TW202205025A - 在半導體製造程序中用於判定對於一組基板之檢測策略之方法 - Google Patents

在半導體製造程序中用於判定對於一組基板之檢測策略之方法 Download PDF

Info

Publication number
TW202205025A
TW202205025A TW110109257A TW110109257A TW202205025A TW 202205025 A TW202205025 A TW 202205025A TW 110109257 A TW110109257 A TW 110109257A TW 110109257 A TW110109257 A TW 110109257A TW 202205025 A TW202205025 A TW 202205025A
Authority
TW
Taiwan
Prior art keywords
substrate
data
metric
substrates
inspection
Prior art date
Application number
TW110109257A
Other languages
English (en)
Other versions
TWI775350B (zh
Inventor
埃萊夫塞里奧斯 庫利拉吉斯
卡洛 蘭席亞
威斯卡 朱安 曼努埃爾 岡薩雷斯
亞力山大 伊瑪
迪米特拉 吉科魯
瑞莎 沙雷伊恩
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20174335.8A external-priority patent/EP3910417A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202205025A publication Critical patent/TW202205025A/zh
Application granted granted Critical
Publication of TWI775350B publication Critical patent/TWI775350B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/706833Sampling plan selection or optimisation, e.g. select or optimise the number, order or locations of measurements taken per die, workpiece, lot or batch
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明描述一種用於判定對於至少一個基板之一檢測策略之方法,該方法包含:使用一預測模型基於與該基板相關聯之預處理資料及與該至少一個基板相關聯之任何可用後處理資料中的一者或兩者來量化與順應一品質要求之一預測相關的一順應性度量之一順應性度量值;及基於以下各者決定對於該至少一個基板之一檢測策略:該順應性度量值、與該檢測策略相關聯之一預期成本及描述在與該預測模型相關之至少一個目標方面該檢測策略之一預期值的至少一個目標值。

Description

在半導體製造程序中用於判定對於一組基板之檢測策略之方法
本發明係關於半導體製造程序,詳言之,用以在半導體製造程序中作出決策(諸如是否應檢測基板)之方法。
微影裝置為經建構以將所要圖案施加至基板上之機器。微影裝置可用於例如積體電路(IC)之製造中。微影裝置可例如將圖案化器件(例如遮罩)處之圖案(亦經常被稱作「設計佈局」或「設計」)投影至提供於基板(例如晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影裝置可使用輻射。此輻射之波長判定可形成於基板上之特徵之最小大小。當前在使用中之典型波長係365 nm (i線)、248 nm、193 nm及13.5 nm。與使用例如具有約193 nm之波長之輻射的微影裝置相比,使用具有在4 nm至20 nm之範圍內(例如6.7 nm或13.5 nm)之波長之極紫外線(EUV)輻射的微影裝置可用以在基板上形成較小特徵。
低k1 微影可用以處理尺寸小於微影裝置之經典解析度極限的特徵。在此程序中,可將解析度公式表達為CD = k1 ×λ/NA,其中λ為所使用輻射之波長、NA為微影裝置中之投影光學件之數值孔徑、CD為「臨界尺寸」(通常為經印刷之最小特徵大小,但在此狀況下為半節距)且k1 為經驗解析度因數。一般而言,k1 愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,可將複雜微調步驟應用至微影投影裝置及/或設計佈局。此等步驟包括例如但不限於:NA之最佳化、自訂照明方案、相移圖案化器件之使用、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影裝置之穩定性之嚴格控制迴路可用以改良在低k1 下之圖案之再生。
此等嚴格控制迴路通常係基於使用度量衡工具而獲得之度量衡資料,該度量衡工具量測經施加圖案或表示經施加圖案之度量衡目標的特性。一般而言,度量衡工具係基於圖案及/或目標之位置及/或尺寸的光學量測。本質上假定此等光學量測表示積體電路之製造程序之品質。
除了基於光學量測進行控制以外,亦可執行以電子束為基礎之量測;在該等以電子束為基礎之量測當中,可利用使用電子束工具(如由HMI提供)的所謂低電壓量測。此低電壓對比量測指示施加至基板之層之間的電接點之品質。
任何度量衡或檢測花費大量時間且因此僅可在實務系統中檢測經處理晶圓之一分數。不同晶圓之檢測程序之總體益處將在不同晶圓間變化。因而,需要用於作出諸如應檢測哪些晶圓之決策的改良型方法。
本發明人之目標為解決目前先進技術之所提及缺點。
在本發明之一第一態樣中,提供一種用於判定對於至少一個基板之一檢測策略之方法,該方法包含:使用一預測模型基於與該基板相關聯之預處理資料及與該至少一個基板相關聯之任何可用後處理資料中的一者或兩者來量化與順應一品質要求之一預測相關的一順應性度量之一順應性度量值;及基於以下各者決定對於該至少一個基板之一檢測策略:該順應性度量值、與該檢測策略相關聯之一預期成本及描述在與該預測模型相關之至少一個目標方面該檢測策略之一預期值的至少一個目標值。
在本發明文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有為365 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外線輻射(EUV,例如,具有在約5 nm至100 nm之範圍內之波長)。
如本文中所使用之術語「倍縮光罩」、「遮罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典遮罩(透射或反射;二元、相移、混合式等)以外,其他此等圖案化器件之實例亦包括: -可程式化鏡面陣列。以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號中給出關於此等鏡面陣列之更多資訊。 -可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此構造之實例。
圖1示意性地描繪微影裝置LA。該微影裝置LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射光束B (例如UV輻射、DUV輻射或EUV輻射);支撐結構(例如遮罩台) MT,其經建構以支撐圖案化器件(例如遮罩) MA且連接至經組態以根據某些參數來準確地定位該圖案化器件MA之第一定位器PM;基板台(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及投影系統(例如折射投影透鏡系統) PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。
在操作中,照明器IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於引導、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化器件MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文所使用之術語「投影系統」PS應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」PS同義。
微影裝置可屬於以下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間-其亦被稱作浸潤微影。以引用方式併入本文中之美國專利第6,952,253號及PCT公開案第WO99-49504號中給出關於浸潤技術之更多資訊。
微影裝置LA亦可屬於具有兩個(雙載物台)或多於兩個基板台WT及例如兩個或多於兩個支撐結構MT (圖中未繪示)之類型。在此等「多載物台」機器中,可並行地使用額外台/結構,或可對一或多個台進行預備步驟,同時將一或多個其他台用於將圖案化器件MA之設計佈局曝光至基板W上。
在操作中,輻射光束B入射於被固持於支撐結構(例如遮罩台MT)上之圖案化器件(例如遮罩MA)上,且係由該圖案化器件MA而圖案化。在已橫穿遮罩MA的情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF (例如干涉器件、線性編碼器、2D編碼器或電容式感測器),可準確地移動基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM且有可能另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射光束B之路徑來準確地定位遮罩MA。可使用遮罩對準標記M1、M2及基板對準標記P1、P2來對準遮罩MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。
如圖2中所展示,微影裝置LA可形成微影製造單元LC (有時亦被稱作微影製造單元(lithocell)或(微影)叢集)之部分,微影製造單元LC常常亦包括用以對基板W執行曝光前程序及曝光後程序之裝置。通常,此等裝置包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、例如用於調節基板W之溫度(例如用於調節抗蝕劑層中之溶劑)之冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同程序裝置之間移動基板W且將基板W遞送至微影裝置LA之裝載匣LB。微影製造單元中常常亦被集體地稱作塗佈顯影系統之器件通常係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身可受到監督控制系統SCS控制,監督控制系統SCS亦可例如經由微影控制單元LACU而控制微影裝置LA。
為了正確且一致地曝光由微影裝置LA曝光之基板W,需要檢測基板以量測經圖案化結構之屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。出於此目的,可在微影製造單元LC中包括檢測工具(圖中未繪示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,尤其是在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可被稱作度量衡裝置之檢測裝置用以判定基板W之屬性,且尤其判定不同基板W之屬性如何變化或與同一基板W之不同層相關聯之屬性在不同層間如何變化。檢測裝置可替代地經建構以識別基板W上之缺陷,且可例如為微影製造單元LC之部分,或可整合至微影裝置LA中,或可甚至為單機器件。檢測裝置可量測潛影(在曝光之後在抗蝕劑層中之影像)上之屬性,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之屬性,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上之屬性,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之屬性。
通常微影裝置LA中之圖案化程序為在處理中之最具決定性步驟中的一者,其需要基板W上之結構之尺寸標定及置放之高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3示意性地所描繪。此等系統中之一者為微影裝置LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此三個系統之間的合作以增強總體程序窗且提供嚴格控制迴路,從而確保由微影裝置LA執行之圖案化保持在程序窗內。程序窗界定程序參數(例如劑量、焦點、疊對)之範圍,在該程序參數範圍內特定製造程序得到所界定結果(例如功能半導體器件)-通常在該程序參數範圍內,微影程序或圖案化程序中之程序參數被允許變化。
電腦系統CL可使用待圖案化之設計佈局(之一部分)以預測使用哪些解析度增強技術且執行計算微影模擬及演算,以判定哪些遮罩佈局及微影裝置設定達成圖案化程序之最大總體程序窗(在圖3中由第一標度SC1中之雙白色箭頭描繪)。通常,解析度增強技術經配置以匹配於微影裝置LA之圖案化可能性。電腦系統CL亦可用以偵測在程序窗內何處微影裝置LA當前正操作(例如使用來自度量衡工具MT之輸入)以便預測歸因於例如次佳處理是否可存在缺陷(在圖3中由第二標度SC2中之指向「0」之箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影裝置LA以識別例如微影裝置LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
微影裝置LA經組態以將圖案準確地再生至基板上。所施加之特徵之位置及尺寸需要在某些容許度內。位置誤差可歸因於疊對誤差(常常被稱作「疊對」)而出現。疊對為在第一曝光期間置放第一特徵相對於在第二曝光期間置放第二特徵時之誤差。微影裝置藉由在圖案化之前將每一晶圓與參考件準確地對準而最小化疊對誤差。此係藉由使用對準感測器量測基板上之對準標記之位置來完成。可在以引用方式併入本文中之美國專利申請公開案第US20100214550號中找到關於對準工序之更多資訊。圖案尺寸標定(例如CD)誤差可例如在基板相對於微影裝置之焦平面並未正確地定位時出現。此等焦點位置誤差可與基板表面之非扁平度相關聯。微影裝置藉由在圖案化之前使用位階感測器量測基板表面構形而最小化此等焦點位置誤差。在後續圖案化期間應用基板高度校正以確保圖案化器件至基板上之正確成像(聚焦)。可在以引用方式併入本文中的美國專利申請公開案第US20070085991號中找到關於位階感測器系統之更多資訊。
除微影裝置LA及度量衡裝置MT以外,在IC生產期間亦可使用其他處理裝置。蝕刻站(圖中未繪示)在圖案曝光至抗蝕劑中之後處理基板。蝕刻站將圖案自抗蝕劑轉印至抗蝕劑層下方之一或多個層中。通常,蝕刻係基於施加電漿介質。可例如使用基板之溫度控制或使用電壓控制環來引導電漿介質從而控制局部蝕刻特性。可在以引用方式併入本文中之國際專利申請公開案第WO2011081645號及美國專利申請公開案第US 20060016561號中找到關於蝕刻控制之更多資訊。
在IC之製造期間,極為重要的係使用處理裝置(諸如微影裝置或蝕刻站)處理基板的程序條件保持穩定以使得特徵之屬性保持在某些控制限度內。程序之穩定性對於IC之功能性部分之特徵(亦即產品特徵)尤其重要。為了確保穩定處理,程序控制能力需要就位。程序控制涉及監測處理資料及用於程序校正之構件之實施,例如基於處理資料之特性控制處理裝置。程序控制可基於藉由度量衡裝置MT進行之週期性量測,常常被稱作「進階程序控制」(亦進一步被稱作APC)。可在以引用方式併入本文中之美國專利申請公開案第US20120008127號中找到關於APC之更多資訊。典型APC實施涉及對基板上之度量衡特徵之週期性量測,從而監測及校正與一或多個處理裝置相關聯之漂移。度量衡特徵反映了對產品特徵之程序變化之回應。度量衡特徵對程序變化之敏感度與產品特徵之敏感度可不同。在彼狀況下,可判定所謂的「度量衡對器件」偏移(另外亦被稱作MTD)。為了模仿產品特徵之行為,度量衡目標可併有分段特徵、輔助特徵或具有特定幾何形狀及/或尺寸之特徵。謹慎設計之度量衡目標應以與產品特徵對程序變化作出回應相似之方式對程序變化作出回應。可在以引用方式併入本文中之國際專利申請公開案第WO 2015101458號中找到關於度量衡目標設計之更多資訊。
術語指紋可指經量測信號之主要(系統性)貢獻因素(「潛在因素」),且尤其係指與晶圓上之效能影響有關或與先前處理步驟有關的貢獻因素。此指紋可指基板(柵格)圖案(例如來自對準、位階量測、疊對、焦點、CD)、場圖案(例如來自場內對準、位階量測、疊對、焦點、CD)、基板分區圖案(例如晶圓量測之最外半徑),或甚至關於晶圓曝光之掃描器量測中之圖案(例如來自倍縮光罩對準量測之批次間加熱訊跡、溫度/壓力/伺服剖面等)。指紋可包含於指紋集合內,且可在其中經均勻或非均勻地編碼。
通常在處理基板之後獲得電量測資料。通常,當執行電度量衡以獲得電量測資料時,使用探針來量測基板上之所有晶粒,該等探針與在處理期間形成之電路(接近)接觸。可執行各種類型之量測;例如電壓、電流、電阻、電容及電感量測。可在不同條件(例如頻率、電壓、電流)下且在橫越晶粒之複數個位置處執行此等量測。電量測可包含特定結構/特徵或器件是否為功能性(例如,在規格內)的評估。替代地或另外,電量測可根據「頻率組碼(bin code)」進行分類。在某一條件下與某一經量測參數(電流、電壓、電阻、電容、電感等)相關聯的電量測通常被稱作單獨「頻率組碼」。因此,橫越晶粒之典型電量測可由複數個曲線圖表示,每一曲線圖表示與一特定頻率組碼相關聯的值之空間分佈。貫穿本文,使「頻率組碼」及「電特性」同義地使用使得與基板相關聯的頻率組碼之值被稱作基板之電特性之值。電量測資料亦可包含位元不對稱性資料或任何其他良率參數。
經量測電特性之屬性(最小值、最大值、方差或任何其他統計量度)為與晶粒上之某一電路將為功能性的機率相關的重要指示符。因此,在電特性與程序之良率之間存在很強的關係。因此為了良率控制,電特性量測係必不可少的。然而,電特性量測亦為耗時的,且僅在半導體程序之結束階段(例如,在校正非功能性電路之選項幾乎不存在時)執行。
決定在曝光之後應檢測及/或重工哪些基板為重要的考慮因素,其將對產出量及良率有影響。分類中之誤差將導致良率耗損,此係因為將處理未偵測到的不合規格/非功能性器件,否則會有過多假警報,從而導致不必要的檢查及低效率。重工決策係基於成本高且耗時的度量衡量測(檢測)。又,廠房之檢測容量通常有限;例如不超過生產體積之5%或10%。結果,僅檢測所產生之所有晶圓之小數目。通常,絕大部分經檢測晶圓被發現係在規格內(OK)。重工決策應在短時間段內發生,通常在數分鐘內發生。在此內容背景中之檢測可指曝光後度量衡動作(例如昂貴度量衡,其中可依據時間量測成本),諸如藉由散射量測裝置或掃描電子顯微鏡裝置(例如,電子束裝置)量測。
當前,存在用以決定應檢測哪些晶圓之不同選擇策略。此等策略包括隨機選擇或固定選擇(例如,每批次之第n個晶圓)。另一策略可為基於量測及經驗進行選擇。主題專家(SME)基於定製關鍵效能指示符(key performance indicator,KPI)值及其經驗來決定是否應檢測晶圓。此類策略可單個地或以任何組合實施。
隨機或固定選擇策略可能產生不必要的高工程運轉費用(OPEX)。此係因為並不基於品質相關之量測來檢測晶圓。同時,此等策略無法防止良率損失,此係因為選擇準則並不經設計為檢測異常晶圓。對於基於專家之策略,SME很可能在重工決策中引入高變動及偏置。因此,系統性且可靠的重工決策程序並不可能。取決於偏置,此策略可產生較大I型(假陽性)或II型(假陰性)誤差,從而分別導致高OPEX或良率損失。
除了所描述之策略以外,已公開申請案WO2018133999 (以引用之方式併入本文中)描述一種藉由使用效用模型而促進對晶圓之評估的方法,該效用模型經訓練以學習預處理晶圓資料(例如內容脈絡資料)與晶圓/器件效能(例如良率)之間的映射。預處理資料或內容脈絡資料可描述哪一工具或工具組合用於處理晶圓,及/或包含掃描器度量衡資料,諸如對準及位階量測資料。相比於後處理度量衡之成本,此預處理晶圓資料可被認為「便宜的」度量衡資料或基本上免費的,此係因為其在任何狀況下針對每一晶圓來執行。此效用模型之輸出由半監督演算法使用,該半監督演算法基於廠房及微影內容脈絡資料進行效能預測。接著藉由使用資料變換及叢集技術將所有晶圓視覺化至SME。藉由效用模型或半監督演算法預測晶圓之效能;屬於此等叢集中之一或多者的經標註晶圓提供屬於相同叢集中的未經標註晶圓之效能之指示。SME接著基於視覺化作出檢測晶圓之決策。
隨著半導體工廠演進,及時的檢測決策變成約束。在決策使用專家輸入的情況下,歸因於必須分析之資料/KPI之量,SME無法發現導致識別出潛在不OK (NOK)根源的圖案。另外,專家無法在給定時間內檢查及分析此大量資料,即使具備諸如WO2018133999中所描述之視覺化工具亦如此。雖然此方法為SME提供叢集視覺化,但就所有重工決策仍取決於專家而言,其並非自動化的。
提議使用機器學習策略以用於基於可用的每晶圓資料(例如預處理資料)來預測晶圓品質(例如重工決策)。受監督或無監督預測器或預測演算法可經選擇以導出良率相關之預測;例如,晶圓為NOK或OK的預測。另外,可提供晶圓之關聯機率值為NOK/OK。
基於機率、一或多個其他目標及度量衡成本,可選擇一或多個晶圓以用於檢測。此等目標可係關於獲得用於以下各者中之一或多者之度量衡資料的值(例如依據一或多個資訊性度量):a)驗證晶圓是否被正確地特性化(模型之準確度)、b)加速學習程序(模型之成熟度)、c)發現新圖案;例如OK/NOK圖案(模型之範疇)及d)選擇用於APC回饋迴路之適當晶圓。構架鑒於所估計最終良率相對於度量衡之成本(OPEX)來平衡此等目標。目標與成本之相對重要性可為可組態的以達成重工預測及晶圓選擇之靈活構架。
圖4為描述根據一實施例之方法之實例的流程圖。在此實施例中,機器學習策略預測每一例項(例如每一晶圓)是為OK抑或NOK。此策略利用主動學習來應對小標註資料集(此係因為檢測少數晶圓)及關於OK對NOK晶圓之不平衡資料集(此係因為通常存在極少有缺陷的晶圓)的雙重挑戰。在一實施例中,策略並非靜態的,且可按需求經調諧及/或隨著時間推移演進。以此方式,其可整體改良總體效能(例如分類或效能度量,諸如接收者操作特性曲線下面積(receiver-operating characteristic area under curve,ROC AUC))同時最小化晶圓良率損失及客戶工程OPEX。
該方法嵌入預測器PD或預測演算法且可量化預測不確定性以最佳化對哪些晶圓進行檢測所作出的決策。可最佳選擇晶圓用於檢測,其具有加速嵌入式預測器PD之學習及/或發現新OK/NOK圖案的雙重目的。嵌入式預測器PD可為受監督的或無監督的,或甚至為兩者的組合。
微影裝置LA或掃描器處理一組晶圓或晶圓批次LT。將用於晶圓批次LT之每一晶圓的預處理資料或內容脈絡資料(例如描述處理歷史及/或包含掃描器度量衡資料)傳遞至預測器PD (例如機器學習/機器學習模型),該預測器PD輸出描述每一晶圓有缺陷之機率的機率值PNOK 。基於機率值PNOK ,作出關於是否應檢測晶圓的決策INS?。此決策可例如經由調諧/選擇用於作出決策之β函數之參數αβ 而為可組態的。此將在下文更詳細地加以論述。使用合適的度量衡工具對經發送以用於檢測之彼等(少數)晶圓進行MET檢測,其中量測資料(例如OK/NOK狀態之確認)用以標註晶圓WL 。基於由預測器PD指派的機率值PNOK (例如,藉由將此值與指示非功能性之臨限值進行比較)藉由類別(例如,OK/NOK)來標註未被檢測的彼等晶圓。舉例而言,此機率高於某一臨限值的例項可被標註為「NOK」;此機率低於彼臨限值的例項可被標註為「OK」。此步驟具有建置經偽標註晶圓WPL 之集合以供再訓練之目的。
關於由預測器PD使用之模型,高度不平衡資料集可使用合適的無監督機器學習模型。舉例而言,可使用自動編碼器架構,其僅對主要/大部分類別(例如OK晶圓)進行訓練。舉例而言,主要/大部分類別可對應於可被描述為正常行為之類別,其中自動編碼器僅使用屬於此類別之資料來訓練。以此方式,其將學習正常類別之基礎表示且將以低重建構誤差(或其他不確定性度量)高效地重建構屬於其之實例。自動編碼器將不能夠捕捉之前從未觀測到的類別之基礎結構,且將不能重建構屬於其之例項,從而產生高重建構誤差。以此方式,可偵測並不屬於大部分類別之例項,此係由於並不預期自動編碼器高效地重建構其,從而充當異常偵測器。另外,重建構誤差可映射至例項為NOK之機率上;例如藉助於參數模型(如指數律)或非參數模型(例如核密度估計)。
在更多平衡資料集之狀況下,可代替地採用受監督預測器PD。受監督演算法之輸出可為每一例項並非NOK之機率;可在需要時將對機率預測之支援添加至演算法。
廠房之檢測容量通常限於生產之一分數,且檢測係成本高的。此事實影響了通常可用之資料集之大小及可富集資料集之速率,從而最終影響了可從頭開始或自小初始資料集完全學習預測方法之速度。
可藉由在具有不超過廠房容量檢測的約束下來解決關於機率值PNOK 之最佳化問題來做出要檢測哪些晶圓的決策INS?。目標函數可併有至少以下貢獻: ●  關於預測準確度符合規格的檢查(例如第一目標)之個別晶圓檢測值(例如第一目標值); ●  關於加速學習程序(例如第二目標)之個別晶圓檢測值(例如第二目標值); ●  關於發現新OK/NOK圖案(例如第三目標)之個別晶圓檢測值(例如第三目標值); ●  相對於直至決策時間所檢測的晶圓之量超過標稱檢測容量的成本。 前述公開之申請案WO2018133999例如描述用於基於待執行之量測之(預期)資訊性而控制該等量測的一般構架。
待最小化之合適目標函數之實例可為:
Figure 02_image001
其中: ●  括號表示純量積; ●
Figure 02_image003
表示當且僅當
Figure 02_image005
時所選擇的第i個晶圓; ●
Figure 02_image007
為所估計NOK機率之向量; ●
Figure 02_image009
為參數αβ 之β函數; ●
Figure 02_image011
為約束解決方案以防止使過多晶圓被選擇之參數。
純量積用於形成由係數
Figure 02_image013
加權之指示符
Figure 02_image015
的目的。選擇晶圓對目標函數之貢獻係連結至晶圓檢測能力之正均一成本減去取決於檢測彼特定晶圓之值的成本。
參數αβ 基於區間[0, 1]之變換判定重新加權,其中估計之NOK機率係實況的。當α =β 時,將相等權重置於區
Figure 02_image017
Figure 02_image019
上,其中若
Figure 02_image021
(對應地
Figure 02_image023
),則極值(約為0及1)被更大地加權(對應地被更小地加權)。若更多權重被置於
Figure 02_image025
之晶圓上,則學習將加速;若更多權重被置於
Figure 02_image027
之晶圓上,則聚焦將在生產控制及新故障圖案之發現上移位。藉由選擇
Figure 02_image029
之適當值,以非對稱方式重新加權(例如,相較於
Figure 02_image031
之晶圓,
Figure 02_image033
之晶圓有更大權重)亦係可能的。因而,可對基板順應品質要求的機率之對應分位數強加偏置。
α,β對可根據以下方法中之一或多者而設定。第一方法可依賴於具有預定義α,β對之集合,每一對解決一特定目的。舉例而言,特定α,β對可包括如下對: i)     藉由選擇無法容易分類的用於檢測之晶圓來改良演算法之效能; ii)     改良諸如AUC之所要度量; iii)    偵測儘可能多的不良晶圓。
第二方法依賴於加強學習。加強學習代理程式旨在調諧α,β參數對,而考慮以下加強學習設定: ● 狀態:對應於每一晶圓為NOK的經預測機率以及α,β之當前組合。 ● 動作:調整α,β及決定應檢測哪些晶圓。 ● 獎勵:改良分類演算法之效能度量。獎勵亦可基於與由於代理程式並未發送晶圓以供檢測而處於空閒狀態的度量衡工具相關的任何成本。
參數
Figure 02_image035
防止在最佳解決方案中存在過多所選擇晶圓。下標t 指示參數可隨著時間推移而變化。舉例而言,雖然前述例示性5%檢測容量轉化為每批次大致1個晶圓,但系統可決定不檢測批次中之任何晶圓且替代地檢測後續批次中之更多的晶圓。待檢測之N個晶圓之最佳選擇(其中N未必為1)為依賴於專家決策之現有方法的極具挑戰性的任務。除前述潛在偏置以外,選擇對於人類係組合地複雜的:自批次僅選取2個晶圓需要比較300個候選晶圓對。另外,由所提議機器學習策略執行之自動檢測決策比時間約束之決策(諸如需要在曝光批次之後在廠房中獲得)優越,此係因為無人類因素在迴路中。此公式化之優點在於,可按需求變更目標函數中之此等貢獻之相對權重,從而為使用者提供建置其自身自訂產品的自由度。目標函數中參數
Figure 02_image035
項之存在使得能夠動態地處置檢測容量。
在一實施例中,可存在週期性再訓練以改良機器學習策略之效能及/或學習新OK/NOK圖案。機器學習策略貢獻於兩個資料集之放大/產生:一個含有經標註OK/NOK晶圓WL 且另一個含有經預測OK/NOK晶圓WPL 。對此等週期性放大資料集進行再訓練。此再訓練在圖4中藉由自經標註WL 及經偽標註晶圓WPL 至加權損失函數WLF之回饋迴路來表示,該加權損失函數WLF基於實際經標註晶圓WL 來評估預測之效能。若此效能不滿足可接受性之臨限值,則可產生觸發TRIG以觸發預測器PD之再訓練。另外,損失函數WLF可經調適以便集中於理解資料中之最近圖案或考量經預測偽標籤之不確定性。
半導體製造程序之性質導致資料隨著時間推移演進,從而產生基礎資料分配之改變。此情境(其中特徵及標籤p(X, y)之分佈並非靜止的而是不時地漂移)被稱為概念漂移。現將提出說明此情形之多種情境:
當曝光新的未見過的基板時,目標函數可藉由回復至初始設置而自動調適。舉例而言,若認為重要的是針對未見過的晶圓加速學習程序(亦即,運用貢獻因素描述:關於加速學習程序之個別晶圓檢測值),則一旦識別出新基板,就可使用來自掃描器資料之基板ID來增大對於此貢獻因素之權重。
在另一實例中,例如歸因於基礎資料分配之改變(其可由於程序或掃描儀自然行為之改變引起)的概念漂移可藉由監測預測器PD之效能來解決。在進行預測之後,真實標籤(經檢測晶圓WL )中之一些可用,此可觸發週期性再訓練步驟以便提供最新的模型。預測效能增量可經量化以提供資料分配改變之量值之量度。基於此預測效能增量,可變化/調適目標函數之貢獻因素:例如效能之降低愈大,權重可朝向初始設置變化愈多,此係因為此指示具有新資料分配之新初始狀態。參數α及β可與預測效能(例如分類或效能度量,諸如AUC)成比例地維持:例如效能愈佳,就愈集中於僅選擇NOK晶圓。當預測效能低於(例如,自訂)效能臨限值時,可觸發TRIG分類模型再訓練。
現在將描述用於基於度量衡資料之值之加權/平衡(用於改良良率預測)及度量衡資料之成本(量測時間)的度量衡控制之另一實施例。此類方法可為上文所描述之方法的改進或單獨的實施例。此實施例可包括多層態樣且不限於關於是否待量測整個基板之決策;替代地,決策可包括決定是否量測特定目標或標記或其組(例如,在遞增之基礎上),及/或決定可量測基板之哪些目標(例如,決定取樣方案或取樣策略)。
實施例可使用量測收集器模型來決定晶圓及/或目標選擇以供量測,例如以便最小化(昂貴)度量衡動作之數目,同時維持足夠準確(最終)的良率預測。亦應注意,先前所描述之實施例亦可使用此量測收集器模型。舉例而言,收集器模型可評估迄今為止所量測之度量衡資料的當前狀態、其他預處理晶圓資料(例如內容脈絡資料)及/或良率預測資料,且根據基於現有資料之良率預測之品質對該狀態進行記分。收集器模型可經訓練以評估哪一額外資料(狀態轉變)提供良率預測準確度之最大增益。舉例而言,若良率預測品質滿足了要求,則資料獲取可結束。
如前所述,提議機器學習途徑以用於獲取每一層處之所關注參數(例如,疊對及/或CD)的成本高的量測(例如,顯影後檢測(ADI)及/或蝕刻後/清潔後檢測(AEI/ACI)),使得所獲取量測最佳地允許以成本有效方式預測良率。此可包含針對每一層僅識別及執行被認為顯著改良良率預測的彼等成本高的量測。此設置為預測時間上之主動特徵獲取。該解決方案在線上起作用且在處理晶圓時為每一層提供關於量測獲取之建議。
圖5為說明根據此實施例的兩個主要組件(良率預測器PD與量測收集器CL)之間的相互作用的流程圖。此外,良率預測器PD可視情況包含用以對遺漏或稀疏資料執行設算之設算器IM。
良率相關器/預測器PD可包含用於經由堆疊預測良率之模型。此模型可使用預處理晶圓資料(例如對準、位階量測及內容脈絡資料)及可能已在每一層處自所選擇晶圓獲取以預測良率的任何昂貴度量衡資料,該預處理晶圓資料係便宜的且可用於所有晶圓。在使用儘可能少的度量衡MET的同時,可最佳化預測良率以緊密地反映實際良率。另外,此模型可在晶圓正在連續層中被處理且新資料變得遞增地可用時更新其良率預測PD。因此,良率預測器可在正處理每一晶圓且進行及添加額外量測時,基於來自昂貴資料之部分資訊而每晶圓輸出多個中間良率預測IPD。此等中間良率預測IPD中之最後一者變為最終良率預測;例如,當中間良率預測IPD例如根據諸如獲取記分SC之合適度量被認為足夠準確時。
良率預測器PD亦可包含設算器IM。設算器係選用組件,其藉由自現有量測資料導出非關鍵層之遺漏的昂貴量測從而改良實用性,從而避免對於遺漏資料工作或歸因於有限資源而過早地停止量測獲取的需要。
量測收集器CL可接收狀態作為輸入且決定檢測決策INS?。該狀態概述迄今為止收集之資訊或資料DATc,例如收集之所有昂貴的度量衡資料、所有相關內容脈絡資料(及其他便宜的度量衡資料)及任何先前預測。當使用設算器時,此狀態可以所設算值(所設算度量衡資料)擴展。其輸出為接下來採取之動作。可能動作可包含1)獲取更多資訊,亦即,執行另一檢測動作MET以獲得一或多個額外昂貴的量測;或2)停止及輸出當前預測作為最終預測FP。量測收集器CL為作出決策功能(亦即,提示決策INS?)。其學習根據獲取記分SC之一些準則何時獲取更多資訊。
目的可為獲得對於晶圓之最確信的良率預測,同時在檢測或資訊獲取方面產生最小的成本。獲取記分SC可為將用於資訊獲取之準則概述為每狀態轉變(例如,在順次獲取之間,每次獲取改變狀態)一個數值的函數。此獲取記分SC可由量測收集器CL用作關於獲取更多資訊之決策INS?的基礎。
舉實例而言,獲取準則可包括: ●  中間良率預測IPD之品質。若良率預測器PD基於當前狀態(例如,已經獲取資訊及設算值)無法進行確信預測(例如,根據信賴度量),則應針對晶圓執行額外昂貴資訊(例如,一或多個額外度量衡步驟)。總體而言,目的為最小化預測不確定性,但不會付出太大代價。 ●  資訊獲取之成本。昂貴量測之獲取係成本高的。此成本可在不同層間變化,及/或可取決於量測類型而變化,例如,其是否包含ADI疊對、ACI疊對抑或CD量測。因此,品質及信賴度應與此成本保持平衡;例如,以便使最大化良率預測之信賴度且最小化資訊獲取之成本平衡。 ●  預期效用及最高資訊增益(選用的)。僅出於學習目的,亦有可能獲取昂貴的量測。即,可獲取改良良率預測器PD及量測收集器CL之量測。
所提議方案可藉由不同機器學習方法實施。將描述使用加強學習構架的第一實例及使用更習知機器學習技術的第二實例。
所提議配置可自然地實施於加強學習構架內。圖6說明此構架。在此配置中,可定義馬爾可夫決策程序(Markov decision process,MDP),其包含環境EV中之代理程式(例如,量測收集器CL)、狀態集合及每狀態之動作集合。在狀態St 中,代理程式CL根據策略選擇動作At 。當代理程式CL決定INS?狀態改變時,產生獎勵RW,且由代理程式CL接收經更新獎勵值Rt + 1 (相對於先前獎勵Rt 更新)以用於下一反覆。代理程式CL之目標為最大化其總獎勵RW。
判定關於資訊獲取之作出決策程序INS?的代理程式可對應於圖5之量測收集器CL。如已經描述,代理程式CL可選擇之可能動作為:1)執行檢測動作MET,亦即,用以獲取與經更新狀態St + 1 相關聯之額外資料AD的昂貴量測或2)停止及輸出當前預測FP。
該狀態包含迄今為止收集之所有資訊,未獲取之特徵的重要性可自已經獲取之特徵及良率預測器PD予以估計。
環境EV由系統中之所有可能狀態及所有狀態轉變組成。環境EV與代理程式CL相互作用,從而提供狀態更新及獎勵RW。獎勵RW對應於獲取記分。最終獎勵RW可取決於良率預測IPD之信賴度及所獲取昂貴資訊之成本C。在每一狀態下,當獲取昂貴量測時引發負獎勵C。以此方式,可達成最佳化良率預測與最小化所獲取資訊之間的取捨。
代理程式CL可學習用於資訊獲取之最佳策略。為了學習最佳策略,可使用任何目前先進技術的回歸學習演算法來學習最佳策略,例如Q學習。可與訓練良率預測器及設算器同時地訓練該策略。
圖7說明基於其他機器學習原理之另一實施例。圖7之(a)將良率預測器之實施說明為一連串模型,使得基礎模型M0 僅使用(例如,零層之)便宜的內容脈絡資料CX來預測良率PY0 ,且每一額外模型Mi 另外併有層i (其中i=0至n)之成本高的量測MTi 以預測良率PYi 。以此方式,經由堆疊之良率預測器可包含級聯模型,M0 至Mn 。在每一晶圓之每一層i處,模型Mi 可用以預測良率,且基於此獲取記分,可作出獲取昂貴量測MTi 之決策。若廠房中之度量衡資源固定,則可選擇具有最高獲取記分之晶圓量測以用於獲取對應昂貴量測。在更靈活設定中,當獲取記分高於臨限值時,可獲取對於晶圓之成本高的量測。
圖7之(b)說明用於諸如圖7之(a)中所說明之良率預測器配置的構架。在連續層0,1,2,…n之曝光期間,藉由模型M0 ,M1 ,M2 …Mn 順次地判定針對每一晶圓例項之預測直至其預測足夠確信為止,此時可決定彼晶圓不需要其他量測。因此,舉例而言,在層i之曝光期間,若模型Mi - 1 並不足夠確信,則使用模型Mi 來模型化晶圓;例如,基於信賴度量與信賴臨限值之比較。亦可相對於信賴臨限值最小化成本。因而,僅根據需要針對新曝光獲取額外量測。
在圖7之(b)中,判定在層i之預測時間時之成本高的量測之主動獲取。將關於所有層直至(並包括)先前層i-1之所有先前資料DATi - 1 輸入至預測模型Mi - 1 中,該預測模型輸出經預測良率PYi - 1 及對應獲取記分SC。由量測收集器作出關於是否獲取更多資訊之決策INS?。該決策可評估經預測良率PYi - 1 是否滿足一或多個預測準則。若是,則輸出最終預測FP且程序結束。否則,對層i執行度量衡MET i,且針對下一層重複該程序。
可視情況使用設算器且其為良率預測器之部分(對於本文所描述之實施例中之任一者)。在層i處之設算器可用以嘗試對彼晶圓之昂貴量測之設算。設算器可執行遺漏值之簡單的基於規則之填充(例如外插及/或內插),或可包含另一預測機器學習模型或生成模型。在此狀況下,獲取記分可基於彼設算之信賴度及其對良率預測之影響來計算。設算器可與良率預測器一起經共同訓練。
收集器及良率預測器可經共同訓練;例如,收集器代理程式及良率預測器之第一神經網路層可為共同的且一起經訓練。模型構架可轉移至其他產品,使得無需為每一產品從頭開始。
概言之,因此,描述作出決策之構架,其藉由基於成本最佳化及廠房容量約束而最佳化作出檢測決策從而減少工程OPEX。預期良率損失減小,此係由於重工決策係基於由所提議機器學習策略偵測之異常。另外,控制可更穩定。機器學習策略能夠處理小型及/或不平衡資料集兩者,此係微影行業中之正常情境。所提議之策略提供比任何現有解決方案更快的良好執行OK/NOK預測器。所提議途徑相比於專家遞送一致更快的建議,此係演進半導體行業中合乎需要的。人類因素(以及由其引入之偏置)對檢測決策之影響減小,此係由於晶圓之評估係自動化的且基於機器學習。
最佳化問題係靈活的且可適應於特定要求,因此最佳化問題可用以更快地達成良好效能或保持自「已知」情形學習。機器學習之可解譯性的進步亦可指出晶圓被標記為OK或NOK的原因且擴展對晶圓品質評估的理解。
轉移學習方法可促進需要較少訓練資料且能夠支援新系統上之重工決策的機器學習演算法之快速原型設計及開發。OK晶圓與NOK晶圓之間的相互圖案存在於許多系統當中,該等系統被預期藉由所提議之機器學習策略捕捉。
可以使得與過去所觀測到之異常相比,演算法訓練更集中於理解最近異常之結構的方式來部署再訓練。此並不意謂無法繼續偵測過去的異常,只是演算法優先考慮了與很久以前觀測到之異常相比最近的異常之理解。以此方式,系統能夠處理行業中之主要挑戰中之一者:概念漂移。
在以下經編號條項之清單中揭示了本發明之另外實施例: 1.      一種用於判定對於至少一個基板之一檢測策略之方法,該方法包含: 使用一預測模型基於與該基板相關聯之預處理資料及與該至少一個基板相關聯之任何可用後處理資料中的一者或兩者來量化與順應一品質要求之一預測相關的一順應性度量之一順應性度量值;及 基於以下各者決定對於該至少一個基板之一檢測策略:該順應性度量值、與該檢測策略相關聯之一預期成本及描述在與該預測模型相關之至少一個目標方面該檢測策略之一預期值的至少一個目標值。 2.      如條項1之方法,其中該至少一個目標包含以下各者中之至少一者: 根據一或多個效能度量監測及/或改良該預測模型之效能; 加速該預測模型之學習; 發現待由該預測模型辨識之新圖案。 3.      如條項1或2之方法,其中該至少一個基板包含一組基板,且該順應性度量包含描述順應一品質要求之一機率的一機率值;該方法進一步包含: 基於與該基板相關聯之該預處理資料使用該預測模型將一各別機率值指派給該組基板中之每一基板。 4.      如條項3之方法,其中決定一檢測策略之該步驟包含決定是否檢測該組基板中之每一基板。 5.      如條項3或4之方法,其中該決定步驟係可組態的使得該決策可經組態以: 對該基板順應該品質要求的該機率之對應分位數強加一偏置。 6.      如條項5之方法,其中該決定步驟之該可組態性係經由用於該決定步驟中之一目標函數之可組態參數實現。 7.      如條項6之方法,其中該目標函數包含一二進位向量,該二進位向量指示哪些基板經選擇以供檢測,該二進位向量由取決於該機率值、預期成本及該等可組態參數之一係數加權。 8.      如條項7之方法,其中針對該組基板中之每一基板定義該二進位向量及加權。 9.      如條項7或8之方法,其中該決定步驟包含針對經受基於該預期成本之一約束的不同候選二進位向量最小化該目標函數。 10.   如條項9之方法,其中該約束強加可遍及一時間段被檢測之基板之一最大數目。 11.    如條項9或10之方法,其中該約束係藉由該加權中之一約束參數予以實施。 12.   如條項9、10或11之方法,其中該約束隨著時間推移係可組態的及/或可變的。 13.   如條項6至12中任一項之方法,其中該加權取決於該等可組態參數之一β函數。 14.   如條項6至13中任一項之方法,其中自該等可組態參數之複數個預定義集合選擇該等可組態參數之一集合以便選擇及/或組態該目標。 15.   如條項6至14中任一項之方法,其包含使用一加強學習代理程式以調諧該等可組態參數從而改良該模型之一效能度量及/或成本度量。 16.   如條項1或2之方法,其中該順應性度量包含描述該預測係有效的一信賴等級之一信賴度量。 17.   如條項16之方法,其包含: 反覆地執行一或多個度量衡動作以獲得額外後處理資料;及 基於該額外後處理資料更新該預測且評估該信賴度量或相關度量; 直至滿足用於該信賴度量或相關度量之一或多個準則。 18.   如條項17之方法,其遍及該至少一個基板之複數個層而執行直至滿足用於該信賴度量或相關度量之該一或多個準則。 19.   如條項16、17或18之方法,其包含: 基於該信賴度量及額外度量衡動作之成本來判定一獲取記分;及 基於該獲取記分決定是否執行一額外度量衡動作。 20.   如條項19之方法,其中該獲取記分另外係基於一額外度量衡動作之一預期效用及/或最高資訊增益。 21.   如條項16至20中任一項之方法,其中決定一檢測策略之該步驟係由一量測收集器執行。 22. 如條項21之方法,其中該預測模型及該量測收集器經實施於一加強學習構架內,在該加強學習構架中該量測收集器充當該代理程式。 23.   如條項21之方法,其中該預測模型及該量測收集器經實施為經訓練神經網路。 24.   如條項23之方法,其中該預測模型及該量測收集器之至少一些層已經共同訓練。 25.   如條項23或24之方法,其中該預測模型包含複數個模型,每一模型與該至少一個基板之一不同層相關。 26.   如任一前述條項之方法,其中該預測模型包含可操作以對該後處理資料執行設算之一設算器。 27.   如任一前述條項之方法,其中該決定步驟係可組態的使得該至少一個目標係可組態及/或可選擇的。 28.   如任一前述條項之方法,其進一步包含: 根據一檢測之結果標註所選擇基板; 根據指派給其之該檢測策略之該預期值來標註剩餘基板;及 基於該標註評估該預測模型之效能。 29.   如條項28之方法,其進一步包含基於評估效能之該步驟觸發該預測模型之再訓練。 30.   如任一前述條項之方法,其中該預處理資料包含以下各者中之一者或兩者: 描述每一基板之一處理歷史的內容脈絡資料;及 在一曝光步驟之前對每一基板執行的預處理度量衡資料。 31.   如條項30之方法,其中該預處理度量衡資料包含對準資料及位階量測資料中之一者或兩者。 32.   如任一前述條項之方法,其進一步包含使用一檢測工具根據該檢測策略檢測該至少一個基板。 33.   一種電腦程式,其包含可操作以在經執行於一合適裝置上時執行如條項1至31中任一項之方法的程式指令。 34.   一種非暫時性電腦程式載體,其包含如條項33之電腦程式。 35.   一種處理系統,其包含一處理器及包含如條項33之電腦程式的一儲存器件。 36.   一種微影裝置,其包含如條項35之處理系統。 37.   一種度量衡器件,其包含如條項35之處理系統且進一步可操作以執行如條項32之方法。
儘管可在本文中特定地參考在IC製造中微影裝置之使用,但應理解,本文中所描述之微影裝置可具有其他應用。可能其他應用包括製造整合式光學系統、用於磁疇記憶體之導引及偵測、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等等。
儘管可在本文中特定地參考在微影裝置之內容背景中之本發明之實施例,但本發明之實施例可用於其他裝置中。本發明之實施例可形成遮罩檢測裝置、度量衡裝置或量測或處理諸如晶圓(或其他基板)或遮罩(或其他圖案化器件)之物件之任何裝置之部分。此等裝置通常可被稱作微影工具。此微影工具可使用真空條件或周圍(非真空)條件。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明在內容背景允許之情況下不限於光學微影且可用於其他應用(例如壓印微影)中。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同之其他方式來實踐本發明。以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下對所描述之本發明進行修改。
AD:額外資料 At :動作 B:輻射光束 BD:光束遞送系統 BK:烘烤板 C:目標部分/成本 CH:冷卻板 CL:電腦系統/量測收集器/代理程式 CX:內容脈絡資料 DATi-1 :先前資料 DATC :資料 DE:顯影器 EV:環境 FP:最終預測 IF:位置感測器 IL:照明系統/照明器 IM:設算器 INS?:決策 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 IPD:中間良率預測 LA:微影裝置 LACU:微影控制單元 LB:裝載匣 LC:微影製造單元 LT:晶圓批次 M1 :遮罩對準標記 M2 :遮罩對準標記 M0 :基礎模型 M1 :模型 Mi-1 :預測模型 Mn :模型 MA:圖案化器件/遮罩 MET:度量衡 MET i:度量衡 MT:支撐結構/遮罩台/度量衡工具 P1 :基板對準標記 P2 :基板對準標記 PD:良率預測器/良率預測 PM:第一定位器 PNOK :機率值 PS:投影系統 PW:第二定位器 PY0 :良率 PY1 :良率 PYi-1 :經預測良率 RO:基板處置器或機器人 Rt :獎勵 Rt+1 :經更新獎勵值 RW:獎勵 SC:旋塗器/獲取記分 SCS:監督控制系統 SC1:第一標度 SC2:第二標度 SC3:第三標度 SO:輻射源 St :狀態 St+1 :經更新狀態 TCU:塗佈顯影系統控制單元 TRIG:觸發 W:基板 WLF:加權損失函數 WL :晶圓 WPL :經偽標註晶圓 WT:基板台 α:參數 β:參數
現在將僅舉實例參看隨附示意性圖式來描述本發明之實施例,在該等圖式中: 圖1描繪微影裝置之示意性綜述; 圖2描繪微影製造單元之示意性綜述; 圖3描繪整體微影之示意性表示,其表示用以最佳化半導體製造之三種關鍵技術之間的合作; 圖4為根據本發明之第一實施例的作出決策方法之流程圖; 圖5為根據本發明之第二實施例的作出決策方法之流程圖; 圖6為第二實施例之加強學習實施的流程圖;及 圖7包含(a)第二實施例之機器學習模型(例如神經網路)實施之預測方法的流程圖及(b)第二實施例之機器學習模型實施的流程圖。
DATC:資料
INS?:決策
LA:微影裝置
LT:晶圓批次
MET:度量衡
PD:良率預測器/良率預測
PNOK:機率值
TRIG:觸發
WLF:加權損失函數
WL:晶圓
WPL:經偽標註晶圓
α:參數
β:參數

Claims (16)

  1. 一種用於判定對於至少一個基板之一檢測策略之方法,該方法包含: 使用一預測模型基於與該基板相關聯之預處理資料及與該至少一個基板相關聯之任何可用後處理資料中的一者或兩者來量化與順應一品質要求之一預測相關的一順應性度量之一順應性度量值;及 基於以下各者決定對於該至少一個基板之一檢測策略:該順應性度量值、與該檢測策略相關聯之一預期成本及描述在與該預測模型相關之至少一個目標方面該檢測策略之一預期值的至少一個目標值。
  2. 如請求項1之方法,其中該至少一個目標包含以下各者中之至少一者: 根據一或多個效能度量監測及/或改良該預測模型之效能; 加速該預測模型之學習; 發現待由該預測模型辨識之新圖案。
  3. 如請求項1之方法,其中該至少一個基板包含一組基板,決定一檢測策略之該步驟包含決定是否檢測該組基板中之每一基板,且該順應性度量包含描述順應該品質要求之一機率的一機率值。
  4. 如請求項3之方法,其進一步包含使用該預測模型基於該組基板中之每一基板之對應預處理資料而將一各別機率值指派給該組基板中之該每一基板。
  5. 如請求項3之方法,其中該決定步驟係可組態的,使得該決策可經組態以對一基板順應該品質要求的該機率之對應分位數強加一偏置。
  6. 如請求項5之方法,其中該決定步驟之該可組態性係經由用於該決定步驟中之一目標函數之可組態參數實現。
  7. 如請求項6之方法,其中該目標函數包含一二進位向量,該二進位向量指示哪些基板經選擇以供檢測,該二進位向量由取決於該等機率值、預期成本及該等可組態參數之一係數加權,且該決定步驟包含針對經受基於該預期成本之一約束的不同候選二進位向量最小化該目標函數。
  8. 如請求項7之方法,其中該約束強加可遍及一時間段被檢測之基板之一最大數目。
  9. 如請求項7之方法,其中該約束係藉由該加權中之一約束參數予以實施。
  10. 如請求項6至9中任一項之方法,其包含使用一加強學習代理程式以調諧該等可組態參數從而改良該模型之一效能度量及/或成本度量。
  11. 如請求項1之方法,其中該順應性度量包含描述該預測係有效的一信賴等級之一信賴度量,且該方法包含: 反覆地執行一或多個度量衡動作以獲得額外後處理資料;及 基於該額外後處理資料更新該預測模型且評估該信賴度量或相關度量,直至滿足用於該信賴度量或相關度量之一或多個準則。
  12. 如請求項11之方法,其包含: 基於該信賴度量及額外度量衡動作之成本來判定一獲取記分;及 基於該獲取記分決定是否執行一額外度量衡動作。
  13. 如請求項3之方法,其進一步包含: 根據對所選擇基板執行之一檢測之一結果來標註該等所選擇基板; 根據指派給其之該機率值來標註剩餘基板;及 基於該標註評估該預測模型之效能。
  14. 如請求項13之方法,其進一步包含基於評估效能之該步驟觸發該預測模型之再訓練。
  15. 如請求項1之方法,其中該預處理資料包含以下各者中之一者或兩者: 描述該至少一個基板之一處理歷史的內容脈絡資料;及 在一曝光步驟之前在該至少一個基板上獲取的預處理度量衡資料。
  16. 一種電腦程式,其包含可操作以在經執行於一合適裝置上時執行如請求項1至15中任一項之方法的程式指令。
TW110109257A 2020-04-02 2021-03-16 在半導體製造程序中用於判定對於一組基板之檢測策略之方法 TWI775350B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP20167648.3 2020-04-02
EP20167648 2020-04-02
EP20174335.8A EP3910417A1 (en) 2020-05-13 2020-05-13 Method for determining an inspection strategy for a group of substrates in a semiconductor manufacturing process
EP20174335.8 2020-05-13
EP20198754 2020-09-28
EP20198754.2 2020-09-28

Publications (2)

Publication Number Publication Date
TW202205025A true TW202205025A (zh) 2022-02-01
TWI775350B TWI775350B (zh) 2022-08-21

Family

ID=74673250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109257A TWI775350B (zh) 2020-04-02 2021-03-16 在半導體製造程序中用於判定對於一組基板之檢測策略之方法

Country Status (6)

Country Link
US (1) US11740560B2 (zh)
EP (1) EP4127834A1 (zh)
KR (1) KR20220147672A (zh)
CN (1) CN115398345A (zh)
TW (1) TWI775350B (zh)
WO (1) WO2021197730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805507B (zh) * 2022-10-11 2023-06-11 錼創顯示科技股份有限公司 壞點檢測排除裝置與方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
JP2938568B2 (ja) 1990-05-02 1999-08-23 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン 照明装置
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
EP1387200A4 (en) 2001-04-02 2007-05-16 Matsushita Electric Ind Co Ltd ZOOM LENS AND ELECTRONIC STILL CAMERA THEREOF
SG121818A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
SG180882A1 (en) 2009-12-15 2012-07-30 Lam Res Corp Adjusting substrate temperature to improve cd uniformity
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
WO2015101458A1 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
WO2016128189A1 (en) * 2015-02-13 2016-08-18 Asml Netherlands B.V. Process variability aware adaptive inspection and metrology
US10502692B2 (en) * 2015-07-24 2019-12-10 Kla-Tencor Corporation Automated metrology system selection
WO2017067748A1 (en) * 2015-10-19 2017-04-27 Asml Netherlands B.V. Method and apparatus to reduce effects of nonlinear behavior
CN108475351B (zh) * 2015-12-31 2022-10-04 科磊股份有限公司 用于训练基于机器学习的模型的系统和计算机实施方法
EP3352013A1 (en) 2017-01-23 2018-07-25 ASML Netherlands B.V. Generating predicted data for control or monitoring of a production process
WO2019185233A1 (en) * 2018-03-29 2019-10-03 Asml Netherlands B.V. Method for evaluating control strategies in a semicondcutor manufacturing process
CA3095030A1 (en) 2018-03-30 2019-10-03 Juno Diagnostics, Inc. Deep learning-based methods, devices, and systems for prenatal testing
KR102529085B1 (ko) * 2018-06-25 2023-05-08 에이에스엠엘 네델란즈 비.브이. 성능 매칭에 기초하는 튜닝 스캐너에 대한 파면 최적화
US10872403B2 (en) 2018-08-10 2020-12-22 Micron Technology, Inc. System for predicting properties of structures, imager system, and related methods
WO2020156769A1 (en) 2019-01-29 2020-08-06 Asml Netherlands B.V. Method for decision making in a semiconductor manufacturing process
US20220350254A1 (en) * 2019-07-03 2022-11-03 Asml Netherlands B.V. Method for applying a deposition model in a semiconductor manufacturing process
CN114222949A (zh) * 2019-08-13 2022-03-22 Asml荷兰有限公司 用于计算特征的建模方法
KR20220073828A (ko) * 2019-11-01 2022-06-03 에이에스엠엘 네델란즈 비.브이. 모델 베이스 정렬들을 위한 기계 학습 기반 이미지 생성
EP3872567A1 (en) * 2020-02-25 2021-09-01 ASML Netherlands B.V. Systems and methods for process metric aware process control
KR20230005381A (ko) * 2020-06-03 2023-01-09 에이에스엠엘 네델란즈 비.브이. 패터닝 디바이스 및 이에 대한 패턴을 생성하는 시스템, 제품, 및 방법
US20220196580A1 (en) * 2020-12-21 2022-06-23 Globalfoundries U.S. Inc. Defect inspection methods of semiconductor wafers
US20230059313A1 (en) * 2021-08-18 2023-02-23 Applied Materials, Inc. On wafer dimensionality reduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI805507B (zh) * 2022-10-11 2023-06-11 錼創顯示科技股份有限公司 壞點檢測排除裝置與方法

Also Published As

Publication number Publication date
WO2021197730A1 (en) 2021-10-07
TWI775350B (zh) 2022-08-21
US11740560B2 (en) 2023-08-29
EP4127834A1 (en) 2023-02-08
US20230058166A1 (en) 2023-02-23
KR20220147672A (ko) 2022-11-03
CN115398345A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
TWI683189B (zh) 用以預測器件製造製程之良率的方法
CN113366390B (zh) 半导体制造过程中的决定方法
TWI764554B (zh) 判定微影匹配效能
TWI746019B (zh) 用於判定特徵對效能的貢獻的方法及設備
TWI775350B (zh) 在半導體製造程序中用於判定對於一組基板之檢測策略之方法
NL2024627A (en) Method for decision making in a semiconductor manufacturing process
EP3693795A1 (en) Method for decision making in a semiconductor manufacturing process
TWI777678B (zh) 概念漂移減輕之方法及設備
EP3910417A1 (en) Method for determining an inspection strategy for a group of substrates in a semiconductor manufacturing process
TWI786709B (zh) 判定半導體製造程序中之修正策略之方法及相關設備
NL2024999A (en) Determining lithographic matching performance

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent