TW202207650A - 分時雙工(tdd)天線系統 - Google Patents

分時雙工(tdd)天線系統 Download PDF

Info

Publication number
TW202207650A
TW202207650A TW110107256A TW110107256A TW202207650A TW 202207650 A TW202207650 A TW 202207650A TW 110107256 A TW110107256 A TW 110107256A TW 110107256 A TW110107256 A TW 110107256A TW 202207650 A TW202207650 A TW 202207650A
Authority
TW
Taiwan
Prior art keywords
signal
transmission
antenna
circuit
transmission cable
Prior art date
Application number
TW110107256A
Other languages
English (en)
Inventor
強納森 瓦克爾
Original Assignee
美商凡爾賽特公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商凡爾賽特公司 filed Critical 美商凡爾賽特公司
Publication of TW202207650A publication Critical patent/TW202207650A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/0082Monitoring; Testing using service channels; using auxiliary channels
    • H04B17/0085Monitoring; Testing using service channels; using auxiliary channels using test signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一實例包括一種自同步化TDD天線系統。該系統包括:一天線,以傳達傳輸信號及接收信號;及一天線電路,其經由一傳輸線纜線耦接至一使用者通訊系統。該天線電路包括:一傳輸線測量電路,以判定通過該傳輸線纜線的信號損失;及一振幅調整電路,以基於該經判定信號損失調整該傳輸信號及/或該接收信號的振幅。該天線電路亦包括:一傳輸偵測電路,以監測該傳輸信號的信號功率;及一控制器,以回應於該經監測信號功率超過一預定臨限而將該振幅調整電路從一接收模式切換至一傳輸模式。在該接收模式中,該調整電路將一接收振幅調整施加至該接收信號,且在該傳輸模式中,該調整電路施加一傳輸振幅調整至該傳輸信號。

Description

分時雙工(TDD)天線系統
本揭露大致係關於通訊系統,且更具體地關於分時雙工(time-division duplex, TDD)天線系統。
天線陣列(或陣列天線)係作為單一天線一起運作以傳輸或接收無線電波的一組多個天線元件。個別天線元件可藉由施加由該等天線元件接收及/或傳輸之信號的適當振幅及/或相位調整的電路系統而連接至接收器及/或傳輸器。當用於傳輸時,由各個別天線元件輻射的無線電波彼此組合及重疊,加在一起(建設性干涉)以增強在所欲方向上輻射的功率,及消除(破壞性干涉)以降低在其他方向上輻射的功率。類似地,當用於接收時,來自個別天線元件的分開接收信號以適當的振幅及/或相位關係組合以增強從所欲方向接收的信號及消除來自非所欲方向的信號。
一實例包括一種自同步化TDD天線系統。該系統包括:一天線,以傳達傳輸信號及接收信號;及一天線電路,其經由一傳輸線纜線耦接至一使用者通訊系統。該天線電路包括:一傳輸線測量電路,以判定通過該傳輸線纜線的信號損失;及一振幅調整電路,以基於該經判定信號損失調整該傳輸信號及/或該接收信號的振幅。該天線電路亦包括:一傳輸偵測電路,以監測該傳輸信號的信號功率;及一控制器,以回應於該經監測信號功率超過一預定臨限而將該振幅調整電路從一接收模式切換至一傳輸模式。在該接收模式中,該調整電路將一接收振幅調整施加至該接收信號,且在該傳輸模式中,該調整電路施加一傳輸振幅調整至該傳輸信號。
另一實例包括一種用於經由包含一天線之一分時雙工(TDD)天線系統傳達一傳輸信號及一接收信號中之至少一者的方法。該方法包括在至少一條傳輸線纜線上將一校準信號從與該天線系統關聯的一天線電路提供至一使用者通訊系統。該方法亦包括接收對應於從該使用者通訊系統重傳輸回該天線電路的該校準信號的一傳回信號,並基於該傳回信號判定該使用者通訊系統與該天線電路之間通過該至少一條傳輸線纜線的信號損失。該方法亦包括監測經由該至少一條傳輸線纜線從該使用者通訊系統獲得的該傳輸信號的信號功率,並基於該經判定信號損失在一接收模式中調整該接收信號的一振幅。該方法進一步包括回應於該經監測信號功率超過一預定臨限而將一振幅調整電路從該接收模式切換至一傳輸模式,並基於該經判定信號損失在該傳輸模式中調整該傳輸信號的一振幅。
[相關申請案之交互參照]
本申請案主張於2018年10月4日申請之美國臨時專利申請案第62/741311號及於2018年11月15日申請之美國臨時專利申請案第62/768026號之優先權,其二者全文以引用方式併入本文中。
本揭露大致係關於通訊系統,且更具體地關於分時雙工(TDD)天線系統。可實作包括使用者通訊系統及天線系統的通訊系統。作為一實例,通訊系統可實作為,諸如使用長期演進(long term evolution, LTE)通訊標準的無線寬頻通訊系統。天線系統可實體通訊地耦接(例如,經由傳輸線纜線)至使用者通訊系統以提供用於通訊系統的經增強無線通訊能力,諸如以提供使用者通訊系統的無線延伸或能力以與基地台通訊(例如,以分時雙工(TDD)方式)。例如,天線系統可基於使用者通訊系統位於基於,例如,中介實體障礙或極端範圍而阻止或阻礙與基地台之無線連接的位置而提供用於使用者通訊系統的無線通訊能力。
天線系統包括一或多個天線陣列及一天線電路。(多個)天線陣列可經配置成各種天線陣列的任一者以提供待從天線系統傳輸及/或待於天線系統接收的各別一或多個無線信號。例如,(多個)天線陣列可包括天線元件(例如,條線導體)的配置以,諸如基於偏振多樣性(例如,二條分開的信號路徑的正交偏振)而在二或更多個各別信號路徑之間提供信號多樣性。(多個)天線陣列因此可各傳輸(多個)信號及接收(多個)信號,諸如以基於使用者通訊系統於其上操作之經定義標準的TDD方式。如本文所描述者,天線電路可判定天線系統與使用者通訊系統之間的互連的纜線損失(諸如在校準程序中)。結果,天線電路可經實作而以允許傳輸信號以(諸如,由使用者通訊系統的操作標準所定義的)預定有效等向輻射功率(effective isotropic radiated power, EIRP)或低於該預定有效等向輻射功率傳輸的方式提供經由(多個)天線陣列從使用者通訊系統提供之經傳輸信號(下文稱為「傳輸信號」)的衰減。額外地,亦如本文描述者,天線電路可經組態以監測各別通訊路徑上的信號功率,以促進通訊系統的TDD操作而無需來自使用者通訊系統的任何輸入。結果,天線系統可經安裝而以實質不可知(agnostic)天線系統與使用者通訊系統之間的互連,且在天線系統與使用者通訊系統之間沒有主動通訊的方式與使用者通訊系統協作。
圖1繪示通訊系統10的實例。通訊系統10可實作為諸如使用長期演進(LTE)通訊標準的無線寬頻通訊系統。在圖1的實例中,通訊系統10包括使用者通訊系統12及天線系統14。作為一實例,使用者通訊系統12可對應於無線閘道器,諸如以促進一或多個使用者裝置與無線網路(諸如蜂巢式網路或其他廣域網路(wide-area network, WAN))之間的無線通訊(例如,Wi-Fi、藍牙、及/或蜂巢式通訊)。
在圖1的實例中,天線系統14經由至少一條傳輸線纜線16(例如,RG6纜線)通訊地耦接至校準電路15,使得校準電路15將使用者通訊系統12及天線系統14互連。作為一實例,校準電路15可包括經組態以將DC電壓注入至提供至天線系統14的(多條)傳輸線纜線16上的至少一個T型偏壓器(bias-tee)。替代地,使用者通訊系統12可將DC電壓注入提供至(多條)傳輸線纜線16。結果,DC電壓可將輸入電力提供至天線系統14,如本文所更詳細描述者。
作為一實例,天線系統14可提供用於使用者通訊系統12的經增強無線通訊能力,諸如以提供使用者通訊系統12的無線延伸或能力以與基地台通訊(例如,以分時雙工(TDD)方式)。例如,天線系統14可基於使用者通訊系統12位於基於,例如,中介實體障礙或極端範圍而阻止或阻礙與基地台之無線連接的位置而提供用於使用者通訊系統12的無線通訊能力。
天線系統14包括一或多個天線陣列18及天線電路20。(多個)天線陣列18可經配置成各種天線陣列的任一者以提供待從天線系統14傳輸及/或待於該天線系統接收的各別一或多個無線信號。例如,(多個)天線陣列18可包括天線元件(例如,條線導體)的配置以諸如基於偏振多樣性而在二或更多條各別信號路徑之間提供信號多樣性。例如,(多個)天線陣列18可包括正交偏振天線元件的二個分開陣列,以提供通過天線電路20在二個分開的各別信號路徑中傳播之信號的正交偏振。(多個)天線陣列18因此可各諸如以基於使用者通訊系統12於其上操作之經定義標準的TDD方式雙向地傳輸(多個)信號及接收(多個)信號。在圖1的實例中,將從自(多個)天線陣列18傳輸及在該(多個)天線陣列接收的信號展現為信號「RF」,並將沿著(多條)傳輸線纜線16雙向地傳播的相同信號展現為信號「TS」。
天線電路20包括傳輸線測量電路22及振幅調整電路24。傳輸線測量電路22經組態以判定使用者通訊系統12(例如,校準電路15)與天線電路14之間通過至少一條傳輸線纜線16的信號損失。例如,傳輸線測量電路22可在天線系統14的安裝期間及/或在之後週期性地起始校準操作(例如,回應於校準命令)。作為一實例,在校準操作期間,傳輸線測量電路22可經組態以產生校準信號(諸如射頻(radio frequency, RF)信號),該校準信號可經由(多條)傳輸線纜線16從天線系統14傳輸至使用者通訊系統12,使得校準信號可經由(多條)傳輸線纜線16從使用者通訊系統12重傳輸回天線系統14。結果,傳輸線測量電路22可測量回射信號的至少一個特性(例如,功率),以判定由(多條)傳輸線纜線16所展現的信號損失。
回應於判定信號損失,振幅調整電路24可經組態以基於該經判定信號損失而調整從天線系統14傳輸之傳輸信號及在天線系統14接收之接收信號中之至少一者的振幅。如本文所描述者,用語「傳輸信號(transmit signal)」係指起源於使用者通訊系統12、作為信號TS傳播通過(多條)傳輸線纜線16、及作為信號RF經由(多個)天線陣列18從天線系統14傳輸的信號。類似地,用語「接收信號(receive signal)」係指作為信號RF經由(多個)天線陣列18在天線系統14接收、作為信號TS傳播通過(多條)傳輸線纜線16、並提供至使用者通訊系統12的信號。振幅調整電路24可因此基於在校準操作期間判定的信號損失而調整傳輸信號及接收信號在天線電路20中之分開的各別信號路徑中的振幅。
例如,通訊系統10可經組態以基於可規定預定最大有效等向輻射功率(EIRP)(諸如針對傳輸信號係+23 dBm)的預定通訊標準操作。作為一實例,振幅調整電路24可包括一或多個可變電路元件(variable circuit element, VCE)以放大或衰減傳輸信號(例如,下降至小於預定最大EIRP)及/或接收信號(例如,下降至小於與天線電路14及/或使用者通訊系統12關聯的最大飽和功率)。例如,(多個)天線陣列18可經設計成具有足夠增益,或天線電路20可足夠高而以大於預定最大EIRP的功率位準提供傳輸信號(例如,以克服(多條)傳輸線纜線16的功率損耗,無論(多條)傳輸線纜線16的長度為何),使得傳輸信號可衰減下降至約預定最大EIRP。因此,天線系統14可基於校準操作而以實質不可知(多條)傳輸線纜線16之長度及/或損失特性的方式安裝,以判定(多條)傳輸線纜線16的信號損失。
在圖1的實例中,天線電路20亦包括傳輸偵測電路26及控制器28。如先前描述者,通訊系統10可基於TDD通訊標準操作,使得傳輸信號及接收信號可在使用者通訊系統12與(多個)天線陣列18之間的給定信號路徑上彼此交錯。傳輸偵測電路26可經組態以測量天線電路20中之給定信號路徑上的功率,以判定使用者通訊系統12是否正在傳輸一傳輸信號。因此,回應於判定使用者通訊系統12是否正在傳輸一傳輸信號,控制器28可將調整電路24從接收模式(例如,作為預設模式)切換至傳輸模式以促進來自天線系統14的傳輸信號經由(多個)天線陣列18的傳輸。額外地,回應於傳輸偵測電路26偵測到信號路徑功率的減少(例如,小於預定臨限),控制器28可將調整電路24從傳輸模式切換回接收模式(例如,在計時器期滿後)。
回應於傳輸偵測電路26判定使用者通訊系統12正在傳輸一傳輸信號,諸如基於信號路徑上的功率大於預定臨限,控制器28可提供信號至振幅調整電路24以將信號路徑從接收模式切換至傳輸模式。因此,振幅調整電路24可對傳輸信號提供適當振幅調整(例如,經由VCE)以促進來自天線系統14之傳輸信號經由(多個)天線陣列18的傳輸。作為一實例,振幅調整電路24可包括在信號路徑之可切換傳輸及接收部分之各者中的功率放大器及/或濾波器,及/或可包括在傳輸及接收信號路徑的一者中的短路旁路路徑。
結果,天線系統14可操作以促進傳輸信號與接收信號之間的雙向TDD通訊,而不需要來自使用者通訊系統12的通訊或信號轉移。因此,天線系統14可以與使用者通訊系統12的操作大部分無關的簡化方式安裝。額外地,如先前描述者,天線系統14可以不可知將天線系統14及使用者通訊系統12互連之(多條)傳輸線纜線16之長度的方式安裝。據此,且如本文更詳細地描述者,天線系統14可簡單化地安裝以有效率地促進使用者通訊系統12與網路集線器(例如,基地台)之間的無線通訊。
圖2繪示天線系統50的實例。天線系統50可對應於圖1之實例中的天線系統14。因此,在下文之圖2之實例的描述中參照圖1的實例。
天線系統50包括天線電路52,如本文更詳細地描述者,該天線電路在圖2的實例中展現成包括可各對應於分開的信號多樣性類型的第一信號路徑54及第二信號路徑56。天線系統50亦包括可各與各別信號多樣性類型關聯的第一天線陣列58及第二天線陣列60。天線陣列58及60可經配置成各種天線陣列的任一者以提供待從天線系統50傳輸及/或待於該天線系統接收的各別一或多個無線信號,展現為個別信號RF1 及RF2 。例如,天線陣列58及60可包括天線元件(例如,條線導體)的配置以諸如基於偏振多樣性而在二條各別信號路徑之間提供信號多樣性。作為一實例,天線陣列58及60可經組態為正交偏振天線元件的分開的各別陣列,以提供在各別信號路徑上傳播之信號的正交偏振。天線陣列58及60因此可各以基於使用者通訊系統(未顯示於圖2的實例中)於其上操作的經定義標準的TDD方式傳輸及接收信號。
額外地,天線系統50經由經組態以在使用者通訊系統與天線電路52之間傳播信號TS1 的第一傳輸線纜線62及經組態以在使用者通訊系統與天線電路52之間傳播信號TS2 的第二傳輸線纜線64通訊地耦接至使用者通訊系統(例如,使用者通訊系統12)。例如,傳輸線纜線62及64可連接至經耦接至使用者通訊系統的校準電路(例如,校準電路15)。傳輸線纜線62及64可各與各別的信號多樣性類型關聯,且因此與天線電路52的各別信號路徑關聯。例如,傳輸線纜線62及64可經組態為RG6纜線或其他類型的傳輸線纜線。在圖2的實例中,天線電路52包括擷取電路66,該擷取電路可經組態為DC解偶器(例如,T型偏壓器),該DC解偶器耦接至傳輸線纜線62及64以擷取諸如從校準電路15提供以對天線電路52之電子器件供電的DC電壓(展現為電壓VDC )。因此,天線系統50不需要本機電源,使得天線系統50可以更可有彈性的方式安裝。
天線電路52亦包括傳輸線測量電路68。傳輸線測量電路68經組態以判定使用者通訊系統與天線電路50之間通過傳輸線纜線62及64的信號損失。例如,傳輸線測量電路68可回應於校準命令CAL而在天線系統50的安裝期間及/或在之後週期性地起始校準操作。作為一實例,校準指令CAL可回應於使用者輸入(諸如經由天線系統50或校準系統15上的實體輸入(例如,實體按鈕或在觸控螢幕上的按鈕))而提供、回應於天線系統50的電力開啟而提供(例如,回應於最初接收到電壓VDC 而自動地)提供、週期性地從處理器或控制器裝置(例如,以週期性或可程式化間隔)提供、或從各種其他構件的任一者提供。
在圖2的實例中,傳輸線測量電路68包括校準信號產生器70、信號監測器72、及記憶體74。傳輸線測量電路68通過第一開關SW1 (經由擷取電路66)通訊地耦接至第一傳輸線纜線62及通過第二開關SW2 (經由擷取電路66)通訊地耦接至第二傳輸線纜線64。在圖2的實例中,開關SW1 及SW2 係展現成設定成正常操作模式狀態,並經由校準命令CAL控制。因此,在正常操作模式中,如在圖2之實例所展現的狀態中,開關SW1 將第一信號路徑54連接至第一傳輸線纜線62,且開關SW2 將第二信號路徑54連接至第二傳輸線纜線64,以促進傳輸信號及接收信號經由各別信號路徑54及56及各別傳輸線纜線62及64在使用者系統與天線陣列58及56之間的傳播。然而,在校準模式中(諸如由校準命令CAL所起始),開關SW1 及SW2 可切換以將傳輸線測量電路68經由第一開關SW1 耦接至第一傳輸線纜線62及經由第二開關SW2 耦接至第二傳輸線纜線64以促進校準操作。
在校準操作期間,校準信號產生器70可經組態以產生校準信號,諸如具有預定義頻率的虛擬RF信號。在圖2的實例中,將校準信號展現為分別對應於第一傳輸線纜線62及第二傳輸線纜線64的第一校準信號CS1 及第二校準信號CS2 。傳輸線測量電路68因此可經由傳輸線纜線62及64的各別一者將校準信號CS1 及CS2 的一或二者傳輸至使用者通訊系統。
使用者通訊系統可經組態以在校準程序期間經由傳輸線纜線62及64將(多個)校準信號CS1 及/或CS2 作為(多個)各別回射信號從使用者通訊系統重傳輸回天線系統50。回應於接收到(多個)回射信號,信號監測器72可經組態以測量(多個)回射信號的至少一個特性,以判定由傳輸線纜線62及64展現的信號損失。例如,回射信號的特性可係功率,使得信號監測器72可計算校準信號CS1 及CS2 的一者與各別回射信號之間的功率比。據此,信號監測器72可基於(多個)校準信號CS1 及CS2 與各別回射信號之間的功率比而判定由(多條)傳輸線纜線62及64展現的信號損失。額外地,取代功率或除了功率以外,可監測其他類型的特性(諸如延遲時間),以判定由(多條)傳輸線纜線62及64展現的信號損失。傳輸線測量電路68可接著將經判定信號損失儲存在記憶體74中。例如,記憶體74可個別地或組合地儲存傳輸線纜線62及64二者的信號損失資訊,並可儲存用於各校準操作或用於最近的校準操作的信號損失資訊。作為一實例,記憶體74可經組態為非揮發性記憶體,使得記憶體74可在天線系統50的電力喪失期間保持所計算的信號損失資訊。結果,所計算的信號損失可在電力恢復至天線系統50後從記憶體74取回,以促進天線系統50的操作而不需要校準操作。
圖3及圖4分別繪示通訊系統之校準之實例圖式100及150。在圖3的實例中,通訊系統包括藉由第一傳輸線纜線106及第二傳輸線纜線108通訊地耦接的校準電路102及天線系統104。在圖4的實例中,通訊系統包括藉由第一傳輸線纜線156及第二傳輸線纜線158通訊地耦接的校準電路152及天線系統154。圖3及圖4之實例中的校準電路可各對應於圖1之實例中的校準電路15。作為一實例,校準電路102及152可對應於校準電路15,天線系統104及154可對應於天線系統14及/或50,且傳輸線纜線106及108及傳輸線纜線156及158可對應於(多條)傳輸線纜線16/或傳輸線纜線62及64。因此,在下文之圖3及圖4之實例的描述中參照圖1及圖2的實例。
在圖式100中,天線電路104包括傳輸線測量電路110。在校準操作期間,傳輸線測量電路110可經組態(例如,經由校準信號產生器70)以產生由傳輸線測量電路110沿著第一傳輸線纜線106傳輸的第一校準信號CS1 。校準電路102可經組態以經由第一傳輸線纜線106將校準信號CS1 作為各別回射信號RTN1 重傳輸(例如,反射)回天線系統104。因此,在圖式100中,第一傳輸線106經組態以傳播校準信號CS1 及經反射回射信號RTN1 二者。回應於接收到回射信號RTN1 ,傳輸線測量電路110可經組態(例如,經由信號監測器72)以測量經反射回射信號RTN1 的至少一個特性,以判定由第一傳輸線纜線106展現的信號損失。例如,經反射回射信號RTN1 的特性可係功率,使得傳輸線測量電路110可計算校準信號CS1 與各別經反射回射信號RTN1 之間的功率比,以判定由第一傳輸線纜線106展現的信號損失。
類似地,傳輸線測量電路110可針對第二傳輸線纜線108重複先前描述的校準程序。例如,傳輸線測量電路110亦可經組態以產生沿著第二傳輸線纜線108由傳輸線測量電路110傳輸的第二校準信號CS2 。校準電路102可經組態以經由第二傳輸線纜線108將校準信號CS2 作為各別回射信號RTN2 重傳輸(例如,反射)回天線系統104。回應於接收到經反射回射信號RTN2 ,傳輸線測量電路110可經組態(例如,經由信號監測器72)以測量經反射回射信號RTN2 的至少一個特性,以類似於相關於第一傳輸線纜線106於先前描述者,判定由第二傳輸線纜線108展現的信號損失。
在圖式150中,天線電路154包括傳輸線測量電路160。在校準操作期間,傳輸線測量電路160可經組態(例如,經由校準信號產生器70)以產生由傳輸線測量電路160沿著第一傳輸線纜線156傳輸的第一校準信號CS1 。校準電路152可經組態以經由第二傳輸線纜線158將校準信號CS1 作為各別回射信號RTN1 重傳輸回天線系統154。因此,在圖式150中,第一傳輸線156經組態以傳播校準信號CS1 ,且第二傳輸線纜線158經組態以傳播回射信號RTN1 。回應於接收到回射信號RTN1 ,傳輸線測量電路160可經組態(例如,經由信號監測器72)以測量回射信號RTN1 的至少一個特性,以判定由第一傳輸線纜線156及第二傳輸線纜線158展現的信號損失。例如,回射信號RTN1 的特性可係功率,使得傳輸線測量電路160可計算校準信號CS1 與各別回射信號RTN1 之間的功率比,以判定由第一傳輸線纜線156及第二傳輸線纜線158展現的信號損失。作為一實例,傳輸線測量電路160可推斷校準操作,或可相關於校準信號CS的傳輸及回射信號RTN的接收切換第一傳輸線纜線156及第二傳輸線纜線158而重複先前描述的校準程序。
圖5繪示校準電路200的實例。校準電路200可對應於圖1之實例的校準電路15。因此,在下文之圖5之實例的描述中參照圖1的實例。校準電路200經組態以連接至使用者通訊系統(例如,使用者通訊系統12)以提供DC電力至天線系統50。例如,DC電力可係提供在傳輸線纜線62及64上的DC偏壓電壓,使得擷取電路66擷取電壓VDC 以提供電力至天線系統50的電子組件。
校準電路200包括經組態以產生或接收DC電壓VDC (例如,約3.3伏特)的電力區塊202。例如,電力區塊202可經組態為低壓降(low-dropout, LDO)電壓調節器,諸如以從較高的輸入電壓(例如,約5伏特)產生DC電壓VDC 。電力區塊202將DC電壓VDC 提供至第一注入電路204及第二注入電路206。例如,注入電路204及206可經組態為T型偏壓器。注入電路204及206各耦接至傳輸信號及接收信號TS1 及TS2 分別於其上傳播的傳輸線纜線62及64。因此,注入電路204及206經組態以將DC電壓VDC 提供至傳輸線纜線62及64上。
校準電路200包括耦接至使用者通訊系統12的第一信號埠208及第二信號埠210。第一信號埠208經組態以傳播傳輸信號及接收信號TS1 ,且第二信號埠210經組態以傳播傳輸信號及接收信號TS2 。第一信號埠208經由第一開關SW3 耦接至第一傳輸線纜線62,且第二信號埠210經由第二開關SW4 耦接至第二傳輸線纜線64。在圖5的實例中,開關SW3 及SW4 係展現成設定成正常操作模式狀態,並經由校準命令CAL控制。例如,校準指令CAL可對應於在圖2之實例中描述的相同校準命令CAL,或可係與待於校準操作期間所提供的命令不同的校準命令(例如,由使用者協助)。
因此,在正常操作模式中,如在圖5之實例中所展現的狀態中,開關SW3 將第一信號埠208連接至第一傳輸線纜線62,且開關SW4 將第二信號埠210連接至第二傳輸線纜線64,以促進傳輸信號及接收信號經由各別傳輸線纜線62及64在使用者通訊系統與天線系統50之間的傳播。然而,在校準模式中(諸如由校準命令CAL所起始),開關SW3 及SW4 可切換以在傳輸線纜線62與64之間提供短路。結果,校準信號CS1 (諸如在圖4之實例中提供者)可從第一傳輸線纜線62提供,並可作為回射信號RTN1 沿著第二傳輸線纜線64重傳輸回天線系統50。因此,使用最小輸入,校準電路200可在校準操作中實施以判定傳輸線纜線62及64的信號損失。
圖6繪示校準電路230的實例。校準電路230可對應於圖1之實例的校準電路15。因此,在下文之圖6之實例的描述中參照圖1的實例。校準電路230經組態以連接至使用者通訊系統(例如,使用者通訊系統12)以提供DC電力至天線系統50。例如,DC電力可係提供在傳輸線纜線62及64上的DC偏壓電壓,使得擷取電路66擷取電壓VDC 以提供電力至天線系統50的電子組件。
校準電路230包括經組態以產生或接收DC電壓VDC (例如,約3.3伏特)的電力區塊232。例如,電力區塊232可經組態為LDO電壓調節器,諸如以從較高的輸入電壓(例如,約5伏特)產生DC電壓VDC 。電力區塊232將DC電壓VDC 提供至第一注入電路234及第二注入電路236。例如,注入電路234及236可經組態為T型偏壓器。注入電路234及236各耦接至傳輸信號及接收信號TS1 及TS2 分別於其上傳播的傳輸線纜線62及64。因此,注入電路234及236經組態以將DC電壓VDC提供至傳輸線纜線62及64上。
校準電路230包括耦接至使用者通訊系統12的第一信號埠238及第二信號埠240。第一信號埠238經組態以傳播傳輸信號及接收信號TS1 ,且第二信號埠240經組態以傳播傳輸信號及接收信號TS2 。第一信號埠238經由第一開關SW3 耦接至第一傳輸線纜線62,且第二信號埠240經由第二開關SW4 耦接至第二傳輸線纜線64。在圖6的實例中,將開關SW3 及SW4 展現成設定為正常操作模式狀態,並經由校準命令CAL控制,例如,校準指令CAL可對應於圖2之實例中描述的相同校準命令CAL,或可係與待於校準操作期間提供之命令不同的校準命令(例如,由使用者協助)。
因此,在正常操作模式中,如在圖6之實例中所展現的狀態中,開關SW3 將第一信號埠238連接至第一傳輸線纜線62,且開關SW4 將第二信號埠240連接至第二傳輸線纜線64,以促進傳輸信號及接收信號經由各別傳輸線纜線62及64在使用者通訊系統與天線系統50之間的傳播。然而,在校準模式中(諸如由校準命令CAL所起始),開關SW3 及SW4 可切換以將傳輸線纜線62與64之各者耦接至接地。結果,校準信號CS1 (諸如在圖3之實例中提供者)可從第一傳輸線纜線62提供,並可作為回射信號RTN1 沿著第一傳輸線纜線62反射回天線系統50。類似地,校準信號CS2 (諸如在圖3之實例中提供者)可從第二傳輸線纜線64提供,並可作為回射信號RTN2 沿著第二傳輸線纜線64反射回天線系統50。因此,使用最小輸入,校準電路230可在校準操作中實施以判定傳輸線纜線62及64的信號損失。
圖7繪示傳輸線測量電路250的實例。傳輸線測量電路250可對應於圖2之實例中的傳輸線測量電路68。因此,在下文之圖7之實例的描述中參照圖2至圖6的實例。
如先前描述者,傳輸線測量電路250經組態以判定使用者通訊系統與天線電路50之間通過傳輸線纜線62及64的信號損失。在圖7的實例中,傳輸線測量電路250包括校準信號產生器252及信號監測器254。校準信號產生器252包括經組態以產生可對應於第一校準信號CS1 之校準信號的RF信號源256。作為一實例,第一校準信號CS1 可對應於具有預定義頻率的虛擬RF信號(例如,正弦信號)。在圖7的實例中,校準信號產生器252包括電阻網路258,該電阻網路包括第一電阻器R1 及第二電阻器R2 ,該第一電阻器及該第二電阻器各連接至RF信號源256且各連接至相對於RF信號源256並將第一電阻器R1 及第二電阻器R2 互連的第三電阻器R3 。電阻網路258因此可提供第一校準信號CS1 之可在校準模式中提供至第一傳輸線纜線62(例如,經由開關SW1 )的分割版本。傳輸線測量電路250因此可經由傳輸線纜線62將校準信號CS1 傳輸至使用者通訊系統12。
如先前描述者,使用者通訊系統12可經組態以在校準程序期間在傳輸線纜線64上將校準信號CS1 作為各別回射信號RTN1 從使用者通訊系統12重傳輸回天線系統50,諸如在圖4之實例中所描述者。在圖7的實例中,回射信號RTN1 經由二極體D1 提供至信號監測器254。信號監測器254亦經組態以經由二極體D2 接收第一校準信號CS1 的分割版本,其展現為信號CS1D 。因此,作為一實例,信號監測器254可經組態以測量回射信號RTN1 及信號CS1D 之各者的功率。結果,信號監測器254可計算回射信號RTN1 及信號CS1D 之間的功率比。據此,信號監測器254可基於回射信號RTN1 與信號CS1D 之間的功率比來判定由傳輸線纜線62及64展現的信號損失。功率監測器254可因此將經計算信號損失(展現為信號PWR_LS)提供至記憶體74。
雖然傳輸線測量電路250經組態以提供於圖4之實例中展現的校準操作,但應理解傳輸線測量電路250不限於圖7的實例。例如,傳輸線測量電路250可以促進校準信號CS1 及回射信號RTN1 或校準信號CS2 及回射信號RTN2 沿著傳輸線纜線62及64之給定一者傳播的方式配置,諸如在圖3之實例中所描述者。
參照回圖2之實例,天線電路52亦包括控制器76。回應於判定信號損失,傳輸線測量電路68可將經判定信號損失(在圖2之實例中展現為「SM」)提供至控制器76(例如,從記憶體)。回應於經判定信號損失SM,控制器76可經組態以基於經判定信號損失而調整從天線系統50傳輸之傳輸信號及在天線系統50接收之接收信號中之至少一者的振幅。作為一實例,控制器76可包括處理器,該處理器經組態以基於經判定信號損失SM而判定對各別傳輸信號及接收信號之各者的振幅的適當調整。雖然將控制器76描述成包括處理器,但用語「處理器(processor)」可用以描述其他類型的處理裝置,諸如現場可程式化閘陣列(field-programmable gate array, FPGA)、特定應用積體電路(application specific integrated circuit, ASIC)、或其他類型的處理裝置。
在圖2的實例中,天線電路52包括提供在第一信號路徑54中的第一振幅調整電路78及提供在第二信號路徑56中的第二振幅調整電路80。作為一實例,振幅調整電路78及80可各包括在各別信號路徑54及56中的至少一個可變電路元件(VCE)。例如,VCE可經組態成可變衰減器、可變增益放大器、及/或固定增益放大器。在圖2的實例中,控制器76經組態以基於經判定信號損失SM以及基於信號路徑54及/或56在傳輸模式或接收模式而分別提供控制信號(展現為「AT1 」及「AT2 」)至振幅調整電路78及80。
例如,通訊系統10可經組態以基於可規定預定最大有效等向輻射功率(EIRP)(諸如針對傳輸信號係+23 dBm)的預定通訊標準操作。因此,控制器76在傳輸模式中將控制信號AT1 及AT2 提供至各別振幅調整電路78及80,以將傳輸信號衰減下降至小於預定最大EIRP。例如,天線陣列58及60可經設計成具有足夠高的增益而以大於預定最大EIRP的功率位準提供傳輸信號,以克服傳輸線纜線62及64的功率損耗(無論傳輸線纜線62及64的長度為何),使得傳輸信號可衰減下降至約預定最大EIRP。額外地或替代地,信號路徑54及56可在傳輸模式包括足夠的功率放大,如本文所更詳細地描述者,以克服傳輸線纜線62及64的功率損失(無論傳輸線纜線62及64的長度為何),使得傳輸信號可衰減下降至約預定最大EIRP。類似地,控制器76在接收模式中提供控制信號AT1 及AT2 至各別振幅調整電路78及80,以將接收信號衰減下降至小於可接受操作位準(例如,與天線電路50及/或使用者通訊系統12關聯的最大飽和功率)。因此,天線系統50可基於校準操作而以實質不可知傳輸線纜線62及64之長度及/或損失特性的方式安裝,以判定傳輸線纜線62及64的信號損失。
如先前描述者,通訊系統10可基於TDD通訊標準操作,使得傳輸信號及接收信號可在使用者通訊系統12與天線陣列58及60之間的給定信號路徑上彼此交錯。此外,如先前描述者,天線電路52的信號路徑54及56可在對應於沿著各別信號路徑54及56以TDD方式傳輸該等傳輸信號或接收該等接收信號的傳輸模式或接收模式中操作。在圖2的實例中,天線電路52亦包括與第一信號路徑54關聯的第一傳輸偵測電路90及與第二信號路徑56關聯的第二傳輸偵測電路92。傳輸偵測電路90及92可經組態以測量各別信號路徑54及56上的功率,以判定使用者通訊系統12是否正在傳輸一傳輸信號。
例如,傳輸偵測電路90及92可各包括具有終端負載的雙向耦接器,以判定信號路徑54及56之各別一者上的功率是否大於預定臨限,以判定使用者通訊系統12是否正在傳輸一傳輸信號。在圖2的實例中,傳輸偵測電路90及92經組態以產生提供至控制器76的模式信號TX1 及TX2 ,諸如以指示信號路徑54及56的各別一者係在傳輸模式中。因此,回應於傳輸偵測電路90及92判定使用者通訊系統12是否正在傳輸一傳輸信號,控制器76可將各別信號路徑54及56從作為預設模式的接收模式切換至傳輸模式以促進來自天線系統50的傳輸信號經由天線陣列58及60的傳輸。類似地,回應於傳輸偵測電路90及92偵測到信號路徑功率的減少(例如,小於預定臨限),控制器76可將各別信號路徑54及56從傳輸模式切換回接收模式(例如,在計時器期滿後)。
如先前描述者,控制器76可經組態以基於信號路徑54及56之各別一者之傳輸模式或接收模式的指示(諸如基於各別模式信號TX1 及TX2 )而調整(多個)各別控制信號AT1 及AT2 。因此,傳輸信號及接收信號的振幅可基於各別信號路徑54或56在傳輸模式或接收模式中而調整(例如,衰減)。作為另一實例,如先前描述者,振幅調整電路78及80可經由開關在針對振幅調整電路78及80之各者的傳輸模式信號路徑及接收模式信號路徑之間切換。因此,控制器76亦可包括經組態以控制振幅調整電路78與80之切換的開關控制器94。
作為一實例,開關控制器94可經組態以分別產生模式信號MD1 及MD2 ,以控制信號路徑54及56之各別一者的模式。例如,振幅調整電路78可由第一切換信號MD1 控制,且振幅調整電路80可由第二切換信號MD2 控制。回應於傳輸偵測電路90及92的一者判定使用者通訊系統12正在沿著信號路徑54及56的各別一者傳輸一傳輸信號,傳輸偵測電路90及92的各別一者命令控制器76(例如,經由模式信號TX1 及TX2 )提供切換信號MD1 及MD2 的各別一者至振幅調整電路78及80的各別一者。回應於切換信號MD1 及MD2 的各別一者,各別振幅調整電路78及80可啟動至少一個開關以將各別振幅調整電路78或80從預設接收模式切換至傳輸模式,以促進傳輸信號沿著各別信號路徑54及56及從各別天線陣列58與60的傳輸。
圖8繪示控制器300的實例。控制器300可對應於圖2之實例中的控制器76。因此,在下文之圖8之實例的描述中參照圖2的實例。
控制器300包括處理器302。例如,處理器302可與振幅調整電路78及80通訊或包括該等振幅調整電路。在圖8的實例中,處理器302接收對應於傳輸線纜線62及64之信號損失的信號SM。因此,處理器302可經組態以計算適當的放大量(例如,衰減)以提供至振幅調整電路78及80,諸如以基於各別模式(例如,傳輸模式或接收模式)提供適當衰減至信號路徑54及/或56。在圖7的實例中,將處理器302展現為產生提供至振幅調整電路78及80的控制信號AT1 及AT2 ,諸如以基於各別模式提供適當衰減至信號路徑54及/或56。
如先前描述者,圖2之實例中的控制器76可包括切換控制器94以控制振幅調整電路78及80的切換。在圖8的實例中,控制器300可包括可提供用於振幅調整電路78及80的一者的切換信號MD的切換控制器304。因此,應理解控制器300可包括用於信號路徑54及56之各者的切換控制器304。切換控制器304包括第一比較器306及第二比較器308。第一比較器306經組態以比較對應於接收信號之適當功率的電壓VRX 與臨限電壓VRX_TH 。類似地,第二比較器308經組態以比較對應於傳輸信號之適當功率的電壓VTX 與臨限電壓VTX_TH 。作為一實例,電壓VRX 及VTX 可對應於相同電壓(例如,當由(多個)傳輸偵測系統90及92測量時,對應於信號路徑54及56之給定一者上的信號功率)。因此,比較器306及308可經組態以提供對應於各別信號路徑54或56之模式的經確立輸出。
切換控制器304包括展現為310、312、及314的第一序列的D鎖存器(例如,正反器)。第一D鎖存器310將第一比較器306的輸出接收為輸入,其中D鎖存器310、312、及314係以從輸出至輸入的串接配置組態。D鎖存器310、312、及314之各者接收來自振盪器316的時脈信號CLK。將第二D鎖存器312及第三D鎖存器314的輸出提供為至及閘318的輸入,其中接收自第三D鎖存器314的輸入係反相的。在類似配置中,切換控制器亦包括展現為320、322、及324的第二序列的D鎖存器。第一D鎖存器320將第二比較器308的輸出接收為輸入,其中D鎖存器320、322、及324係以從輸出至輸入的串接配置組態。D鎖存器320、322、及324之各者同樣地接收時脈信號CLK。將第二D鎖存器322及第三D鎖存器324的輸出提供為至及閘326的輸入,其中接收自第三D鎖存器324的輸入係反相的。
將及閘318的輸出提供為至SR鎖存器328的設定輸入,並將及閘326的輸出提供為至SR鎖存器328的重設輸入。SR鎖存器328同樣地接收時脈信號CLK,並經組態以產生各別的切換信號MD(例如,切換信號MD1 及MD2 的一者)。因此,SR鎖存器328經組態以回應於電壓VTX 及/或VRX 之振幅的變化而迅速地改變切換信號MD的狀態。例如,回應於電壓VTX 及/或VRX 之振幅的變化,D鎖存器310、312、314、320、322、及324、及閘318及326、及SR鎖存器328的邏輯序列可經組態以在約10微秒或更少的時間改變切換信號MD的狀態,諸如以滿足TDD通訊標準。
處理器302可經組態以接收與切換控制器304之切換邏輯關聯的複數個輸入。在圖8的實例中,處理器302接收D鎖存器314及324的輸出以及及閘318及326的輸出作為輸入。例如,處理器302可經組態為狀態機,以監測信號路徑(例如,信號路徑54或56)的狀態,使得至處理器302之輸入經組態以設定用於天線電路52操作的旗標及/或暫存器。作為另一實例,振盪器316可包括在處理器302中,使得處理器302產生時脈信號CLK。額外地,將處理器302展現為產生預定臨限電壓VTX_TH 及VRX_TH ,該等預定臨限電壓可經由至處理器302的輸入而可程式化或可具有固定電壓振幅。
在圖8的實例中,處理器302包括計時器330(例如,一個計時器用於信號路徑54及56的一者)。作為一實例,計時器330可對應於用於控制與各別信號路徑54及56之模式選擇關聯之時序的監視計時器。例如,回應於提供至處理器302的輸入指示將模式設定成傳輸模式以用於(多個)信號路徑54及56的給定一者,但傳輸功率小於預定臨限(例如,電壓VTX 小於預定臨限VTX_TH ),各別計時器330可開始計數預定計時臨限。作為一實例,回應於各別計時器330計數預定時間持續時間(例如,大約一毫秒),處理器302可切換回預設接收模式以用於給定信號路徑54或56,諸如以改變控制信號AT1 及AT2 之各別一者的振幅。額外地,處理器302可確立至SR鎖存器328的輸出(例如,至SR鎖存器328的「清除」輸入)。因此,SR鎖存器328可重設以改變切換信號MD的狀態以指示將模式從傳輸模式切換回接收模式。結果,(多個)信號路徑54及/或56可回應於沒有更多的傳輸信號從使用者通訊系統12傳輸的計時指示而返回預設接收模式。
為了滿足給定的TDD通訊標準,控制信號AT1 及AT2 及振幅調整電路78及80可能需要在傳輸模式與接收模式之間儘快切換。圖9繪示TDD通訊串流的實例圖式350。TDD通訊串流包括以352展現的第一組接收信號子訊框、以354展現的第一組傳輸信號子訊框、及第二組接收模式子訊框356。作為一實例,TDD通訊串流可於之後使用採TDD方式的傳輸信號子訊框及接收信號子訊框的交替組繼續。將傳輸信號子訊框及接收信號子訊框展現為隨時間而變動而展現在圖9的實例中。雖然將傳輸信號子訊框及接收信號子訊框的各者展現為在時間上大約相等,但應理解傳輸信號子訊框及接收信號子訊框在時間長度上不必然相等,且展現於圖9之實例中之時域的元件不必然按比例繪示。
在圖9的實例中,在該等組接收信號子訊框(例如,接收信號子訊框352)與傳輸信號子訊框(例如,傳輸信號子訊框354)之各者之間的係時間TINT 。時間TINT 可例如對應於接收信號子訊框與傳輸信號子訊框在給定信號路徑上的傳播之間(諸如在使用者通訊系統12、沿著傳輸線纜線62或64、沿著天線電路52中的各別信號路徑54或56、與天線陣列58或60的各別一者之間)的實質最大中間時間,諸如由預定的TDD通訊標準定義者。
在圖9的實例中,在傳輸信號子訊框及接收信號子訊框之各者之間的時間TINT 包括第一時間部分358及第二時間部分360。第一時間部分358可對應於切換時間(例如,大約10微秒或更少),諸如以產生(多個)適當切換信號MD1 及MD2 及/或啟動振幅調整電路78及80的各別切換。第二時間部分360可對應於切換安定時間(例如,同樣地約10微秒或更少),諸如用於各別開關安定至飽和區域及/或使切換控制器304及/或各別振幅調整電路78及80的電路組件的寄生效應(例如,電容及/或電感)消散的時間。因此,切換控制器304之基於硬體的邏輯電路可實施(多個)切換信號MD1 及MD2 之迅速狀態變化,以滿足由TDD通訊標準所規定的迅速切換要求。
圖10至圖15展現振幅調整電路的實例。圖10的實例展現振幅調整電路370,圖11的實例展現振幅調整電路400,圖12的實例展現振幅調整電路450,圖13的實例展現振幅調整電路500,圖14的實例展現振幅調整電路550,且圖15的實例展現振幅調整電路600。振幅調整電路370、400、450、500、550、及600中的任一者可對應於圖2之實例中的振幅調整電路78與80。因此,在下文之圖10至圖15之實例的描述中參照圖2的實例。額外地,振幅調整電路370、400、450、500、550、及600不限於在圖10至圖15之實例中展現的實例。例如,振幅調整電路370、400、450、500、550、及600可包括可配置在各別傳輸路徑、接收路徑、或二者中的濾波器,諸如低雜訊濾波器、帶通濾波器、及類似者。此外,描述於振幅調整電路400、450、500、550、及600中的開關可實作為電晶體裝置,諸如以提供非常迅速在傳輸模式與接收模式之間的切換時間。
在圖10的實例中,振幅調整電路370包括在信號路徑(例如,信號路徑54或56)中的VCE 372。將VCE 372展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 372可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。因此,振幅調整電路370的模式在傳輸模式與接收模式的各者中係由控制信號AT所提供的調整量(例如,衰減)控制。
在圖11的實例中,振幅調整電路400包括在信號路徑(例如,信號路徑54或56)中的VCE 401。將VCE 401展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 401可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。振幅調整電路400亦包括各由切換信號MD控制的第一開關SW5 、第二開關SW6 、及第三開關SW7 。開關SW5 、SW6 、及SW7 係以對應於接收模式之預設狀態的預設狀態展現。第一開關SW5 及第二開關SW6 在圖11的實例中各展現為單刀雙投開關,該等單刀雙投開關在第一信號路徑(展現在402)及第二信號路徑(展現在404)之間選擇。在圖11的實例中,第一信號路徑402可對應於接收模式,且第二信號路徑404可對應於傳輸模式。第二信號路徑404包括經組態以在傳輸模式中放大傳輸信號的功率放大器406。額外地,振幅調整電路400包括經配置與配置成單刀單投開關的第三開關SW7 並聯的低雜訊放大器(low-noise amplifier, LNA) 408。因此,在接收模式中,接收信號由LNA 408放大,且在傳輸模式中,傳輸信號通過閉合開關SW7 以旁路短路提供。
在圖12的實例中,振幅調整電路450包括在信號路徑(例如,信號路徑54或56)中的VCE 451。將VCE 451展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 451可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。振幅調整電路450亦包括各由切換信號MD控制的第一循環器452、第二循環器454、第一開關SW5 、及第二開關SW6 。開關SW5 及SW6 係以對應於接收模式之預設狀態的預設狀態展現。第一開關SW5 及第二開關SW6 在圖11的實例中各展現為單刀雙投開關。將第一循環器452展現為「順時鐘」循環器,使得傳輸信號提供至第一開關SW5 。第一開關SW5 在接收模式中的衰減器456與傳輸模式中的功率放大器458之間選擇,且因此經由亦配置成「順時鐘」循環器的第二循環器454從振幅調整電路450輸出。第二循環器454亦將接收信號提供至第二開關SW6 。第二開關SW6 在傳輸模式中的衰減器460與接收模式中的LNA 462之間選擇,且因此經由第一循環器452從振幅調整電路450輸出。
在圖13的實例中,振幅調整電路500包括在信號路徑(例如,信號路徑54或56)中的VCE 501。將VCE 501展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 501可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。振幅調整電路500亦包括開關SW5 及循環器502。開關SW5 經配置成由切換信號MD控制的單刀雙投開關,並以對應於接收模式之預設狀態的預設狀態展現。開關SW5 在以504展現的第一信號路徑與以506展現的第二信號路徑之間選擇。在圖13的實例中,第一信號路徑504可對應於傳輸模式,且第二信號路徑506可對應於接收模式。第一信號路徑504包括功率放大器508,該功率放大器經組態以在傳輸模式中放大傳輸信號,並因此經由亦配置成「順時鐘」循環器的循環器502從振幅調整電路500輸出。第二信號路徑506包括LNA 510,使得循環器502在接收模式中在第二信號路徑506上提供待由LNA 510放大並經由開關SW5 從振幅調整電路500輸出的接收信號。
在圖14的實例中,振幅調整電路550包括在信號路徑(例如,信號路徑54或56)中的VCE 551。將VCE 551展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 551可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。振幅調整電路550亦包括開關SW5 及循環器552。開關SW5 經配置成由切換信號MD控制的單刀雙投開關,並以對應於接收模式之預設狀態的預設狀態展現。開關SW5 在以554展現的第一信號路徑與以556展現的第二信號路徑之間選擇。在圖14的實例中,第一信號路徑554可對應於傳輸模式,且第二信號路徑556可對應於接收模式。將第一信號路徑554展現為旁路短路電路,以經由亦配置成「順時鐘」循環器的循環器552從振幅調整電路550輸出傳輸信號。第二信號路徑556包括LNA 558,使得循環器552在接收模式中在第二信號路徑556上提供待由LNA 558放大並經由開關SW5 從振幅調整電路550輸出的接收信號。
在圖15的實例中,振幅調整電路600包括在信號路徑(例如,信號路徑54或56)中的VCE 601。將VCE 601展現成由控制信號AT(例如,控制信號AT1 或AT2 的一者)控制。例如,VCE 601可經組態成可變衰減器,該可變衰減器由控制器76控制以在傳輸模式中提供傳輸信號的衰減,並在接收模式中提供接收信號的衰減(例如,基於模式信號TX1 或TX2 的各別一者)。振幅調整電路600亦包括由切換信號MD控制的開關SW5 。開關SW5 係以採對應於接收模式之預設狀態的預設狀態的單刀單投開關展現。振幅調整電路600包括經配置成與開關SW5 並聯的LNA 602。因此,在接收模式中,接收信號由LNA 602放大,且在傳輸模式中,傳輸信號通過閉合開關SW5 以旁路短路提供。
圖10、圖14、及圖15的實例不包括在傳輸模式中提供傳輸信號之放大的功率放大器。如先前描述者,信號路徑54及56可在傳輸模式中包括足夠的功率放大(諸如在圖11至圖13之實例中所提供者)以克服傳輸線纜線62及64的功率損失(例如,以將傳輸信號衰減下降至約預定最大EIRP),無論傳輸線纜線62及64的長度為何。作為另一實例,分別在圖10、圖14、及圖15之實例中的振幅調整電路370、550、及600可在使用者通訊系統12包括傳輸信號的充分功率放大而使得功率放大器在傳輸信號路徑中係非必要時實施。額外地或替代地,天線陣列58及60可經設計成具有足夠高增益,使得傳輸信號的功率放大在傳輸信號路徑中係非必要的,以提供振幅調整電路550及600的可行性。
作為另一實例,振幅調整電路400、450、及500可以完全不可知使用者通訊系統12的方式針對天線系統50的安裝而實作。例如,在校準程序期間,除了測量傳輸線纜線62及64的信號損失外,天線系統50可測量從使用者通訊系統12提供之傳輸信號的輸出功率(例如,經由傳輸偵測電路90及92,諸如相對於複數個臨限)。因此,回應於判定使用者通訊系統12的輸出功率,天線電路52可在傳輸模式中將傳輸信號適當地衰減下降至約預定最大EIRP。
結果,切換控制器304可回應於電壓VTX 及/或VRX 之振幅的變化而實施切換信號MD的狀態變化,諸如回應於傳輸偵測電路)90及92在(多個)各別信號路徑54及56上偵測到功率變化。據此,切換信號MD1 及MD2 可提供足夠迅速的切換以滿足最大切換時間(例如,圖9之實例中的第一時間部分558)以符合TDD通訊標準。結果,天線系統50可操作以促進傳輸信號與接收信號之間的雙向TDD通訊,諸如不需要來自使用者通訊系統12的通訊或信號移轉。因此,天線系統50可以與使用者通訊系統12的操作幾乎無關的簡化方式安裝。額外地,天線系統14可以不可知將天線系統50及使用者通訊系統12互連之(多條)傳輸線纜線62及64之長度的方式安裝。據此,天線系統50可簡單化地安裝以有效率地促進使用者通訊系統12與網路集線器(例如,基地台)之間的無線通訊。
鑑於上文描述的上述結構及功能特徵,將參考圖16以更佳地理解根據本發明之各種態樣的方法。雖然為了簡化解說的目的,將圖16的方法顯示並敘述為序列地執行,但根據本發明,由於一些態樣可以不同順序及/或與不同於本文顯示及描述之態樣的其他態樣同時發生,應瞭解及理解本發明不受限於所繪示的順序。再者,可能不係所有的經說明特徵均需要實施根據本發明之一態樣的方法。
圖16繪示用於經由包含天線(例如,(多個)天線陣列18)的TDD天線系統(例如,天線系統14)傳達傳輸信號及接收信號中之至少一者之方法650的實例。在652,校準信號(例如,(多個)校準信號CS1 及/或CS2 )在至少一條傳輸線纜線(例如,(多條)傳輸線纜線16)上從與天線系統關聯的天線電路(例如,天線電路20)提供至使用者通訊系統(例如,使用者通訊系統12)。在654,在天線電路接收到對應於從使用者通訊系統重傳輸回的校準信號的傳回信號(例如,(多個)回射信號RTN1 及RTN2 )。在656,基於傳回信號判定使用者通訊系統與天線電路之間通過至少一條傳輸線纜線的信號損失(例如,經由傳輸線測量電路22)。在658,監測經由至少一條傳輸線纜線從使用者通訊系統獲得的傳輸信號的信號功率(例如,經由傳輸偵測電路26)。在660,基於經判定信號損失,在接收模式中調整接收信號的振幅。在662,振幅調整電路(例如,振幅調整電路24)回應於經監測信號功率超過預定臨限而從接收模式切換至傳輸模式(例如,經由控制器28)。在664,基於經判定信號損失,在傳輸模式中調整傳輸信號的振幅。
上文已描述本發明之實例。當然,不可能針對描述本發明的目的而描述組件或方法的每個可設想組合,但所屬技術領域中具有通常知識者將認知本發明的許多進一步組合及置換係可行的。據此,本發明意圖涵蓋落在隨附之申請專利範圍之精神及範圍內的所有此類變更、修改、及變化。額外地,在本揭露或申請專利範圍記載「一(a/an)」、「一第一(a first)」、或「另一(another)」元件、或其等效物的情況中,應解讀成包括一個或多於一個此類元件,不需要也不排除二或更多個此類元件。如本文中所使用者,用語「包括(includes)」意指包括但不限於,且用語「包括(including)」意指包括但不限於。用語「基於(based on)」意指至少部分基於。
10:通訊系統 12:使用者通訊系統 14:天線系統/天線電路 15:校準電路/校準系統 16:傳輸線纜線 18:天線陣列 20:天線電路 22:傳輸線測量電路 24:振幅調整電路/調整電路 26:傳輸偵測電路 28:控制器 50:天線系統 52:天線電路 54:信號路徑 56:信號路徑 58:天線陣列 60:天線陣列 62:傳輸線纜線 64:傳輸線纜線 66:擷取電路 68:傳輸線測量電路 70:校準信號產生器 72:信號監測器 74:記憶體 76:控制器 78:振幅調整電路 80:振幅調整電路 90:傳輸偵測電路 92:傳輸偵測電路 94:開關控制器/切換控制器 100:圖式 102:校準電路 104:天線系統/天線電路 106:傳輸線纜線/傳輸線 108:傳輸線纜線 110:傳輸線測量電路 150:圖式 152:校準電路 154:天線系統/天線電路 156:傳輸線纜線/傳輸線 158:傳輸線纜線 160:傳輸線測量電路 200:校準電路 202:電力區塊 204:注入電路 206:注入電路 208:信號埠 210:信號埠 230:校準電路 232:電力區塊 234:注入電路 236:注入電路 238:信號埠 240:信號埠 250:傳輸線測量電路 252:校準信號產生器 254:信號監測器/功率監測器 256:RF信號源 258:電阻網路 300:控制器 302:處理器 304:切換控制器 306:比較器 308:比較器 310:D鎖存器 312:D鎖存器 314:D鎖存器 316:振盪器 318:及閘 320:D鎖存器 322:D鎖存器 324:D鎖存器 326:及閘 328:SR鎖存器 330:計時器 350:圖式 352:接收信號子訊框 354:傳輸信號子訊框 356:接收模式子訊框 358:時間部分 360:時間部分 370:振幅調整電路 372:VCE 400:振幅調整電路 401:VCE 402:信號路徑 404:信號路徑 406:功率放大器 408:低雜訊放大器/LNA 450:振幅調整電路 451:VCE 452:循環器 454:循環器 456:衰減器 458:功率放大器 460:衰減器 462:LNA 500:振幅調整電路 501:VCE 502:循環器 504:信號路徑 506:信號路徑 508:功率放大器 510:LNA 550:振幅調整電路 551:VCE 552:循環器 554:信號路徑 556:信號路徑 558:LNA/時間部分 600:振幅調整電路 601:VCE 602:LNA 650:方法 652:步驟 654:步驟 656:步驟 658:步驟 660:步驟 662:步驟 664:步驟 AT:控制信號 AT1 :控制信號 AT2 :控制信號 CAL:校準指令 CLK:時脈信號 CS1 :校準信號 CS1D :信號 CS2 :校準信號 D1 :二極體 D2 :二極體 MD:切換信號 MD1 :模式信號/切換信號 MD2 :模式信號/切換信號 PWR_LS:信號 R1 :電阻器 R2 :電阻器 R3 :電阻器 RF:信號 RF1 :信號 RF2 :信號 RTN1 :回射信號 RTN2 :回射信號 SM:信號損失/信號 SW1 :開關 SW2 :開關 SW3 :開關 SW4 :開關 SW5 :開關 SW6 :開關 SW7 :開關 TINT :時間 TS:信號 TS1 :信號 TS2 :信號 TX1 :模式信號 TX2 :模式信號 VDC :電壓 VRX :電壓 VRX_TH :臨限電壓 VTX :電壓 VTX_TH :臨限電壓
〔圖1〕繪示通訊系統的實例。 〔圖2〕繪示天線系統的實例。 〔圖3〕繪示通訊系統之校準的實例圖式。 〔圖4〕繪示通訊系統之校準的另一實例圖式。 〔圖5〕繪示校準電路的實例。 〔圖6〕繪示校準電路的另一實例。 〔圖7〕繪示傳輸線測量電路的實例。 〔圖8〕繪示控制器的實例。 〔圖9〕繪示TDD通訊串流的實例。 〔圖10〕繪示振幅調整電路的實例。 〔圖11〕繪示振幅調整電路的另一實例。 〔圖12〕繪示振幅調整電路的另一實例。 〔圖13〕繪示振幅調整電路的另一實例。 〔圖14〕繪示振幅調整電路的另一實例。 〔圖15〕繪示振幅調整電路的另一實例。 〔圖16〕繪示用於經由包含天線之分時雙工(TDD)天線系統傳達傳輸信號及接收信號中之至少一者之方法的實例。
10:通訊系統
12:使用者通訊系統
14:天線系統/天線電路
16:傳輸線纜線
18:天線陣列
20:天線電路
22:傳輸線測量電路
24:振幅調整電路/調整電路
26:傳輸偵測電路
28:控制器

Claims (22)

  1. 一種自同步化分時雙工(TDD)天線系統,其包含: 一天線,其經組態以傳達一傳輸信號及一接收信號;及 一天線電路,其耦接至該天線並經由至少一條傳輸線纜線耦接至一使用者通訊系統,該天線電路包含: 一傳輸線測量電路,其經組態以判定該使用者通訊系統與該天線電路之間通過該至少一條傳輸線纜線的一信號損失; 一振幅調整電路,其經組態以基於該經判定信號損失調整該傳輸信號及該接收信號中之至少一者的一振幅; 一傳輸偵測電路,其經組態以監測經由該至少一條傳輸線纜線從該使用者通訊系統獲得之該傳輸信號的信號功率;及 一控制器,其經組態以回應於該經監測信號功率超過一預定臨限而將該振幅調整電路從一接收模式切換至一傳輸模式,其中在該接收模式中,該振幅調整電路沿著一信號路徑將一接收振幅調整施加至該接收信號,且在該傳輸模式中,該振幅調整電路沿著該信號路徑將一傳輸振幅調整施加至該傳輸信號。
  2. 如請求項1之系統,其中在該接收模式中,該振幅調整電路調整經由該天線獲得之該接收信號的該振幅,並經由該至少一條傳輸纜線將該經調整接收信號提供至該使用者通訊系統,且在該傳輸模式中,該振幅調整電路調整該傳輸信號的該振幅。
  3. 如請求項1之系統,其中該傳輸線測量電路包含:一校準信號產生器,其經組態以在該至少一條傳輸線纜線上將一校準信號從該天線電路提供至該使用者通訊系統,該校準信號作為一傳回信號從該使用者通訊系統重傳輸回該天線電路;及 一信號監測器,其經組態以偵測該傳回信號的一特性且基於該傳回信號的該特性判定該信號損失。
  4. 如請求項3之系統,其中該校準信號產生器回應於一校準命令而提供該校準信號。
  5. 如請求項3之系統,其中該信號監測器經組態以測量與在該至少一條傳輸線纜線上提供的該校準信號關聯的一第一功率,並測量與在該至少一條傳輸線纜線上的該傳回信號關聯的一第二功率,以將該信號損失判定為該第一功率與該第二功率的一比率。
  6. 如請求項5之系統,其中該至少一條傳輸線纜線包含一第一傳輸線纜線及一第二傳輸線纜線,其中該信號監測器經組態以測量與在該第一傳輸線纜線上提供的該校準信號關聯的該第一功率,並測量與在該第二傳輸線纜線上接收的該傳回信號關聯的該第二功率。
  7. 如請求項1之系統,其中該天線系統包含一擷取電路,該擷取電路經組態以經由該至少一條傳輸線纜線接收來自該使用者通訊系統的DC電力。
  8. 如請求項1之系統,其中該控制器進一步經組態以回應於該經監測信號功率低於該預定臨限而從該傳輸模式切換至該接收模式。
  9. 如請求項1之系統,其中: 該傳輸信號係一第一傳輸信號且該接收信號係一第一接收信號; 該天線包含一第一天線陣列以傳達該第一傳輸信號及該第一接收信號,且進一步包含一第二天線陣列以傳達一第二傳輸信號及一第二接收信號; 該振幅調整電路的該信號路徑係一第一信號路徑;及 在接收模式中,該振幅調整電路沿著一第二信號路徑將該接收振幅調整施加至該第二接收信號,且在傳輸模式中,該振幅調整電路沿著該第二信號路徑將該傳輸振幅調整施加至該第二傳輸信號。
  10. 如請求項9之系統,其中: 該至少一條傳輸線纜線包括一第一傳輸線纜線及一第二傳輸線纜線;及 該天線電路經由該第一傳輸線纜線與該使用者通訊系統通訊該第一接收信號及該第一傳輸信號,並經由該第二傳輸線纜線與該使用者通訊系統通訊該第二接收信號及該第二傳輸信號。
  11. 如請求項1之系統,其中該天線電路進一步包含一記憶體以儲存該經判定信號損失。
  12. 如請求項1之系統,其中該傳輸偵測電路包含一定向耦合器及一功率偵測器,以監測該傳輸信號的該信號功率。
  13. 一種用於經由包含一天線之一分時雙工(TDD)天線系統傳達一傳輸信號及一接收信號中之至少一者的方法,該方法包含: 在至少一條傳輸線纜線上將一校準信號從與該天線系統關聯的一天線電路提供至一使用者通訊系統; 接收對應於從該使用者通訊系統重傳輸回該天線電路的該校準信號的一傳回信號; 基於該傳回信號判定該使用者通訊系統與該天線電路之間通過該至少一條傳輸線纜線的信號損失; 監測經由該至少一條傳輸線纜線從該使用者通訊系統獲得之該傳輸信號的信號功率; 基於該經判定信號損失,在一接收模式中調整該接收信號的一振幅; 回應於該經監測信號功率超過一預定臨限而將一振幅調整電路從該接收模式切換至一傳輸模式;及 基於該經判定信號損失,在該傳輸模式中調整該傳輸信號的一振幅。
  14. 如請求項13之方法,其中判定信號損失包含: 偵測該傳回信號的一特性;及 基於該傳回信號的該特性判定該信號損失。
  15. 如請求項13之方法,其中提供該校準信號包含回應於一校準命令而提供該校準信號。
  16. 如請求項13之方法,其中判定信號損失包含: 測量與在該至少一條傳輸線纜線上提供的該校準信號關聯的一第一功率;及 測量與在該至少一條傳輸線纜線上的該傳回信號關聯的一第二功率,以將該信號損失判定為該第一功率與該第二功率的一比率。
  17. 如請求項16之方法,其中該至少一條傳輸線纜線包含一第一傳輸線纜線及一第二傳輸線纜線,其中測量該第一功率包括測量與在該第一傳輸線纜線上提供的該校準信號關聯的該第一功率,且測量該第二功率包含測量與在該第二傳輸線纜線上接收的該傳回信號關聯的該第二功率。
  18. 如請求項13之方法,其進一步包含回應於該經監測信號功率低於該預定臨限而從該傳輸模式切換至該接收模式。
  19. 如請求項13之方法,其中: 該傳輸信號係一第一傳輸信號且該接收信號係一第一接收信號; 該天線包含一第一天線陣列以傳達該第一傳輸信號及該第一接收信號,且進一步包含一第二天線陣列以傳達一第二傳輸信號及一第二接收信號; 該信號路徑係一第一信號路徑; 在該接收模式中調整該接收信號的該振幅包含基於該經判定信號損失調整在一第二接收路徑中的一第二接收信號的該振幅;及 在該傳輸模式中調整該傳輸信號的該振幅包含基於該經判定信號損失調整在一第二傳輸路徑中的一第二傳輸信號的該振幅。
  20. 如請求項19之方法,其中該至少一條傳輸線纜線包含: 一第一傳輸線纜線,該第一接收信號及該第一傳輸信號於其上在該使用者通訊系統與該天線系統之間傳達;及 一第二傳輸線纜線,該第二接收信號及該第二傳輸信號於其上在該使用者通訊系統與該天線系統之間傳達。
  21. 如請求項13之方法,其進一步包含將該經判定信號損失儲存在一記憶體中。
  22. 如請求項13之方法,其中監測該傳輸信號的該信號功率包含經由一定向耦合器及一功率偵測器監測該傳輸信號的該信號功率。
TW110107256A 2020-04-03 2021-03-02 分時雙工(tdd)天線系統 TW202207650A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/US2020/026537 2020-04-03
PCT/US2020/026537 WO2021201878A1 (en) 2020-04-03 2020-04-03 Time-division duplex (tdd) antenna system

Publications (1)

Publication Number Publication Date
TW202207650A true TW202207650A (zh) 2022-02-16

Family

ID=70482790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107256A TW202207650A (zh) 2020-04-03 2021-03-02 分時雙工(tdd)天線系統

Country Status (5)

Country Link
US (1) US11804912B2 (zh)
EP (1) EP4122124B1 (zh)
CN (1) CN115668813A (zh)
TW (1) TW202207650A (zh)
WO (1) WO2021201878A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110043A1 (en) * 2022-11-24 2024-05-30 Nokia Solutions And Networks Oy Apparatus, system and method for processing radio frequency signals

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809395A (en) * 1991-01-15 1998-09-15 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US6873827B1 (en) 1998-09-28 2005-03-29 Nokia Corporation Method and apparatus for providing feeder cable insertion loss detection in a transmission system without interfering with normal operation
DE69912001T2 (de) 1999-02-05 2004-05-06 Interdigital Technology Corp., Wilmington Kommunikationsbasisstation mit automatischer kabeldämpfungskompensation
US7123939B1 (en) 1999-02-05 2006-10-17 Interdigital Technology Corporation Communication station with automatic cable loss compensation
US20020042290A1 (en) * 2000-10-11 2002-04-11 Williams Terry L. Method and apparatus employing a remote wireless repeater for calibrating a wireless base station having an adaptive antenna array
US6710651B2 (en) 2001-10-22 2004-03-23 Kyocera Wireless Corp. Systems and methods for controlling output power in a communication device
US7302276B2 (en) 2003-11-25 2007-11-27 Telefonaktiebolaget L M Ericsson (Publ) Method and system for determining uplink/downlink path-loss difference
US8302134B2 (en) 2004-03-26 2012-10-30 Sony Corporation Systems and methods for television antenna operation
US7386284B2 (en) 2004-12-01 2008-06-10 Silicon Laboratories Inc. Controlling the gain of a remote active antenna
US20070117515A1 (en) * 2005-11-23 2007-05-24 Sr Technologies, Inc. Burst processor method and apparatus
CN100517995C (zh) 2006-03-08 2009-07-22 鸿富锦精密工业(深圳)有限公司 无线收发系统
JP2009182367A (ja) * 2006-03-20 2009-08-13 Nec Corp 無線通信装置
TWI305979B (en) 2006-03-24 2009-02-01 Hon Hai Prec Ind Co Ltd Wireless transceiving system
WO2008088859A2 (en) * 2007-01-18 2008-07-24 Mobileaccess Networks Ltd. Hybrid passive active broadband antenna for a distributed antenna system
EP2371034A1 (en) 2008-12-25 2011-10-05 Siemens Aktiengesellschaft Active antenna device, network device and access point of a wireless network
JP5858015B2 (ja) 2013-08-28 2016-02-10 株式会社日本自動車部品総合研究所 車両用通信装置
DE102014215578A1 (de) 2014-08-06 2016-02-11 U-Blox Ag Kompensatormodul für eine Sendeempfängereinheit, Funksystem sowie Verfahren zum Betreiben desselbigen
EP3331316B1 (en) 2016-11-30 2021-01-06 Nxp B.V. Remote antenna compensation
EP3635865A1 (en) * 2017-05-24 2020-04-15 Anlotek Limited Apparatus and method for controlling a resonator
EP3844898B1 (en) * 2018-10-04 2024-05-29 Viasat, Inc. Time-division duplex (tdd) antenna system

Also Published As

Publication number Publication date
CN115668813A (zh) 2023-01-31
EP4122124A1 (en) 2023-01-25
US20230163865A1 (en) 2023-05-25
US11804912B2 (en) 2023-10-31
WO2021201878A1 (en) 2021-10-07
EP4122124B1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US9118394B2 (en) Antenna transfer switching for simultaneous voice and data
US10148341B2 (en) Independent band detection for network protection
EP2597778B1 (en) A method and apparatus for canceling the transmitted signal in a homodyne duplex transceiver
JP6014942B2 (ja) ワイヤレスローカルエリアアクセスネットワークのルーティングデバイスおよび信号伝送方法
US20080111748A1 (en) Antenna system having plural selectable antenna feed points and method of operation thereof
US20050069063A1 (en) Broadband interference cancellation
US20100321233A1 (en) Method for calibrating antenna arrays
US10659142B1 (en) Independent band detection for network protection
US20160191092A1 (en) Low noise amplifier module and method of implementation
TW202207650A (zh) 分時雙工(tdd)天線系統
CN110492951B (zh) 一种射频反馈检测电路、天线组件以及电子设备
EP3844898B1 (en) Time-division duplex (tdd) antenna system
US20200343964A1 (en) Adjusting repeater gain based on antenna feedback path loss
US11777591B2 (en) Adjusting repeater gain based on antenna feedback path loss
CN106025500B (zh) 利用解耦网络的多重天线
CN212210996U (zh) 一种信号处理电路及通信设备
US20050107034A1 (en) Repeater for mobile communications system
US20050181784A1 (en) System and method for calibrating a transceiver
KR101628359B1 (ko) Rf 통신장치 및 제어방법
US11451319B2 (en) High-frequency signal transmission-reception circuit
KR100667179B1 (ko) Tdd 무선 시스템에서의 수신단 보호 장치 및 그 방법
JP4170792B2 (ja) 無線装置及びそのキャリブレーション方法
JPH0568155U (ja) コードレス電話装置