TW202206634A - Selective tungsten deposition at low temperatures - Google Patents

Selective tungsten deposition at low temperatures Download PDF

Info

Publication number
TW202206634A
TW202206634A TW110122040A TW110122040A TW202206634A TW 202206634 A TW202206634 A TW 202206634A TW 110122040 A TW110122040 A TW 110122040A TW 110122040 A TW110122040 A TW 110122040A TW 202206634 A TW202206634 A TW 202206634A
Authority
TW
Taiwan
Prior art keywords
tungsten
substrate
equal
flow
metal
Prior art date
Application number
TW110122040A
Other languages
Chinese (zh)
Inventor
徐翼
呼宇飛
雷雨
大東和也
何達
岑嘉杰
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/917,049 external-priority patent/US11404313B2/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202206634A publication Critical patent/TW202206634A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Embodiments of the disclosure relate to methods of depositing tungsten. Some embodiments of the disclosure provide methods for depositing tungsten which are performed at relatively low temperatures. Some embodiments of the disclosure provide methods in which the ratio between reactant gasses is controlled. Some embodiments of the disclosure provide selective deposition of tungsten. Some embodiments of the disclosure provide methods for depositing tungsten films at a low temperature with relatively low roughness, stress and impurity levels.

Description

在低溫下的選擇性鎢沉積Selective Tungsten Deposition at Low Temperatures

本揭示的實施例大體係關於改進的形成互連的方法。本揭示的另外的實施例係關於在低溫下形成鎢的方法。Embodiments of the present disclosure generally relate to improved methods of forming interconnects. Additional embodiments of the present disclosure relate to methods of forming tungsten at low temperatures.

可靠地產生100 nm以下及更小的特徵係半導體元件的下一代極大規模整合(next generation very large scale integration; VLSI)及超大規模整合(ultra-large-scale integration; ULSI)的關鍵技術挑戰之一。然而,隨著電路技術的極限推進,VLSI及ULSI技術的縮小的尺寸已經對處理能力提出了額外要求。在基板上可靠地形成閘極結構對於VLSI及ULSI的成功以及對於增加電路密度及單個基板及晶粒的品質的持續努力而言係重要的。Reliably generating features below 100 nm and smaller is one of the key technical challenges for next generation very large scale integration (VLSI) and ultra-large-scale integration (ULSI) of semiconductor devices . However, as circuit technology pushes the limits, the shrinking size of VLSI and ULSI technologies has placed additional demands on processing power. Reliable formation of gate structures on substrates is important to the success of VLSI and ULSI and to continued efforts to increase circuit density and the quality of individual substrates and dies.

由於下一代元件的電路密度增加,互連(諸如通孔、溝槽、觸點、閘極結構、及其他特徵)的寬度、以及其間的介電材料的寬度減小到45 nm及32 nm的尺寸或以下,而介電層的厚度保持實質上恆定,結果係增加特徵的深寬比。為了能夠製造下一代元件及結構,半導體晶片的三維(3D)堆疊經常用於改進電晶體的效能。藉由以三維而不是習知二維來佈置電晶體,多個電晶體可在積體電路(integrated circuit; IC)中非常靠近彼此地放置。半導體晶片的3D堆疊減小接線長度並且保持低的接線延遲。在製造時,半導體晶片的3D堆疊,階梯狀結構經常用於允許其上設置多個互連結構,從而形成高密度的垂直電晶體元件。As the circuit density of next-generation components increases, the width of interconnects such as vias, trenches, contacts, gate structures, and other features, and the width of the dielectric material in between, has decreased to 45 nm and 32 nm. size or less, while the thickness of the dielectric layer remains substantially constant, resulting in an increase in the aspect ratio of the feature. To enable the fabrication of next-generation devices and structures, three-dimensional (3D) stacking of semiconductor wafers is often used to improve the performance of transistors. By arranging transistors in three dimensions instead of the conventional two dimensions, multiple transistors can be placed very close to each other in an integrated circuit (IC). 3D stacking of semiconductor wafers reduces wire lengths and keeps wire delays low. In manufacturing, 3D stacking of semiconductor wafers, a stepped structure is often used to allow multiple interconnect structures to be placed thereon, thereby forming a high density of vertical transistor elements.

因此,持續需要用於形成互連以降低製造成本、記憶體單元大小、及積體電路的功耗的改進的方法。Accordingly, there is a continuing need for improved methods for forming interconnects to reduce manufacturing cost, memory cell size, and power consumption of integrated circuits.

已知藉由化學氣相沉積(chemical vapor deposition; CVD)沉積的鎢膜具有相對高的應力值粗糙度。另外,已知使用六氟化鎢沉積的鎢膜具有相對高水平的氟雜質。相對高水平的應力、粗糙度及氟雜質經常引起問題,包括但不限於晶圓彎曲、結構變形、間隙填充中的空隙及縫隙、以及界面處的氟侵蝕損壞。Tungsten films deposited by chemical vapor deposition (CVD) are known to have relatively high stress value roughness. Additionally, tungsten films deposited using tungsten hexafluoride are known to have relatively high levels of fluorine impurities. Relatively high levels of stress, roughness, and fluorine impurities often cause problems including, but not limited to, wafer bowing, structural deformation, voids and crevices in gap fill, and fluorine attack damage at interfaces.

已經開發來克服此等問題的一些方法依賴於原子層沉積(atomic layer deposition; ALD)。然而,ALD方法通常在相對高的溫度(一般高於或等於400℃)下執行。Some methods that have been developed to overcome these problems rely on atomic layer deposition (ALD). However, ALD methods are typically performed at relatively high temperatures (generally greater than or equal to 400°C).

由此,需要亦在較低溫度下執行的提供低粗糙度、低應力及低雜質的沉積鎢的方法。Thus, there is a need for a method of depositing tungsten that provides low roughness, low stress, and low impurities that also performs at lower temperatures.

本揭示的一或多個實施例涉及一種沉積鎢的方法。方法包含將基板暴露於氫氣流及在將基板暴露於氫氣流的同時將基板暴露於鎢前驅物流以在基板上沉積鎢層。將基板維持在小於或等於約350℃的溫度下。One or more embodiments of the present disclosure relate to a method of depositing tungsten. The method includes exposing a substrate to a flow of hydrogen gas and exposing the substrate to a flow of a tungsten precursor while exposing the substrate to the flow of hydrogen gas to deposit a tungsten layer on the substrate. The substrate is maintained at a temperature of less than or equal to about 350°C.

本揭示的額外實施例涉及一種沉積鎢的方法。方法包含將基板暴露於氫氣流及在將基板暴露於氫氣流的同時將基板暴露於鎢前驅物流。氫氣流與鎢前驅物流的比率大於或等於約500:1。Additional embodiments of the present disclosure relate to a method of depositing tungsten. The method includes exposing the substrate to a flow of hydrogen gas and exposing the substrate to a flow of a tungsten precursor while exposing the substrate to the flow of hydrogen gas. The ratio of hydrogen stream to tungsten precursor stream is greater than or equal to about 500:1.

本揭示的另外的實施例涉及一種選擇性沉積鎢的方法。方法包含將包含第一材料表面及第二材料表面的基板暴露於氫氣流以及在將基板暴露於氫氣流的同時將基板暴露於鎢前驅物流以在第一材料表面上沉積第一厚度的鎢並且在第二材料表面上沉積第二厚度的鎢。第一厚度與第二厚度的比率大於或等於約200:1。Additional embodiments of the present disclosure relate to a method of selectively depositing tungsten. The method includes exposing a substrate comprising a first material surface and a second material surface to a flow of hydrogen gas and exposing the substrate to a flow of a tungsten precursor while exposing the substrate to the flow of hydrogen to deposit a first thickness of tungsten on the first material surface and A second thickness of tungsten is deposited on the surface of the second material. The ratio of the first thickness to the second thickness is greater than or equal to about 200:1.

在描述本揭示的若干示例性實施例之前,將理解,本揭示不限於在以下描述中闡述的構造或製程步驟的細節。本揭示能夠具有其他實施例並且以各種方式實踐或進行。Before describing several exemplary embodiments of the present disclosure, it is to be understood that the present disclosure is not limited to the details of construction or process steps set forth in the following description. The present disclosure is capable of other embodiments and of being practiced or carried out in various ways.

如在本說明書及隨附申請專利範圍中使用,術語「基板」指其上製程起作用的表面、或表面的一部分。如亦將由熟習此項技術者所理解,除非上下文另外明確地指出,提及基板亦可以指基板的僅一部分。此外,提及在基板上沉積可以意指裸基板及其上沉積或形成有一或多個膜或特徵的基板。As used in this specification and the scope of the accompanying patent application, the term "substrate" refers to the surface, or a portion of a surface, on which a process operates. As will also be understood by those skilled in the art, unless the context clearly dictates otherwise, reference to a substrate may also refer to only a portion of the substrate. Furthermore, reference to depositing on a substrate may mean a bare substrate and a substrate on which one or more films or features are deposited or formed.

如本文所使用的「基板」指任何基板或在基板上形成的材料表面,在製造製程期間在該基板上執行膜處理。例如,取決於應用,其上可以執行處理的基板表面包括材料,諸如矽、氧化矽、應變矽、絕緣體上矽(silicon on insulator; SOI)、碳摻雜的氧化矽、非晶矽、摻雜矽、鍺、砷化鎵、玻璃、藍寶石、及任何其他材料,諸如金屬、金屬氮化物、金屬合金、及其他導電材料。基板包括但不限於半導體晶圓。基板可暴露至預處理製程以拋光、蝕刻、還原、氧化、羥基化、退火、UV固化、電子束固化及/或烘焙基板表面。除了直接在基板本身的表面上處理之外,在本揭示中,如下文更詳細揭示,所揭示的任何膜處理步驟亦可在基板上形成的下層上執行,並且術語「基板表面」意欲包括如上下文指出的此種下層。因此,例如,在膜/層或部分膜/層已經沉積到基板表面上的情況下,新沉積的膜/層的暴露表面變為基板表面。"Substrate" as used herein refers to any substrate or surface of material formed on a substrate on which film processing is performed during a manufacturing process. For example, depending on the application, the substrate surface on which processing may be performed includes materials such as silicon, silicon oxide, strained silicon, silicon on insulator (SOI), carbon doped silicon oxide, amorphous silicon, doped silicon Silicon, germanium, gallium arsenide, glass, sapphire, and any other materials such as metals, metal nitrides, metal alloys, and other conductive materials. Substrates include, but are not limited to, semiconductor wafers. The substrate may be exposed to pretreatment processes to polish, etch, reduce, oxidize, hydroxylate, anneal, UV cure, e-beam cure, and/or bake the substrate surface. In addition to processing directly on the surface of the substrate itself, in this disclosure, as disclosed in more detail below, any of the disclosed film processing steps may also be performed on underlying layers formed on the substrate, and the term "substrate surface" is intended to include such as The context indicates such a lower layer. Thus, for example, where a film/layer or part of a film/layer has already been deposited on the substrate surface, the exposed surface of the newly deposited film/layer becomes the substrate surface.

第1圖係示出用於在基板上形成互連的方法100的一個實施例的流程圖。第2A圖至第2G圖示出了在第1圖的方法100之前以及在第1圖的方法100的不同階段處的基板的橫截面圖。FIG. 1 is a flowchart illustrating one embodiment of a method 100 for forming interconnects on a substrate. FIGS. 2A-2G show cross-sectional views of the substrate prior to the method 100 of FIG. 1 and at various stages of the method 100 of FIG. 1 .

第2A圖示出了在開始方法100之前的互連200的橫截面圖。大體上,互連200包括可用於形成互連結構(諸如雙鑲嵌結構)的多個膜層。膜堆疊201在基板202上形成。堆疊201包括介電層204。如第2A圖所示,介電層204在基板202上設置並且具有在介電層204中形成且由介電層204界定的導電層206。在一個實例中,介電層204可由一或多種絕緣材料(諸如氧化矽)形成。在一個實例中,導電層206可由導電層(諸如銅)形成。FIG. 2A shows a cross-sectional view of interconnect 200 prior to starting method 100 . In general, interconnect 200 includes multiple layers that can be used to form interconnect structures, such as dual damascene structures. Film stack 201 is formed on substrate 202 . Stack 201 includes dielectric layer 204 . As shown in FIG. 2A , a dielectric layer 204 is disposed on the substrate 202 and has a conductive layer 206 formed in and defined by the dielectric layer 204 . In one example, the dielectric layer 204 may be formed of one or more insulating materials, such as silicon oxide. In one example, conductive layer 206 may be formed of a conductive layer such as copper.

在方塊102處,如第2B圖中示出,介電阻障層208在基板202上沉積。例如,如圖所示,介電阻障層208在介電層204及導電層206兩者上方沉積。由此,介電阻障層208可在介電層204及導電層206上方形成均勻不間斷的層。介電阻障層208可由低介電常數材料形成。例如,介電阻障層208可由含碳矽層(SiC)、氮摻雜的含碳矽層(SiCN)、氮化矽層、金屬氮化物或金屬氧化物(例如,AlN、AlOx 、AlON)、或類似者形成。At block 102 , as shown in FIG. 2B , a dielectric barrier layer 208 is deposited on the substrate 202 . For example, as shown, a dielectric barrier layer 208 is deposited over both the dielectric layer 204 and the conductive layer 206 . Thus, the dielectric barrier layer 208 may form a uniform, uninterrupted layer over the dielectric layer 204 and the conductive layer 206 . The dielectric barrier layer 208 may be formed of a low dielectric constant material. For example, the dielectric barrier layer 208 may be a silicon carbon-containing layer (SiC), a nitrogen-doped silicon-containing carbon layer (SiCN), a silicon nitride layer, a metal nitride, or a metal oxide (eg, AlN, AlOx , AlON) , or the like.

在方塊104處,如第2C圖中示出,介電層210在基板202上沉積。例如,如圖所示,介電層210在介電阻障層208上方沉積。介電層210可實質上類似於介電層204。在一個實施例中,介電層210可由與介電層204相同的材料形成。在另一實施例中,在維持相同的低介電常數性質的同時,介電層210可由與介電層204不同的材料形成。At block 104 , as shown in FIG. 2C , a dielectric layer 210 is deposited on the substrate 202 . For example, as shown, dielectric layer 210 is deposited over dielectric barrier layer 208 . Dielectric layer 210 may be substantially similar to dielectric layer 204 . In one embodiment, dielectric layer 210 may be formed of the same material as dielectric layer 204 . In another embodiment, the dielectric layer 210 may be formed of a different material than the dielectric layer 204 while maintaining the same low dielectric constant properties.

在方塊106處,如第2D圖中示出,一或多個通孔212在互連200中形成以暴露導電層206。例如,通孔212可穿過介電層210及介電阻障層208兩者形成以暴露下層的導電層206。大體上,通孔212具有寬度W1。在一些實施例中,在通孔212的整個長度上每個通孔212的寬度係均勻的。在其他實施例中,每個通孔212的寬度可從通孔212的頂部到通孔212的底部逐漸改變。At block 106 , as shown in FIG. 2D , one or more vias 212 are formed in interconnect 200 to expose conductive layer 206 . For example, vias 212 may be formed through both dielectric layer 210 and dielectric barrier layer 208 to expose underlying conductive layer 206 . Generally, the through hole 212 has a width W1. In some embodiments, the width of each through hole 212 is uniform over the entire length of the through hole 212 . In other embodiments, the width of each through hole 212 may gradually change from the top of the through hole 212 to the bottom of the through hole 212 .

在方塊108處,如第2E圖中示出,一或多個溝槽214在互連200中形成。一或多個溝槽214可在介電層210中形成。溝槽214經構造為加寬通孔212的至少一部分。在一些實施例中,方塊108可在方塊106之前執行,亦即,溝槽214可在通孔212之前形成。在其他實施例(諸如所描述的實施例)中,溝槽214在形成通孔212之後形成。At block 108 , one or more trenches 214 are formed in interconnect 200 as shown in FIG. 2E . One or more trenches 214 may be formed in the dielectric layer 210 . The trenches 214 are configured to widen at least a portion of the vias 212 . In some embodiments, block 108 may be performed before block 106 , ie, trenches 214 may be formed before vias 212 . In other embodiments, such as the described embodiments, trenches 214 are formed after vias 212 are formed.

在傳統的製造方案中,執行「填充製程」以填充通孔212,並且溝槽214用金屬材料填充以形成互連200。例如,金屬(諸如銅)可用於填充通孔212及溝槽214兩者。已經發現用相同材料填充通孔212及溝槽214兩者導致高互連電阻,這可導致半導體晶片中的RC延遲及IR降。In a conventional fabrication scheme, a "fill process" is performed to fill the vias 212 and the trenches 214 are filled with a metal material to form the interconnect 200 . For example, a metal such as copper may be used to fill both vias 212 and trenches 214 . Filling both vias 212 and trenches 214 with the same material has been found to result in high interconnect resistance, which can lead to RC delays and IR drops in semiconductor wafers.

由於RC延遲及藉由IR降的功率管理,晶片上的互連電阻影響晶片速度。隨著設計規則持續縮小,互連電阻減小成為日漸重要的優先考慮因素。特定而言,在具有短互連線、小於40 nm的較小通孔尺寸、及與通孔堆疊的多層佈線的情況下,通孔(例如,通孔212)的電阻對總電阻影響顯著,亦即,與穿過接線相比,穿過通孔的電阻較高。由此,對於實現晶片效能而言,減小通孔電阻已經變得日漸重要。Interconnect resistance on the die affects die speed due to RC delay and power management by IR drop. As design rules continue to shrink, interconnect resistance reduction is an increasingly important priority. In particular, with short interconnect lines, smaller via sizes less than 40 nm, and multilayer wiring stacked with vias, the resistance of vias (eg, via 212 ) has a significant effect on the overall resistance, That is, the resistance through the via is higher than through the wire. Thus, reducing via resistance has become increasingly important for achieving wafer performance.

歸因於在製程整合中使用的材料,習知通孔形成導致高電阻。在方塊108之後,在習知方法中,通孔填充用金屬阻障、襯墊、及塊狀填充材料完成。金屬阻障及襯墊用於可靠性及間隙填充牢固性。然而,當在通孔底部處沉積時,用於阻障及襯墊層的材料由於其高電阻率可導致高通孔電阻。舉例而言,習知的雙鑲嵌銅填充可由TaN阻障層(經由物理氣相沉積(physical vapor deposition; PVD)製程沉積)、在阻障層上沉積的Ta金屬襯墊層(例如,PVD或化學氣相沉積(CVD)製程)、及在金屬襯墊層上沉積的Cu晶種/電鍍層組成。取決於通孔尺寸,阻障及襯墊權重大於總通孔電阻的約50%至90%。因此,移除金屬阻障及襯墊層可有助於減小通孔電阻。然而,與此同時,由於消除阻障及襯墊層,可能發生潛在風險。例如,互連仍將需要滿足可靠性態樣,包括避免介質崩潰及金屬電遷移。此外,可能需要雙鑲嵌結構中的適宜金屬填充製程整合以改進通孔電阻及線路電阻兩者。Conventional via formation results in high resistance due to the materials used in process integration. Following block 108, via filling is completed with metal barriers, liners, and bulk fill material in conventional methods. Metal barriers and liners are used for reliability and gap fill robustness. However, when deposited at the bottom of the via, the materials used for the barrier and liner layers can result in high via resistance due to their high resistivity. For example, conventional dual damascene copper fills can be formed from a TaN barrier layer (deposited via a physical vapor deposition (PVD) process), a Ta metal liner layer deposited on the barrier layer (eg, PVD or chemical vapor deposition (CVD) process), and Cu seed/electroplating layer deposited on the metal liner layer. Depending on the via size, the barrier and pad weights are approximately 50% to 90% greater than the total via resistance. Therefore, removing the metal barrier and liner layers can help reduce via resistance. At the same time, however, potential risks may occur due to the elimination of barrier and liner layers. For example, interconnects will still need to meet reliability aspects, including avoiding dielectric breakdown and metal electromigration. Furthermore, suitable metal fill process integration in dual damascene structures may be required to improve both via resistance and line resistance.

因此,下文論述提出選擇性填充途徑(例如,W填充途徑),這闡明了較低通孔電阻及同時滿足整合及可靠性需求。開發了界面處理(下文結合至少方塊110論述)及填充製程(下文結合至少方塊118論述)以從通孔底部選擇性生長金屬材料(例如,W)而不損壞下層的金屬層(例如,Cu、W、Co、及類似者)及周圍介電質(例如,低介電常數介電質、氧化物、及類似者)。因此,下文論述提供了降低通孔電阻的一或多種技術。在通孔填充之後,鑲嵌填充將繼續,這有助於形成等效線路電阻。Accordingly, the discussion below proposes a selective fill approach (eg, a W fill approach), which illustrates lower via resistance while meeting integration and reliability requirements. An interface treatment (discussed below in conjunction with at least block 110 ) and a fill process (discussed below in conjunction with at least block 118 ) are developed to selectively grow metal material (eg, W) from the bottom of the via without damaging underlying metal layers (eg, Cu, W, Co, and the like) and surrounding dielectrics (eg, low-k dielectrics, oxides, and the like). Accordingly, the following discussion provides one or more techniques for reducing via resistance. After the via fill, the damascene fill will continue, which contributes to the equivalent line resistance.

改進的方法100包括使用選擇性金屬通孔填充來減小電阻並且滿足可靠性(與側壁介電質204及暴露的導電層206的相互作用)及線路電阻需求。在方塊110處,一或多個預處理製程對互連200執行以製備互連200來接收選擇性金屬通孔212填充。例如,方塊110可包括子方塊112-116。The improved method 100 includes using selective metal via fill to reduce resistance and meet reliability (interaction with sidewall dielectric 204 and exposed conductive layer 206 ) and line resistance requirements. At block 110 , one or more preprocessing processes are performed on interconnect 200 to prepare interconnect 200 to receive selective metal via 212 fill. For example, block 110 may include sub-blocks 112-116.

在子方塊112處,互連200經歷用於通孔212中的導電層206的暴露部分的第一處理製程。例如,當通孔212用第一金屬沉積時,第一預處理製程用於製備導電層206的暴露部分,用於自底向上生長。遠端電漿清洗製程可用於預處理互連。互連200可移送到預處理腔室,此處互連200經歷清洗製程。例如,互連可經歷在約250-350℃之間、使用H2 /Ar混合物、在約1-10 Torr的溫度下的清洗製程。在其他實施例中,可施加輕微偏壓能量以在沒有金屬濺射的情況下促進氧化物分離。例如,可將0-200 W的能量施加到預處理腔室。At sub-block 112 , interconnect 200 undergoes a first processing process for exposed portions of conductive layer 206 in via 212 . For example, when vias 212 are deposited with a first metal, a first pretreatment process is used to prepare exposed portions of conductive layer 206 for bottom-up growth. A remote plasma cleaning process can be used to pretreat interconnects. Interconnect 200 may be moved to a preprocessing chamber where interconnect 200 undergoes a cleaning process. For example, the interconnect may undergo a cleaning process between about 250-350°C, using a H2 /Ar mixture, at a temperature of about 1-10 Torr. In other embodiments, a slight bias energy may be applied to facilitate oxide separation without metal sputtering. For example, 0-200 W of energy can be applied to the pretreatment chamber.

在子方塊114處,互連200經歷第二預處理製程。第二處理製程用於鈍化通孔的側壁216以最小化不期望的側壁生長。如上文提及,介電層204可由低介電常數材料形成。因此,第二預處理製程有助於密封介電層204的表面孔隙,並且保護介電層204不受浸泡前驅物的影響。在一個實施例中,第二預處理製程可係在高溫(例如,200-400℃)下的熱前驅物浸泡。在一些實例中,可使用的前驅物係四甲基矽烷(TMS)、二甲基胺基三甲基矽烷(DMATMS)、及類似者。在一個實施例中,藉由使互連200經歷UV烘焙製程,子方塊114中的第二預處理製程可進一步包括將紫外線(UV)能量添加到前驅物浸泡製程。At sub-block 114, interconnect 200 undergoes a second preprocessing process. The second process is used to passivate the sidewalls 216 of the via to minimize undesired sidewall growth. As mentioned above, the dielectric layer 204 may be formed of a low dielectric constant material. Therefore, the second pretreatment process helps to seal the surface pores of the dielectric layer 204 and protect the dielectric layer 204 from the immersion precursors. In one embodiment, the second pretreatment process may be a thermal precursor soak at high temperature (eg, 200-400°C). In some examples, precursors that can be used are tetramethylsilane (TMS), dimethylaminotrimethylsilane (DMATMS), and the like. In one embodiment, the second pretreatment process in sub-block 114 may further include adding ultraviolet (UV) energy to the precursor soak process by subjecting the interconnect 200 to a UV bake process.

在一些實施例中,方塊110可包括子方塊116。在方塊116處,互連200經歷可選的後處理清洗。例如,可選的預處理清洗可在通孔212的底部處的氧化或殘留物生長的情況下使用。可選的預處理清洗使用含有過氧化物(例如,H2 O2 )的化學物質以稍微去除殘留物,該化學物質具有鹼性pH調諧。In some embodiments, block 110 may include sub-block 116 . At block 116, interconnect 200 undergoes optional post-processing cleaning. For example, an optional pre-cleaning can be used in the case of oxidation or residue growth at the bottom of the via 212 . An optional pretreatment wash uses a peroxide (eg, H2O2 ) containing chemistry with an alkaline pH tuning to slightly remove residue.

在方塊118處,如第2F圖中示出,在預處理製程(方塊110)之後,金屬220選擇性填充通孔212。例如,金屬220的材料在通孔212中沉積直到點222,此處通孔212與溝槽214相交。所使用的金屬220可係任何適宜的金屬材料,諸如釕(Ru)、鎢(W)、鈷(Co)、鋁(Al)、銅(Cu)、或類似者。對金屬220的主要需求係其為與在溝槽214中沉積的後續金屬不同的材料。在通孔中選擇性沉積金屬220有助於減小通孔電阻,並且滿足可靠性及線路電阻需求。At block 118, metal 220 selectively fills vias 212 after the pretreatment process (block 110) as shown in FIG. 2F. For example, the material of metal 220 is deposited in via 212 up to point 222 where via 212 intersects trench 214 . The metal 220 used may be any suitable metal material, such as ruthenium (Ru), tungsten (W), cobalt (Co), aluminum (Al), copper (Cu), or the like. The main requirement for metal 220 is that it be a different material than the subsequent metal deposited in trench 214 . Selective deposition of metal 220 in the via helps to reduce via resistance and meet reliability and line resistance requirements.

金屬220可使用化學氣相沉積(CVD)製程沉積。CVD製程可包括在高溫(例如,350-500℃)下的H2 預浸泡。CVD製程可在約200-500℃的溫度下、使用低流動速率(例如,2-100 sccm)的含金屬前驅物(例如,WF6 )在大量的H2 周圍環境中執行。當沉積時,流動速率、壓力、及溫度的組合有助於減小金屬220的形態。在沉積金屬220的材料之前,可施加習知的成核層用於初始1-3 nm的成核。總生長量藉由製程時間、壓力、及前驅物流控制以均勻地填充通孔212。Metal 220 may be deposited using a chemical vapor deposition (CVD) process. The CVD process may include H 2 pre-soak at high temperature (eg, 350-500°C). The CVD process can be performed at a temperature of about 200-500°C using a low flow rate (eg, 2-100 seem) metal-containing precursor (eg, WF 6 ) in a high volume H 2 ambient. The combination of flow rate, pressure, and temperature helps reduce the morphology of the metal 220 when deposited. Prior to depositing the material for metal 220, conventional nucleation layers can be applied for initial 1-3 nm nucleation. The total growth is controlled by process time, pressure, and precursor flow to fill the vias 212 uniformly.

在方塊120處,如第2G圖中示出,第二金屬224在每個溝槽214中沉積。例如,第二金屬224從點222沉積到溝槽214的頂部。所使用的第二金屬224可係任何適宜的金屬材料,諸如釕(Ru)、鎢(W)、鈷(Co)、鋁(Al)、銅(Cu)、及類似者。對第二金屬224的主要需求係其為與在通孔212中沉積的第一金屬220的材料不同的材料。第二金屬224可使用CVD製程沉積。將單一金屬材料的習知金屬填充分為兩步製程涉及在通孔212中沉積的第一金屬220,及在溝槽214中沉積的第二金屬224有助於減小穿過通孔212的電阻。At block 120 , as shown in FIG. 2G , a second metal 224 is deposited in each trench 214 . For example, a second metal 224 is deposited from point 222 to the top of trench 214 . The second metal 224 used may be any suitable metal material, such as ruthenium (Ru), tungsten (W), cobalt (Co), aluminum (Al), copper (Cu), and the like. The main requirement for the second metal 224 is that it be a different material than that of the first metal 220 deposited in the vias 212 . The second metal 224 may be deposited using a CVD process. Separating conventional metal filling of a single metal material into a two-step process involving a first metal 220 deposited in the via 212 and a second metal 224 deposited in the trench 214 helps to reduce the penetration of the through via 212 resistance.

在一些實施例中,在沉積第二金屬224之前,阻障晶種層(未圖示)可在第一金屬220上方沉積。例如,若第二金屬224係銅,則阻障晶種層可係銅阻障晶種層。In some embodiments, a barrier seed layer (not shown) may be deposited over the first metal 220 prior to depositing the second metal 224 . For example, if the second metal 224 is copper, the barrier seed layer may be a copper barrier seed layer.

在一些實施例中,方法100可包括在沉積第二金屬224之前執行的可選方塊119。在方塊119處,在第二金屬224之前,互連200可經歷預處理製程。預處理製程可用於移除可能已經在第一金屬220的頂表面上形成的任何氧化物。例如,互連200可經歷與子方塊112類似的製程。In some embodiments, method 100 may include optional block 119 performed prior to depositing second metal 224 . At block 119 , the interconnect 200 may undergo a pretreatment process prior to the second metal 224 . A pretreatment process can be used to remove any oxides that may have formed on the top surface of the first metal 220 . For example, interconnect 200 may undergo a similar process as subblock 112 .

第3圖示出了多腔室處理系統300。處理系統300可包括裝載閘腔室302、304,機器人306,移送腔室308,處理腔室310、312、314、316、318、328,及控制器320。裝載閘腔室302、304允許將基板(未圖示)移送進出處理系統300。裝載閘腔室302、304可將引入處理系統300中的基板抽空以維持真空密封。機器人306可在裝載閘腔室302、304與處理腔室310、312、314、316、318、及328之間移送基板。機器人306亦可在裝載閘腔室302、304與移送腔室308之間移送基板。FIG. 3 shows a multi-chamber processing system 300 . Processing system 300 may include load lock chambers 302 , 304 , robot 306 , transfer chamber 308 , processing chambers 310 , 312 , 314 , 316 , 318 , 328 , and controller 320 . The load lock chambers 302 , 304 allow substrates (not shown) to be transferred into and out of the processing system 300 . The load lock chambers 302, 304 may evacuate substrates introduced into the processing system 300 to maintain a vacuum seal. Robot 306 may transfer substrates between load lock chambers 302 , 304 and processing chambers 310 , 312 , 314 , 316 , 318 , and 328 . Robot 306 may also transfer substrates between load lock chambers 302 , 304 and transfer chamber 308 .

可配備每個處理腔室310、312、314、316、318、及328以執行多個基板操作,諸如原子層沉積(ALD)、化學氣相沉積(CVD)、PVD、蝕刻、預清洗、除氣、加熱、定向、或其他基板製程。此外,可配備每個處理腔室310、312、314、316、318、及328以沉積介電阻障層、沉積介電層、在堆疊中形成一或多個通孔及溝槽、執行一或多個預清洗製程、沉積第一金屬材料層、及沉積第二金屬材料層。Each processing chamber 310, 312, 314, 316, 318, and 328 may be equipped to perform multiple substrate operations, such as atomic layer deposition (ALD), chemical vapor deposition (CVD), PVD, etching, pre-cleaning, removal gas, heating, orientation, or other substrate processes. Additionally, each processing chamber 310, 312, 314, 316, 318, and 328 may be equipped to deposit a dielectric barrier layer, deposit a dielectric layer, form one or more vias and trenches in the stack, perform an or A plurality of pre-cleaning processes, depositing a first metal material layer, and depositing a second metal material layer.

控制器320可經配置為操作處理系統300的所有態樣,諸如第1圖中揭示的方法。例如,控制器320可經配置為控制在基板上形成互連的方法。控制器320包括可與記憶體324及大容量儲存元件一起操作的可程式化中央處理單元(central processing unit; CPU) 322、輸入控制單元、及耦合到處理系統的各個部件以促進對基板處理的控制的顯示單元(未圖示),諸如電源供應器、時鐘、快取記憶體、輸入/輸出(input/output; I/O)電路、及襯墊。控制器320亦包括用於經由處理系統300中的感測器(包括監控前驅物、處理氣體、及淨化氣體流的感測器)監控基板處理的硬體。量測系統參數(諸如基板溫度、腔室大氣壓、及類似者)的其他感測器亦可向控制器320提供資訊。Controller 320 may be configured to operate all aspects of processing system 300, such as the method disclosed in FIG. For example, the controller 320 may be configured to control the method of forming the interconnects on the substrate. Controller 320 includes a programmable central processing unit (CPU) 322 operable with memory 324 and mass storage elements, an input control unit, and various components coupled to the processing system to facilitate processing of substrates. Controlled display units (not shown), such as power supplies, clocks, cache memory, input/output (I/O) circuits, and pads. Controller 320 also includes hardware for monitoring substrate processing via sensors in processing system 300, including sensors that monitor precursor, process gas, and purge gas flow. Other sensors that measure system parameters such as substrate temperature, chamber atmospheric pressure, and the like may also provide information to controller 320 .

為了促進對上文描述的處理系統300的控制,CPU 322可係任何形式的通用電腦處理器中的一者,該通用電腦處理器可以在工業環境(諸如可程式化邏輯控制器(programmable logic controller; PLC))中用於控制各個腔室及子處理器。記憶體324耦合到CPU 322並且記憶體324係非暫時性的且可係容易獲得的記憶體中的一或多個,諸如隨機存取記憶體(random access memory; RAM)、唯讀記憶體(read only memory; ROM)、軟碟驅動器、硬碟、或任何其他形式的數位儲存器(本端或遠端)。支援電路326耦合到CPU 322,用於以習知方式支援處理器。帶電荷物質產生、加熱、及其他製程大體在記憶體324中儲存,通常為軟體常式。軟體常式亦可由第二CPU(未圖示)儲存及/或執行,該第二CPU位於由CPU 322控制的硬體遠端。To facilitate control of the processing system 300 described above, the CPU 322 may be one of any form of general-purpose computer processor that can be used in an industrial environment such as a programmable logic controller ; PLC)) is used to control each chamber and sub-processor. Memory 324 is coupled to CPU 322 and is one or more of non-transitory and readily available memories, such as random access memory (RAM), read-only memory ( read only memory; ROM), floppy disk drive, hard disk, or any other form of digital storage (local or remote). Support circuitry 326 is coupled to CPU 322 for supporting the processor in a conventional manner. Charged species generation, heating, and other processes are generally stored in memory 324, typically in software routines. The software routines may also be stored and/or executed by a second CPU (not shown) located remotely from the hardware controlled by CPU 322 .

記憶體324呈含有指令的電腦可讀儲存媒體的形式,當由CPU 322執行時,該等指令促進處理系統300的操作。記憶體324中的指令呈程式產品的形式,諸如實施本揭示的方法的程式。程式碼可符合數個不同程式設計語言中的任一者。在一個實例中,本揭示可實施為在電腦可讀取儲存媒體上儲存的程式產品以與電腦系統一起使用。程式產品的程式定義實施例的功能(包括本文描述的方法)。說明性電腦可讀取儲存媒體包括但不限於:(i)不可寫儲存媒體(例如,電腦內的唯讀記憶體裝置,諸如其上永久儲存資訊的可由CD-ROM驅動器讀取的CD-ROM碟、快閃記憶體、ROM晶片、或任何類型的固態非揮發性半導體記憶體);以及(ii)其上儲存可變資訊的可寫儲存媒體(例如,在磁碟驅動器或硬碟驅動器內的軟碟或任何類型的固態隨機存取半導體記憶體)。當攜帶導引本文描述的方法的功能的電腦可讀取指令時,此種電腦可讀取儲存媒體係本揭示的實施例。Memory 324 is in the form of a computer-readable storage medium containing instructions that, when executed by CPU 322 , facilitate the operation of processing system 300 . The instructions in memory 324 are in the form of a program product, such as a program that implements the methods of the present disclosure. The code can conform to any of several different programming languages. In one example, the present disclosure can be implemented as a program product stored on a computer-readable storage medium for use with a computer system. The programs of the program product define the functionality of the embodiments (including the methods described herein). Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (eg, a read-only memory device within a computer, such as a CD-ROM readable by a CD-ROM drive on which information is permanently stored disks, flash memory, ROM chips, or any type of solid-state non-volatile semiconductor memory); and (ii) a writable storage medium on which variable information is stored (for example, in a magnetic disk drive or hard disk drive) floppy disk or any type of solid-state random access semiconductor memory). Such computer-readable storage media are embodiments of the present disclosure when carrying computer-readable instructions that direct the functions of the methods described herein.

上文論述的方法可能不僅依賴於處理系統300。例如,一或多個方塊(諸如方塊120或子方塊114)可在處理系統300外部的處理腔室中執行。The methods discussed above may not only rely on processing system 300 . For example, one or more blocks, such as block 120 or sub-block 114 , may be performed in a processing chamber external to processing system 300 .

本揭示的一或多個實施例涉及用於沉積鎢的低溫方法。本揭示的一些實施例相對介電表面在金屬表面上選擇性沉積鎢。One or more embodiments of the present disclosure relate to low temperature methods for depositing tungsten. Some embodiments of the present disclosure selectively deposit tungsten on metal surfaces relative to dielectric surfaces.

本揭示的一些實施例有利地提供沉積鎢的方法,其提供具有較低粗糙度、較低應力、及/或較低雜質的膜。本揭示的一些實施例提供了沉積鎢的方法,其在較低溫度下執行以促進需要低熱預算的應用。Some embodiments of the present disclosure advantageously provide methods of depositing tungsten that provide films with lower roughness, lower stress, and/or lower impurities. Some embodiments of the present disclosure provide methods of depositing tungsten that are performed at lower temperatures to facilitate applications requiring low thermal budgets.

本文揭示了用於沉積鎢的方法。在一些實施例中,本文揭示的方法對應於上文描述的方塊118。在一些實施例中,藉由本文揭示的方法沉積的鎢對應於上文描述的金屬220。This article discloses a method for depositing tungsten. In some embodiments, the methods disclosed herein correspond to block 118 described above. In some embodiments, the tungsten deposited by the methods disclosed herein corresponds to the metal 220 described above.

示例性方法包含將基板暴露於氫氣(H2 )流及在將基板暴露於氫氣流的同時將基板暴露於鎢前驅物流。Exemplary methods include exposing the substrate to a flow of hydrogen (H 2 ) and exposing the substrate to a flow of a tungsten precursor while exposing the substrate to the flow of hydrogen.

在一些實施例中,氫氣流及鎢前驅物流均係連續的。氫氣及鎢前驅物兩者的連續流應當由熟習此項技術者理解為對應於化學氣相沉積(CVD)製程。在一些實施例中,鎢前驅物流係脈衝的並且氫氣流係連續的。鎢前驅物的脈衝流及氫氣的連續流應當由熟習此項技術者理解為對應於脈衝的CVD製程。In some embodiments, both the hydrogen flow and the tungsten precursor flow are continuous. The continuous flow of both hydrogen and tungsten precursors should be understood by those skilled in the art to correspond to a chemical vapor deposition (CVD) process. In some embodiments, the tungsten precursor flow is pulsed and the hydrogen flow is continuous. The pulsed flow of the tungsten precursor and the continuous flow of hydrogen should be understood by those skilled in the art to correspond to a pulsed CVD process.

如上文描述,在一些實施例中,方法可開始於將基板熱浸泡在氫氣(H2 )環境中。在一些實施例中,在氫氣環境中的熱浸泡可在沉積鎢之後執行。在一些實施例中,方法包含沉積第一量的鎢、執行熱浸泡及沉積第二量的鎢。在一些實施例中,熱浸泡在約250℃至約600℃的範圍中、在約300℃至約500℃的範圍中、在約300℃至約400℃的範圍中、或在約400℃至約500℃的範圍中的溫度下執行。As described above, in some embodiments, the method may begin by thermally immersing the substrate in a hydrogen ( H2 ) environment. In some embodiments, thermal soaking in a hydrogen atmosphere may be performed after depositing tungsten. In some embodiments, the method includes depositing a first amount of tungsten, performing a thermal soak, and depositing a second amount of tungsten. In some embodiments, the heat soak is in the range of about 250°C to about 600°C, in the range of about 300°C to about 500°C, in the range of about 300°C to about 400°C, or in the range of about 400°C to about 400°C Performed at temperatures in the range of about 500°C.

在一些實施例中,本文揭示的方法在相對低的溫度下執行。如上文描述,在一些實施例中,將基板維持在約200℃至約500℃的範圍中的溫度下。在一些實施例,在一些實施例中,將基板維持在約200℃至約400℃的範圍中、在約250℃至約375℃的範圍中、在約300℃至約350℃的範圍中、或在約250℃至約350℃的範圍中的溫度下。在一些實施例中,將基板維持在小於或等於約400℃、小於或等於約375℃、小於或等於約350℃、小於或等於約325℃、或者小於或等於約300℃的溫度下。In some embodiments, the methods disclosed herein are performed at relatively low temperatures. As described above, in some embodiments, the substrate is maintained at a temperature in the range of about 200°C to about 500°C. In some embodiments, in some embodiments, the substrate is maintained in a range from about 200°C to about 400°C, in a range from about 250°C to about 375°C, in a range from about 300°C to about 350°C, or at a temperature in the range of about 250°C to about 350°C. In some embodiments, the substrate is maintained at a temperature of less than or equal to about 400°C, less than or equal to about 375°C, less than or equal to about 350°C, less than or equal to about 325°C, or less than or equal to about 300°C.

在一些實施例中,控制氫氣及/或鎢前驅物的流動速率。在一些實施例中,氫氣的流動速率在約2000 sccm至約20000 sccm的範圍中、在約2000 sccm至約18000 sccm的範圍中、在約5000 sccm至約20000 sccm的範圍中、或在約10000 sccm至約20000 sccm的範圍中。在一些實施例中,鎢前驅物的流動速率小於或等於約500 sccm、小於或等於約200 sccm、小於或等於約100 sccm、或者小於或等於約50 sccm。In some embodiments, the flow rate of the hydrogen and/or tungsten precursor is controlled. In some embodiments, the flow rate of hydrogen gas is in the range of about 2000 sccm to about 20000 sccm, in the range of about 2000 sccm to about 18000 sccm, in the range of about 5000 sccm to about 20000 sccm, or in the range of about 10000 sccm sccm to about 20,000 sccm. In some embodiments, the flow rate of the tungsten precursor is less than or equal to about 500 seem, less than or equal to about 200 seem, less than or equal to about 100 seem, or less than or equal to about 50 seem.

在一些實施例中,控制在氫氣的流動速率與鎢前驅物的流動速率之間的比率。在一些實施例中,氫氣的流動速率與鎢前驅物的流動速率的比率大於或等於約100:1、大於或等於約200:1、大於或等於約500:1、或者大於或等於約1,000:1、大於或等於約5,000:1、或者大於或等於約10,000:1。不受限於理論,咸信鎢膜中的有益結果(低粗糙度、低應力等)係歸因於在處理腔室內存在的氫氣的盈餘。In some embodiments, the ratio is controlled between the flow rate of the hydrogen gas and the flow rate of the tungsten precursor. In some embodiments, the ratio of the flow rate of hydrogen gas to the flow rate of the tungsten precursor is greater than or equal to about 100:1, greater than or equal to about 200:1, greater than or equal to about 500:1, or greater than or equal to about 1,000: 1. Greater than or equal to about 5,000:1, or greater than or equal to about 10,000:1. Without being bound by theory, it is believed that the beneficial results (low roughness, low stress, etc.) in the tungsten film are due to the surplus of hydrogen gas present within the processing chamber.

在一些實施例中,控制處理腔室的壓力。在一些實施例中,將腔室的壓力維持在約5 Torr至約50 Torr的範圍中、在約10 Torr至約50 Torr的範圍中、在約20 Torr至約50 Torr的範圍中、在約5 Torr至約20 Torr的範圍中、或在約5 Torr至約10 Torr的範圍中。在一些實施例中,將壓力維持在小於或等於約50 Torr。In some embodiments, the pressure of the processing chamber is controlled. In some embodiments, the pressure of the chamber is maintained in the range of about 5 Torr to about 50 Torr, in the range of about 10 Torr to about 50 Torr, in the range of about 20 Torr to about 50 Torr, in the range of about In the range of 5 Torr to about 20 Torr, or in the range of about 5 Torr to about 10 Torr. In some embodiments, the pressure is maintained at less than or equal to about 50 Torr.

鎢前驅物可係用於沉積鎢膜的任何適宜前驅物。在一些實施例中,鎢前驅物包含反應性鎢物質及載氣。在一些實施例中,鎢前驅物包含反應性鎢錯合物及載氣。在一些實施例中,鎢前驅物包含WF6 、Wx Cl5x 、WCl6 、或W(CO)6 中的一或多個。The tungsten precursor can be any suitable precursor for depositing tungsten films. In some embodiments, the tungsten precursor includes a reactive tungsten species and a carrier gas. In some embodiments, the tungsten precursor includes a reactive tungsten complex and a carrier gas. In some embodiments, the tungsten precursor includes one or more of WF6 , WxCl5x , WCl6 , or W(CO) 6 .

在一些實施例中,鎢前驅物包含WF6 或基本上由WF6 組成。如在此方面使用的,當基於莫耳的大於或等於約95%、大於或等於約98%、大於或等於約99%、或者大於或等於約99.5%的反應性鎢物質不具有任何載氣時,鎢前驅物基本上由WF6 組成。 In some embodiments, the tungsten precursor comprises or consists essentially of WF 6 . As used in this aspect, when the reactive tungsten species is greater than or equal to about 95%, greater than or equal to about 98%, greater than or equal to about 99%, or greater than or equal to about 99.5% on a molar basis without any carrier gas , the tungsten precursor consists essentially of WF 6 .

在一些實施例中,藉由所揭示的方法沉積的鎢具有相對低水平的雜質。在彼等實施例中,其中鎢前驅物包含WF6 ,所沉積的鎢具有小於或等於約1020 原子/cm3 、小於或等於約5x1019 原子/cm3 、小於或等於約1019 原子/cm3 、小於或等於約5x1018 原子/cm3 、或者小於或等於約1018 原子/cm3 的氟含量。In some embodiments, tungsten deposited by the disclosed methods has relatively low levels of impurities. In those embodiments wherein the tungsten precursor comprises WF 6 , the deposited tungsten has less than or equal to about 10 20 atoms/cm 3 , less than or equal to about 5× 10 19 atoms/cm 3 , less than or equal to about 10 19 atoms/cm 3 cm 3 , less than or equal to about 5× 10 18 atoms/cm 3 , or less than or equal to about 10 18 atoms/cm 3 of fluorine content.

在一些實施例中,所沉積的鎢的表面粗糙度係相對低的。在一些實施例中,所沉積鎢的均方根粗糙度小於或等於約2 nm、小於或等於約1.5 nm、小於或等於約1 nm、或者小於或等於約0.5 nm。In some embodiments, the surface roughness of the deposited tungsten is relatively low. In some embodiments, the rms roughness of the deposited tungsten is less than or equal to about 2 nm, less than or equal to about 1.5 nm, less than or equal to about 1 nm, or less than or equal to about 0.5 nm.

在一些實施例中,所沉積的鎢的應力係相對低的。在一些實施例中,所沉積的鎢的應力小於或等於約2000 MPa、小於或等於約1500 MPa、小於或等於約1200 MPa、小於或等於約1000 MPa、小於或等於約800 MPa、小於或等於約500 MPa、或者小於或等於約200 MPa。In some embodiments, the stress of the deposited tungsten is relatively low. In some embodiments, the deposited tungsten has a stress of less than or equal to about 2000 MPa, less than or equal to about 1500 MPa, less than or equal to about 1200 MPa, less than or equal to about 1000 MPa, less than or equal to about 800 MPa, less than or equal to about 800 MPa About 500 MPa, or less than or equal to about 200 MPa.

在一些實施例中,基板包含多種暴露的材料。在一些實施例中,基板包含第一材料表面及第二材料表面。如上文標識,第一材料表面可包含金屬或金屬合金。在一些實施例中,金屬選自銅、鎢、鈷或釕中的一或多個。另外,第二材料表面可包含低介電常數介電質、氧化物、氮化矽、氮氧化矽及類似者中的一或多個。In some embodiments, the substrate includes multiple exposed materials. In some embodiments, the substrate includes a first material surface and a second material surface. As identified above, the first material surface may comprise a metal or metal alloy. In some embodiments, the metal is selected from one or more of copper, tungsten, cobalt, or ruthenium. Additionally, the second material surface may include one or more of low-k dielectrics, oxides, silicon nitrides, silicon oxynitrides, and the like.

在一些實施例中,本文描述的方法相對第二材料表面在第一材料表面上選擇性沉積鎢。換言之,在一些實施例中,第一厚度的鎢在第一材料表面上沉積並且第二厚度的鎢在第二材料表面上沉積。第一厚度大於第二厚度。在一些實施例中,第一厚度與第二厚度的比率大於或等於約100:1、大於或等於約200:1、大於或等於約250:1、大於或等於約500:1、大於或等於約700:1、或者大於或等於約1,000:1。In some embodiments, the methods described herein selectively deposit tungsten on the surface of the first material relative to the surface of the second material. In other words, in some embodiments, a first thickness of tungsten is deposited on the surface of the first material and a second thickness of tungsten is deposited on the surface of the second material. The first thickness is greater than the second thickness. In some embodiments, the ratio of the first thickness to the second thickness is greater than or equal to about 100:1, greater than or equal to about 200:1, greater than or equal to about 250:1, greater than or equal to about 500:1, greater than or equal to About 700:1, or greater than or equal to about 1,000:1.

儘管上述內容涉及本發明的實施例,但本發明的其他及進一步實施例可在不脫離其基本範疇的情況下設計,並且其範疇由以下申請專利範圍決定。Although the foregoing relates to embodiments of the present invention, other and further embodiments of the present invention may be devised without departing from its essential scope, which is determined by the following claims.

在整個此說明書中提及「一個實施例」、「某些實施例」、「一或多個實施例」或「一實施例」意味著結合實施例描述的特定特徵、結構、材料、或特性包括在本揭示的至少一個實施例中。因此,在整個此說明書的各個位置中出現片語諸如「在一或多個實施例中」、「在某些實施例中」、「在一個實施例中」或「在一實施例中」不一定指本揭示的相同實施例。此外,特定特徵、結構、材料或特性可以任何適宜方式結合在一或多個實施例中。Reference throughout this specification to "one embodiment," "some embodiments," "one or more embodiments," or "an embodiment" means a particular feature, structure, material, or characteristic described in connection with the embodiments Included in at least one embodiment of the present disclosure. Thus, appearances of phrases such as "in one or more embodiments", "in some embodiments", "in one embodiment" or "in an embodiment" in various places throughout this specification do not Must refer to the same embodiment of the present disclosure. Furthermore, the particular features, structures, materials or characteristics may be combined in any suitable manner in one or more embodiments.

儘管本文的揭示已經參考特定實施例進行描述,熟習此項技術者將理解,所描述的實施例僅說明本揭示的原理及應用。熟習此項技術者將顯而易見,可以對本揭示的方法及設備進行各種修改及變化,而不脫離本揭示的精神及範疇。因此,本揭示可以包括在隨附申請專利範圍及其等效的範疇內的修改及變化。Although the disclosure herein has been described with reference to specific embodiments, it will be understood by those skilled in the art that the described embodiments are merely illustrative of the principles and applications of the disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and apparatus of the present disclosure without departing from the spirit and scope of the present disclosure. Accordingly, the present disclosure may include modifications and variations within the scope of the appended claims and their equivalents.

100:方法 102:方塊 104:方塊 106:方塊 108:方塊 110:方塊 112:方塊 114:方塊 116:方塊 118:方塊 119:方塊 120:方塊 200:互連 202:基板 204:介電層 206:導電層 208:介電阻障層 210:介電層 212:通孔 214:溝槽 216:側壁 220:金屬 224:第二金屬 300:多腔室處理系統 302:裝載閘腔室 304:裝載閘腔室 306:機器人 308:移送腔室 310:處理腔室 312:處理腔室 314:處理腔室 316:處理腔室 318:處理腔室 320:控制器 322:可程式化中央處理單元(CPU) 324:記憶體 326:支援電路 328:處理腔室100: Method 102: Blocks 104: Blocks 106: Blocks 108: Blocks 110: Blocks 112: Square 114: Square 116: Blocks 118: Square 119: Blocks 120: Square 200: Interconnect 202: Substrate 204: Dielectric Layer 206: Conductive layer 208: Dielectric barrier layer 210: Dielectric Layer 212: Through hole 214: Groove 216: Sidewall 220: Metal 224: Second Metal 300: Multi-chamber processing system 302: Load lock chamber 304: Load lock chamber 306: Robot 308: Transfer Chamber 310: Processing Chamber 312: Processing Chamber 314: Processing Chamber 316: Processing Chamber 318: Processing Chamber 320: Controller 322: Programmable Central Processing Unit (CPU) 324: memory 326: Support circuit 328: Processing Chamber

為了能夠詳細理解本揭示的上述特徵所用方式,可參考實施例進行對上文簡要概述的本揭示的更具體描述,一些實施例在附圖中示出。然而,將注意,附圖僅示出本揭示的常見實施例,並且由此不被認為限制其範疇,因為本揭示可允許其他等同有效的實施例。In order to enable a detailed understanding of the manner in which the above-described features of the present disclosure are used, a more detailed description of the present disclosure, briefly summarized above, can be made with reference to embodiments, some of which are illustrated in the accompanying drawings. It is to be noted, however, that the appended drawings illustrate only common embodiments of the disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.

第1圖示出了根據一或多個實施例的形成互連的方法;FIG. 1 illustrates a method of forming an interconnect in accordance with one or more embodiments;

第2A圖至第2G圖示出了根據一或多個實施例的在第1圖的方法的不同階段處在基板上形成的互連的橫截面側視圖;FIGS. 2A-2G illustrate cross-sectional side views of interconnects formed on a substrate at various stages of the method of FIG. 1 in accordance with one or more embodiments;

第3圖示出了根據一或多個實施例的可以在其上實踐第1圖的方法的多腔室處理系統。Figure 3 illustrates a multi-chamber processing system on which the method of Figure 1 may be practiced, in accordance with one or more embodiments.

為了便於理解,相同元件符號在可能的情況下已經用於標識圖中共有的相同元件。可以預期,一個實施例的元件及特徵可有利地併入其他實施例中,而無需進一步敘述。To facilitate understanding, the same reference numerals have been used, where possible, to identify the same elements that are common to the figures. It is contemplated that elements and features of one embodiment may be advantageously incorporated in other embodiments without further recitation.

然而,應注意,附圖僅示出本發明的示例性實施例,並且由此不被認為限制其範疇,因為本發明可允許其他等同有效的實施例。It is to be noted, however, that the appended drawings illustrate only exemplary embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) without Foreign deposit information (please note in the order of deposit country, institution, date and number) without

200:互連 200: Interconnect

202:基板 202: Substrate

204:介電層 204: Dielectric Layer

206:導電層 206: Conductive layer

208:介電阻障層 208: Dielectric barrier layer

210:介電層 210: Dielectric Layer

220:金屬 220: Metal

224:第二金屬 224: Second Metal

Claims (20)

一種沉積鎢的方法,該方法包含以下步驟: 將一基板暴露於一氫氣流;以及 在將該基板暴露於該氫氣流的同時將該基板暴露於一鎢前驅物的一流以在該基板上沉積一鎢層, 其中將該基板維持在小於或等於約350℃的一溫度下。A method of depositing tungsten, the method comprising the steps of: exposing a substrate to a stream of hydrogen; and exposing the substrate to a stream of a tungsten precursor while exposing the substrate to the hydrogen stream to deposit a tungsten layer on the substrate, wherein the substrate is maintained at a temperature of less than or equal to about 350°C. 如請求項1所述的方法,其中該氫氣流及該鎢前驅物的該流均係連續的。The method of claim 1, wherein the flow of the hydrogen gas and the flow of the tungsten precursor are both continuous. 如請求項1所述的方法,其中該鎢前驅物的該流係脈衝的並且該氫氣流係連續的。The method of claim 1, wherein the flow of the tungsten precursor is pulsed and the hydrogen flow is continuous. 如請求項1所述的方法,其中該氫氣流與該鎢前驅物的該流的一比率大於或等於約500:1。The method of claim 1, wherein a ratio of the flow of the hydrogen gas to the flow of the tungsten precursor is greater than or equal to about 500:1. 如請求項1所述的方法,其中該鎢層具有小於或等於約1 nm的一均方根粗糙度。The method of claim 1, wherein the tungsten layer has a root mean square roughness of less than or equal to about 1 nm. 如請求項1所述的方法,其中該鎢層的該應力小於或等於約1000 MPa。The method of claim 1, wherein the stress of the tungsten layer is less than or equal to about 1000 MPa. 如請求項1所述的方法,其中該鎢前驅物包含WF6The method of claim 1, wherein the tungsten precursor comprises WF6 . 如請求項6所述的方法,其中該鎢層具有小於或等於約1019 原子/cm3 的一氟濃度。The method of claim 6, wherein the tungsten layer has a fluorine concentration of less than or equal to about 10 19 atoms/cm 3 . 一種沉積鎢的方法,該方法包含以下步驟: 將一基板暴露於一氫氣流;以及 在將該基板暴露於該氫氣流的同時將該基板暴露於一鎢前驅物的一流, 其中該氫氣流與該鎢前驅物的該流的一比率大於或等於約500:1。A method of depositing tungsten, the method comprising the steps of: exposing a substrate to a stream of hydrogen; and exposing the substrate to a stream of a tungsten precursor while exposing the substrate to the hydrogen stream, wherein a ratio of the flow of hydrogen gas to the flow of the tungsten precursor is greater than or equal to about 500:1. 如請求項9所述的方法,其中該氫氣流及該鎢前驅物的該流均係連續的。The method of claim 9, wherein the flow of the hydrogen gas and the flow of the tungsten precursor are both continuous. 如請求項9所述的方法,其中該鎢前驅物的該流係脈衝的並且該氫氣流係連續的。The method of claim 9, wherein the flow of the tungsten precursor is pulsed and the hydrogen flow is continuous. 如請求項1所述的方法,其中該鎢層具有小於或等於約1 nm的一均方根粗糙度。The method of claim 1, wherein the tungsten layer has a root mean square roughness of less than or equal to about 1 nm. 如請求項1所述的方法,其中該鎢層的該應力小於或等於約1000 MPa。The method of claim 1, wherein the stress of the tungsten layer is less than or equal to about 1000 MPa. 如請求項1所述的方法,其中該鎢前驅物包含WF6The method of claim 1, wherein the tungsten precursor comprises WF6 . 如請求項6所述的方法,其中該鎢層具有小於或等於約1019 原子/cm3 的一氟濃度。The method of claim 6, wherein the tungsten layer has a fluorine concentration of less than or equal to about 10 19 atoms/cm 3 . 一種選擇性沉積鎢的方法,該方法包含以下步驟: 將包含一第一材料表面及一第二材料表面的一基板暴露於一氫氣流;以及 在將該基板暴露於該氫氣流的同時將該基板暴露於一鎢前驅物的一流以在該第一材料表面上沉積一第一厚度的鎢並且在該第二材料表面上沉積一第二厚度的鎢,該第一厚度與該第二厚度的一比率大於或等於約200:1。A method of selectively depositing tungsten, the method comprising the steps of: exposing a substrate including a first material surface and a second material surface to a flow of hydrogen; and Expose the substrate to a stream of a tungsten precursor while exposing the substrate to the hydrogen stream to deposit a first thickness of tungsten on the first material surface and a second thickness on the second material surface of tungsten, a ratio of the first thickness to the second thickness is greater than or equal to about 200:1. 如請求項16所述的方法,其中將該基板維持在小於或等於約350℃的一溫度下。The method of claim 16, wherein the substrate is maintained at a temperature of less than or equal to about 350°C. 如請求項16所述的方法,其中該氫氣流與該鎢前驅物的該流的一比率大於或等於約500:1。The method of claim 16, wherein a ratio of the flow of hydrogen gas to the flow of the tungsten precursor is greater than or equal to about 500:1. 如請求項16所述的方法,其中該氫氣流及該鎢前驅物的該流均係連續的。The method of claim 16, wherein the flow of the hydrogen gas and the flow of the tungsten precursor are both continuous. 如請求項16所述的方法,其中該鎢前驅物的該流係脈衝的並且該氫氣流係連續的。The method of claim 16, wherein the flow of the tungsten precursor is pulsed and the hydrogen flow is continuous.
TW110122040A 2020-06-30 2021-06-17 Selective tungsten deposition at low temperatures TW202206634A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/917,049 2020-06-30
US16/917,049 US11404313B2 (en) 2017-04-26 2020-06-30 Selective tungsten deposition at low temperatures

Publications (1)

Publication Number Publication Date
TW202206634A true TW202206634A (en) 2022-02-16

Family

ID=79315507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122040A TW202206634A (en) 2020-06-30 2021-06-17 Selective tungsten deposition at low temperatures

Country Status (5)

Country Link
JP (1) JP7552984B2 (en)
KR (1) KR20220116261A (en)
CN (1) CN114946018A (en)
TW (1) TW202206634A (en)
WO (1) WO2022006225A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240266215A1 (en) * 2023-02-08 2024-08-08 Applied Materials, Inc. Low stress tungsten layer deposition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365076A (en) * 1986-09-05 1988-03-23 Fujitsu Ltd Vapor growth method
JPH06196392A (en) * 1992-05-26 1994-07-15 Oki Electric Ind Co Ltd Laminated tungsten film and formation thereof
US7964505B2 (en) * 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
JP2011029554A (en) * 2009-07-29 2011-02-10 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device
WO2015023404A1 (en) * 2013-08-16 2015-02-19 Applied Materials, Inc. Tungsten deposition with tungsten hexafluoride (wf6) etchback
US8900999B1 (en) * 2013-08-16 2014-12-02 Applied Materials, Inc. Low temperature high pressure high H2/WF6 ratio W process for 3D NAND application
KR102397797B1 (en) * 2015-05-27 2022-05-12 램 리써치 코포레이션 Deposition of low fluorine tungsten by sequential cvd process
JP2017069313A (en) * 2015-09-29 2017-04-06 株式会社日立国際電気 Method for manufacturing semiconductor device, apparatus for processing substrate, gas-supply system and program
US11404313B2 (en) * 2017-04-26 2022-08-02 Applied Materials, Inc. Selective tungsten deposition at low temperatures
US10403504B2 (en) * 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
TWI799494B (en) * 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method

Also Published As

Publication number Publication date
KR20220116261A (en) 2022-08-22
JP7552984B2 (en) 2024-09-18
WO2022006225A1 (en) 2022-01-06
CN114946018A (en) 2022-08-26
JP2023516862A (en) 2023-04-21

Similar Documents

Publication Publication Date Title
US10727119B2 (en) Process integration approach of selective tungsten via fill
TWI720422B (en) Method of enabling seamless cobalt gap-fill
US11967525B2 (en) Selective tungsten deposition at low temperatures
TWI843858B (en) Process integration approach for selective metal via fill
TW201819665A (en) In-situ pre-clean for selectivity improvement for selective deposition
US8030209B2 (en) Enhancing structural integrity of low-k dielectrics in metallization systems of semiconductor devices by using a crack suppressing material layer
JP7552984B2 (en) Selective tungsten deposition at low temperatures
US20180323103A1 (en) Methods and apparatus for filling a feature disposed in a substrate
KR102118580B1 (en) Chemical vapor deposition (cvd) of ruthenium films and applications for same
TW202341354A (en) Selective blocking of metal surfaces using bifunctional self-assembled monolayers
US11170994B1 (en) CD dependent gap fill and conformal films
TW201528430A (en) Metal-containing films as dielectric capping barrier for advanced interconnects
US20240258103A1 (en) Plasma treatment of barrier and liner layers
US20230115211A1 (en) Self-assembled monolayer for selective deposition
US20230023235A1 (en) Enhanced stress tuning and interfacial adhesion for tungsten (w) gap fill
CN108695237B (en) Semiconductor device and manufacturing method thereof
CN107527862B (en) semiconductor device and manufacturing method thereof
TW202348825A (en) Selective inhibition for selective metal deposition
TW202326860A (en) Self-assembled monolayer for selective deposition