TW202204971A - Scanner system and method having adjustable path length with constant input and output optical axes - Google Patents

Scanner system and method having adjustable path length with constant input and output optical axes Download PDF

Info

Publication number
TW202204971A
TW202204971A TW110104837A TW110104837A TW202204971A TW 202204971 A TW202204971 A TW 202204971A TW 110104837 A TW110104837 A TW 110104837A TW 110104837 A TW110104837 A TW 110104837A TW 202204971 A TW202204971 A TW 202204971A
Authority
TW
Taiwan
Prior art keywords
path length
optical path
optical
input
output
Prior art date
Application number
TW110104837A
Other languages
Chinese (zh)
Inventor
肯尼斯 李
Original Assignee
美商光電自動科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商光電自動科技有限公司 filed Critical 美商光電自動科技有限公司
Publication of TW202204971A publication Critical patent/TW202204971A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An optical system for focusing an imaging device, such as a microscope, camera, telescope, etc., by changing the optical distance between an objective lens and an image plane to focus the object being imaged. Some embodiments include autofocusing capability. In some embodiments, the image plane is an eyepiece focal plane, a digital-camera imager plane, or an intermediate plane that is then used for further imaging. In some embodiments, the optical system includes a beam-scanning system that directs an optical path through a first rotatable pair of reflectors, such as a retro-reflector or two parallel mirrors, or a refractive prism, or the like, plus a fixed intermediate retroreflector configured to redirect the optical path in an antiparallel direction back through the first rotatable structure, in order to change an optical path length of a light beam without changing the input and output optical axes of the light beam.

Description

具有一內含恆定輸入和輸出光軸的可調整路徑長度之掃描器系統及方 法 Scanner system and method having an adjustable path length with constant input and output optical axes Law 【相關申請案交叉參照】【Cross-reference of related applications】

本申請案包含根據35 U.S.C.§119(e)主張以下的優先權,其包含: This application contains the following priority claims under 35 U.S.C. § 119(e), including:

-肯尼思.李(Kenneth Li)於2020年2月10日所申請標題為「Scanner System Allowing Change in Path Length with Constant Input and Output Optical Axes」的第62/972,553號美國臨時專利申請案; - Kenneth. U.S. Provisional Patent Application No. 62/972,553, entitled "Scanner System Allowing Change in Path Length with Constant Input and Output Optical Axes," filed by Kenneth Li on February 10, 2020;

-肯尼思.李於2020年10月28日所申請標題為「Scanner System with Variable Path Length for Microscope Focusing」的第63/106,813號美國臨時專利申請案;及 - Kenneth. U.S. Provisional Patent Application No. 63/106,813, filed by Lee on October 28, 2020, entitled "Scanner System with Variable Path Length for Microscope Focusing"; and

-肯尼思.李於2020年12月14日所申請標題為「Scanner System with Variable Path Length for Microscope Focusing」的第63/125,357號美國臨時專利申請案; - Kenneth. U.S. Provisional Patent Application No. 63/125,357, filed December 14, 2020, by Lee, entitled "Scanner System with Variable Path Length for Microscope Focusing";

前述申請案是以引用方式整個併入本說明書供參考。 The foregoing application is incorporated by reference into this specification in its entirety.

本發明係關於光學路徑長度調整領域,更特別是關於一種在維持高影像解析度並保持輸入和輸出光軸恆定的同時,快速調整光學路徑長度之方法及裝置,其具有用於聚焦高解析度影像的應用程式,選擇性包含自動聚焦和多景深成像,可用於顯微鏡、望遠鏡、雙筒望遠鏡、相機、手機、內視鏡等。 The present invention relates to the field of optical path length adjustment, and more particularly, to a method and apparatus for rapidly adjusting optical path length while maintaining high image resolution and keeping the input and output optical axes constant, which has the advantages of focusing on high resolution Imaging applications, optionally including autofocus and multi-depth imaging, can be used for microscopes, telescopes, binoculars, cameras, mobile phones, endoscopes, and more.

第一A圖為傳統雙透鏡系統101的剖面示意圖。在本說明書,兩透鏡121和122之每一者示意性表示為簡單的凸-凸透鏡,但是更複雜的多透鏡子系統可代替透鏡121和122之一或兩者。許多光學器件需要 更改系統中的光學路徑長度,同時保持相同的輸入和輸出光軸。例如,如第一A圖所示,平行光線110的輸入光束入射在第一透鏡(或具有多個透鏡等的聚焦系統)121(為了便於討論,以下將第一或輸入透鏡或透鏡系統121簡稱為任何版本的輸入透鏡121,並且應理解為選擇性包含一或多個聚焦元件;例如透鏡、曲面反射體或全息或衍射光柵元件)和第二透鏡(或具有多個透鏡等的聚焦系統)122(為了便於討論,以下將第二或輸出透鏡或透鏡系統122簡稱為任何版本的輸出透鏡122)上,並使用透鏡122投射到輸出光束111,該透鏡位於與透鏡121相距一距離133之處,使得透鏡121的焦點120(與透鏡121相距一距離131)與位於透鏡122左側的焦點123(與透鏡122相距一距離132)重合。請注意,在各個圖式中,第一透鏡121和第二透鏡122分別示意性顯示為單個凸-凸透鏡;在各個具體實施例中,如果合適或想要,則將任何合適的單透鏡或多透鏡系統或全息圖或其他聚焦系統用於透鏡121及/或透鏡122。 The first A is a schematic cross-sectional view of a conventional dual-lens system 101 . In this specification, each of the two lenses 121 and 122 is represented schematically as a simple convex-convex lens, but a more complex multi-lens subsystem may replace one or both of the lenses 121 and 122. Many optics require Change the optical path length in the system while maintaining the same input and output optical axes. For example, as shown in Fig. 1 A, the input beam of the parallel light ray 110 is incident on a first lens (or a focusing system with multiple lenses, etc.) 121 (for ease of discussion, the first or input lens or lens system 121 will be referred to below for short). is any version of the input lens 121 and should be understood to optionally contain one or more focusing elements; such as a lens, a curved reflector, or a holographic or diffractive grating element) and a second lens (or focusing system with multiple lenses, etc.) 122 (for ease of discussion, the second or output lens or lens system 122 is hereinafter referred to simply as any version of output lens 122), and uses lens 122 to project output beam 111, which is located a distance 133 from lens 121 , so that the focal point 120 of the lens 121 (a distance 131 from the lens 121 ) coincides with the focal point 123 located on the left side of the lens 122 (a distance 132 from the lens 122 ). Note that in the various figures, the first lens 121 and the second lens 122 are each schematically shown as a single convex-convex lens; in various embodiments, any suitable single lens or multiple A lens system or a hologram or other focusing system is used for lens 121 and/or lens 122 .

如本說明書所用,如果將光束的光視為平行射線,則此光束稱為平行或平行光束;如果將光束的光視為隨其沿傳播方向離開透鏡時發散的射線,則此光束稱為發散;及如果將光束的光視為隨其沿傳播方向離開透鏡時收斂的射線,則此光束稱為收斂。 As used in this specification, a beam of light is called a parallel or parallel beam if the light of the beam is considered to be parallel rays; if the light of the beam is considered to diverge as it leaves the lens in the direction of propagation, the beam is called divergent ; and a beam of light is said to converge if the light of the beam is considered as a ray that converges as it leaves the lens in the direction of propagation.

在此組態中,以自透鏡122的輸出光束111也是平行的。如第一B圖所示,如果將透鏡122移動到更靠近透鏡121的位置,以使透鏡122與透鏡121相距一距離134,則透鏡121的焦點120將位於透鏡122的焦距內。在這種情況下,輸出光束將發散而不是平行。如第一C圖所示,當透鏡122進一步向透鏡121移動135的距離時,輸出發散將進一步增加。這種光學系統非常流行,並且通過物理調整透鏡121及/或透鏡122的位置,從而可實現距離133、134和135,而運用在許多照明應用中。 In this configuration, the output beam 111 from the lens 122 is also parallel. If lens 122 is moved closer to lens 121 such that lens 122 is a distance 134 from lens 121, as shown in Figure B, the focal point 120 of lens 121 will be within the focal length of lens 122. In this case, the output beams will be divergent rather than parallel. As shown in the first panel C, as the lens 122 is moved further a distance of 135 to the lens 121, the output divergence will further increase. Such optical systems are very popular and are used in many lighting applications by physically adjusting the position of lens 121 and/or lens 122, thereby achieving distances 133, 134 and 135.

第二圖是一此可能系統201的剖面側視圖,其中輸入光束210通過由兩正交平面反射鏡221和222形成的倒反射器220反射兩次。輸出光束211往回反射以形成輸出光束,其橫向位移並在與輸入光束210相反(反平行於)的方向上傳播。當倒反射器220例如在平行於輸入光束210和輸出光束211的方向239上線性平移(諸如到位置220’)時,光束的光 學路徑長度將增加長度231至232加上長度233至234的總和。對於如第一圖所示的特定雙透鏡系統之組合,可將透鏡121放置在輸入光束210的路徑中,並且可將透鏡122放置在輸出光束211的路徑中,使得可通過線性平移倒反射器220來改變透鏡121與透鏡122之間的光學路徑長度。 The second figure is a cross-sectional side view of a possible system 201 in which the input beam 210 is reflected twice by an inverse reflector 220 formed by two orthogonal planar mirrors 221 and 222. The output beam 211 is reflected back to form the output beam, which is laterally displaced and propagates in the opposite (antiparallel) direction to the input beam 210 . When retroreflector 220 is translated linearly (such as to position 220'), for example, in direction 239 parallel to input beam 210 and output beam 211, the light of the beam The learning path length will increase by the sum of lengths 231 to 232 plus lengths 233 to 234. For the particular two-lens system combination as shown in the first figure, lens 121 can be placed in the path of the input beam 210 and lens 122 can be placed in the path of the output beam 211 so that the retroreflector can be translated linearly by 220 to change the optical path length between lens 121 and lens 122.

另一方面,許多其他系統在固定位置處具有透鏡121和透鏡122,並要求通過位於透鏡121與透鏡122之間的某些電機構件來改變光學路徑距離。 On the other hand, many other systems have lens 121 and lens 122 at fixed locations and require the optical path distance to be varied by some motor means located between lens 121 and lens 122.

2006年10月24日授予中村(Nakamura),標題為「Taking lens having focus determination optical system」的第7,126,098號美國專利,在此是以引用方式併入本文供參考。第7,126,098號專利描述一種包含一攝像光學系統和一焦點確定光學系統的拍攝鏡頭,該攝像光學系統允許物件光進入供相機攝影的影像擷取元件,並且該焦點確定光學系統使物件光分離並允許該分離光進入一焦點狀態確定影像擷取元件。拍攝鏡頭包含調整攝像光學系統的光學長度之攝像光學長度調整器件,及調整焦點確定光學系統的光學長度之焦點確定光學長度調整器件。因此,可分別調整各自的光學長度,並且在出廠時便於調整。 US Patent No. 7,126,098, entitled "Taking lens having focus determination optical system," issued to Nakamura on October 24, 2006, is incorporated herein by reference. Patent No. 7,126,098 describes a photographing lens comprising an imaging optical system that allows object light to enter an image capture element for camera photography and a focus determining optical system that separates object light and allows The separated light enters a focus state to determine the image capture element. The photographing lens includes an imaging optical length adjusting device that adjusts the optical length of the imaging optical system, and a focus determining optical length adjusting device that adjusts the optical length of the focus determining optical system. Therefore, the respective optical lengths can be adjusted individually and are easily adjusted at the factory.

2005年11月1日授予木下(Kinoshita)等人,標題為「Vertical fine movement mechanism of microscope」的第6,961,173號美國專利,在此是以引用方式併入本文供參考。第6,961,173號專利描述一種高穩定性的光學顯微鏡,使得在觀察期間樣品的影像不會變模糊,並且不會發生物點(物件)的移動(漂移)。通過增加用於使顯微鏡的物鏡相對於光軸對稱移動的垂直筆直運動引導機構,及用於物鏡的微調單元,以對傳統光學顯微鏡進行修改。 US Patent No. 6,961,173, entitled "Vertical fine movement mechanism of microscope," issued to Kinoshita et al. on November 1, 2005, is incorporated herein by reference. Patent No. 6,961,173 describes a highly stable optical microscope so that the image of the sample does not become blurred during observation, and no movement (drift) of the object point (object) occurs. The conventional optical microscope is modified by adding a vertical straight motion guide mechanism for symmetrically moving the objective lens of the microscope with respect to the optical axis, and a fine adjustment unit for the objective lens.

還有其他系統改變一或多個透鏡的形狀,這會在影像中留下不想要的幾何及/或色度畸變。 Still other systems alter the shape of one or more lenses, which can leave unwanted geometric and/or chromatic distortions in the image.

2013年3月19日授予伯奇(Berge)等人,標題為「Image stabilization circuitry for liquid lens」的第8,400,558號美國專利,在此是以引用方式併入本文供參考。第8,400,558號專利描述一種控制成像器件中液體透鏡的方法,該液體透鏡包含在第一與第二不混溶液體之間可通過電潤濕 變形的液-液介面;內含第一和第二液體的腔室,該第一液體是絕緣液體並且該第二液體是導電液體;及與第二液體接觸的第一電極和通過絕緣層與第二液體絕緣的至少一第二電極,該第一電極和該第二電極佈置為允許在第一電極和第二電極之間施加複數個電壓位準,以控制該液-液介面的曲率,該方法包含:確定代表該成像器件動作的運動資料;確定代表該成像器件想要焦點的聚焦資料;確定要在第一電極與第二電極之間施加的複數個電壓位準,其中該等電壓位準之每一者是運動資料、聚焦資料和至少一與液體透鏡有關的參數之函數,並在校準階段進行初步確定。 US Patent No. 8,400,558, entitled "Image stabilization circuitry for liquid lens," issued to Berge et al. on March 19, 2013, which is incorporated herein by reference. Patent No. 8,400,558 describes a method of controlling a liquid lens in an imaging device comprising electrowetting between a first and a second immiscible liquid A deformed liquid-liquid interface; a chamber containing first and second liquids, the first liquid being an insulating liquid and the second liquid being a conductive liquid; and a first electrode in contact with the second liquid and with the insulating layer a second liquid insulated at least one second electrode, the first electrode and the second electrode arranged to allow a plurality of voltage levels to be applied between the first electrode and the second electrode to control the curvature of the liquid-liquid interface, The method includes: determining motion data representative of motion of the imaging device; determining focus data representative of a desired focus of the imaging device; determining a plurality of voltage levels to be applied between a first electrode and a second electrode, wherein the voltages Each of the levels is a function of motion data, focus data, and at least one liquid lens-related parameter, and is initially determined during a calibration phase.

由於線性平移系統可能體積龐大、笨重且回應緩慢,並且由於更改透鏡形狀的系統會導入不良的影像失真,因此需要一種改進的系統和方法,以在保持輸入光束輸出光束在固定位置處時改變光學路徑長度,其中該系統比改變光學路徑長度的傳統系統更小、更輕、更快,並且提供具有低失真的高解析度影像。 Since linear translation systems can be bulky, cumbersome, and slow to respond, and since systems that change lens shape introduce undesirable image distortions, there is a need for an improved system and method for changing optics while keeping the input beam output beam in a fixed position Path length, where the system is smaller, lighter, faster than conventional systems that vary the optical path length, and provides high-resolution images with low distortion.

在一些具體實施例中,本發明包含光學路徑長度調整系統及/或組態,其使用旋轉子系統而不是線性平移系統(例如第二圖的線性平移系統)來改變光學路徑長度。本發明的一些具體實施例包含至少一固定的倒反射器。在一些具體實施例中,旋轉子系統接收輸入光束,並且旋轉子系統將該光束反射至少兩次,這賦予路徑長度變化並向光束增加第一橫向位移。在各種具體實施例中,根據外部光學考慮,輸入光束是平行、發散或收斂。然後該光束由至少一固定的倒反射器後向反射,其施加第二側向位移(在一些具體實施例中,在垂直於第一側向位移的方向上)並且將光束往回引導穿過該旋轉子系統。然後該旋轉子系統賦予路徑長度額外的改變,但是減去第一橫向位移,使得輸出光束相對於輸入光束由第二位移橫向位移,並且在與輸入光束反平行的方向上傳播。如本說明書所使用,如果第二光束的光軸平行於第一光束的光軸並且第二光束在與第一光束相反的方向上傳播,則一第二光束與一第一光束「反平行」。 In some embodiments, the present invention includes an optical path length adjustment system and/or configuration that uses a rotary subsystem rather than a linear translation system (eg, the linear translation system of the second figure) to vary the optical path length. Some embodiments of the present invention include at least one fixed retroreflector. In some embodiments, the rotary subsystem receives the input beam, and the rotary subsystem reflects the beam at least twice, which imparts a path length change and adds a first lateral displacement to the beam. In various embodiments, the input beams are collimated, diverging or converging depending on external optical considerations. The beam is then retroreflected by at least one fixed retroreflector, which applies a second lateral displacement (in some embodiments, in a direction perpendicular to the first lateral displacement) and directs the beam back through the rotary subsystem. The rotary subsystem then imparts an additional change in path length, but subtracts the first lateral displacement, so that the output beam is laterally displaced relative to the input beam by the second displacement and propagates in a direction antiparallel to the input beam. As used in this specification, a second beam is "antiparallel" to a first beam if the optical axis of the second beam is parallel to the optical axis of the first beam and the second beam propagates in the opposite direction to the first beam .

在各種具體實施例中,根據外部光學考慮的需要,輸出光束是平行、發散或收斂。一些具體實施例根據需要包含一或多個附加的輸入反 射器及/或一或多個附加的輸出反射器,以使輸入光束及/或輸出光束彼此相對並且相對於光學路徑長度調整系統,在想要的方向上對準。一些具體實施例包含一或多個附加的輸入透鏡系統及/或一或多個附加的輸出透鏡系統;並且在一些這種具體實施例中,一或多個附加輸入透鏡系統的焦點和一或多個附加輸出透鏡系統的焦點在光學路徑長度調整系統內部。 In various embodiments, the output beams are collimated, diverging, or converging, as desired by external optical considerations. Some embodiments contain one or more additional input counters as desired reflectors and/or one or more additional output reflectors to align the input beam and/or output beam in a desired direction relative to each other and relative to the optical path length adjustment system. Some embodiments include one or more additional input lens systems and/or one or more additional output lens systems; and in some such embodiments, the focal point of the one or more additional input lens systems and one or more additional input lens systems. The focal points of the multiple additional output lens systems are inside the optical path length adjustment system.

在一些具體實施例中,本發明提供一種光學路徑長度調整系統,其包含:一第一光束偏轉總成,其可旋轉到複數個不同角度並可操作耦接成接收一進入該光學路徑長度調整系統的輸入光束,該光束沿通過一定義輸入點的一輸入光軸傳播,並且形成與該輸入光束平行或反平行的一第一中間光束;及一第二光學總成,其相對於至該光學路徑長度調整系統的輸入光束處於固定位置和方位,並且可操作耦接成接收該第一中間光束,並形成與該第一中間光束反平行並從該第一中間光束橫向偏移的一第二中間光束,其中該第一光束偏轉總成可操作耦接成接收該第二中間光束,並形成沿著一輸出光軸傳播的一輸出光束,該輸出光軸通過定義的輸出點並隨該第一光束偏轉組件旋轉到複數個不同角度之任一者以改變定義的輸入點與定義的輸出點間之光學路徑長度時,維持在固定位置與角度方位處。 In some embodiments, the present invention provides an optical path length adjustment system comprising: a first beam deflection assembly rotatable to a plurality of different angles and operatively coupled to receive an entry into the optical path length adjustment an input beam of the system that propagates along an input optical axis through a defined input point and forms a first intermediate beam parallel or antiparallel to the input beam; and a second optical assembly relative to the input beam The input beam of the optical path length adjustment system is in a fixed position and orientation and is operatively coupled to receive the first intermediate beam and form a first intermediate beam antiparallel to and laterally offset from the first intermediate beam Two intermediate beams, wherein the first beam deflection assembly is operatively coupled to receive the second intermediate beam and form an output beam propagating along an output optical axis passing through a defined output point and following the The first beam deflecting component remains at a fixed position and angular orientation when rotated to any of a plurality of different angles to change the optical path length between the defined input point and the defined output point.

一些具體實施例更包含一具有電子成像器的顯微鏡系統,其中通過顯微鏡系統將光學路徑長度調整系統插入光學路徑中,以提供可調焦距來自動聚焦及/或收集複數個影像,其每一者在顯微鏡系統中的不同聚焦平面上,其中可在視訊幀率下快速調整該可調焦距,例如在一些具體實施例中,以1/60秒或更短的時間捕捉複數個視訊影像之每一者,即是以一秒鐘捕捉60個影像,每個影像在要成像的物件中不同聚焦平面上,然後將複數個視訊影像用於重構單個的二維(2D)影像,以顯示三維(3D)物件的各個部分,所有在聚焦內,而系統的其他具體實施例則將複數個影像組合生成3D影像,可操縱這些影像以顯示來自不同視角的3D影像之使用者畫面(就像從物件的不同視角檢視物件)。 Some embodiments further include a microscope system with an electronic imager, wherein an optical path length adjustment system is inserted into the optical path through the microscope system to provide adjustable focus for autofocusing and/or collecting a plurality of images, each of which On different focal planes in microscope systems where the adjustable focus can be quickly adjusted at the video frame rate, eg, in some embodiments, capturing each of a plurality of video images in 1/60 second or less Alternatively, 60 images are captured in one second, each on a different focal plane in the object to be imaged, and then multiple video images are used to reconstruct a single two-dimensional (2D) image to display a three-dimensional ( 3D) the various parts of the object, all in focus, while other embodiments of the system combine multiple images to generate 3D images that can be manipulated to display the user's view of the 3D image from different perspectives (like from the object view objects from different perspectives).

98:人類使用者的眼睛 98: The human user's eyes

99、97:物件 99, 97: Objects

99.1、99.2、99.3:聚焦平面位置 99.1, 99.2, 99.3: Focus plane position

101:雙透鏡系統 101: Dual Lens System

110:平行光線 110: Parallel rays

111、211:輸出光束 111, 211: output beam

120:焦點 120: Focus

121、122:透鏡 121, 122: Lens

131、132、133、134、135:距離 131, 132, 133, 134, 135: distance

201:系統 201: System

210、731、831、1031:輸入光束 210, 731, 831, 1031: Input beam

220、310:倒反射器 220, 310: Inverted reflector

221、222:正交平面反射鏡 221, 222: Orthogonal plane mirror

231-234:長度 231-234: Length

301、501、501’、601、601’、901、901’、901”、1001、1101、1401、1501、1501’、1501”、2601:光學路徑長度調整系統 301, 501, 501', 601, 601', 901, 901', 901", 1001, 1101, 1401, 1501, 1501', 1501", 2601: Optical Path Length Adjustment System

308:光軸 308: Optical axis

310’:方位 310’: bearing

311、312、1526、1527:平面反射鏡 311, 312, 1526, 1527: Flat mirrors

331-338:區段 331-338: Sections

410:光學路徑長度 410: Optical Path Length

510、510’:可旋轉平面反射鏡倒反射器 510, 510': rotatable flat mirror inverted reflector

511、512、911、912、1251、1252、1451、1511、1512、1528、 1751、1752:反射鏡 511, 512, 911, 912, 1251, 1252, 1451, 1511, 1512, 1528, 1751, 1752: Reflector

520:固定位置平面反射鏡倒反射器 520: Fixed position flat mirror inverted reflector

531、532:入射光束 531, 532: Incident beam

533:第一中間光束 533: First Intermediate Beam

534、536:光束 534, 536: Beam

535:第二中間光束 535: Second Intermediate Beam

537、733、837、1037:輸出光束 537, 733, 837, 1037: Output beam

541:起點 541: starting point

542、543、544、545、546、542’、543’、544’、545’、546’、548、749’、841-849、841’-849’:點 542, 543, 544, 545, 546, 542', 543', 544', 545', 546', 548, 749', 841-849, 841'-849': points

547:終點 547: Endpoint

650:焦點 650: Focus

701、701’:可旋轉平行切面稜鏡系統 701, 701’: Rotatable parallel cutting plane system

710、710’:稜鏡 710, 710’: Jihan

732、732’、733’:光束區段 732, 732', 733': Beam section

741-749、741’-749’:路徑長度 741-749, 741'-749': path length

810、810’:光學板 810, 810': Optical board

811:輸入面 811: Input face

812:輸出面 812: Output face

820’、1020、2620:靜止倒反射器 820’, 1020, 2620: Static retroreflector

833、835:中間光束 833, 835: Intermediate beam

910、910’:一對可旋轉平行反射鏡 910, 910': A pair of rotatable parallel mirrors

911、912:第一旋轉方位 911, 912: The first rotation orientation

911’、912’:第二旋轉方位 911', 912': Second rotation orientation

920、1020:固定位置平面反射鏡倒反射器 920, 1020: Fixed position flat mirror inverted reflector

1010:透明稜鏡 1010: Transparency

1011:透射輸入面 1011: Transmission Input Surface

1012、1013:表面 1012, 1013: Surface

1012、1013:反射面 1012, 1013: Reflective surface

1014:透射輸出面 1014: Transmission output surface

1032:反射光束 1032: Reflected Beam

1033、1033’:中間光束 1033, 1033': Intermediate beam

1131、1231、1431、1531:輸入光束 1131, 1231, 1431, 1531: Input beam

1137、1237、1437:反平行輸出光束 1137, 1237, 1437: Anti-parallel output beam

1140:光學路徑長度調整器 1140: Optical Path Length Adjuster

1141、1241:固定位置輸入點 1141, 1241: Fixed position input point

1149、1249:固定位置輸出點 1149, 1249: fixed position output point

1160、1260、1460、1760、1860:控制器 1160, 1260, 1460, 1760, 1860: Controller

1510:掃描倒反射器 1510: Scanning Inverted Reflector

1520:固定位置倒反射器 1520: Fixed position inverted reflector

1528:輸出反射鏡 1528: Output mirror

1537:中間輸出光束 1537: Intermediate output beam

1539:最終輸出光束 1539: Final output beam

1541:輸入點 1541: input point

1542-1548、1542’-1548’、1542”-1548”:內部反射點 1542-1548, 1542’-1548’, 1542”-1548”: Internal reflection points

1549:輸出點 1549: output point

1601:傳統顯微鏡系統 1601: Conventional Microscopy Systems

1606:物鏡系統 1606: Objective System

1608:目鏡系統 1608: Eyepiece System

1640:管長 1640: Tube length

1701、1801、2701:顯微鏡系統 1701, 1801, 2701: Microscope Systems

1740、1840、2040、2754:光學路徑長度調整系統 1740, 1840, 2040, 2754: Optical Path Length Adjustment Systems

1870、1970:數位相機系統 1870, 1970: Digital camera system

1901:自動聚焦顯微鏡系統 1901: Autofocus microscope system

1940、2041:可變光學路徑系統 1940, 2041: Variable Optical Path Systems

2001:串聯自動聚焦顯微鏡系統 2001: Tandem autofocus microscope system

2071、2108:第二物鏡系統 2071, 2108: Second objective lens system

2073:中間光束 2073: Intermediate Beam

2080:顯微鏡子系統 2080: Microscope Subsystems

2090:像平面 2090: Like Plane

2099:固定影像平面虛擬影像 2099: Fixed Image Plane Virtual Image

2101、2501:直角顯微鏡光學路徑長度調整系統 2101, 2501: Optical Path Length Adjustment System for Right Angle Microscopes

2201:顯微鏡可變聚焦平面系統 2201: Microscope Variable Focus Plane System

2206:顯微鏡物鏡 2206: Microscope Objectives

2220:焦點反轉位置 2220: focus reversal position

2225:中繼透鏡系統 2225: Relay Lens System

2229、2529:鏡筒透鏡 2229, 2529: Tube lens

2231、2232、2236、2372:距離 2231, 2232, 2236, 2372: Distance

2241:第一平行光束 2241: first parallel beam

2242:第二平行光束 2242: Second parallel beam

2250:相機 2250: Camera

2250、2570:成像器 2250, 2570: Imager

2301:顯微鏡的可變聚焦平面光學配置 2301: Variable Focus Plane Optical Configurations for Microscopy

2311:收斂光束 2311: Converging Beam

2312:平行輸出光束 2312: Parallel output beam

2313:發散光束 2313: Divergent Beam

2401、2402、2403:雙透鏡光學中繼配置 2401, 2402, 2403: Dual Lens Optical Relay Configuration

2410:平行射線輸入光束 2410: Parallel Ray Input Beam

2410’:輸入光束 2410’: Input beam

2421:第一透鏡 2421: First Lens

2421、2422:透鏡 2421, 2422: Lens

2431、2431’:焦距 2431, 2431': focal length

2442:輸出光束 2442: output beam

2506:物鏡 2506: Objective lens

2510:可旋轉倒反射器 2510: Rotatable Inverted Reflector

2520:固定的三反射鏡系統 2520: Fixed triple mirror system

2521:第一中繼透鏡 2521: First Relay Lens

2521、2522、2221、2222:中繼透鏡 2521, 2522, 2221, 2222: Relay lens

2522:第二中繼透鏡 2522: Second Relay Lens

2528:反射器 2528: Reflector

2540:可變光學路徑長度中繼透鏡子系統 2540: Variable Optical Path Length Relay Lens Subsystem

2551:「正面」照明 2551: "Front" lighting

2555:激發光束 2555: Excitation Beam

2750:聚光透鏡系統 2750: Condenser Lens System

2751:照明源 2751: Lighting source

2752:聚光器光學器件 2752: Condenser Optics

第一A圖為雙透鏡光學配置101的側視剖面方塊圖,該配置具有一內含平行射線的輸入光束和一內含平行射線的輸出光束。 Figure 1 A is a side cross-sectional block diagram of a dual-lens optical configuration 101 having an input beam containing parallel rays and an output beam containing parallel rays.

第一B圖為雙透鏡光學配置102的側視剖面方塊圖,該配置具有一內含平行射線的輸入光束和一內含些微發散的輸出光束。 Figure 1 B is a side cross-sectional block diagram of a two-lens optical configuration 102 having an input beam containing parallel rays and an output beam containing slightly divergent rays.

第一C圖為雙透鏡光學配置103的側視剖面方塊圖,該配置具有一內含平行射線的輸入光束和一內含大量發散的輸出光束。 Figure 1 C is a side cross-sectional block diagram of a two-lens optical configuration 103 having an input beam containing parallel rays and an output beam containing substantial divergence.

第二圖為使用線性平移來改變光學路徑長度的平面反射鏡倒反射器光學路徑長度調整系統201之側視剖面方塊圖。 The second diagram is a side cross-sectional block diagram of a planar mirror inverse reflector optical path length adjustment system 201 using linear translation to vary the optical path length.

第三圖為平面反射鏡倒反射器光學路徑長度調整系統301的側視剖面方塊圖,該系統使用倒反射器的旋轉來改變光學路徑長度,但是隨著倒反射器旋轉時,其橫向改變輸出光束的位置。 Figure 3 is a side cross-sectional block diagram of a flat mirror retroreflector optical path length adjustment system 301 that uses the rotation of the retroreflector to change the optical path length, but changes the output laterally as the retroreflector rotates position of the beam.

第四圖為當光學路徑長度調整系統301旋轉倒反射器時之光學路徑長度410的曲線圖401。 The fourth figure is a graph 401 of the optical path length 410 as the optical path length adjustment system 301 rotates the retroreflector.

第五A圖為根據本發明的一些具體實施例,使用旋轉以改變光學路徑長度的一可旋轉平面反射鏡倒反射器510及一固定位置平面反射鏡倒反射器520(在此示出具有在複數個可能旋轉方位之一第一旋轉方位內的倒反射器510)的平面反射鏡光學路徑長度調整系統501之側視剖面方塊圖。 Figure 5A shows a rotatable flat mirror retroreflector 510 and a fixed position flat mirror retroreflector 520 (shown here having the A side cross-sectional block diagram of a flat mirror optical path length adjustment system 501 for a retroreflector 510) in a first rotational orientation of a plurality of possible rotational orientations.

第五B圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統501之俯視剖面圖。 Figure 5B is a top cross-sectional view of the retroreflector optical path length adjustment system 501 with the retroreflector 510 in the first rotational orientation.

第五C圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統501之透視方塊圖。 Figure 5 C is a perspective block diagram of the retro-reflector optical path length adjustment system 501 with the retro-reflector 510 in the first rotational orientation.

第五D圖為平面反射鏡倒反射器光學路徑長度調整系統501(在本說明書中由於是光學路徑的位置改變標示為501’)的側視剖面方塊圖,其中倒反射器510處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為510’)。 Figure 5 D is a side cross-sectional block diagram of the flat mirror retroreflector optical path length adjustment system 501 (in this specification, it is marked as 501' due to the position change of the optical path), wherein the retroreflector 510 is in a plurality of possible A second rotational orientation in the rotational orientation (indicated as 510' in this specification).

第五E圖為具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統501’之俯視剖面方塊圖。 Figure 5 E is a top cross-sectional block diagram of a retro-reflector optical path length adjustment system 501'

第五F圖為具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統501’之透視方塊 圖。 Figure 5F is a perspective block of the retro-reflector optical path length adjustment system 501' with the retro-reflector 510 in the second rotational orientation (designated 510' in this specification) picture.

第六A圖為根據本發明的一些具體實施例,使用兩透鏡121和122(從側面觀察時,這兩透鏡彼此靠得很近,因為其具有相同的Y和Z坐標,但如第六B圖所示,其具有不同的X坐標)搭配旋轉以改變光學路徑長度的一可旋轉平面反射鏡倒反射器510及一固定位置平面反射鏡倒反射器520(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的倒反射器510)的平面反射鏡倒反射器的光學路徑長度調整系統601之側視剖面方塊圖。 Figure 6A shows some embodiments in accordance with the present invention using two lenses 121 and 122 (when viewed from the side, the two lenses are very close to each other because they have the same Y and Z coordinates, but as in Figure 6B shown with different X-coordinates) with a rotatable flat mirror inverse reflector 510 and a fixed position flat mirror inverse reflector 520 (shown here with a plurality of possible options) that rotate to vary the optical path length A side cross-sectional block diagram of an optical path length adjustment system 601 for a planar mirror retroreflector 510) in a first rotational orientation in a rotational orientation.

第六B圖為具有在第一旋轉方位上的可旋轉倒反射器510的倒反射器光學路徑長度調整系統601之俯視剖面方塊圖。 Figure 6B is a top cross-sectional block diagram of the retroreflector optical path length adjustment system 601 with the rotatable retroreflector 510 in the first rotational orientation.

第六C圖為具有在第一旋轉方位上的可旋轉倒反射器510的倒反射器光學路徑長度調整系統601之透視方塊圖。 Figure 6 C is a perspective block diagram of a retro-reflector optical path length adjustment system 601 with a rotatable retro-reflector 510 in a first rotational orientation.

第六D圖為平面反射鏡倒反射器光學路徑長度調整系統601(由於光學路徑的位置改變而在本說明書中標示為601’)的側視剖面方塊圖,其中可旋轉倒反射器510處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為510’)。 Figure 6 D is a side cross-sectional block diagram of a flat mirror retroreflector optical path length adjustment system 601 (denoted as 601' in this specification due to a change in the position of the optical path), wherein the rotatable retroreflector 510 is in a complex number A second rotational orientation (indicated as 510' in this specification) among the possible rotational orientations.

第六E圖為具有在第二旋轉方位上(在本說明書中標示為510’)可旋轉倒反射器510的倒反射器光學路徑長度調整系統601’之俯視剖面方塊圖。 Figure 6 E is a top cross-sectional block diagram of a retroreflector optical path length adjustment system 601' having a rotatable retroreflector 510 in a second rotational orientation (designated 510' in this specification).

第六F圖為根據本發明的一些具體實施例,具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統601’之透視方塊圖。 Figure 6F is a perspective block of a retro-reflector optical path length adjustment system 601' with retro-reflector 510 in a second rotational orientation (designated 510' in this specification), according to some embodiments of the present invention picture.

第七A圖為根據本發明的一些具體實施例,旋轉稜鏡710以改變光學路徑長度,其中稜鏡710顯示於複數個可能旋轉方位中的一第一旋轉方位內的可旋轉平行切面稜鏡系統701之側視剖面方塊圖。 FIG. 7A shows the rotation of the lens 710 to change the optical path length according to some embodiments of the present invention, wherein the lens 710 is shown as a rotatable parallel-section plane within a first rotational orientation of a plurality of possible rotational orientations. A side cross-sectional block diagram of system 701.

第七B圖為根據本發明的一些具體實施例,其中稜鏡710位於複數個可能旋轉方位中的一第二旋轉方位(標示為710’)內的可旋轉平行切面稜鏡系統701’之側視剖面方塊圖。 FIG. 7B shows some embodiments in accordance with the present invention, wherein the horn 710 is positioned to the side of the rotatable parallel section horn system 701 ′ in a second rotational orientation (labeled as 710 ′) of a plurality of possible rotational orientations View section block diagram.

第七C圖為根據本發明的一些具體實施例,其中稜鏡710 位於複數個可能旋轉方位中的一第二旋轉方位(標示為710’)內的可旋轉平行切面稜鏡系統701’之透視方塊圖。 The seventh figure C is according to some specific embodiments of the present invention, wherein the 710 A perspective block diagram of a rotatable parallel-section plane system 701' in a second rotational orientation (designated 710') of a plurality of possible rotational orientations.

第八A圖為根據本發明的一些具體實施例,使用旋轉以改變光束的光學路徑長度之一可旋轉平行切面稜鏡810,及將光束往反平行方向重新引導回通過稜鏡810的一固定位置平面反射鏡倒反射器820(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的倒反射器510)的光學路徑長度調整系統801之側視剖面方塊圖。 Figure 8A shows a rotatable parallel tangent plane 810 using rotation to change one of the optical path lengths of the beam, and redirect the beam back in an anti-parallel direction through a fixed plane of the beam 810, according to some embodiments of the present invention. A side cross-sectional block diagram of an optical path length adjustment system 801 with a position plane mirror retroreflector 820 (here shown having the retroreflector 510 in a first rotational orientation of a plurality of possible rotational orientations).

第八B圖為根據本發明的一些具體實施例,具有在第一旋轉方位上的可旋轉稜鏡810的光學路徑長度調整系統801之俯視剖面方塊圖。 Figure 8B is a top cross-sectional block diagram of an optical path length adjustment system 801 having a rotatable horn 810 in a first rotational orientation, according to some embodiments of the present invention.

第八C圖為根據本發明的一些具體實施例,具有在第一旋轉方位上的可旋轉稜鏡810的光學路徑長度調整系統801之透視方塊圖。 Eighth C is a perspective block diagram of an optical path length adjustment system 801 having a rotatable horn 810 in a first rotational orientation, according to some embodiments of the present invention.

第八D圖為根據本發明的一些具體實施例中光學路徑長度調整系統801(由於光學路徑的位置改變而在本說明書中標示為801’)的側視剖面方塊圖,其中可旋轉稜鏡810處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為810’)。 Eighth D is a side cross-sectional block diagram of an optical path length adjustment system 801 (denoted as 801 ′ in this specification due to the position change of the optical path) in accordance with some embodiments of the present invention, wherein the rotatable horn 810 A second rotational orientation (indicated as 810' in this specification) in a plurality of possible rotational orientations.

第八E圖為根據本發明的一些具體實施例,具有在第二旋轉方位(在本說明書中標示為810’)上的可旋轉稜鏡810的光學路徑長度調整系統801之俯視剖面方塊圖。 Eighth Figure E is a top cross-sectional block diagram of an optical path length adjustment system 801 having a rotatable horn 810 in a second rotational orientation (designated as 810' in this specification) in accordance with some embodiments of the present invention.

第八F圖為根據本發明的一些具體實施例,具有在第二旋轉方位(在本說明書中標示為810’)上的可旋轉稜鏡810的光學路徑長度調整系統801之透視方塊圖。 Figure 8 F is a perspective block diagram of an optical path length adjustment system 801 having a rotatable pole 810 in a second rotational orientation (designated 810' in this specification), according to some embodiments of the present invention.

第九A圖為根據本發明的一些具體實施例,使用一起旋轉以改變光束的光學路徑長度之一對可旋轉平行反射鏡910,及將光束往反平行方向重新引導回通過該對平行反射鏡910的一固定位置平面反射鏡倒反射器920(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的該對平行反射鏡910)的光學路徑長度調整系統901之側視剖面方塊圖。 Figure 9A shows the use of a pair of rotatable parallel mirrors 910 that rotate together to change the optical path length of the beam and redirect the beam back through the pair of parallel mirrors in an antiparallel direction, according to some embodiments of the present invention. Side view of optical path length adjustment system 901 of a fixed position flat mirror retroreflector 920 of 910 (shown here with the pair of parallel mirrors 910 in a first rotational orientation of a plurality of possible rotational orientations) Sectional block diagram.

第九B圖為具有在第一旋轉方位上的一對可旋轉平行反射鏡910的光學路徑長度調整系統901之俯視剖面方塊圖。 Figure 9B is a top cross-sectional block diagram of an optical path length adjustment system 901 having a pair of rotatable parallel mirrors 910 in a first rotational orientation.

第九C圖為具有在第一旋轉方位上的一對可旋轉平行反射鏡910的光學路徑長度調整系統901之透視方塊圖。 Figure 9 C is a perspective block diagram of an optical path length adjustment system 901 with a pair of rotatable parallel mirrors 910 in a first rotational orientation.

第九D圖為光學路徑長度調整系統901(由於光學路徑的位置改變而在本說明書中標示為901’)的透視剖面方塊圖,其中該對可旋轉反射鏡910處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為910’)。 Ninth D is a perspective cross-sectional block diagram of an optical path length adjustment system 901 (designated 901' in this specification due to the change in position of the optical path) with the pair of rotatable mirrors 910 in a plurality of possible rotational orientations A second rotational orientation (indicated as 910' in this specification).

第九E圖為根據本發明的一些具體實施例,在光學路徑長度調整系統901”(顯示在第一旋轉方位(此本說明書中標示為911和912)和第二旋轉方位(此本說明書中標示為911’和912’)內具有一對可旋轉平行反射鏡對910的覆蓋圖)的側視剖面方塊圖。 Figure 9 E shows optical path length adjustment system 901" (shown in a first rotational orientation (labeled 911 and 912 in this specification) and a second rotational orientation (in this specification), according to some embodiments of the present invention. Side view cross-sectional block diagram of overlay 910 with a pair of rotatable parallel mirror pairs within 911' and 912').

第十A圖為根據本發明的一些具體實施例,使用旋轉以改變光束的光學路徑長度之一可旋轉平行四邊形稜鏡1010,及將光束往反平行方向重新引導回通過四邊形稜鏡1010的一固定位置平面反射鏡倒反射器1020(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的四邊形稜鏡1010)的光學路徑長度調整系統1001之側視剖面方塊圖。 FIG. 10A shows a method of rotating the parallelogram 1010 using rotation to change one of the optical path lengths of the light beam and redirecting the beam back through the quadrilateral 1010 in an antiparallel direction, according to some embodiments of the present invention. A side cross-sectional block diagram of an optical path length adjustment system 1001 of a fixed position flat mirror inverse reflector 1020 (here shown with a quadrangle 1010 in a first rotational orientation of a plurality of possible rotational orientations).

第十B圖為根據本發明的一些具體實施例,具有在第一旋轉方位上的可旋轉四邊形稜鏡1010的光學路徑長度調整系統1001之透視方塊圖。 Figure 10 B is a perspective block diagram of an optical path length adjustment system 1001 having a rotatable quadrilateral 1010 in a first rotational orientation, according to some embodiments of the present invention.

第十C圖為根據本發明的一些具體實施例中光學路徑長度調整系統1001(由於光學路徑的位置改變而在本說明書中標示為1001’)的側視剖面方塊圖,其中可旋轉四邊形稜鏡1010處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為1010’)。 Figure 10 C is a side cross-sectional block diagram of an optical path length adjustment system 1001 (denoted as 1001' in this specification due to a change in the position of the optical path) in accordance with some embodiments of the present invention, in which a rotatable quadrilateral 1010 is in a second rotational orientation (designated 1010' in this specification) of a plurality of possible rotational orientations.

第十D圖為根據本發明的一些具體實施例,具有在第二旋轉方位(在本說明書中標示為1010’)上的可旋轉四邊形稜鏡1010的光學路徑長度調整系統1001之透視方塊圖。 Figure 10 D is a perspective block diagram of an optical path length adjustment system 1001 having a rotatable quadrangle 1010 in a second rotational orientation (designated 1010' in this specification), according to some embodiments of the present invention.

圖十一為根據本發明的一些具體實施例,光學路徑長度調整系統1101的側視方塊圖,該系統包含一控制器1160,其耦接成控制一光學路徑長度調整器1140將來自輸入光束1131的光重新引導為橫向位移、固定位置、反平行的輸出光束1137。 11 is a side block diagram of an optical path length adjustment system 1101 including a controller 1160 coupled to control an optical path length adjuster 1140 to adjust the optical path length adjustment system 1131 according to some embodiments of the present invention. The light is redirected into a laterally displaced, fixed-position, anti-parallel output beam 1137.

第十二圖為根據本發明的一些具體實施例,光學路徑長度調整系統1201的側視方塊圖,該系統包含一控制器1260,其耦接成控制光學路徑長度調整器1140,該調整器耦接至反射鏡1251和1252,並且這些反射鏡一起改變光束的光學路徑長度並將輸出光束1237導引往相同方向並沿著與輸入光束1231相同的傳播軸線。 Figure 12 is a side block diagram of an optical path length adjustment system 1201, the system including a controller 1260 coupled to control an optical path length adjuster 1140, which is coupled to Mirrors 1251 and 1252 are connected, and together these mirrors change the optical path length of the beam and direct output beam 1237 in the same direction and along the same axis of propagation as input beam 1231.

第十三圖為根據本發明的一些具體實施例,光學路徑長度調整系統1301的側視方塊圖,該系統包含一控制器1360,其耦接成控制光學路徑長度調整器1140,該調整器耦接至反射鏡1351和1352,並且這些反射鏡一起改變光束的光學路徑長度並將來自輸入光束1331的光以直角方向側向重新引導以形成輸出光束1337。 Figure thirteen is a side block diagram of an optical path length adjustment system 1301, the system including a controller 1360 coupled to control an optical path length adjuster 1140, which is coupled to Mirrors 1351 and 1352 are connected, and together these mirrors change the optical path length of the beam and redirect the light from input beam 1331 laterally at right angles to form output beam 1337.

第十四圖為根據本發明的一些具體實施例,光學路徑長度調整系統1401的側視方塊圖,該系統包含一控制器1460,其耦接成控制光學路徑長度調整器1140及反射鏡1451(與輸入光束1431夾45度的一平面反射鏡)一起改變光束的光學路徑長度並將來自輸入光束1431的光以直角方向側向重新引導以形成輸出光束1437。 Figure 14 is a side block diagram of an optical path length adjustment system 1401 including a controller 1460 coupled to control the optical path length adjuster 1140 and the mirror 1451 ( Together with input beam 1431 clipping a 45 degree flat mirror) to change the optical path length of the beam and redirect light from input beam 1431 laterally at right angles to form output beam 1437.

第十五A圖為根據本發明的一些具體實施例,用於以在一第一角度方位上的可旋轉倒反射器1510來控制光學路徑長度的光學路徑長度調整系統1501之俯視方塊圖。 Figure 15A is a top block diagram of an optical path length adjustment system 1501 for controlling optical path length with a rotatable retroreflector 1510 in a first angular orientation, according to some embodiments of the present invention.

第十五B圖為具有在第一角度方位上的倒反射器1510(包含平面反射鏡1511和1512)的光學路徑長度調整系統1501之側視方塊圖。 Fifteenth B is a side view block diagram of an optical path length adjustment system 1501 with an inverted reflector 1510 (including flat mirrors 1511 and 1512) in a first angular orientation.

第十五C圖為具有在第一角度方位上的倒反射器510的光學路徑長度調整系統1501之透視方塊圖。 Fifteenth C is a perspective block diagram of the optical path length adjustment system 1501 with the retroreflector 510 in the first angular orientation.

第十五D圖為根據本發明的一些具體實施例,具有在第二角度方位上(標示為1510’)的倒反射器1510的光學路徑長度調整系統1501’之俯視方塊圖。 Figure 15 D is a top block diagram of an optical path length adjustment system 1501'

第十五E圖為具有第二角度方位上(標示為1510’)的倒反射器1510的光學路徑長度調整系統1501’之側視方塊圖。 Fifteenth E is a side block diagram of an optical path length adjustment system 1501' having a retroreflector 1510 in a second angular orientation (designated 1510').

第十五F圖為具有第二角度方位上(標示為1511’和1512’)的倒反射器1510的光學路徑長度調整系統1501’之透視方塊圖。 Fifteenth F is a perspective block diagram of an optical path length adjustment system 1501'

第十五G圖為根據本發明的一些具體實施例,具有在第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之俯視方塊圖。 Figure 15 G is a top block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510") in accordance with some embodiments of the present invention.

第十五H圖為具有第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之側視方塊圖。 Fifteenth H is a side view block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510").

第十五i圖為具有第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之透視方塊圖。 Fifteenth i Figure is a perspective block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510").

第十六圖為傳統顯微鏡系統1601的側視剖面方塊圖,其改變物鏡系統1606和目鏡系統1608之間的管長1640,以改變光學路徑長度來讓物件99的影像聚焦。 Figure 16 is a side cross-sectional block diagram of a conventional microscope system 1601 that changes the tube length 1640 between the objective lens system 1606 and the eyepiece system 1608 to change the optical path length to focus the image of the object 99 .

第十七圖為根據本發明的一些具體實施例之顯微鏡系統1701的側視剖面方塊圖,其使用光學路徑長度調整系統1740和物鏡系統1606與目鏡系統1608之間的反射鏡1751和1752,一起改變光學路徑長度來讓物件99的影像聚焦。 Figure seventeen is a side cross-sectional block diagram of a microscope system 1701 using optical path length adjustment system 1740 and mirrors 1751 and 1752 between objective system 1606 and eyepiece system 1608, in accordance with some embodiments of the present invention, together The optical path length is varied to bring the image of object 99 into focus.

第十八圖為根據本發明的一些具體實施例之顯微鏡系統1801的側視剖面方塊圖,該系統使用位於物鏡系統1606與數位相機系統1870之間的光學路徑長度調整系統1840,以改變光學路徑長度來讓物件99的影像聚焦,並且選擇性包含用於自動聚焦能力的控制器1860。 Figure 18 is a side cross-sectional block diagram of a microscope system 1801 that uses an optical path length adjustment system 1840 located between the objective lens system 1606 and the digital camera system 1870 to change the optical path in accordance with some embodiments of the present invention length to focus the image of the object 99, and optionally includes a controller 1860 for autofocus capability.

第十九圖為根據本發明的一些具體實施例之自動聚焦顯微鏡系統1901的側視剖面方塊圖,其使用物鏡系統1606與數位相機系統1970之間的光學路徑長度調整系統1940,以改變光學路徑長度來讓物件的影像聚焦。 19 is a side cross-sectional block diagram of an autofocus microscope system 1901 using an optical path length adjustment system 1940 between an objective lens system 1606 and a digital camera system 1970 to change the optical path in accordance with some embodiments of the present invention Length to focus the image of the object.

第二十圖為根據本發明的一些具體實施例之線上自動聚焦顯微鏡系統2001的側視剖面方塊圖,該系統使用在第一物鏡系統1606與第二物鏡系統2071之間的光學路徑長度調整系統2040,以在影像平面2090上產生一固定影像平面虛擬影像2099,並且選擇性包含顯微鏡子系統2080的一第三物鏡系統2006。 Figure 20 is a side cross-sectional block diagram of an on-line autofocus microscope system 2001 using an optical path length adjustment system between the first objective lens system 1606 and the second objective lens system 2071 in accordance with some embodiments of the present invention 2040 to generate a fixed image plane virtual image 2099 on the image plane 2090, and optionally include a third objective lens system 2006 of the microscope subsystem 2080.

第二十一A圖為根據本發明的一些具體實施例之直角顯微鏡光學路徑長度調整系統2101的側視剖面方塊圖,其使用第一物鏡系統 1606與第二物鏡系統2108之間的一固定三反射鏡系統1520和可旋轉倒反射器1510。 Figure 21A is a side cross-sectional block diagram of a right-angle microscope optical path length adjustment system 2101 according to some embodiments of the present invention, which uses a first objective lens system A fixed three-mirror system 1520 and rotatable inverse reflector 1510 between 1606 and second objective system 2108.

第二十一B圖為直角顯微鏡光學路徑長度調整系統2101的端視剖面方塊圖。 FIG. 21B is an end-view cross-sectional block diagram of the optical path length adjustment system 2101 of the right-angle microscope.

第二十二圖為根據本發明一些具體實施例之顯微鏡可變聚焦平面系統2201的端視剖面方塊圖。 FIG. 22 is an end-view cross-sectional block diagram of a microscope variable focus plane system 2201 according to some embodiments of the present invention.

第二十三圖為根據本發明一些具體實施例之顯微鏡的可變聚焦平面光學配置2301之側視方塊圖。 Figure 23 is a side view block diagram of a variable focus planar optics configuration 2301 of a microscope in accordance with some embodiments of the present invention.

第二十四A圖為雙透鏡光學配置2401的側視剖面方塊圖,該配置具有一內含平行射線的輸入光束2410和一內含平行射線的輸出光束2442。 Figure 24A is a side cross-sectional block diagram of a dual-lens optical configuration 2401 having an input beam 2410 containing parallel rays and an output beam 2442 containing parallel rays.

第二十四B圖為雙透鏡光學配置2402的側視剖面方塊圖,該配置具有一內含收斂射線的輸入光束2410’和一內含平行射線的輸出光束2442。 Figure 24B is a side cross-sectional block diagram of a two-lens optical configuration 2402 having an input beam 2410' containing convergent rays and an output beam 2442 containing parallel rays.

第二十四C圖為雙透鏡光學配置2403的側視剖面方塊圖,該配置具有一內含發散射線的輸入光束2410”和一內含平行射線的輸出光束2442。 Figure 24C is a side cross-sectional block diagram of a two-lens optical configuration 2403 having an input beam 2410" containing diverging rays and an output beam 2442 containing parallel rays.

第二十五圖為根據本發明的一些具體實施例之直角顯微鏡光學路徑長度調整系統2501的側視剖面方塊圖,其使用一固定三反射鏡系統2520和在第一中繼透鏡2521與第二中繼透鏡之間的一可旋轉倒反射器2510、及一將影像聚焦在相機成像器2570上的「管狀」透鏡2529。 FIG. 25 is a side cross-sectional block diagram of a right-angle microscope optical path length adjustment system 2501 according to some embodiments of the present invention, which uses a fixed three-mirror system 2520 with a first relay lens 2521 and a second A rotatable retroreflector 2510 between the relay lenses, and a "tubular" lens 2529 that focuses the image on the camera imager 2570.

第二十六圖為根據本發明一些具體實施例,光學路徑長度調整系統2601的側視方塊圖。 FIG. 26 is a side block diagram of an optical path length adjustment system 2601 according to some embodiments of the present invention.

第二十七圖為根據本發明一些具體實施例,在其聚光透鏡系統2750內包含光學路徑長度調整系統2754的顯微鏡系統2701之側視方塊圖。 Figure 27 is a side block diagram of a microscope system 2701 that includes an optical path length adjustment system 2754 within its condenser lens system 2750, according to some embodiments of the present invention.

儘管以下詳細描述出於說明目的包含許多細節,不過熟習該項技藝者將明白,以下細節的許多變化和變更在本發明範疇內。具體範例用 來說明特定具體實施例;然而,申請專利範圍中描述的本發明並不僅受限於這些範例,而是包含所附申請專利範圍的全部範圍。因此,揭示以下本發明較佳具體實施例,而沒有任何一般性損失,並且不對所主張的發明施加限制。此外,在下列較佳具體實施例的詳細說明中將會參照附圖,其上將形成零件,並且其中藉由說明本發明實施的特定具體實施例來顯示。吾人可瞭解到在不悖離本發明精神的前提之下,可利用其他具體實施例並進行結構性修改。圖式中所顯示並且在此描述的該等具體實施例可包含並非在所有特定具體實施例中包含的特徵。特定具體實施例可只包含所描述的所有特徵之子集,或者特定具體實施例可包含所描述的所有特徵。 Although the following detailed description contains many details for purposes of illustration, those skilled in the art will appreciate that many variations and modifications of the following details are within the scope of the invention. For specific examples specific embodiments are described; however, the invention described in the Claims is not limited only to these examples, but includes the full scope of the appended Claims. Accordingly, the following preferred embodiments of the invention are disclosed without any loss of generality and without imposing limitations on the claimed invention. Furthermore, in the following detailed description of the preferred embodiments, reference will be made to the accompanying drawings, in which parts will be formed, and in which are shown by way of illustration specific embodiments of the invention. It is to be understood that other specific embodiments may be utilized and structural modifications may be made without departing from the spirit of the present invention. The specific embodiments shown in the drawings and described herein may include features that are not included in all specific embodiments. Particular embodiments may include only a subset of all features described, or certain embodiments may include all features described.

圖式中出現的參考編號之前導數字通常對應於其中首次引入該組件的圖號,從而始終使用相同的參考編號來表示出現在多個圖式中的相同組件。信號和連接可用相同的參考編號或標籤來表示,並且通過在說明書中的使用,其實際含義將顯而易見。 The leading numerals of a reference number appearing in the drawings generally correspond to the drawing number in which the component is first introduced, so that the same reference number is used throughout to refer to the same component that appears in multiple drawings. Signals and connections may be denoted by the same reference numbers or labels, and their actual meaning will be apparent through use in the description.

本說明書中引用的某些商標可能是與申請人或受讓人有關或無關的第三方之普通法或註冊商標。使用這些商標是為了藉由範例提供所揭露事項,並且不應解釋為將所主張標的之範圍限制為與這些商標關聯之材料。 Certain trademarks cited in this specification may be common law or registered trademarks of third parties, whether related or unrelated to the applicant or assignee. These trademarks are used to provide disclosure by way of example and should not be construed to limit the scope of claimed subject matter to the material associated with these trademarks.

第三圖為平面反射鏡倒反射器光學路徑長度調整系統301的側視剖面方塊圖,該系統使用倒反射器301(包含平面反射鏡311和312)的旋轉來改變光學路徑長度,但是隨著倒反射器旋轉,通過第一橫向方向內的變化量來置換輸出光束的位置。在旋轉平面反射鏡倒反射器系統301的一些具體實施例中,倒反射器310在一定角度限制內旋轉或角度掃描(以來回角度運動),使得在旋轉(或角度掃描)期間,輸出光束反射回到相對於輸入光束相反的方向(「反平行」方向),並且光軸發生變化。在第三圖中,當倒反射器310處於零度旋轉位置時,由區段331-332表示沿光軸308(Z軸方向)的輸入光束。在一些具體實施例中,倒反射器310圍繞Z軸的旋轉中心位於由兩反射鏡311和312形成的正方形之中心,兩反射鏡彼此成90度固定方位,並且隨掃描倒反射器310一起成角度旋轉。通常,倒反射器310的旋轉中心可在便於組裝及/或光學目的的任何地方。如下所述,光 束掃描的程度取決於旋轉中心的位置。在一些具體實施例中,旋轉中心可在倒反射器310的周邊內、在倒反射器310的周邊或轉角上,或在倒反射器310的周邊之外。為了說明的目的,假設倒反射器310處於零度方位,輸入光束正交於反射鏡312,並且光學路徑區段331-332的長度為20mm,因此從輸入點331返回到輸出點311的總路徑長度計算為40mm,且光束軸線沒有橫向位移。當倒反射器310旋轉到例如21.5度位置中的方位310’時,輸入光束再次從輸入點331開始,遵循區段331至333、區段333至334和區段334到335的路徑,在點335處的輸出具有在第一橫向方向上光束軸線的第一橫向位移量。由區段331至333和區段333至334以及區段334至335定義的平面垂直於反射鏡311和反射鏡312的表面(當處於零度旋轉位置時,可旋轉倒反射器310的位置)。計算出的總路徑長度為49.1mm。類似地,當倒反射器310旋轉到45度位置中的方位310”時,輸入光束將沿著區段331至336、區段336至337以及區段337至338的路徑移動,輸出點為338。同樣,由區段331至336和區段336至337以及區段337至338所界定的平面(例如,第三圖中紙張的平面)垂直於反射鏡311和反射鏡312的平面表面(垂直於第三圖中紙張的平面)。當處於零度旋轉位置時,倒反射器標示為310。計算出的總路徑長度為48.4mm。這三組數字包含在光學路徑長度圖中,如第四圖所示。 Figure 3 is a side cross-sectional block diagram of a flat mirror inverse reflector optical path length adjustment system 301 that uses rotation of the inverse reflector 301 (including flat mirrors 311 and 312) to change the optical path length, but with The retroreflector rotates to displace the position of the output beam by the amount of change in the first lateral direction. In some embodiments of the rotating flat mirror retroreflector system 301, the retroreflector 310 rotates or angularly scans (moves back and forth) within certain angular limits, such that during the rotation (or angular scan) the output beam reflects Back in the opposite direction relative to the input beam ("anti-parallel" direction), and the optical axis changes. In the third figure, the input beam along optical axis 308 (Z-axis direction) is represented by segments 331-332 when retroreflector 310 is in a zero degree rotational position. In some embodiments, the center of rotation of the retroreflector 310 around the Z axis is located at the center of a square formed by two mirrors 311 and 312 , which are oriented at 90 degrees to each other, and are formed together with the scanning retroreflector 310 Angle rotation. In general, the center of rotation of retroreflector 310 can be anywhere for ease of assembly and/or optical purposes. As described below, light The extent to which the beam is scanned depends on the position of the center of rotation. In some embodiments, the center of rotation may be within the perimeter of the retro reflector 310 , on the perimeter or corner of the retro reflector 310 , or outside the perimeter of the retro reflector 310 . For illustration purposes, assume that the retroreflector 310 is at a zero degree orientation, the input beam is normal to the mirror 312, and the length of the optical path segments 331-332 is 20 mm, so the total path length from the input point 331 back to the output point 311 Calculated to be 40mm with no lateral displacement of the beam axis. When retroreflector 310 is rotated to azimuth 310', eg, in a 21.5 degree position, the input beam starts again at input point 331, following the path of segments 331 to 333, 333 to 334, and 334 to 335, at point 331 The output at 335 has a first lateral displacement of the beam axis in a first lateral direction. The planes defined by segments 331 to 333 and 333 to 334 and 334 to 335 are perpendicular to the surfaces of mirrors 311 and 312 (when in the zero degree rotation position, the position of the reflector 310 can be rotated). The calculated total path length is 49.1mm. Similarly, when retroreflector 310 is rotated to azimuth 310" in the 45 degree position, the input beam will travel along the paths of segments 331 to 336, 336 to 337, and 337 to 338, with output point 338 Likewise, the planes bounded by sections 331 to 336 and 336 to 337 and sections 337 to 338 (eg, the plane of the paper in the third figure) are perpendicular to the plane surfaces of mirrors 311 and 312 (vertical The plane of the paper in the third figure). When in the zero-degree rotational position, the retroreflector is labeled 310. The calculated total path length is 48.4mm. These three sets of numbers are included in the optical path length map, as shown in the fourth figure shown.

第四圖為當光學路徑長度調整系統301旋轉倒反射器310時,光學路徑長度410(垂直坐標)對旋轉角度(水平坐標)的曲線圖401。請注意,路徑長度隨角位置而變化,並且可選擇用於倒反射器310的旋轉角度範圍,以適合特定應用。儘管可使用由輸入和輸出點331、335和338定義的參考線來更改路徑長度,但是第三圖的輸出光束彼此橫向移位(並不具有相同軸)並且系統僅使用單個旋轉倒反射器310(沒有下面所述的額外固定倒反射器)的方法不適用於傳統光學聚焦系統,例如第一A圖、第一B圖和第一C圖所示的系統。 The fourth graph is a graph 401 of the optical path length 410 (vertical coordinate) versus rotation angle (horizontal coordinate) when the optical path length adjustment system 301 rotates the inverse reflector 310 . Note that the path length varies with angular position, and the range of rotation angles for the retroreflector 310 can be selected to suit a particular application. Although the path length can be altered using the reference lines defined by the input and output points 331, 335 and 338, the output beams of the third figure are laterally shifted from each other (and do not have the same axis) and the system uses only a single rotating retroreflector 310 The method (without the additional fixed retroreflector described below) is not suitable for conventional optical focusing systems, such as those shown in first A, first B, and first C.

在第三圖和第四圖中,這些是路徑長度對可旋轉倒反射器310的旋轉角度之具體範例。在其他具體實施例中,基於輸入光束的位置和可旋轉倒反射器310的旋轉之旋轉軸位置存在許多變化,可選擇這兩者以 獲得用於特定應用中距離相對於旋轉角度的所需變化。 In the third and fourth figures, these are specific examples of the path length versus the rotation angle of the rotatable retro-reflector 310 . In other embodiments, there are many variations based on the position of the input beam and the position of the axis of rotation of the rotatable retro-reflector 310, both of which may be selected to Obtain the desired change in distance versus rotation angle for a specific application.

在本發明的以下討論中,為了便於描述,可使用由兩平面反射器(或者兩彼此垂直的平面反射鏡,如第五A圖至第五F圖和第六A圖至第六F圖所示,兩彼此平行的平面反射鏡,例如第九A圖至第九D圖所示,透明稜鏡的兩平面內部反射表面,例如第十A圖至第十D圖所示)形成的一可變角度(例如旋轉)反射器,或具有非反射輸入和輸出表面彼此平行(如第八A圖至第八F圖所示)的可變角度透明稜鏡。通常,在其他具體實施例中(例如,參見第二十六圖),可使用在三個維度上具有角偏轉的三切面倒反射器。這可由三個正交的平面反射器形成,也可形成為具有三個正交內部反射面的實心稜鏡,這些可塗敷用於內部反射,或者具有支援全內部反射的折射率。此三反射具體實施例具有相同的特性,即輸出光束(或隨後可反射中間光束以形成輸出光束)與輸入光束平行,並偏移一定的橫向間隔。可使用三維倒反射器(具有三個反射正交表面),並且可旋轉(來回掃描),從而產生與二維倒反射器(具有兩反射正交表面)相似的效果。 In the following discussion of the present invention, for ease of description, two plane reflectors (or two plane mirrors perpendicular to each other, as shown in Figures 5A to 5F and 6A to 6F) may be used. As shown, two plane mirrors parallel to each other, such as those shown in Figures 9A to 9D, and the two-plane internal reflection surfaces of the transparent glass, such as those shown in Figures 10A to 10D) form a possible A variable angle (eg rotating) reflector, or variable angle transparent reflector with non-reflective input and output surfaces parallel to each other (as shown in Figures 8A-8F). In general, in other embodiments (see, eg, Figure 26), a three-faceted retroreflector with angular deflection in three dimensions can be used. This can be formed from three orthogonal planar reflectors, or as a solid reflector with three orthogonal internal reflection surfaces, which can be coated for internal reflection, or have an index of refraction that supports total internal reflection. This three-reflection embodiment has the same property that the output beam (or an intermediate beam which can subsequently be reflected to form the output beam) is parallel to the input beam and offset by a certain lateral spacing. A three-dimensional inverse reflector (with three reflective orthogonal surfaces) can be used and can be rotated (scanned back and forth) to produce a similar effect to a two-dimensional inverse reflector (with two reflective orthogonal surfaces).

另外,如下所述,在一些具體實施例中,平面反射器之間的角度為90度,這是倒反射器最常見的配置。通常,並且在本發明的其他具體實施例中(未示出),該角度可小於90度或大於90度,並且輸出光束光軸不需要平行於輸入光束光軸。相對於所示的具體實施例,沿著兩軸傳播的光束可具有不同的傳播方向,這取決於各個反射器之間的角度。對於一些具體實施例,在選擇反射器之間角度時的考量為,當倒反射器在一定角度範圍內旋轉時,輸出光束光軸保持靜止(輸出光束軸沿相同的光軸並保持相同方向(該方向可與輸入光束方向相同或不同),並且可選擇性調整光學路徑長度)。 Additionally, as described below, in some embodiments, the angle between the planar reflectors is 90 degrees, which is the most common configuration for inverted reflectors. Typically, and in other embodiments of the invention (not shown), this angle may be less than 90 degrees or greater than 90 degrees, and the output beam optical axis need not be parallel to the input beam optical axis. Relative to the particular embodiment shown, light beams propagating along the two axes may have different directions of propagation, depending on the angle between the individual reflectors. For some embodiments, the angle between the reflectors is chosen with the consideration that the output beam optical axis remains stationary (the output beam axis is along the same optical axis and remains in the same direction ( This direction can be the same or different from the input beam direction), and the optical path length can be selectively adjusted).

第五A圖、第五B圖和第五C圖為光學路徑長度調整系統501的三個視圖(側視圖、俯視圖和透視圖),其具有在第一角度方位上的可旋轉平面反射鏡倒反射器510(反射鏡511和512分別與入射光束531和532成45度角),並且第五D圖、第五E圖和第五F圖為光學路徑長度調整系統501的三個視圖,其具有在第二方位上的可旋轉平面反射鏡倒反射器510(此本說明書中標示為系統501’和倒反射器510’以表示倒反射器510 的不同方位)。 Figures 5A, 5B, and 5C are three views (side, top, and perspective) of an optical path length adjustment system 501 with a rotatable planar mirror in a first angular orientation Reflector 510 (mirrors 511 and 512 are angled at 45 degrees from incident beams 531 and 532, respectively), and the fifth D, fifth E, and fifth F are three views of the optical path length adjustment system 501, which Inverted reflector 510 with a rotatable flat mirror in the second orientation (in this specification denoted as system 501' and retroreflector 510' to represent retroreflector 510 different orientations).

第五A圖為根據本發明的一些具體實施例,使用一可旋轉平面反射鏡倒反射器510及一固定位置平面反射鏡倒反射器520(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的可旋轉倒反射器510)的平面反射鏡光學路徑長度調整系統501之側視剖面方塊圖。在一些具體實施例中,倒反射器510旋轉以改變光學路徑長度並在輸入光束531與第一中間光束533之間的第一(Y軸)方向(光束532的Y軸方向)上增加橫向位移,然後固定位置平面反射鏡倒反射器520將第一中間光束533後向反射為與第一中間光束533反平行(相反)Z軸方向上傳播的第二中間光束535,並在第二(X軸)方向(光束534的X軸方向)上增加橫向位移。在一些具體實施例中,沿第二方向的橫向位移垂直於沿第一方向(從點541到點542的方向)的可變量橫向位移。在第一中間光束533被固定倒反射器520反射兩次以形成第二中間光束535之後,倒反射器510在光學路徑長度上進行額外改變,並在第二中間光束535與輸出光束537之間的第一方向上減去相同的橫向位移量(光束536的Y軸量)。因此,輸出光束537沿第一方向和第二方向保持在相同的橫向位置,而不管可旋轉倒反射器510的角度如何,但總光學路徑長度(從起點541開始,然後依次到達點542、543、544、545、546,最後到第五A圖、第五B圖和第五C圖中終點547的第一總光學路徑長度,相對於同樣是從起點541開始,然後依次到達點542’、543’、544’、545’、546’,並最終到達第五D圖、第五E圖和第五F圖中終點547的第二總光學路徑長度)根據倒反射器510的角方位而變。由於倒反射器510的角度可在一定角度範圍內連續變化,因此總路徑可在選定的長度範圍內連續變化,而無需更改起點和終點541和547,也無需更改光束531或光束537的向量方向。 Figure 5 A illustrates the use of a rotatable flat mirror inverse reflector 510 and a fixed-position flat mirror inverse reflector 520 (shown here with in a plurality of possible rotational orientations) in accordance with some embodiments of the present invention. A side cross-sectional block diagram of a flat mirror optical path length adjustment system 501 with a rotatable inverse reflector 510) in a first rotational orientation. In some embodiments, retroreflector 510 is rotated to change the optical path length and increase lateral displacement in a first (Y-axis) direction between input beam 531 and first intermediate beam 533 (Y-axis direction of beam 532 ) , and then the fixed-position flat mirror inverted reflector 520 retroreflects the first intermediate beam 533 into a second intermediate beam 535 propagating in an anti-parallel (opposite) Z-axis direction to the first intermediate beam 533, and at the second (X Axis) direction (the X-axis direction of the beam 534) increases the lateral displacement. In some embodiments, the lateral displacement in the second direction is perpendicular to the variable amount of lateral displacement in the first direction (the direction from point 541 to point 542). After the first intermediate beam 533 is reflected twice by the fixed retroreflector 520 to form the second intermediate beam 535, the retroreflector 510 makes an additional change in the optical path length between the second intermediate beam 535 and the output beam 537 The same amount of lateral displacement (the amount of the Y axis of beam 536) is subtracted in the first direction of . Thus, the output beam 537 remains at the same lateral position along the first and second directions, regardless of the angle of the rotatable retroreflector 510, but the total optical path length (starting at origin 541 and then reaching points 542, 543 in sequence) , 544, 545, 546, and finally the first total optical path length to the end point 547 in the fifth A, the fifth B, and the fifth C diagram, relative to the same starting from the starting point 541, and then arriving at the point 542', 543', 544', 545', 546', and ultimately the second total optical path length to end point 547 in the fifth D, fifth E, and fifth F images) as a function of the angular orientation of the retroreflector 510 . Since the angle of the retroreflector 510 can be continuously changed over a range of angles, the total path can be continuously changed over a selected length range without changing the start and end points 541 and 547, nor the vector direction of beam 531 or beam 537 .

第五B圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統501之俯視剖面圖。 Figure 5B is a top cross-sectional view of the retroreflector optical path length adjustment system 501 with the retroreflector 510 in the first rotational orientation.

第五C圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統501之透視方塊圖。 Figure 5 C is a perspective block diagram of the retro-reflector optical path length adjustment system 501 with the retro-reflector 510 in the first rotational orientation.

在一些具體實施例中,另使用兩正交平面反射鏡形成靜止倒 反射器520,該兩者相對於角掃描倒反射器510定位,以將中間光束從由掃描倒反射器510的變化角度方位形成之其各種橫向位移反射,回去通過掃描倒反射器510以形成沿著與輸入光束相反方向傳播的輸出光束,但是輸出光束537位於不同的X軸位置處,如圖所示,從而使輸出光束光軸保持靜止。輸入光束531與輸出光束537之間的橫向位移由靜止倒反射器520的位置和方位以及交點542和543的位置確定,並且此橫向位移允許光學路徑長度調整系統501(用於改變總光學路徑長度)放置在以輸入光束光軸為中心的固定位置處之輸入透鏡121(參見第一A圖)與以輸出光束光軸為中心的固定位置處之輸出透鏡122之間,而透鏡121和透鏡122彼此不干涉。在一些具體實施例中,輸入光束軸531與輸出光束軸537之間的距離由光束534的長度制定,光束的長度由靜止倒反射器520的尺寸和位置確定。 In some embodiments, two orthogonal plane mirrors are used to form a stationary mirror. Reflectors 520, both positioned relative to the angular scanning retro-reflector 510, to reflect the intermediate beam from its various lateral displacements created by the varying angular orientation of the scanning retro-reflector 510, back through the scanning retro-reflector 510 to form along the The output beam travels in the opposite direction to the input beam, but the output beam 537 is located at a different X-axis position, as shown, so that the output beam optical axis remains stationary. The lateral displacement between input beam 531 and output beam 537 is determined by the position and orientation of stationary retroreflector 520 and the positions of intersections 542 and 543, and this lateral displacement allows optical path length adjustment system 501 (for changing the total optical path length). ) is placed between the input lens 121 (see Figure 1 A) at a fixed position centered on the optical axis of the input beam and the output lens 122 at a fixed position centered on the optical axis of the output beam, and the lens 121 and the lens 122 do not interfere with each other. In some embodiments, the distance between the input beam axis 531 and the output beam axis 537 is dictated by the length of the beam 534 , which is determined by the size and position of the stationary retroreflector 520 .

觀察第五A圖的ZY平面中之系統501,輸入光束531(在點541和542之間)由掃描倒反射器510反射到光束區段532(在點542和543之間),然後到中間光束區段533(在點543和544之間),接著入射在點544與545之間的靜止倒反射器520(參見第五B圖和第五C圖)上,這由靜止倒反射器520在X軸方向上反射。然後光束跟隨中間光束區段535(在點545和546之間),然後是光束區段536(在點546和547之間),然後是輸出光束區段537(在點547和548之間),在點548輸出。觀察第五B圖的X-Z平面中之系統,光束遵循與所描述相同的路徑,但是光束區段534的路徑在靜止倒反射器520處可見(在點544和545之間)。另外(參見第五C圖),清楚顯示出輸入光束區段531(在Z軸方向上)、532(在Y軸方向上點542和543之間)和533(在Z方向上)的平面和輸出光束區段535、536和537的平面位於不同的固定X軸位置處,光束區段531的輸入光束軸和光束區段537的輸出光束軸均保持靜止,甚至儘管掃描倒反射器510改變了包含區段533、534和535的平面之可調整Y軸位置。 Looking at system 501 in the ZY plane of Figure 5A, input beam 531 (between points 541 and 542) is reflected by scanning retroreflector 510 to beam segment 532 (between points 542 and 543), and then to the middle Beam segment 533 (between points 543 and 544) is then incident on stationary retro-reflector 520 (see Fifth B and Fifth C) between points 544 and 545, which is caused by stationary retro-reflector 520 Reflects in the X-axis direction. The beam then follows intermediate beam segment 535 (between points 545 and 546), then beam segment 536 (between points 546 and 547), then output beam segment 537 (between points 547 and 548) , output at point 548. Looking at the system in the X-Z plane of Figure 5B, the beam follows the same path as described, but the path of beam segment 534 is visible at stationary retroreflector 520 (between points 544 and 545). In addition (see fifth C), the plane and The planes of output beam segments 535, 536 and 537 are located at different fixed X-axis positions, the input beam axis of beam segment 531 and the output beam axis of beam segment 537 remain stationary even though the scanning retroreflector 510 changes Adjustable Y-axis position of the plane containing sections 533, 534 and 535.

第五D圖為平面反射鏡倒反射器光學路徑長度調整系統501(由於光學路徑的位置改變而在本說明書中標示為501’)的側視剖面方塊圖,其中倒反射器510處於複數個可能旋轉方位中的一第二旋轉方位(在 本說明書中標示為510’)。例如,在第五A圖和第五D圖中,可旋轉倒反射器510的旋轉軸線大約在點542和點542’處,即輸入光束531在平面反射鏡511’上的入射點。在其他具體實施例中(未示出),旋轉軸線在可旋轉倒反射器510上、之內或之外的其他位置。 Figure 5 D is a side cross-sectional block diagram of a flat mirror retroreflector optical path length adjustment system 501 (denoted as 501' in this specification due to a change in the position of the optical path), wherein the retroreflector 510 is in a plurality of possible A second rotational orientation in the rotational orientation (at In this specification it is designated as 510'). For example, in Figures 5A and 5D, the axis of rotation of the rotatable retroreflector 510 is approximately at points 542 and 542', the points of incidence of the input beam 531 on the flat mirror 511'. In other specific embodiments (not shown), the axis of rotation is elsewhere on, within, or outside the rotatable retro-reflector 510 .

第五E圖為具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統501’之俯視剖面方塊圖。請注意,在第五E圖的視圖中,箭頭532’和533’之間及箭頭535’和536’之間的任何間隔是為了提供圖示清楚性,並且不必然在所有具體實施例中實現為不同的X坐標。 Figure 5 E is a top cross-sectional block diagram of a retro-reflector optical path length adjustment system 501' Please note that any spacing between arrows 532' and 533' and between arrows 535' and 536' in the view of Figure 5 E is for illustration clarity and is not necessarily implemented in all specific embodiments for different X coordinates.

第五F圖為具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統501’之透視方塊圖。 Figure 5 F is a perspective block diagram of a retro-reflector optical path length adjustment system 501' with retro-reflector 510 in a second rotational orientation (designated 510'

第五D圖、第五E圖和第五F圖顯示系統501’的剖面側視圖、俯視圖和透視圖,其中掃描倒反射器510’處於21.5度位置。光學路徑軸分別標示為531、532’、533’、534’、535’、536’和537,其編號與第五A圖、第五B圖和第五C圖中的編號相同,實際內部路徑具有不同的Y軸位置。同樣重要的是要注意,點544’和545’的位置與第五A圖、第五B圖和第五C圖所示的點544和545在不同的Y軸位置處。因此,當掃描倒反射器旋轉時,點544和545的位置在靜止倒反射器520處沿Y軸方向線性掃描。藉由第二次通過相同的掃描倒反射器510’,光軸的這種移動被反轉(即Y軸位置的變化被抵消),以產生具有靜止光軸537,但具有通過從靜止輸入光束光軸531沿X軸方向位移來調整光程長度的輸出光束。 Figures 5D, 5E, and 5F show cross-sectional side, top, and perspective views of system 501' with scanning retroreflector 510' in a 21.5 degree position. The optical path axes are labeled 531, 532', 533', 534', 535', 536', and 537, and are numbered the same as in Figures 5A, 5B, and 5C. The actual internal path with different Y-axis positions. It is also important to note that the locations of points 544' and 545' are at different Y-axis locations than points 544 and 545 shown in the fifth A, fifth B, and fifth C drawings. Thus, as the scanning retro-reflector rotates, the positions of points 544 and 545 are scanned linearly along the Y-axis direction at the stationary retro-reflector 520 . By passing through the same scanning retroreflector 510' a second time, this movement of the optical axis is reversed (i.e. the change in Y-axis position is cancelled) to produce an optical axis with a stationary optical axis 537, but with the input beam passing from stationary The optical axis 531 is displaced in the X-axis direction to adjust the optical path length of the output beam.

第六A圖、第六B圖和第六C圖為光學路徑長度調整系統601的三個視圖(在一些具體實施例中,與系統501基本相同,但是增加了輸入透鏡121(以下稱為輸入透鏡121)以及輸出透鏡122(以下稱為輸出透鏡122),其中可旋轉平面反射鏡倒反射器510處於第一角度方位,並且第六D圖、第六E圖和第六F圖為光學路徑長度調整系統601的三個視圖,該系統具有在第二方位上的可旋轉平面反射鏡倒反射器510(在本說明書中標示為系統601’和倒反射器510’以指示掃描倒反射器510的不同方位)。系 統601是一具體實施例,其中透鏡121和122沿著輸入和輸出光束的軸放置,並且焦點650位於靜止倒反射器520內部。當掃描倒反射器510旋轉時,焦點也沿Y軸前後移動。從掃描倒反射器510和靜止倒反射器520獲得的此光學路徑長度變化結果分別用作系統101、102和103中透鏡121與122之間的間距調整,如第一A圖、第一B圖和第一C圖所示。在一些具體實施例中,實施光學路徑長度調整系統601以取代由透鏡121及/或122的機械運動所提供之聚焦功能,以通過改變其間的距離來聚焦,這可用於各種光學系統中,諸如顯微鏡、雙筒望遠鏡、照相機、望遠鏡等。 Sixth A, sixth B, and sixth C are three views of optical path length adjustment system 601 (in some embodiments, substantially the same as system 501, but with the addition of input lens 121 (hereafter referred to as the input) lens 121) and output lens 122 (hereafter referred to as output lens 122) with rotatable flat mirror retroreflector 510 in the first angular orientation and sixth D, sixth E and sixth F diagrams are the optical paths Three views of length adjustment system 601 with rotatable flat mirror retroreflector 510 in a second orientation (labeled in this specification as system 601' and retroreflector 510' to indicate scanning retroreflector 510 different orientations). System 601 is a specific embodiment in which lenses 121 and 122 are placed along the axes of the input and output beams, and focal point 650 is located inside stationary retroreflector 520 . As the scanning retroreflector 510 rotates, the focus also moves back and forth along the Y axis. This optical path length variation result obtained from the scanning retro reflector 510 and the stationary retro reflector 520 is used as the spacing adjustment between the lenses 121 and 122 in the systems 101, 102 and 103, respectively, as shown in the first picture A, the first picture B and as shown in the first C Fig. In some embodiments, the optical path length adjustment system 601 is implemented to replace the focusing function provided by the mechanical movement of the lenses 121 and/or 122 to focus by changing the distance therebetween, which can be used in various optical systems such as Microscopes, binoculars, cameras, telescopes, etc.

第六A圖為根據本發明的一些具體實施例,使用兩透鏡121和122搭配旋轉以改變光學路徑長度的一可旋轉平面反射鏡倒反射器510及一固定位置平面反射鏡倒反射器520(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的倒反射器510)的平面反射鏡光學路徑長度調整系統601之側視剖面方塊圖。在一些具體實施例中,光學路徑長度調整系統601是光學路徑長度調整系統501(如第五A圖至第五F圖所示)與輸入透鏡121和輸出透鏡122的組合,其中可移動焦點650位於固定位置倒反射器520的兩平面反射鏡521與522之間。 Figure 6A shows a rotatable flat mirror retroreflector 510 and a fixed position flat mirror retroreflector 520 ( Shown here is a side cross-sectional block diagram of a flat mirror optical path length adjustment system 601 with a retroreflector 510) in a first rotational orientation of a plurality of possible rotational orientations. In some embodiments, optical path length adjustment system 601 is a combination of optical path length adjustment system 501 (as shown in FIGS. 5A-5F ) and input lens 121 and output lens 122 , with movable focus 650 Between the two plane mirrors 521 and 522 of the fixed position retroreflector 520 .

第六B圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統601之俯視剖面圖。 Figure 6B is a top cross-sectional view of the retroreflector optical path length adjustment system 601 with the retroreflector 510 in the first rotational orientation.

第六C圖為具有在第一旋轉方位上的倒反射器510的倒反射器光學路徑長度調整系統601之透視方塊圖。 Figure 6 C is a perspective block diagram of the retro-reflector optical path length adjustment system 601 with the retro-reflector 510 in the first rotational orientation.

第六D圖為平面反射鏡倒反射器光學路徑長度調整系統601(由於光學路徑的位置改變而在本說明書中標示為601’)的側視剖面方塊圖,其中倒反射器510處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為510’)。 Figure 6 D is a side cross-sectional block diagram of a planar mirror retroreflector optical path length adjustment system 601 (denoted as 601' in this specification due to a change in the position of the optical path), with the retroreflector 510 in a plurality of possible A second rotational orientation in the rotational orientation (indicated as 510' in this specification).

第六E圖為具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路徑長度調整系統601’之俯視剖面方塊圖。 Figure 6 E is a top cross-sectional block diagram of a retro-reflector optical path length adjustment system 601' with retro-reflector 510 in a second rotational orientation (designated 510'

第六F圖為根據本發明的一些具體實施例,具有在第二旋轉方位上(在本說明書中標示為510’)的倒反射器510的倒反射器光學路 徑長度調整系統601’之透視方塊圖。 Figure 6 F is a retroreflector optical circuit with retroreflector 510 in a second rotational orientation (designated 510' in this specification) in accordance with some embodiments of the present invention A perspective block diagram of the diameter length adjustment system 601'.

第七A圖為根據本發明的一些具體實施例,旋轉稜鏡710以改變光學路徑長度,其中稜鏡710顯示於複數個可能旋轉方位中的一第一旋轉方位內的可旋轉平行切面稜鏡系統701之側視剖面方塊圖。 FIG. 7A shows the rotation of the lens 710 to change the optical path length according to some embodiments of the present invention, wherein the lens 710 is shown as a rotatable parallel-section plane within a first rotational orientation of a plurality of possible rotational orientations. A side cross-sectional block diagram of system 701.

第七B圖為根據本發明的一些具體實施例,其中稜鏡710位於複數個可能旋轉方位中的一第二旋轉方位(標示為710’)內的可旋轉平行切面稜鏡系統701’之側視剖面方塊圖。 FIG. 7B shows some embodiments in accordance with the present invention, wherein the horn 710 is positioned to the side of the rotatable parallel section horn system 701 ′ in a second rotational orientation (labeled as 710 ′) of a plurality of possible rotational orientations View section block diagram.

第七C圖為根據本發明的一些具體實施例,其中稜鏡710位於複數個可能旋轉方位中的一第二旋轉方位(標示為710’)內的可旋轉平行切面稜鏡系統701’之透視方塊圖。第七C圖例示如何使用位於點749’處的倒反射器(未明確示出),以將光束重新導向通過稜鏡710’返回。因此,第七A圖、第七B圖和第七C圖顯示本發明的具體實施例,其中可通過旋轉掃描器來改變路徑長度,該旋轉掃描器旋轉具有平行輸入和輸出切面的一片透明光學板710。當光學板710處於第七A圖所示的位置時,輸入光束731垂直於光學板710,並且該光束將遵循光束區段732的路徑,並且作為光束區段733輸出,而輸出光束733在同一光軸上作為輸入光束731。當光學板710旋轉到與輸入光束731夾非垂直角度並標示為710’的位置(參見第七B圖和第七C圖)時,光束將折射到光束區段732’的路徑,並作為光束區段733’輸出,其為橫向位移的輸出光束733’。通常,由於光學板710的折射率高於空氣的折射率,例如玻璃的折射率約為1.5,所以從741到749的路徑長度將不同於從741到749’的路徑長度。隨著光學板710圍繞X軸從一個角度旋轉到另一角度,輸出光束733’將繼續平行於輸入光束731往Z軸方向傳播,但是從一Y軸位置掃描到另一Y軸位置,其中如從第七A圖到第七B圖的變化所示,輸出光束733’的位置在Y軸方向上更改,同時保持與輸入光束731平行。類似地,沿反平行方向傳播的平行反射光束,如第七C圖所示,將沿相反的Y軸方向等量平移。 FIG. 7 C is a perspective view of the rotatable parallel-section plane system 701 ′ in which the plane 710 is located in a second rotational orientation (labeled as 710 ′) of a plurality of possible rotational orientations, according to some embodiments of the present invention. block diagram. Figure 7 C illustrates how a retroreflector (not explicitly shown) at point 749' is used to redirect the beam back through aperture 710'. Thus, Figures Seventh A, Seventh B, and Seventh C show specific embodiments of the invention in which the path length can be varied by rotating a scanner that rotates a sheet of transparent optics with parallel input and output slices board 710. When optical plate 710 is in the position shown in Figure 7A, input beam 731 is perpendicular to optical plate 710, and this beam will follow the path of beam segment 732 and output as beam segment 733, which is at the same On the optical axis as input beam 731. When the optical plate 710 is rotated to a position at a non-perpendicular angle to the input beam 731 and designated 710' (see Figures 7B and 7C), the beam will be refracted into the path of the beam segment 732' and act as a beam Section 733' outputs, which is the laterally displaced output beam 733'. Typically, the path length from 741 to 749 will be different from the path length from 741 to 749' because the refractive index of optical plate 710 is higher than that of air, eg, glass has a refractive index of about 1.5. As the optical plate 710 rotates from one angle to another about the X-axis, the output beam 733' will continue to propagate in the Z-axis direction parallel to the input beam 731, but scan from one Y-axis position to another Y-axis position, where as As shown in the change from seventh A to seventh B, the position of the output beam 733 ′ changes in the Y-axis direction while remaining parallel to the input beam 731 . Similarly, a parallel reflected beam propagating in an anti-parallel direction, as shown in Figure 7 C, will be translated by an equal amount in the opposite Y-axis direction.

為了使輸出光束軸保持靜止,將靜止倒反射器820添加到系統701,從而得到如第八A圖、第八B圖和第八C圖所示的系統801。從輸入到輸出的光束沿路徑從點841到842、842到843、843到844、844到 845、845到846、846到847和847至849,其中輸入光束831和輸出光束837在其各自的XY位置中保持在其各自的路徑中,而靜止倒反射器820沿著點844與845之間的光學光束路徑834在X軸位置中提供位置變化,如第八B圖和第八C圖所示。因此,輸出光束837將具有與輸入光束831不同的X軸位置。 In order to keep the output beam axis stationary, a stationary retroreflector 820 is added to the system 701, resulting in a system 801 as shown in Figures 8A, 8B, and 8C. The beam from input to output follows the path from points 841 to 842, 842 to 843, 843 to 844, 844 to 845, 845 to 846, 846 to 847, and 847 to 849, with input beam 831 and output beam 837 remaining in their respective paths in their respective XY positions, and stationary retroreflector 820 along the line between points 844 and 845 The optical beam path 834 in between provides positional variation in the X-axis position, as shown in eighth B and eighth C images. Therefore, the output beam 837 will have a different X-axis position than the input beam 831 .

如第八D圖、第八E圖和第八F圖所示,隨著光學810板旋轉到另一位置810’,輸入光束遵循從點841到842’、842’到843’、843’到844’、844’到845’、845’到846’、846’到847’和847’到849,而輸出光束837的軸與輸入光束831在相同Y軸位置(參見第八D圖),但在不同的Z軸位置(參見第八E圖),其中光束834’從點844’移動到845’(與841到849的距離相同)平移輸出光束837到與輸入光束831不同的X軸位置。因此,輸出光束837將維持在其相同X軸位置,該位置在X軸上與輸入光束831的偏移。再次,類似於先前的掃描倒反射器系統,當掃描光學板810旋轉到諸如810’的各種位置時,光束將在倒反射器820上沿Y軸方向直線掃描。在一些具體實施例中,由於導入到點842’到843’之間非單色光的光束中之色散將繼續分散843’至844’、844’至845’、845’至846’,因此系統801更適用於窄頻單色光,這是因為選擇用於掃描光學板810的材料之任何與波長相關折射率,因此在通過點846’至847’之間板810’的返迴路徑中未得到完全補償。在一些具體實施例中,光學板810的旋轉軸在光學板810內部,而在其他具體實施例中,旋轉軸在光學板810外部。在一些具體實施例中,光學板810由具有多對平行切面(例如,輸入切面811和輸出切面812)的稜鏡代替,例如具有正方形、六邊形、八邊形等剖面的稜鏡,如第八A圖至第八C圖與第八D圖至第八F圖之間的旋轉所示,將其旋轉以使這種稜鏡的連續成對切面被當成對應輸入切面和輸出切面,以將輸入光束831偏轉到中間光束833,並且在中間光束835和輸出光束837之間執行反向偏轉。 As the optical 810 plate rotates to another position 810', as shown in Figure 8 D, Figure E, and Figure F, the input beam follows from points 841 to 842', 842' to 843', 843' to 844', 844' to 845', 845' to 846', 846' to 847', and 847' to 849, while the axis of output beam 837 is at the same Y-axis position as input beam 831 (see Figure 8 D), but The output beam 837 is translated to a different X-axis position than the input beam 831 at a different Z-axis position (see Figure 8 E), where beam 834' moves from point 844' to 845' (the same distance as 841 to 849). Therefore, the output beam 837 will remain at its same X-axis position, which is offset from the input beam 831 on the X-axis. Again, similar to the previous scanning retroreflector system, when the scanning optics plate 810 is rotated to various positions such as 810', the beam will scan linearly along the Y-axis direction on the retroreflector 820. In some embodiments, since dispersion introduced into the beam of non-monochromatic light between points 842' to 843' will continue to disperse 843' to 844', 844' to 845', 845' to 846', the system 801 is more suitable for narrowband monochromatic light because any wavelength-dependent index of refraction of the material chosen for scanning optical plate 810 is not present in the return path through plate 810' between points 846' to 847'. be fully compensated. In some embodiments, the axis of rotation of optical plate 810 is internal to optical plate 810 , while in other embodiments, the axis of rotation is external to optical plate 810 . In some embodiments, optical plate 810 is replaced by a prism having pairs of parallel cut planes (eg, input cut plane 811 and output cut plane 812 ), such as a prism with square, hexagonal, octagonal, etc. cross-sections, such as As shown in the rotation between Figures 8A to 8C and Figures 8D to 8F, it is rotated so that successive pairs of slices of such a plane are regarded as corresponding input and output slices, with Input beam 831 is deflected to intermediate beam 833 and reverse deflection is performed between intermediate beam 835 and output beam 837 .

除了第八A圖至第八F圖和第十A圖至第十D圖所示的具體實施例外,在其他具體實施例中,相同的教導還擴展到稜鏡或一組稜鏡,及其他數量的規則或不規則切面,例如三角形、正方形、五角形、六角形等。 關鍵是在稜鏡旋轉時使首次出射光線(例如中間光束833)保持平行於輸入光束(例如輸入光束831)。這允許固定倒反射器(例如820)沿相同方向將光線反射回各種具體實施例的稜鏡中,以回射入射光線,但是在不同的X軸位置(例如,第八B圖和第八E圖中的不同水平面)。在一些具體實施例中,出射光線平行於輸入光線、垂直於輸入光線或夾其他角度,只要在稜鏡旋轉時使出射光線保持平行於給定方向即可,因此出射光線在固定倒反射器上畫一條直線。在一些具體實施例中,稜鏡的反射表面(例如,第十A圖至第十D圖的表面1012和1013)塗覆,或者視情況為全內反射表面。 In addition to the specific embodiments shown in Figures 8A-8F and Figures 10A-10D, in other specific embodiments, the same teachings also extend to a cell or set of cells, and other A number of regular or irregular slices, such as triangles, squares, pentagons, hexagons, etc. The key is to keep the first outgoing ray (eg, the intermediate beam 833 ) parallel to the input beam (eg, the input beam 831 ) as the horn rotates. This allows a fixed retroreflector (eg, 820) to reflect light back into the various embodiments in the same direction to retroreflect incident light, but at different X-axis positions (eg, 8B and 8E different levels in the figure). In some specific embodiments, the outgoing light rays are parallel to the incoming light rays, perpendicular to the incoming light rays, or at other angles, as long as the outgoing light rays are kept parallel to a given direction when the camera rotates, so the outgoing light rays are on the fixed retroreflector. Draw a straight line. In some embodiments, the reflective surfaces of the crystals (eg, surfaces 1012 and 1013 of Figures 10A-10D) are coated, or optionally a total internal reflective surface.

第九A圖至第九E圖顯示本發明的另一具體實施例。在一些具體實施例中,獲得此進一步具體實施例,其中不同稜鏡具體實施例的內部反射表面取代成實際的平面反射鏡,從而免除折射材料。此允許消除由固體玻璃或固體聚合物材料導入的色差,並且僅通過使用反射鏡而不是通過使用固體稜鏡來減輕重量。例如,在一些具體實施例中,三角稜鏡、五稜鏡或其他多面稜鏡取代成兩平面反射鏡。 Figures 9A to 9E show another specific embodiment of the present invention. In some embodiments, this further embodiment is obtained in which the internally reflective surfaces of the different embodiments are replaced with actual flat mirrors, thereby eliminating the need for refractive materials. This allows to eliminate chromatic aberrations introduced by solid glass or solid polymer materials and save weight only by using mirrors and not by using solid crystals. For example, in some embodiments, triangular mirrors, pentagonal mirrors, or other polygonal mirrors are replaced with two-plane mirrors.

第九A圖為根據本發明的一些具體實施例,使用一起旋轉以改變光束的光學路徑長度中的反射鏡912和911之一對可旋轉平行反射鏡910,及將光束往在X軸方向內位移的反平行方向重新引導回通過該對平行反射鏡910的一固定位置平面反射鏡倒反射器920(在本說明書示出具有在複數個可能旋轉方位中的一第一旋轉方位內的該對平行反射鏡910)的光學路徑長度調整系統901之側視剖面方塊圖。 Figure 9A shows a pair of rotatable parallel mirrors 910 using one of mirrors 912 and 911 that rotate together to change the optical path length of the beam and direct the beam in the direction of the X-axis, according to some embodiments of the present invention. The antiparallel direction of displacement is redirected back through a fixed position flat mirror inverse reflector 920 of the pair of parallel mirrors 910 (shown in this specification having the pair in a first rotational orientation of a plurality of possible rotational orientations). A side cross-sectional block diagram of the optical path length adjustment system 901 of the parallel mirror 910).

第九B圖為具有在第一旋轉方位上的一對可旋轉平行反射鏡910的光學路徑長度調整系統901之俯視剖面方塊圖。 Figure 9B is a top cross-sectional block diagram of an optical path length adjustment system 901 having a pair of rotatable parallel mirrors 910 in a first rotational orientation.

第九C圖為具有在第一旋轉方位上的一對可旋轉平行反射鏡910的光學路徑長度調整系統901之透視方塊圖。 Figure 9 C is a perspective block diagram of an optical path length adjustment system 901 with a pair of rotatable parallel mirrors 910 in a first rotational orientation.

第九D圖為光學路徑長度調整系統901(由於光學路徑的位置改變而在本說明書中標示為901’)的透視剖面方塊圖,其中該對可旋轉反射鏡910處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為910’)。 Ninth D is a perspective cross-sectional block diagram of an optical path length adjustment system 901 (designated 901' in this specification due to the change in position of the optical path) with the pair of rotatable mirrors 910 in a plurality of possible rotational orientations A second rotational orientation (indicated as 910' in this specification).

第九E圖為根據本發明的一些具體實施例,光學路徑長度 調整系統901”(顯示在第一旋轉方位(此本說明書中標示為911和912)和第二旋轉方位(此本說明書中標示為911’和912’)內具有一對可旋轉平行反射鏡對910的覆蓋圖)的側視剖面方塊圖。在一些具體實施例中,兩平行的平面反射鏡(也稱為反射器)911和912對稱放置通過旋轉中心951,使得當輸入光束931由反射鏡912反射時,光束932將導向反射鏡911並由911反射,產生保持與輸入光束931平行的輸出光束933,而與該對可旋轉平行反射鏡910的角度(在特定的角度範圍內)無關。當該對平行反射鏡910及其兩已耦接平行平面反射器911和912從其第一位置(第九E圖中的反射器911和912之位置)旋轉到第二位置(第九E圖中的反射器911’和912’之位置)時,在標示為912’的位置處由反射鏡912反射的輸入光束931受引導朝向標示為911’的位置處之反射鏡911,從而產生與輸入光束931平行的輸出光束933’,但當該對平行反射鏡位於標示為910的位置時,在與輸出光束933不同的Y軸位置上傳播。因此,當系統901正在掃描(兩反射器旋轉相同角度量)時,輸出光束933’也正在掃描固定後向反射鏡920。兩平行平面反射器911和912的旋轉平行反射鏡對位置910與平行反射鏡對旋轉位置910’間之Z軸方向(在本說明書中也簡稱為Z方向)路徑長度不同,從而取決於在掃描期間該對平行反射鏡910的旋轉角度,具有可變Z方向光學路徑長度的系統。類似於先前描述的系統,輸入光束931與輸出光束937之間的軸之分離允許此可變路徑長度系統901用於諸如第十七圖17、第十八圖、第十九圖、第二十圖所示的系統或其他此應用。 Figure 9 E shows the optical path length according to some specific embodiments of the present invention Adjustment system 901" (shown in a first rotational orientation (denoted 911 and 912 in this specification) and a second rotational orientation (indicated in this specification as 911' and 912') has a pair of rotatable parallel mirror pairs within 910). In some embodiments, two parallel planar mirrors (also referred to as reflectors) 911 and 912 are placed symmetrically through the center of rotation 951 such that when the input beam 931 is reflected by the mirrors When reflected by 912, beam 932 will be directed to mirror 911 and reflected by 911, resulting in output beam 933 that remains parallel to input beam 931, regardless of the angle of the pair of rotatable parallel mirrors 910 (within a specified angular range). When the pair of parallel mirrors 910 and their two coupled parallel plane reflectors 911 and 912 are rotated from their first position (the position of the reflectors 911 and 912 in Figure 9 E) to their second position (Figure 9 E) position of reflectors 911' and 912' in the Output beam 933' that is parallel to beam 931, but propagates at a different Y-axis position than output beam 933 when the pair of parallel mirrors is located at the position labeled 910. Thus, when system 901 is scanning (both mirrors rotate the same angular amount), the output beam 933' is also scanning the fixed retro-reflector 920. The Z-axis direction ( Also referred to in this specification as the Z-direction for short) path lengths vary, resulting in a system with variable Z-direction optical path lengths depending on the angle of rotation of the pair of parallel mirrors 910 during scanning. Similar to the previously described system, the input beam The separation of the axes between 931 and the output beam 937 allows this variable path length system 901 to be used in systems such as those shown in Figure 17, Figure 17, Figure 18, Figure 19, Figure 20, or other such applications .

第十A圖至第十D圖顯示使用透明稜鏡1010的本發明另一具體實施例,其中透射輸入面1011平行於透射輸出面1014,並且在兩端部可旋轉平行四邊形稜鏡1010處均與平行內部反射面1012和1013成45度角。 Figures 10A to 10D show another specific embodiment of the present invention using a transparent foil 1010, wherein the transmission input surface 1011 is parallel to the transmission output surface 1014, and both ends are rotatable parallelogram foils 1010. At a 45 degree angle to the parallel internal reflecting surfaces 1012 and 1013.

第十A圖為根據本發明的一些具體實施例,使用旋轉以改變光束的光學路徑長度之一可旋轉四邊形稜鏡1010,及將光束往反平行方向重新引導回通過四邊形稜鏡1010的一固定位置平面反射鏡倒反射器1020(在此示出具有在複數個可能旋轉方位中的一第一旋轉方位內的四邊形稜鏡1010)的光學路徑長度調整系統1001之側視剖面方塊圖。 Figure 10A shows a rotatable quadrilateral 1010 using rotation to change one of the optical path lengths of the beam, and a stationary beam that redirects the beam back through the quadrilateral 1010 in an antiparallel direction, according to some embodiments of the present invention. A side cross-sectional block diagram of an optical path length adjustment system 1001 of a positional planar mirror retroreflector 1020 (here shown with a quadrangle 1010 in a first rotational orientation of a plurality of possible rotational orientations).

第十B圖為根據本發明的一些具體實施例,具有在第一旋轉方位上的可旋轉四邊形稜鏡1010的光學路徑長度調整系統1001之透視方塊圖。 Figure 10 B is a perspective block diagram of an optical path length adjustment system 1001 having a rotatable quadrilateral 1010 in a first rotational orientation, according to some embodiments of the present invention.

第十C圖為根據本發明的一些具體實施例中光學路徑長度調整系統1001(由於光學路徑的位置改變而在本說明書中標示為1001’)的側視剖面方塊圖,其中可旋轉四邊形稜鏡1010處於複數個可能旋轉方位中的一第二旋轉方位(在本說明書中標示為1010’)。 Figure 10 C is a side cross-sectional block diagram of an optical path length adjustment system 1001 (denoted as 1001' in this specification due to a change in the position of the optical path) in accordance with some embodiments of the present invention, in which a rotatable quadrilateral 1010 is in a second rotational orientation (designated 1010' in this specification) of a plurality of possible rotational orientations.

第十D圖為根據本發明的一些具體實施例,具有在第二旋轉方位(在本說明書中標示為1010’)上的可旋轉四邊形稜鏡1010的光學路徑長度調整系統1001之透視方塊圖。 Figure 10 D is a perspective block diagram of an optical path length adjustment system 1001 having a rotatable quadrangle 1010 in a second rotational orientation (designated 1010' in this specification), according to some embodiments of the present invention.

如第十A圖和第十B圖所示,以自下表面1012的反射光束1032入射到上表面1013,並作為平行於輸入光束1031的中間光束1033反射。隨著稜鏡1010旋轉到第十C圖所示的角位置(標示為1010’),輸入光束1031將在輸入表面1011處衍射,在下表面1012和上表面1013內反射,然後在輸出表面1014處衍射,並出射為中間光束1033’。輸入光束1031和中間光束1033及1033’將彼此平行,但是不在相同的Y軸位置上。當傾斜掃描稜鏡1010時,中間光束將在Y軸方向上以直線掃描,並且被引導至靜止倒反射器1020。與先前的具體實施例類似,光束1033隨後由倒反射器1020反射(作為光束1034)到不同的X軸位置,並通過稜鏡1010返回到出射系統1001,而輸出光束1037保持在恆定位置並且與輸入光束1031反平行,但是在X軸的不同位置處,輸出光束1037在與輸入光束1031相反的方向上傳播。 As shown in Figures 10A and 10B, the reflected beam 1032 from the lower surface 1012 is incident on the upper surface 1013 and reflected as an intermediate beam 1033 parallel to the input beam 1031 . Input beam 1031 will diffract at input surface 1011, reflect within lower and upper surfaces 1012 and 1013, and then at output surface 1014, as camera 1010 rotates to the angular position shown in Figure 10 C (labeled 1010'). diffracted and emerges as intermediate beam 1033'. Input beam 1031 and intermediate beams 1033 and 1033' will be parallel to each other, but not at the same Y-axis position. When tilting the scanning plane 1010, the intermediate beam will scan in a straight line in the Y-axis direction and be directed to the stationary retroreflector 1020. Similar to the previous specific embodiment, beam 1033 is then reflected by retroreflector 1020 (as beam 1034 ) to a different X-axis position and returns to exit system 1001 through beam 1010, while output beam 1037 remains at a constant position and is associated with The input beam 1031 is antiparallel, but the output beam 1037 propagates in the opposite direction to the input beam 1031 at different positions of the X-axis.

圖十一為根據本發明的一些具體實施例,光學路徑長度調整系統1101的側視方塊圖,該系統包含一控制器1160,其耦接成控制一光學路徑長度調整器1140將來自輸入光束1131的光重新引導為橫向位移、固定位置、反平行的輸出光束1137。在各種系統實施方式中,本發明的細節可概括描述為可變光學路徑系統1101,其中輸入光束1131沿第一方向進入系統1101,並且成為輸出光束1137離開系統1101(輸出光束1137以恆定的橫向偏移平行於輸入光束1131,但在與輸入光束1131相反的方向上傳 播),同時在系統1101內部以定義的固定位置輸入點1141與固定位置輸出點1149之間的可變(可調)路徑長度傳播。 11 is a side block diagram of an optical path length adjustment system 1101 including a controller 1160 coupled to control an optical path length adjuster 1140 to adjust the optical path length adjustment system 1131 according to some embodiments of the present invention. The light is redirected into a laterally displaced, fixed-position, anti-parallel output beam 1137. In various system implementations, the details of the present invention can be broadly described as variable optical path system 1101, wherein input beam 1131 enters system 1101 in a first direction and exits system 1101 as output beam 1137 (output beam 1137 in a constant lateral direction The offset is parallel to the input beam 1131, but uploads in the opposite direction to the input beam 1131 broadcast) while propagating within the system 1101 with a variable (adjustable) path length between a defined fixed-position input point 1141 and a fixed-position output point 1149.

第十二圖為根據本發明的一些具體實施例,光學路徑長度調整系統1201的側視方塊圖,該系統包含一控制器1260,其耦接成控制光學路徑長度調整器1140,該調整器耦接至反射鏡(或反射器)1251和1252,並且這些反射鏡一起改變光束的光學路徑長度並將輸出光束1237導引往相同方向並沿著與輸入光束1231相同的傳播軸線。通過增加兩反射器1251和1252的修改,可變長度光學路徑系統1140可當成串聯系統1201,其中輸出光束1237在與輸入光束1231相同的方向上傳播,其中輸入光束1231使用反射器1251引導至系統1140中,並且系統1140的輸出使用反射器1252引導至所需方向。 Figure 12 is a side block diagram of an optical path length adjustment system 1201, the system including a controller 1260 coupled to control an optical path length adjuster 1140, which is coupled to Mirrors (or reflectors) 1251 and 1252 are connected, and together these mirrors change the optical path length of the beam and direct output beam 1237 in the same direction and along the same axis of propagation as input beam 1231. With the modification of adding two reflectors 1251 and 1252, the variable length optical path system 1140 can be regarded as a tandem system 1201, in which the output beam 1237 propagates in the same direction as the input beam 1231, which is directed to the system using the reflector 1251 1140, and the output of the system 1140 is directed to the desired direction using the reflector 1252.

第十三圖為根據本發明的一些具體實施例,光學路徑長度調整系統1301的側視方塊圖,該系統包含一控制器1360,其耦接成控制光學路徑長度調整器1140,該調整器耦接至反射鏡1351和1352,並且這些反射鏡一起改變光束的光學路徑長度並將來自輸入光束1331的光以直角方向側向重新引導以形成輸出光束1337。 Figure thirteen is a side block diagram of an optical path length adjustment system 1301, the system including a controller 1360 coupled to control an optical path length adjuster 1140, which is coupled to Mirrors 1351 and 1352 are connected, and together these mirrors change the optical path length of the beam and redirect the light from input beam 1331 laterally at right angles to form output beam 1337.

第十四圖為根據本發明的一些具體實施例,光學路徑長度調整系統1401的側視方塊圖,該系統包含一控制器1460,其耦接成控制光學路徑長度調整器1140和反射鏡1451,其一起改變光束的光學路徑長度並將來自輸入光束1431的光以直角方向側向重新引導以形成輸出光束1437。 Figure 14 is a side block diagram of an optical path length adjustment system 1401, the system including a controller 1460 coupled to control the optical path length adjuster 1140 and the mirror 1451, according to some embodiments of the present invention, Together it changes the optical path length of the beam and redirects light from input beam 1431 laterally at right angles to form output beam 1437 .

第十五A圖至第十五i圖顯示另一具體實施例,其在輸入光束1531上沒有額外反射鏡,而是包含一反射鏡1528,以將最終輸出光束1539以直角重新引導到輸入光束1531。 Figures 15A to 15i show another embodiment that has no additional mirror on the input beam 1531, but instead includes a mirror 1528 to redirect the final output beam 1539 at right angles to the input beam 1531.

第十五A圖為根據本發明的一些具體實施例,用於以在第一角度方位上掃描倒反射器1510來控制光學路徑長度的光學路徑長度調整系統1501之俯視方塊圖。在一些具體實施例中,光學路徑長度調整系統1501包含掃描倒反射器1510(包含彼此正交定向的平面反射鏡1511和1512)和固定位置倒反射器1520(包含彼此正交定向的平面反射鏡1526和1527),及定位成反射中間輸出光束1537以形成最終輸出光束1539的一輸出反射 鏡1528。調整掃描倒反射器1510的角位置改變輸入點1541和輸出點1549之間的光學路徑長度(在內部反射點1542、1543、1544、1545、1546、1547和1548處反射,如第十五C圖所示)。 Figure 15A is a top block diagram of an optical path length adjustment system 1501 for controlling the optical path length by scanning the retroreflector 1510 in a first angular orientation, according to some embodiments of the present invention. In some embodiments, the optical path length adjustment system 1501 includes a scanning retroreflector 1510 (including planar mirrors 1511 and 1512 oriented orthogonal to each other) and a fixed position retroreflector 1520 (including planar mirrors oriented orthogonal to each other) 1526 and 1527), and an output reflection positioned to reflect intermediate output beam 1537 to form final output beam 1539 Mirror 1528. Adjusting the angular position of the scanning retroreflector 1510 changes the optical path length between input point 1541 and output point 1549 (reflections at internal reflection points 1542, 1543, 1544, 1545, 1546, 1547, and 1548, as shown in Figure 15C shown).

第十五B圖為具有在第一角度方位上的倒反射器510的光學路徑長度調整系統1501之側視方塊圖。 Fifteenth B is a side block diagram of the optical path length adjustment system 1501 with the retroreflector 510 in the first angular orientation.

第十五C圖為具有在第一角度方位上的倒反射器510的光學路徑長度調整系統1501之透視方塊圖。 Fifteenth C is a perspective block diagram of the optical path length adjustment system 1501 with the retroreflector 510 in the first angular orientation.

第十五D圖為具有第二角度方位上(標示為1510’)的倒反射器1510的光學路徑長度調整系統1501’之俯視方塊圖。 Figure 15 D is a top block diagram of an optical path length adjustment system 1501' having a retroreflector 1510 in a second angular orientation (designated 1510').

第十五E圖為具有第二角度方位上(標示為1510’)的倒反射器1510的光學路徑長度調整系統1501’之側視方塊圖。 Fifteenth E is a side block diagram of an optical path length adjustment system 1501' having a retroreflector 1510 in a second angular orientation (designated 1510').

第十五F圖為具有第二角度方位上(標示為1510’)的倒反射器1510的光學路徑長度調整系統1501’之透視方塊圖。第十五F圖顯示由於倒反射器1510’的旋轉,內部反射點1542’、1543’、1544’、1545’、1546’、1547’和1548’的位置變化(對應於第十五C圖的內部反射點1542、1543、1544、1545、1546、1547和1548)。 Figure fifteenth F is a perspective block diagram of an optical path length adjustment system 1501' having a retroreflector 1510 in a second angular orientation (designated 1510'). Figure 15F shows the changes in position of the internal reflection points 1542', 1543', 1544', 1545', 1546', 1547' and 1548' due to the rotation of the retroreflector 1510' (corresponding to Internal reflection points 1542, 1543, 1544, 1545, 1546, 1547 and 1548).

第十五G圖為根據本發明的一些具體實施例,具有在第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之俯視方塊圖。 Figure 15 G is a top block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510") in accordance with some embodiments of the present invention.

第十五H圖為具有第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之側視方塊圖。 Fifteenth H is a side view block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510").

第十五i圖為具有第三角度方位上(標示為1510”)的倒反射器1510的光學路徑長度調整系統1501”之透視方塊圖。第十五i圖顯示由於倒反射器1510’的進一步旋轉,內部反射點1542’、1543’、1544’、1545’、1546’、1547’和1548’的進一步位置變化(對應於第十五C圖的內部反射點1542、1543、1544、1545、1546、1547和1548)。 Fifteenth i Figure is a perspective block diagram of an optical path length adjustment system 1501" having a retroreflector 1510 in a third angular orientation (designated 1510"). Fifteenth i panel shows further positional changes of internal reflection points 1542', 1543', 1544', 1545', 1546', 1547' and 1548' due to further rotation of retroreflector 1510' (corresponding to fifteenth C Figure 1542, 1543, 1544, 1545, 1546, 1547 and 1548) of the internal reflection points.

在一些具體實施例中,前述可變路徑長度系統用於顯微鏡聚焦系統。可通過將物件移至顯微鏡的焦點、將顯微鏡移至物件的焦點、移動物鏡或移動物鏡與目鏡之間的距離來讓顯微鏡聚焦。在所有情況下,物距、 物鏡焦距和像距均遵循透鏡公式。本發明的一個目的是通過改變物鏡和像平面之間的光學距離使顯微鏡聚焦,從而使物件聚焦在像平面上。像平面可以是目鏡聚焦平面、數位相機成像器平面或用於進一步成像的直接平面。 In some embodiments, the aforementioned variable path length systems are used in microscope focusing systems. The microscope can be brought into focus by moving the object to the focal point of the microscope, moving the microscope to the focal point of the object, moving the objective, or moving the distance between the objective and the eyepiece. In all cases, the object distance, Both the objective focal length and image distance follow the lens formula. It is an object of the present invention to focus the microscope by varying the optical distance between the objective and the image plane so that the object is focused on the image plane. The image plane can be the eyepiece focal plane, the digital camera imager plane, or the direct plane for further imaging.

第十六圖為傳統顯微鏡系統1601的側視剖面方塊圖,其改變物鏡系統1606和目鏡系統1608之間的管長1640(管未示出),以改變光學路徑長度來讓物件99的影像聚焦。第十六圖顯示典型現有技術顯微鏡1601,其包含物鏡系統1606(有時簡稱為物鏡)和目鏡系統1608(有時簡稱為目鏡),其中物件99放置在物鏡1606的焦點處,並且目鏡1608用於(由人類使用者的眼睛98)在從物鏡到目鏡1608的距離1640處觀看由物鏡形成的影像。系統1601的聚焦通常是通過在使用者觀看影像時在聚焦距離附近使物件99相對移動靠近或遠離顯微鏡系統1601(相對於第十六圖上與下)來達成。在其他情況下,完整的顯微鏡系統1601,包含物鏡1606、將物鏡1606連接到目鏡1608(未顯示)的管子,及目鏡1608,在使用者觀看影像時上下移動(使用者也跟著移動),而物件99靜止在固定位置;然而,顯微鏡系統1601的移動會引入不想要的動作及/或振動。 Figure 16 is a side cross-sectional block diagram of a conventional microscope system 1601 that changes the tube length 1640 (tube not shown) between the objective system 1606 and the eyepiece system 1608 to change the optical path length to focus the image of the object 99. The sixteenth figure shows a typical prior art microscope 1601 comprising an objective lens system 1606 (sometimes simply referred to as an objective) and an eyepiece system 1608 (sometimes simply referred to as an eyepiece), wherein object 99 is placed at the focal point of objective 1606, and eyepiece 1608 uses The image formed by the objective is viewed (by the human user's eye 98 ) at a distance 1640 from the objective to the eyepiece 1608 . Focusing of the system 1601 is typically achieved by moving the object 99 relatively close to or away from the microscope system 1601 (up and down with respect to the sixteenth figure) near the focus distance while the user is viewing the image. In other cases, the complete microscope system 1601, including the objective 1606, the tube connecting the objective 1606 to the eyepiece 1608 (not shown), and the eyepiece 1608, move up and down as the user views the image (and the user moves with it), while Object 99 is stationary in a fixed position; however, movement of microscope system 1601 can introduce unwanted motion and/or vibration.

第十七圖為根據本發明的一些具體實施例之顯微鏡系統1701的側視剖面方塊圖,其使用光學路徑長度調整系統1740和物鏡系統1606與目鏡系統1608之間的反射鏡1751和1752,一起改變光學路徑長度來讓物件99的影像聚焦。在一些具體實施例中,光學路徑長度調整系統1740由例如第五A圖至第五F圖的系統501、第八A圖至第八F圖的系統801、第九A圖至第九F圖的系統901、第十A圖至第十D圖的系統1001或第十一圖的通用系統1101來實施。在一些具體實施例中,控制器1760用於在光學路徑長度調整系統1740中手動(使用來自使用者控制的輸入器件之信號,該使用者的眼睛標示為98)或自動(使用諸如業界內所熟知的自動聚焦回饋系統,諸如第7,126,098號美國專利案中的描述)調整內部光程長度,從而讓聚焦平面位於物件99上。在系統1701中,目鏡1608、物鏡1606和物件99彼此相對固定,而物鏡1606和目鏡1608之間的光學長度由可變光學路徑系統1740改變。當使用者的眼睛98正在觀看影像時,可變光學路徑系統1740由控制器1760(在一些具體實施例中為純機械角度調整 器,並且在其他具體實施例中,包含機電及/或光學機械系統,其根據電及/或光信號改變角度),從而為觀察者的眼睛98產生聚焦影像。 Figure seventeen is a side cross-sectional block diagram of a microscope system 1701 using optical path length adjustment system 1740 and mirrors 1751 and 1752 between objective system 1606 and eyepiece system 1608, in accordance with some embodiments of the present invention, together The optical path length is varied to bring the image of object 99 into focus. In some embodiments, the optical path length adjustment system 1740 consists of, for example, system 501 of Figures 5A-F, system 801 of Figures 8A-F, Figures 9A-9F The system 901 of FIG. 10, the system 1001 of FIG. 10 A to FIG. 10 D, or the general system 1101 of FIG. 11 is implemented. In some embodiments, the controller 1760 is used in the optical path length adjustment system 1740 either manually (using a signal from a user-controlled input device, the user's eye designated as 98) or automatically (using such Well-known autofocus feedback systems, such as described in US Pat. No. 7,126,098 ) adjust the internal optical path length so that the focal plane is on object 99 . In system 1701, eyepiece 1608, objective 1606, and object 99 are fixed relative to each other, while the optical length between objective 1606 and eyepiece 1608 is varied by variable optical path system 1740. While the user's eye 98 is viewing the image, the variable optical path system 1740 is adjusted by the controller 1760 (in some embodiments purely mechanically angled) device, and in other embodiments, include electromechanical and/or optomechanical systems that change angle in response to electrical and/or optical signals) to produce a focused image for the observer's eye 98.

第十八圖為根據本發明的一些具體實施例,顯微鏡系統1801的側視剖面方塊圖,該系統使用位於物鏡系統1606與數位相機系統1870之間的光學路徑長度調整系統1840,以改變光學路徑長度讓物件的影像聚焦,並且選擇性包含用於自動聚焦能力的控制器1860。在系統1801的一些具體實施例中,由數位相機1870產生的影像通過自動聚焦控制器1860分析,如此產生用於控制可變光學路徑系統1840的適當信號,從而產生用於在數位相機系統1870上清晰聚焦的適當路徑長度。在一些此具體實施例中,改變物件99內聚聚焦平面的垂直位置(相對於第十八圖),以在物件99的體積內不同聚焦平面上獲得複數個影像,並且以業界內已知的任何方式組合多個圖像,產生單個二維(2D)影像,其顯示三維(3D)物件99的各個部分,全聚焦,而其他具體實施例組合複數個影像以產生一3D影像,其可操縱來從不同視角向使用者顯示3D影像的視圖。 Figure 18 is a side cross-sectional block diagram of a microscope system 1801 using an optical path length adjustment system 1840 located between the objective lens system 1606 and the digital camera system 1870 to change the optical path, in accordance with some embodiments of the present invention The length focuses the image of the object and optionally includes a controller 1860 for autofocus capability. In some embodiments of the system 1801 , the images produced by the digital camera 1870 are analyzed by the autofocus controller 1860 , which generates appropriate signals for controlling the variable optical path system 1840 to generate the images for use on the digital camera system 1870 Appropriate path length for sharp focus. In some such embodiments, the vertical position (relative to Figure 18) of the cohesive focal plane of object 99 is changed to obtain a plurality of images at different focal planes within the volume of object 99, and as known in the art Combining multiple images in any way produces a single two-dimensional (2D) image that displays portions of a three-dimensional (3D) object 99, all in focus, while other embodiments combine multiple images to produce a 3D image that can be manipulated to show the user a view of the 3D image from different perspectives.

第十九圖為根據本發明的一些具體實施例,自動聚焦顯微鏡系統1901的側視剖面方塊圖,其使用物鏡系統1606與數位相機系統1970之間的光學路徑長度調整系統1940,以改變光學路徑長度來讓物件的影像聚焦。在一些具體實施例中,系統1901包含實現為如以上第五A圖至第十D圖所示具體實施例所描述和例示的旋轉倒反射器系統的可變光學路徑系統1940。這些系統的優點為僅使用平坦表面來調整光學路徑長度,而不會由於移動曲面表面,例如透鏡和曲面反射鏡,而導致光學路徑長度調整失真。在一些具體實施例中,例如第二圖、第五A圖至第五F圖、第六A圖至第六F圖和第九A圖至第九E圖所示,僅使用平面反射鏡,以最小化否則將由折射材料,特別是由彎曲折射材料引入的失真和像差,其將改變原始顯微鏡的光學設計。在本發明的一些具體實施例中,將可變光學路徑系統1940插入顯微鏡中的清晰光學路徑中,如此保留了大多數原始光學設計。 Figure nineteen is a side cross-sectional block diagram of an autofocus microscope system 1901 using an optical path length adjustment system 1940 between an objective lens system 1606 and a digital camera system 1970 to change the optical path, in accordance with some embodiments of the present invention Length to focus the image of the object. In some embodiments, system 1901 includes a variable optical path system 1940 implemented as a rotating retroreflector system as described and exemplified in the embodiments shown in FIGS. 5A-10D above. The advantage of these systems is that only flat surfaces are used to adjust the optical path length without distortion of the optical path length adjustment caused by moving curved surfaces such as lenses and curved mirrors. In some specific embodiments, such as those shown in Figures 2, 5A to 5F, 6A to 6F, and 9A to 9E, only flat mirrors are used, To minimize distortions and aberrations that would otherwise be introduced by refractive materials, especially curved refractive materials, which would alter the optical design of the original microscope. In some embodiments of the invention, the variable optical path system 1940 is inserted into the clear optical path in the microscope, thus preserving most of the original optical design.

在一些特定具體實施例中,第二圖、第五A圖至第五F圖、第六A圖至第六F圖和第九A圖至第九E圖所示的反射器使用振鏡馬達系統旋轉(此類振鏡馬達系統通常用於電腦磁碟驅動器系統等),可在定義的 角度範圍內進行高速旋轉。在這種情況下,顯微鏡的焦點可快速改變。在3D顯微鏡系統中,可將使用數位相機獲取的多個2D影像與變化的聚焦距離結合起來當成第三維度,並且可建立物件的3D影像。在本發明中可獲得的高速聚焦,與複數個影像中每個影像的高速2D影像採集一起,產生物件的即時3D影像。在物件99相對於所使用光波長在很大程度上是透明的或者是熒光的情況下,可以3D即時觀察物件99(例如,內部器官、血流等)。 In some specific embodiments, the reflectors shown in Figures 2, 5A-F, 6A-F, and 9A-E use galvo motors System rotation (such galvo motor systems are often used in computer disk drive systems, etc.), can be defined in High-speed rotation within the angular range. In this case, the focus of the microscope can change rapidly. In a 3D microscope system, multiple 2D images acquired using a digital camera can be combined with varying focus distances as a third dimension and a 3D image of the object can be created. The high-speed focusing attainable in the present invention, together with the high-speed 2D image acquisition of each of the plurality of images, produces a real-time 3D image of the object. Where the object 99 is largely transparent or fluorescent with respect to the wavelength of light used, the object 99 (eg, internal organs, blood flow, etc.) can be viewed in real time in 3D.

第二十圖為根據本發明的一些具體實施例,線上自動聚焦顯微鏡系統2001的側視剖面方塊圖,該系統使用在第一物鏡系統1606與第二物鏡系統2071之間的光學路徑長度調整系統2040,以在影像平面2090上產生一固定影像平面虛擬影像2099,並且選擇性包含顯微鏡子系統2080的第三物鏡系統2006。第二十圖顯示本發明的一具體實施例,其中在固定聚焦平面2090處生成靜止2D影像2099,以由具有物鏡2006的顯微鏡2080(例如光學顯微鏡、共聚焦顯微鏡、結構照明顯微鏡、相差顯微鏡或光片螢光顯微鏡)觀察。在系統2001中,兩物鏡1606和2071用作中繼透鏡,其間具有可變的光學路徑距離,以在控制器2060的控制下使用可變光學路徑系統2040來改變這兩透鏡之間的距離。隨著路徑長度的變化,物件99處的聚焦平面也發生變化,同時在系統2001的中間輸出處使像平面2090保持恆定。再次,包含物鏡1606和2071、光學路徑長度調整系統2040和控制器2060的可變光學路徑系統2041用來當成上文針對第十七圖、第十八圖或第十九圖所述系統之一中的顯微鏡。在一些具體實施例中,該可變光學路徑系統2041被製成為獨立的聚焦調整系統(例如可插入到任何常規或現有的顯微鏡系統中,否則將使用其他聚焦機構),其中固定像平面2090放置在顯微鏡的焦點處(僅示出其物鏡2006),產生用於觀看的中間光束2073。表格1顯示可變光學路徑系統2041的範例計算。 Figure 20 is a side cross-sectional block diagram of an online autofocus microscope system 2001 using an optical path length adjustment system between the first objective lens system 1606 and the second objective lens system 2071 according to some embodiments of the present invention 2040, to generate a fixed image plane virtual image 2099 on the image plane 2090, and optionally include the third objective lens system 2006 of the microscope subsystem 2080. Figure 20 shows an embodiment of the invention in which a still 2D image 2099 is generated at a fixed focal plane 2090 for scanning by a microscope 2080 having an objective 2006 (eg, an optical microscope, confocal microscope, structured illumination microscope, phase contrast microscope or light sheet fluorescence microscope). In system 2001, two objective lenses 1606 and 2071 are used as relay lenses with a variable optical path distance therebetween to vary the distance between these two lenses using variable optical path system 2040 under the control of controller 2060. As the path length changes, so does the focal plane at object 99, while keeping the image plane 2090 constant at the intermediate output of the system 2001. Again, variable optical path system 2041 comprising objective lenses 1606 and 2071, optical path length adjustment system 2040 and controller 2060 is used as one of the systems described above with respect to Figure 17, Figure 18 or Figure 19 microscope in . In some embodiments, the variable optical path system 2041 is made as a self-contained focus adjustment system (eg, pluggable into any conventional or existing microscope system, otherwise other focusing mechanisms would be used), where a fixed image plane 2090 is placed At the focal point of the microscope (only its objective 2006 is shown), an intermediate beam 2073 is produced for viewing. Table 1 shows example calculations for the variable optical path system 2041.

表格1

Figure 110104837-A0202-12-0030-1
Table 1
Figure 110104837-A0202-12-0030-1

在此計算中,使用標準的透鏡公式。選擇兩物鏡(1606和2071)的放大倍率均為25倍,此處的焦距為8mm。在距第二物鏡2071的固定像距為11.2mm的情況下,將光學路徑長度從100mm變更為94.182mm,將使物平面位置90從9mm變更為9.1mm。這允許聚焦平面90中的100um(0.1mm)變化,在光學路徑長度變化內變成5.818mm的變化。光學路徑長度的這種變化要求光學路徑長度調整系統2040內極小質量的旋轉倒反射器(例如,見第十五A圖至第十五i圖)或成對平行反射鏡(例如,見第九A圖至第九E圖)之最小動作,如上所述。對照之下,如通常所做,在平台或顯微鏡光學器件上移動物件涉及移動更大的質量,這可能產生振動並且速度很慢,使得生成物件99的即時3D影像非常具有挑戰性。 In this calculation, the standard lens formula is used. The magnifications of the two objective lenses (1606 and 2071) are chosen to be 25 times, and the focal length here is 8mm. When the fixed image distance from the second objective lens 2071 is 11.2 mm, changing the optical path length from 100 mm to 94.182 mm changes the object plane position 90 from 9 mm to 9.1 mm. This allows a 100um (0.1mm) change in the focal plane 90 to become a 5.818mm change within the optical path length change. This change in optical path length requires a very low mass rotating retroreflector within the optical path length adjustment system 2040 (eg, see Figures 15A-15i) or pairs of parallel mirrors (eg, see Figure 9 The minimum actions of Figure A to Figure E of the ninth) are as described above. In contrast, as is commonly done, moving an object on a stage or microscope optics involves moving a larger mass, which can vibrate and is slow, making generating an instant 3D image of object 99 very challenging.

第二十一A圖為根據本發明的一些具體實施例之直角顯微鏡光學路徑長度調整系統2101的側視剖面方塊圖,其使用第一物鏡系統1606與第二物鏡系統2108之間的一固定三反射鏡系統1520和可旋轉倒反射器1510。 21A is a side cross-sectional block diagram of a right-angle microscope optical path length adjustment system 2101 according to some embodiments of the present invention, which uses a fixed three Mirror system 1520 and rotatable retroreflector 1510.

第二十一B圖是從與第一方向成90度的第二方向觀察之直角顯微鏡光學路徑長度調整系統2101的端視剖面方塊圖。在一些具體實施例中,系統2101是本發明的具體實施例,其中旋轉倒反射器1510與固定三反射鏡系統(例如,諸如第十五A圖至第十五i圖所示的可旋轉倒反射器1510,在一些具體實施例中,使用振鏡馬達系統旋轉)一起與固定倒反射器1520(倒反射器1526和1527以及輸出反射鏡1528)組合形成可變光學路徑系統2161。在一些具體實施例中,旋轉倒反射器1510為手動驅動,而在其他具體實施例中,其使用諸如振鏡馬達之類的馬達來驅動,而在一些 具體實施例中,可用高轉速來驅動。在一些具體實施例中,輸入顯微鏡物鏡1606和輸出顯微鏡物鏡2108安裝到系統2161的外殼上,形成緊湊的組件,在一些具體實施例中,其被併入標準顯微鏡系統中。在其他具體實施例中,如第二十五圖所示,使用中繼透鏡(例如2521和2522)代替顯微鏡物鏡。 FIG. 21B is an end-view cross-sectional block diagram of the right-angle microscope optical path length adjustment system 2101 viewed from a second direction at 90 degrees to the first direction. In some embodiments, system 2101 is an embodiment of the present invention in which a rotating inverted reflector 1510 is combined with a fixed three-mirror system (eg, a rotatable inverted reflector such as the one shown in Figures 15A-15i). The reflector 1510, which in some embodiments is rotated using a galvo motor system, is combined with the fixed retro-reflector 1520 (inverted reflectors 1526 and 1527 and output mirror 1528) to form a variable optical path system 2161. In some embodiments, the rotating retroreflector 1510 is manually driven, while in other embodiments it is driven using a motor such as a galvo motor, and in some In a specific embodiment, a high rotational speed can be used for driving. In some embodiments, input microscope objective 1606 and output microscope objective 2108 are mounted to the housing of system 2161, forming a compact assembly, which, in some embodiments, is incorporated into a standard microscope system. In other embodiments, as shown in Figure 25, relay lenses (eg, 2521 and 2522) are used instead of microscope objectives.

前述的可變光學路徑長度系統可用於顯微鏡,其中物鏡平面可隨焦點移動而變化,如第二十三圖至第二十五圖所示。諸如共聚焦顯微鏡、螢光顯微鏡等的顯微鏡利用與位置有關的照明和成像,使得可通過將以不同焦深拍攝的多個2D影像組合來擷取物件的3D影像。為了產生此類3D物件的即時視訊影像,聚焦平面必須以視頻幀速度快速變化,這使得使用標準Z軸線性機械致動器和倒反射器的線性運動非常具有挑戰性,如上關於第二圖所述。在某些情況下,使用電子聚焦液體透鏡(例如,如上面引用的第8,400,558號美國專利案所述)來更改光學系統的焦距,並嘗試移動物件的聚焦平面;這些液體透鏡通常會產生不良的變形。 The aforementioned variable optical path length system can be used in microscopes where the objective lens plane can be changed as the focal point moves, as shown in Figures 23-25. Microscopes such as confocal microscopes, fluorescence microscopes, etc. utilize position-dependent illumination and imaging so that 3D images of objects can be captured by combining multiple 2D images taken at different depths of focus. To generate live video images of such 3D objects, the focal plane must change rapidly at the video frame rate, making linear motion using standard Z-axis linear mechanical actuators and retro-reflectors very challenging, as described above with respect to the second figure described. In some cases, electron focusing liquid lenses (eg, as described in the above-cited US Pat. No. 8,400,558) are used to change the focal length of the optical system and attempt to move the focal plane of the object; these liquid lenses often produce poor deformed.

在本發明的一些具體實施例中,使用高速振鏡馬達在一定角度範圍內移動、旋轉或掃描倒反射器,從而可以視訊幀速率進行聚焦。另外,在一些具體實施例中,僅使用平面反射鏡,從而消除失真和像差的可能性。 In some embodiments of the present invention, a high-speed galvo motor is used to move, rotate, or scan the retro-reflector over a range of angles to allow focusing at video frame rates. Additionally, in some embodiments, only flat mirrors are used, thereby eliminating the possibility of distortion and aberrations.

第二十二圖為根據本發明一些具體實施例之顯微鏡可變聚焦平面系統2201的端視剖面方塊圖。在一些具體實施例中,可變聚焦平面系統2201包含中繼透鏡2221和2222及鏡筒透鏡2229,以在成像器2250上形成影像。如第二十二圖所示,顯微鏡物鏡2206產生的影像使用中繼透鏡系統2225的兩中繼透鏡2221和2222中繼,如圖所示,這樣中繼後的影像將通過鏡筒透鏡2229聚焦到CCD(電荷耦合器件)或其他合適的電子相機2250上。在物件99的標稱位置處,放置在物鏡2206焦點處的物件99產生第一平行光束2241,該光束將由兩中繼透鏡2221、2222通過其間的聚焦反轉位置2220進行中繼,並在第二中繼透鏡2222的中間輸出處變成第二平行光束2242。然後,此平行光束2242將通過鏡筒透鏡2229成像到相機2250上。普通的傳統顯微鏡通常沒有中繼透鏡;而是將物鏡2206的輸出平行光束2241直接成像到鏡筒透鏡2229上。對於正常的中繼功能,距離2231和2232對應於透鏡2221和2222的焦距,其中距離2236=透鏡2221的焦 距2231,並且距離2372等於(=)透鏡2222的焦距2232。在一些具體實施例中,系統2201經過修改為在透鏡2221和2222之間提供可變的光學路徑長度(在第二十二圖中未示出,但是如下所述)。 FIG. 22 is an end-view cross-sectional block diagram of a microscope variable focus plane system 2201 according to some embodiments of the present invention. In some embodiments, variable focus plane system 2201 includes relay lenses 2221 and 2222 and barrel lens 2229 to form an image on imager 2250. As shown in Figure 22, the image generated by the microscope objective lens 2206 is relayed by the two relay lenses 2221 and 2222 of the relay lens system 2225, as shown in the figure, so that the relayed image will be focused by the tube lens 2229 onto a CCD (Charge Coupled Device) or other suitable electronic camera 2250. At the nominal position of the object 99, the object 99 placed at the focal point of the objective lens 2206 produces a first parallel beam 2241 which will be relayed by the two relay lenses 2221, 2222 through the focus reversal position 2220 in between, and at the first parallel light beam 2241. The intermediate output of the two relay lenses 2222 becomes the second parallel beam 2242 . This collimated beam 2242 will then be imaged onto the camera 2250 through the barrel lens 2229. Ordinary conventional microscopes typically do not have a relay lens; For normal relay function, distances 2231 and 2232 correspond to the focal lengths of lenses 2221 and 2222, where distance 2236 = focal length of lens 2221 Distance 2231, and distance 2372 are equal to (=) the focal length 2232 of lens 2222. In some embodiments, system 2201 is modified to provide a variable optical path length between lenses 2221 and 2222 (not shown in Figure 22, but described below).

第二十三圖為根據本發明一些具體實施例,顯微鏡的可變聚焦平面光學配置2301之側視方塊圖。當物件99的位置(如第二十二圖所示)沿著輸入光軸2208如第二十三圖所示移動時,位置99.2對應於產生平行輸出光束2312的物鏡2206之焦點。當物件97內的意欲聚焦平面更靠近物鏡時,例如在位置99.3處,輸出光束將為發散光束2313。當物件97內的意欲聚焦平面在位置99.1處距離物鏡更遠時,輸出光束將為收斂光束2311。在物件97較厚的系統中,可將物件97中的三個聚焦平面位置99.1、99.2和99.3視為物件97中的不同幾何平面。 Figure 23 is a side view block diagram of a variable focus planar optics configuration 2301 of a microscope in accordance with some embodiments of the present invention. Position 99.2 corresponds to the focal point of objective 2206 producing parallel output beam 2312 when the position of object 99 (as shown in Figure 22) is moved along input optical axis 2208 as shown in Figure 23. When the intended focal plane within object 97 is closer to the objective, eg at position 99.3, the output beam will be diverging beam 2313. When the intended focal plane within object 97 is further from the objective at position 99.1, the output beam will be convergent beam 2311. In a system where the article 97 is thicker, the three focal plane positions 99.1 , 99.2 and 99.3 in the article 97 can be considered as distinct geometrical planes in the article 97 .

第二十四A圖為雙透鏡光學配置2401的側視剖面方塊圖,該配置具有一內含平行射線的輸入光束2410和一內含平行射線的輸出光束2442。在一些具體實施例中,第二十三圖中具有物件99(或物件97內的聚焦平面)在位置99.2內的物鏡2206之平行射線光束2312被當成平行射線輸入光束2410。 Figure 24A is a side cross-sectional block diagram of a dual-lens optical configuration 2401 having an input beam 2410 containing parallel rays and an output beam 2442 containing parallel rays. In some embodiments, collimated ray beam 2312 of objective 2206 having object 99 (or the focal plane within object 97 ) in position 99.2 in Figure 23 is treated as collimated ray input beam 2410 .

第二十四B圖為雙透鏡光學中繼配置2402的側視剖面方塊圖,該配置具有一內含收斂射線的輸入光束2410’和一內含平行射線的輸出光束2442。在一些具體實施例中,第二十三圖中具有物件99(或物件97內的聚焦平面)在位置99.1內的物鏡2206之收斂射線光束2311被當成輸入光束2410。 Figure 24B is a side cross-sectional block diagram of a two-lens optical relay configuration 2402 having an input beam 2410' containing convergent rays and an output beam 2442 containing parallel rays. In some embodiments, the converging ray beam 2311 of the objective lens 2206 having object 99 (or the focal plane within object 97 ) in position 99.1 in the twenty-third figure is treated as input beam 2410 .

第二十四C圖為雙透鏡光學中繼配置2403的側視剖面方塊圖,該配置具有一內含發散射線的輸入光束2410’和一內含平行射線的輸出光束2442。在一些具體實施例中,第二十三圖中具有物件99(或物件97內的聚焦平面)在位置99.3內的物鏡2206之發散射線光束2313被當成輸入光束2410。 Figure 24C is a side cross-sectional block diagram of a dual-lens optical relay configuration 2403 having an input beam 2410' containing diverging rays and an output beam 2442 containing parallel rays. In some embodiments, the divergent line beam 2313 of the objective lens 2206 having object 99 (or the focal plane within object 97 ) in position 99.3 in the twenty-third figure is treated as input beam 2410 .

當第二十四A圖、第二十四B圖和第二十四C圖的光束2311、2312或2313進入中繼透鏡系統2225時,第一透鏡2421的焦距2431對於每個光束將不同。對於平行光束2312,焦距將是2431,這將與先前針 對第二十二圖討論的2231相同。另一方面,收斂光束2311將產生較短的焦距2431’,如第二十四B圖所示。發散光束2313將產生較長的焦距2431”,如第二十四C圖所示。為了使透鏡2422的焦點保持在相同位置,以使中繼輸出光束2442平行並且所得影像始終保持聚焦,透鏡2421和透鏡2422之間的光學距離必須更改以適應在可能焦距範圍2360內,在位置99.1、99.2和99.3處對象的焦距變化(請參見第二十三圖)。在傳統顯微鏡中,光學距離的這種改變通常是通過改變物鏡和第一中繼透鏡的位置來完成。在本發明的聚焦系統中,中繼透鏡和物鏡保持就定位。而是,使用如上所述的可變路徑系統具體實施例之一來改變中繼透鏡之間的光學距離。第25圖顯示這種系統的實現。 When the beams 2311 , 2312 or 2313 of Figure 24A, Figure 24B and Figure 24C enter the relay lens system 2225, the focal length 2431 of the first lens 2421 will be different for each beam. For a parallel beam of 2312, the focal length would be 2431, which would be the same as the previous pin Same for 2231 discussed for Figure 22. On the other hand, the converging beam 2311 will produce a shorter focal length 2431', as shown in Figure 24B. The diverging beam 2313 will produce a longer focal length 2431" as shown in Figure 24C. To keep the focal point of the lens 2422 in the same position so that the relay output beam 2442 is parallel and the resulting image always remains in focus, the lens 2421 The optical distance from the lens 2422 must be changed to accommodate the focal length variation of the object at positions 99.1, 99.2 and 99.3 within the range of possible focal lengths 2360 (see Figure 23). In a conventional microscope, this difference in optical distance This kind of change is usually accomplished by changing the position of the objective lens and the first relay lens. In the focusing system of the present invention, the relay lens and the objective lens remain positioned. Instead, use the variable path system specific embodiment as described above. One to change the optical distance between the relay lenses. Figure 25 shows the implementation of such a system.

第二十五圖為直角顯微鏡光學路徑長度調整系統2501的側視剖面方塊圖。在一些具體實施例中,系統2501包含可變光學路徑長度中繼透鏡子系統2540,其包含一固定的三反射鏡系統2520和一介於第一中繼透鏡2521與第二中繼透鏡2522之間的可旋轉倒反射器2510。在一些具體實施例中,根據本發明的一些實施例,系統2501亦包含物鏡2506,其收集來自物件97的體積內的焦距範圍(例如,如第二十三圖所示的焦距2321、2322...2323,以在聚焦平面99.1、99.2...99.3處獲得影像)之範圍2360,及包含將影像聚焦在相機成像器2527上的鏡筒透鏡2529(或其他合適的聚焦光學器件)。中繼透鏡2521和2522形成系統模組2540的輸入和輸出中繼透鏡(在各種具體實施例中,其使用類似於第二十一A圖第二十一B圖的2101之系統,或前述任何其他光學路徑調整機制及/或方法之適當修改來實現)。該模組2540可通過其物鏡2506、鏡筒透鏡2529以及成像器2570插入到傳統顯微鏡系統中。當物件97沿著聚焦平面2321、2322...2323的焦移範圍2360移動時,在光學路徑長度中繼透鏡子系統2540內部對應調整光學路徑長度,使得CCD 2527上與想要聚焦平面2321、2322...2323相對應的影像保持聚焦。在其他具體實施例中,物件97保持在固定位置,並且調整聚焦平面以獲得物件97中不同深度的剖面影像。 Figure 25 is a side cross-sectional block diagram of the optical path length adjustment system 2501 for a right-angle microscope. In some embodiments, system 2501 includes a variable optical path length relay lens subsystem 2540 that includes a fixed three-mirror system 2520 and an intervening first relay lens 2521 and second relay lens 2522 The rotatable inverted reflector 2510. In some embodiments, according to some embodiments of the invention, system 2501 also includes objective lens 2506 that collects a range of focal lengths from within the volume of object 97 (eg, focal lengths 2321, 2322. .. 2323 to obtain an extent 2360 of the image at focus planes 99.1, 99.2... Relay lenses 2521 and 2522 form the input and output relay lenses of system module 2540 (in various embodiments, which use a system similar to 2101 of FIG. 21A, FIG. 21B, or any of the foregoing Other optical path adjustment mechanisms and/or appropriate modifications of the method are implemented). The module 2540 can be inserted into a conventional microscope system through its objective lens 2506, tube lens 2529, and imager 2570. When the object 97 moves along the focal shift range 2360 of the focal planes 2321, 2322...2323, the optical path length is correspondingly adjusted inside the optical path length relay lens subsystem 2540, so that the CCD 2527 is on the The images corresponding to 2322...2323 remain in focus. In other embodiments, the object 97 is held in a fixed position and the focal plane is adjusted to obtain cross-sectional images of the object 97 at different depths.

在一些具體實施例中,提供可選的螢光激發光源(例如,用於螢光顯微鏡)或其他「正面」照明2551,其形成激發光束2555,並且在 這種具體實施例中,反射器2528為在激發光束2555的波長下具有高透射率(例如,以自紫光雷射的405nm光在某些物件或物件帶有螢光標記的部分中引起螢光發射),並且反射器2528在物件97的螢光波長上高度反射物件光。在一些此具體實施例中,由物件97散射或反射的大部分激發光(在360度角上)遠離物鏡2508的前透鏡元件行進,而不是像第二十七圖所示在透射螢光照明的情況下,直接投射到物鏡中。第二十五圖中的這種效果有時被稱為「正面」照明,對於厚樣本特別有用。 In some embodiments, an optional fluorescence excitation light source (eg, for fluorescence microscopy) or other "frontal" illumination 2551 is provided, which forms an excitation beam 2555 and is In this embodiment, the reflector 2528 is highly transmissive at the wavelength of the excitation beam 2555 (eg, 405 nm light from a violet laser induces fluorescence in certain objects or portions of objects bearing fluorescent markings) emission), and reflector 2528 highly reflects object light at the fluorescent wavelengths of object 97. In some such embodiments, most of the excitation light scattered or reflected by object 97 (at a 360 degree angle) travels away from the front lens element of objective 2508, rather than in transmitted fluorescent illumination as shown in Figure 27 is projected directly into the objective lens. This effect in the twenty-fifth image is sometimes referred to as "frontal" lighting, and is especially useful for thick samples.

第二十六圖為根據本發明一些具體實施例,光學路徑長度調整系統2601的側視方塊圖。在一些具體實施例中,可旋轉倒反射器包含三個平面反射鏡,每一者彼此正交,其中選擇旋轉軸,使得後向反射光束的光軸在平面內橫向移動,並且在固定倒反射器2620內沿直線的點處反射。在本說明書闡述的任何具體實施例中,靜止倒反射器2620選擇性由在入射面和出射面上具有抗反射塗層的直角稜鏡實現,並且在與入射光束與反射光束夾45度的直角正交面處為內反射。 FIG. 26 is a side block diagram of an optical path length adjustment system 2601 according to some embodiments of the present invention. In some embodiments, the rotatable retroreflector includes three planar mirrors, each orthogonal to each other, wherein the axis of rotation is chosen such that the optical axis of the retroreflected beam is shifted laterally in the plane, and the fixed retroreflector reflect at points along the line within the filter 2620. In any of the specific embodiments set forth in this specification, the stationary retroreflector 2620 is selectively implemented by a right-angle mirror with anti-reflection coatings on the entrance and exit faces, and at a right angle of 45 degrees between the incident beam and the reflected beam Orthogonal faces are internal reflections.

第二十七圖為根據本發明一些具體實施例,在其聚光透鏡系統2750內包含光學路徑長度調整系統2754的顯微鏡系統2701之側視方塊圖。在一些具體實施例中,顯微鏡系統2701包含一顯微鏡(例如,第二十五圖的顯微鏡系統2501,選擇性具有或不具有正面照明源2551,或任何其他可使用聚光鏡的顯微鏡),並附加有改進的聚光透鏡系統2750。聚光透鏡通常用於顯微鏡中照明源(例如照明源2751)和要成像的物件(例如物件97)之間,其中來自顯微鏡系統2701中照明源2751的光穿過選擇性光闌(未顯示),並且由聚光器2750的一或多個透鏡聚焦作為收斂光線朝著物件97,並且在穿過物件97之後,以自光束的光發散到物鏡2506的前透鏡中,在該處如上所述聚焦光束。在一些具體實施例中,本發明的光學路徑長度調整子系統2754用於聚光器光學器件2752中,為聚光燈提供可變的收斂角(例如2721、2722...2723)。在各種具體實施例中,聚光透鏡系統2750構造成提供明場照明、暗場照明、相襯照明、螢光激發照明或業界內熟知的其他類型聚光照明。在一些具體實施例中,聚光透鏡系統2750進一步包含暗場光闌或各種尺寸的相位環。在一些具體實施例中,光學路徑長度調整子 系統2754用於使聚光透鏡系統2750的數值孔徑與物鏡2506的數值孔徑匹配。 Figure 27 is a side block diagram of a microscope system 2701 that includes an optical path length adjustment system 2754 within its condenser lens system 2750, according to some embodiments of the present invention. In some embodiments, microscope system 2701 includes a microscope (eg, microscope system 2501 of Figure 25, optionally with or without front-side illumination source 2551, or any other microscope that can use a condenser), with the addition of Improved condenser lens system 2750. A condenser lens is typically used in a microscope between an illumination source (eg, illumination source 2751 ) and the object to be imaged (eg, object 97 ), where light from illumination source 2751 in microscope system 2701 passes through a selective diaphragm (not shown) , and is focused by one or more lenses of condenser 2750 toward object 97 as a convergent ray, and after passing through object 97, as light from the beam diverges into the front lens of objective 2506, where described above Focus the beam. In some embodiments, the optical path length adjustment subsystem 2754 of the present invention is used in the condenser optics 2752 to provide variable convergence angles (eg, 2721, 2722...2723) for the spotlight. In various embodiments, the condenser lens system 2750 is configured to provide brightfield illumination, darkfield illumination, phase contrast illumination, fluorescent excitation illumination, or other types of spotlight illumination well known in the art. In some embodiments, the condenser lens system 2750 further includes a dark field diaphragm or phase rings of various sizes. In some embodiments, the optical path length adjuster System 2754 is used to match the numerical aperture of condenser lens system 2750 to the numerical aperture of objective lens 2506.

在一些具體實施例中,任何前述光學路徑長度調整系統的旋轉反射鏡或稜鏡部分在角度範圍內以來回角度運動(在此稱為「掃描」運動)移動,該範圍介於1度到180度之間,或者介於1度到45度之間,如第四圖所述,或者其他合適的角度範圍(例如,在物件內的不同聚焦平面上獲得複數個影像),或自動聚焦到特定聚焦平面所需之特定選擇角度;而在其他具體實施例中,前述任何系統的旋轉反射鏡或稜鏡部分圍繞一或多個完整旋轉(在本說明書稱為「旋轉」運動)移動,使得數位相機等捕捉一物件內的不同聚焦平面的複數個影像。 In some embodiments, the rotating mirror or mirror portion of any of the foregoing optical path length adjustment systems is moved in a back-and-forth angular motion (referred to herein as a "scanning" motion) within an angular range from 1 degree to 180 degrees degrees, or between 1 and 45 degrees, as described in Figure 4, or other suitable angular ranges (e.g. to acquire multiple images at different focal planes within the object), or autofocus to a specific the particular chosen angle required for the focal plane; and in other embodiments, the rotating mirror or swivel portion of any of the foregoing systems is moved about one or more complete rotations (referred to in this specification as "rotational" movements) such that the digital A camera or the like captures multiple images of different focal planes within an object.

在一些具體實施例中,本發明提供一第一光學系統,該系統包含:一第一光束偏轉總成,其可旋轉到複數個不同角度並可操作耦接成接收一進入該光學路徑長度調整系統的輸入光束(例如第五A圖至第五F圖的光束531、第八A圖至第八F圖的光束831、第九A圖至第九E圖的光束931、第十A圖至第十D圖的光束1031、第十五A圖至第十五i圖的光束1531),該光束沿通過一定義輸入點的一輸入光軸傳播,並且形成與該輸入光束平行(第八A圖至第八F圖的光束833、第九A圖至第九E圖的光束933或第十A圖至第十D圖的光束1033)或反平行(例如第五A圖至第五F圖的光束533或第十五A圖至第十五i圖的光束1533)的一「第一」中間光束(例如第五A圖至第五F圖的光束533、第八A圖至第八F圖的光束833、第九A圖至第九E圖的光束933、第十A圖至第十D圖的光束1033或第十五A圖至第十五i圖的光束1533);及一第二光學總成,其相對於至該光學路徑長度調整系統的輸入光束處於固定位置和方位,並且可操作耦接成接收該第一中間光束,並形成與該第一中間光束反平行(例如第五A圖至第五F圖的光束535、第八A圖至第八F圖的光束835、第九A圖至第九E圖的光束935、第十A圖至第十D圖的光束1035或第十五A圖至第十五i圖的光束1535)並從該第一中間光束橫向偏移的一「第二」中間光束,其中該第一光束偏轉總成可操作耦接成接收該第二中間光束,並形成沿著一輸出光軸傳播的一輸出光束(例如第五A圖至第五F圖的光束 537、第八A圖至第八F圖的光束837、第九A圖至第九E圖的光束937、第十A圖至第十D圖的光束1037或第十五A圖至第十五i圖的光束1537),該輸出光軸通過定義的輸出點並隨該第一光束偏轉組件旋轉到複數個不同角度之任一者以改變定義的輸入點與定義的輸出點間之光學路徑長度時,維持在固定位置與角度方位處。 In some embodiments, the present invention provides a first optical system comprising: a first beam deflection assembly rotatable to a plurality of different angles and operatively coupled to receive a length adjustment into the optical path The input beams of the system (for example, beam 531 in Figures 5A to F, beams 831 in Figures 8A through F, beams 931 in Figures 9A through E, and beams in Figures 10A through 10A Beam 1031 of Figure 10D, beam 1531 of Figures 15A to 15i), the beam propagates along an input optical axis through a defined input point and is formed parallel to the input beam (eighth A Beam 833 in Figures 8 through F, beam 933 in Figures 9 A through E, or beam 1033 in Figures 10 A through D) or anti-parallel (eg, Figures 5 A through F) a "first" intermediate beam (e.g., beam 533 of Figures 5A-F, Figures 8A-F beam 833 of Figures 9A to E, beam 1033 of Figures 10A to D or beam 1533 of Figures 15A to 15i); and a first two optical assemblies in a fixed position and orientation relative to the input beam to the optical path length adjustment system and operably coupled to receive the first intermediate beam and form antiparallel to the first intermediate beam (eg, the first intermediate beam) Beam 535 from Figures 5A to F, Beam 835 from Figures 8A to F, Beam 935 from Figures 9A to E, and beam 1035 from Figures 10A to 10D or beam 1535 of Figures 15A-i) and a "second" intermediate beam laterally offset from the first intermediate beam, wherein the first beam deflection assembly is operatively coupled to receive the The second intermediate beam forms an output beam propagating along an output optical axis (eg, the beams in Figures 5A to 5F) 537, Beam 837 of Figures 8 A to F, Beam 937 of Figures 9 A to E, Beam 1037 of Figures 10 A to D or Figures 15 A to 15 i beam 1537), the output optical axis passes through a defined output point and rotates with the first beam deflecting component to any of a plurality of different angles to vary the optical path length between the defined input point and the defined output point , maintained at a fixed position and angular orientation.

在第一系統的一些具體實施例中,第一光束偏轉總成包含一對正交平面反射鏡,其構造成彼此以固定關係一起旋轉,以改變光學路徑長度。 In some embodiments of the first system, the first beam deflection assembly includes a pair of orthogonal planar mirrors configured to rotate together in a fixed relationship to each other to vary the optical path length.

在第一系統的一些具體實施例中,第一光束偏轉總成包含一對平行平面反射鏡,其構造成彼此以固定關係一起旋轉,以改變光學路徑長度。 In some embodiments of the first system, the first beam deflection assembly includes a pair of parallel plane mirrors configured to rotate together in a fixed relationship to each other to vary the optical path length.

在第一系統的一些具體實施例中,該第一光束偏轉總成包含一透明板,該板具有一透明第一面和一平行於該第一面的透明第二面,其中到該光學路徑長度調整系統的該輸入光束通過該第一面傳播到該透明板中,該第一中間光束通過該第二面從該透明板中傳播出來,該第二中間光束通過該第二面傳播到該透明板中,該輸出光束通過該第一面從該透明板中傳播出來,並且該透明板構造成旋轉以改變光學路徑長度。 In some embodiments of the first system, the first beam deflection assembly includes a transparent plate having a transparent first side and a transparent second side parallel to the first side, wherein the optical path to the The input beam of the length adjustment system propagates into the transparent plate through the first face, the first intermediate beam propagates out of the transparent plate through the second face, and the second intermediate beam propagates through the second face into the transparent plate In a transparent plate, the output beam propagates out of the transparent plate through the first face, and the transparent plate is configured to rotate to vary the optical path length.

在第一系統的一些具體實施例中,該第一光束偏轉總成包含一透明平行四邊形板,該板具有一透明第一面和一平行於該第一面的透明第二面,以與該第一面成銳角取向的一內反射第三面,及一平行於該第三面的內反射第四面,其中至該光學路徑長度調整系統的該輸入光束通過該第一面傳播進入該透明板,然後從該第三面朝向該第四面反射,然後從該第四面朝該第二面反射,以使該第一中間光束通過該第二面從該透明板傳播出去,該第二中間光束通過該第二面傳播進入該透明板,然後從該第四面朝向該第三面反射,然後從該第三面朝向該第一面反射,以使該輸出光束通過該第一面從該透明面傳播出去,並且該透明平行四邊形板構造成旋轉以改變光學路徑長度。 In some embodiments of the first system, the first beam deflection assembly includes a transparent parallelogram plate having a transparent first side and a transparent second side parallel to the first side to interface with the An internally reflective third facet with the first facet oriented at an acute angle, and an internally reflective fourth facet parallel to the third facet, wherein the input beam to the optical path length adjustment system propagates through the first facet into the transparent plate, then reflected from the third face towards the fourth face, and then from the fourth face towards the second face, so that the first intermediate beam propagates out of the transparent plate through the second face, the second The intermediate beam propagates into the transparent plate through the second face, and is then reflected from the fourth face towards the third face, and then from the third face towards the first face, so that the output beam passes through the first face from the The transparent surface propagates out, and the transparent parallelogram plate is configured to rotate to change the optical path length.

在第一系統的一些具體實施例中,該第二光學總成包含構造為倒反射器的一對正交平面反射鏡。 In some embodiments of the first system, the second optical assembly includes a pair of orthogonal planar mirrors configured as retroreflectors.

在第一系統的一些具體實施例中,該第二光學總成包含一稜鏡,其具有複數個內反射面,其中該稜鏡構造為一倒反射器。 In some embodiments of the first system, the second optical assembly includes a mirror having a plurality of internal reflection surfaces, wherein the mirror is configured as an inverted reflector.

第一系統的一些具體實施例更包含:一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;及一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收輸入信號並通過基於該輸入信號改變光學路徑長度來調整該光學系統的焦點。 Some embodiments of the first system further include: an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; and a focus A controller operatively coupled to the angle adjustment actuator and configured to receive an input signal and adjust the focus of the optical system by changing the optical path length based on the input signal.

在第一系統的一些具體實施例中,該輸入信號基於從人類使用者接收的手動輸入。 In some embodiments of the first system, the input signal is based on manual input received from a human user.

第一系統的一些具體實施例更包含:一電子成像器,其中該輸入信號為基於從來自該電子成像器的數位信號所取得之自動聚焦信號。 Some embodiments of the first system further include: an electronic imager, wherein the input signal is based on an autofocus signal obtained from a digital signal from the electronic imager.

第一系統的一些具體實施例更包含:輸入聚焦光學器件,其沿該輸入光軸位於定義的輸入點,並構造成在該光學路徑長度調整系統內具有一焦點位置,及輸出聚焦光學器件,其沿該輸出光軸位於定義的輸出點,並構造成在該光學路徑長度調整系統內具有一焦點位置,其中該光學路徑長度調整系統構造成通過調整該定義的輸入點與該定義的輸出點間之該光學路徑長度,以形成當成一平行輸出光束的該輸出光束,以補償該輸入光束到該光學路徑長度調整系統的收斂或發散。 Some embodiments of the first system further include: input focusing optics located at a defined input point along the input optical axis and configured to have a focus position within the optical path length adjustment system, and output focusing optics, It is located at a defined output point along the output optical axis and is configured to have a focus position within the optical path length adjustment system, wherein the optical path length adjustment system is configured to adjust the defined input point with the defined output point The optical path lengths are separated to form the output beam as a parallel output beam to compensate for the convergence or divergence of the input beam to the optical path length adjustment system.

在第一系統的一些具體實施例中,該輸入聚焦光學器件包含一第一中繼透鏡,並且該輸出聚焦光學器件包含一第二中繼透鏡,並且該光學系統更包含:一電子成像器;及一聚焦透鏡,其構造成接收該平行輸出光束並在該電子成像器上形成一聚焦影像。 In some embodiments of the first system, the input focusing optics includes a first relay lens, and the output focusing optics includes a second relay lens, and the optical system further includes: an electronic imager; and a focusing lens configured to receive the parallel output beam and form a focused image on the electronic imager.

第一系統的一些具體實施例更包含:一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成聚集一物件的光並形成該輸入光束到該光學路徑長度調整系統;一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;一目鏡,其構造成接收該輸出光束並允許放大檢視該物件的一虛擬影像;及一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收一聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 Some embodiments of the first system further include: a microscope objective located at the defined input point along the input optical axis and configured to focus light from an object and form the input beam to the optical path length adjustment system; an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; an eyepiece configured to receive the output beam and allow magnified viewing a virtual image of the object; and a focus controller operably coupled to the angle adjustment actuator and configured to receive a focus adjustment signal and adjust the optical system by changing the optical path length based on the focus adjustment signal Focus.

第一系統的一些具體實施例更包含:一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成形成該輸入光束到該光學路徑長度調整系統;一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;一電子成像器,其沿著該輸出光軸位於該定義的輸出點,並且可操作耦接成接收該輸出光束並產生一聚焦調整信號;及一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收該聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 Some embodiments of the first system further include: a microscope objective located at the defined input point along the input optical axis and configured to form the input beam to the optical path length adjustment system; an angle adjustment actuator , which is operatively coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; an electronic imager located at the defined output point along the output optical axis, and operatively coupled to receive the output beam and generate a focus adjustment signal; and a focus controller operably coupled to the angle adjustment actuator and configured to receive the focus adjustment signal and to pass the focus adjustment signal based on the focus adjustment signal Change the optical path length to adjust the focus of the optical system.

第一系統的一些具體實施例更包含:一第一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成聚集來自一物件的光,以形成該輸入光束到該光學路徑長度調整系統;一第二顯微鏡物鏡,其沿著該輸出光軸位於該定義的輸出點,並且構造成接收來自該光學路徑長度調整系統的該輸出光束,並且形成該物件的一虛擬影像;一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;及一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收一聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 Some embodiments of the first system further include: a first microscope objective located at the defined input point along the input optical axis and configured to focus light from an object to form the input beam to the optical path a length adjustment system; a second microscope objective located at the defined output point along the output optical axis and configured to receive the output beam from the optical path length adjustment system and form a virtual image of the object; a an angle adjustment actuator operatively coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; and a focus controller operatively coupled to the angle adjustment an actuator and configured to receive a focus adjustment signal and adjust the focus of the optical system by changing the optical path length based on the focus adjustment signal.

在一些具體實施例中,本發明提供一種用於對物件成像的顯微鏡,該顯微鏡具有一光學路徑長度,該顯微鏡包含:一物鏡,其形成一輸入光束;及一光學路徑長度調整系統,其可操作耦接成接收該輸入光束,並具有通過其中的一選擇性可調整光學路徑長度,其中該物鏡和該物件彼此相對保持靜止,而該光學路徑長度由該光學路徑長度調整系統改變,使得在對該物件成像時,該光學路徑長度調整系統選擇性改變該光學路徑長度,以產生該物件的聚焦影像。 In some embodiments, the present invention provides a microscope for imaging an object, the microscope having an optical path length, the microscope comprising: an objective lens that forms an input beam; and an optical path length adjustment system that can operatively coupled to receive the input beam and have a selectively adjustable optical path length therethrough, wherein the objective lens and the object remain stationary relative to each other, and the optical path length is varied by the optical path length adjustment system such that in When imaging the object, the optical path length adjustment system selectively changes the optical path length to generate a focused image of the object.

該顯微鏡的一些具體實施例更包含:一目鏡,其中當通過該光學路徑長度調整系統改變該物鏡與目鏡之間的光學路徑長度時,該目鏡、該物鏡和該物件彼此相對保持靜止。 Some embodiments of the microscope further include: an eyepiece, wherein the eyepiece, the objective and the object remain stationary relative to each other when the optical path length between the objective and the eyepiece is changed by the optical path length adjustment system.

該顯微鏡的一些具體實施例更包含:一電子相機,其中當通過該光學路徑長度調整系統改變該物鏡與相機之間的光學路徑長度時,該 電子相機、該物鏡和該物件彼此相對保持靜止。 Some embodiments of the microscope further include: an electronic camera, wherein when the optical path length between the objective lens and the camera is changed by the optical path length adjustment system, the The electronic camera, the objective lens and the object remain stationary relative to each other.

顯微鏡的一些具體實施例更包含:一第一中繼透鏡,其可操作耦接成接收來自該物鏡的該輸入光束,其中該第一中繼透鏡在該光學路徑長度調整系統內部具有該第一中繼透鏡的焦點;一第二中繼透鏡,其可操作耦接成接收來自該光學路徑長度調整系統的一光束,其中該第二中繼透鏡在該光學路徑長度調整系統內部具有該第二中繼透鏡的焦點;一相機聚焦透鏡,其可操作耦接成接收來自該第二中繼透鏡的光束;及一電子相機,其可操作耦接成接收來自該第二中繼透鏡的該物件之聚焦影像,其中該相機、該物鏡、該第一中繼透鏡、該第二中繼透鏡和該物件彼此相對保持靜止,而在該物鏡與相機之間的該光學路徑長度通過該光學路徑長度調整系統改變。 Some embodiments of the microscope further include: a first relay lens operably coupled to receive the input beam from the objective lens, wherein the first relay lens has the first relay lens inside the optical path length adjustment system the focal point of the relay lens; a second relay lens operably coupled to receive a light beam from the optical path length adjustment system, wherein the second relay lens has the second relay lens inside the optical path length adjustment system the focal point of the relay lens; a camera focusing lens operably coupled to receive the light beam from the second relay lens; and an electronic camera operably coupled to receive the object from the second relay lens the focused image, wherein the camera, the objective lens, the first relay lens, the second relay lens and the object remain stationary relative to each other, and the optical path length between the objective lens and the camera passes through the optical path length Adjustment system changes.

在一些具體實施例中,該電子相機構造成產生該物件的複數個數位影像,其中該等複數個數位影像之每一者位於該物件內的複數個不同聚焦平面之一者處,其中該等複數個不同聚焦平面的位置由該光學路徑長度調整系統中的複數個不同光學路徑長度的對應一者確定。 In some embodiments, the electronic camera is configured to generate a plurality of digital images of the object, wherein each of the plurality of digital images is located at one of a plurality of different focal planes within the object, wherein the The positions of the plurality of different focal planes are determined by corresponding ones of the plurality of different optical path lengths in the optical path length adjustment system.

在一些具體實施例中,本發明提供第二光學系統,其包含:一光束偏轉器,其構造成在至少一第一角度範圍內旋轉,其中該第一光束偏轉器接收沿著一輸入光束軸傳播的一輸入光束,並形成沿著一第一中間光束軸沿著一第一方向傳播的一第一中間光束,並且其中該第一中間光束軸平行於該輸入光束軸,並且可基於該光束偏轉器的旋轉角度方位,通過一可變橫向偏移與該輸入光束軸分開;一倒反射器,其中該倒反射器接收該第一中間光束並形成沿著第二中間光束軸傳播的一第二中間光束,並且其中該第二中間光束軸平行於該第一中間光束軸並與之橫向偏離,其中該第二中間光束沿著該第二中間光束軸線沿著與該第一方向相反的第二方向傳播進入該光束偏轉器,從而該光束偏轉器形成靜止的輸出光束,而不管該光束偏轉器的旋轉角度方位如何變化,其中該輸出光束相對於該輸入光束具有可變光學路徑長度,並且其中該光學路徑長度基於該光束偏轉器的旋轉角度方位。 In some embodiments, the present invention provides a second optical system comprising: a beam deflector configured to rotate over at least a first angular range, wherein the first beam deflector receives a beam along an input beam axis propagating an input beam and forming a first intermediate beam propagating along a first direction along a first intermediate beam axis, and wherein the first intermediate beam axis is parallel to the input beam axis, and can be based on the beam the rotational angular orientation of the deflector, separated from the input beam axis by a variable lateral offset; an inverted reflector, wherein the inverted reflector receives the first intermediate beam and forms a first intermediate beam propagating along the second intermediate beam axis two intermediate beams, and wherein the second intermediate beam axis is parallel to and laterally offset from the first intermediate beam axis, wherein the second intermediate beam axis is along the second intermediate beam axis along the second intermediate beam axis opposite the first direction Bidirectional propagation enters the beam deflector such that the beam deflector forms a stationary output beam regardless of the rotational angular orientation of the beam deflector, wherein the output beam has a variable optical path length relative to the input beam, and wherein the optical path length is based on the rotational angular orientation of the beam deflector.

在一些具體實施例中,第二光學系統為一顯微鏡系統。 In some embodiments, the second optical system is a microscope system.

在一些具體實施例中,第二光學系統為一含有視訊捕捉成像器的顯微鏡系統。 In some embodiments, the second optical system is a microscope system including a video capture imager.

在一些具體實施例中,第二光學系統為一含有視訊捕捉成像器的顯微鏡系統,並且其中該顯微鏡系統構造成調整該光學路徑長度,以選擇被成像物件內的複數個連續聚焦平面位置,並且其中該視訊捕捉成像器構造成捕捉複數個影像,其中該等複數個影像之每一影像對應於被成像物件內的複數個連續聚焦平面位置中之對應一者。 In some embodiments, the second optical system is a microscope system including a video capture imager, and wherein the microscope system is configured to adjust the optical path length to select a plurality of consecutive focal plane positions within the imaged object, and Wherein the video capture imager is configured to capture a plurality of images, wherein each image of the plurality of images corresponds to a corresponding one of a plurality of consecutive focal plane positions within the imaged object.

在一些具體實施例中,使用直角稜鏡實現旋轉倒反射器及/或固定位置倒反射器中之一或兩者。 In some embodiments, one or both of a rotating retro-reflector and/or a fixed-position retro-reflector is implemented using a right-angle prism.

在一些具體實施例中,該可旋轉倒反射器由可旋轉的五稜鏡代替,並且該固定倒反射器放置成接收來自五稜鏡輸出切面的光。 In some embodiments, the rotatable retro-reflector is replaced by a rotatable pentagonal reflector, and the fixed inverted reflector is positioned to receive light from the pentagonal output facet.

在一些具體實施例中,該可旋轉倒反射器由具有三或更多側面的多邊形剖面之可旋轉稜鏡代替。 In some embodiments, the rotatable retroreflector is replaced by a rotatable mirror having a polygonal cross-section with three or more sides.

應瞭解,前述旨在說明,而不是限制。儘管在先前描述中已闡述本說明書描述的各種具體實施例的許多特徵和優點,以及各種具體實施例的結構和功能細節,但是對於熟習該項技藝者而言,在審查先前描述之後,將明白許多其他具體實施例和實施方式的變異。因此,應該參考文後申請專利範圍以及申請專利範圍所賦予的整個同等範疇,以決定本發明的範疇。在文後申請專利範圍中,「包含」和「其中(in which)」等用語分別當作相對用語「包括」和「其中(wherein)」的等義用語。再者,「第一」、「第二」和「第三」等序詞僅用來標示,而不是旨對該物件的需求數量。 It should be understood that the foregoing is intended to be illustrative, not restrictive. While the numerous features and advantages of the various specific embodiments described in this specification, as well as the structural and functional details of the various specific embodiments, have been set forth in the foregoing description, those skilled in the art, upon review of the foregoing description, will understand Numerous other specific embodiments and variations of implementations. Therefore, the scope of the invention should be determined by reference to the scope of the invention and the entire range of equivalents to which the scope of the patent application is entitled. In the scope of the patent application hereinafter, terms such as "including" and "in which" are regarded as equivalent terms of the relative terms "including" and "wherein", respectively. Furthermore, the preambles "first", "second" and "third" are used only to indicate, not to refer to the quantity demanded of the item.

520:固定位置平面反射鏡倒反射器 520: Fixed position flat mirror inverted reflector

531、532:入射光束 531, 532: Incident beam

533:第一中間光束 533: First Intermediate Beam

534、536:光束 534, 536: Beam

535:第二中間光束 535: Second Intermediate Beam

537:輸出光束 537: Output beam

541:起點 541: starting point

542、543、544、545、546、548:點 542, 543, 544, 545, 546, 548: Points

Claims (24)

一種光學系統,其包括: An optical system comprising: 一光學路徑長度調整系統,其包含: An optical path length adjustment system comprising: 一第一光束偏轉總成,其可旋轉到複數個不同角度並可操作耦接成接收一進入該光學路徑長度調整系統的輸入光束,該光束沿通過一定義輸入點的一輸入光軸傳播,並且形成與該輸入光束平行或反平行的一第一中間光束;及 a first beam deflection assembly rotatable to a plurality of different angles and operatively coupled to receive an input beam into the optical path length adjustment system, the beam propagating along an input optical axis through a defined input point, and forming a first intermediate beam parallel or anti-parallel to the input beam; and 一第二光學總成,其相對於至該光學路徑長度調整系統的輸入光束處於固定位置和方位,並且可操作耦接成接收該第一中間光束,並形成與該第一中間光束反平行並從該第一中間光束橫向偏移的一第二中間光束,其中該第一光束偏轉總成可操作耦接成接收該第二中間光束,並形成沿著一輸出光軸傳播的一輸出光束,該輸出光軸通過一定義的輸出點並隨該第一光束偏轉組件旋轉到複數個不同角度之任一者以改變定義的輸入點與定義的輸出點間之光學路徑長度時,維持在固定位置與角度方位處。 a second optical assembly in a fixed position and orientation relative to the input beam to the optical path length adjustment system and operatively coupled to receive the first intermediate beam and form antiparallel and parallel to the first intermediate beam a second intermediate beam laterally offset from the first intermediate beam, wherein the first beam deflection assembly is operatively coupled to receive the second intermediate beam and form an output beam propagating along an output optical axis, When the output optical axis passes through a defined output point and rotates to any one of a plurality of different angles with the first beam deflecting element to change the optical path length between the defined input point and the defined output point, it remains in a fixed position and angular orientation. 如申請專利範圍第1項之光學系統,其中該第一光束偏轉總成包含一對正交平面反射鏡,其構造成彼此以固定關係一起旋轉,以改變光學路徑長度。 The optical system of claim 1, wherein the first beam deflection assembly includes a pair of orthogonal planar mirrors configured to rotate together in a fixed relationship to each other to vary the optical path length. 如申請專利範圍第1項之光學系統,其中該第一光束偏轉總成包含一對平行平面反射鏡,其構造成彼此以固定關係一起旋轉,以改變光學路徑長度。 The optical system of claim 1, wherein the first beam deflection assembly includes a pair of parallel plane mirrors configured to rotate together in a fixed relationship to each other to vary the optical path length. 如申請專利範圍第1項之光學系統,其中該第一光束偏轉總成包含一透明板,該板具有一透明第一面和一平行於該第一面的透明第二面,其中進入該光學路徑長度調整系統的該輸入光束通過該第一面傳播到該透明板中,該第一中間光束通過該第二面從該透明板中傳播出來,該第二中間光束通過該第二面傳播到該透明板中,該輸出光束通過該第一面從該透明板中傳播出來,並且該透明板構造成旋轉以改變光學路徑長度。 The optical system of claim 1, wherein the first beam deflection assembly comprises a transparent plate having a transparent first side and a transparent second side parallel to the first side, into which the optical beam enters the optical system The input beam of the path length adjustment system propagates into the transparent plate through the first face, the first intermediate beam propagates out of the transparent plate through the second face, and the second intermediate beam propagates through the second face to the transparent plate. In the transparent plate, the output beam propagates out of the transparent plate through the first face, and the transparent plate is configured to rotate to vary the optical path length. 如申請專利範圍第1項之光學系統,其中該第一光束偏轉總成包含一 透明平行四邊形板,該板具有一透明第一面和一平行於該第一面的透明第二面;一與該第一面成銳角取向的內反射第三面;及一平行於該第三面的內反射第四面,其中進入該光學路徑長度調整系統的該輸入光束通過該第一面傳播進入該透明板,然後從該第三面朝向該第四面反射,然後從該第四面朝該第二面反射,使得該第一中間光束通過該第二面從該透明板傳播出去,該第二中間光束通過該第二面傳播進入該透明板,然後從該第四面朝向該第三面反射,然後從該第三面朝向該第一面反射,使得該輸出光束通過該第一面從該透明面傳播出去,並且該透明平行四邊形板構造成旋轉以改變光學路徑長度。 The optical system of claim 1, wherein the first beam deflection assembly comprises a Transparent parallelogram plate, the plate has a transparent first surface and a transparent second surface parallel to the first surface; an internally reflective third surface oriented at an acute angle to the first surface; and a parallel to the third surface a fourth facet of internal reflection of the face, wherein the input beam entering the optical path length adjustment system propagates through the first face into the transparent plate, then reflects from the third face towards the fourth face, and then from the fourth face Reflected toward the second surface, so that the first intermediate beam propagates out of the transparent plate through the second surface, the second intermediate beam propagates into the transparent plate through the second surface, and then travels from the fourth surface toward the first Three-sided reflection and then reflection from the third face towards the first face so that the output beam propagates out of the transparent face through the first face, and the transparent parallelogram plate is configured to rotate to change the optical path length. 如申請專利範圍第1項之光學系統,其中該第二光學總成包含構造為倒反射器的一對正交平面反射鏡。 The optical system of claim 1, wherein the second optical assembly includes a pair of orthogonal plane mirrors configured as inverted reflectors. 如申請專利範圍第1項之光學系統,其中該第二光學總成包含一稜鏡,其具有複數個內反射面,其中該稜鏡構造為一倒反射器。 The optical system as claimed in claim 1, wherein the second optical assembly comprises a mirror having a plurality of internal reflection surfaces, wherein the mirror is configured as an inverted reflector. 如申請專利範圍第1項之光學系統,其更包括: If the optical system of item 1 of the patent scope is applied for, it further includes: 一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;及 an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; and 一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收一輸入信號並通過基於該輸入信號改變光學路徑長度來調整該光學系統的焦點。 A focus controller operably coupled to the angle adjustment actuator and configured to receive an input signal and adjust the focus of the optical system by changing the optical path length based on the input signal. 如申請專利範圍第8項之光學系統,其中該輸入信號基於來自人類使用者的手動輸入。 The optical system of claim 8, wherein the input signal is based on manual input from a human user. 如申請專利範圍第8項之光學系統,其更包括一電子成像器,其中該輸入信號為基於從來自該電子成像器的數位信號所取得之自動聚焦信號。 The optical system of claim 8, further comprising an electronic imager, wherein the input signal is based on an autofocus signal obtained from a digital signal from the electronic imager. 如申請專利範圍第1項之光學系統,其更包括: If the optical system of item 1 of the patent scope is applied for, it further includes: 輸入聚焦光學器件,其沿該輸入光軸位於定義的輸入點,並構造成在該光學路徑長度調整系統內具有一焦點位置,及 input focusing optics located at a defined input point along the input optical axis and configured to have a focus position within the optical path length adjustment system, and 輸出聚焦光學器件,其沿該輸出光軸位於定義的輸出點,並構造成在該光學路徑長度調整系統內具有一焦點位置,其中該光學路徑長度調整系統構造成通過調整該定義的輸入點與該定義的輸出點間之該光 學路徑長度,以形成當成一平行輸出光束的該輸出光束,以補償該輸入光束到該光學路徑長度調整系統的收斂或發散。 Output focusing optics located at a defined output point along the output optical axis and configured to have a focal point position within the optical path length adjustment system, wherein the optical path length adjustment system is configured by adjusting the defined input point with the the light between the defined output points The optical path length is adjusted to form the output beam as a parallel output beam to compensate for the convergence or divergence of the input beam to the optical path length adjustment system. 如申請專利範圍第11項之光學系統,其中該輸入聚焦光學器件包含一第一中繼透鏡,並且該輸出聚焦光學器件包含一第二中繼透鏡,並且該光學系統更包括: The optical system of claim 11, wherein the input focusing optics includes a first relay lens, and the output focusing optics includes a second relay lens, and the optical system further includes: 一電子成像器;及 an electronic imager; and 一聚焦透鏡,其構造成接收該平行輸出光束並在該電子成像器上形成一聚焦影像。 A focusing lens configured to receive the parallel output beam and form a focused image on the electronic imager. 如申請專利範圍第1項之光學系統,其更包括: If the optical system of item 1 of the patent scope is applied for, it further includes: 一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成聚集一物件的光並形成該輸入光束到該光學路徑長度調整系統; a microscope objective located at the defined input point along the input optical axis and configured to focus light from an object and form the input beam to the optical path length adjustment system; 一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角; an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; 一目鏡,其構造成接收該輸出光束並允許放大檢視該物件的一虛擬影像;及 an eyepiece configured to receive the output beam and allow magnified viewing of a virtual image of the object; and 一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收一聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 A focus controller operably coupled to the angle adjustment actuator and configured to receive a focus adjustment signal and adjust the focus of the optical system by changing the optical path length based on the focus adjustment signal. 如申請專利範圍第1項之光學系統,其更包括: If the optical system of item 1 of the patent scope is applied for, it further includes: 一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成形成該輸入光束到該光學路徑長度調整系統; a microscope objective located at the defined input point along the input optical axis and configured to form the input beam to the optical path length adjustment system; 一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角; an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; 一電子成像器,其沿著該輸出光軸位於該定義的輸出點,並且可操作耦接成接收該輸出光束並產生一聚焦調整信號;及 an electronic imager located along the output optical axis at the defined output point and operably coupled to receive the output beam and generate a focus adjustment signal; and 一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收該聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 A focus controller operably coupled to the angle adjustment actuator and configured to receive the focus adjustment signal and adjust the focus of the optical system by changing the optical path length based on the focus adjustment signal. 如申請專利範圍第1項之光學系統,其更包括: If the optical system of item 1 of the patent scope is applied for, it further includes: 一第一顯微鏡物鏡,其沿著該輸入光軸位於該定義的輸入點,並且構造成聚集來自一物件的光,以形成該輸入光束到該光學路徑長度調整系統; a first microscope objective located at the defined input point along the input optical axis and configured to focus light from an object to form the input beam to the optical path length adjustment system; 一第二顯微鏡物鏡,其沿著該輸出光軸位於該定義的輸出點,並且構造成接收來自該光學路徑長度調整系統的該輸出光束,並且形成該物件的一虛擬影像; a second microscope objective located along the output optical axis at the defined output point and configured to receive the output beam from the optical path length adjustment system and form a virtual image of the object; 一角度調整致動器,其可操作耦接到該第一光束偏轉總成,並構造成調整該第一光束偏轉總成的方位角;及 an angle adjustment actuator operably coupled to the first beam deflection assembly and configured to adjust the azimuth angle of the first beam deflection assembly; and 一聚焦控制器,其可操作耦接到該角度調整致動器,並構造成接收一聚焦調整信號並通過基於該聚焦調整信號改變光學路徑長度來調整該光學系統的焦點。 A focus controller operably coupled to the angle adjustment actuator and configured to receive a focus adjustment signal and adjust the focus of the optical system by changing the optical path length based on the focus adjustment signal. 一種用於將物件成像的顯微鏡,該顯微鏡具有一光學路徑長度,該顯微鏡包括: A microscope for imaging an object, the microscope having an optical path length, the microscope comprising: 一物鏡,其形成一輸入光束;及 an objective lens that forms an input beam; and 一光學路徑長度調整系統,其可操作耦接成接收該輸入光束,並具有通過其中的一選擇性可調整光學路徑長度,其中該物鏡和該物件彼此相對保持靜止,而該光學路徑長度由該光學路徑長度調整系統改變,使得在對該物件成像時,該光學路徑長度調整系統選擇性改變該光學路徑長度,以產生該物件的聚焦影像。 an optical path length adjustment system operatively coupled to receive the input beam and having a selectively adjustable optical path length therethrough, wherein the objective lens and the object remain stationary relative to each other, and the optical path length is determined by the The optical path length adjustment system is changed such that when imaging the object, the optical path length adjustment system selectively changes the optical path length to produce a focused image of the object. 如申請專利範圍第16項之顯微鏡,其更包括: For the microscope of item 16 of the scope of the patent application, it further includes: 一目鏡,其中當通過該光學路徑長度調整系統改變該物鏡與目鏡之間的光學路徑長度時,該目鏡、該物鏡和該物件彼此相對保持靜止。 An eyepiece wherein the eyepiece, the objective and the object remain stationary relative to each other when the optical path length between the objective and the eyepiece is changed by the optical path length adjustment system. 如申請專利範圍第16項之顯微鏡,其更包括: For the microscope of item 16 of the scope of the patent application, it further includes: 一電子相機,其中當通過該光學路徑長度調整系統改變該物鏡與相機之間的光學路徑長度時,該相機、該物鏡和該物件彼此相對保持靜止。 An electronic camera wherein the camera, the objective and the object remain stationary relative to each other when the optical path length between the objective and the camera is changed by the optical path length adjustment system. 如申請專利範圍第16項之顯微鏡,其更包括: For the microscope of item 16 of the scope of the patent application, it further includes: 一第一中繼透鏡,其可操作耦接成接收來自該物鏡的該輸入光束,其中該第一中繼透鏡在該光學路徑長度調整系統內部具有該第一中繼透鏡的焦點; a first relay lens operably coupled to receive the input beam from the objective, wherein the first relay lens has a focal point of the first relay lens inside the optical path length adjustment system; 一第二中繼透鏡,其可操作耦接成接收來自該光學路徑長度調整系統的一光束,其中該第二中繼透鏡在該光學路徑長度調整系統內部具有該第二中繼透鏡的焦點; a second relay lens operably coupled to receive a light beam from the optical path length adjustment system, wherein the second relay lens has a focal point of the second relay lens inside the optical path length adjustment system; 一相機聚焦透鏡,其可操作耦接成接收來自該第二中繼透鏡的光束;及 a camera focusing lens operably coupled to receive the light beam from the second relay lens; and 一電子相機,其可操作耦接成接收來自該第二中繼透鏡的該物件之聚焦影像,其中該相機、該物鏡、該第一中繼透鏡、該第二中繼透鏡和該物件彼此相對保持靜止,而在該物鏡與相機之間的該光學路徑長度通過該光學路徑長度調整系統改變。 an electronic camera operably coupled to receive a focused image of the object from the second relay lens, wherein the camera, the objective lens, the first relay lens, the second relay lens, and the object are opposed to each other remains stationary while the optical path length between the objective and the camera is changed by the optical path length adjustment system. 如申請專利範圍第19項之顯微鏡,其中該電子相機構造成產生該物件的複數個數位影像,其中該等複數個數位影像之每一者位於該物件內的複數個不同聚焦平面之一者處,其中該等複數個不同聚焦平面的位置由該光學路徑長度調整系統中的複數個不同光學路徑長度的對應一者確定。 The microscope of claim 19, wherein the electronic camera is configured to generate a plurality of digital images of the object, wherein each of the plurality of digital images is located at one of a plurality of different focal planes within the object , wherein the positions of the plurality of different focal planes are determined by a corresponding one of the plurality of different optical path lengths in the optical path length adjustment system. 一種光學系統,其包括: An optical system comprising: 一光束偏轉器,其構造成在至少一第一角度範圍內旋轉,其中該第一光束偏轉器接收沿著一輸入光束軸傳播的一輸入光束,並形成沿著一第一中間光束軸沿著一第一方向傳播的一第一中間光束,並且其中該第一中間光束軸平行於該輸入光束軸,並且可基於該光束偏轉器的旋轉角度方位,通過一可變橫向偏移與該輸入光束軸分開; A beam deflector configured to rotate over at least a first angular range, wherein the first beam deflector receives an input beam propagating along an input beam axis and forms a first intermediate beam axis along a A first intermediate beam propagating in a first direction, and wherein the first intermediate beam axis is parallel to the input beam axis and can be offset from the input beam by a variable lateral offset based on the rotational angular orientation of the beam deflector shaft separated; 一倒反射器,其中該倒反射器接收該第一中間光束並形成沿著第二中間光束軸傳播的一第二中間光束,並且其中該第二中間光束軸平行於該第一中間光束軸並與之橫向偏離,其中該第二中間光束沿著該第二中間光束軸線沿著與該第一方向相反的第二方向傳播進入該光束偏轉器,從而該光束偏轉器形成靜止的輸出光束,而不管該光束偏轉器的旋轉角度方位如何變化,其中該輸出光束相對於該輸入光束具有可變光學路徑長度,並且其中該光學路徑長度基於該光束偏轉器的旋轉角度方位。 a retroreflector, wherein the retroreflector receives the first intermediate beam and forms a second intermediate beam propagating along a second intermediate beam axis, and wherein the second intermediate beam axis is parallel to the first intermediate beam axis and laterally offset therefrom, wherein the second intermediate beam propagates along the second intermediate beam axis in a second direction opposite the first direction into the beam deflector such that the beam deflector forms a stationary output beam, and Wherein the output beam has a variable optical path length relative to the input beam regardless of the rotational angular orientation of the beam deflector, and wherein the optical path length is based on the rotational angular orientation of the beam deflector. 如申請專利範圍第21項之光學系統,其中該光學系統為一顯微鏡系統。 The optical system according to claim 21, wherein the optical system is a microscope system. 如申請專利範圍第21項之光學系統,其中該光學系統為一包含有視訊捕捉成像器的顯微鏡系統。 The optical system of claim 21, wherein the optical system is a microscope system including a video capture imager. 如申請專利範圍第21項之光學系統,其中該光學系統為一包含有視訊捕捉成像器的顯微鏡系統,並且其中該顯微鏡系統構造成調整該光學路徑長度,以選擇被成像物件內的複數個連續聚焦平面位置,並且其中該視訊捕捉成像器構造成捕捉複數個影像,其中該等複數個影像之每一者對應於被成像物件內的該等複數個連續聚焦平面位置之對應一者。 The optical system of claim 21, wherein the optical system is a microscope system including a video capture imager, and wherein the microscope system is configured to adjust the optical path length to select a plurality of consecutive a focal plane position, and wherein the video capture imager is configured to capture a plurality of images, wherein each of the plurality of images corresponds to a corresponding one of the plurality of consecutive focal plane positions within the imaged object.
TW110104837A 2020-02-10 2021-02-08 Scanner system and method having adjustable path length with constant input and output optical axes TW202204971A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202062972553P 2020-02-10 2020-02-10
US62/972,553 2020-02-10
US202063106813P 2020-10-28 2020-10-28
US63/106,813 2020-10-28
US202063125357P 2020-12-14 2020-12-14
US63/125,357 2020-12-14
USPCT/US21/16960 2021-02-05
PCT/US2021/016960 WO2021162958A1 (en) 2020-02-10 2021-02-05 Scanner system and method having adjustable path length with constant input and output optical axes

Publications (1)

Publication Number Publication Date
TW202204971A true TW202204971A (en) 2022-02-01

Family

ID=77292951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104837A TW202204971A (en) 2020-02-10 2021-02-08 Scanner system and method having adjustable path length with constant input and output optical axes

Country Status (2)

Country Link
TW (1) TW202204971A (en)
WO (1) WO2021162958A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030067421A1 (en) * 2001-10-10 2003-04-10 Alan Sullivan Variable focusing projection system
US7933056B2 (en) * 2007-09-26 2011-04-26 Che-Chih Tsao Methods and systems of rapid focusing and zooming for volumetric 3D displays and cameras
CN103477209B (en) * 2011-03-01 2016-03-30 通用电气医疗集团生物科学公司 For the system and method for phase control of throwing light in fluorescent microscope
US10642014B2 (en) * 2015-03-12 2020-05-05 Purdue Research Foundation Biodynamic microscopes and methods of use thereof
JP7267292B2 (en) * 2017-11-22 2023-05-01 アルテック アンゲヴァンテ レーザーリヒト テヒノロギー ゲゼルシャフト ミット ベシュレンクテル ハフツング electromagnetic radiation steering mechanism

Also Published As

Publication number Publication date
WO2021162958A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US10168519B2 (en) Light sheet generator
JP4263461B2 (en) Autostereoscopic equipment
US10684464B2 (en) Device for tilting an optical element, particularly a mirror
US6546208B1 (en) Stereoscopic telescope with camera
JP4233357B2 (en) Autostereoscopic equipment
EP3125015B1 (en) Focusing apparatus and method
US9075239B2 (en) Optical system for forming optical path of oblique angle and method thereof
JPS62287213A (en) Variable tilt angle binocular lens barrel
JP2003302602A (en) Autostereoscopic optical apparatus
US20130027522A1 (en) Stereoscopic imaging apparatus
JP3548916B2 (en) Stereo microscope
JPH06123853A (en) Optical device
US4174884A (en) Optical viewer with adjustable angular convergence
JP2005037952A (en) Stereomicroscope
US20090051995A1 (en) Linear Optical Scanner
US20240061228A1 (en) High-speed rotary/galvo planar-mirror-based optical-path-length-shift subsystem and method, and related systems and methods
TW202204971A (en) Scanner system and method having adjustable path length with constant input and output optical axes
KR101608404B1 (en) Single lens Microscope for three dimensional image
US4509832A (en) Optical arrangement for producing two anamorphotically compressed images correlated by an interocular base distance
JP2023537897A (en) Beam scanner with PIC input and near-eye display based thereon
JP2006235605A (en) Zoom mechanism
JP2958096B2 (en) Stereo microscope
JPH095903A (en) Binocular type three-dimensional display device
JP3089304B2 (en) Light microscope
JP2005202216A (en) Binocular magnifier