TW202208792A - 濕度調節元件、濕度調節模組及濕度調節系統 - Google Patents

濕度調節元件、濕度調節模組及濕度調節系統 Download PDF

Info

Publication number
TW202208792A
TW202208792A TW110126116A TW110126116A TW202208792A TW 202208792 A TW202208792 A TW 202208792A TW 110126116 A TW110126116 A TW 110126116A TW 110126116 A TW110126116 A TW 110126116A TW 202208792 A TW202208792 A TW 202208792A
Authority
TW
Taiwan
Prior art keywords
air
air passage
humidity
mentioned
moisture
Prior art date
Application number
TW110126116A
Other languages
English (en)
Inventor
竹之内雄太
池永暁恵
謝一珺
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202208792A publication Critical patent/TW202208792A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Signal Processing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Central Air Conditioning (AREA)

Abstract

本發明之濕度調節元件具備:第一風路;第二風路;及透濕膜,其區劃上述第一風路與上述第二風路,且於上述第一風路之空氣與上述第二風路之空氣間使水蒸氣透過。上述透濕膜具有平面形狀,於一面設置上述第一風路,於另一面設置上述第二風路。於將上述平面形狀以直線一分為二之一區域之上述一面側,配置上述第一風路之入口及出口,於另一區域之上述另一面側,配置上述第二風路之入口及出口。

Description

濕度調節元件、濕度調節模組及濕度調節系統
本發明係關於一種濕度調節元件、濕度調節模組及濕度調節系統。
植物工廠中,於完全封閉或半封閉之設施(建築物)內,控制光、溫度、濕度及二氧化碳(CO2 )濃度等內部環境,生產蔬菜等植物。植物工廠大致分為不使用太陽光而使用LED(Light Emitting Diode:發光二極體)等人工光之完全人工光型(封閉型),與使用太陽光之太陽光型(半封閉型)。封閉工廠之絕熱性高於半封閉工廠,但任一者之情形時,皆需要將溫度、濕度等室內環境保持穩定,因而使用空調或除濕機進行環境控制。作為此種空氣調節技術,完成有各種提案(例如參照專利文獻1~2)。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利特開2016-97368號公報 專利文獻2:日本專利特開2018-198537號公報
[發明所欲解決之問題]
植物工廠中,使顯熱與潛熱之負荷分散而控制環境。例如,光照期(照明點亮中)之工廠內之溫度較高之情形時,藉由空調之冷氣運轉進行溫度控制(去除顯熱)。植物工廠內因植物之蒸騰而變為高濕度,但藉由空調,與去除顯熱同時去除潛熱(除濕)。另一方面,黑暗期(照明熄滅中)之工廠內之溫度不高之情形時,空調之冷氣負荷變小,不進行空調之冷氣運轉之除濕。 因此,未充分進行空調之冷氣運轉之除濕時,使空調除濕運轉或使除濕機運轉,分擔除濕之負荷。
然而,藉由空調之除濕運轉或並用除濕機控制濕度時,花費能源成本。
本發明係鑑於上述狀況而完成者,其目的在於提供一種可削減濕度調整所花費之能源成本之濕度調節元件、濕度調節模組及濕度調節系統。 [解決問題之技術手段]
本發明之濕度調節元件具備:第一風路;第二風路;及透濕膜,其區劃上述第一風路與上述第二風路,於上述第一風路之空氣與上述第二風路之空氣間使水蒸氣透過;且上述透濕膜具有平面形狀,於一面設置上述第一風路,於另一面設置上述第二風路,於將上述平面形狀以直線一分為二之一區域之上述一面側,配置上述第一風路之入口及出口,於另一區域之上述另一面側,配置上述第二風路之入口及出口。
本發明之濕度調節元件中,例如上述透濕膜包含:複數個第一透濕膜,其等於表面直立設置有形成上述第一風路之複數個第一肋部;及複數個第二透濕膜,其等於表面直立設置有形成上述第二風路之複數個第二肋部;將上述第一透濕膜與上述第二透濕膜交替積層。
本發明之濕度調節元件中,例如上述第一肋部及上述第二肋部具有互相平行配置之平行部。
本發明之濕度調節模組係具備本發明之濕度調節元件、及潛熱交換效率低於上述濕度調節元件之熱交換元件者,且上述熱交換元件與上述濕度調節元件相鄰設置,且具備:第三風路,其使供給至上述第二風路之空氣通過;第四風路,其使自上述第二風路供給之空氣通過;及透濕膜,其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述空氣與通過上述第四風路之上述空氣間進行熱交換。
本發明之濕度調節模組係設置於設施者,且具備:濕度調節元件,其具有:第一風路,其使上述設施內之空氣即內部空氣通過;第二風路,其使上述設施外之空氣即外部空氣通過;及透濕膜,其區劃上述第一風路與上述第二風路,於上述內部空氣與上述外部空氣間使水蒸氣透過;上述第一風路之入口及出口通至上述設施內,上述第二風路之入口及出口通至上述設施外。
本發明之濕度調節模組例如進而具備:風扇,其為促進上述內部空氣向上述第一風路供給或排出者、及促進上述外部空氣向上述第二風路供給及排出者中之至少任一者。
本發明之濕度調節模組例如具備:熱交換元件,其與上述濕度調節元件相鄰設置,具有:第三風路,其使自上述設施外供給、且被供給至上述第二風路之上述外部空氣通過;第四風路,其使通過上述第二熱風路且排出至上述設施外之上述外部空氣通過;及透濕膜,其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述外部空氣與通過上述第四風路之上述外部空氣間進行熱交換;且該熱交換元件之潛熱交換效率低於上述濕度調節元件。
本發明之濕度調節模組例如進而具備:殼體,其收容上述濕度調節元件;第一及第二管道,其等設置於上述殼體之外部;且將上述內部空氣供給至上述殼體內,通過上述第一風路及上述第二管道,排出至上述設施內;將上述外部空氣供給至上述殼體內,通過上述第三風路、上述第二風路、上述第一管道、及上述第四風路,排出至上述設施外。
本發明之濕度調節模組係例如上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀,上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊,上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。
本發明之濕度調節模組係例如上述熱交換元件自上述透濕膜之法線方向觀察,具有矩形狀,上述第三風路之入口及出口分別設置於上述熱交換元件之互相對向之二邊,上述第四風路之入口及出口分別設置於上述熱交換元件之與上述二邊不同之互相對向之二邊。
本發明之濕度調節模組例如進而具備:殼體,其收容上述濕度調節元件;第三及第四管道,其等設置於上述殼體之外部;且將上述內部空氣供給至上述殼體內,通過上述第一風路及上述第三管道,排出至上述設施內;將上述外部空氣供給至上述殼體內,通過上述第二風路及上述第四管道,排出至上述設施外。
本發明之濕度調節模組係例如上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀,上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊,上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。
本發明之濕度調節系統具備:本發明之濕度調節模組;及空氣調節裝置,其將上述設施內之上述內部空氣之溫度調整至特定範圍內。
本發明之濕度調節系統例如進而具備:濕度監視部,其監視上述內部空氣之濕度;及控制裝置,其於上述空氣調節裝置之運轉率未達規定值之情形時,使上述濕度調節模組動作。 [發明之效果]
根據本發明,可削減濕度調整花費之能源成本。
以下,基於圖式,詳述本發明之濕度調節元件、濕度調節模組及濕度調節系統之較佳實施形態。以下,顯示將濕度調節元件、濕度調節模組及濕度調節系統應用於植物工廠內之濕度調整之例。
植物工廠內部為了維持適於植物培育之穩定環境而受控制。作為一例,植物工廠內部於葉菜類之情形時,設為氣溫25°C±1°C、相對濕度70±10%、CO2 濃度1000 ppm、光強度於PPF(Photosynthetic Photon Flux:光合光子通量)之單位下為200 μmol·m-2 ·s-1 之較佳環境條件(出典:「設施園藝、植物工廠手冊」日本設施園藝協會、P333),且需要保持於該等範圍內。
但,植物工廠內部必須控制濕度,藉由植物之蒸騰作用,濕度變為100%RH。因此,需要將植物工廠內之空氣(室內空氣、內部空氣)除濕。本揭示中,顯示使用透濕膜進行植物工廠內之濕度調整之例。
(第1實施形態:濕度調節元件10、濕度調節元件10B) 圖1係顯示本發明之第1實施形態之濕度調節元件10之圖,圖1(a)顯示濕度調節元件10之概略立體圖,圖1(b)顯示透濕膜100之概略圖。圖2係風路單元11、12之概略立體圖,圖3係顯示透濕膜100之動作原理之圖。如該等圖所示,濕度調節元件10係交替積層有風路單元11、12者,具備第一風路P1、第二風路P2、及透濕膜100。第一風路P1使植物工廠(建築物)內之空氣即室內空氣通過。第二風路P2使植物工廠外之空氣即室外空氣(外部空氣)通過。
透濕膜100至少具有透濕性、阻氣性及導熱性即可,其材質或構成未特別限定。作為透濕膜100,例如可使用使氯化鈣(CaCl2 )等吸濕材分散(揉進)於以纖維素纖維為主體之多孔原紙(日本紙、牛皮紙等)者、或使凝聚之聚乙二醇或聚乙烯醇等親水化材料分散於除塞璐芬外,包含甲殼素或絲心蛋白等非水溶性纖維之纖維層中者等。
參照圖1(b),說明透濕膜100之較佳之一例。透濕膜100包含支持體120及複合材110。支持體120包含聚合物或中空纖維等多孔材料。複合材110塗佈於支持體120之上。複合材110包含氧化石墨烯化合物及聚乙烯醇。氧化石墨烯化合物及聚乙烯醇亦可交聯。氧化石墨烯化合物與聚乙烯醇之重量相比,亦可存在約0.1重量%~約10重量%。氧化石墨烯化合物亦可為氧化石墨烯、還原之氧化石墨烯、官能化之氧化石墨烯、或官能化及還原之氧化石墨烯。
如圖2所示,風路單元11具有俯視六邊形狀之透濕膜100、及直立設置於透濕膜100之表面之肋部11a1~11a5。肋部11a1具有沿六邊形狀之一邊之直線形狀。肋部11a2~肋部11a5分別具有與肋部11a1相同形狀之直線部、及自直線部之兩端分別延伸之延伸部。肋部11a5沿透濕膜100之緣部設置,肋部11a4~11a1以各直線部互相平行之方式等間隔配置。
風路單元12具有俯視六邊形狀之透濕膜100、及直立設置於透濕膜100之表面之肋部12a1~12a5。肋部12a1具有沿六邊形狀之一邊之直線形狀。肋部12a2~肋部12a5分別具有與肋部12a1相同形狀之直線部、及自直線部之兩端分別延伸之延伸部。肋部12a5沿透濕膜100之緣部設置,肋部12a1~12a4以各直線部互相平行之方式等間隔配置。
肋部11a1~11a5及肋部12a1~12a5可使用聚乙烯或聚丙烯等樹脂、鋁等金屬、玻璃、陶瓷、纖維材料、木材、紙材等。尤其,若使用吸濕性佳之素材,則濕度調節元件之透濕性能(潛熱交換效率)提高。
風路單元11、12以肋部11a1~11a5及肋部12a1~12a5之各直線部互相平行之方式積層。交替積層之風路單元11、12中,肋部11a1~11a5、與配置於肋部11a1~11a5之上下之透濕膜100構成第一風路P1,肋部12a1~12a5、與配置於肋部12a1~12a5之上下之透濕膜100構成第二風路P2。於最上層之風路單元12之上方,固定透濕膜100。第一風路P1之入口P1I及出口P1O通至植物工廠內,第二風路P2之入口P2I及出口P2O通至植物工廠外(參照圖4)。第一風路P1之入口P1I及出口P1O配置於將透濕膜100以使隔著透濕膜100之六邊形外心對向之二個頂點連接之直線(圖1(b)中,沿左右方向延伸之直線L)一分為二之一區域之一面側。又,第二風路P2之入口P2I及出口P2O配置於另一區域之另一面側。如此,藉由隔著直線L,將第一風路P1之入口P1I及出口P1O配置於一區域,將第二風路P2之入口P2I及出口P2O配置於另一區域,可簡化通向植物工廠之內部及外部各者之通風路(配管)構成。另,濕度調節元件10中之風路單元11、12之積層數、以及肋部11a1~11a5及12a1~12a5之高度、寬度(相鄰肋部間之間隔)及數量為根據規格適當設定者,即不限定於圖1(a)、圖2所示者。
如圖3所示,透濕膜100具有阻氣性,區劃第一風路P1與第二風路P2。透濕膜100具有透濕性,於通過第一風路P1之室內空氣(第一風路之空氣)與通過第二風路P2之室外空氣(第二風路之空氣)間,利用水蒸氣濃度梯度,使水蒸氣透過。流入至第一風路P1之室內空氣A11之水蒸氣濃度高於流入至第二風路P2之室外空氣A21之情形時,室內空氣A11所含之水蒸氣(濕氣)透過透濕膜100,朝室外空氣A21移動。隨著通過第二風路P2,含有之水蒸氣量增加之室外空氣A22自第二風路P2向室外排出。另一方面,隨著通過第一風路P1,含有之水蒸氣量減少之室內空氣A12自第一風路P1供給至植物工廠內。又,透濕膜100具有導熱性,通過第一風路P1之室內空氣之熱朝通過第二風路P2之室外空氣移動。如此,透濕膜100於室內空氣與室外空氣間進行顯熱交換及潛熱交換。透濕膜100之顯熱交換效率及潛熱交換效率受厚度(愈薄效率愈佳)、經由膜之溫度差與濕度差(差愈大效率愈高)影響。又,透濕膜100之顯熱交換效率受素材之導熱率影響,透濕膜100之潛熱交換效率受素材之透濕度(水蒸氣透過度)、吸水性影響。考慮該等之影響,決定透濕膜100之材質、厚度。
根據以上說明之濕度調節元件10,室內空氣A11通過第一風路P1,作為室內空氣A12返回至植物工廠內,室外空氣A21通過第二風路P2,作為室外空氣A22排出至建築物外。此時,當室內空氣A11與室外空氣A21經由透濕膜100接觸時,水蒸氣(濕氣)及熱自水蒸氣濃度及溫度較高之室內空氣A11向水蒸氣濃度及溫度較低之室外空氣A21移動。即,藉由使室內空氣A11與室外空氣A21與透濕膜100接觸,可將室內空氣A11所含之濕氣向植物工廠外釋放。如此,根據濕度調節元件10,可不使用除濕機進行除濕,故可削減濕度調整花費之能源成本。又,根據濕度調節元件10,由於可不換氣而進行濕度調整,故可維持調整後之內部環境。因此,適於需要維持高濕度、高CO2 濃度之植物工廠內之濕度控制。
風路單元11、12之積層數根據濕度調節元件10之規格,適當設定為例如200階等,但藉由增加積層數,可增加透濕膜100與室內空氣及室外空氣之接觸面積,提高除濕量。又,藉由將第一風路P1之入口P1I及出口P1O配置於一區域,將第二風路P2之入口P2I及出口P2O配置於另一區域,可簡化通向植物工廠之內部及外部各者之通風路(配管)構成。再者,藉由肋部11a1~11a5及肋部12a1~12a5分別具有互相平行之直線部,通過直線部(平行部)之室內空氣及室外空氣經由透濕膜100互相接觸之時間變長,故可提高除濕量。
上述濕度調節元件10係於透濕膜100之表面直立設置有肋部11a1~11a5及肋部12a1~12a5者,但亦可取代肋部,於相鄰之透濕膜100間設置波形狀(波浪形)之隔離件。圖4所示之濕度調節元件10B係隔離件SP1、與配置於隔離件SP1之上下之透濕膜100構成第一風路P1,隔離件SP2、與配置於隔離件SP2之上下之透濕膜100構成第二風路P2。濕度調節元件100B中,第一風路P1之入口P1I及出口P1O亦通至植物工廠內,第二風路P2之入口P2I及出口P2O亦通至植物工廠外。第一風路P1之入口P1I及出口P1O配置於將透濕膜100以使隔著透濕膜100之六邊形外心而對向之二個頂點連接之直線(圖4中,於左右方向延伸之直線L)一分為二之一區域之一面側。又,第二風路P2之入口P2I及出口P2O配置於另一區域之另一面側。如此,藉由隔著直線L,將第一風路P1之入口P1I及出口P1O配置於一區域,將第二風路P2之入口P2I及出口P2O配置於另一區域,可簡化通向植物工廠之內部及外部各者之通風路(配管)構成。另,濕度調節元件10B中之透濕膜100及隔離件SP1、SP2之積層數、以及隔離件SP1、SP2中之波之高度、寬度(相鄰波間之間隔)及數量係根據規格適當設定者,即不限定於圖4所示者。
(第2實施形態:濕度調節模組200) 圖5係顯示本發明之第2實施形態之濕度調節模組200之概要之模式圖,圖6係第2實施形態之濕度調節模組200之概略縱剖視圖。圖7係顯示圖6所示之熱交換元件30之圖,圖7(a)係熱交換元件30之概略立體圖,圖7(b)係風路單元31、32之概略立體圖。圖5及圖6中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。第2實施形態中,有對與圖1~圖4所示之構件、部位相同或同等之構件、部位,標註相同符號,省略重複說明之情形。
參照圖5,說明濕度調節模組200之概要。濕度調節模組200中,濕度調節元件10與熱交換元件30以互相接觸之方式相鄰配置。熱交換元件30為主要進行顯熱交換之元件,即潛熱交換效率低於濕度調節元件10之熱交換元件。熱交換元件30中,自室外供給之室外空氣通過之風路、與排出至室外之室外空氣通過之風路於俯視時大致正交,且於經由透濕膜100A(參照圖7)通過各風路之室外空氣間進行顯熱交換(僅熱交換)。自植物工廠內部供給至濕度調節模組200之內部空氣如箭頭Y1所示,一面通過濕度調節元件10(第一風路P1),一面與通過第二風路P2之室外空氣經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),且再次返回至植物工廠內。另一方面,自室外供給至濕度調節模組200之室外空氣如箭頭Y2所示,通過熱交換元件30後,如箭頭Y3所示,通過濕度調節元件10(第二風路P2)。通過濕度調節元件10內之室外空氣通過熱交換元件30,排出至外部。如此,根據濕度調節模組200,可不進行換氣而將植物工廠內之多餘濕氣釋放至外部。
此處,設想室外空氣之溫度低於植物工廠內之溫度(例如25°C)之情形時,室外空氣不經由熱交換元件30,而直接供給至濕度調節元件10(第二風路P2)之構成。若將溫度較低之室外空氣供給至濕度調節元件10,則濕度調節元件10之透濕膜100之溫度降低。當透濕膜100冷卻至室內空氣之結露點以下時,產生結露。又,由於透濕膜100之潛熱交換效率亦較高,故若將溫度較低之室外空氣直接供給至濕度調節元件10,則導致植物工廠內部之熱經由透濕膜100移動至室外空氣,產生熱能損耗。
相對於此,本實施形態之濕度調節模組200中,濕度調節元件10中,自室內空氣(參照箭頭Y1)獲得熱(顯熱、潛熱)之室外空氣(參照箭頭Y3)流入至熱交換元件30(參照箭頭Y4)。因此,室外空氣(參照箭頭Y4)之熱(顯熱)經由熱交換元件30之透濕膜100A,移動至自室外流入之室外空氣(參照箭頭Y2)。如此,將經加熱之室外空氣供給至濕度調節元件10(第二風路P2)(參照箭頭Y3)。因此,根據濕度調節模組200,即使室外空氣之溫度較低之情形時,亦可防止透濕膜100之溫度降低,可防止透濕膜100表面之結露。又,根據濕度調節模組200,由於經由透濕膜100接觸之室內空氣與室外空氣之熱能差減小,故可減少來自植物工廠內部之熱能損耗。
接著,參照圖6及圖7,說明濕度調節模組200之細節。濕度調節模組200具備濕度調節元件10、熱交換元件30、殼體201、及風扇212、213。
殼體201收容濕度調節元件10及熱交換元件30。殼體201於內部設置隔板202~207,濕度調節元件10及熱交換元件30以互相接觸之方式相鄰固定於中央。隔板202、205沿水平方向延伸,將殼體201之內部空間區劃為上下。隔板203、204沿垂直方向延伸,將殼體201之內部空間上側沿水平方向區劃。隔板206、207沿垂直方向延伸,將殼體201之內部空間下側沿水平方向區劃。熱交換元件30連接於隔板202、203、206,濕度調節元件10連接於隔板204、205、207。殼體201之內部空間之上側區劃為第一空間200a、第二空間200b、第三空間200c之三者,下側區劃為第四空間200d、第五空間200e、第六空間200f之三者。
於殼體201之外部,設置連接口208~211。連接口208、210分別安裝於殼體201左側壁之開口部(未圖示)。室外空氣經由連接口208,供給至第一空間200a。通過熱交換元件30之室外空氣經由連接口210,自第四空間200d排出至室外。連接口209、211分別安裝於右側壁之開口部(未圖示)。通過濕度調節元件10之室內空氣經由連接口209,自第三空間200c供給至植物工廠內。室內空氣經由連接口211,供給至第六空間200f。
風扇212於第三空間200c內,配置於殼體201右側壁之連接口209,促進室內空氣向濕度調節元件10之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213於第四空間200d內,配置於殼體201左側壁之連接口210,促進室外空氣經由熱交換元件30,向濕度調節元件10之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
如圖7所示,熱交換元件30係交替積層有風路單元31、32者,具備第三風路P3、第四風路P4、及透濕膜100A。第三風路P3使自植物工廠外供給,且供給至第二風路P2之室外空氣通過。第四風路P4通過第二風路P2,使排出至植物工廠外之室外空氣通過。
透濕膜100A區劃第三風路P3與第四風路P4,在通過第三風路P3之室外空氣與通過第四風路P4之室外空氣間進行熱交換(主要為顯熱交換)。透濕膜100A亦可與透濕膜100同樣地構成。透濕膜100A之顯熱交換效率除了受素材之導熱率影響外,並受厚度(愈薄效率愈佳)、隔著膜之溫度差與濕度差(差愈大效率愈高)影響。考慮該等影響,而決定透濕膜100A之材質、厚度。
風路單元31具有俯視正方形狀之透濕膜100A、及直立設置於透濕膜100A之表面的複數個肋部31a。肋部31a具有沿正方形狀之一邊之直線形狀。複數個肋部31a以互相平行之方式,於透濕膜100A之兩緣部及兩緣部之間等間隔配置。
風路單元32具有俯視正方形狀之透濕膜100A、及直立設置於透濕膜100A之表面之複數個肋部32a。肋部32a具有沿正方形狀之一邊之直線形狀。複數個肋部32a以互相平行之方式,於透濕膜100A之兩緣部及兩緣部間等間隔配置。
風路單元31、32以複數個肋部31a及複數個肋部32a互相正交之方式積層。交替積層之風路單元31、32中,複數個肋部31a、與配置於複數個肋部31a上下之透濕膜100A構成第三風路P3,複數個肋部32a、與配置於複數個肋部32a上下之透濕膜100A構成第四風路P4。於最上層之風路單元31之上方,固定透濕膜100A。另,熱交換元件30中之風路單元31、32之積層數、以及複數個肋部31a、32a之高度、寬度(相鄰肋部間之間隔)及數量乃根據規格而適當設定,不限定於圖7所示者。另,於熱交換元件30中,亦可取代肋部31a、32a,而於相鄰之透濕膜100A間設置波形狀(波浪形)之隔離件(參照圖4、圖10)。
如圖6所示,熱交換元件30中,第三風路P3之入口P3I通至植物工廠外,第三風路P3之出口P3O通至濕度調節元件10之第二風路P2之入口P2I。第四風路P4之入口P4I通至濕度調節元件10之第二風路P2之出口P2O,第四風路P4之出口P4O通至植物工廠外。
參照圖6,說明濕度調節模組200之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部經由連接口211,被引入至殼體201內之第六空間200f。引入之室內空氣自入口P1I供給至濕度調節元件10之第一風路P1。通過第一風路P1之室內空氣與通過第二風路P2之室外空氣,經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),自出口P1O到達第三空間200c,且經由風扇212及連接口209返回至植物工廠內部。
另一方面,當風扇213動作時,植物工廠外之室外空氣經由連接口208被引入至殼體201內之第一空間200a。引入之室外空氣自入口P3I供給至熱交換元件30之第三風路P3。通過第三風路P3之室外空氣與通過第四風路P4之室外空氣經由透濕膜100A進行顯熱交換,自出口P3O到達第五空間200e,自入口P2I供給至濕度調節元件10之第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣,經由透濕膜100進行全熱交換,自出口P2O到達第二空間200b。包含來自室內空氣之水蒸氣及熱之室外空氣自入口P4I供給至熱交換元件30之第四風路P4。通過第四風路P4之室外空氣與通過第三風路P3之室外空氣,經由透濕膜100A進行顯熱交換,自出口P4O到達第四空間200d,經由風扇213及連接口210排出至植物工廠外。
如上說明,根據本實施形態之濕度調節模組200,可由不使用管道之簡化之模組構成,獲得第一實施形態之濕度調節元件10之效果。又,根據濕度調節模組200,藉由將室外空氣經由熱交換元件30供給至濕度調節元件10,即使室外空氣之溫度較低之情形時,亦可防止透濕膜100之溫度降低,且可防止透濕膜100表面之結露。再者,根據濕度調節模組200,由於經由透濕膜100接觸之室內空氣與室外空氣之熱能差減小,故可減少來自植物工廠內部之熱能損耗。
(第3實施形態:濕度調節模組200A) 圖8係本發明之第3實施形態之濕度調節模組200A之概略圖。圖9係顯示圖8所示之濕度調節元件10A之圖,圖9(a)係概略立體圖,圖9(b)係風路單元11A、12A之概略立體圖。圖8中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。第3實施形態中,有對與圖1~圖7所示之構件、部位相同或同等之構件、部位標註相同符號,省略重複說明之情形。
濕度調節模組200A具備濕度調節元件10A、熱交換元件30、殼體201A、風扇212、213、第一管道215及第二管道216。
殼體201A收容濕度調節元件10A及熱交換元件30。殼體201A於內部設置隔板202~207、214a、214b,濕度調節元件10A及熱交換元件30以互相分開之方式相鄰固定於中央。隔板202、214a、205沿水平方向延伸,將殼體201A之內部空間區劃為上下。隔板203、214b、204沿垂直方向延伸,將殼體201A之內部空間上側沿水平方向區劃。隔板206、207沿垂直方向延伸,將殼體201A之內部空間下側沿水平方向區劃。熱交換元件30連接於隔板202、203、214a、206,濕度調節元件10A連接於隔板214a、204、205、207。殼體201A之內部空間之上側區劃為第一空間200a、第二小空間200b1、200b2、第三空間200c之四者,下側區劃為第四空間200d、第五空間200e、第六空間200f之三者。
於殼體201A之外部,設置連接口208、210、211。連接口208、210分別安裝於殼體201A左側壁之開口部(未圖示)。室外空氣經由連接口208,供給至第一空間200a。通過熱交換元件30之室外空氣經由連接口210,自第四空間200d排出至室外。連接口211安裝於右側壁之開口部(未圖示)。植物工廠內之室內空氣經由連接口211,供給至第六空間200f。
風扇212於第二小空間200b2內,配置於殼體201A上壁之開口部(未圖示),促進室內空氣向濕度調節元件10A之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213於第四空間200d內,配置於殼體201A左側壁之連接口210,促進室外空氣經由熱交換元件30,向濕度調節元件10A之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
第一管道215及第二管道216設置於殼體201A之外部。第一管道215之兩端分別安裝於殼體201A上壁之二個部位之開口部(未圖示),且連通第三空間200c與第二小空間200b1。第二管道216係一端安裝於殼體201A上壁中配置有風扇212之開口部,另一端到達植物工廠內。
如圖9所示,濕度調節元件10A係交替積層有風路單元11A、12A者,具備第一風路P1、第二風路P2、及透濕膜100。第一風路P1使植物工廠(建築物)內之空氣即室內空氣通過。第二風路P2使植物工廠外之空氣即室外空氣通過。透濕膜100區劃第一風路P1與第二風路P2,於通過第一風路P1之室內空氣與通過第二風路P2之室外空氣間,進行顯熱交換及潛熱交換。
風路單元11A具有俯視正方形狀之透濕膜100、及直立設置於透濕膜100表面之複數個肋部11Aa。肋部11Aa具有沿正方形狀之一邊之直線形狀。複數個肋部11Aa以互相平行之方式,於透濕膜100之兩緣部及兩緣部間等間隔配置。
風路單元12A具有俯視正方形狀之透濕膜100、及直立設置於透濕膜100表面之複數個肋部12Aa。肋部12Aa具有沿正方形狀之一邊之直線形狀。複數個肋部12Aa以互相平行之方式,於透濕膜100之兩緣部及兩緣部間等間隔配置。
風路單元11A、12A以複數個肋部11Aa及複數個肋部12Aa互相正交之方式積層。交替積層之風路單元11A、12A中,複數個肋部11Aa、與配置於複數個肋部11Aa之上下之透濕膜100構成第一風路P1,複數個肋部12Aa、與配置於複數個肋部12Aa之上下之透濕膜100構成第二風路P2。於最上層之風路單元11A之上方,固定透濕膜100。第一風路之入口P1I及出口P1O通至植物工廠內,第二風路P2之入口P2I及出口P2O通至植物工廠外(參照圖8)。第一風路P1之入口P1I及出口P1O分別設置於正方形狀之透濕膜100之互相對向之二邊。第二風路P2之入口P2I及出口P2O分別設置於正方形狀之透濕膜100之與上述二邊不同之互相對向之二邊。另,濕度調節元件10A中之風路單元11A、12A之積層數、以及複數個肋部11Aa、12Aa之尺寸、寬度(相鄰肋部間之間隔)及數量係根據規格適當設定者,即不限定於圖9所示者。
參照圖8,說明濕度調節模組200A之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部經由連接口211被引入至殼體201A內之第六空間200f。引入之室內空氣自入口P1I供給至濕度調節元件10A之第一風路P1。通過第一風路P1之室內空氣與通過第二風路P2之室外空氣,經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),且自出口P1O到達第二小空間200b2,並經由風扇212及開口部通過第二管道216,返回至植物工廠內部。
另一方面,當風扇213動作時,植物工廠外之室外空氣經由連接口208,被引入至殼體201A內之第一空間200a。引入之室外空氣自入口P3I供給至熱交換元件30之第三風路P3。通過第三風路P3之室外空氣與通過第四風路P4之室外空氣,經由透濕膜100A進行顯熱交換,自出口P3O到達第五空間200e,且自入口P2I供給至濕度調節元件10A之第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣,經由透濕膜100進行全熱交換,自出口P2O到達第三空間200c。包含來自室內空氣之水蒸氣及熱之室外空氣經由殼體201A上壁之開口部通過第一管道215,到達第二小空間200b1,自入口P4I供給至熱交換元件30之第四風路P4。通過第四風路P4之室外空氣與通過第三風路P3之室外空氣,經由透濕膜100A進行顯熱交換,自出口P4O到達第四空間200d,經由風扇213及連接口210排出至植物工廠外。
如上說明,根據本實施形態之濕度調節模組200A,可藉由與第二實施形態之濕度調節模組200不同之構成,實現與第二實施形態同樣之效果。第三實施形態中,使正交型濕度調節元件10A與第一管道215、第二管道216組合,構成使室內空氣及室外空氣循環之風路。因此,作為模組構成,雖較使用逆流型濕度調節元件10之第二實施形態之濕度調節模組200複雜化,但第三實施形態中,可使用正交型濕度調節元件100A,構成使室內空氣及室外空氣循環之風路。
上述濕度調節元件10A係於透濕膜100之表面直立設置有複數個肋部11Aa、肋部12Aa者,但亦可取代肋部,於相鄰之透濕膜100間設置波形狀(波浪形)隔離件。圖10所示之濕度調節元件10C係隔離件SPC1、與配置於隔離件SPC1之上下之透濕膜100構成第一風路P1,隔離件SPC2、與配置於隔離件SPC2之上下之透濕膜100構成第二風路P2。濕度調節元件10C中,第一風路P1之入口P1I及出口P1O亦通至植物工廠內,第二風路P2之入口P2I及出口P2O亦通至植物工廠外。第一風路P1之入口P1I及出口P1O分別設置於正方形狀之透濕膜100之互相對向之二邊。第二風路P2之入口P2I及出口P2O分別設置於正方形狀之透濕膜100之與上述二邊不同之互相對向之二邊。另,濕度調節元件10C中之透濕膜100及隔離件SPC1、SPC2之積層數、以及隔離件SPC1、SPC2中之波之高度、寬度(相鄰波間之間隔)及數量係根據規格適當設定者,即不限定於圖10所示者。
(第4實施形態:濕度調節模組200B、200B-1) 圖11係本發明之第4實施形態之濕度調節模組200B之概略圖。圖12係透過本發明之第4實施形態之變化例之濕度調節模組200B-1之內部之立體圖。圖11及圖12中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。第4實施形態中,有對與圖1~圖10所示之構件、部位相同或同等之構件、部位標註相同符號,省略重複說明之情形。
圖11所示之濕度調節模組200B與圖6所示之濕度調節模組200相比,主要於不具備熱交換元件30之點與風扇212之配置上不同。
殼體201B於內部設置隔板202、204、205、207,於中央固定濕度調節元件10。殼體201B之內部空間係上側區劃為第一空間200a、第三空間200c之二者,下側區劃為第四空間200d、第六空間200f之二者。
於殼體201B之外部,設置連接口208~211。連接口208、210分別安裝於殼體201B左側壁之開口部(未圖示)。經由連接口208,對第一空間200a供給室外空氣。經由連接口210,將通過濕度調節元件10之室外空氣自第四空間200d排出至室外。經由連接口209,對第三空間200c供給植物工廠內之室內空氣。通過濕度調節元件10之室內空氣經由連接口211,自第六空間200f返回至植物工廠內。
風扇212於第六空間200f內,配置於殼體201B右側壁之連接口211,促進室內空氣向濕度調節元件10之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213於第四空間200d內,配置於殼體201B左側壁之連接口210,促進室外空氣向濕度調節元件10之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
說明濕度調節模組200B之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部經由連接口209,被引入至殼體201B內之第三空間200c。引入之室內空氣自入口P1I供給至濕度調節元件10之第一風路P1。通過第一風路P1之室內空氣與通過第二風路P2之室外空氣,經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),且自出口P1O到達第六空間200f,經由風扇212及開口部返回至植物工廠內部。
另一方面,當風扇213動作時,植物工廠外之室外空氣經由連接口208,被引入至殼體201B內之第一空間200a。引入之室外空氣自入口P2I供給至濕度調節元件10之第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣,經由透濕膜100進行全熱交換,自出口P2O到達第四空間200d。包含來自室內空氣之水蒸氣及熱之室外空氣經由風扇213及連接口210,排出至植物工廠外。
圖12所示之濕度調節模組200B-1與圖11所示之濕度調節模組200B相比,主要於殼體201B之內部不具有隔板204、207之點、與風扇212、213之配置上不同。
殼體201B為長方體形狀,具有上壁201B1、下壁201B2、左側壁201B3、右側壁201B4、前壁201B5、及後壁201B6。殼體201B於內部,設置自左右側壁201B3、201B4沿水平方向分別延伸之隔板202、205。於殼體201B內之中央,固定自前壁201B5跨及後壁201B6而延伸之濕度調節元件10。濕度調節元件10由上壁201B1及下壁201B2隔著上下,且由隔板202、205隔著左右,固定於殼體201B內。殼體201B之內部空間藉由隔板202、205及濕度調節元件10,而使上側區劃為第一空間200a、第三空間200c之二者,下側區劃為第四空間200d、第六空間200f之二者。
第六空間200f中,設置連接下壁201B2與隔板205之立壁219、及自立壁219跨及前壁201B5而延伸之立壁220。第三空間200c中,設置將上壁201B1與隔板205連接,沿右側壁201B4自前壁201B5延伸至前後方向大致中央位置的立壁221。第四空間200d中,設置連接下壁201B2與隔板202之立壁222、及自立壁222跨及後壁201B6而延伸之立壁223。第一空間200a中,設置將上壁201B1與隔板202連接且沿左側壁201B3自後壁201B6延伸至前後方向大致中央位置之立壁224。
於殼體201B之左右側壁201B3、201B4,設置開口部K1~K4。開口部K1設置於右側壁201B4之下側後方。植物工廠內之室內空氣經由開口部K1,供給至第六空間200f。開口部K2設置於右側壁201B4之上側前方。通過濕度調節元件10之室內空氣經由開口部K2自第三空間200c返回至植物工廠內之開口部K3,設置於左側壁201B3之下側前方。室外空氣經由開口部K3供給至第四空間200d。開口部K4設置於左側壁201B3之上側後方。通過濕度調節元件10之室外空氣經由開口部K4,自第一空間200a排出至室外。
風扇212於第三空間200c內,配置於右側壁201B4與立壁221間,促進室內空氣向濕度調節元件10之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213於第一空間200a內,配置於左側壁201B3與立壁224間,促進室外空氣向濕度調節元件10之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
說明濕度調節模組200B-1之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部經由開口部K1被引入至殼體201B內之第六空間200f。引入之室內空氣引導至立壁219及立壁220,自入口P1I流入至濕度調節元件10之第一風路P1。通過第一風路P1之室內空氣與通過第二風路P2之室外空氣,經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),自出口P1O到達第三空間200c。供給至第三空間200c之室內空氣被引導至立壁221,經由風扇212及開口部K2返回至植物工廠內。
另一方面,當風扇213動作時,植物工廠外之室外空氣經由開口部K3,被引入至殼體201B內之第四空間200d。引入之室外空氣被引導至立壁222及立壁223,自入口P2I供給至濕度調節元件10之第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣經由透濕膜100進行全熱交換,自出口P2O到達第一空間200a。將供給至第一空間200a之室外空氣引導至立壁224,經由風扇213及開口部K4排出至室外。
如上說明,根據本實施形態之濕度調節模組200B、200B-1,可實現與第一實施形態之濕度調節元件10同樣之效果。
(第5實施形態:濕度調節模組200C) 圖13係本發明之第5實施形態之濕度調節模組200C之概略圖。圖13中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。第5實施形態中,有對與圖1~圖12所示之構件、部位相同或同等之構件、部位標註相同符號,省略重複說明之情形。
濕度調節模組200C與圖8所示之濕度調節模組200A相比,主要於不具備熱交換元件30之點、及具備第三管道217、第四管道218取代第一管道215、第二管道216之點、與風扇213之配置上不同。
殼體201C於內部設置隔板202、204、205、207,於中央固定濕度調節元件10A。殼體201C之內部空間係上側區劃為第一空間200a、第三空間200c之二者,下側區劃為第四空間200d、第六空間200f之二者。
於殼體201C之外部,設置連接口210、211。連接口210安裝於殼體201C左側壁之開口部(未圖示)。室外空氣經由連接口210,供給至第四空間200d。連接口211安裝於右側壁之開口部(未圖示)。植物工廠內之室內空氣經由連接口211,供給至第六空間200f。
風扇212於第一空間200a內,配置於殼體201C上壁之開口部(未圖示),促進室內空氣向濕度調節元件10A之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213於第三空間200c內,配置於殼體201C上壁之開口部,促進室外空氣向濕度調節元件10A之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
第三管道217及第四管道218設置於殼體201C之外部。第三管道217之一端安裝於殼體201C上壁中配置有風扇212之開口部,另一端到達植物工廠內。第四管道218之一端安裝於殼體201C上壁中配置有風扇213之開口部,另一端到達植物工廠外。
說明濕度調節元件200C之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部經由連接口211,被引入至殼體201A內之第六空間200f。引入之室內空氣自入口P1I供給至濕度調節元件10A之第一風路P1。通過第一風路P1之室內空氣與通過第二風路P2之室外空氣,經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),自出口P1O到達第一空間200a,經由風扇212及開口部通過第三管道217,返回至植物工廠內部。
另一方面,當風扇213動作時,植物工廠外之室外空氣經由連接口210,被引入至殼體201C內之第四空間200d。引入之室外空氣自入口P2I供給至濕度調節元件10A之第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣,經由透濕膜100進行全熱交換,且自出口P2O到達第三空間200c。包含來自室內空氣之水蒸氣及熱之室外空氣經由殼體201C上壁之風扇213及開口部通過第四管道218,排出至植物工廠外。
如上說明,根據本實施形態之濕度調節模組200C,可組合正交型濕度調節元件10A與第三管道217、第四管道218,使室內空氣及室外空氣循環,實現與第一實施形態之濕度調節元件10同樣之效果。
(第6實施形態:濕度調節模組200D) 圖14係本發明之第6實施形態之濕度調節模組200D之概略圖。圖14中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。第6實施形態中,有對與圖1~圖13所示之構件、部位相同或同等之構件、部位標註相同符號,省略重複說明之情形。
濕度調節模組200D係並列設置有複數行圖13所示之濕度調節元件10A者。濕度調節模組200D與濕度調節模組200C相比,主要於具備第五管道225、第六管道226、第七管道227及第八管道228取代第三管道217及第四管道218之點、與風扇212、213之配置上不同。
殼體201D於內部設置隔板202、205、229~236。於殼體201D內,沿左右方向互相相鄰固定三個濕度調節元件10A。隔板230、232自殼體201D之上壁跨及下壁而垂直地延伸,且沿水平方向區劃殼體201D之內部空間。隔板229、231、233自殼體201D之上壁跨及濕度調節元件10A之上端而垂直地延伸,且沿水平方向區劃殼體201D之內部空間上側。隔板234、235、236自濕度調節元件10A之下端跨及殼體201D之下壁而垂直地延伸,且沿水平方向區劃殼體201D之內部空間下側。殼體201D之內部空間之上側區劃為第一空間200a、第二小空間200b1~200b4、第三空間200c之六者,下側區劃為第四空間200d、第五小空間200e1~200e4、第六空間200f之六者。
第五管道225、第六管道226、第七管道227及第八管道228分別於四個方向分支,設置於殼體201D之外部。第五管道225之三個端部分別安裝於殼體201D之上壁之三個開口部,且一端到達植物工廠內。第五管道225將第二小空間200b1、200b3及第三空間200c與植物工廠內連通。第六管道226之三個端部分別安裝於殼體201D之上壁之三個開口部,一端到達植物工廠內。第六管道226將第四空間200d、第五小空間200e2及第五小空間200e4與植物工廠內連通。第七管道227之三個端部分別安裝於殼體201D之上壁之三個開口部,一端到達植物工廠之外部。第七管道227將第一空間200a、第二小空間200b2及第二小空間200b4與植物工廠外連通。第八管道228之三個端部分別安裝於殼體201D之下壁之三個開口部,且一端到達植物工廠之外部。第八管道228將第五小空間200e1、200e3及第六空間200f與植物工廠外連通。
風扇212配置於第六管道226之到達植物工廠內之端部,促進室內空氣向濕度調節元件10A之第一風路P1供給、或室內空氣自第一風路P1排出。風扇213配置於第八管道228之到達植物工廠外之端部,促進室外空氣向濕度調節元件10A之第二風路P2供給、或室外空氣自第二風路P2排出。風扇212、213藉由未圖示之控制部控制動作。
說明濕度調節模組200D之動作。藉由控制部驅動風扇212、213。當風扇212動作時,室內空氣自植物工廠內部通過第五管道225,被引入至殼體201D內之第二小空間200b1、200b3及第三空間200c。被引入之室內空氣於各濕度調節元件10A中,自入口P1I被供給至第一風路P1。於各濕度調節元件10A中,通過第一風路P1之室內空氣與通過第二風路P2之室外空氣經由透濕膜100進行全熱交換(顯熱交換、潛熱交換),而自各出口P1O分別到達第四空間200d、第五小空間200e2及第五小空間200e4。其後,室內空氣通過第六管道226及風扇212,返回至植物工廠內部。
另一方面,當風扇213動作時,植物工廠外之室外空氣通過第七管道227,被引入至殼體201D內之第一空間200a、第二小空間200b2及第二小空間200b4。被引入之室外空氣於各濕度調節元件10A中,自入口P2I被供給至第二風路P2。通過第二風路P2之室外空氣與通過第一風路P1之室內空氣經由透濕膜100進行全熱交換,而自各出口P2O分別到達第五小空間200e1、200e3及第六空間200f。其後,含有來自室內空氣之水蒸氣及熱之室外空氣通過第八管道228及風扇213,排出至植物工廠外。
如上說明,根據本實施形態之濕度調節模組200D,藉由使用複數行(本例中為三行)正交型濕度調節元件10A,與第五實施形態之濕度調節模組200C相比,可將複數倍量(本例中為三倍)之室內空氣進行濕度調整。
(第7實施形態:濕度調整系統) 圖15係顯示本發明之第7實施形態之濕度調節系統之動作例之流程圖。本實施形態之濕度調節系統具備第2~第6實施形態之濕度調節模組200、200A、200B、200B-1、200C、200D之至少任一者(以下,稱為濕度調節模組200等)、及將植物工廠內部之室內空氣之溫度調整為特定範圍內之空調(空氣調節裝置)。
該濕度調節系統亦可具備未圖示之控制裝置、及監視植物工廠內部之室內空氣之濕度之濕度監視部。控制裝置根據植物工廠內部之濕度變動,控制濕度調節模組200等之動作。控制裝置於濕度變動滿足規定條件之情形時,使濕度調節模組200等動作。控制裝置具有記憶部與運算部,與濕度調節模組200等之控制部及空調之控制部連接,由運算部執行記憶於記憶部之特定之程式,藉此實現圖15所示之動作。以特定時間間隔重複執行圖15所示之處理。
如圖15所示,控制裝置監視植物工廠內部之濕度(步驟S1),當濕度變動滿足記憶部中記憶之規定條件時(步驟S2為Yes(是)),使濕度調節模組200等動作(步驟S3)。作為規定條件之一例,列舉植物工廠內部之相對濕度為70%RH以上。另一方面,當濕度變動不滿足規定條件時(步驟S2之No(否)),控制裝置停止濕度調節模組200等之動作(步驟S4),結束本處理。
如上說明,根據本實施形態之濕度調節系統,並用空調與濕度調節模組200等,構成分擔顯熱與潛熱之處理,提高整體之能源效率之複合空氣調節系統。該複合空氣調節系統中,藉由使用濕度調節模組200等作為負責去除潛熱之裝置,可減小能源成本。尤其,藉由控制裝置根據濕度變動,控制濕度調節模組200等之動作,於除濕必要性較高之情形時,可使濕度調節模組200等自動動作,減小去除潛熱之能源成本。
(第8實施形態:濕度調節系統300) 圖16係本發明之第8實施形態之濕度調節系統之概略圖。圖16中,實線箭頭表示室內空氣之流動,虛線箭頭表示室外空氣之流動。本實施形態之濕度調節系統300具備具有與外部空間307隔離之管理空間303之植物工廠等之設施301、設置於設施301之濕度調節模組320及熱交換元件331、及控制裝置310。設施301與濕度調節模組320、及濕度調節模組320與熱交換元件331藉由例如配管而連接。另,「設施」除建築物外,包含設置於建築物內之植物培育設備等設備。又,外部空間307可為室外,亦可為建築物內之設施301之外部。
濕度調節模組320具有:濕度調節元件,其具有:第一風路,其使管理空間303內之空氣即內部空氣通過;第二風路,其使設施301外之空氣即外部空氣通過;及透濕膜,其區劃第一風路與第二風路,於內部空氣與外部空氣間使水蒸氣透過。作為濕度調節模組320內之濕度調節元件,可使用上述濕度調節元件10、10A、10B、10C、或一般之逆流型元件。作為熱交換元件331,可使用上述熱交換元件30。
濕度調節模組320於收容濕度調節元件之殼體,設置有連接口321、322、323、324。
濕度調節模組320經由連接口321及開口閥341,連接於設施301之排出口301a。又,濕度調節模組320經由連接口322,連接於設施301之吸入口301b。藉由打開開閉閥341,將內部空氣自管理空間303排出,供給至濕度調節模組320之第一風路。藉由關閉開閉閥341,停止向濕度調節模組320供給內部空氣。
濕度調節模組320經由連接口323及開閉閥342,將外部空氣供給至第二風路。又,濕度調節模組320經由連接口324及開閉閥343,將通過第二風路之外部空氣排出至外部空間307。藉由打開開閉閥342、343,而使外部空氣通過第二風路。
若藉由控制裝置310,打開開閉閥341、324、323,則濕度調節模組320中,自排出口301a供給至第一風路之內部空氣與自連接口323供給、通過第二風路之外部空氣,經由透濕膜進行全熱交換(顯熱交換、潛熱交換)。且,全熱交換之內部空氣自吸入口301b返回至設施301內之管理空間303。
熱交換元件331經由開閉閥345,連接第三風路之出口P3O與連接口323。藉由打開開閉閥345,自第三風路之入口P3I流入至熱交換元件331之外部空氣通過第三風路,經由連接口323供給至濕度調節模組320之第二風路。
熱交換元件331經由開閉閥344,連接第四風路之入口P4I與連接口324。藉由打開開閉閥344,通過濕度調節模組320之第二風路之外部空氣自連接口324排出。自連接口324排出之外部空氣自第四風路之入口P4I流入至熱交換元件331之第四風路,通過第四風路,自第四風路之出口P4O排出至外部空間307。
若藉由控制裝置310,打開開閉閥344、345,則外部空氣自第三風路之入口P3I與第四風路之入口P4I流入至熱交換元件331。且,熱交換元件331中,自外部空間307流入且通過第三風路之外部空氣、與通過濕度調節元件320之第二風路且通過第四風路之外部空氣,經由透濕膜進行顯熱交換。
於設施301內,設置監視內部空氣之溫度及濕度之監視部305。於外部空間307,設置監視外部空氣之溫度及濕度之監視部309。
控制裝置310具有記憶部與運算部,與監視部305、309、開閉閥341~345(以下,有總稱為開閉閥340之情形。)連接。控制裝置310藉由運算部執行記憶於記憶部之特定之程式,如圖17及圖18所示,控制濕度調節模組320之動作,調整管理空間303內之溫度、濕度。以特定時間間隔重複執行圖17及圖18所示之處理。
如圖17所示,控制裝置310藉由監視部305、309,監視設施301之內部及外部之濕度(步驟S11)。
內部濕度低於外部濕度之情形時(步驟S12為YES(是)),控制裝置310藉由至少關閉開閉閥341,而停止濕度調節模組302之動作(步驟S13)。不根據內部溫度及外部溫度,於監視部305測定之管理空間303內部之絕對濕度低於監視部309測定之外部空間307之絕對濕度之情形時,會致使管理空間303內被加濕。因此,該情形時,停止濕度調節模組320,維持管理空間303內之濕度。
另一方面,內部濕度不低於外部濕度之情形時(步驟S12為NO(否)),控制裝置310進行後述之風路切換控制(步驟S14)。
圖18係顯示控制裝置310之風路切換控制之處理順序之流程圖。圖18所示之處理中,控制裝置310打開開閉閥341,使濕度調節模組320動作。控制裝置310藉由監視部305、309,監視設施301之內部及外部之溫度(步驟S21)。
內部溫度高於外部溫度之情形時(步驟S22為YES(是)),控制裝置310判斷內部溫度是否在適當之溫度帶即特定範圍內(步驟S23)。
若內部溫度高於外部溫度,且在特定範圍內,則控制裝置310將通過熱交換元件331之外部空氣(外氣)自連接口323供給至濕度調節模組320之第二風路(步驟S24)。即,控制裝置310藉由打開開閉閥344、345,關閉開閉閥342、343,而可抑制管理空間303內部之溫度變化且進行濕度調整。
內部溫度高於外部溫度,且低於特定範圍之情形時,控制裝置301將未通過熱交換元件331之外氣自連接口323供給至濕度調節模組320之第二風路(步驟S25)。即,控制裝置310藉由打開開閉閥342、343,關閉開閉閥344、345,而可積極地加熱管理空間303內部。
內部溫度高於外部溫度,且高於特定範圍之情形時,控制裝置301將未通過熱交換元件331之外氣自連接口323供給至濕度調節模組320之第二風路(步驟S28)。即,控制裝置310藉由打開開閉閥342、343,關閉開閉閥344、345,而可積極地冷卻管理空間303內部。
另一方面,內部溫度不高於外部溫度之情形時(步驟S22為NO(否)),控制裝置310判斷內部溫度是否在特定範圍內(步驟S26)。
內部溫度不高於外部溫度,且在特定範圍內或高於特定範圍之情形時,控制裝置310將通過熱交換元件331之外部空氣(外氣)自連接口323供給至濕度調節模組320之第二風路(步驟S27)。即,控制裝置310藉由打開開閉閥344、345,關閉開閉閥342、343,而可不使管理空間303內部變化地進行濕度調整。
內部溫度不高於外部溫度,且低於特定範圍之情形時,控制裝置301將未通過熱交換元件331之外氣自連接口323供給至濕度調節模組320之第二風路(步驟S28)。即,控制裝置310藉由打開開閉閥342、343,關閉開閉閥344、345,而可積極地加熱管理空間303內部。
藉由控制裝置310執行上述處理順序,而於濕度調節系統300中,進行與設施301內外之溫度及濕度相應之風路切換控制。另,控制裝置310亦可進而執行與圖15所示之處理同樣之控制。
(中空纖維膜型膜式乾燥機400) 作為濕度調節模組320之濕度調節元件,亦可使用圖19所示之濕度調節元件408。濕度調節元件480具有中空纖維膜即平面狀之透濕膜100形成為中空筒狀之筒部。濕度調節元件480作為一例,係筒內部即中空部分為使內部空氣通過之第一風路,且筒外部即外周面相接之空間為使外部空氣通過之第二風路。
濕度調節元件408於通過濕度調節元件408內部之空氣A11(內部空氣)、與通過濕度調節元件408之外周面之外部空氣間,利用水蒸氣濃度梯度,使水蒸氣透過。空氣A11之水蒸氣濃度高於外部空氣之情形時,空氣A11所含之水蒸氣透過透濕膜100,移動至通過濕度調節元件408之外周面之外部空氣。又,濕度調節元件408具有導熱性,空氣A11之熱經由濕度調節元件408移動至外部空氣。另,亦可藉由將內部空氣加壓,提高水蒸氣濃度,或將外部空氣減壓,降低水蒸氣濃度,而設置內部空氣與外部空氣之水蒸氣濃度差。
隨著通過濕度調節元件408之內部,將含有之水蒸氣量及熱減少之空氣A12供給至設施301內之管理空間303。另,亦可將濕度調節元件480之內部及外部之任一者設為第一風路或第二風路。
圖20係具備圖19所示之濕度調節元件408之濕度調節模組即膜式乾燥機400之概略圖。圖20係將膜式乾燥機400之側視時之一部分設為剖視圖者。膜式乾燥機400具備兩端打開之中空圓筒狀殼體402、配置於殼體402內之複數個濕度調節元件408、及分別覆蓋殼體402之兩端之端部殼體404、406。又,膜式乾燥機400具備:保持構件410,其將殼體402之兩端封閉,於端部殼體404、406內,保持濕度調節元件408之兩端部。保持構件410將複數個濕度調節元件408及端部殼體404、406間封閉。於殼體402,設置連通殼體402之內外之二個開口部402a、402b。端部殼體404、406分別具有開口部404a、406a。
自開口部404a流入之空氣A11(內部空氣)通過複數個濕度調節元件408之內部。自開口部402a對殼體402內之濕度調節元件408之外周面供給空氣A21(外部空氣),與空氣A11間進行全熱交換。含有之水蒸氣量及熱減少之空氣A12自開口部406a排出,返回至設施301內之管理空間303內。另一方面,於濕度調節元件408之外周面,自空氣A11接收水蒸氣及熱移動之空氣A22自開口部402b排出至設施301外之外部空間307。
另,亦可取代上述濕度調節元件10、10A、10B、10C,而使用複數個濕度調節元件408或膜式乾燥機400。
另,本發明並非限定於上述實施形態者,可適當變化、改良等。此外,上述實施形態之各構成要件之材質、形狀、尺寸、數值、形態、數量、配置部位等只要為可達成本發明者則為任意者,未限定。例如,上述實施形態中,濕度調節元件10為俯視六邊形狀,但若為於將平面形狀以直線一分為二之一區域之一面側,配置第一風路之入口及出口,於另一區域之另一面側,配置第二風路之入口及出口之構成,則亦可為俯視正方形狀等不同形狀。
又,上述實施形態中,濕度調節模組200、200A、200B、200B-1、200C、200D具備殼體201、201A、201B、201C、201D(以下,稱為殼體201等。),但殼體201等非必須。例如,亦可將濕度調節元件10嵌入至壁面,構成濕度調節模組。該情形時,亦可以透濕膜100沿壁之厚度方向延伸之方式,例如於上下方向無間隙地排列複數個濕度調節元件10,構成濕度調節模組。又,亦可於壁面內,以與濕度調節元件10相鄰之方式,嵌入熱交換元件30。
此處,將上述之本發明之實施形態之濕度調節元件、濕度調節模組及濕度調節系統之特徵分別於以下[1]~[16]中簡潔匯總且列舉。 [1]一種濕度調節元件(10、10B),其具備: 第一風路(P1); 第二風路(P2);及 透濕膜(100),其區劃上述第一風路與上述第二風路,於上述第一風路之空氣與上述第二風路之空氣間使水蒸氣透過;且 上述透濕膜具有平面形狀,於一面設置上述第一風路,於另一面設置上述第二風路; 於將上述平面形狀以直線一分為二之一區域之上述一面側,配置上述第一風路之入口(P1I)及出口(P1O),於另一區域之上述另一面側,配置上述第二風路之入口(P2I)及出口(P2O)。 [2]如上述[1]之濕度調節元件,其中 上述透濕膜包含: 複數個第一透濕膜,其等於表面直立設置有形成上述第一風路之複數個第一肋部(11a1~11a5);及 複數個第二透濕膜,其等於表面直立設置有形成上述第二風路之複數個第二肋部(12a1~12a5);且 將上述第一透濕膜與上述第二透濕膜交替積層。 [3]如上述[2]之濕度調節元件,其中 上述第一肋部及上述第二肋部具有互相平行配置之平行部。 [4]一種濕度調節模組(200、200A),其係具備上述[1]~[3]中任一項之濕度調節元件、及潛熱交換效率低於上述濕度調節元件之熱交換元件者;且 上述熱交換元件與上述濕度調節元件相鄰設置,具備: 第三風路,其使供給至上述第二風路之空氣通過; 第四風路,其使自上述第二風路供給之空氣通過;及 透濕膜,其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述空氣與通過上述第四風路之上述空氣間進行熱交換。 [5]一種濕度調節模組(200、200A、200B、200B-1、200C),其係設置於設施者,且具備: 濕度調節元件(10、10A、10B、10C),其具有: 第一風路(P1),其使上述設施內之空氣即內部空氣通過; 第二風路(P2),其使上述設施外之空氣即外部空氣通過;及 透濕膜(100),其區劃上述第一風路與上述第二風路,於上述內部空氣與上述外部空氣間使水蒸氣透過; 上述第一風路之入口(P1I)及出口(P1O)通至上述設施內; 上述第二風路之入口(P2I)及出口(P2O)通至上述設施外。 [6]如上述[5]之濕度調節模組(200、200A、200B、200B-1、200C),其係設置於設施者;且進而具備: 風扇,其為促進上述內部空氣向上述第一風路供給或排出之風扇(212)、及促進上述外部空氣向上述第二風路供給及排出之風扇(213)之至少任一者。 [7]如上述[5]或[6]之濕度調節模組,其具備: 熱交換元件(30),其與上述濕度調節元件相鄰設置,具有: 第三風路(P3),其使自上述設施外供給、且被供給至上述第二風路之上述外部空氣通過; 第四風路(P4),其使通過上述第二風路且排出至上述設施外之上述外部空氣通過;及 透濕膜(100A),其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述外部空氣與通過上述第四風路之上述外部空氣間進行熱交換;且 該熱交換元件(30)之潛熱交換效率低於上述濕度調節元件。 [8]如上述[7]之濕度調節模組,其進而具備: 殼體(201A),其收容上述濕度調節元件;及 第一及第二管道(215、216),其等設置於上述殼體之外部;且 上述內部空氣供給至上述殼體內,通過上述第一風路及上述第二管道,排出至上述設施內; 上述外部空氣供給至上述殼體內,通過上述第三風路、上述第二風路、上述第一管道、及上述第四風路,排出至上述設施外。 [9]如上述[5]~[8]中任一項之濕度調節模組,其中 上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊; 上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。 [10]如上述[7]或[8]之濕度調節模組,其中 上述熱交換元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第三風路之入口及出口分別設置於上述熱交換元件之互相對向之二邊; 上述第四風路之入口及出口分別設置於上述熱交換元件之與上述二邊不同之互相對向之二邊。 [11]如上述[5]或[6]之濕度調節模組,其進而具備: 殼體(201C),其收容上述濕度調節元件; 第三及第四管道(217、218),其等設置於上述殼體之外部;且 將上述內部空氣供給至上述殼體內,通過上述第一風路及上述第三管道,排出至上述設施內; 將上述外部空氣供給至上述殼體內,通過上述第二風路及上述第四管道,排出至上述設施外。 [12]如上述[11]之濕度調節模組,其中 上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊; 上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。 [13]一種濕度調節系統,其具備: 上述[5]~[12]中任一項之濕度調節模組;及 空氣調節裝置,其將上述內部空氣之溫度調整至特定範圍內。 [14]一種濕度調節系統,其進而具備: 上述[13]之濕度調節模組; 濕度監視部,其監視上述內部空氣之濕度;及 控制裝置,其於上述濕度之變動滿足規定條件之情形時,使上述濕度調節模組動作。 [15]一種濕度調節系統(300),其具備: 上述[5]~[12]中任一項之濕度調節模組; 內部濕度監視部(305),其監視上述內部空氣之濕度; 外部濕度監視部(309),其監視上述外部空氣之濕度;及 控制裝置(310),其於上述內部空氣之濕度低於上述外部空氣之濕度之情形時,停止上述濕度調節模組。 [16]一種濕度調節系統,其具備: 上述[7]之濕度調節模組; 內部溫度監視部(305),其監視上述內部空氣之溫度; 外部溫度監視部(309),其監視上述外部空氣之溫度;及 風路切換部(控制裝置310、開閉閥340(341~345)),其根據上述內部空氣之溫度及上述外部空氣之溫度之任一者是否較高,而切換是否將通過上述熱交換元件之上述第三風路之上述外部空氣、及未通過上述熱交換元件之上述第三風路之上述外部空氣之任一者供給至上述第二風路。
以上,一面參照圖式一面對各種實施形態進行說明,但本發明當然不限定於該例。應明確,熟知本技藝者於申請專利範圍所記載之範疇內,可想到各種變更例或修正例,應了解,該等當然為涵蓋於本發明之技術範圍內者。又,亦可於不脫離發明主旨之範圍內,任意組合上述實施形態之各構成要件。
另,本申請案係基於2020年7月15日申請之日本專利申請(日本特願2020-121609號)者,其內容作為參照於本申請案中援用。 [產業上之可利用性]
根據本發明,可削減濕度調整花費之能源成本。因此,本發明之濕度調節元件、濕度調節模組及濕度調節系統可應用於植物工廠、乙烯大棚、玻璃大棚、溫泉設施、溫水游泳池等室內之濕度易上升,且為將空氣之組成保持穩定或為保持室內溫度而欲控制換氣之建築物、及無塵室、電腦室等需要將室內環境保持穩定之建築物等設施之內部環境控制。
10:濕度調節元件 10A:濕度調節元件 10B:濕度調節元件 10C:濕度調節元件 11:風路單元 11A:風路單元 11Aa:肋部 11a1~11a5:肋部 12:風路單元 12A:風路單元 12Aa:肋部 12a1~12a5:肋部 30:熱交換元件 31:風路單元 31a:肋部 32:風路單元 32a:肋部 100:透濕膜 100A:透濕膜 110:複合材 120:支持體 200:濕度調節模組 200A:濕度調節模組 200a:第一空間 200B:濕度調節模組 200b:第二空間 200b1:第二小空間 200b2:第二小空間 200b3:第二小空間 200b4:第二小空間 200B-1:濕度調節模組 200C:濕度調節模組 200c:第三空間 200D:濕度調節模組 200d:第四空間 200e:第五空間 200e1~200e4:第五小空間 200f:第六空間 201:殼體 201A:殼體 201B:殼體 201B1:上壁 201B2:下壁 201B3:左側壁 201B4:右側壁 201B5:前壁 201B6:後壁 201C:殼體 201D:殼體 202~207:隔板 208~211:連接口 212:風扇 213:風扇 214a:隔板 214b:隔板 215:第1管道 216:第二管道 217:第三管道 218:第四管道 219~224:立壁 225:第5管道 226:第六管道 227:第七管道 228:第八管道 229~236:隔板 300:濕度調節系統 301:設施 301a:排出口 301b:吸入口 303:管理空間 305:監視部 307:外部空間 309:監視部 310:控制裝置 320~324:濕度調節模組 331: 熱交換元件 340~345:開閉閥 400:膜式乾燥機 402:殼體 402a:開口部 402b:開口部 404:端部殼體 404a:開口部 406:端部殼體 406a:開口部 408:濕度調節元件 410:保持構件 A11:室內空氣 A12:室外空氣 A21:室外空氣 A22:室外空氣 K1~K4:開口部 L:直線 P1:第一風路 P1I:入口 P1O:出口 P2:第二風路 P2I:入口 P2O:出口 P3:第三風路 P3I:入口 P3O:出口 P4:第四風路 P4I:入口 P4O:出口 S1~S4:步驟 S11~S14:步驟 S21~S28:步驟 SP1:隔離件 SP2:隔離件 SPC1:隔離件 SPC2:隔離件 Y1~Y4:箭頭
圖1係顯示本發明之第1實施形態之濕度調節元件之圖,(a)係濕度調節元件之概略立體圖,(b)係透濕膜之概略圖。 圖2係風路單元之概略立體圖。 圖3係顯示透濕膜之動作原理之圖。 圖4係顯示第1實施形態之變化例之濕度調節元件之概略立體圖。 圖5係顯示本發明之第2實施形態之濕度調節模組之概要之模式圖。 圖6係顯示第2實施形態之濕度調節模組之概略圖。 圖7係顯示圖6所示之熱交換元件之圖,(a)係概略立體圖,(b)係風路單元之概略立體圖。 圖8係本發明之第3實施形態之濕度調節模組之概略圖。 圖9係顯示圖8所示之濕度調節元件之圖,(a)係概略立體圖,(b)係風路單元之概略立體圖。 圖10係顯示第3實施形態之變化例之濕度調節元件之概略立體圖。 圖11係本發明之第4實施形態之濕度調節模組之概略圖。 圖12係本發明之第4實施形態之變化例之濕度調節模組之立體圖。 圖13係本發明之第5實施形態之濕度調節模組之概略圖。 圖14係本發明之第6實施形態之濕度調節模組之概略圖。 圖15係顯示本發明之第7實施形態之濕度調節系統之動作例之流程圖。 圖16係本發明之第8實施形態之濕度調節系統之概略圖。 圖17係顯示圖16所示之濕度調節系統之動作例之流程圖。 圖18係顯示圖16所示之濕度調節系統之動作例之流程圖。 圖19係顯示變化例之濕度調節元件之概略圖。 圖20係具備圖19所示之濕度調節元件之濕度調節模組之概略圖。
10:濕度調節元件
30:熱交換元件
200:濕度調節模組
Y1~Y4:箭頭

Claims (16)

  1. 一種濕度調節元件,其具備: 第一風路; 第二風路;及 透濕膜,其區劃上述第一風路與上述第二風路,於上述第一風路之空氣與上述第二風路之空氣間使水蒸氣透過;且 上述透濕膜具有平面形狀,於一面設置上述第一風路,於另一面設置上述第二風路; 於將上述平面形狀以直線一分為二之一區域之上述一面側,配置上述第一風路之入口及出口,於另一區域之上述另一面側,配置上述第二風路之入口及出口。
  2. 如請求項1之濕度調節元件,其中 上述透濕膜包含: 複數個第一透濕膜,其等於表面直立設置有形成上述第一風路之複數個第一肋部;及 複數個第二透濕膜,其等於表面直立設置有形成上述第二風路之複數個第二肋部;且 將上述第一透濕膜與上述第二透濕膜交替積層。
  3. 如請求項2之濕度調節元件,其中 上述第一肋部及上述第二肋部具有互相平行配置之平行部。
  4. 一種濕度調節模組,其係具備請求項1至3中任一項之濕度調節元件、及潛熱交換效率低於上述濕度調節元件之熱交換元件者;且 上述熱交換元件與上述濕度調節元件相鄰設置,具備: 第三風路,其使供給至上述第二風路之空氣通過; 第四風路,其使自上述第二風路供給之空氣通過;及 透濕膜,其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述空氣與通過上述第四風路之上述空氣間進行熱交換。
  5. 一種濕度調節模組,其係設置於設施者,且具備: 濕度調節元件,其具有: 第一風路,其使上述設施內之空氣即內部空氣通過; 第二風路,其使上述設施外之空氣即外部空氣通過;及 透濕膜,其區劃上述第一風路與上述第二風路,於上述內部空氣與上述外部空氣間使水蒸氣透過; 上述第一風路之入口及出口通至上述設施內; 上述第二風路之入口及出口通至上述設施外。
  6. 如請求項5之濕度調節模組,其進而具備: 風扇,其為促進上述內部空氣向上述第一風路供給或排出者、及促進上述外部空氣向上述第二風路供給及排出者中之至少任一者。
  7. 如請求項5或6之濕度調節模組,其具備: 熱交換元件,其與上述濕度調節元件相鄰設置,具有: 第三風路,其使自上述設施外供給、且被供給至上述第二風路之上述外部空氣通過; 第四風路,其使通過上述第二風路且排出至上述設施外之上述外部空氣通過;及 透濕膜,其區劃上述第三風路與上述第四風路,於通過上述第三風路之上述外部空氣與通過上述第四風路之上述外部空氣間進行熱交換;且 該熱交換元件之潛熱交換效率低於上述濕度調節元件。
  8. 如請求項7之濕度調節模組,其進而具備: 殼體,其收容上述濕度調節元件;及 第一及第二管道,其等設置於上述殼體之外部;且 將上述內部空氣供給至上述殼體內,通過上述第一風路及上述第二管道,排出至上述設施內; 將上述外部空氣供給至上述殼體內,通過上述第三風路、上述第二風路、上述第一管道及上述第四風路,排出至上述設施外。
  9. 如請求項5至8中任一項之濕度調節模組,其中 上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊; 上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。
  10. 如請求項7或8之濕度調節模組,其中 上述熱交換元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第三風路之入口及出口分別設置於上述熱交換元件之互相對向之二邊; 上述第四風路之入口及出口分別設置於上述熱交換元件之與上述二邊不同之互相對向之二邊。
  11. 如請求項5或6之濕度調節模組,其進而具備: 殼體,其收容上述濕度調節元件;及 第三及第四管道,其等設置於上述殼體之外部;且 將上述內部空氣供給至上述殼體內,通過上述第一風路及上述第三管道,排出至上述設施內; 將上述外部空氣供給至上述殼體內,通過上述第二風路及上述第四管道,排出至上述設施外。
  12. 如請求項11之濕度調節模組,其中 上述濕度調節元件自上述透濕膜之法線方向觀察,具有矩形狀; 上述第一風路之入口及出口分別設置於上述濕度調節元件之互相對向之二邊; 上述第二風路之入口及出口分別設置於上述濕度調節元件之與上述二邊不同之互相對向之二邊。
  13. 一種濕度調節系統,其具備: 請求項5至12中任一項之濕度調節模組;及 空氣調節裝置,其將上述設施內之上述內部空氣之溫度調整至特定範圍內。
  14. 如請求項13之濕度調節系統,其進而具備: 濕度監視部,其監視上述內部空氣之濕度;及 控制裝置,其於上述濕度之變動滿足規定條件之情形時,使上述濕度調節模組動作。
  15. 一種濕度調節系統,其具備: 請求項5至12中任一項之濕度調節模組; 內部濕度監視部,其監視上述內部空氣之濕度; 外部濕度監視部,其監視上述外部空氣之濕度;及 控制裝置,其於上述內部空氣之濕度低於上述外部空氣之濕度之情形時,停止上述濕度調節模組。
  16. 一種濕度調節系統,其具備: 請求項7之濕度調節模組; 內部溫度監視部,其監視上述內部空氣之溫度; 外部溫度監視部,其監視上述外部空氣之溫度;及 風路切換部,其根據上述內部空氣之溫度及上述外部空氣之溫度之任一者是否較高,而切換是否將通過上述熱交換元件之上述第三風路之上述外部空氣、及未通過上述熱交換元件之上述第三風路之上述外部空氣之任一者供給至上述第二風路。
TW110126116A 2020-07-15 2021-07-15 濕度調節元件、濕度調節模組及濕度調節系統 TW202208792A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-121609 2020-07-15
JP2020121609 2020-07-15

Publications (1)

Publication Number Publication Date
TW202208792A true TW202208792A (zh) 2022-03-01

Family

ID=79554656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126116A TW202208792A (zh) 2020-07-15 2021-07-15 濕度調節元件、濕度調節模組及濕度調節系統

Country Status (2)

Country Link
TW (1) TW202208792A (zh)
WO (1) WO2022014651A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030192A (ja) * 2010-08-02 2012-02-16 Panasonic Corp 除湿装置

Also Published As

Publication number Publication date
WO2022014651A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
US20140262125A1 (en) Energy exchange assembly with microporous membrane
US8235093B2 (en) Flat plate heat and moisture exchanger
KR20160143049A (ko) 열교환 환풍기 및 이를 포함한 공기질 관리시스템
US10132522B2 (en) Systems and methods for forming spacer levels of a counter flow energy exchange assembly
JP5108351B2 (ja) 建物の換気システム及びユニット建物
US20150075747A1 (en) Flexible heat and moisture transfer system
CN112611044B (zh) 一种吊顶式全屋恒湿恒氧器材
TW202208792A (zh) 濕度調節元件、濕度調節模組及濕度調節系統
JP2000274765A (ja) 調湿換気装置
JP6955551B2 (ja) 2つのエアフロー間でエネルギーを交換する熱交換器
JP7228836B2 (ja) 加圧型熱交換換気式建屋
US20140041830A1 (en) Heat and moisture transfer apparatus integrated into an exterior partition
WO2022163594A1 (ja) 植物育成システム
JP6386937B2 (ja) 調湿システム
JP2023103877A (ja) 湿度調整システム
US11644248B2 (en) Total heat exchange element and total heat exchanger
JP2016188753A (ja) 換気システム及び家屋
CN113606689A (zh) 加压型换热换气式房屋
JP6558089B2 (ja) 調湿装置
JP6496160B2 (ja) 建築用のパネル
JP2023103878A (ja) 湿度調整システム
KR20220031812A (ko) 환기 시스템 및 그 제어방법
KR101192927B1 (ko) 굴곡형의 공기경로를 갖는 전열소자 및 이를 이용한 공기교환 장치
JP2000257936A (ja) 調湿換気装置
JP2009287808A (ja) 建物の換気システム及びユニット建物