監督模型或監督模型。當前公開的主題不限於由學習模型使用的特定類型或學習演算法。
在一些實施例中,學習模型中的一或多個可以實現為深度神經網路(DNN),所述深度神經網路(DNN)包括根據相應DNN架構組織的層。作為非限制性示例,DNN的層可以根據迴旋神經網路(CNN)架構、循環神經網路架構、遞迴神經網路架構、產生對抗網路(GAN)架構等等來組織。可選地,層的至少部分可以在複數個DNN子網路中組織。DNN的每個層可以包括多個基本計算元件(CE),在本領域中通常稱為維度、神經元、或節點。
通常,給定層的CE可以與前一層及/或後一層的CE連接。前一層的CE與後一層的CE之間的每個連接與加權值相關聯。給定CE可以經由相應連接從前一層的CE接收輸入,每個給定連接與加權值相關聯,所述加權值可以應用於給定連接的輸入。加權值可以決定連接的相對強度並且因此決定相應輸入對給定CE的輸出的相對影響。給定CE可以經配置為計算啟動值(例如,輸入的加權和)並且藉由將啟動函數應用於所計算的啟動來進一步匯出輸出。例如,啟動函數可以是恆等函數、決定性函數(例如,線性、S形、閾值等等)、隨機函數、或其他合適的函數。來自給定CE的輸出可以經由相應連接被發送到後一層的CE。同樣地,如前述,CE的輸出處的每個連接可以與加權值相關聯,所述加權值可以在作為後一層的CE的輸入被接收之前應用於CE的輸出。進一步對於加權值,可以存在與連接和CE相關聯的閾值(包括限制函數)。
DNN的加權值及/或閾值可以在訓練之前被初始選擇,並且可以在訓練期間被進一步反覆運算地調整或修改,以在訓練的DNN中實現最優的加權值及/或閾值集合。在每次反覆運算之後,可以決定在DNN產生的實際輸出與和相應的訓練資料集相關聯的目標輸出之間的差值。所述差值可以被稱為誤差值。當指示誤差值的成本函數小於預定值時,或者當實現反覆運算之間效能的有限改變時,可以決定訓練完成。可選地,可以在訓練整個DNN之前單獨訓練DNN子網路(如果有的話)的至少部分。
每個機器學習模型具有作為訓練階段的部分而計算的參數集(諸如例如,如前述的DNN的加權值及/或閾值)。用於調整深度神經網路的權重/閾值的DNN輸入資料的集合在下文中被稱為訓練集或訓練資料集或訓練資料。如先前提及,如下文將參考圖3詳述的,學習模型的訓練可以在訓練階段期間由訓練模組106執行。
應當注意,上文示出的DNN架構僅出於示例性目的並且僅是實現機器學習模型的一種可能方式,並且當前公開的主題的教示不限於如上文描述的特定模型和架構。
根據某些實施例,除了分類器113之外,檢驗工具110可以包括一或多個附加的後處理模組,諸如附加的分類器、篩檢程式等,並且方案最佳化系統101可以用於以類似的方式最佳化這些模組。在一些情況下,檢查系統100可以包括用於分別更新檢查方案中包括的一或多個後處理模組的一或多個系統101。在一些實施例中,系統101可以用於最佳化可用於審查工具114的方案。
本領域的技藝人士將容易理解,當前公開的主題的教示不限於圖1所示的系統;等效及/或修改的功能可以以另一方式合併或分開,並且可以以軟體與韌體及/或硬體的任何適當組合來實現。
應當注意,圖1所示的系統可以在分散式運算環境中實現,其中先前提及的圖1所示的功能模組可以分佈在若干本端及/或遠端裝置上,並且可以藉由通訊網路連結。還應當注意,在另一實施例中,儲存單元122及/或GUI 124中的至少一些可以在系統101外部並且經由I/O介面126與系統101資料通訊地操作。系統101可以實現為與檢查工具結合使用的(多個)獨立式電腦。替代地,在一些情況下,系統101的相應功能可以至少部分地與一或多個檢查工具集成,由此在檢查相關的程序中促進並增強檢查工具的功能。
目前用於檢查半導體取樣的檢查方案具有高複雜度,並且目前的方案評估和調節程序通常是基於FAB資料及/或使用者回饋手動完成的,並且因此相當耗時且低效。作為示例,檢查方案的評估通常需要等待,直到從審查工具接收到標籤資料,這在時間和資源方面是昂貴的。此外,通常在給定晶片上在給定的時間進行方案設置。在大多數情況下,在設置期間使用的給定晶片不能表示在生產期間將遇到的所有DOI類型和雜訊狀況,因此導致運行時檢查結果由於晶片/程序變化而不是最優的。
最近已經使用機器學習技術來輔助檢查程序,然而將機器學習技術應用於晶片檢驗通常需要足夠量的訓練資料,並且在各種檢查工具之間(例如,在檢驗工具與審查工具之間)的當前資料共用規劃在技術上是麻煩的,並且在一些情況下在訓練階段期間導致資料不可存取和不足。
當前公開的主題的某些實施例藉由與線上核對總和偵測流程並行地使用重新訓練程序來實現自動且高效的方案最佳化。如下文將參考圖2進一步解釋的,重新訓練程序基於從運行時檢驗圖像提取的特徵以及與其對應的標籤資料。方法是基於機器學習的,具有最少的用戶校準和互動。
僅出於說明的目的,關於晶片提供本案內容的某些實施例。同樣,實施例可以以類似方式應用於其他類型的取樣。
參見圖2,圖示根據當前公開的主題的某些實施例的可用於檢查半導體取樣的檢查方案的自動最佳化的一般化流程圖。
可以(例如,由系統101中的PMC 102)獲得一或多個檢驗圖像(202)。檢驗圖像可以經由I/O介面126從檢驗工具110接收、或者從儲存單元122檢取。每個檢驗圖像表示半導體取樣的至少一部分。一或多個檢驗圖像指示使用包括在檢查方案中的第一分類器從缺陷圖中選擇的相應缺陷候選。
如上文提及,檢驗圖像由檢驗工具擷取。根據某些實施例,檢驗工具可以經配置為擷取取樣(例如,晶片或晶粒或其部分)的檢驗圖像。檢驗圖像可以獲自(多個)不同的檢查形態,並且本案內容不限於用於產生圖像的核對總和計量技術。取樣的擷取圖像可以使用檢查方案(其功能可以集成在檢驗工具的處理單元內)中所包括的缺陷偵測模組(諸如圖1所示的偵測模組112)來處理,以便產生指示取樣上的缺陷候選分佈的缺陷圖(即,具有高概率是感興趣的缺陷(DOI)的取樣上的可疑位置)。
不同的核對總和偵測方法可以在缺陷偵測模組中應用來處理檢驗圖像並產生缺陷圖,諸如晶粒對晶粒(D2D)、晶粒對歷史(D2H)、晶粒對資料庫(D2DB)等,並且本案內容不限於其中使用的具體偵測技術。僅出於說明目的,現在描述基於檢驗圖像的缺陷偵測和缺陷圖產生的幾個非限制性示例。
在一些實施例中,對於每個檢驗圖像,一或多個參考圖像可以用於缺陷偵測。參考圖像可以以各種方式獲得,並且本文使用的參考圖像的數量和獲得這些圖像的方式不應被解釋為以任何方式限制本案內容。在一些情況下,一或多個參考圖像可以從相同取樣的一或多個晶粒(例如,檢驗晶粒的相鄰晶粒)擷取。在一些其他情況下,一或多個參考圖像可以包括從另一取樣(例如,與本取樣不同但共享相同設計資料的第二取樣)的一或多個晶粒擷取的一或多個圖像。作為示例,在晶粒對歷史(D2H)檢驗方法中,檢驗圖像可以在當前時間(例如,t=t')從當前取樣擷取,並且一或多個參考圖像可以包括在基線時間(例如,先前時間t=0)從第二取樣上的一或多個晶粒擷取的一或多個先前圖像。在一些進一步實施例中,一或多個參考圖像可以包括表示一或多個晶粒的給定晶粒的至少一個類比圖像。作為示例,類比圖像可以基於晶粒的設計資料(例如,CAD資料)來產生。
在一些實施例中,至少一個差值圖像可以基於在檢驗圖像的圖元值與從一或多個參考圖像匯出的圖元值之間的差值來產生。可選地,至少一個等級圖像也可以基於至少一個差值圖像來產生。在一些情況下,等級圖像可以由圖元和預定義的差值正規化因數構成,所述圖元具有基於差值圖像中的對應圖元值計算的值。預定義的差值正規化因數可以基於圖元值的正常整體的行為來決定,並且可以用於對差值圖像的圖元值進行正規化。作為示例,圖元等級可以計算為差值圖像的對應圖元值與預定義的差值正規化因數之間的比率。缺陷圖可以藉由使用偵測閾值基於至少一個差值圖像或至少一個等級圖像決定疑似缺陷的位置來產生。
在一些實施例中,所產生的缺陷圖可以提供缺陷候選集合的資訊,每個缺陷候選與一或多個缺陷特性相關聯,所述缺陷特性包括諸如例如,相應缺陷候選的位置、強度和大小等。
使用包括在檢查方案中的分類器模組(諸如圖1所示的分類器模組113),可以從缺陷圖中選擇缺陷候選列表作為具有更高概率是感興趣的缺陷(DOI)的候選。
本文提到的術語「分類器」、「分類器模組」或「分類別模組」應當被廣義地解釋為涵蓋能夠基於訓練資料集辨識新實例屬於類別/類的集合中的哪一個的任何學習模型。作為示例,分類器可以將缺陷候選分類為兩種類型:DOI或噪擾。在這種情況下,分類器是二元分類器,並且也可以被稱為經配置為從缺陷圖中過濾出噪擾類型的缺陷候選的篩檢程式或噪擾篩檢程式。作為另一示例,分類器可以辨識缺陷候選的具體缺陷類別,諸如例如,橋、粒子等。作為進一步的示例,分類器可以將缺陷候選分類為DOI和噪擾,並且對於分類為DOI的候選,分類器還可以辨識其具體缺陷類別(DOI的子類)。分類器可以被實現為各種類型的機器學習模型,諸如例如,線性分類器、支援向量機(SVM)、神經網路、決策樹等,並且本案內容不限於用其實現的具體模型。
根據某些實施例,分類器基於表徵檢驗圖像的輸入特徵/屬性來對缺陷圖中的缺陷候選集合執行選擇/分類。具體地,對於每個缺陷候選,可以從取樣的檢驗圖像中分別提取周圍圖像面片(即,在每個給定缺陷候選的位置周圍的圖像面片),從而產生與缺陷候選集合相對應的檢驗圖像面片集合。作為示例,可以根據預定義的形狀和大小來提取圖像面片。如下文參考步驟206所描述,可以提取表徵檢驗圖像面片的某些特徵並將其用作分類器的輸入。分類器可以基於從對應的檢驗圖像面片中提取的特徵對每個缺陷候選執行分類。分類器的輸出可以是由分類器選擇為具有較高概率是DOI的缺陷候選的列表(也稱為選擇的列表或選擇的缺陷候選)。如下文參考步驟208和圖3進一步詳述,為了使分類器能夠基於提取的特徵選擇/分類缺陷候選,需要在投入生產之前適當地訓練分類器。
可以將由分類器選擇的缺陷候選列表提供給審查工具(諸如例如,如圖1所示的審查工具113)。審查工具可以在所選擇的缺陷候選的位置處擷取審查圖像,並且審查所述審查圖像以決定缺陷候選是DOI還是噪擾。審查工具的輸出可以包括分別與缺陷候選清單相關聯的標籤資料。如下文參考步驟208和圖3進一步詳細描述的,標籤資料提供缺陷候選的類型的資訊並且可以用於分類器及/或其他機器學習模型的訓練。
繼續圖2的描述,為了及時和有效地最佳化檢查方案,例如,以便更新分類器,使得其能夠以更高的準確度和擷取率執行DOI的分類,當前公開的主題提出並行地應用離線最佳化程序與由檢查工具執行的檢查程序(例如,如圖1所示,由系統101執行的方案最佳化程序與由檢驗工具110使用檢查方案111執行的缺陷偵測程序和由審查工具114執行的缺陷審查程序並行/分離)。根據某些實施例,方案最佳化系統收集來自工具的最新生產資料和回饋資訊,並使用收集的資料重新訓練分類器,並且重新訓練的分類器可以代替檢查方案中的先前分類器,從而產生用於檢查後續取樣的最佳化/更新的方案。以這樣的方式,分類器基於最新的生產資料被頻繁地和自動地更新,因此對於晶片/製程變化等更加穩健。
具體地,如前述,在步驟202中,由方案最佳化系統101從檢驗工具110接收的一或多個檢驗圖像實際上是與由分類器選擇的缺陷候選列表相對應的一或多個檢驗圖像面片。從取樣的檢驗圖像中(例如,在每個給定缺陷候選的位置周圍)提取每個檢驗圖像面片,並且因此表示取樣的至少一部分。一或多個檢驗圖像面片指示所選擇的缺陷候選。
方案最佳化系統101還(例如,由系統101中的PMC 102)獲得(204)分別與一或多個檢驗圖像(即,檢驗圖像面片)相關聯的標籤資料。標籤資料用作檢驗圖像的回饋資訊和基本真值(ground truth)資料。如前述,標籤資料可以從審查工具114或儲存單元122接收,並且提供相應缺陷候選的類型的資訊。
可以(例如,由PMC 102中的特徵提取器104)提取(206)表徵一或多個檢驗圖像的檢驗特徵。根據某些實施例,檢驗特徵可以包括由無監督模型提取的第一特徵。在一些情況下,作為第一特徵的補充或替代,檢驗特徵可以包括由監督模型提取的第二特徵。作為示例,第二特徵可以包括下列各項中的至少一項:i)表徵一或多個檢驗圖像的特徵向量,以及ii)指示檢驗圖像上的每個缺陷候選屬於特定類型/類別的概率(例如,每個缺陷候選是DOI的概率)的標籤預測特徵。
在一些另外的情況下,作為包括第一特徵及/或第二特徵的檢驗特徵的補充或替代,可以使用附加的第三特徵(諸如,例如表徵擷取一或多個檢驗圖像的檢驗工具的物理屬性的工具特徵)來重新訓練分類器。工具特徵可以直接從檢驗工具中匯出。如將在下文進一步詳細描述的,第三特徵也可以包括缺陷特徵及/或取樣特徵。
以如前述的各種方式提取的表徵一或多個檢驗圖像的檢驗特徵連同基本真值資料(即,與檢驗圖像相關聯的標籤資料)一起被提供作為訓練資料用於(例如,由如圖1所示的訓練模組106)重新訓練(206)分類器。注意到,如系統101中示出的分類器113應該被認為是包括在由檢驗工具110使用的檢查方案111中用於檢驗取樣和偵測缺陷候選的分類器113的離線版本。如下文參考圖3進一步詳細地描述的,分類器在訓練階段期間使用一或多個訓練檢驗圖像和與其相關聯的標籤資料被預先訓練。
現參見圖4,圖示根據當前公開的主題的某些實施例的重新訓練分類器的示意圖。
檢驗工具擷取取樣(例如,晶片或晶粒)的檢驗圖像402。在使用檢查方案執行缺陷偵測和分類之後,由分類器從缺陷圖中選擇缺陷候選的列表,並且從與所選擇的缺陷候選相對應的檢驗圖像402中提取一或多個檢驗圖像面片404。例如,將圖像面片404提取為圍繞每個給定缺陷候選的位置的訊窗。如前述,將所選擇的缺陷候選提供給審查工具114,並且可以由審查工具114產生提供相應缺陷候選的類型的資訊的標籤資料403。將標籤資料分別與一或多個檢驗圖像面片的所選擇的缺陷候選相關聯。
在一些實施例中,將一或多個圖像面片404饋入無監督模型406以提取其代表性特徵。作為示例,無監督模型406可以實現為自動編碼器或其變體。自動編碼器是一種神經網路,通常用於藉由學習高效的資料編碼並重構其輸入(例如,最小化輸入與輸出之間的差異)來進行資料再現。自動編碼器具有輸入層、輸出層以及連接它們的一或多個隱藏層。通常,自動編碼器可以被認為包括編碼器和解碼器這兩個部分。自動編碼器學習將來自輸入層的資料壓縮成短代碼(即,編碼器部分),並且隨後將此代碼解壓縮成與原始資料緊密匹配的輸出(即,解碼器部分)。編碼器的輸出被稱為代碼、潛在變數、或表示輸入圖像的潛在表示408。代碼可以通過解碼器中的隱藏層,並且可以在輸出層中重建成與輸入圖像相對應的輸出圖像。
一旦基於一組訓練檢驗圖像訓練了自動編碼器(如下文參考圖3詳細描述的),經訓練的自動編碼器能夠為每個輸入圖像產生基於其潛在表示緊密匹配輸入的重構的輸出圖像。因此,在當前情況下,對於饋送到自動編碼器之每一者檢驗圖像面片,由自動編碼器產生的代碼或潛在表示408可以用作表示檢驗圖像面片的所提取的特徵。由無監督模型提取的特徵在本文中也稱為第一特徵,並且可以作為輸入的部分提供給分類器113用於重新訓練目的。此外,在一些實施例中,在一些情況下,還可以將重構的輸出圖像連同輸入圖像一起作為輸入的一部分提供給分類器113用於重新訓練目的。
應當注意,自動編碼器的以上示例僅出於示例性和說明性目的而描述,並且不應視為以任何方式限制本案內容。除上述之外或代替上述,可以使用其他類型的無監督模型。作為示例,可以使用任何密度估計方法,諸如例如,統計圖形模型(例如,正規化流模型、自回歸模型、貝氏(Baysian)網路、瑪律科夫(Markov)網路等)或者非圖形模型(例如,變分推理模型、高斯混合模型等)。
在一些實施例中,附加地或替代地,可以將一或多個圖像面片404饋入監督模型410。監督模型410可以在具有監督學習模式的各種機器學習模型中實現,所述機器學習模型諸如例如CNN、SVM等。在一些實施例中,監督模型可以實現為被訓練以學習特徵和分類資料的分類別模組。在監督模型410的訓練階段期間,將由審查工具114產生的標籤資料403作為基本真值提供給監督模型。如下文參考圖3所詳細描述的,可以使用一組訓練檢驗圖像中的一或多個訓練檢驗圖像以及相應相關聯的標籤資料來訓練監督模型410。一旦被訓練,訓練的監督模型410就能夠提取特徵並且使用特徵來決定/分類缺陷候選的類型。
在一個示例中,監督模型可以實現為迴旋神經網路(CNN)。CNN通常具有包括輸入和輸出層以及多個隱藏層的結構。CNN的隱藏層通常包括一系列迴旋層,所述迴旋層與乘法或其他點積進行迴旋,隨後是附加層,諸如池化層、完全連接層、和正規化層等。在一些情況下,CNN可以被視為由兩個主要功能組成:特徵提取和分類。作為示例,特徵提取部分可以包括若干迴旋層,隨後是最大池化和啟動函數。分類部分通常包括完全連接層。
作為示例,在一些情況下,監督模型的特徵提取部分中的某些中間層(例如,迴旋層中的一或多個)可以以特徵圖(也稱為特徵向量)的形式提供層輸出,並且這樣的輸出特徵圖中的一或多個可以用作要提供給分類器的提取特徵。
例如,可以例如藉由跨輸入特徵圖的寬度和高度迴旋特定層的每個篩檢程式、計算篩檢程式的條目與輸入之間的點積、以及產生提供此篩檢程式在每個空間位置處的回應的二維啟動圖來產生輸出特徵圖。沿深度維度堆疊所有篩檢程式的啟動圖形成迴旋層的全部輸出特徵圖。結果,CNN學習到當在輸入中的某個空間位置偵測到某個特定類型的特徵時啟動的濾波器。因此,輸出特徵圖可以被視為包括從輸入提取並且表示輸入的特徵。如圖4所例示的,這樣的特徵圖中的一或多個可以從監督模型410的某些中間層412中提取,並且可以作為輸入提供給訓練模組106以用於重新訓練分類器113。
作為另一示例,監督模型的分類部分中的某些中間層(例如,在最後一層之前的完全連接層中的一或多個)可以提供包括指示標籤預測概率(即,輸入被指派有特定標籤的概率)的特徵的層輸出。這種特徵在本文中也稱為標籤預測特徵。在當前情況下,這些特徵可指示檢驗圖像上的每個給定缺陷候選屬於特定類型的概率。在一些情況下,這樣的層是輸出層之前的最後層,並且基於由這些層輸出的標籤預測特徵來決定標籤。根據某些實施例,這樣的標籤預測特徵可以用作要被提供給分類器的提取特徵,作為如前述的特徵圖的補充或替代。如圖4所例示的,標籤預測特徵可以從監督模型410的分類部分中的特定層414(在輸出層之前)提取,並且作為輸入提供給訓練模組106以重新訓練分類器113。為了將由監督模型提取的特徵圖及/或標記預測特徵與其他提取的特徵(諸如,第一特徵或第三特徵)區分開,由監督模型提取的特徵圖及/或標記預測特徵在本文中也稱為第二特徵。
根據某些實施例,除了第一特徵及/或第二特徵之外,還可以提取一或多個第三特徵416並且將其提供給訓練模組106以用於重新訓練分類器113。作為示例,第三特徵可以包括表徵檢驗工具的物理屬性的工具特徵,所述檢驗工具擷取一或多個檢驗圖像。這樣的工具特徵可以包括下列各項中的一項或多項:偵測器、顯微鏡、光散射等的一或多個物理屬性。
在一些實施例中,附加地或替代地,第三特徵可以包括缺陷特徵,諸如例如,與缺陷候選的大小、形狀和位置等有關的一或多個屬性等。例如,缺陷特徵之一可以是指示缺陷候選的位置是更靠近晶片的中心還是更靠近晶片的邊緣的位置屬性。這樣的缺陷特徵可以向分類器提供附加的缺陷資訊。在另一示例中,一個缺陷特徵可以是指示缺陷候選大小的大小屬性。對於具有小於預定大小的大小的缺陷候選,缺陷候選可以與點擴散函數關聯,點擴散函數經配置為將晶片中的點轉移到其對應的圖像表示(即,將如何在檢驗圖像中出現)。這是因為在一些情況下,由於工具解析度的限制,光學檢驗工具不能將所有晶片資料轉移到檢驗圖像中。由此,藉由與點擴散函數關聯,可以獲得附加的晶片資訊並將其提供給分類器。在一些進一步實施例中,附加地或替代地,第三特徵可以包括取樣特徵(例如,晶片特徵),諸如例如,晶片圖案、晶片電氣功能等。
根據某些實施例,如圖1所示的特徵提取器104可以實現為無監督模型(例如,圖4中的無監督模型406),並且用於重新訓練分類器的檢驗特徵可以包括由無監督模型提取的第一特徵。在一些實施例中,特徵提取器104可以實現為監督模型(例如,圖4中的監督模型410),並且用於重新訓練分類器的檢驗特徵可以包括由監督模型提取的第二特徵(例如,特徵圖及/或標籤預測特徵)。在一些進一步的實施例中,特徵提取器104可以實現為包括無監督模型和無監督模型兩者(例如,圖4中的無監督模型406和監督模型410兩者),並且用於重新訓練分類器的檢驗特徵可以包括第一特徵和第二特徵兩者。在又進一步的實施例中,附加地並且可選地,特徵提取器可以包括工具特徵提取器(圖4中未示出),所述工具特徵提取器經配置為從檢驗工具中提取第三特徵416。
應當注意,儘管如圖4所示的結構包括無監督模型406和監督模型410以及第三特徵416,它們都操作地連接到分類器113以用於重新訓練,但是這僅用於示例性目的,而不應被認為以任何方式限制本案內容。可以實現如前述的替代系統結構和實現方式(例如,僅包括監督模型或僅包括無監督模型,具有或不具有第三特徵)來代替上述。還應當注意,諸如無監督模型406和監督模型410之類的某些功能模組的示意性展示僅出於非限制性示例性目的而示出,而並非旨在指示這樣的模組的特定結構。由此,在不脫離本案內容的範圍的情況下,可以對這樣的模組進行各種結構及/或功能改變/調整。
在收集包括表徵一或多個檢驗圖像(即,檢驗圖像面片)的檢驗特徵的運行時資料和分別與檢驗圖像相關聯的標籤資料403之後,訓練模組106可以使用所收集的運行時資料作為訓練資料來重新訓練分類器113。重新訓練的分類器能夠決定檢驗圖像上的缺陷候選屬於特定類型(例如,DOI)的概率。如前述,分類器113可以被認為是在用於檢查當前取樣並且產生所選擇的缺陷候選的檢查方案中使用的分類器的離線版本。
如下文參考圖3所描述的,在一些實施例中,訓練模組106可以進一步經配置為在重新訓練分類器113之前,使用運行時資料(例如,一或多個檢驗圖像以及可能還有與其相關聯的標籤資料)在運行時重新訓練無監督模型及/或監督模型。作為示例,可以決定在收集新的運行時資料之後,訓練模組可以經配置為使用運行時資料重新訓練監督模型,並且一旦監督模型被訓練,就使用由監督模型和無監督模型提取的特徵及/或第三特徵重新訓練分類器。作為另一示例,可以決定回應於新運行時資料的收集重新訓練監督模型和無監督模型兩者。作為進一步的示例,還可以決定每當有新的運行時資料時重新訓練監督模型,並且僅每隔預定的時間間隔(例如,每n個晶片)重新訓練無監督模型。應當注意,如下文參考圖3所描述的,在一些情況下,第三特徵可以用於訓練無監督模型及/或監督模型及/或分類器。
現參見圖3,圖示根據當前公開的主題的某些實施例的訓練無監督模型、監督模型和分類器的一般化流程圖。
根據某些實施例,在監督模型及/或無監督模型被用作用於提取和提供用於重新訓練分類器的特徵的特徵提取器之前,可以用相應的訓練資料預先訓練監督模型及/或無監督模型。在310中,圖示無監督模型的訓練階段。可以獲得(312)各自代表取樣的至少一部分的一組訓練檢驗圖像作為第一訓練集,並且可以使用第一訓練集來訓練(314)無監督模型以提取其代表性特徵。作為示例,如上文參考圖4所描述的,第一訓練集中的訓練檢驗圖像可以包括與如在一或多個取樣的缺陷圖中指示的缺陷候選相對應的提取的檢驗圖像面片。第一訓練集是沒有標記資料的圖像資料集。無監督模型可以藉由處理每個圖像來訓練以產生輸出重建圖像,並且基於相對於輸入圖像的輸出來最佳化參數。在一些實施例中,還可以獲得如前述的第三特徵並且將其與一組訓練檢驗圖像一起使用以訓練無監督模型。在這種情況下,第一訓練集包括一組訓練檢驗圖像和第三特徵。
如前述,作為示例,可以將無監督模型實現為自動編碼器或其任何合適的變型/衍生物。無監督模型也可以實現為基於密度估計方法的任何模型,諸如任何圖形或非圖形模型。對於訓練資料集之每一者輸入圖像,自動編碼器可以提取代表輸入圖像的特徵,並且使用代表性特徵來重構可以藉由與輸入圖像進行比較來評估的對應輸出圖像。自動編碼器被訓練和最佳化,以便學習訓練圖像中的代表性特徵(例如,在訓練圖像中可以表示例如結構元素、圖案、圖元分佈等的特徵)。結構元素指的是圖像資料上具有幾何形狀或具有輪廓的幾何結構的任何原始物件。在一些情況下,結構元素可以指形成圖案的複數個組合物體。例如,結構元素可以以多邊形的形式呈現。
應當注意,根據當前公開的主題的某些實施例,本文使用的第一訓練集可以包括整個FAB檢驗資料,諸如例如,在製造程序期間擷取的低解析度檢驗圖像、或者藉由可能與中繼資料及/或通用屬性相關聯的各種預處理階段獲得的擷取圖像的衍生物等。在一些情況下,第一訓練集可以包括與來自所有制造階段的所有類型的層/產品有關的檢驗資料。替代地,在一些其他情況下,第一訓練集可以包括根據某些標準(例如,(多個)特定層/(多個)特定產品等)選擇的某些可用檢驗資料。
在320中,圖示監督模型的訓練階段。可以獲得(322)來自與標籤資料相關聯的一組訓練檢驗圖像的一或多個訓練檢驗圖像。一或多個訓練檢驗圖像和相關聯的標籤資料形成第二訓練集,並且可以使用第二訓練集來訓練(324)監督模型以決定缺陷候選的類型。根據某些實施例,一或多個訓練檢驗圖像是從整組訓練檢驗圖像(即,第一訓練集)中選擇的,所述整組訓練檢驗圖像用於以與上文參考圖4描述的類似方式訓練無監督模型。作為示例,可以從缺陷圖中選擇具有較高概率是DOI的缺陷候選列表。將所選擇的缺陷候選提供給審查工具,並且提供所選擇的缺陷候選的類型的資訊的標籤資料可以由審查工具產生。從第一訓練集中選擇第二訓練集中的一或多個訓練檢驗圖像作為與標籤資料相關聯的所選擇的缺陷候選相對應的圖像。可以藉由對第二集合之每一者訓練圖像進行處理以產生預測標籤並且基於與給定圖像相對應的標籤資料對參數進行最佳化來訓練監督模型。在一些實施例中,還可以獲得如前述的第三特徵,並且將其與關聯於標籤資料的一或多個訓練檢驗圖像一起使用,以訓練監督模型。在這種情況下,第二訓練集包括一或多個訓練檢驗圖像、標籤資料、以及第三特徵。
根據某些實施例,可以分別訓練和最佳化監督模型和無監督模型。例如,它們可以並行訓練、或者相繼訓練。
如上文參考圖4所描述的,一旦無監督模型和監督模型被訓練,這樣的模型就可以進入推斷階段,以便處理運行時檢驗圖像並且提供所提取的特徵以重新訓練分類器。在330中,圖示分類器的示例性訓練階段。訓練模組可以獲得(332)由無監督模型從一或多個檢驗圖像中提取的第一特徵,及/或獲得(334)由監督模型從一或多個檢驗圖像中提取的第二特徵,及/或獲得(335)第三特徵。訓練模組還從審查工具獲得(336)與一或多個檢驗圖像(例如,一或多個檢驗圖像面片404)相關聯的標籤資料。訓練模組使用所收集的運行時資料(即,所提取的特徵和標籤資料)作為訓練資料來重新訓練(338)分類器。分類器可以被不斷地重新訓練(例如,回應於從檢查工具獲得的新的檢驗資料和標籤資料),以便保持其與不斷變化的FAB資料的相關性。
應當注意,如上文參考圖4所描述的,在一些情況下,在重新訓練分類器之前,還可以基於運行時資料在運行時期間重新訓練無監督模型及/或監督模型。在這種情況下,訓練模組106可以進一步經配置為以與上文參考框310和框320所描述的方式類似的方式使用運行時資料重新訓練無監督模型及/或監督模型。
返回參見圖2,一旦使用檢驗特徵和標籤資料重新訓練(208)分類器,重新訓練的分類器也稱為更新的分類器、或第二分類器(相對於重新訓練之前的分類器,所述分類器也稱為第一分類器)。第二分類器可以用於替換包括在由檢驗工具使用的檢查方案中的第一分類器,由此(例如,由方案更新模組108)最佳化(210)檢查方案。
在一些實施例中,方案更新模組108可以經配置為基於一或多個參數來決定是否最佳化檢查方案,並且僅回應於肯定的決定來執行最佳化。一或多個參數可以包括方案更新頻率、方案效能歷史、客戶策略和情況分析等。作為示例,這些參數之一可以是預定的方案更新頻率。例如,針對每個晶片(即,每次在對晶片進行核對總和審查之後)更新方案,並且檢驗資料和審查資料用於重新訓練分類器。在一些情況下,可以預定方案更新頻率以針對每n(n>1)個晶片更新方案。作為另一示例,這些參數之一可以是客戶策略,例如,在滿足預定條件之後,客戶可以決定更新方案。例如,客戶可能希望穩定方案並且不更新方案,除非存在由審查工具報告的新類型的缺陷。如果從審查工具接收的標籤資料指示存在新類型的缺陷,則分類器將被重新訓練並且用於更新方案。
作為進一步的示例,參數之一可以是方案歷史或方案效能歷史。這樣的參數可指示方案先前是否被更新,並且如果是,則指示更新的次數,以及相應的更新方案的對應效能。例如,如果方案最近未被更新並且上次更新的FAR沒有滿足客戶要求(例如,不符合可接受的FAR的客戶規格),則可以決定當前方案應當被更新。作為又進一步示例,參數之一可以是基於當前FAB情況的情況分析。例如,在一些情況下,FAB將希望穩定方案,因此對於給定的持續時間不允許進一步的方案更新。在另一示例中,如果存在效能劣化,諸如例如,FAB中的良率下降,則可以決定更新方案。
最佳化的檢查方案可用於(212)(例如,由檢驗工具110)檢查後續取樣。在一些情況下,後續取樣可以是緊接在當前取樣之後的下一個取樣,或者是相對於當前取樣在n個取樣的距離內的後續取樣(n>1)。
現在轉向圖5A和圖5B,圖示根據當前公開的主題的某些實施例的關於檢驗工具和審查工具的方案最佳化器實現方式的兩個示意圖。
如前述,方案最佳化器101可以實現為獨立電腦以與檢驗工具110和審查工具112結合使用,或者替代地,方案最佳化器101的功能或其至少一部分可以與檢驗工具110或審查工具112集成。在圖5A中,方案最佳化器101實現為與檢驗工具和審查工具操作地連接的獨立單元。在檢驗工具110和審查工具112在運行時檢查當前晶片n之後,方案最佳化器101從工具分別收集晶片n的檢驗資料和審查資料,並且使用所收集的資料重新訓練包括在當前檢驗方案中且由檢驗工具110用於檢查晶片n的分類器。重新訓練的分類器可以由方案最佳化器101發送到檢驗工具110以替換方案中的當前分類器。
由於分類器的重新訓練是離線執行的並且可能花費時間,因此當重新訓練的分類器被發送以更新檢驗工具中的方案時,取決於重新訓練分類器的時間相對於晶片核對總和審查的時間,重新訓練的分類器可以用於檢查在生產線中的下一個晶片,所述晶片可能是晶片n+m。在這種場景中,對FAB的檢驗輸出是檢驗工具中的分類器的輸出(此外,還可以將來自審查工具的審查輸出提供給FAB)。FAB可以使用這樣的輸出用於程式控制的目的。作為示例,由第一分類器檢查晶片1,並且第一分類器的輸出將作為晶片1的檢查結果提供給FAB。一旦使用晶片1的資料離線重新訓練了第一分類器,就使用重新訓練的分類器來替換檢驗工具中的第一分類器。重新訓練的分類器將檢查在生產線中的下一個晶片,例如,晶片5,並且重新訓練的分類器的輸出將作為晶片5的檢查結果提供給FAB。
在一些情況下,可以在決定替換當前分類器之前評估重新訓練的分類器。作為示例,重新訓練的分類器可以用於基於晶片n的缺陷圖產生所選擇的缺陷候選的更新列表,並且可以將所選擇的缺陷候選的更新列表與由當前分類器產生的所選擇的缺陷候選的原始列表進行比較。可以基於比較結果做出是否藉由替換分類器來更新方案的決定。
在圖5B中,方案最佳化器101以與參考圖5A描述的檢驗工具和審查工具類似的方式實現。然而,分類器模組的功能被從檢驗工具中取出,並且僅保持在方案最佳化器模組中。因此,對於當前晶片n,由檢驗工具的偵測模組產生的缺陷圖可以從檢驗工具110發送到方案最佳化器101,並且由包括在方案最佳化器101中的當前分類器處理以產生所選擇的缺陷候選的列表。將列表作為晶片n的檢驗輸出提供給FAB。由方案最佳化器101基於晶片n的運行時資料重新訓練分類器。重新訓練的分類器不需要被發送到檢驗工具,而是被保持在方案最佳化器101中以用於檢查下一個晶片n+1。可以將下一個晶片n+1的缺陷圖從檢驗工具110發送到方案最佳化器101,並由方案最佳化器101中的重新訓練的分類器進行處理以產生所選擇的缺陷候選的列表。重新訓練的分類器的輸出將作為檢驗輸出提供給FAB。在一些情況下,來自審查工具的審查輸出可以與檢驗輸出一起被發送到FAB。
將圖5B與圖5A的場景進行比較,應當注意,在圖5B中實現的系統具有相對高的方案更新頻率(例如,在檢查每個晶片之後重新訓練和更新分類器),而同時在產生每個晶片的檢查結果方面相對較慢(例如,僅可在使用晶片n的資料重新訓練分類器之後檢查晶片n+1),而在圖5A中實現的系統具有相對低的方案更新頻率(例如,對於每m個晶片更新檢驗工具的方案中的分類器),同時在產生每個晶片的檢查結果方面相對較快(例如,可以使用當前分類器檢查在晶片n與晶片n+m之間的每個晶片,直到分類器被重新訓練並更新在方案中)。
應當注意,出於示例性的目的圖示圖5A和圖5B中所示的場景,並且不應當將其視為以任何方式限制本案內容。除上述之外或代替上述,本案內容可以以上述的任一種方式實現,或以任何其他可能的實現方式實現。
根據某些實施例,方案最佳化器可從多個檢驗工具接收檢驗資料,並且考慮多個檢驗工具之間的工具間差異來最佳化分類器。如前述,在運行時基於最新生產資料重新訓練分類器可以將分類器增強為對晶片/製程變化等更穩健。另外,當從不同工具接收檢驗資料時,由於工具間差異,最佳化分類器以改善一個工具的效能對於另一個工具的效能可能不是最佳的。因此,需要注意考慮工具間差異來選擇最佳工作點,並且基於所選擇的工作點來重新訓練分類器。
現在轉向圖6A,圖示根據當前公開的主題的某些實施例示出工具間差異的示意圖。
假設方案最佳化器從兩個檢驗工具(例如,工具1和工具2)接收檢驗資料。基於這兩個工具資料重新訓練和最佳化分類器。圖6A圖示座標軸,其中X軸表示相應檢驗的晶片,並且Y軸表示檢驗的晶片的對應錯誤警報率(FAR)。例示了在分類器的兩個不同最佳化602和604之後兩個工具的效能(根據FAR)。在602中,工具1與工具2的FAR之間的差異相對較小,而在604中,儘管工具2的FAR與602相比得以改善(即,減小),但是工具1的FAR與602相比增加,因此導致工具1與工具2的FAR之間的更大差距並且影響工具1的效能,這是不為客戶所期望的。應當注意,儘管在圖中將相對於相應晶片的FAR圖示出為直線,這僅是為了簡化說明。本領域技藝人士應理解,不同晶片的FAR值可能存在變化。
因此,提出在根據本案內容的某些實施例最佳化分類器時選擇最佳工作點以便考慮工具間差異。現在轉向圖6B,圖示根據當前公開的主題的某些實施例的基於多個參數的工作點的選擇。
分類器效能可以用諸如FAR、DOI擷取率(CR)、過濾率、準確度、純度、拒絕率等某些效能度量來測量。效能度量可以是預定義的,並且可以決定類型/類別之間的閾值選擇。所期望的分類效能及/或用於實現所選擇的效能的類別的對應閾值的選擇在本文中可以被稱為分類器的工作點。
如圖6B所示,圖表的x軸表示擷取率(CR),即在給定閾值處擷取的DOI相對於整個已知DOI整體的百分比。圖表的y軸表示FAR,FAR被定義為對於給定閾值設置被分類為DOI的缺陷內的噪擾或錯誤警報的百分比。圖6B中的曲線圖示了對應於不同系統效能的工作點集合。如圖所示,在工作點WP2處,可以擷取更多的DOI(即,DOI擷取率相對較高),然而,FAR也相對較高。在不同的工作點WP1處,FAR低於WP2,同時擷取率也降低。換句話說,在WP 1處,較少的噪擾缺陷被分類為DOI,但這是以濾除一大部分DOI為代價的。因此,在本示例中,每個工作點在擷取率與FAR這兩個效能度量之間提供不同的折衷。應當注意,如圖6B所示,除了FAR和CR之外或代替FAR和CR,可以使用不同的效能度量/參數來決定工作點。
根據本案內容的某些實施例,為了考慮到工具間差異,提出在決定工作點時添加工具間差異作為附加參數(例如,將附加參數作為圖6B的圖表中除了FAR和CR之外的附加維度添加)。在一些情況下,可以根據預定條件選擇工作點,以便試圖使FAR和工具間差異最小化,同時使擷取率最大化。作為示例,工作點可以從由CR的下部範圍和FAR的上部範圍以及工具間差異限定的預定範圍中選擇。雖然圖6B僅圖示兩個示例性工作點,但是應當理解,工作點的預定範圍可以表示為如圖6B所示的分佈在參數空間中的點雲。
在訓練期間,基於訓練資料訓練分類器,以便設置(多個)閾值,從而實現由工作點定義的期望效能。閾值可用於在被標識為屬於給定類別的缺陷與被標識為不屬於給定類別的缺陷之間進行區分。閾值因此也被稱為邊界或分隔線/平面,這取決於缺陷候選的屬性超空間的維度。可以獲得工作點與閾值的值之間的相關性。基於期望的工作點(效能量度的值),可以決定類別的特定閾值(或閾值集合)。因此,經訓練的分類器能夠根據閾值決定作為多維屬性空間(在本文中稱為稱為屬性超空間)之每一者預定缺陷類別相關聯的缺陷特徵/屬性的函數的給定缺陷候選的類別。具體地,分類器在運行時針對要分類的每個給定缺陷候選接收其特徵的相應集合,並且應用(多個)閾值來相應地分類給定缺陷候選。根據所需的(多個)閾值,分類器在預定義的缺陷類別之間分割屬性超空間,並且取決於每個缺陷候選在屬性超空間中的位置,藉由為每個缺陷候選指派缺陷類別之一來產生經分類的缺陷。
應當注意,儘管圖6A和6B圖示兩個檢驗工具之間的工具間差異的示例,但是這絕不應當被認為是限制本案內容。可以以類似的方式將多個檢驗工具(例如,兩個以上的檢驗工具)應用於當前公開的主題。作為示例,可以使用多個參數,每個參數指示一對工具之間的特定工具間差異。作為另一示例,當決定工作點時,可以使用指示多個工具間的組合/平均工具間差異的組合參數。作為進一步的示例,可以使用指示具有最差效能的工具與具有最佳效能的工具之間的變化的參數。
根據當前公開的主題的某些實施例,取樣可以包括藉由不同包括處理步驟製造的多個層。對於每個層,存在用於檢驗所述層的具體檢查方案。具體方案可以包括基於層資料來訓練的具體分類器。由此,對於包括層1至層n的產品,將存在對應於相應層而訓練的n個分類器。可以使用上述最佳化程序重新訓練並最佳化n個分類器中的每一個。這些分類器可以被稱為層特定分類器。
在一些實施例中,通用分類器(GPC)可以使用從所有層收集的所有訓練資料來產生和訓練。GPC可使用所收集的訓練資料訓練一次,並且訓練的GPC可以用於在運行時對所有層執行分類。由於GPC是基於關於不同層的相當大量的訓練資料來訓練的,所以可以假設訓練的GPC已經看到各種類型的缺陷和噪擾,並且可以直接用於運行時分類而無需進一步重新訓練。例如,當(當前產品或不同產品的)新的層到達時,GPC可以直接用於對新的層資料執行分類,而不必訓練新的層特定分類器。
對於給定層,GPC作為更一般化的分類器,與針對給定層專門訓練的層特定分類器相比可能具有較差的效能。圖7A圖示根據當前公開的主題的某些實施例的針對給定層的GPC與層特定分類器之間的效能比較的圖表。如圖表中所示,x軸表示擷取率(CR),並且y軸表示錯誤警報率(FAR)。對於新的層n+1,層特定分類器(表示為分類器n+1)具有比GPC更好的效能,例如,在給定的FAR下,分類器n+1的CR高於GPC中的CR,而在給定的CR下,分類器n+1的FAR低於GPC的FAR。
然而,與基於層訓練資料訓練並且將在運行時使用新的層資料不斷地重新訓練的層特定分類器相比,GPC具有不導致進一步訓練成本的優點並且因此易於由客戶使用。繼續圖7A中的示例,諸如分類器n+1之類的層特定分類器通常將具有與GPC相比更好的效能,而同時更昂貴,由於其需要來自FAB的更多資源和用於重新訓練的工具,如圖7B所示。在一些情況下,有可能用GPC開始所述程序並且如果需要的話移至分類器n+1。例如,GPC可以用於對新的層n+1執行分類,並且取決於效能,如果需要,可以決定訓練層特定分類器以改善效能。
應當注意,所示出的示例在本文中僅出於說明的目的而描述,並且不應當被視為以任何方式限制本案內容。除上述之外或代替上述,可以使用其他合適的示例。
如本文描述的方案最佳化程序的某些實施例的優點之一是在檢查方案中包括的分類器可以基於最新的生產資料被頻繁且自動地重新訓練和更新,從而使得能夠最佳化檢查方案以對晶片/製程變化等更加穩健。
如本文描述的方案最佳化程序的某些實施例的優點之一是使用各種類型的特徵來重新訓練分類器的能力,包括以各種方式(例如,藉由監督及/或無監督的學習模型)提取的檢驗特徵,可選地具有附加特徵(諸如例如,工具特徵及/或缺陷特徵及/或晶片特徵),以便改進所訓練的分類器的效能(例如,準確度)。
如本文描述的方案最佳化程序的某些實施例的優點之一是使用從檢驗圖像中提取的檢驗特徵而不是使用從審查圖像中提取的特徵,以便能夠將大量的檢驗圖像資料用於訓練目的。例如,所有可用的檢驗圖像(或其中至少一些)可以用作訓練資料以用於訓練無監督模型及/或監督模型,使得訓練的模型能夠出於重新訓練目的向分類器提供運行時檢驗圖像的可靠的代表性特徵。
如本文描述的方案最佳化程序的某些實施例的優點之一是在訓練分類器時考慮各種檢驗工具之間的工具間差異的能力,例如,藉由基於複數個效能參數選擇工作點並且根據工作點執行重新訓練,所述效能參數包括指示多個檢驗工具之間的變化的工具間差異參數。以這種方式重新訓練的分類器對工具間變化更加穩健。
除了分類器模組之外或代替分類器模組,如本文當前公開的方案最佳化程序可以用於更新檢查方案中的不同模組(例如,任何基於學習的模組),這樣的模組包括例如分割模組、降噪模組、圖元參考模組、系統效能和協同校正模組等。
將理解,本案內容不限於應用到在本文含有的描述中闡述或在附圖中示出的細節。
也將理解,根據本案內容的系統可以至少部分地在合適地程式設計的電腦上實現。同樣,本案內容構想到可由電腦讀取的電腦程式以用於執行本案內容的方法。本案內容進一步構想到有形地體現指令程式的非暫時性電腦可讀記憶體,該等指令可由電腦執行以用於執行本案內容的方法。
本案內容能夠具有其他實施例並且以各種方式實踐和執行。因此,將理解,本文採用的措辭和術語是出於描述的目的並且不應當被認為是限制。因此,本領域的技藝人士將瞭解,本案內容所基於的概念可以容易用作設計其他結構、方法和系統的基礎,以用於實現當前公開的主題的若干目的。
本領域的技藝人士將容易理解,各種修改和改變可以在不脫離本案內容的範圍的情況下應用到如上文描述的本案內容的實施例,本案內容的範圍在所附申請專利範圍中並由所附申請專利範圍限定。
100:檢查系統 101:系統 102:處理器和記憶體電路系統 104:特徵提取器 106:訓練引擎 108:方案更新模組 110:檢驗工具 111:檢查方案 112:偵測模組 113:分類器模組 114:審查工具 122:儲存單元 124:圖形化使用者介面 126:I/O介面 202:操作 204:操作 206:操作 208:操作 210:操作 212:操作 310:操作 312:操作 314:操作 320:操作 322:操作 324:操作 330:操作 332:操作 334:操作 335:操作 336:操作 338:操作 402:檢驗圖像 403:標籤資料 404:圖像面片 406:無監督模型 408:潛在表示 410:監督模型 412:中間層 414:特定層 416:第三特徵 602:最佳化 604:最佳化 WP1:工作點 WP2:工作點
為了理解本案內容並且瞭解本案內容如何在實踐中執行,現將參考附圖僅藉由非限制性示例的方式來描述實施例,在附圖中:
圖1圖示根據當前公開的主題的某些實施例的用於檢查半導體取樣的檢查系統和用於自動最佳化可由檢查系統使用的檢查方案的系統的功能方塊圖。
圖2圖示根據當前公開的主題的某些實施例的可用於檢查半導體取樣的檢查方案的自動最佳化的一般化流程圖;
圖3圖示根據當前公開的主題的某些實施例的訓練無監督模型、監督模型、和分類器的一般化流程圖。
圖4圖示根據當前公開的主題的某些實施例的重新訓練分類器的示意圖。
圖5A和圖5B圖示根據當前公開的主題的某些實施例的關於檢驗工具和審查工具的方案最佳化器實現方式的兩個示意圖。
圖6A圖示根據當前公開的主題的某些實施例的示出工具間差異的示意圖。
圖6B圖示根據當前公開的主題的某些實施例的基於多個參數的工作點選擇的圖示。
圖7A圖示根據當前公開的主題的某些實施例的針對給定層的GPC與特定於層的分類器之間的效能比較的圖。
圖7B圖示根據當前公開的主題的某些實施例的關於特定於層的分類器的GPC的成本和效能的圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:檢查系統
101:系統
102:處理器和記憶體電路系統
104:特徵提取器
106:訓練引擎
108:方案更新模組
110:檢驗工具
111:檢查方案
112:偵測模組
113:分類器模組
114:審查工具
122:儲存單元
124:圖形化使用者介面
126:I/O介面

Claims (20)

  1. 一種可用於檢查一半導體取樣的一檢查方案的自動最佳化的電腦化系統,該系統包括: 一儲存單元,經配置為儲存:i)一或多個檢驗圖像,每個檢驗圖像表示該半導體取樣的至少一部分,該一或多個檢驗圖像指示使用包括在該檢查方案中的一第一分類器從一缺陷圖中選擇的相應缺陷候選;ii)標籤資料,該標籤資料分別與該一或多個檢驗圖像相關聯並且提供該相應缺陷候選的類型的資訊;及 一處理和記憶體電路系統(PMC),操作地連接到該儲存單元並且被配置為: 提取表徵該一或多個檢驗圖像的檢驗特徵; 使用該檢驗特徵和該標籤資料重新訓練該第一分類器,從而產生一第二分類器;及 藉由用該第二分類器替換該第一分類器來最佳化該檢查方案; 其中該經最佳化的檢查方案可用於檢查一後續的半導體取樣。
  2. 如請求項1之電腦化系統,其中該缺陷圖由一檢驗工具產生並且指示該半導體取樣上的缺陷候選分佈。
  3. 如請求項1之電腦化系統,其中該相應缺陷候選的該類型中的每一者指示以下各項中的至少一項:感興趣的缺陷(DOI)、噪擾和一相應缺陷候選的一類別。
  4. 如請求項1之電腦化系統,其中該檢驗特徵包括由使用一組訓練檢驗圖像預先訓練以提取該一組訓練檢驗圖像的代表性特徵的一無監督模型提取的第一特徵。
  5. 如請求項4之電腦化系統,其中該第一分類器使用具有相應關聯的標籤資料的該一組訓練檢驗圖像中的一或多個訓練檢驗圖像來預先訓練。
  6. 如請求項4之電腦化系統,其中該檢驗特徵進一步包括由一監督模型提取的第二特徵,該監督模型使用具有相應關聯的標籤資料的該一組訓練檢驗圖像中的一或多個訓練檢驗圖像來預先訓練以決定缺陷候選的類型。
  7. 如請求項6之電腦化系統,其中該第二特徵包括以下各項中的至少一項:i)表徵該一或多個檢驗圖像的特徵向量,以及ii)指示一檢驗圖像上的每個給定缺陷候選屬於一特定類型的概率的標籤預測特徵。
  8. 如請求項1之電腦化系統,其中該PMC經配置為除了該檢驗特徵和該標籤資料之外,還使用包括以下各項中的至少一項的第三特徵來重新訓練該第一分類器:工具特徵、缺陷特徵和取樣特徵。
  9. 如請求項1之電腦化系統,其中該PMC進一步經配置為在該重新訓練該第一分類器之前使用該一或多個檢驗圖像和該標籤資料來重新訓練該無監督模型及/或該監督模型。
  10. 如請求項1之電腦化系統,其中該PMC進一步經配置為基於一或多個參數來決定是否最佳化該檢查方案,並且回應於一肯定的決定來執行該最佳化和使用。
  11. 如請求項10之電腦化系統,其中該一或多個參數包括方案更新頻率、方案效能歷史、客戶策略和情況分析。
  12. 如請求項1之電腦化系統,其中該檢查方案進一步包括一至少附加的第一分類器,並且該PMC進一步經配置為執行該獲得、提取和重新訓練以用於產生對應於該至少附加的第一分類器的一至少附加的第二分類器,並且用該第二分類器和該至少附加的第二分類器來最佳化該檢查方案。
  13. 如請求項1之電腦化系統,其中該儲存單元儲存由多個檢驗工具擷取的複數個檢驗圖像,並且其中該第一分類器的該重新訓練根據基於複數個效能參數選擇的一工作點,該複數個效能參數包括指示該多個檢驗工具之間的變化的一工具間差異參數。
  14. 如請求項1之電腦化方法,其中該取樣包括多個層,並且該PMC經配置為對每個層執行該檢查方案的該提取、重新訓練和最佳化,並且該PMC進一步經配置為基於來自該多個層的訓練資料來訓練一通用分類器,其中該通用分類器可用於對一或多個新的層執行分類。
  15. 一種可用於檢查一半導體取樣的一檢查方案的自動最佳化的電腦化方法,該方法由一處理和記憶體電路系統(PMC)執行,該方法包括以下步驟: 獲得一或多個檢驗圖像,每個檢驗圖像表示該半導體取樣的至少一部分,該一或多個檢驗圖像指示使用包括在該檢查方案中的一第一分類器從一缺陷圖中選擇的相應缺陷候選; 獲得分別與該一或多個檢驗圖像相關聯並且提供該相應缺陷候選的類型的資訊的標籤資料; 提取表徵該一或多個檢驗圖像的檢驗特徵; 使用該第一特徵和該標籤資料重新訓練該第一分類器,從而產生一第二分類器;及 藉由用該第二分類器替換該第一分類器來最佳化該檢查方案; 其中該經最佳化的檢查方案可用於檢查一後續的半導體取樣。
  16. 如請求項15之電腦化方法,其中該檢驗特徵包括由使用一組訓練檢驗圖像預先訓練以提取該一組訓練檢驗圖像的代表性特徵的一無監督模型提取的第一特徵。
  17. 如請求項16之電腦化方法,其中該檢驗特徵進一步包括由一監督模型提取的第二特徵,該監督模型使用具有相應關聯的標籤資料的該一組訓練檢驗圖像中的一或多個訓練檢驗圖像來預先訓練以決定缺陷候選的類型。
  18. 如請求項16之電腦化方法,其中該第二特徵包括以下各項中的至少一項:i)表徵該一或多個檢驗圖像的特徵向量,以及ii)指示該一或多個檢驗圖像上的缺陷存在的概率的標籤預測特徵。
  19. 如請求項16之電腦化方法,其中該重新訓練之步驟包括以下步驟:除了該檢驗特徵和該標籤資料之外,還使用包括以下各項中的至少一項的第三特徵來重新訓練該第一分類器:工具特徵、缺陷特徵和取樣特徵。
  20. 一種有形地體現一指令程式的非暫時性電腦可讀取儲存媒體,該等指令在由一電腦執行時使該電腦執行可用於檢查一半導體取樣的一檢查方案的自動最佳化的方法,該方法包括以下步驟: 獲得一或多個檢驗圖像,每個檢驗圖像表示該半導體取樣的至少一部分,該一或多個檢驗圖像指示使用包括在該檢查方案中的一第一分類器從一缺陷圖選擇的相應缺陷候選; 獲得分別與該一或多個檢驗圖像相關聯並且提供該相應缺陷候選的類型的資訊的標籤資料; 提取表徵該一或多個檢驗圖像的檢驗特徵; 使用該第一特徵和該標籤資料重新訓練該第一分類器,從而產生一第二分類器;及 藉由用該第二分類器替換該第一分類器來最佳化該檢查方案; 其中該經最佳化的檢查方案可用於檢查一後續的半導體取樣。
TW110119349A 2020-08-17 2021-05-28 檢查方案的自動最佳化 TW202209153A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/995,728 2020-08-17
US16/995,728 US11307150B2 (en) 2020-08-17 2020-08-17 Automatic optimization of an examination recipe

Publications (1)

Publication Number Publication Date
TW202209153A true TW202209153A (zh) 2022-03-01

Family

ID=80224064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119349A TW202209153A (zh) 2020-08-17 2021-05-28 檢查方案的自動最佳化

Country Status (4)

Country Link
US (3) US11307150B2 (zh)
KR (1) KR20220022091A (zh)
CN (3) CN114155181B (zh)
TW (1) TW202209153A (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022047208A1 (en) * 2020-08-28 2022-03-03 Pdf Solutions, Inc. Sequenced approach for determining wafer path quality
US11443420B2 (en) * 2020-12-28 2022-09-13 Applied Materials Israel Ltd. Generating a metrology recipe usable for examination of a semiconductor specimen
US11922619B2 (en) 2022-03-31 2024-03-05 Kla Corporation Context-based defect inspection
US20230314336A1 (en) 2022-03-31 2023-10-05 Kla Corporation Multi-mode optical inspection
WO2024044947A1 (zh) * 2022-08-30 2024-03-07 宁德时代新能源科技股份有限公司 缺陷检测的方法、装置和计算机可读存储介质
WO2024099710A1 (en) * 2022-11-11 2024-05-16 Asml Netherlands B.V. Creating a dense defect probability map for use in a computational guided inspection machine learning model
CN117250209B (zh) * 2023-11-14 2024-02-27 长沙和捷实业有限公司 一种管道连接环自动光学筛选图像处理系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514685B2 (en) 2014-06-13 2019-12-24 KLA—Tencor Corp. Automatic recipe stability monitoring and reporting
US9880550B2 (en) 2015-03-24 2018-01-30 Applied Materials Israel Ltd. Updating of a recipe for evaluating a manufacturing stage of an electrical circuit
TWI737659B (zh) * 2015-12-22 2021-09-01 以色列商應用材料以色列公司 半導體試樣的基於深度學習之檢查的方法及其系統
US10809635B2 (en) * 2017-11-20 2020-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Defect inspection method and defect inspection system
KR20190073756A (ko) * 2017-12-19 2019-06-27 삼성전자주식회사 반도체 결함 분류 장치, 반도체의 결함을 분류하는 방법, 그리고 반도체 결함 분류 시스템
US11257207B2 (en) * 2017-12-28 2022-02-22 Kla-Tencor Corporation Inspection of reticles using machine learning
CN110945528B (zh) * 2018-02-07 2021-04-02 应用材料以色列公司 产生可用于检查半导体样品的训练集的方法及其系统
US11199506B2 (en) * 2018-02-21 2021-12-14 Applied Materials Israel Ltd. Generating a training set usable for examination of a semiconductor specimen
US10713769B2 (en) * 2018-06-05 2020-07-14 Kla-Tencor Corp. Active learning for defect classifier training
US10957034B2 (en) * 2019-01-17 2021-03-23 Applied Materials Israel Ltd. Method of examination of a specimen and system thereof
CN110349145B (zh) * 2019-07-09 2022-08-16 京东方科技集团股份有限公司 缺陷检测方法、装置、电子设备以及存储介质
CN111259784B (zh) * 2020-01-14 2023-02-07 西安理工大学 基于迁移学习和主动学习的sar图像变化检测方法
US11022566B1 (en) 2020-03-31 2021-06-01 Applied Materials Israel Ltd. Examination of a semiconductor specimen

Also Published As

Publication number Publication date
CN114155181B (zh) 2023-10-24
US20220050061A1 (en) 2022-02-17
US12007335B2 (en) 2024-06-11
CN114155181A (zh) 2022-03-08
CN117392072B (zh) 2024-04-02
US20220205928A1 (en) 2022-06-30
KR20220022091A (ko) 2022-02-24
CN117392073A (zh) 2024-01-12
CN117392072A (zh) 2024-01-12
US11686689B2 (en) 2023-06-27
US20230288345A1 (en) 2023-09-14
US11307150B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US12007335B2 (en) Automatic optimization of an examination recipe
CN110945528B (zh) 产生可用于检查半导体样品的训练集的方法及其系统
TWI834916B (zh) 基於機器學習的取樣缺陷檢測
CN109598698B (zh) 用于对多个项进行分类的系统、方法和非暂时性计算机可读取介质
TWI796431B (zh) 半導體樣品的基於深度學習的檢查的方法及其系統
CN114092387B (zh) 生成可用于检查半导体样本的训练数据
US20220222806A1 (en) Machine learning-based classification of defects in a semiconductor specimen
CN111512324B (zh) 半导体样品的基于深度学习的检查的方法及其系统
US20230306580A1 (en) Machine learning based examination of a semiconductor specimen and training thereof
KR20230174693A (ko) 반도체 시편들을 위한 검사 레시피 최적화
JP2022013667A (ja) 半導体試料の画像のセグメンテーション
TW202413931A (zh) 用於半導體取樣的檢查配方最佳化