TW202204861A - Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera - Google Patents

Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera Download PDF

Info

Publication number
TW202204861A
TW202204861A TW109123988A TW109123988A TW202204861A TW 202204861 A TW202204861 A TW 202204861A TW 109123988 A TW109123988 A TW 109123988A TW 109123988 A TW109123988 A TW 109123988A TW 202204861 A TW202204861 A TW 202204861A
Authority
TW
Taiwan
Prior art keywords
temperature
correction
coefficient
measured
objn
Prior art date
Application number
TW109123988A
Other languages
Chinese (zh)
Other versions
TWI733524B (en
Inventor
張永昌
黃建文
蔡宜君
黃烽煉
Original Assignee
熱映光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 熱映光電股份有限公司 filed Critical 熱映光電股份有限公司
Priority to TW109123988A priority Critical patent/TWI733524B/en
Application granted granted Critical
Publication of TWI733524B publication Critical patent/TWI733524B/en
Publication of TW202204861A publication Critical patent/TW202204861A/en

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera is provided. The temperature calibration method of infrared thermal image camera includes providing a temperature sensing system to measure an object to obtain an uncorrected temperature, and calibrating the uncorrected temperature to a corrected temperature based on the uncorrected temperature and a temperature calibration function. The temperature calibration function is obtained by a regression analysis.

Description

紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統的校正方法Temperature correction method of infrared thermal imager and correction method of temperature sensing system of infrared thermal imager

本發明涉及一種溫度校正方法及溫度感測系統的校正方法,特別是涉及一種紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統的校正方法。The invention relates to a temperature calibration method and a calibration method of a temperature sensing system, in particular to a temperature calibration method of an infrared thermal imager and a calibration method of a temperature sensing system of an infrared thermal imager.

首先,非接觸式紅外線溫度感測系統一般都具有一濾光片(filter),其主要作為阻擋可見光,避免可見光干擾紅外線溫度感測系統的量測數值。但是,濾光片的設置仍會影響紅外線溫度感測系統量測待檢測物體的溫度值,而使得所量測到的溫度不完全準確。First, the non-contact infrared temperature sensing system generally has a filter, which is mainly used to block visible light, so as to prevent the visible light from interfering with the measured value of the infrared temperature sensing system. However, the setting of the filter will still affect the infrared temperature sensing system to measure the temperature value of the object to be detected, so that the measured temperature is not completely accurate.

藉此,如何提升溫度感測系統的準確性,來克服上述的缺陷,已成為該項技術所欲解決的重要課題之一。Therefore, how to improve the accuracy of the temperature sensing system to overcome the above-mentioned defects has become one of the important issues to be solved by this technology.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統的校正方法。The technical problem to be solved by the present invention is to provide a temperature calibration method of an infrared thermal imager and a calibration method of a temperature sensing system of an infrared thermal imager in view of the deficiencies of the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種紅外線熱像儀的溫度校正方法,其包括:提供一溫度感測系統量測一待測物體,以得到一未校正溫度;以及依據所述未校正溫度以及一溫度校正函數,將所述未校正溫度校準至一已校正溫度。其中,所述溫度校正函數由一迴歸分析所獲得。In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide a temperature calibration method for an infrared thermal imager, which includes: providing a temperature sensing system to measure an object to be measured to obtain an uncorrected temperature ; and calibrating the uncorrected temperature to a corrected temperature according to the uncorrected temperature and a temperature correction function. Wherein, the temperature correction function is obtained by a regression analysis.

為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種紅外線熱像儀的溫度校正方法,其包括:提供一溫度感測系統量測一待測物體,以得到n個未校正溫度,其中,所述溫度感測系統包括n個紅外線溫度感測器,n個所述紅外線溫度感測器呈R×L的形式陣列排列,n個所述紅外線溫度感測器依序由一第一紅外線溫度感測器至一第n紅外線溫度感測器排列,R為大於等於2的正整數,L為大於等於2的正整數,n為R乘以L的數量,其中,n個所述紅外線溫度感測器分別量測所述待測物體以得到n個所述未校正溫度;以及依據n個所述未校正溫度以及n個溫度校正函數,以將n個所述未校正溫度分別校準至一已校正溫度,而得到n個所述已校正溫度,其中,每一所述未校正溫度分別對應於相對應的所述溫度校正函數,且所述第一紅外線溫度感測器至所述第n紅外線溫度感測器分別量測所述待測物體以得到相對應的一第一未校正溫度至一第n未校正溫度;其中,n個所述溫度校正函數分別由一迴歸分析所獲得。In order to solve the above-mentioned technical problem, another technical solution adopted by the present invention is to provide a temperature correction method for an infrared thermal imager, which includes: providing a temperature sensing system to measure an object to be measured, so as to obtain n uncorrected temperature, wherein the temperature sensing system includes n infrared temperature sensors, the n infrared temperature sensors are arranged in an array in the form of R×L, and the n infrared temperature sensors are sequentially composed of a The first infrared temperature sensor is arranged to the nth infrared temperature sensor, R is a positive integer greater than or equal to 2, L is a positive integer greater than or equal to 2, n is the number of R multiplied by L, wherein, n all The infrared temperature sensor measures the object to be measured respectively to obtain the n uncorrected temperatures; and according to the n uncorrected temperatures and the n temperature correction functions, the n uncorrected temperatures are respectively Calibrating to a calibrated temperature to obtain n calibrated temperatures, wherein each uncalibrated temperature corresponds to the corresponding temperature calibration function, and the first infrared temperature sensor reaches the The nth infrared temperature sensor measures the object to be measured respectively to obtain a corresponding first uncorrected temperature to an nth uncorrected temperature; wherein, the n temperature correction functions are respectively determined by a regression analysis get.

為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種紅外線熱像儀的溫度感測系統的校正方法,其包括:提供具有一預設溫度的一黑體;取得所述溫度感測系統的一校正係數以及一系統溫度係數;提供多個輻射黑體,且多個所述輻射黑體所分別具有的一預定溫度彼此相異;利用所述溫度感測系統量測多個所述輻射黑體,以得到多個量測溫度;對多個所述量測溫度以及多個所述預定溫度進行一迴歸分析,以得到一初始溫度校正函數;以及利用所述初始溫度校正函數得到一溫度校正函數。其中,在取得所述校正係數以及所述系統溫度係數的步驟中,是利用一初始溫度量測公式取得所述校正係數以及所述系統溫度係數,所述初始溫度量測公式包括下列關係式:S=G1×(1+tCo1×(Tamb -Tde ))×((TobjNA )4 -(Tamb )4 )。其中,S為所述溫度感測系統量測一黑體所得到的一初始數位訊號,G1為所述校正係數,tCo1為所述系統溫度係數,Tamb 為所述環境溫度,所述環境溫度的單位為凱氏,Tde 為溫度為298.15 K,TobjNA 為所述黑體的所述預設溫度,所述預設溫度的單位為凱氏。其中,所述黑體的所述預設溫度為已知。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a calibration method for a temperature sensing system of an infrared thermal imager, which includes: providing a black body with a preset temperature; obtaining the temperature a correction coefficient and a system temperature coefficient of the sensing system; a plurality of radiation black bodies are provided, and a plurality of the radiation black bodies respectively have a predetermined temperature different from each other; the temperature sensing system is used to measure a plurality of the radiation black bodies Radiating a black body to obtain a plurality of measurement temperatures; performing a regression analysis on a plurality of the measurement temperatures and a plurality of the predetermined temperatures to obtain an initial temperature correction function; and using the initial temperature correction function to obtain a temperature Correction function. Wherein, in the step of obtaining the correction coefficient and the system temperature coefficient, an initial temperature measurement formula is used to obtain the correction coefficient and the system temperature coefficient, and the initial temperature measurement formula includes the following relationship: S=G1×(1+tCo1×(T amb −T de ))×((T objNA ) 4 −(T amb ) 4 ). Wherein, S is an initial digital signal obtained by the temperature sensing system measuring a black body, G1 is the correction coefficient, tCo1 is the temperature coefficient of the system, Tamb is the ambient temperature, and the The unit is Kjeldahl, T de is the temperature of 298.15 K, T objNA is the preset temperature of the black body, and the unit of the preset temperature is Kjeldahl. Wherein, the preset temperature of the black body is known.

本發明的其中一有益效果在於,本發明所提供的紅外線熱像儀的溫度校正方法,其能通過“依據所述未校正溫度以及一溫度校正函數,將所述未校正溫度校準至一已校正溫度”的技術方案,以提升紅外線熱像儀的溫度感測系統的準確性。此外,本發明所提供的紅外線熱像儀的溫度感測系統的校正方法,其能通過“對多個所述量測溫度以及多個所述預定溫度進行一迴歸分析,以得到一初始溫度校正函數”以及“利用所述初始溫度校正函數得到一溫度校正函數”的技術方案,以使得紅外線熱像儀的溫度感測系統能通過溫度校正函數而提升紅外線熱像儀的溫度感測系統的準確性。One of the beneficial effects of the present invention is that the temperature correction method for an infrared thermal imager provided by the present invention can calibrate the uncorrected temperature to a corrected temperature by "according to the uncorrected temperature and a temperature correction function. temperature” technical solution to improve the accuracy of the temperature sensing system of the infrared thermal imaging camera. In addition, the calibration method of the temperature sensing system of the infrared thermal imager provided by the present invention can obtain an initial temperature calibration by performing a regression analysis on a plurality of the measured temperatures and a plurality of the predetermined temperatures function” and the technical solutions of “using the initial temperature correction function to obtain a temperature correction function”, so that the temperature sensing system of the infrared thermal imager can improve the accuracy of the temperature sensing system of the infrared thermal imager through the temperature correction function sex.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。For a further understanding of the features and technical content of the present invention, please refer to the following detailed descriptions and drawings of the present invention. However, the drawings provided are only for reference and description, and are not intended to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統的校正方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件,但這些元件不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following are specific specific examples to illustrate the embodiments of the present disclosure related to the “temperature calibration method of an infrared thermal imager and a calibration method of a temperature sensing system of an infrared thermal imager”. Those skilled in the art can learn from this specification The disclosure provides an understanding of the advantages and effects of the present invention. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to the actual size, and are stated in advance. The following embodiments will further describe the related technical contents of the present invention in detail, but the disclosed contents are not intended to limit the protection scope of the present invention. Additionally, it should be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are primarily used to distinguish one element from another. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be. In addition, the term "or", as used herein, should include any one or a combination of more of the associated listed items, as the case may be.

[第一實施例][First Embodiment]

請參閱圖1及圖2所示,圖1為本發明的紅外線熱像儀的溫度感測系統的功能方塊圖,圖2為本發明的紅外線熱像儀(Infrared Thermal Image Camera)的溫度感測系統的紅外線溫度感測裝置的俯視示意圖。本發明提供一種紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統S的校正方法,紅外線熱像儀的溫度校正方法及紅外線熱像儀的溫度感測系統S的校正方法可應用於紅外線熱像儀(Infrared Thermal Image Camera)上,然本發明不以此為限。此外,須說明的是,第一實施例將先針對紅外線熱像儀的溫度校正方法進行說明,第二實施例再針對紅外線熱像儀的溫度感測系統的校正方法進行說明。進一步來說,當紅外線熱像儀的溫度感測系統S通過本發明第二實施例所提供的紅外線熱像儀的溫度感測系統S的校正方法的步驟之後,紅外線熱像儀的溫度感測系統S可利用第一實施例所提供的紅外線熱像儀的溫度校正方法,而使得紅外線熱像儀的溫度感測系統S能準確的得到一待測物體(圖中未示出)的溫度。Please refer to FIG. 1 and FIG. 2. FIG. 1 is a functional block diagram of the temperature sensing system of the infrared thermal imager of the present invention, and FIG. 2 is the temperature sensing of the infrared thermal imager of the present invention. A schematic top view of the infrared temperature sensing device of the system. The present invention provides a method for calibrating temperature of an infrared thermal imager and a method for calibrating a temperature sensing system S of an infrared thermal imager. It is applied to an infrared thermal image camera (Infrared Thermal Image Camera), but the present invention is not limited to this. In addition, it should be noted that the first embodiment will first describe the temperature calibration method of the infrared thermal imager, and then the second embodiment will describe the calibration method of the temperature sensing system of the infrared thermal imager. Further, after the temperature sensing system S of the infrared thermal imager passes the steps of the calibration method of the temperature sensing system S of the infrared thermal imager provided by the second embodiment of the present invention, the temperature sensing of the infrared thermal imager The system S can utilize the temperature calibration method of the infrared thermal imager provided in the first embodiment, so that the temperature sensing system S of the infrared thermal imager can accurately obtain the temperature of an object to be measured (not shown in the figure).

承上述,紅外線熱像儀的溫度感測系統S包括一紅外線溫度感測裝置1、一溫度量測裝置2以及一控制裝置3。紅外線溫度感測裝置1及溫度量測裝置2可電性連接於控制裝置3,以利用控制裝置3計算出紅外線溫度感測裝置1及溫度量測裝置2所量測到的溫度。此外,紅外線溫度感測裝置1可包括多個紅外線溫度感測器10,多個紅外線溫度感測器10設置在一基板100上。此外,須注意的是,為利於說明,本發明所提供的紅外線溫度感測裝置1是以一4×4陣列排列的紅外線溫度感測器10作為舉例說明,但是,在其他實施方式中,紅外線溫度感測裝置1是以一32×32或是320×240等陣列排列的紅外線溫度感測器10,即,紅外線溫度感測裝置1可以R×L的陣列排列,其中,R及L為大於等於2的整數。然而,須說明的是,本發明不以紅外線溫度感測器10的數量或排列方式為限制。此外,舉例來說,紅外線溫度感測器10可為一微測輻射熱計(Microbolometer)或是一紅外線溫度計(Infrared Thermometer),溫度量測裝置2可為一熱電偶(Thermocouple)感測器或一熱敏電阻(thermistor)溫度感測器,然本發明不以此為限。以本發明而言,可利用溫度量測裝置2量測環境溫度,且可利用紅外線溫度感測裝置1量測一待測物體的溫度。此外,舉例來說,控制裝置3可以是一微控制器(Microcontroller Unit,MCU),以處理紅外線溫度感測器10及溫度量測裝置2所量測到的資訊,然本發明不以此為限。As mentioned above, the temperature sensing system S of the infrared thermal imager includes an infrared temperature sensing device 1 , a temperature measuring device 2 and a control device 3 . The infrared temperature sensing device 1 and the temperature measuring device 2 can be electrically connected to the control device 3 to use the control device 3 to calculate the temperature measured by the infrared temperature sensing device 1 and the temperature measuring device 2 . In addition, the infrared temperature sensing device 1 may include a plurality of infrared temperature sensors 10 , and the plurality of infrared temperature sensors 10 are disposed on a substrate 100 . In addition, it should be noted that, for the convenience of description, the infrared temperature sensing device 1 provided by the present invention takes a 4×4 array of infrared temperature sensors 10 as an example for illustration. However, in other embodiments, the infrared temperature sensor 10 The temperature sensing device 1 is an infrared temperature sensor 10 arranged in an array of 32×32 or 320×240, that is, the infrared temperature sensing device 1 can be arranged in an array of R×L, where R and L are greater than An integer equal to 2. However, it should be noted that the present invention is not limited by the number or arrangement of the infrared temperature sensors 10 . In addition, for example, the infrared temperature sensor 10 can be a Microbolometer or an Infrared Thermometer, and the temperature measuring device 2 can be a Thermocouple sensor or a A thermistor temperature sensor, but the present invention is not limited to this. According to the present invention, the temperature measuring device 2 can be used to measure the ambient temperature, and the infrared temperature sensing device 1 can be used to measure the temperature of an object to be measured. In addition, for example, the control device 3 can be a microcontroller (Microcontroller Unit, MCU) to process the information measured by the infrared temperature sensor 10 and the temperature measurement device 2, but the present invention does not take this as an example. limit.

接著,請參閱圖3所示,圖3為本發明第一實施例的紅外線熱像儀的溫度校正方法的流程圖。詳細來說,紅外線熱像儀的溫度校正方法,其包括下列步驟:如步驟S102所示:提供一溫度感測系統S量測一待測物體,以得到一未校正溫度。舉例來說,可利用紅外線熱像儀的溫度感測系統S的紅外線溫度感測裝置1中的其中一個紅外線溫度感測器10量測一待測物體,以得到一未校正溫度。另外,須說明的是,本發明得到一未校正溫度的方式是以其中一個紅外線溫度感測器10量測一待測物體作為舉例說明,其他多個紅外線溫度感測器10得到一未校正溫度的方式也與此相彷,在此不再贅述。Next, please refer to FIG. 3 , which is a flowchart of a temperature calibration method for an infrared thermal imager according to a first embodiment of the present invention. In detail, the method for calibrating the temperature of an infrared thermal imager includes the following steps: as shown in step S102 : providing a temperature sensing system S to measure an object to be measured to obtain an uncorrected temperature. For example, one of the infrared temperature sensors 10 in the infrared temperature sensing device 1 of the temperature sensing system S of the infrared thermal imaging camera can be used to measure an object to be measured to obtain an uncorrected temperature. In addition, it should be noted that the method of obtaining an uncorrected temperature in the present invention is that one of the infrared temperature sensors 10 measures an object to be measured as an example, and the other infrared temperature sensors 10 obtain an uncorrected temperature The method is similar to this, and will not be repeated here.

接著,如步驟S104所示:將未校正溫度校準至一已校正溫度。舉例來說,可依據未校正溫度以及一溫度校正函數,將未校正溫度校準至一已校正溫度,且溫度校正函數可由一迴歸分析(Regression Analysis)所獲得。舉例來說,溫度校正函數可由一非線性迴歸分析所獲得,例如由一多項式迴歸分析所獲得,然本發明不以此為限。進一步來說,以本發明而言,溫度校正函數可包括下列關係式:T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 )。T1obj 為其中一個紅外線溫度感測器10(或可稱第一紅外線溫度感測器10a)量測待測物體後所得到的待測物體的已校正溫度,已校正溫度T1obj 的單位為攝氏(°C),T1objN 為其中一個紅外線溫度感測器10(或可稱第一紅外線溫度感測器10a)量測待測物體後所得到的待測物體的未校正溫度,溫度校正函數中的未校正溫度T1objN 的單位為攝氏,C10 為一第一溫度校正迴歸係數,C11 為一第二溫度校正迴歸係數,C12 為一第三溫度校正迴歸係數,C13 為一第四溫度校正迴歸係數,C14 為一第五溫度校正迴歸係數,C15 為一第六溫度校正迴歸係數。也就是說,可將前述步驟S102所得到的待測物體的未校正溫度帶入上述溫度校正函數,而得到待測物體的已校正溫度。即,可利用上述溫度校正函數校正每一個紅外線溫度感測器10所量測到的數值。Next, as shown in step S104: the uncorrected temperature is calibrated to a corrected temperature. For example, the uncalibrated temperature can be calibrated to a calibrated temperature according to the uncalibrated temperature and a temperature calibration function, and the temperature calibration function can be obtained by a regression analysis. For example, the temperature correction function can be obtained by a nonlinear regression analysis, such as a polynomial regression analysis, but the invention is not limited thereto. Further, according to the present invention, the temperature correction function may include the following relation: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 + C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ). T1 obj is the corrected temperature of the object to be measured obtained by one of the infrared temperature sensors 10 (or the first infrared temperature sensor 10a ) measuring the object to be measured, and the unit of the corrected temperature T1 obj is Celsius (°C), T1 objN is the uncorrected temperature of the object to be measured obtained after one of the infrared temperature sensors 10 (or can be called the first infrared temperature sensor 10a) to measure the object to be measured, in the temperature correction function The unit of uncorrected temperature T1 objN is Celsius, C1 0 is a first temperature correction regression coefficient, C1 1 is a second temperature correction regression coefficient, C1 2 is a third temperature correction regression coefficient, C1 3 is a fourth temperature correction regression coefficient The temperature correction regression coefficient, C1 4 is a fifth temperature correction regression coefficient, and C1 5 is a sixth temperature correction regression coefficient. That is to say, the uncorrected temperature of the object to be measured obtained in the aforementioned step S102 can be brought into the above temperature correction function to obtain the corrected temperature of the object to be measured. That is, the value measured by each infrared temperature sensor 10 can be corrected by using the above-mentioned temperature correction function.

承上述,須說明的是,由於每一個紅外線溫度感測器10在製程或其他參數上仍會有所差異,因此,其他多個紅外線溫度感測器10也可以分別具有相對應的溫度校正函數,且其他多個紅外線溫度感測器10(或可稱第二紅外線溫度感測器10b、第三紅外線溫度感測器或是第n紅外線溫度感測器,n為大於1的正整數)的溫度校正函數中的第一溫度校正迴歸係數Cn1 、第二溫度校正迴歸係數Cn2 、第三溫度校正迴歸係數Cn3 、第四溫度校正迴歸係數Cn4 、第五溫度校正迴歸係數Cn5 及第六溫度校正迴歸係數Cn6 ,仍有可能與前述其中一個紅外線溫度感測器10的第一溫度校正迴歸係數C11 、第二溫度校正迴歸係數C12 、第三溫度校正迴歸係數C13 、第四溫度校正迴歸係數C14 、第五溫度校正迴歸係數C15 及第六溫度校正迴歸係數C16 不同。另外,上述第一溫度校正迴歸係數(C11 至Cn1 )、第二溫度校正迴歸係數(C12 至Cn2 )、第三溫度校正迴歸係數(C13 至Cn3 )、第四溫度校正迴歸係數(C14 至Cn4 )、第五溫度校正迴歸係數(C15 至Cn5 )及第六溫度校正迴歸係數(C16 至Cn6 )的數值可儲存在溫度感測系統S中,例如可儲存於一校正係數表中,且校正係數表可為一查找表(lookup table)。控制裝置3可利用校正係數表,而得到相對應的數值。此外,產生上述校正迴歸係數的方法將於後續實施例進行說明。另外,須說明的是,雖然上述實施方式是以五次方程式進行分析,但是,在其他實施方式中,也可以是四次方程式、六次方程式或七次方程式。換句話說,在其他實施方式中,第n紅外線溫度感測器10的溫度校正函數也可以是一K次方程式,其包括下列關係式,例如:Tnobj =(Cn0 +Cn1 ×TnobjN +Cn2 ×(TnobjN )2 +Cn3 ×(TnobjN )3 +Cn4 ×(TnobjN )4 +…+CnK ×(TnobjN )K )。Based on the above, it should be noted that since each infrared temperature sensor 10 may still have differences in the manufacturing process or other parameters, other infrared temperature sensors 10 may also have corresponding temperature correction functions respectively. , and other multiple infrared temperature sensors 10 (or can be called the second infrared temperature sensor 10b, the third infrared temperature sensor or the nth infrared temperature sensor, n is a positive integer greater than 1) In the temperature correction function, the first temperature correction regression coefficient Cn 1 , the second temperature correction regression coefficient Cn 2 , the third temperature correction regression coefficient Cn 3 , the fourth temperature correction regression coefficient Cn 4 , the fifth temperature correction regression coefficient Cn 5 and The sixth temperature correction regression coefficient Cn 6 may still be the same as the first temperature correction regression coefficient C1 1 , the second temperature correction regression coefficient C1 2 , the third temperature correction regression coefficient C1 3 , the first temperature correction regression coefficient C1 1 , the second temperature correction regression coefficient C1 2 , the third temperature correction regression coefficient C1 3 , The fourth temperature correction regression coefficient C1 4 , the fifth temperature correction regression coefficient C1 5 , and the sixth temperature correction regression coefficient C1 6 are different. In addition, the above-mentioned first temperature correction regression coefficients (C1 1 to Cn 1 ), second temperature correction regression coefficients (C1 2 to Cn 2 ), third temperature correction regression coefficients (C1 3 to Cn 3 ), and fourth temperature correction regression coefficients The values of the coefficients (C1 4 to Cn 4 ), the fifth temperature correction regression coefficients (C1 5 to Cn 5 ), and the sixth temperature correction regression coefficients (C1 6 to Cn 6 ) can be stored in the temperature sensing system S, such as Stored in a correction coefficient table, and the correction coefficient table may be a lookup table. The control device 3 can obtain the corresponding numerical value by using the correction coefficient table. In addition, the method for generating the above correction regression coefficient will be described in the following embodiments. In addition, it should be noted that, although the above-mentioned embodiment analyzes with a quintic equation, in other embodiments, a quartic equation, a hexadecimal equation, or a septutic equation may be used. In other words, in other embodiments, the temperature correction function of the nth infrared temperature sensor 10 may also be a K-th equation, which includes the following relationship, for example: Tn obj =(Cn 0 +Cn 1 ×Tn objN +Cn 2 ×(Tn objN ) 2 +Cn 3 ×(Tn objN ) 3 +Cn 4 ×(Tn objN ) 4 +…+Cn K ×(Tn objN ) K ).

接著,請參閱圖4所示,圖4為本發明第一實施例的溫度校正方法的步驟S102的流程圖。在步驟S102量測待測物體以得到未校正溫度的步驟中,其包括下列步驟:如步驟S1022所示:利用溫度感測系統S量測待測物體的一輻射能量,以產生一數位訊號。舉例來說,數位訊號可以由紅外線溫度感測裝置1的其中一個紅外線溫度感測器10量測待測物體的輻射能量之後所產生的數位訊號。此外,數位訊號的產生方式可由其中一個紅外線溫度感測器10量測待測物體的輻射能量,並將其轉換成電壓訊號後,通過運算放大器(Operation Amplifier)將電壓訊號放大,再通過類比數位轉換器(Analog-to-Digital Converter)將其轉換成數位訊號。Next, please refer to FIG. 4 , which is a flowchart of step S102 of the temperature calibration method according to the first embodiment of the present invention. The step of measuring the object to be measured to obtain the uncorrected temperature in step S102 includes the following steps: as shown in step S1022 : using the temperature sensing system S to measure a radiation energy of the object to be measured to generate a digital signal. For example, the digital signal can be a digital signal generated by one of the infrared temperature sensors 10 of the infrared temperature sensing device 1 measuring the radiation energy of the object to be measured. In addition, the digital signal can be generated by measuring the radiation energy of the object to be measured by one of the infrared temperature sensors 10, and converting it into a voltage signal. A converter (Analog-to-Digital Converter) converts it into a digital signal.

接著,如步驟S1024所示:根據數位訊號S1以及一溫度量測公式計算出待測物體的未校正溫度。舉例來說,控制裝置3可接收紅外線溫度感測器10所量測到的數位訊號,並利用溫度量測公式計算出待測物體的未校正溫度。進一步來說,以本發明而言,溫度量測公式包括下列關係式:S1=G1×(1+tCo1×(Tamb -Tde ))×((T1objN )4 -(Tamb )4 )。S1為數位訊號,G1為一校正係數,tCo1為一系統溫度係數,Tamb 為一環境溫度,環境溫度的單位為凱氏(克耳文,K),T1objN 為待測物體的未校正溫度,溫度量測公式中的未校正溫度T1objN 的單位為凱氏,Tde 為溫度為298.15K。另外,須說明的是,環境溫度Tamb 可利用溫度量測裝置2量測,數位訊號S1可利用紅外線溫度感測裝置1的其中一個紅外線溫度感測器10量測。此外,Tde 為溫度為298.15K所代表的是Tde 為溫度為25°C。藉此,在步驟S1024中,可以利用數位訊號S1以及一溫度量測公式計算出待測物體的未校正溫度,接著,再利用步驟S104中的溫度校正函數,將待測物體的未校正溫度帶入上述溫度校正函數,而得到待測物體的已校正溫度。值得說明的是,上述溫度量測公式可由斯特凡波茲曼定律(Stefan-Boltzmann law)取得。Next, as shown in step S1024, the uncorrected temperature of the object to be measured is calculated according to the digital signal S1 and a temperature measurement formula. For example, the control device 3 can receive the digital signal measured by the infrared temperature sensor 10, and use the temperature measurement formula to calculate the uncorrected temperature of the object to be measured. Further, according to the present invention, the temperature measurement formula includes the following relationship: S1=G1×(1+tCo1×(T amb −T de ))×((T1 objN ) 4 −(T amb ) 4 ) . S1 is a digital signal, G1 is a correction coefficient, tCo1 is a system temperature coefficient, Tamb is an ambient temperature, the unit of ambient temperature is Kelvin (Kelvin, K), T1 objN is the uncorrected temperature of the object to be measured , the unit of uncorrected temperature T1 objN in the temperature measurement formula is Kjeldahl, and T de is the temperature of 298.15K. In addition, it should be noted that the ambient temperature Tamb can be measured by the temperature measuring device 2 , and the digital signal S1 can be measured by one of the infrared temperature sensors 10 of the infrared temperature sensing device 1 . In addition, T de is a temperature of 298.15K which means that T de is a temperature of 25°C. Therefore, in step S1024, the uncorrected temperature of the object to be measured can be calculated by using the digital signal S1 and a temperature measurement formula, and then, the uncorrected temperature of the object to be measured can be calculated by using the temperature correction function in step S104. Enter the above temperature correction function to obtain the corrected temperature of the object to be measured. It should be noted that the above temperature measurement formula can be obtained by Stefan-Boltzmann law.

承上述,須說明的是,由於每一個紅外線溫度感測器10在製程或其他參數上仍會有所差異,因此,其他多個紅外線溫度感測器10也可以分別具有相對應的溫度量測公式,且其他多個紅外線溫度感測器10(或可稱第二紅外線溫度感測器10b、第三紅外線溫度感測器或是第n紅外線溫度感測器,n為大於1的正整數)的溫度量測公式中的校正係數Gn及系統溫度係數tCon仍有可能與前述其中一個紅外線溫度感測器10的校正係數G1及系統溫度係數tCo1不同。另外,上述校正係數(G1至Gn)及系統溫度係數(tCo1至tCon)的數值可儲存在紅外線熱像儀的溫度感測系統S中,例如可儲存於一校正係數表中,且校正係數表可為一查找表(lookup table)。控制裝置3可利用校正係數表,而得到相對應的數值。此外,產生校正係數及系統溫度係數的方法將於後續實施例進行說明。Based on the above, it should be noted that since each infrared temperature sensor 10 may still have differences in the manufacturing process or other parameters, other infrared temperature sensors 10 may also have corresponding temperature measurements respectively. formula, and other multiple infrared temperature sensors 10 (or can be called the second infrared temperature sensor 10b, the third infrared temperature sensor or the nth infrared temperature sensor, n is a positive integer greater than 1) The correction coefficient Gn and the system temperature coefficient tCon in the temperature measurement formula may still be different from the correction coefficient G1 and the system temperature coefficient tCo1 of one of the infrared temperature sensors 10 described above. In addition, the values of the above-mentioned correction coefficients (G1 to Gn) and system temperature coefficients (tCo1 to tCon) can be stored in the temperature sensing system S of the infrared thermal imaging camera, for example, can be stored in a correction coefficient table, and the correction coefficient table Can be a lookup table. The control device 3 can obtain the corresponding numerical value by using the correction coefficient table. In addition, the method for generating the correction coefficient and the system temperature coefficient will be described in the following embodiments.

接著,請復參閱圖1及圖2所示,並請一併參閱圖5所示,圖5為本發明第一實施例的紅外線熱像儀的溫度校正方法的另外一流程圖。須說明的是,由於本發明所提供的溫度感測系統S是應用在一紅外線熱像儀上,因此,溫度感測系統S的紅外線溫度感測裝置1中會具有多個呈陣列排列的紅外線溫度感測器10。但是,每一個紅外線溫度感測器10在製程或其他參數上仍會有所差異,因此,其他多個紅外線溫度感測器10也可以分別具有相對應的溫度校正函數。以下將進一步舉例說明多個紅外線溫度感測器10的溫度校正方法。Next, please refer to FIG. 1 and FIG. 2 again, and also refer to FIG. 5 . FIG. 5 is another flowchart of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention. It should be noted that, since the temperature sensing system S provided by the present invention is applied to an infrared thermal imager, the infrared temperature sensing device 1 of the temperature sensing system S will have a plurality of infrared rays arranged in an array temperature sensor 10 . However, each infrared temperature sensor 10 may still have differences in manufacturing process or other parameters. Therefore, other infrared temperature sensors 10 may also have corresponding temperature correction functions respectively. The following will further illustrate the temperature calibration methods of the plurality of infrared temperature sensors 10 .

承上述,溫度校正方法包括下列步驟:如步驟S202所示:提供一溫度感測系統S量測一待測物體,以得到n個未校正溫度。舉例來說,可利用至少一個第一群組10A中的第一紅外線溫度感測器10a及/或至少一個第二群組10B中的第一紅外線溫度感測器10b量測待測物體,以得到n個(或可稱多個)未校正溫度。此外,溫度感測系統S包括n個紅外線溫度感測器10,n個紅外線溫度感測器10呈R×L的形式陣列排列,n個紅外線溫度感測器10依序由一第一紅外線溫度感測器10至一第n紅外線溫度感測器10排列,R為大於等於2的正整數,L為大於等於2的正整數,n為R乘以L的數量,其中,n個紅外線溫度感測器10分別量測待測物體以得到n個未校正溫度。Based on the above, the temperature calibration method includes the following steps: as shown in step S202 : providing a temperature sensing system S to measure an object to be measured to obtain n uncalibrated temperatures. For example, the object to be measured can be measured by using the first infrared temperature sensor 10a in at least one first group 10A and/or the first infrared temperature sensor 10b in at least one second group 10B, so as to Obtain n (or can be said to be multiple) uncorrected temperatures. In addition, the temperature sensing system S includes n infrared temperature sensors 10 , the n infrared temperature sensors 10 are arranged in an array in the form of R×L, and the n infrared temperature sensors 10 are sequentially composed of a first infrared temperature sensor 10 . The sensors 10 are arranged to an nth infrared temperature sensor 10, R is a positive integer greater than or equal to 2, L is a positive integer greater than or equal to 2, n is the number of R times L, wherein, n infrared temperature sensors The measuring device 10 respectively measures the object to be measured to obtain n uncorrected temperatures.

接著,如步驟S204所示:依據n個未校正溫度以及n個溫度校正函數,以將n個未校正溫度分別校準至一已校正溫度,而得到n個已校正溫度,且n個溫度校正函數分別由一迴歸分析所獲得。進一步來說,每一未校正溫度分別對應於相對應的溫度校正函數,且第一紅外線溫度感測器至第n紅外線溫度感測器10分別量測待測物體以得到相對應的一第一未校正溫度至一第n未校正溫度。Next, as shown in step S204: according to the n uncorrected temperatures and the n temperature correction functions, the n uncorrected temperatures are respectively calibrated to a corrected temperature to obtain n corrected temperatures and n temperature correction functions were obtained by a regression analysis. Further, each uncorrected temperature corresponds to a corresponding temperature correction function, and the first infrared temperature sensor to the n-th infrared temperature sensor 10 measure the object to be measured respectively to obtain a corresponding first infrared temperature sensor from the uncorrected temperature to an nth uncorrected temperature.

承上述,以本發明而言,n個溫度校正函數中的一第一溫度校正函數包括下列關係式:T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 )。T1obj 為第一紅外線溫度感測器10量測待測物體後得到的一第一已校正溫度,第一已校正溫度的單位為攝氏,T1objN 為第一紅外線溫度感測器10量測待測物體後得到的第一未校正溫度,第一溫度校正函數的第一未校正溫度的單位為攝氏,C10 為第一溫度校正函數的一第一溫度校正迴歸係數,C11 為第一溫度校正函數的一第二溫度校正迴歸係數,C12 為第一溫度校正函數的一第三溫度校正迴歸係數,C13 為第一溫度校正函數的一第四溫度校正迴歸係數,C14 為第一溫度校正函數的一第五溫度校正迴歸係數,C15 為第一溫度校正函數的一第六溫度校正迴歸係數。也就是說,可將前述步驟S202所得到的待測物體的第一未校正溫度帶入上述第一溫度校正函數,而得到待測物體的第一已校正溫度。即,可利用上述第一溫度校正函數校正第一紅外線溫度感測器10所量測到的第一未校正溫度的數值。Based on the above, according to the present invention, a first temperature correction function among the n temperature correction functions includes the following relationship: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ). T1 obj is a first calibrated temperature obtained by the first infrared temperature sensor 10 after measuring the object to be measured, the unit of the first calibrated temperature is Celsius, and T1 objN is the first infrared temperature sensor 10 to measure the temperature to be measured The first uncorrected temperature obtained after measuring the object, the unit of the first uncorrected temperature of the first temperature correction function is Celsius, C1 0 is a first temperature correction regression coefficient of the first temperature correction function, and C1 1 is the first temperature A second temperature correction regression coefficient of the correction function, C1 2 is a third temperature correction regression coefficient of the first temperature correction function, C1 3 is a fourth temperature correction regression coefficient of the first temperature correction function, C1 4 is the first temperature correction regression coefficient A fifth temperature correction regression coefficient of the temperature correction function, C1 5 is a sixth temperature correction regression coefficient of the first temperature correction function. That is to say, the first uncorrected temperature of the object to be measured obtained in the aforementioned step S202 can be brought into the above-mentioned first temperature correction function to obtain the first corrected temperature of the object to be measured. That is, the value of the first uncorrected temperature measured by the first infrared temperature sensor 10 can be corrected by using the above-mentioned first temperature correction function.

承上述,進一步來說,n個溫度校正函數中的一第j溫度校正函數包括下列關係式,其中,j為大於1且小於等於n的正整數,第j溫度校正函數包括下列關係式:Tjobj =(Cj0 +Cj1 ×TjobjN +Cj2 ×(TjobjN )2 +Cj3 ×(TjobjN )3 +Cj4 ×(TjobjN )4 +Cj5 ×(TjobjN )5 )。Tjobj 為第j紅外線溫度感測器10量測待測物體後得到的一第j已校正溫度,第j已校正溫度的單位為攝氏,TjobjN 為第j紅外線溫度感測器10量測待測物體後得到的一第j未校正溫度,第j溫度校正函數的第j未校正溫度的單位為攝氏,Cj0 為第j溫度校正函數的一第一溫度校正迴歸係數,Cj1 為第j溫度校正函數的一第二溫度校正迴歸係數,Cj2 為第j溫度校正函數的一第三溫度校正迴歸係數,Cj3 為第j溫度校正函數的一第四溫度校正迴歸係數,Cj4 為第j溫度校正函數的一第五溫度校正迴歸係數,Cj5 為第j溫度校正函數的一第六溫度校正迴歸係數。也就是說,可將前述步驟S202所得到的待測物體的第j未校正溫度帶入上述第j溫度校正函數,而得到待測物體的第j已校正溫度。即,可利用上述第j溫度校正函數校正第j紅外線溫度感測器10所量測到的第j未校正溫度的數值。Based on the above, further, a jth temperature correction function in the n temperature correction functions includes the following relational expression, wherein, j is a positive integer greater than 1 and less than or equal to n, and the jth temperature correction function includes the following relational expression: Tj obj =(Cj 0 +Cj 1 ×Tj objN +Cj 2 ×(Tj objN ) 2 +Cj 3 ×(Tj objN ) 3 +Cj 4 ×(Tj objN ) 4 +Cj 5 ×(Tj objN ) 5 ). Tj obj is a j-th corrected temperature obtained after the j-th infrared temperature sensor 10 measures the object to be measured, the unit of the j-th corrected temperature is Celsius, and Tj objN is the j-th infrared temperature sensor 10 to measure the temperature to be measured. The jth uncorrected temperature obtained after measuring the object, the unit of the jth uncorrected temperature of the jth temperature correction function is Celsius, Cj 0 is a first temperature correction regression coefficient of the jth temperature correction function, and Cj 1 is the jth A second temperature correction regression coefficient of the temperature correction function, Cj2 is a third temperature correction regression coefficient of the jth temperature correction function, Cj3 is a fourth temperature correction regression coefficient of the jth temperature correction function, Cj4 is the th A fifth temperature correction regression coefficient of the j temperature correction function, Cj 5 is a sixth temperature correction regression coefficient of the jth temperature correction function. That is, the jth uncorrected temperature of the object to be measured obtained in the aforementioned step S202 can be brought into the above jth temperature correction function to obtain the jth corrected temperature of the object to be measured. That is, the value of the jth uncorrected temperature measured by the jth infrared temperature sensor 10 can be corrected by using the jth temperature correction function.

承上述,進一步來說,第n溫度校正函數包括下列關係式:Tnobj =(Cn0 +Cn1 ×TnobjN +Cn2 ×(TnobjN )2 +Cn3 ×(TnobjN )3 +Cn4 ×(TnobjN )4 +Cn5 ×(TnobjN )5 )。Tnobj 為第n紅外線溫度感測器10量測待測物體後得到的一第n已校正溫度,第n已校正溫度的單位為攝氏,TnobjN 為第n紅外線溫度感測器10量測待測物體後得到的第n未校正溫度,第n溫度校正函數的第n未校正溫度的單位為攝氏,Cn0 為第n溫度校正函數的一第一溫度校正迴歸係數,Cn1 為第n溫度校正函數的一第二溫度校正迴歸係數,Cn2 為第n溫度校正函數的一第三溫度校正迴歸係數,Cn3 為第n溫度校正函數的一第四溫度校正迴歸係數,Cn4 為第n溫度校正函數的一第五溫度校正迴歸係數,Cn5 為第n溫度校正函數的一第六溫度校正迴歸係數也就是說,可將前述步驟S202所得到的待測物體的第n未校正溫度帶入上述第n溫度校正函數,而得到待測物體的第n已校正溫度。即,可利用上述第n溫度校正函數校正第n紅外線溫度感測器10所量測到的第n未校正溫度的數值。Based on the above, further, the nth temperature correction function includes the following relationship: Tn obj =(Cn 0 +Cn 1 ×Tn objN +Cn 2 ×(Tn objN ) 2 +Cn 3 ×(Tn objN ) 3 +Cn 4 ×(Tn objN ) 4 +Cn 5 ×(Tn objN ) 5 ). Tn obj is an n-th corrected temperature obtained after the n-th infrared temperature sensor 10 measures the object to be measured, the unit of the n-th corrected temperature is Celsius, and Tn objN is the n-th infrared temperature sensor 10 to measure the temperature to be measured. The nth uncorrected temperature obtained after measuring the object, the unit of the nth uncorrected temperature of the nth temperature correction function is Celsius, Cn 0 is a first temperature correction regression coefficient of the nth temperature correction function, and Cn 1 is the nth temperature A second temperature correction regression coefficient of the correction function, Cn 2 is a third temperature correction regression coefficient of the nth temperature correction function, Cn 3 is a fourth temperature correction regression coefficient of the nth temperature correction function, Cn 4 is the nth temperature correction regression coefficient A fifth temperature correction regression coefficient of the temperature correction function, Cn 5 is a sixth temperature correction regression coefficient of the nth temperature correction function. Enter the above nth temperature correction function to obtain the nth corrected temperature of the object to be measured. That is, the value of the n-th uncorrected temperature measured by the n-th infrared temperature sensor 10 can be corrected by using the n-th temperature correction function.

接著,請參閱圖6所示,圖6為本發明第一實施例的紅外線熱像儀的溫度校正方法的步驟S202的流程圖。在步驟S202量測待測物體,以得到n個未校正溫度的步驟中,其包括下列步驟:如步驟S2022所示:利用第一紅外線溫度感測器10量測待測物體的一第一預定位置的一輻射能量,以產生一第一數位訊號,利用第j紅外線溫度感測器10量測待測物體的一第j預定位置的一輻射能量,以產生一第j數位訊號,且利用第n紅外線溫度感測器10量測待測物體的一第n預定位置的一輻射能量,以產生一第n數位訊號。Next, please refer to FIG. 6 , which is a flowchart of step S202 of the method for calibrating the temperature of the infrared thermal imager according to the first embodiment of the present invention. The step of measuring the object to be measured in step S202 to obtain n uncorrected temperatures includes the following steps: as shown in step S2022: using the first infrared temperature sensor 10 to measure a first predetermined temperature of the object to be measured a radiant energy at a position to generate a first digital signal, use the jth infrared temperature sensor 10 to measure a radiant energy at a jth predetermined position of the object to be measured, to generate a jth digital signal, and use the jth infrared temperature sensor 10 to measure a radiant energy at a jth predetermined position of the object to be measured The n-infrared temperature sensor 10 measures a radiant energy at an n-th predetermined position of the object to be measured, so as to generate an n-th digital signal.

接著,如步驟S2024所示:根據第一數位訊號以及一第一溫度量測公式計算出待測物體的第一未校正溫度,根據第j數位訊號以及一第j溫度量測公式計算出待測物體的第j未校正溫度,且根據第n數位訊號以及一第n溫度量測公式計算出待測物體的第n未校正溫度。舉例來說,控制裝置3可接收第一紅外線溫度感測器10所量測到的第一數位訊號、第j紅外線溫度感測器10所量測到的第j數位訊號及第n紅外線溫度感測器10所量測到的第n數位訊號,並利用第一溫度量測公式、第j溫度量測公式及第n溫度量測公式計算出待測物體的第一未校正溫度、第j未校正溫度及第n位校正溫度。進一步來說,以本發明而言,第一溫度量測公式包括下列關係式:S1=G1×(1+tCo1×(Tamb -Tde ))×((T1objN )4 -(Tamb )4 )。此外,第j溫度量測公式包括下列關係式:Sj=Gj×(1+tCoj×(Tamb -Tde ))×((TjobjN )4 -(Tamb )4 )。此外,第n溫度量測公式包括下列關係式:Sn=Gn×(1+tCon×(Tamb -Tde ))×((TnobjN )4 -(Tamb )4 )。S1為第一數位訊號,Sj為第j數位訊號,Sn為第n數位訊號,G1為第一溫度量測公式的一校正係數,Gj為第j溫度量測公式的一校正係數,Gn為第n溫度量測公式的一校正係數,tCo1為第一溫度量測公式的一系統溫度係數,tCoj為第j溫度量測公式的一系統溫度係數,tCon為第n溫度量測公式的一系統溫度係數,Tamb 為一環境溫度,環境溫度的單位為凱氏,Tde 為溫度為298.15K,T1objN 為待測物體的第一未校正溫度,第一溫度量測公式中的第一未校正溫度的單位為凱氏,TjobjN 為待測物體的第j未校正溫度,第j溫度量測公式中的第j未校正溫度的單位為凱氏,第n溫度量測公式中的第n未校正溫度的單位為凱氏。Next, as shown in step S2024: calculate the first uncorrected temperature of the object to be measured according to the first digital signal and a first temperature measurement formula, and calculate the temperature to be measured according to the jth digital signal and a jth temperature measurement formula The jth uncorrected temperature of the object is calculated, and the nth uncorrected temperature of the object to be measured is calculated according to the nth digital signal and an nth temperature measurement formula. For example, the control device 3 can receive the first digital signal measured by the first infrared temperature sensor 10 , the jth digital signal measured by the jth infrared temperature sensor 10 , and the nth infrared temperature sensor. The nth digital signal measured by the measuring device 10 is used to calculate the first uncorrected temperature of the object to be measured, the jth uncalibrated temperature and the jth uncorrected temperature of the Correction temperature and nth bit correction temperature. Further, according to the present invention, the first temperature measurement formula includes the following relationship: S1=G1×(1+tCo1×(T amb −T de ))×((T1 objN ) 4 −(T amb ) 4 ). In addition, the jth temperature measurement formula includes the following relation: Sj=Gj×(1+tCoj×(T amb −T de ))×((Tj objN ) 4 −(T amb ) 4 ). In addition, the nth temperature measurement formula includes the following relation: Sn=Gn×(1+tCon×(T amb −T de ))×((Tn objN ) 4 −(T amb ) 4 ). S1 is the first digital signal, Sj is the jth digital signal, Sn is the nth digital signal, G1 is a correction coefficient of the first temperature measurement formula, Gj is a correction coefficient of the jth temperature measurement formula, Gn is the A correction coefficient of the n temperature measurement formula, tCo1 is a system temperature coefficient of the first temperature measurement formula, tCoj is a system temperature coefficient of the jth temperature measurement formula, tCon is a system temperature of the nth temperature measurement formula coefficient, T amb is an ambient temperature, the unit of ambient temperature is Kelvin, T de is a temperature of 298.15K, T1 objN is the first uncorrected temperature of the object to be measured, the first uncorrected temperature in the first temperature measurement formula The unit of temperature is Kjeldahl, Tj objN is the jth uncorrected temperature of the object to be measured, the unit of the jth uncorrected temperature in the jth temperature measurement formula is Kjeldahl, and the nth uncorrected temperature in the nth temperature measurement formula The unit of calibration temperature is Kelvin.

承上述,須說明的是,環境溫度Tamb 可利用溫度量測裝置2量測,第一數位訊號S1可利用第一紅外線溫度感測器10量測,第j數位訊號Sj可利用第j紅外線溫度感測器10量測,第n數位訊號Sn可利用第n紅外線溫度感測器10量測。此外,Tde 為溫度為298.15K所代表的是Tde 為溫度為25°C。藉此,在步驟S2024中,可以利用第一數位訊號、第j數位訊號、第n數位訊號、第一溫度量測公式、第j溫度量測公式及第n溫度量測公式計算出待測物體的第一未校正溫度、第j位校正溫度及第n位校正溫度,接著,再利用步驟S204中的第一溫度校正函數、第j溫度校正函數及第n溫度校正函數,將待測物體的第一未校正溫度、第j未校正溫度及第n位校正溫度帶入上述第一溫度校正函數、第j溫度校正函數及第n溫度校正函數,而得到待測物體的第一已校正溫度、第j已校正溫度及第n以校正溫度。此外,值得說明的是,上述第一溫度量測公式、第j溫度量測公式及第n溫度量測公式可由斯特凡波茲曼定律(Stefan-Boltzmann law)取得。Based on the above, it should be noted that the ambient temperature Tamb can be measured by the temperature measuring device 2, the first digital signal S1 can be measured by the first infrared temperature sensor 10, and the jth digital signal Sj can be measured by the jth infrared light The temperature sensor 10 measures, and the nth digital signal Sn can be measured by the nth infrared temperature sensor 10 . In addition, T de is a temperature of 298.15K which means that T de is a temperature of 25°C. Therefore, in step S2024, the object to be measured can be calculated by using the first digital signal, the jth digital signal, the nth digital signal, the first temperature measurement formula, the jth temperature measurement formula and the nth temperature measurement formula The first uncorrected temperature, the jth corrected temperature, and the nth corrected temperature of The first uncorrected temperature, the jth uncorrected temperature, and the nth corrected temperature are brought into the above-mentioned first temperature correction function, jth temperature correction function, and nth temperature correction function to obtain the first corrected temperature of the object to be measured, The jth corrected temperature and the nth corrected temperature. In addition, it should be noted that the above-mentioned first temperature measurement formula, jth temperature measurement formula and nth temperature measurement formula can be obtained by Stefan-Boltzmann law.

接著,請參閱圖7所示,圖7為本發明第一實施例的紅外線熱像儀的溫度校正方法的再一流程圖,以下將進一步舉例說明多個紅外線溫度感測器10中的其中兩個紅外線溫度感測器10(第一紅外線溫度感測器10a及第二紅外線溫度感測器10b)的溫度校正方法。另外,雖然本發明是以第一紅外線溫度感測器10a及第二紅外線溫度感測器10b分別利用一第一溫度校正函數及第二溫度校正函數進行溫度量測校正,但是,在其他實施方式中,也可以是多個第一紅外線溫度感測器10a所組成的群組(例如第一群組10A)利用第一溫度校正函數進行溫度量測校正,且多個第二紅外線溫度感測器10b所組成的群組(例如第二群組10B)利用第二溫度校正函數進行溫度量測校正。Next, please refer to FIG. 7 , which is another flowchart of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention. The following will further illustrate two of the plurality of infrared temperature sensors 10 . A temperature calibration method for each infrared temperature sensor 10 (a first infrared temperature sensor 10a and a second infrared temperature sensor 10b). In addition, although the present invention uses the first infrared temperature sensor 10a and the second infrared temperature sensor 10b to use a first temperature correction function and a second temperature correction function to perform temperature measurement and correction, respectively, in other embodiments , it can also be a group formed by a plurality of first infrared temperature sensors 10a (for example, the first group 10A) using the first temperature correction function to perform temperature measurement and correction, and a plurality of second infrared temperature sensors The group formed by 10b (eg, the second group 10B) uses the second temperature correction function to perform temperature measurement correction.

承上述,溫度校正方法包括下列步驟:如步驟S302所示:提供一溫度感測系統S量測一待測物體,以得到一第一未校正溫度以及一第二未校正溫度。舉例來說,可利用第一群組10A中的第一紅外線溫度感測器10a量測待測物體,以得到一第一未校正溫度,同時,利用第二群組10B中的第二紅外線溫度感測器10b量測待測物體,以得到一第二未校正溫度。Based on the above, the temperature calibration method includes the following steps: as shown in step S302 : providing a temperature sensing system S to measure an object to be measured to obtain a first uncalibrated temperature and a second uncalibrated temperature. For example, the first infrared temperature sensor 10a in the first group 10A can be used to measure the object to be measured to obtain a first uncorrected temperature, and at the same time, the second infrared temperature in the second group 10B can be used The sensor 10b measures the object to be measured to obtain a second uncorrected temperature.

承上述,如步驟S304所示,將第一未校正溫度校準至一第一已校正溫度,且將第二未校正溫度校準至一第二已校正溫度。舉例來說,可依據第一未校正溫度、第二未校正溫度、一第一溫度校正函數及一第二溫度校正函數,將第一未校正溫度校準至一第一已校正溫度,且將第二未校正溫度校準至一第二已校正溫度,且第一溫度校正函數及第二溫度校正函數可分別由一迴歸分析所獲得。進一步來說,以本發明而言,第一溫度校正函數可包括下列關係式:T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 )。T1obj 為第一紅外線溫度感測器10a量測待測物體後所得到的待測物體的第一已校正溫度,第一已校正溫度T1obj 的單位為攝氏,T1objN 為第一紅外線溫度感測器10a量測待測物體後所得到的待測物體的第一未校正溫度,第一溫度校正函數的第一未校正溫度的單位為攝氏,C10 為第一溫度校正函數的一第一溫度校正迴歸係數,C11 為第一溫度校正函數的一第二溫度校正迴歸係數,C12 為第一溫度校正函數的一第三溫度校正迴歸係數,C13 為第一溫度校正函數的一第四溫度校正迴歸係數,C14 為第一溫度校正函數的一第五溫度校正迴歸係數,C15 為第一溫度校正函數的一第六溫度校正迴歸係數。也就是說,可將前述步驟S302所得到的待測物體的第一未校正溫度帶入上述第一溫度校正函數,而得到待測物體的第一已校正溫度。即,可利用上述第一溫度校正函數校正第一紅外線溫度感測器10a所量測到的第一未校正溫度的數值。Based on the above, as shown in step S304, the first uncalibrated temperature is calibrated to a first calibrated temperature, and the second uncalibrated temperature is calibrated to a second calibrated temperature. For example, the first uncalibrated temperature may be calibrated to a first calibrated temperature according to the first uncalibrated temperature, the second uncalibrated temperature, a first temperature calibration function, and a second temperature calibration function, and the first uncalibrated temperature may be calibrated to a first calibrated temperature. The two uncorrected temperatures are calibrated to a second corrected temperature, and the first temperature correction function and the second temperature correction function can be obtained by a regression analysis, respectively. Further, according to the present invention, the first temperature correction function may include the following relation: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ). T1 obj is the first corrected temperature of the object to be measured obtained by the first infrared temperature sensor 10a after measuring the object to be measured, the unit of the first corrected temperature T1 obj is Celsius, and T1 objN is the first infrared temperature sensor The first uncorrected temperature of the object to be measured obtained by the measuring device 10a after measuring the object to be measured, the unit of the first uncorrected temperature of the first temperature correction function is Celsius, and C10 is a first temperature of the first temperature correction function. The temperature correction regression coefficient, C1 1 is a second temperature correction regression coefficient of the first temperature correction function, C1 2 is a third temperature correction regression coefficient of the first temperature correction function, and C1 3 is a first temperature correction function. Four temperature correction regression coefficients, C1 4 is a fifth temperature correction regression coefficient of the first temperature correction function, and C1 5 is a sixth temperature correction regression coefficient of the first temperature correction function. That is to say, the first uncorrected temperature of the object to be tested obtained in the foregoing step S302 can be brought into the above-mentioned first temperature correction function to obtain the first corrected temperature of the object to be tested. That is, the value of the first uncorrected temperature measured by the first infrared temperature sensor 10a can be corrected by using the above-mentioned first temperature correction function.

承上述,進一步來說,以本發明而言,第二溫度校正函數可包括下列關係式:T2obj =(C20 +C21 ×T2objN +C22 ×(T2objN )2 +C23 ×(T2objN )3 +C24 ×(T2objN )4 +C25 ×(T2objN )5 )。T2obj 為第二紅外線溫度感測器10b量測待測物體後所得到的待測物體的第二已校正溫度,第二已校正溫度T2obj 的單位為攝氏,T2objN 為第二紅外線溫度感測器10b量測待測物體後所得到的待測物體的第二未校正溫度,第二溫度校正函數的第二未校正溫度T2objN 的單位為攝氏,C20 為第二溫度校正函數的一第一溫度校正迴歸係數,C21 為第二溫度校正函數的一第二溫度校正迴歸係數,C22 為第二溫度校正函數的一第三溫度校正迴歸係數,C23 為第二溫度校正函數的一第四溫度校正迴歸係數,C24 為第二溫度校正函數的一第五溫度校正迴歸係數,C25 為第二溫度校正函數的一第六溫度校正迴歸係數。也就是說,可將前述步驟S302所得到的待測物體的第二未校正溫度帶入上述第二溫度校正函數,而得到待測物體的第二已校正溫度。即,可利用上述第二溫度校正函數校正第二紅外線溫度感測器10b所量測到的第二未校正溫度的數值。Based on the above, further, according to the present invention, the second temperature correction function may include the following relationship: T2 obj =(C2 0 +C2 1 ×T2 objN +C2 2 ×(T2 objN ) 2 +C2 3 ×( T2 objN ) 3 +C2 4 ×(T2 objN ) 4 +C2 5 ×(T2 objN ) 5 ). T2 obj is the second corrected temperature of the object to be measured obtained after the second infrared temperature sensor 10b measures the object to be measured, the unit of the second corrected temperature T2 obj is Celsius, and T2 objN is the second infrared temperature sensor The second uncorrected temperature of the object to be measured obtained by the measuring device 10b after measuring the object to be measured, the unit of the second uncorrected temperature T2 objN of the second temperature correction function is Celsius, and C2 0 is a unit of the second temperature correction function. The first temperature correction regression coefficient, C2 1 is a second temperature correction regression coefficient of the second temperature correction function, C2 2 is a third temperature correction regression coefficient of the second temperature correction function, and C2 3 is the second temperature correction function. A fourth temperature correction regression coefficient, C2 4 is a fifth temperature correction regression coefficient of the second temperature correction function, and C2 5 is a sixth temperature correction regression coefficient of the second temperature correction function. That is, the second uncorrected temperature of the object to be tested obtained in the aforementioned step S302 can be brought into the above-mentioned second temperature correction function to obtain the second corrected temperature of the object to be tested. That is, the value of the second uncorrected temperature measured by the second infrared temperature sensor 10b can be corrected by using the above-mentioned second temperature correction function.

接著,請參閱圖8所示,圖8為本發明第一實施例的溫度校正方法的步驟S302的流程圖。在步驟S302量測待測物體,以得到一第一未校正溫度以及一第二未校正溫度的步驟中,其包括下列步驟:如步驟S3022所示:利用第一紅外線溫度感測器10a量測待測物體的一第一預定位置的一紅外線能量,以產生一第一數位訊號,且利用第二紅外線溫度感測器量測待測物體的一第二預定位置的一紅外線能量,以產生一第二數位訊號。舉例來說,第一數位訊號及第二數位訊號可以分別由紅外線溫度感測裝置1的第一紅外線溫度感測器10a及第二紅外線溫度感測器10b量測待測物體的輻射能量之後所產生的訊號。Next, please refer to FIG. 8 , which is a flowchart of step S302 of the temperature calibration method according to the first embodiment of the present invention. The step of measuring the object to be measured in step S302 to obtain a first uncorrected temperature and a second uncorrected temperature includes the following steps: as shown in step S3022: using the first infrared temperature sensor 10a to measure An infrared energy at a first predetermined position of the object to be measured is used to generate a first digital signal, and a second infrared temperature sensor is used to measure an infrared energy at a second predetermined position of the object to be measured to generate a The second digital signal. For example, the first digital signal and the second digital signal can be obtained after measuring the radiation energy of the object to be measured by the first infrared temperature sensor 10a and the second infrared temperature sensor 10b of the infrared temperature sensing device 1, respectively. generated signal.

接著,如步驟S3024所示:根據第一數位訊號及一第一溫度量測公式計算出待測物體的第一未校正溫度,且根據第二數位訊號及一第二溫度量測公式計算出所述待測物體的第二未校正溫度。舉例來說,控制裝置3可接收第一紅外線溫度感測器10a所量測到的第一數位訊號及第二紅外線溫度感測器10b所量測到的第二數位訊號,並利用第一溫度量測公式及第二溫度量測公式計算出待測物體的第一未校正溫度及第二位校正溫度。進一步來說,以本發明而言,第一溫度量測公式包括下列關係式:S1=G1×(1+tCo1×(Tamb -Tde ))×((T1objN )4 -(Tamb )4 )。此外,第二溫度量測公式包括下列關係式:S2=G2×(1+tCo2×(Tamb -Tde ))×((T2objN )4 -(Tamb )4 )。S1為第一數位訊號,S2為第二數位訊號,G1為第一溫度量測公式的一校正係數,G2為第二溫度量測公式的一校正係數,tCo1為第一溫度量測公式的一系統溫度係數,tCo2為第二溫度量測公式的一系統溫度係數,Tamb 為一環境溫度,環境溫度Tamb 的單位為凱氏,Tde 為溫度為298.15K,T1objN 為待測物體的第一未校正溫度,T2objN 為待測物體的第二未校正溫度,第一溫度量測公式中的第一未校正溫度T1objN 的單位為凱氏,第二溫度量測公式中的第二未校正溫度T2objN 的單位為凱氏。藉此,在步驟S3024中,可以利用第一數位訊號、第二數位訊號、第一溫度量測公式及第二溫度量測公式計算出待測物體的第一未校正溫度及第二位校正溫度,接著,再利用步驟S304中的第一溫度校正函數及第二溫度校正函數,將待測物體的第一未校正溫度及第二位校正溫度帶入上述第一溫度校正函數及第二溫度校正函數,而得到待測物體的第一已校正溫度及第二以校正溫度。另外,須說明的是,雖然上述是以第一紅外線溫度感測器10a及第二紅外線溫度感測器10b作為舉例說明,但是,其他多個紅外線溫度感測器10的得到已校正溫度的方式也與前述說明相仿,在此不再贅述。此外,值得說明的是,上述第一溫度量測公式及第二溫度量測公式可由斯特凡波茲曼定律(Stefan-Boltzmann law)取得。Next, as shown in step S3024: calculate the first uncorrected temperature of the object to be measured according to the first digital signal and a first temperature measurement formula, and calculate the obtained temperature according to the second digital signal and a second temperature measurement formula the second uncorrected temperature of the object to be measured. For example, the control device 3 can receive the first digital signal measured by the first infrared temperature sensor 10a and the second digital signal measured by the second infrared temperature sensor 10b, and use the first temperature The measurement formula and the second temperature measurement formula calculate the first uncorrected temperature and the second corrected temperature of the object to be measured. Further, according to the present invention, the first temperature measurement formula includes the following relationship: S1=G1×(1+tCo1×(T amb −T de ))×((T1 objN ) 4 −(T amb ) 4 ). In addition, the second temperature measurement formula includes the following relation: S2=G2×(1+tCo2×(T amb −T de ))×((T2 objN ) 4 −(T amb ) 4 ). S1 is the first digital signal, S2 is the second digital signal, G1 is a correction coefficient of the first temperature measurement formula, G2 is a correction coefficient of the second temperature measurement formula, tCo1 is a correction coefficient of the first temperature measurement formula System temperature coefficient, tCo2 is a system temperature coefficient of the second temperature measurement formula, Tamb is an ambient temperature, the unit of ambient temperature Tamb is Kjeldahl, T de is the temperature of 298.15K , T1 objN is the temperature of the object to be measured. The first uncorrected temperature, T2 objN is the second uncorrected temperature of the object to be measured, the unit of the first uncorrected temperature T1 objN in the first temperature measurement formula is Kjeldahl, and the second temperature in the second temperature measurement formula The unit of uncorrected temperature T2 objN is Kjeldahl. Therefore, in step S3024, the first uncorrected temperature and the second corrected temperature of the object to be measured can be calculated by using the first digital signal, the second digital signal, the first temperature measurement formula and the second temperature measurement formula , and then use the first temperature correction function and the second temperature correction function in step S304 to bring the first uncorrected temperature and the second corrected temperature of the object to be measured into the first temperature correction function and the second temperature correction function. function to obtain the first corrected temperature and the second corrected temperature of the object to be tested. In addition, it should be noted that although the first infrared temperature sensor 10a and the second infrared temperature sensor 10b are used as examples for illustration, there are other ways of obtaining the corrected temperature of the infrared temperature sensors 10. It is also similar to the foregoing description, and will not be repeated here. In addition, it should be noted that the above-mentioned first temperature measurement formula and second temperature measurement formula can be obtained by Stefan-Boltzmann law.

[第二實施例][Second Embodiment]

請參閱圖9及圖10所示,圖9為本發明第二實施例的溫度感測系統的校正方法的流程圖,圖10為本發明第二實施例的溫度感測系統的校正方法的步驟S12的流程圖。以下將進一步說明溫度感測系統的校正方法,同時,進一步說明產生前述校正迴歸係數、校正係數及系統溫度係數的方法。以本發明而言,第一溫度校正迴歸係數、第二溫度校正迴歸係數、第三溫度校正迴歸係數、第四溫度校正迴歸係數、第五溫度校正迴歸係數、第六溫度校正迴歸係數、校正係數以及系統溫度係數的數值是在溫度感測系統的校正過程中所產生。Please refer to FIG. 9 and FIG. 10. FIG. 9 is a flowchart of a calibration method for a temperature sensing system according to a second embodiment of the present invention, and FIG. 10 shows steps of a calibration method for a temperature sensing system according to the second embodiment of the present invention. The flowchart of S12. The calibration method of the temperature sensing system will be further described below, and at the same time, the method of generating the aforementioned calibration regression coefficient, calibration coefficient and system temperature coefficient will be further described. According to the present invention, the first temperature correction regression coefficient, the second temperature correction regression coefficient, the third temperature correction regression coefficient, the fourth temperature correction regression coefficient, the fifth temperature correction regression coefficient, the sixth temperature correction regression coefficient, the correction coefficient And the value of the system temperature coefficient is generated during the calibration process of the temperature sensing system.

承上述,溫度感測系統S的校正方法,其包括下列步驟:如步驟S11所示:提供具有一預設溫度的一黑體(Black Body)。舉例來說,黑體的預設溫度為已知,以用於計算校正係數及系統溫度係數。接著,如步驟S12所示:取得溫度感測系統S的一校正係數G1以及一系統溫度係數tCo1。舉例來說,在取得校正係數以及所述系統溫度係數的步驟中,是利用一初始溫度量測公式取得校正係數以及系統溫度係數,初始溫度量測公式包括下列關係式:S=G1×(1+tCo1×(Tamb -Tde ))×((TobjNA )4 -(Tamb )4 )。S為溫度感測系統S的紅外線溫度感測器10量測一黑體所得到的一初始數位訊號,G1為校正係數,tCo1為系統溫度係數,Tamb 為環境溫度,環境溫度可利用溫度感測系統S的溫度量測裝置2量測環境的溫度而取得,環境溫度Tamb 的單位為凱氏,Tde 為溫度為298.15 K,TobjNA 為黑體的預設溫度,預設溫度的單位為凱氏。舉例來說,黑體的預設溫度可為100°C,即,373.15K。此外,值得說明的是,上述初始溫度量測公式可由斯特凡波茲曼定律(Stefan-Boltzmann law)取得。As mentioned above, the calibration method of the temperature sensing system S includes the following steps: as shown in step S11 : providing a black body with a preset temperature. For example, the predetermined temperature of the black body is known and used to calculate the correction coefficient and the system temperature coefficient. Next, as shown in step S12: a correction coefficient G1 and a system temperature coefficient tCo1 of the temperature sensing system S are obtained. For example, in the step of obtaining the correction coefficient and the system temperature coefficient, an initial temperature measurement formula is used to obtain the correction coefficient and the system temperature coefficient, and the initial temperature measurement formula includes the following relationship: S=G1×(1 +tCo1×(T amb −T de ))×((T objNA ) 4 −(T amb ) 4 ). S is an initial digital signal obtained by measuring a black body by the infrared temperature sensor 10 of the temperature sensing system S, G1 is the correction coefficient, tCo1 is the system temperature coefficient, Tamb is the ambient temperature, and the ambient temperature can be sensed by temperature The temperature measuring device 2 of the system S is obtained by measuring the temperature of the environment, the unit of the ambient temperature T amb is Kelvin, T de is the temperature of 298.15 K, T objNA is the preset temperature of the black body, and the unit of the preset temperature is Kelvin 's. For example, the predetermined temperature of the black body may be 100°C, ie, 373.15K. In addition, it should be noted that the above-mentioned initial temperature measurement formula can be obtained by Stefan-Boltzmann law.

承上述,在取得校正係數以及系統溫度係數的步驟中,其包括下列步驟:如步驟S122所示,在環境溫度是298.15 K的環境下取得校正係數。換句話說,當環境溫度Tamb 為298.15 K時,可以利用初始溫度量測公式計算出校正係數G1。接著,如步驟S124所示:依據取得的校正係數G1,在環境溫度Tamb 不是298.15 K的環境下取得系統溫度係數tCo1。換句話說,由於校正係數G1可以在步驟S122中取得,因此,通過初始溫度量測公式可以再計算出系統溫度係數tCo1。另外,須說明的是,在步驟S11及步驟S12中,並未考慮到維恩位移(Wien's displacement)補償。因此,仍須要進行後續步驟S13、步驟S14、步驟S15及步驟S16。Based on the above, in the step of obtaining the correction coefficient and the system temperature coefficient, it includes the following steps: as shown in step S122, obtaining the correction coefficient in an environment where the ambient temperature is 298.15 K. In other words, when the ambient temperature Tamb is 298.15 K, the correction coefficient G1 can be calculated using the initial temperature measurement formula. Next, as shown in step S124: according to the obtained correction coefficient G1, the system temperature coefficient tCo1 is obtained under the environment where the ambient temperature Tamb is not 298.15 K. In other words, since the correction coefficient G1 can be obtained in step S122, the system temperature coefficient tCo1 can be recalculated through the initial temperature measurement formula. In addition, it should be noted that in step S11 and step S12, Wien's displacement compensation is not considered. Therefore, the subsequent steps S13, S14, S15 and S16 still need to be performed.

接著,如步驟S13所示,提供多個輻射黑體,且多個輻射黑體(Black Body)所分別具有的一預定溫度彼此相異。舉例來說,多個輻射黑體的一預定溫度為已知,以用於計算校正迴歸係數。此外,多個輻射黑體的預定溫度的單位為攝氏。接著,如步驟S14所示,利用溫度感測系統S量測多個輻射黑體,以得到多個量測溫度。舉例來說,可以利用溫度感測系統S的紅外線溫度感測器10直接量測多個輻射黑體。此外,多個量測溫度的單位為攝氏。進一步來說,上述所說明的多個輻射黑體的預定溫度為多個輻射黑體的實際溫度值,而多個量測溫度則是利用溫度感測系統所量測出來的溫度值,因此,兩者之間仍有可能有所誤差。因此,需要針對兩者之間的誤差進行校正。Next, as shown in step S13, a plurality of radiation black bodies are provided, and the predetermined temperatures of the plurality of radiation black bodies are different from each other. For example, a predetermined temperature of a plurality of radiating black bodies is known and used to calculate the correction regression coefficient. In addition, the unit of the predetermined temperature of the plurality of radiation black bodies is Celsius. Next, as shown in step S14, the temperature sensing system S is used to measure a plurality of radiation black bodies to obtain a plurality of measured temperatures. For example, the infrared temperature sensor 10 of the temperature sensing system S can be used to directly measure a plurality of radiation black bodies. In addition, the units of the plurality of measured temperatures are in degrees Celsius. Further, the predetermined temperatures of the plurality of radiation black bodies described above are the actual temperature values of the plurality of radiation black bodies, and the plurality of measured temperatures are the temperature values measured by the temperature sensing system. Therefore, the two There may still be errors between them. Therefore, it is necessary to correct for the error between the two.

承上述,舉例來說,在步驟S13中,可提供具有一第一預定溫度的一第一輻射黑體、具有一第二預定溫度的一第二輻射黑體、具有一第三預定溫度的一第三輻射黑體、具有一第四預定溫度的一第四輻射黑體、具有一第五預定溫度的一第五輻射黑體以及具有一第六預定溫度的一第六輻射黑體。此外,第一預定溫度、第二預定溫度、第三預定溫度、第四預定溫度、第五預定溫度及第六預定溫度彼此相異。此外,第一預定溫度、第二預定溫度、第三預定溫度、第四預定溫度、第五預定溫度及第六預定溫度的單位為攝氏。然而,須說明的是,本發明不以上述多個輻射黑體的數量為限制。Based on the above, for example, in step S13, a first radiation black body with a first predetermined temperature, a second radiation black body with a second predetermined temperature, and a third radiation black body with a third predetermined temperature can be provided A radiation black body, a fourth radiation black body having a fourth predetermined temperature, a fifth radiation black body having a fifth predetermined temperature, and a sixth radiation black body having a sixth predetermined temperature. Further, the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the fifth predetermined temperature, and the sixth predetermined temperature are different from each other. In addition, the units of the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the fifth predetermined temperature, and the sixth predetermined temperature are Celsius. However, it should be noted that the present invention is not limited by the number of the above-mentioned plurality of radiation black bodies.

承上述,舉例來說,在步驟S14中,可利用溫度感測系統的紅外線溫度感測器10量測第一輻射黑體、第二輻射黑體、第三輻射黑體、第四輻射黑體、第五輻射黑體以及第六輻射黑體以得到一第一量測溫度、一第二量測溫度、一第三量測溫度、一第四量測溫度、一第五量測溫度以及一第六量測溫度。此外,第一量測溫度、第二量測溫度、第三量測溫度、第四量測溫度、第五量測溫度以及第六量測溫度的單位為攝氏。在其中一實施方式中,由於前述步驟S11及步驟S12中,已取得校正係數G1以及系統溫度係數tCo1。因此,可以利用直接利用溫度量測公式:S=G1×(1+tCo1×(Tamb -Tde ))×((TobjNR )4 -(Tamb )4 )取得量測溫度。此外,TobjNR 為量測溫度(例如第一量測溫度、第二量測溫度、第三量測溫度、第四量測溫度、第五量測溫度以及第六量測溫度)。此外,須說明的是,此時利用溫度量測公式所求得的多個量測溫度的單位為凱氏溫標,因此,需要將其轉換成攝氏溫標,以進一步利用步驟S15取得校正迴歸係數。Based on the above, for example, in step S14, the infrared temperature sensor 10 of the temperature sensing system can be used to measure the first radiation black body, the second radiation black body, the third radiation black body, the fourth radiation black body, and the fifth radiation black body The black body and the sixth radiate the black body to obtain a first measurement temperature, a second measurement temperature, a third measurement temperature, a fourth measurement temperature, a fifth measurement temperature and a sixth measurement temperature. In addition, the units of the first measurement temperature, the second measurement temperature, the third measurement temperature, the fourth measurement temperature, the fifth measurement temperature and the sixth measurement temperature are Celsius. In one embodiment, the correction coefficient G1 and the system temperature coefficient tCo1 have been obtained in the aforementioned steps S11 and S12. Therefore, the measured temperature can be obtained by directly using the temperature measurement formula: S=G1×(1+tCo1×(T amb −T de ))×((T objNR ) 4 −(T amb ) 4 ). In addition, T objNR is the measurement temperature (eg, the first measurement temperature, the second measurement temperature, the third measurement temperature, the fourth measurement temperature, the fifth measurement temperature, and the sixth measurement temperature). In addition, it should be noted that the units of the plurality of measurement temperatures obtained by using the temperature measurement formula are Kjeldahl temperature scale, therefore, it needs to be converted into Celsius temperature scale, and further use step S15 to obtain the correction regression coefficient.

承上述,請一併參閱下表一所示,進一步來說,第一量測溫度對應於第一預定溫度,第二量測溫度對應於第二預定溫度,第三量測溫度對應於第三預定溫度,第四量測溫度對應於第四預定溫度,第五量測溫度對應於第五預定溫度,第六量測溫度對應於第六預定溫度。Based on the above, please refer to Table 1 together. Further, the first measured temperature corresponds to the first predetermined temperature, the second measured temperature corresponds to the second predetermined temperature, and the third measured temperature corresponds to the third The predetermined temperature, the fourth measurement temperature corresponds to the fourth predetermined temperature, the fifth measurement temperature corresponds to the fifth predetermined temperature, and the sixth measurement temperature corresponds to the sixth predetermined temperature.

舉例來說,第一量測溫度可為346.42°C,第二量測溫度可為300.59°C,第三量測溫度可為181.57°C,第四量測溫度可為100°C,第五量測溫度可為-3.5°C,第六量測溫度可為-41.28°C。此外,第一預定溫度可為500°C,第二預定溫度可為400°C,第三預定溫度可為200°C,第四預定溫度可為100°C,第五預定溫度可為0°C,第六預定溫度可為-30°C。然而,須說明的是,上述量測溫度及預定溫度僅為舉例說明,本發明不以此為限。For example, the first measurement temperature may be 346.42°C, the second measurement temperature may be 300.59°C, the third measurement temperature may be 181.57°C, the fourth measurement temperature may be 100°C, and the fifth measurement temperature may be 100°C. The measurement temperature may be -3.5°C, and the sixth measurement temperature may be -41.28°C. In addition, the first predetermined temperature may be 500°C, the second predetermined temperature may be 400°C, the third predetermined temperature may be 200°C, the fourth predetermined temperature may be 100°C, and the fifth predetermined temperature may be 0° C, the sixth predetermined temperature may be -30°C. However, it should be noted that the above-mentioned measured temperature and predetermined temperature are only illustrative, and the present invention is not limited thereto.

接著,如步驟S15所示,對多個量測溫度及多個預設溫度進行一迴歸分析,以得到一初始溫度校正函數。以本發明而言,初始溫度校正函數包括下列關係式:Tobj =(C10 +C11 ×T1objNB +C12 ×(TobjNB )2 +C13 ×(TobjNB )3 +C14 ×(TobjNB )4 +C15 ×(TobjNB )5 )。C10 、C11 、C12 、C13 、C14 及C15 分別為一溫度校正迴歸係數。此外,在得到初始溫度校正函數的步驟中,依序將多個預定溫度的數值帶入Tobj 中,且依序將多個量測溫度的數值帶入TobjNB 中,並進行迴歸分析,而取得多個溫度校正迴歸係數。此外,須說明的是,多個預定溫度的單位為攝氏,多個量測溫度的單位為攝氏。Next, as shown in step S15, a regression analysis is performed on the plurality of measured temperatures and the plurality of preset temperatures to obtain an initial temperature correction function. In the present invention, the initial temperature correction function includes the following relation: T obj =(C1 0 +C1 1 ×T1 objNB +C1 2 ×(T objNB ) 2 +C1 3 ×(T objNB ) 3 +C1 4 ×( T objNB ) 4 +C1 5 ×(T objNB ) 5 ). C1 0 , C1 1 , C1 2 , C1 3 , C1 4 and C1 5 are respectively a temperature correction regression coefficient. In addition, in the step of obtaining the initial temperature correction function, a plurality of predetermined temperature values are sequentially brought into T obj , and a plurality of measured temperature values are sequentially brought into T objNB , and regression analysis is performed, and Obtain multiple temperature-corrected regression coefficients. In addition, it should be noted that the units of the plurality of predetermined temperatures are in degrees Celsius, and the units of the plurality of measured temperatures are in degrees Celsius.

承上述,舉例來說,可依序將第一預定溫度、第二預定溫度、第三預定溫度、第四預定溫度、第五預定溫度以及第六預定溫度的數值帶入Tobj 中,且依序將第一量測溫度、第二量測溫度、第三量測溫度、第四量測溫度、第五量測溫度以及第六量測溫度的數值帶入TobjNB 中,並進行迴歸分析,而取得第一溫度校正迴歸係數C10 、第二溫度校正迴歸係數C11 、第三溫度校正迴歸係數C12 、第四溫度校正迴歸係數C13 、第五溫度校正迴歸係數C14 及第六溫度校正迴歸係數C15 。舉例來說,在其中一實施方式中可以利用表格計算軟體(例如Excel)進行迴歸分析,以取得第一溫度校正迴歸係數C10 、第二溫度校正迴歸係數C11 、第三溫度校正迴歸係數C12 、第四溫度校正迴歸係數C13 、第五溫度校正迴歸係數C14 及第六溫度校正迴歸係數C15Based on the above, for example, the values of the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the fifth predetermined temperature and the sixth predetermined temperature can be brought into T obj in sequence, and according to Then, the values of the first measurement temperature, the second measurement temperature, the third measurement temperature, the fourth measurement temperature, the fifth measurement temperature and the sixth measurement temperature are brought into T objNB , and regression analysis is performed, The first temperature correction regression coefficient C1 0 , the second temperature correction regression coefficient C1 1 , the third temperature correction regression coefficient C1 2 , the fourth temperature correction regression coefficient C1 3 , the fifth temperature correction regression coefficient C1 4 and the sixth temperature correction coefficient C1 3 are obtained. Correction regression coefficient C1 5 . For example, in one embodiment, a table calculation software (eg, Excel) can be used to perform regression analysis to obtain the first temperature-corrected regression coefficient C1 0 , the second temperature-corrected regression coefficient C1 1 , and the third temperature-corrected regression coefficient C1 2. The fourth temperature correction regression coefficient C1 3 , the fifth temperature correction regression coefficient C1 4 and the sixth temperature correction regression coefficient C1 5 .

接著,如步驟S16所示,利用初始溫度校正函數得到一溫度校正函數。舉例來說,溫度校正函數包括下列關係式:T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 )。T1obj 為一待測物體的一已校正溫度,已校正溫度的單位為攝氏,T1objN 為待測物體的一未校正溫度,溫度校正函數中的未校正溫度的單位為攝氏,C10 、C11 、C12 、C13 、C14 、C15 為溫度校正迴歸係數。換句話說,可利用上述初始溫度校正函數所得到的多個溫度校正迴歸係數,而得到用於第一實施例中所提供的溫度校正方法中的溫度校正函數。Next, as shown in step S16, a temperature correction function is obtained by using the initial temperature correction function. For example, the temperature correction function includes the following relationship: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ). T1 obj is a corrected temperature of an object to be measured, the unit of the corrected temperature is Celsius, T1 objN is an uncorrected temperature of the object to be measured, the unit of uncorrected temperature in the temperature correction function is Celsius, C1 0 , C1 1 , C1 2 , C1 3 , C1 4 , and C1 5 are temperature correction regression coefficients. In other words, the temperature correction function used in the temperature correction method provided in the first embodiment can be obtained by using a plurality of temperature correction regression coefficients obtained from the above-mentioned initial temperature correction function.

另外,須說明的是,上述溫度校正迴歸係數僅為其中一個紅外線溫度感測器10的溫度校正迴歸係數,其他紅外線溫度感測器10(例如第一紅外線溫度感測器10至第n紅外線溫度感測器10)的溫度校正迴歸係數也可以利用上述方式進行計算,其計算方式彼此相彷,在此不再贅述。另外,須說明的是,雖然上述實施方式是以五次方程式進行分析,但是,在其他實施方式中,也可以是三次方程式、四次方程式、六次方程式或七次方程式。換句話說,在其他實施方式中,溫度校正函數也可以包括下列關係式,例如:T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 )、T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 )、T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 +C16 ×(T1objN )6 )或是T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 +C16 ×(T1objN )6 +C17 ×(T1objN )7 ),本發明不以溫度校正函數的次方數為限制。 量測溫度(°C) 預定溫度(°C) 溫度校正迴歸係數 -41.28 -30 C15 :-1.27613×10-11 -3.5 0 C14 :1.27168×10-8 100 100 C13 :-1.53674×10-6 181.57 200 C12 :0.001217651 300.59 400 C11 :0.852474723 346.42 500 C10 :2.968677498 表一 In addition, it should be noted that the above temperature correction regression coefficient is only the temperature correction regression coefficient of one of the infrared temperature sensors 10 , and the other infrared temperature sensors 10 (for example, the first infrared temperature sensor 10 to the nth infrared temperature sensor 10 The temperature correction regression coefficient of the sensor 10) can also be calculated using the above method, and the calculation methods are similar to each other, and will not be repeated here. In addition, it should be noted that, although the above-mentioned embodiment analyzes with a fifth-order equation, in other embodiments, a third-order equation, a fourth-order equation, a sixth-order equation, or a seventh-order equation may be used. In other words, in other embodiments, the temperature correction function may also include the following relationship, for example: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) ) 3 ), T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 ), T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 +C1 6 ×(T1 objN ) ) 6 ) or T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 +C1 6 ×(T1 objN ) 6 +C1 7 ×(T1 objN ) 7 ), the present invention is not limited by the power of the temperature correction function. Measuring temperature (°C) Predetermined temperature (°C) Temperature Corrected Regression Coefficient -41.28 -30 C15 : -1.27613× 10-11 -3.5 0 C14 : 1.27168× 10-8 100 100 C13 : -1.53674× 10-6 181.57 200 C12: 0.001217651 300.59 400 C11: 0.852474723 346.42 500 C10 : 2.968677498 Table I

藉此,在其中一實施方式中,製造商可利用上述溫度感測系統S的校正方法,而得到一溫度校正函數,並將溫度校正函數儲存於溫度感測系統S的控制裝置3中。當使用者使用溫度感測系統S時,可利用溫度感測系統S量測待測物體,並利用溫度校正函數得到待測物體的準確溫度。Therefore, in one embodiment, the manufacturer can obtain a temperature correction function by using the above-mentioned correction method of the temperature sensing system S, and store the temperature correction function in the control device 3 of the temperature sensing system S. When the user uses the temperature sensing system S, the temperature sensing system S can be used to measure the object to be measured, and the temperature correction function can be used to obtain the accurate temperature of the object to be measured.

[實施例的有益效果][Advantageous effects of the embodiment]

本發明的其中一有益效果在於,本發明所提供的紅外線熱像儀的溫度校正方法,其能通過“依據未校正溫度以及一溫度校正函數,將未校正溫度校準至一已校正溫度”的技術方案,以提升溫度感測系統S的準確性。此外,本發明所提供的紅外線熱像儀的溫度感測系統S的校正方法,其能通過“對多個量測溫度以及多個預定溫度進行一迴歸分析,以得到一初始溫度校正函數”以及“利用初始溫度校正函數得到一溫度校正函數”的技術方案,以使得溫度感測系統S能通過溫度校正函數而提升準確性。One of the beneficial effects of the present invention is that the temperature correction method for an infrared thermal imager provided by the present invention can use the technology of "calibrating the uncorrected temperature to a corrected temperature according to the uncorrected temperature and a temperature correction function" solution to improve the accuracy of the temperature sensing system S. In addition, the calibration method of the temperature sensing system S of the infrared thermal imager provided by the present invention can obtain an initial temperature correction function by "performing a regression analysis on a plurality of measured temperatures and a plurality of predetermined temperatures" and The technical solution of "using the initial temperature correction function to obtain a temperature correction function" enables the temperature sensing system S to improve the accuracy through the temperature correction function.

更進一步來說,由於紅外線熱像儀會具有多個紅外線溫度感測器10,多個紅外線溫度感測器10大多會具有不同的參數,此外,待測物體所產生的輻射能量進入到紅外線熱像儀中會有多個不同的入射角。因此,上述因數都會影響紅外線熱像儀的準確性。本發明能通過第一實施例所提供的溫度校正方法,將每一個紅外線溫度感測器10所量測到的未校正溫度校正為已校正溫度,而提高溫度感測系統S的準確性。Furthermore, since the infrared thermal imager has multiple infrared temperature sensors 10, most of the multiple infrared temperature sensors 10 have different parameters. There will be several different angles of incidence in the camera. Therefore, the above factors will affect the accuracy of the infrared thermal imaging camera. The present invention can correct the uncorrected temperature measured by each infrared temperature sensor 10 to a corrected temperature through the temperature correction method provided by the first embodiment, thereby improving the accuracy of the temperature sensing system S.

更進一步來說,由於本案的溫度校正方法是利用溫度校正函數來進行計算,且溫度校正函數的溫度校正係數已經經由製造商在出廠前針對每一個紅外線溫度感測器10進行校正後而得知,並儲存於溫度感測系統中。所以,本發明所提供的溫度校正方法,只要將溫度感測系統S所量測到的未校正溫度帶入溫度校正函數中進行計算即可得到已校正溫度,其運算速度可以大幅提升。Furthermore, since the temperature correction method of the present application uses a temperature correction function for calculation, and the temperature correction coefficient of the temperature correction function has been known by the manufacturer after correcting each infrared temperature sensor 10 before leaving the factory. , and stored in the temperature sensing system. Therefore, in the temperature correction method provided by the present invention, the corrected temperature can be obtained as long as the uncorrected temperature measured by the temperature sensing system S is brought into the temperature correction function for calculation, and the operation speed can be greatly improved.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

S:溫度感測系統 1:紅外線溫度感測裝置 100:基板 10:紅外線溫度感測器 10a:第一紅外線溫度感測器 10b:第二紅外線溫度感測器 10A:第一群組 10B:第二群組 2:溫度量測裝置 3:控制裝置 S102,S1022,S1024,S104,S202,S2022,S2024,S204,S302,S3022,S3024,S304,S11,S12,S122,S124,S13,S14,S15,S16:步驟S: temperature sensing system 1: Infrared temperature sensing device 100: Substrate 10: Infrared temperature sensor 10a: The first infrared temperature sensor 10b: Second infrared temperature sensor 10A: Group 1 10B: The second group 2: Temperature measuring device 3: Control device S102, S1022, S1024, S104, S202, S2022, S2024, S204, S302, S3022, S3024, S304, S11, S12, S122, S124, S13, S14, S15, S16: Steps

圖1為本發明的紅外線熱像儀的溫度感測系統的功能方塊圖。FIG. 1 is a functional block diagram of the temperature sensing system of the infrared thermal imager of the present invention.

圖2為本發明的紅外線熱像儀的溫度感測系統的紅外線溫度感測裝置的俯視示意圖。2 is a schematic top view of the infrared temperature sensing device of the temperature sensing system of the infrared thermal imager of the present invention.

圖3為本發明第一實施例的紅外線熱像儀的溫度校正方法的其中一流程圖。FIG. 3 is a flow chart of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖4為本發明第一實施例的紅外線熱像儀的溫度校正方法的步驟S102的流程圖。FIG. 4 is a flowchart of step S102 of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖5為本發明第一實施例的紅外線熱像儀的溫度校正方法的另外一流程圖。FIG. 5 is another flowchart of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖6為本發明第一實施例的紅外線熱像儀的溫度校正方法的步驟S202的流程圖。FIG. 6 is a flowchart of step S202 of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖7為本發明第一實施例的紅外線熱像儀的溫度校正方法的再一流程圖。FIG. 7 is still another flowchart of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖8為本發明第一實施例的紅外線熱像儀的溫度校正方法的步驟S302的流程圖。FIG. 8 is a flowchart of step S302 of the temperature calibration method of the infrared thermal imager according to the first embodiment of the present invention.

圖9為本發明第二實施例的紅外線熱像儀的溫度感測系統的校正方法的流程圖。FIG. 9 is a flowchart of a calibration method for a temperature sensing system of an infrared thermal imager according to a second embodiment of the present invention.

圖10為本發明第二實施例的紅外線熱像儀的溫度感測系統的校正方法的步驟S12的流程圖。FIG. 10 is a flowchart of step S12 of the calibration method of the temperature sensing system of the infrared thermal imager according to the second embodiment of the present invention.

S102,S104:步驟S102, S104: Steps

Claims (15)

一種紅外線熱像儀的溫度校正方法,其包括: 提供一溫度感測系統量測一待測物體,以得到一未校正溫度;以及 依據所述未校正溫度以及一溫度校正函數,將所述未校正溫度校準至一已校正溫度; 其中,所述溫度校正函數由一迴歸分析所獲得。A temperature correction method for an infrared thermal imager, comprising: providing a temperature sensing system to measure an object to be measured to obtain an uncorrected temperature; and calibrating the uncorrected temperature to a corrected temperature according to the uncorrected temperature and a temperature correction function; Wherein, the temperature correction function is obtained by a regression analysis. 如請求項1所述的紅外線熱像儀的溫度校正方法,其中,所述溫度校正函數包括下列關係式: T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 ); 其中,T1obj 為所述待測物體的所述已校正溫度,所述已校正溫度的單位為攝氏,T1objN 為所述待測物體的所述未校正溫度,所述溫度校正函數中的所述未校正溫度的單位為攝氏,C10 為一第一溫度校正迴歸係數,C11 為一第二溫度校正迴歸係數,C12 為一第三溫度校正迴歸係數,C13 為一第四溫度校正迴歸係數,C14 為一第五溫度校正迴歸係數,C15 為一第六溫度校正迴歸係數。The temperature correction method for an infrared thermal imager according to claim 1, wherein the temperature correction function includes the following relation: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 + C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ); wherein, T1 obj is the corrected temperature of the object to be measured, and the corrected temperature The unit is Celsius, T1 objN is the uncorrected temperature of the object to be measured, the unit of the uncorrected temperature in the temperature correction function is Celsius, C1 0 is a first temperature correction regression coefficient, C1 1 is a second temperature correction regression coefficient, C1 2 is a third temperature correction regression coefficient, C1 3 is a fourth temperature correction regression coefficient, C1 4 is a fifth temperature correction regression coefficient, and C1 5 is a sixth temperature correction coefficient Regression coefficients. 如請求項2所述的紅外線熱像儀的溫度校正方法,其中,在量測所述待測物體以得到所述未校正溫度的步驟中,包括: 利用所述溫度感測系統量測所述待測物體的一輻射能量,以產生一數位訊號;以及 根據所述數位訊號以及一溫度量測公式計算出所述待測物體的所述未校正溫度; 其中,所述溫度量測公式包括下列關係式: S1=G1×(1+tCo1×(Tamb -Tde ))×((T1objN )4 -(Tamb )4 ); 其中,S1為所述數位訊號,G1為一校正係數,tCo1為一系統溫度係數,Tamb 為一環境溫度,所述環境溫度的單位為凱氏,Tde 為溫度為298.15K,T1objN 為所述待測物體的所述未校正溫度,所述溫度量測公式中的所述未校正溫度的單位為凱氏。The method for calibrating the temperature of an infrared thermal imager according to claim 2, wherein in the step of measuring the object to be measured to obtain the uncorrected temperature, the method comprises: using the temperature sensing system to measure the temperature a radiation energy of the object to be measured to generate a digital signal; and calculate the uncorrected temperature of the object to be measured according to the digital signal and a temperature measurement formula; wherein, the temperature measurement formula includes the following Relational formula: S1=G1×(1+tCo1×(T amb -T de ))×((T1 objN ) 4 -(T amb ) 4 ); wherein, S1 is the digital signal, G1 is a correction coefficient, tCo1 is a system temperature coefficient, T amb is an ambient temperature, the unit of the ambient temperature is Kjeldahl, T de is a temperature of 298.15K, T1 objN is the uncorrected temperature of the object to be measured, and the temperature The unit of the uncorrected temperature in the measurement formula is Kjeldahl. 如請求項3所述的紅外線熱像儀的溫度校正方法,其中,所述第一溫度校正迴歸係數、所述第二溫度校正迴歸係數、所述第三溫度校正迴歸係數、所述第四溫度校正迴歸係數、所述第五溫度校正迴歸係數、所述第六溫度校正迴歸係數、所述校正係數以及所述系統溫度係數的數值儲存於所述溫度感測系統中。The temperature correction method for an infrared thermal imager according to claim 3, wherein the first temperature correction regression coefficient, the second temperature correction regression coefficient, the third temperature correction regression coefficient, the fourth temperature correction regression coefficient The values of the correction regression coefficient, the fifth temperature correction regression coefficient, the sixth temperature correction regression coefficient, the correction coefficient and the system temperature coefficient are stored in the temperature sensing system. 如請求項4所述的紅外線熱像儀的溫度校正方法,其中,所述第一溫度校正迴歸係數、所述第二溫度校正迴歸係數、所述第三溫度校正迴歸係數、所述第四溫度校正迴歸係數、所述第五溫度校正迴歸係數、所述第六溫度校正迴歸係數、所述校正係數以及所述系統溫度係數的數值是在所述溫度感測系統的校正過程中所產生。The temperature correction method for an infrared thermal imager according to claim 4, wherein the first temperature correction regression coefficient, the second temperature correction regression coefficient, the third temperature correction regression coefficient, the fourth temperature correction regression coefficient The values of the correction regression coefficient, the fifth temperature correction regression coefficient, the sixth temperature correction regression coefficient, the correction coefficient and the system temperature coefficient are generated during the calibration process of the temperature sensing system. 如請求項5所述的紅外線熱像儀的溫度校正方法,其中,在提供所述溫度感測系統量測所述待測物體的步驟之前,還進一步包括:對所述溫度感測系統進行校正,所述溫度感測系統的校正方法包括: 提供具有一預設溫度的一黑體;以及 取得所述溫度感測系統的所述校正係數以及所述系統溫度係數; 其中,在取得所述校正係數以及所述系統溫度係數的步驟中,是利用一初始溫度量測公式取得所述校正係數以及所述系統溫度係數,所述初始溫度量測公式包括下列關係式: S=G1×(1+tCo1×(Tamb -Tde ))×((TobjNA )4 -(Tamb )4 ); 其中,S為所述溫度感測系統量測一黑體所得到的一初始數位訊號,G1為所述校正係數,tCo1為所述系統溫度係數,Tamb 為所述環境溫度,所述環境溫度的單位為凱氏,Tde 為溫度為298.15 K,TobjNA 為所述黑體的所述預設溫度,所述預設溫度的單位為凱氏; 其中,所述黑體的所述預設溫度為已知。The temperature calibration method for an infrared thermal imager according to claim 5, wherein before the step of providing the temperature sensing system to measure the object to be measured, the method further comprises: calibrating the temperature sensing system , the calibration method of the temperature sensing system includes: providing a black body with a preset temperature; and obtaining the calibration coefficient and the system temperature coefficient of the temperature sensing system; wherein, after obtaining the calibration coefficient And in the step of the system temperature coefficient, an initial temperature measurement formula is used to obtain the correction coefficient and the system temperature coefficient, and the initial temperature measurement formula includes the following relationship: S=G1×(1+tCo1 ×(T amb -T de ))×((T objNA ) 4 -(T amb ) 4 ); wherein, S is an initial digital signal obtained by the temperature sensing system measuring a black body, and G1 is the Correction coefficient, tCo1 is the temperature coefficient of the system, Tamb is the ambient temperature, the unit of the ambient temperature is Kjeldahl, Tde is the temperature of 298.15 K, T objNA is the preset temperature of the black body, The unit of the preset temperature is Kjeldahl; wherein, the preset temperature of the black body is known. 如請求項6所述的紅外線熱像儀的溫度校正方法,其中,在取得所述校正係數以及所述系統溫度係數的步驟中,包括: 在所述環境溫度是298.15 K的環境下取得所述校正係數;以及 依據取得的所述校正係數,在所述環境溫度不是298.15 K的環境下取得所述系統溫度係數。The temperature correction method for an infrared thermal imager according to claim 6, wherein, in the step of obtaining the correction coefficient and the system temperature coefficient, the method includes: obtaining the correction factor in an environment where the ambient temperature is 298.15 K; and According to the obtained correction coefficient, the system temperature coefficient is obtained in an environment where the ambient temperature is not 298.15 K. 如請求項6所述的紅外線熱像儀的溫度校正方法,其中,在取得所述溫度感測系統的所述校正係數以及所述系統溫度係數之後,還進一步包括: 提供具有一第一預定溫度的一第一輻射黑體、具有一第二預定溫度的一第二輻射黑體、具有一第三預定溫度的一第三輻射黑體、具有一第四預定溫度的一第四輻射黑體、具有一第五預定溫度的一第五輻射黑體以及具有一第六預定溫度的一第六輻射黑體,其中,所述第一預定溫度、所述第二預定溫度、所述第三預定溫度、所述第四預定溫度、所述第五預定溫度及所述第六預定溫度彼此相異,其中,所述第一預定溫度、所述第二預定溫度、所述第三預定溫度、所述第四預定溫度、所述第五預定溫度及所述第六預定溫度的單位為攝氏; 利用所述溫度感測系統量測所述第一輻射黑體、所述第二輻射黑體、所述第三輻射黑體、所述第四輻射黑體、所述第五輻射黑體以及所述第六輻射黑體以得到一第一量測溫度、一第二量測溫度、一第三量測溫度、一第四量測溫度、一第五量測溫度以及一第六量測溫度,其中,所述第一量測溫度對應於所述第一預定溫度,所述第二量測溫度對應於所述第二預定溫度,所述第三量測溫度對應於所述第三預定溫度,所述第四量測溫度對應於所述第四預定溫度,所述第五量測溫度對應於所述第五預定溫度,所述第六量測溫度對應於所述第六預定溫度,其中,所述第一量測溫度、所述第二量測溫度、所述第三量測溫度、所述第四量測溫度、所述第五量測溫度以及所述第六量測溫度的單位為攝氏; 對所述第一量測溫度、所述第二量測溫度、所述第三量測溫度、所述第四量測溫度、所述第五量測溫度、所述第六量測溫度、所述第一預定溫度、所述第二預定溫度、所述第三預定溫度、所述第四預定溫度、所述第五預定溫度以及所述第六預定溫度進行一迴歸分析,以得到一初始溫度校正函數;以及 利用所述初始溫度校正函數得到所述溫度校正函數; 其中,所述初始溫度校正函數包括下列關係式: Tobj =(C10 +C11 ×T1objNB +C12 ×(TobjNB )2 +C13 ×(TobjNB )3 +C14 ×(TobjNB )4 +C15 ×(TobjNB )5 ); 其中,在得到所述初始溫度校正函數的步驟中,依序將所述第一預定溫度、所述第二預定溫度、所述第三預定溫度、所述第四預定溫度、所述第五預定溫度以及所述第六預定溫度的數值帶入Tobj 中,且依序將所述第一量測溫度、所述第二量測溫度、所述第三量測溫度、所述第四量測溫度、所述第五量測溫度以及所述第六量測溫度的數值帶入TobjNB 中,並進行所述迴歸分析,而取得所述溫度校正函數的所述第一溫度校正迴歸係數、所述第二溫度校正迴歸係數、所述第三溫度校正迴歸係數、所述第四溫度校正迴歸係數、所述第五溫度校正迴歸係數以及所述第六溫度校正迴歸係數。The temperature correction method for an infrared thermal imager according to claim 6, wherein after obtaining the correction coefficient and the system temperature coefficient of the temperature sensing system, the method further comprises: providing a first predetermined temperature a first radiating black body, a second radiating black body having a second predetermined temperature, a third radiating black body having a third predetermined temperature, a fourth radiating black body having a fourth predetermined temperature, a fifth radiating black body having a A fifth radiant black body with a predetermined temperature and a sixth radiant black body with a sixth predetermined temperature, wherein the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature temperature, the fifth predetermined temperature, and the sixth predetermined temperature are different from each other, wherein the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the The unit of the fifth predetermined temperature and the sixth predetermined temperature is Celsius; the temperature sensing system is used to measure the first radiation black body, the second radiation black body, the third radiation black body, and the first radiation black body. Four radiation black bodies, the fifth radiation black body and the sixth radiation black body are used to obtain a first measurement temperature, a second measurement temperature, a third measurement temperature, a fourth measurement temperature, and a fifth measurement temperature. The measured temperature and a sixth measured temperature, wherein the first measured temperature corresponds to the first predetermined temperature, the second measured temperature corresponds to the second predetermined temperature, and the third measured temperature corresponds to the first predetermined temperature. The measured temperature corresponds to the third predetermined temperature, the fourth measured temperature corresponds to the fourth predetermined temperature, the fifth measured temperature corresponds to the fifth predetermined temperature, and the sixth measured temperature Corresponding to the sixth predetermined temperature, wherein the first measurement temperature, the second measurement temperature, the third measurement temperature, the fourth measurement temperature, and the fifth measurement temperature and the unit of the sixth measurement temperature is Celsius; for the first measurement temperature, the second measurement temperature, the third measurement temperature, the fourth measurement temperature, the fifth measurement temperature Measurement temperature, the sixth measurement temperature, the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the fifth predetermined temperature, and the first predetermined temperature Performing a regression analysis on six predetermined temperatures to obtain an initial temperature correction function; and using the initial temperature correction function to obtain the temperature correction function; wherein, the initial temperature correction function includes the following relation: T obj =(C1 0 +C1 1 ×T1 objNB +C1 2 ×(T objNB ) 2 +C1 3 ×(T objNB ) 3 +C1 4 ×(T objNB ) 4 +C1 5 ×(T objNB ) 5 ); wherein, after obtaining the In the step of initializing the temperature correction function, the first predetermined temperature, the second predetermined temperature, the third predetermined temperature, the fourth predetermined temperature, the fifth predetermined temperature and the sixth predetermined temperature are sequentially The value of the predetermined temperature is brought into T obj , and the first measured temperature, the all The values of the second measurement temperature, the third measurement temperature, the fourth measurement temperature, the fifth measurement temperature, and the sixth measurement temperature are brought into T objNB , and the regression analysis to obtain the first temperature correction regression coefficient, the second temperature correction regression coefficient, the third temperature correction regression coefficient, the fourth temperature correction regression coefficient, and the first temperature correction regression coefficient of the temperature correction function. Five temperature correction regression coefficients and the sixth temperature correction regression coefficient. 一種紅外線熱像儀的溫度感測系統的校正方法,其包括: 提供具有一預設溫度的一黑體; 取得所述溫度感測系統的一校正係數以及一系統溫度係數; 提供多個輻射黑體,且多個所述輻射黑體所分別具有的一預定溫度彼此相異; 利用所述溫度感測系統量測多個所述輻射黑體,以得到多個量測溫度; 對多個所述量測溫度以及多個所述預定溫度進行一迴歸分析,以得到一初始溫度校正函數;以及 利用所述初始溫度校正函數得到一溫度校正函數; 其中,在取得所述校正係數以及所述系統溫度係數的步驟中,是利用一初始溫度量測公式取得所述校正係數以及所述系統溫度係數,所述初始溫度量測公式包括下列關係式: S=G1×(1+tCo1×(Tamb -Tde ))×((TobjNA )4 -(Tamb )4 ); 其中,S為所述溫度感測系統量測一黑體所得到的一初始數位訊號,G1為所述校正係數,tCo1為所述系統溫度係數,Tamb 為所述環境溫度,所述環境溫度的單位為凱氏,Tde 為溫度為298.15 K,TobjNA 為所述黑體的所述預設溫度,所述預設溫度的單位為凱氏; 其中,所述黑體的所述預設溫度為已知。A method for calibrating a temperature sensing system of an infrared thermal imager, comprising: providing a black body with a preset temperature; obtaining a correction coefficient and a system temperature coefficient of the temperature sensing system; providing a plurality of radiation black bodies, and a plurality of the radiation black bodies respectively have a predetermined temperature different from each other; using the temperature sensing system to measure a plurality of the radiation black bodies to obtain a plurality of measured temperatures; for a plurality of the measured temperatures and performing a regression analysis on a plurality of the predetermined temperatures to obtain an initial temperature correction function; and using the initial temperature correction function to obtain a temperature correction function; wherein, in the step of obtaining the correction coefficient and the system temperature coefficient , the calibration coefficient and the system temperature coefficient are obtained by using an initial temperature measurement formula, the initial temperature measurement formula includes the following relationship: S=G1×(1+tCo1×(T amb -T de ) )×((T objNA ) 4 -(T amb ) 4 ); wherein, S is an initial digital signal obtained by the temperature sensing system measuring a black body, G1 is the correction coefficient, and tCo1 is the system temperature coefficient, T amb is the ambient temperature, the unit of the ambient temperature is Kjeldahl, T de is the temperature of 298.15 K, T objNA is the preset temperature of the black body, and the unit of the preset temperature is Kjeldahl; wherein the preset temperature of the black body is known. 如請求項9所述的紅外線熱像儀的溫度感測系統的校正方法,其中,在取得所述校正係數以及所述系統溫度係數的步驟中,包括: 在所述環境溫度是298.15 K的環境下取得所述校正係數;以及 依據取得的所述校正係數,在所述環境溫度不是298.15 K的環境下取得所述系統溫度係數。The method for calibrating a temperature sensing system of an infrared thermal imager according to claim 9, wherein, in the step of obtaining the calibration coefficient and the temperature coefficient of the system, the steps include: obtaining the correction factor in an environment where the ambient temperature is 298.15 K; and According to the obtained correction coefficient, the system temperature coefficient is obtained in an environment where the ambient temperature is not 298.15 K. 如請求項9所述的紅外線熱像儀的溫度感測系統的校正方法,其中,所述初始溫度校正函數包括下列關係式: Tobj =(C10 +C11 ×TobjNB +C12 ×(TobjNB )2 +C13 ×(TobjNB )3 +C14 ×(TobjNB )4 +C15 ×(TobjNB )5 ); 其中,C10 、C11 、C12 、C13 、C14 及C15 分別為一溫度校正迴歸係數; 其中,在得到所述初始溫度校正函數的步驟中,依序將多個所述預定溫度的數值帶入Tobj 中,且依序將多個所述量測溫度的數值帶入TobjNB 中,並進行所述迴歸分析,而取得多個所述溫度校正迴歸係數; 其中,多個所述預定溫度的單位為攝氏,多個所述量測溫度的單位為攝氏。The method for calibrating a temperature sensing system of an infrared thermal imager according to claim 9, wherein the initial temperature correction function includes the following relation: T obj =(C1 0 +C1 1 ×T objNB +C1 2 ×( T objNB ) 2 +C1 3 ×(T objNB ) 3 +C1 4 ×(T objNB ) 4 +C1 5 ×(T objNB ) 5 ); wherein C1 0 , C1 1 , C1 2 , C1 3 , C1 4 and C1 5 are respectively a temperature correction regression coefficient; wherein, in the step of obtaining the initial temperature correction function, a plurality of the predetermined temperature values are sequentially brought into T obj , and a plurality of the The numerical value of the measured temperature is brought into T objNB , and the regression analysis is performed to obtain a plurality of the temperature correction regression coefficients; wherein, the units of the plurality of predetermined temperatures are Celsius, and the units of the plurality of measured temperatures are to Celsius. 如請求項11所述的紅外線熱像儀的溫度感測系統的校正方法,其中,所述溫度校正函數包括下列關係式: T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 ); 其中,T1obj 為一待測物體的一已校正溫度,所述已校正溫度的單位為攝氏,T1objN 為所述待測物體的一未校正溫度,所述溫度校正函數中的所述未校正溫度的單位為攝氏,C10 、C11 、C12 、C13 、C14 、C15 為所述溫度校正迴歸係數。The method for calibrating a temperature sensing system of an infrared thermal imaging camera according to claim 11, wherein the temperature correction function includes the following relation: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ); wherein, T1 obj is a corrected temperature of an object to be measured, and the The unit of the corrected temperature is Celsius, T1 objN is an uncorrected temperature of the object to be measured, and the unit of the uncorrected temperature in the temperature correction function is Celsius, C1 0 , C1 1 , C1 2 , C1 3 , C1 4 and C1 5 are the temperature-corrected regression coefficients. 一種紅外線熱像儀的溫度校正方法,其包括: 提供一溫度感測系統量測一待測物體,以得到n個未校正溫度,其中,所述溫度感測系統包括n個紅外線溫度感測器,n個所述紅外線溫度感測器呈R×L的形式陣列排列,n個所述紅外線溫度感測器依序由一第一紅外線溫度感測器至一第n紅外線溫度感測器排列,R為大於等於2的正整數,L為大於等於2的正整數,n為R乘以L的數量,其中,n個所述紅外線溫度感測器分別量測所述待測物體以得到n個所述未校正溫度;以及 依據n個所述未校正溫度以及n個溫度校正函數,以將n個所述未校正溫度分別校準至一已校正溫度,而得到n個所述已校正溫度,其中,每一所述未校正溫度分別對應於相對應的所述溫度校正函數,且所述第一紅外線溫度感測器至所述第n紅外線溫度感測器分別量測所述待測物體以得到相對應的一第一未校正溫度至一第n未校正溫度; 其中,n個所述溫度校正函數分別由一迴歸分析所獲得。A temperature correction method for an infrared thermal imager, comprising: A temperature sensing system is provided to measure an object to be measured to obtain n uncorrected temperatures, wherein the temperature sensing system includes n infrared temperature sensors, and the n infrared temperature sensors are R× The n infrared temperature sensors are arranged in an array in the form of L, from a first infrared temperature sensor to an nth infrared temperature sensor in sequence, R is a positive integer greater than or equal to 2, and L is greater than or equal to A positive integer of 2, n is the number of R multiplied by L, wherein the n infrared temperature sensors respectively measure the object to be measured to obtain n uncorrected temperatures; and According to the n uncorrected temperatures and the n temperature correction functions, the n uncorrected temperatures are respectively calibrated to a corrected temperature to obtain n corrected temperatures, wherein each uncorrected temperature is The temperature corresponds to the corresponding temperature correction function respectively, and the first infrared temperature sensor to the nth infrared temperature sensor measure the object to be measured respectively to obtain a corresponding first temperature sensor. calibrate the temperature to an nth uncalibrated temperature; Wherein, the n temperature correction functions are respectively obtained by a regression analysis. 如請求項13所述的紅外線熱像儀的溫度校正方法,其中,n個所述溫度校正函數中的一第一溫度校正函數包括下列關係式: T1obj =(C10 +C11 ×T1objN +C12 ×(T1objN )2 +C13 ×(T1objN )3 +C14 ×(T1objN )4 +C15 ×(T1objN )5 ); 其中,T1obj 為所述第一紅外線溫度感測器量測所述待測物體後得到的一第一已校正溫度,所述第一已校正溫度的單位為攝氏,T1objN 為所述第一紅外線溫度感測器量測所述待測物體後得到的所述第一未校正溫度,所述第一溫度校正函數的所述第一未校正溫度的單位為攝氏,C10 為所述第一溫度校正函數的一第一溫度校正迴歸係數,C11 為所述第一溫度校正函數的一第二溫度校正迴歸係數,C12 為所述第一溫度校正函數的一第三溫度校正迴歸係數,C13 為所述第一溫度校正函數的一第四溫度校正迴歸係數,C14 為所述第一溫度校正函數的一第五溫度校正迴歸係數,C15 為所述第一溫度校正函數的一第六溫度校正迴歸係數; 其中,n個所述溫度校正函數中的一第j溫度校正函數包括下列關係式,其中,j為大於1且小於等於n的正整數,所述第j溫度校正函數包括下列關係式: Tjobj =(Cj0 +Cj1 ×TjobjN +Cj2 ×(TjobjN )2 +Cj3 ×(TjobjN )3 +Cj4 ×(TjobjN )4 +Cj5 ×(TjobjN )5 ); 其中,Tjobj 為所述第j紅外線溫度感測器量測所述待測物體後得到的一第j已校正溫度,所述第j已校正溫度的單位為攝氏,TjobjN 為所述第j紅外線溫度感測器量測所述待測物體後得到的一第j未校正溫度,所述第j溫度校正函數的所述第j未校正溫度的單位為攝氏,Cj0 為所述第j溫度校正函數的一第一溫度校正迴歸係數,Cj1 為所述第j溫度校正函數的一第二溫度校正迴歸係數,Cj2 為所述第j溫度校正函數的一第三溫度校正迴歸係數,Cj3 為所述第j溫度校正函數的一第四溫度校正迴歸係數,Cj4 為所述第j溫度校正函數的一第五溫度校正迴歸係數,Cj5 為所述第j溫度校正函數的一第六溫度校正迴歸係數; 其中,所述第n溫度校正函數包括下列關係式: Tnobj =(Cn0 +Cn1 ×TnobjN +Cn2 ×(TnobjN )2 +Cn3 ×(TnobjN )3 +Cn4 ×(TnobjN )4 +Cn5 ×(TnobjN )5 ); 其中,Tnobj 為所述第n紅外線溫度感測器量測所述待測物體後得到的一第n已校正溫度,所述第n已校正溫度的單位為攝氏,TnobjN 為所述第n紅外線溫度感測器量測所述待測物體後得到的所述第n未校正溫度,所述第n溫度校正函數的所述第n未校正溫度的單位為攝氏,Cn0 為所述第n溫度校正函數的一第一溫度校正迴歸係數,Cn1 為所述第n溫度校正函數的一第二溫度校正迴歸係數,Cn2 為所述第n溫度校正函數的一第三溫度校正迴歸係數,Cn3 為所述第n溫度校正函數的一第四溫度校正迴歸係數,Cn4 為所述第n溫度校正函數的一第五溫度校正迴歸係數,Cn5 為所述第n溫度校正函數的一第六溫度校正迴歸係數。The temperature correction method for an infrared thermal imager according to claim 13, wherein a first temperature correction function among the n temperature correction functions includes the following relation: T1 obj =(C1 0 +C1 1 ×T1 objN +C1 2 ×(T1 objN ) 2 +C1 3 ×(T1 objN ) 3 +C1 4 ×(T1 objN ) 4 +C1 5 ×(T1 objN ) 5 ); wherein, T1 obj is the first infrared temperature sensor A first calibrated temperature obtained by the detector after measuring the object to be measured, the unit of the first calibrated temperature is Celsius, and T1 objN is the object to be measured measured by the first infrared temperature sensor The first uncorrected temperature obtained later, the unit of the first uncorrected temperature of the first temperature correction function is Celsius, and C1 0 is a first temperature correction regression coefficient of the first temperature correction function, C1 1 is a second temperature correction regression coefficient of the first temperature correction function, C1 2 is a third temperature correction regression coefficient of the first temperature correction function, and C1 3 is a temperature correction regression coefficient of the first temperature correction function The fourth temperature correction regression coefficient, C14 is a fifth temperature correction regression coefficient of the first temperature correction function, and C15 is a sixth temperature correction regression coefficient of the first temperature correction function; A jth temperature correction function in the temperature correction function includes the following relational expression, wherein j is a positive integer greater than 1 and less than or equal to n, and the jth temperature correction function includes the following relational expression: Tj obj =(Cj 0 + Cj 1 ×Tj objN +Cj 2 ×(Tj objN ) 2 +Cj 3 ×(Tj objN ) 3 +Cj 4 ×(Tj objN ) 4 +Cj 5 ×( Tj objN ) 5 ); A jth corrected temperature obtained after the jth infrared temperature sensor measures the object to be measured, the unit of the jth corrected temperature is Celsius, and Tj objN is the measurement of the jth infrared temperature sensor A jth uncorrected temperature obtained after the object to be measured, the unit of the jth uncorrected temperature of the jth temperature correction function is Celsius, and Cj 0 is a first temperature of the jth temperature correction function Correction regression coefficient, Cj 1 is a second temperature correction regression coefficient of the jth temperature correction function, Cj 2 is a third temperature correction regression coefficient of the jth temperature correction function, Cj 3 is the jth temperature a fourth temperature correction regression coefficient of the correction function, Cj 4 is a fifth temperature correction regression coefficient of the jth temperature correction function, Cj 5 is a sixth temperature correction regression coefficient of the jth temperature correction function; wherein , the nth temperature correction function includes the following relation: Tn obj =(Cn 0 +Cn 1 ×Tn objN +Cn 2 ×(Tn objN ) 2 +Cn 3 ×(Tn objN ) 3 +Cn 4 ×(Tn objN ) 4 +Cn 5 ×(Tn objN ) 5 ); wherein, Tn obj is the quantity of the nth infrared temperature sensor An nth corrected temperature obtained after measuring the object to be measured, the unit of the nth corrected temperature is Celsius, Tn objN is the nth infrared temperature sensor obtained after measuring the object to be measured For the nth uncorrected temperature, the unit of the nth uncorrected temperature of the nth temperature correction function is Celsius, Cn 0 is a first temperature correction regression coefficient of the nth temperature correction function, and Cn 1 is A second temperature correction regression coefficient of the nth temperature correction function, Cn 2 is a third temperature correction regression coefficient of the nth temperature correction function, Cn 3 is a fourth temperature of the nth temperature correction function Correction regression coefficient, Cn 4 is a fifth temperature correction regression coefficient of the nth temperature correction function, Cn 5 is a sixth temperature correction regression coefficient of the nth temperature correction function. 如請求項14所述的紅外線熱像儀的溫度校正方法,其中,在量測所述待測物體以得到n個所述未校正溫度的步驟中,包括: 利用所述第一紅外線溫度感測器量測所述待測物體的一第一預定位置的一輻射能量,以產生一第一數位訊號,利用所述第j紅外線溫度感測器量測所述待測物體的一第j預定位置的一輻射能量,以產生一第j數位訊號,且利用所述第n紅外線溫度感測器量測所述待測物體的一第n預定位置的一輻射能量,以產生一第n數位訊號;以及 根據所述第一數位訊號以及一第一溫度量測公式計算出所述待測物體的所述第一未校正溫度,根據所述第j數位訊號以及一第j溫度量測公式計算出所述待測物體的所述第j未校正溫度,且根據所述第n數位訊號以及一第n溫度量測公式計算出所述待測物體的所述第n未校正溫度; 其中,所述第一溫度量測公式包括下列關係式: S1=G1×(1+tCo1×(Tamb -Tde ))×((T1objN )4 -(Tamb )4 ); 其中,所述第j溫度量測公式包括下列關係式: Sj=Gj×(1+tCoj×(Tamb -Tde ))×((TjobjN )4 -(Tamb )4 ); 其中,所述第n溫度量測公式包括下列關係式: Sn=Gn×(1+tCon×(Tamb -Tde ))×((TnobjN )4 -(Tamb )4 ); 其中,S1為所述第一數位訊號,Sj為所述第j數位訊號,Sn為所述第n數位訊號,G1為所述第一溫度量測公式的一校正係數,Gj為所述第j溫度量測公式的一校正係數,Gn為所述第n溫度量測公式的一校正係數,tCo1為所述第一溫度量測公式的一系統溫度係數,tCoj為所述第j溫度量測公式的一系統溫度係數,tCon為所述第n溫度量測公式的一系統溫度係數,Tamb 為一環境溫度,所述環境溫度的單位為凱氏,Tde 為溫度為298.15K,T1objN 為所述待測物體的所述第一未校正溫度,所述第一溫度量測公式中的所述第一未校正溫度的單位為凱氏,TjobjN 為所述待測物體的所述第j未校正溫度,所述第j溫度量測公式中的所述第j未校正溫度的單位為凱氏,所述第n溫度量測公式中的所述第n未校正溫度的單位為凱氏。The temperature calibration method for an infrared thermal imager according to claim 14, wherein in the step of measuring the object to be measured to obtain n uncorrected temperatures, the method comprises: using the first infrared temperature sensing The device measures a radiation energy of a first predetermined position of the object to be tested to generate a first digital signal, and uses the jth infrared temperature sensor to measure a jth predetermined position of the object to be tested to generate a j-th digital signal, and use the n-th infrared temperature sensor to measure a radiation energy of an n-th predetermined position of the object to be tested to generate an n-th digital signal; and calculating the first uncorrected temperature of the object to be measured according to the first digital signal and a first temperature measurement formula, and calculating the obtained temperature according to the jth digital signal and a jth temperature measurement formula the jth uncorrected temperature of the object to be measured, and the nth uncorrected temperature of the object to be measured is calculated according to the nth digital signal and an nth temperature measurement formula; wherein, the nth uncorrected temperature of the object to be measured is calculated; A temperature measurement formula includes the following relationship: S1=G1×(1+tCo1×(T amb −T de ))×((T1 objN ) 4 −(T amb ) 4 ); wherein, the jth temperature measurement The measurement formula includes the following relationship: Sj=Gj×(1+tCoj×(T amb −T de ))×((Tj objN ) 4 −(T amb ) 4 ); wherein, the nth temperature measurement formula includes The following relational formula: Sn=Gn×(1+tCon×(T amb -T de ))×((Tn objN ) 4 -(T amb ) 4 ); wherein, S1 is the first digital signal, and Sj is the the jth digital signal, Sn is the nth digital signal, G1 is a correction coefficient of the first temperature measurement formula, Gj is a correction coefficient of the jth temperature measurement formula, Gn is the A correction coefficient of the n temperature measurement formula, tCo1 is a system temperature coefficient of the first temperature measurement formula, tCoj is a system temperature coefficient of the jth temperature measurement formula, tCon is the nth temperature measurement formula A system temperature coefficient of the measurement formula, T amb is an ambient temperature, the unit of the ambient temperature is Kjeldahl, T de is a temperature of 298.15K, T1 objN is the first uncorrected temperature of the object to be measured, The unit of the first uncorrected temperature in the first temperature measurement formula is Kjeldahl, Tj objN is the jth uncorrected temperature of the object to be measured, and in the jth temperature measurement formula The unit of the jth uncorrected temperature is Kjeldahl, and the unit of the nth uncorrected temperature in the nth temperature measurement formula is Kjeldahl.
TW109123988A 2020-07-16 2020-07-16 Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera TWI733524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109123988A TWI733524B (en) 2020-07-16 2020-07-16 Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109123988A TWI733524B (en) 2020-07-16 2020-07-16 Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera

Publications (2)

Publication Number Publication Date
TWI733524B TWI733524B (en) 2021-07-11
TW202204861A true TW202204861A (en) 2022-02-01

Family

ID=77911408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123988A TWI733524B (en) 2020-07-16 2020-07-16 Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera

Country Status (1)

Country Link
TW (1) TWI733524B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150969A (en) * 1990-03-12 1992-09-29 Ivac Corporation System and method for temperature determination and calibration in a biomedical probe
TWI504872B (en) * 2014-09-26 2015-10-21 China Steel Corp Calibrating method for infrared thermometers and manufacturing controlling system using the same
DE112019006324T5 (en) * 2018-12-21 2021-09-09 Ams Sensors Singapore Pte. Ltd. LINEAR TEMPERATURE CALIBRATION COMPENSATION FOR SPECTROMETER SYSTEMS

Also Published As

Publication number Publication date
TWI733524B (en) 2021-07-11

Similar Documents

Publication Publication Date Title
JP5845301B2 (en) Infrared radiation detection device with resistive imaging bolometer and system with an array of such bolometers
CN103528694B (en) A kind of method of temperature of infrared heat image instrument measuring target object
CN106679817A (en) Method for calibrating thermal infrared imager
TWI651519B (en) Temperature measurement correction method, electronic system and method for generating corrected regression coefficient table
RU2523775C2 (en) Method and system for correction on basis of quantum theory to increase accuracy of radiation thermometer
Zhang et al. A method for reducing the influence of measuring distance on infrared thermal imager temperature measurement accuracy
Zhang et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager
CN111693154B (en) Temperature compensation method and device for infrared temperature measurement sensor
CN111272290B (en) Temperature measurement thermal infrared imager calibration method and device based on deep neural network
JPH11507136A (en) Calibration method of radiation thermometer
TWI716229B (en) High-precision non-contact temperature measuring device
KR20070114225A (en) Method and system for measuring and compensating for the case temperature variations in a bolometer based system
WO2022104816A1 (en) Temperature compensation method and system for thermal camera
CN109540297B (en) Infrared thermal imager calibration method based on FPA temperature
CN110455417B (en) Quantitative measurement error correction method for stray radiation of infrared optical system
US20080170599A1 (en) Calibration Method for Infrared Temperature Measuring Instruments
CN114018416B (en) Thermal infrared camera radiation calibration method and system
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
TWI733524B (en) Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera
CN110146173B (en) Temperature measurement consistency checking method based on infrared temperature measurement technology
CN111024237A (en) Non-contact wide-temperature-difference infrared temperature measuring method
CN111289148A (en) Transient fireball parameter acquisition method based on field calibration
US20220146319A1 (en) Temperature calibration method of infrared thermal image camera and calibration method of temperature sensing system of infrared thermal image camera
CN114441043B (en) Temperature correction method of uncooled infrared thermometer and thermometer
JP5520238B2 (en) A method for acquiring correction data in a temperature measuring apparatus, a temperature measuring method and a temperature measuring apparatus for performing the method.