TW202204616A - 阿茲海默症的治療 - Google Patents

阿茲海默症的治療 Download PDF

Info

Publication number
TW202204616A
TW202204616A TW110111624A TW110111624A TW202204616A TW 202204616 A TW202204616 A TW 202204616A TW 110111624 A TW110111624 A TW 110111624A TW 110111624 A TW110111624 A TW 110111624A TW 202204616 A TW202204616 A TW 202204616A
Authority
TW
Taiwan
Prior art keywords
mirna
sequence
pri
seq
tau
Prior art date
Application number
TW110111624A
Other languages
English (en)
Inventor
夏 米
蘇蘭舒 古哈塔庫爾塔
侯海龍
Original Assignee
美商瑞新生物科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商瑞新生物科技公司 filed Critical 美商瑞新生物科技公司
Publication of TW202204616A publication Critical patent/TW202204616A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/53Methods for regulating/modulating their activity reducing unwanted side-effects
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

本文所揭示之發明係提供可用於治療疾病諸如阿茲海默症(AD)的新穎pre-miRNA及pri-miRNA,以及使用其治療此類疾病(例如,AD)的方法。

Description

阿茲海默症的治療
阿茲海默症(AD)或簡稱為阿茲海默,由德國精神病醫師和病理學家愛洛斯.阿茲海默於1906年首次描述,後來以他的名字命名。其係一種慢性但毀滅性的神經退行性疾病,約佔60%至70%的失智症病因。於2015年,全世界有大約3000萬人被診斷為患有AD,並且失智症導致約190萬人死亡。在美國,AD是第六大死亡肇因,且估計有570萬美國人帶此病生存。到2050年,這一數字預期將上升為接近1400萬。該疾病最常發生在年齡超過65歲的人群中,並影響約6%的65歲及更年長的人群,但也有少量(約4%至5%)的早發性阿茲海默症。
AD一般緩慢地發生,但隨著時間推移而惡化,最常見的早期症候為難以記憶最近發生的事情。初始症候往往被誤認為正常老化。惟,隨著疾病發展,更嚴重之症候可包括語言問題、定向力障礙(包括容易迷路)、情緒波動、失去動力、無法管理自我照護以及行為問題。隨著個人狀況變差,他們往往從家庭和社會抽離。同時,受影響的患者越來越依賴他人的照顧,往往給他們的照護者帶來負擔。逐漸地,患者的身體機能喪失,最終導致死亡。儘管進展之速度可能不同,但診斷後之典型預期壽命為三至九年。
儘管已知該疾病進展係與腦中之斑塊及神經纖維糾結相關聯,但除了1%至5%的病例的基因差異業經鑑別之外,對AD之肇因仍所知甚少。
咸信,最顯著之風險因素係基因性,往往牽涉到很多基因。基於雙生子及家庭研究,阿茲海默症(及其記憶性組分)的基因遺傳性在49%至79%範圍。大約0.1%之病例係家族形式的體染色體顯性遺傳,在65歲之前發作,稱為早發性家族性阿茲海默症。大多數此類AD可歸因於三個基因之一的突變:彼等編碼澱粉樣蛋白前驅蛋白(APP)者、早老素1及早老素2。APP基因及早老素基因中之大多數突變增加了名為Aβ42之小蛋白質的產生,該小蛋白質係老年斑塊的主要組分。該等突變中之一部分僅改變Aβ42與其他主要形式(尤其是Aβ40)之間的比率而不增加Aβ42量級。與體染色體顯性AD相關聯的兩個其他基因係ABCA7和SORL1。
惟,大多數AD病例並不展現出此體染色體顯性遺傳,並因此定義為散發性AD,在該等病例中,環境及基因差異可能充當風險因素。最為人所知之此基因風險因素係脂蛋白E(APOE)之ε4對偶基因的遺傳,40%至80%之間的AD患者具備至少一個APOEε4對偶基因。APOEε4對偶基因使得雜合子之患病風險增加三倍,並使得同合子之患病風險增加15倍。最近的全基因組關聯研究(GWAS)業經鑑定了基因中的19個區域,此等區域似乎影響該風險,包括CASS4、CELF1、FERMT2、HLA-DRB5、INPP5D、MEF2C、NME8、PTK2B、SORL1、ZCWPW1、SlC24A4、CLU、PICALM、CR1、BIN1、MS4A、ABCA7、EPHA1及CD2AP。此外,TREM2基因中的對偶基因業經與高出3至5倍的發展出AD的風險相關聯。再者,很多SNP與AD相關聯,2018年的一項研究藉由將AD區分為6類而增加30個SNP,包括記憶、語言、視覺空間及執行功能。
其他AD風險因素包括頭部損傷、抑鬱及高血壓之病史。
對於AD之深層肇因,一個流行之假說係最初於1991年提出的所謂澱粉樣蛋白假說。根據澱粉樣蛋白假說,細胞外澱粉樣蛋白β(Aβ)沉積物係該疾病之根本肇因。對這一假說之支持來自澱粉樣蛋白前驅蛋白(APP)之基因於第21號染色體之定位,以及以下事實:具有多餘之APP拷貝的唐氏症候群(三染色體21)患者在40歲的年齡時幾乎普遍地至少展現出AD的最早期症候。又,如上文檢討,脂蛋白之特異性同型,APOE4,係就其正常功能(亦即,增強β澱粉樣蛋白質斷裂)而言不是非常有效並因此導致過量澱粉樣蛋白在腦內之堆積的脂蛋白同型,為AD的主要基因風險因素。再者,表現突變形式之人APP基因的基因轉殖小鼠發展出原纖澱粉樣蛋白斑塊以及具有空間學習缺陷的阿茲海默症樣腦部病理。業經推測,非斑塊Aβ寡聚物亦稱為澱粉樣蛋白衍生的可擴散配體(ADDL),係Aβ之主要致病形式,蓋因此等毒性寡聚物結合至神經元之表面受體並改變突觸之結構,從而打斷神經元通訊。
於2009年,這一理論得到更新,提示該疾病的主要罪魁禍首可能是β-澱粉樣蛋白的密切相關者而不一定是β-澱粉樣蛋白自身。該理論認為,澱粉樣蛋白相關之機制在生命早期的快速生長階段裁剪腦內之神經元連結,該機制可能在生命晚期被老化相關製程觸發而造成阿茲海默症的神經元萎縮。N-APP係一種來自肽之N端APP片段,其與β-澱粉樣蛋白相鄰並且被相同之酵素中的一者自APP裂解。N-APP藉由結合至名為死亡受體6(DR6,亦稱為TNFRSF21)的神經元受體而觸發自毀途徑。DR6係高度表現在人腦受阿茲海默症影響最大的區域,故下述者是可能的:N-APP/DR6途徑可能在老化的腦內被攔截以造成損傷。於這一模型中,β-澱粉樣蛋白藉由壓抑突觸功能而扮演互補性角色。
另一種關於AD深層肇因的流行假說係tau假說,該假說提出Tau蛋白異常啟動了疾病級聯。於這一模型中,過度磷酸化之Tau開始與其他Tau股線配對。最終,它們在神經細胞體內形成神經纖維糾結。當這一現象出現時,微管崩解,毀壞細胞的細胞骨架結構,這導致神經元轉運系統崩潰。這可能首先導致神經元之間的生化通訊失靈,然後導致細胞死亡。
無論深層機制如何,在病理學上,可藉由顯微鏡清晰地觀察到彼等受AD影響者之腦中的澱粉樣蛋白斑塊和神經纖維糾結兩者。斑塊係神經元外部並圍繞神經元的β-澱粉樣蛋白及細胞物質的緻密且大多數不可溶的沉積物。神經纖維糾結係微管相關蛋白Tau的集聚體,該Tau業經變為過度磷酸化並且蓄積在細胞自身的內部。
因此,阿茲海默症業經鑑定為蛋白質錯誤折疊疾病,其由異常折疊的β-澱粉樣蛋白及Tau蛋白在腦內的斑塊蓄積所致。此斑塊由長度為39至43個胺基酸的名為Aβ的小肽構成,該小肽係對於神經元生長、存活及損傷後修復而言至關重要的跨膜蛋白APP的片段。於阿茲海默症中,γ分泌酶及β分泌酶在蛋白分解製程中一起作用,造成APP被裂解為較小的片段,該等片段之一者使得Aβ的原纖維上升,該等原纖維形成以緻密型式沉積在神經元外部的凝塊,是為老年斑。
詳而言之,Aβ肽可以係37至43個胺基酸之間,其在所謂澱粉樣蛋白原途徑中透過藉由兩種分泌酶進行的第1型跨膜澱粉樣蛋白前驅蛋白(APP或AβPP)之依序蛋白分解性裂解而生成,該兩種分泌酶係天冬胺醯基蛋白酶β位點APP裂解酶(BACE1,亦稱為β分泌酶)及四聚體γ-分泌酶複合體。β-分泌酶可以在兩個替代性位點(於Aβ序列的Asp1處或Glu11處)裂解APP,導致99個殘 基之C端片段(CTF)(C99)或89個殘基之CTF(C89)的生成,該片段隨後將分別進一步被γ-分泌酶加工為全長度Aβ1-x(Aβ)或N端截短的Aβ11-x(Aβ’)。儘管Aβ’似乎為由神經元分泌之主要物質並且似乎對於AD患者腦內的不可溶集聚體的形成有所貢獻,但老年斑中發現的豐度最大的兩種Aβ物質係Aβ42及Aβ40。如果APP被在Aβ序列內進行裂解的α-分泌酶加工,則Aβ及Aβ’之產生受到妨礙。所得的83個殘基之CTF(C83,或α-CTF)隨後由γ-分泌酶加工,釋放p3肽(Aβ17-x)以及APP胞內域(AICD)。此等3kDa之p3肽係非澱粉樣蛋白原性者,但對於唐氏症候群患者之小腦中以及AD患者之不同腦區中的非血管性、擴散性斑塊的形成有所貢獻。這種p3蓄積之病理學意義尚未可知。
AD亦被視為由於Tau蛋白異常集聚所致的Tau蛋白病。Tau蛋白當被磷酸化時係令微管安定化,並且因此被稱為微管相關蛋白。於AD中,Tau變為被高度磷酸化;隨後其開始與其他股線配對,造成神經纖維糾結並令神經元之轉運系統崩潰。致病性Tau亦可透過可轉位元件失調而造成神經元死亡。
當前,尚無藥物或補充劑業經顯示降低風險,並且尚無阻止或逆轉疾病進展之治療措施,但一些藥物或補充劑及治療措施可以短暫地改善症候。
使用RNAi技術之基因緘默化為在哺乳動物細胞中拮抗疾病基因提供了巨大的機會。儘管最近在本領域取得了很多突破,但仍存在重大挑戰。例如,將siRNA作為治療劑遞送必須克服一系列挑戰,包括選擇合適的施用途徑以維持安定性及生物利用性,穿透血管屏障以到達標靶組織,尤其是穿透血腦屏障以到達CNS組織,以及避開免疫系統以避免觸發非所欲之免疫反應。最後但並非最不重要的是,轉染效率是siRNA技術的主要問題,蓋因不完全的/無效的轉染產生不完全減弱,而不完全減弱可能無法消除標靶蛋白質的功能。
減輕此等問題的一種方法業經使用藉由合適載體編碼的shRNA。透過使用病毒載體進行感染而將shRNA引入哺乳動物細胞內,可以達成shRNA之安定整合以及所靶向之基因的長期減弱。惟,這一策略之實施仍存在若干挑戰。
減輕此等問題的一種方法業經使用藉由合適載體(諸如基於腺病毒、逆轉錄病毒或慢病毒的載體)編碼的shRNA。此shRNA可以從細胞核中的載體轉錄,然後被核的核酸酶加工並轉運到細胞質,用以裝載到RISC複合體。
惟,shRNA傾向於在細胞核中藉由強效RNA聚合酶III從強啟動子(諸如H1或U6啟動子)轉錄,在非常短的時間內大量轉錄,其轉錄程度為它們淹沒了shRNA的下游加工。結果,可能導致非所欲之毒性。
本發明之一方面係提供多核苷酸,其包含:(a)pre-miRNA之框架區,其不包括用於pre-miRNA之導引股及隨從股的天然序列;(b)異源導引股,其係插入該框架區內替換該pre-miRNA之導引股的天然序列;以及,(c)異源隨從股,其係插入該框架區內替換該pre-miRNA之隨從股的天然序列,其中,該多核苷酸實質上維持該pre-miRNA(具有該pre-miRNA之導引股的天然序列,並且具有該pr-miRNA之隨從股的天然序列)的二級結構及/或該pr-miRNA的自由能;其中,當藉由胞質核酸酶(例如,切丁酶)加工該pre-miRNA時,係將該異源導引股併入RISC複合體以允許該RISC複合體靶向以該導引股補足之標靶RNA,以及,其中,當將該多核苷酸加工為miRNA時,該異源導引股係比該異源隨從股優先地加載到RISC(若產生)。
於某些具體例中,該多核苷酸包含pri-miRNA,該pri-miRNA包含pre-miRNA,該pri-miRNA包含於該pre-miRNA之框架區側翼的側翼區域,並且該側翼區域可藉由核的核酸酶(例如,Drosha)移除。
於某些具體例中,該pre-miRNA或pri-miRNA係源自microRNA,與其隨從股相比,其更偏好將其導引股併入該RISC複合體中(例如,以至少20:1(例如,21:1)、50:1、65:1(例如,69:1)、100:1、140:1(例如,144:1)、200:1、300:1、450:1(例如,452:1)、600:1、800:1、1000:1、1500:1、1900:1(例如,1950:1)、2500:1、3000:1(例如,3102:1)、5000:1或更高之比率)。
於某些具體例中,該pre-miRNA或pri-miRNA係源自miR30、miR30a、miR-21、miR23a、miR451a、miR125a、miR16-1、miR150、miR23a或miR20a。
於某些具體例中,該異源導引股係與標靶mRNA互補。
於某些具體例中,該標靶mRNA編碼蛋白質,該蛋白質之消除係改善阿茲海默症(AD)的治療結果。
於某些具體例中,該蛋白質係APP、Tau或BACE1。
本發明之另一方面係提供一種多核苷酸,其係SEQ ID NO:1至SEQ ID NO:117中之任一者,諸如SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:105。
本發明之另一方面係提供編碼本發明之任一多核苷酸的DNA。
於某些具體例中,該DNA包含病毒載體。
於某些具體例中,該病毒載體係腺相關病毒(AAV)載體或慢病毒載體。
於某些具體例中,該AAV載體包含AAV2 ITR序列。
於某些具體例中,該病毒載體復包含啟動子,該啟動子可操作地鏈接至包含該pre-mRNA之pri-miRNA並驅動其轉錄。
於某些具體例中,該啟動子係CAG或CMV啟動子。
於某些具體例中,該DNA復包含WPRE(土撥鼠肝炎轉錄後調節元件)序列、轉錄終止序列及/或polyA訊號序列(諸如牛生長激素polyA(bGHpA)訊號序列或猿猴病毒40 polyA(SV40pA)訊號序列)。
於某些具體例中,該DNA復包含用於蛋白質之編碼序列。
於某些具體例中,該蛋白質係其表現改善阿茲海默症(AD)的治療結果的蛋白質。
於某些具體例中,該蛋白質係αAPP、BDNF、VGF、Nrf2或VEGF。
於某些具體例中,該病毒載體包含兩種或更多種本發明之多核苷酸,該等多核苷酸各自編碼與不同標靶mRNA互補的異源導引股。於某些具體例中,該兩種或更多種多核苷酸之一者包含SEQ ID NO:105,以及該兩種或更多種多核苷酸之另一者包含SEQ ID NO:2或SEQ ID NO:32。
於某些具體例中,該病毒載體係包含本發明之三種多核苷酸,其獨立地編碼與用於APP、Tau及BACE1之mRNA互補的異源導引股。
於某些具體例中,該與APP mRNA互補的導引股係於miR30、miR16-1或miR-23a的框架區內,該與Tau mRNA互補的導引股係於miR21或miR30a(諸如miR30a)的框架區內,並且該與BACE1 mRNA互補的導引股係於miR125的框架區內。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序 列、該CAG啟動子、視需要之報導子基因(諸如EGFP)、編碼包含miR30之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR21之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR125之側翼區和框架區以及與BACE1 mRNA互補之導引序列的pri-miRNA的多核苷酸、用於VGF(或BDNF或Nrf2)的編碼區、polyA訊號序列和轉錄終止序列、以及第二AAV2 ITR序列。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:158。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:159。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、人BDNF編碼序列、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生 長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:164。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR16-1之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:2;RENA-002-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:160。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR23a之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:32;RENA-032-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:161。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105:RENA-109-T)、編碼包含miR16-1之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:2;RENA-002-A)、猿猴病毒40 polyA(SV40pA)訊號序列、 以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:162。
於某些具體例中,該DNA包含,從5’至3’:第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR23a之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:32;RENA-032-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:163。
於某些具體例中,該DNA係質體。
於某些具體例中,該質體包含細菌複製起源序列(諸如用於在大腸桿菌內複製的ORI序列),以及,視需要,抗生素選擇標記物(諸如AmpR基因)。
本發明之另一方面係提供包含本發明之DNA的重組病毒。
於某些具體例中,該重組病毒係重組AAV病毒或重組慢病毒。
於某些具體例中,該AAV病毒具有AAV1、AAV2及/或AAV9衣殼蛋白。
本發明之另一方面係提供一種治療有此需要之受試者的阿茲海默症的方法,該方法包括向該受試者施用本發明之重組病毒。
應理解,本文中揭示之本發明的任一具體例,包括彼等僅於實施例中揭示者或僅於本發明之一個方面下揭示者,可與任何一個或多個本發明之其他具體例組合,除非明確否認或以不適宜。
圖1係示意圖(不按比例),其顯示跨膜AβPP(澱粉樣蛋白β前驅蛋白)及其藉由各種蛋白酶進行的漸進加工,透過澱粉樣蛋白原途徑以生成患病/將死之神經元或透過非澱粉樣蛋白原途徑以產生健康神經元,從而導致生成一系列膜結合且可溶的因子。注意,sAPPα促進神經生成;Aβ誘導神經毒性。所使用之縮寫係:ADAM10:含有解聚素和金屬蛋白酶域的蛋白質10,一種卸離酶(sheddase),是最重要的具有用於AβPP的蛋白分解加工的α-分泌酶活性的酶;α-CTF:經由其α-分泌酶活性獲得的AβPP的ADAM10裂解產物的α-C端片段;sAβPPα:可溶的AβPP片段α,從藉由ADAM10的α-分泌酶活性進行的AβPP裂解獲得;AICD:AβPP胞內域,α-CTF的膜結合γ-分泌酶裂解產物;p3:3kDa的細胞外蛋白質,從α-CTF的γ-分泌酶裂解獲得;BACE1:β-分泌酶1,一種天冬胺醯基蛋白酶,是用於神經元中澱粉樣蛋白-β肽的生成的主要β-分泌酶;β-CTF:經由其β-分泌酶活性獲得的AβPP的BACE1裂解產物的β-C-端片段;sAβPPβ:可溶的AβPP片段β,從藉由BACE1的β-分泌酶活性進行的AβPP裂解獲得;以及Aβ:澱粉樣蛋白-β肽,其集聚並形成Aβ斑塊。
圖2顯示對靶向外源性地表現於293T細胞中的Tau mRNA的siRNA進行驗證的結果。簡而言之,用表現Tau之質體轉染293T細胞,不使用(僅Tau)或者使用經共轉染的Tau靶向siRNA(Tau+Tau靶向siRNA)或經共轉染的對照siRNA(Tau+對照siRNA),轉染72小時,然後將Tau表現定量。**:p<0.01,當與僅Tau比較時;***:p<0.001,當與僅Tau比較時;#:p<0.05,當與Tau+對照siRNA比較時;##:p<0.01,當與Tau+對照siRNA比較時。
圖3A顯示藉由質體表現之shRNA(例如,shTau#5-V1至V3)對293T細胞中的外源性表現的Tau的有效減弱,該等質體表現之shRNA係各自基 於Tau靶向siRNA(siRNA#5)設計但具有不同的環圈序列。簡而言之,於24孔盤,藉由0.2μg/孔之編碼外源性Tau的質體(p-Tau)以及改變量的編碼shRNA靶向Tau(p-shTau)轉染293T細胞。測試了三種不同的shRNA設計,名為p-shTau#5-1、5-2或5-3(參見下述圖4)。此等shRNA係全部基於Tau靶向siRNA#5。作為陰性對照,亦使用了序列混雜的shRNA。
圖3B顯示柱狀圖,其將使用圖3中的質體表現之shRNA對於外源表現之Tau mRNA的減弱效率定量。實驗1至3使用0.2μg/孔的相同量之p-Tau,以及分別為0.2μg/孔、1.0μg/孔及2.0μg/孔的遞增量之p-shTau。三種用於shRNA之設計之間的差異在於環圈序列,其中V1質體編碼5’-CATTCAAGAGATG-3’(SEQ ID NO:118)之miR-30環圈序列,V2質體編碼5’-TAGTGAAGCCACAGATGTA-3’(SEQ ID NO:119)之miR-30A環圈序列,並且V3質體編碼5’-ACCCTGACCCAGT-3’(SEQ ID NO:120)之miR21環圈序列。
圖4A顯示使用靶向Tau mRNA之受試者pri-miRNA構建體在HEK293T細胞中的Tau蛋白質表現減弱之結果。詳而言,將0.2μg的各pri-miRNA(RENA-109-T、RENA-110-T、RENA-111-T、RENA-112-T、RENA-113-T、RENA-116-T、RENA-015-T、RENA-030-T、RENA-075-T、RENA-060-T及RENA-115-T)與0.2μg的表現以FLAG標記之全長度Tau蛋白質的質體共同過度表現48小時。對來自每個經pri-miRNA轉染之孔的總蛋白質進行針對FLAG標籤的免疫印漬,以測定標靶蛋白質被各pri-miRNA減弱的量。使用混雜之pri-miRNA作為陰性對照。使用過度表現Tau而不過度表現任意經共轉染之pri-miRNA的質體作為陽性對照。相對於該陽性對照,計算各pri-miRNA的相對減弱。執行單因數變異數分析(One way-ANOVA)測試以測定各pri-miRNA與陽性對照之間的 表現差異的顯著性。執行Holm-Sidak多重比較測試進行群組間之比較。****<0.0001,***<0.001,**<0.01,*<0.1。
圖4B顯示使用靶向APP mRNA之受試者pri-miRNA構建體在HEK293T細胞中的APP蛋白質表現減弱之結果。詳而言之,將0.2μg的各pri-miRNA(RENA-002-A、RENA-017-A、RENA-032-A、RENA-047-A、RENA-115A及RENA-091-A)與0.2μg的表現以FLAG標記之全長度APP蛋白質的質體共同過度表現48小時。對來自每個經pri-miRNA轉染之孔的總蛋白質進行針對APP-FLAG標籤的免疫印漬,以測定被各pri-miRNA減弱的量。使用混雜之pri-miRNA作為陰性對照。使用過度表現APP不過度表現任意經共轉染之pri-miRNA的質體作為陽性對照。相對於該陽性對照,計算各pri-miRNA的相對減弱。執行單因數變異數分析(One way-ANOVA)測試以測定各pri-miRNA與陽性對照之間的表現差異的顯著性。執行Holm-Sidak多重比較測試。****<0.0001,***<0.001。
圖4C顯示使用靶向BACE1 mRNA之受試者pri-miRNA構建體在HEK293T細胞中的BACE1蛋白質表現減弱之結果。詳而言,將0.2μg的各pri-miRNA(RENA-093-B、RENA-096-B、RENA-097-B、RENA-098-B、RENA-099-B、RENA-100-B、RENA-103-B、RENA-104-B、RENA-105-B、RENA-106-B、RENA-107-B及RENA-108-B)與0.2μg的表現以FLAG標記之全長度BACE1蛋白質的質體共同過度表現48小時。對來自每個經pri-miRNA轉染之孔的總蛋白質進行針對BACE1-FLAG標籤的免疫印漬,以測定被各pri-miRNA減弱的量。使用混雜之pri-miRNA作為陰性對照。使用過度表現BACE1不過度表現任意經共轉染之pri-miRNA的質體作為陽性對照。相對於該陽性對照,計算各pri-miRNA的相對減弱。執行單因數變異數分析(One way-ANOVA)測試以測定各pri- miRNA與陽性對照之間的表現差異的顯著性。執行Holm-Sidak多重比較測試進行群組間之比較。****<0.0001,***<0.001,**<0.01,*<0.1。
圖5顯示實驗設計,用於證明使用由AAV載體編碼之shRNA對PS19小鼠體內Tau表現之RNAi減弱的有效性。
圖6A及圖6B顯示,AAV9編碼之靶向MAPT(微管相關蛋白Tau)的shRNA(AAV9-shTau)的海馬體內遞送顯著減少了PS19小鼠體內的Tau mRNA表現(圖6B)、Tau表現以及磷-Tau(pT181)表現(圖6A)。
圖6C顯示,藉由免疫組織化學(IHC),AAV9-shTau之海馬體內遞送顯著減少了PS19小鼠體內的磷-Tau(pT181)表現。詳而言之,在以AAV9重組病毒注射之一半腦區(海馬體)內,發現了代表細胞業經接收經AAV9遞送之shTau編碼序列的報導子GFP表現(綠色訊號)。另一半腦區以對照物(無GFP報導子並且無針對Tau之shRNA)注射。橙黃色訊號代表病理性Tau蛋白中之磷-Tyr181,其幾乎僅存在於注射對照AAV之一半腦區內,而不存在於注射表現針對Tau之shRNA的AAV的腦區內。
圖7在上圖中顯示用於從miRNA基因表現miRNA的示意性細胞加工途徑,包括藉由RNA Pol II轉錄以產生pri-miRNA,其隨後被核RNase諸如Drosha或DGCR8/Pasha裂解為pre-miRNA以移除側翼序列,經由Exportin-5(未顯示)將pre-miRNA轉運至胞質液,藉由胞質液核酸酶切丁酶將pre-miRNA裂解為miRNA雙螺旋,並將導引股裝載至RISC複合體以靶向標靶mRNA。亦在下圖中顯示了具有AAV2 ITR序列和AAV9殼體的代表性(非限制性)重組AAV構建體。病毒載體以特定次序編碼miR30框架中的APP靶向pri-miRNA、miR21框架中的Tau靶向pri-miRNA、miR125框架中的BACE1靶向pri-miRNA、以及 VGF,全部處於CAG啟動子之轉錄控制之下。
圖8顯示編碼代表性的miR30框架中之APP靶向pri-miRNA的質體的質體圖譜。標出了質體之功能性組分,包括下列者的粗略尺寸及位置:安比西林抗性基因(AmpR)、細菌複製起點(Ori)、AAV2 ITR序列、CAG啟動子、EGFP報導子基因、miR30和miR30a的框架區域的5’、3’和環圈、抗APP導引股和隨從股、miR-30之左右側翼區、SV40大T抗原多腺苷酸化訊號序列、以及各種限制酶位點。
圖9A顯示,APP靶向pri-miRNA顯著地(高達95%)減弱了經FLAG標記之APP的表現。相比之下,相同量的編碼針對APP之shRNA的質體(0.2μg)呈現低的有效性。
圖9B顯示,APP靶向shRNA及APP靶向pri-miRNA兩者皆顯著地減弱了APP表現,並且後者更為有效。
圖10至圖24顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:1至SEQ ID NO:15。
圖25至圖39顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:16至SEQ ID NO:30。
圖40至圖54顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源 隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:31至SEQ ID NO:45。
圖55至圖69顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:46至SEQ ID NO:60。
圖70至圖84顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:61至SEQ ID NO:75。
圖85至圖99顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的15個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:76至SEQ ID NO:90。
圖100至圖102顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的3個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:91至SEQ ID NO:93。
圖103至圖116顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的14個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:94至SEQ ID NO:107。
圖117至圖126顯示本發明之pre-miRNA的如藉由mfold預測之保守二級結構的10個實施例。此等pre-miRNA具有相同之框架區序列,但在異源隨從股序列及異源導引股序列中有所區別,靶向不同之標靶mRNA分子或相同標靶mRNA的不同區域。序列係SEQ ID NO:108至SEQ ID NO:117。
圖127A至圖127C顯示用於AAV基因治療載體m059-VGF-pri-Tau(圖127A)、m067-Nrf2-pri-Tau(圖127B)及m106-pri-Tau-BDNF(圖127C)之表現匣的示意圖。該等AAV載體係複製缺陷型血清型9(AAV9),其含有一個編碼靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列,和另一個編碼其表現改善對神經元疾病諸如AD之治療結果的核苷酸序列。詳而言之,於此等實施例中,m059-VGF-pri-Tau(圖127A)含有一個編碼人分泌肽VGF(非頭孢菌素,non-acronymic)(VGF)的核苷酸序列和另一個編碼靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列;m067-Nrf2-pri-Tau(圖127B)含有一個編碼人核因子類紅血球2相關因子2(NRF2)的核苷酸序列和另一個靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列;並且m106-pri-Tau-BDNF(圖127C)含有一個編碼靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列和另一個人腦衍生神經滋養因子(BDNF)。轉殖基因之表現由CAG啟動子驅動,該啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白(CβA)基因之第一外顯子及第一內含子、以及兔β-球蛋白基因的剪接受體。表現匣亦含有mRNA安定性/出核轉運順式作動元件土撥鼠肝炎轉錄後調節元件(WPRE)和牛生長激素polyA(bGHpA)訊號序列。AAV2之反向末端重複序列(ITR)位於表現匣側翼。
圖128A至圖128B顯示西方印漬術分析之結果,表明在將AAV 基因治療載體m059-VGF-pri-Tau(每次注射為2x10^9(低)或2x1010(高)病毒載體基因組(vg))雙側注射到PS19小鼠的海馬體內之後一個月,總tau及磷酸化之tau的顯著減少以及人分泌肽VGF(非頭孢菌素)(VGF)的增加(圖128A)。總tau(Tau-5鼠單株抗體)(圖128B)和磷酸化之tau(AT180抗Tau磷抗體)(圖128C)的光密度測定。執行單因數變異數分析,之後進行Tukey多重比較測試。***=p<.001。誤差條表示±S.E.M。
圖129A至圖129D顯示,在以m067-NRF2-pri-Tau治療一個月後,PS19小鼠的海馬體內相對Tau mRNA(圖129A)和蛋白質(圖129B)的顯著減少。向小鼠雙側注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)、m067((L)-2x109)或(H)-2x1010病毒載體基因組(vg)每注射位點),注射入海馬體內。一個月後,收穫海馬體。(圖129A)總RNA係經單離並逆轉錄。相對Tau基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。對PS19小鼠的海馬體的西方印漬分析(圖129B)顯示,在將m067(2x109或2x1010病毒載體基因組(vg)每次注射)雙側注射入海馬體內之後一個月,總tau和磷酸化的tau顯著減少。總tau(Tau-5鼠單株抗體)(圖129C)和磷酸化之tau(抗Tau磷抗體)(圖129D)的光密度測定。執行單因數變異數分析,之後進行Tukey多重比較測試。****=p<.001。誤差條表示±S.E.M。
圖130A至圖130D顯示,在以m067-NRF2-pri-Tau治療一個月後,PS19小鼠的海馬體內相對NRF2 mRNA(圖130A)以及NRF2和血紅素加氧酶-1(HO-1)蛋白質(圖130B)的增加。向小鼠雙側注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)、或m067-NRF2-pri-Tau(m067(L)-2x109和 m067(H)-2x1010病毒載體基因組(vg)每注射位點),注射入海馬體內。一個月後,收穫海馬體。(圖130A)總RNA係經單離並逆轉錄。相對NRF2基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。(圖130B)PS19小鼠的海馬體的西方印漬分析表明,在將REN-001(m067)雙側注射入海馬體之後一個月,NRF2和HO-1蛋白質增加。對西方印漬術中NRF2(圖130C)和HO-1(圖130D)的光密度測定。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用單因數變異數分析和Tukey多重比較測試,進行統計學分析。與dPBS之統計學顯著差異表示為****(P<0.0001),而與m067(L)之統計學顯著差異表示為####(P<0.0001)。
圖131A至圖131F顯示對所培養之人神經元中m067轉殖基因的驗證。使用Amaxa 4D Nucleofector裝置、X-單元(Lonza)和Amaxa P4原代細胞X套組L以及程式DN100,用質體(PS060:含有綠色螢光蛋白之對照質體;PS046:含有NRF2轉殖基因之質體;m032:含有靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)的質體;以及m067:含有見於AAV基因治療載體m067-Nrf2-pri-Tau(含有NRF2-priTau組合)中之表現匣的質體)轉染所培養的人神經幹細胞。5μg質體DNA係用於750,000個細胞。於核轉染之後,將神經元於過渡培養基(PhoenixSongs Biologicals,21003-250)中接種在聚-D-離胺酸(PDL)/層連結蛋白包被的12孔盤中。48小時後,將培養基替換為神經分化培養基(PhoenixSongs Biologicals,21004-250)。令幹細胞在分化培養基中生長六天。(圖131A)經分化之人神經元的西方印漬分析表明,僅使用m067質體(含有見於m067-Nrf2-pri-Tau與NRF2-priTau組合之AAV基因治療載體中的表現匣)能夠顯著降低磷酸化的tau(圖131B)及總tau(圖131C)而不改變澱粉樣蛋白前驅蛋白之量級(APP,圖 131D),並且增加HO-1蛋白質(圖131E,HO-1係Nrf2之關鍵標靶酶,其在減輕來自氧化應激之細胞損失方面扮演重要角色)及synapsin-1(一種突觸增生之標記物)兩者的量級(圖131F)。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用單因數變異數分析和Tukey多重比較測試,進行統計學分析。與dPBS之統計學顯著差異表示為*(P<0.05)。
圖132A至圖132E顯示,在以m106-pri-Tau-BDNF治療一個月之後,PS19小鼠海馬體中的人腦衍生神經滋養因子(BDNF)mRNA的相對表現顯著增加(圖132A),並且Tau mRNA的相對表現降低(圖132B)。將2μL每位點(總計4μL)之空殼體對照(一種AAV9構建體,其缺乏載體基因組並因此不能夠遞送基因性有效負載)或m106-pri-Tau-BDNF(2x1010病毒載體基因組(vg)每注射位點)雙側注射到小鼠的海馬體內。一個月後,收穫海馬體。總RNA係經單離並逆轉錄。相對BDNF或Tau基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至空殼體以獲得相對倍數表現。PS19小鼠之海馬體或皮質的西方印漬分析(圖132C)表明,在海馬體和皮質兩者中,磷酸化的肌旋蛋白受體激酶B(TrkB;一種BDNF受體)之水準不變,但磷酸化的cAMP反應元件結合蛋白(CREB;BDNF之下游效應子)之水準顯著增加。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用未配對之t測試,進行統計學分析。與空殼體對照之統計學顯著差異表示為*(P<0.05)。
圖133A至圖133F顯示西方印漬分析之結果(圖133A),表明在以m106-pri-Tau-BDNF治療一個月之後,PS19小鼠腦內的多種神經保護性傳訊途徑被激活。將2μL每位點(總計4μL)之空殼體對照(一種AAV9構建體,其缺乏載體基因組並因此不能夠遞送基因性有效負載)或m106-pri-Tau-BDNF(2x1010病 毒載體基因組(vg)每注射位點)雙側注射到小鼠的海馬體內。一個月後,收穫海馬體及皮質兩者。光密度測定分析表明,在雙側注射m106-pri-Tau-BDNF之後一個月,海馬體中的總tau及磷酸化的tau顯著降低,而皮質中則不然;並且,海馬體及皮質兩者中的血紅素加氧酶-1(HO-1)增加,該酶在減輕來自氧化應激之細胞損失方面扮演重要角色。雙側注射m106-pri-Tau-BDNF亦增加了皮質中突觸後緻密物95(PSD-95)(一種調節突觸結構及可塑性的蛋白質,且係突觸形成之常見標記物)的量級,而不增加海馬體中該物質之量級;並且增加了皮質及海馬體兩者中的雙皮質素(DCX)(一種由神經元前驅細胞表現的神經形成標記物)之量級。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用未配對之t測試,進行統計學分析。與空殼體對照之統計學顯著差異表示為*(P<0.05)。
圖134A至圖134F顯示西方印漬分析(圖134A)之結果,表明在PS19小鼠腦內之持續、長期的生物學效果。將2μL每位點(總計4μL)之杜爾貝科磷酸鹽緩衝鹽水(PBS)或AAV基因治療載體m059-VGF-pri-Tau、m067-Nrf2-pri-Tau或m063-sAPPα-pri-Tau(一種AAV9載體,其含有一個編碼可溶的澱粉樣蛋白前驅蛋白α(sAPPα)的序列、非澱粉樣蛋白前驅蛋白的分泌蛋白分解片段、以及另一個編碼靶向人tau蛋白質之治療性miRNA前驅物的序列)雙側注射到小鼠的海馬體內。AAV載體之劑量係2x109或2x1010病毒載體基因組(vg)每注射位點,注射到海馬體中。六個月後,收穫海馬體。光密度測定分析表明,在以全部AAV載體治療六個月後,海馬體中之總tau(圖134B)和磷酸化的tau(圖134C)顯著降低(相對於對照)。2x109病毒載體基因組(vg)每注射位點的AAV基因治療載體m059-VGF-pri-Tau增加了突觸後緻密物95(PSD-95)(一種調節突觸結構及可塑性的蛋白,突觸形成的常見標記物)的量級,2x1010劑量無此效果;而m063- sAPPα-pri-Tau治療降低了PSD-95水準,並且m067-Nrf2-pri-Tau治療對於PSD-95水準無效(圖134D)。血紅素加氧酶-1(HO-1)(在減輕來自氧化應激之細胞損失方面扮演重要角色的酶)之量級在m067-Nrf2-pri-Tau治療之後增加,但不受m059-VGF-pri-Tau或m063-sAPPα-pri-Tau影響(圖134E)。膠質原纖酸性蛋白(GFAP)(由星狀細胞表現之中間絲蛋白)之量級藉由較高劑量之m059-VGF-pri-Tau得以增加(但較低劑量無此效果),藉由兩種劑量之m067-Nrf2-pri-Tau得增加,而每一劑量之m063-sAPPα-pri-Tau皆無效(圖134F)。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用單因數變異數分析和Tukey多重比較測試,進行統計學分析。與PBS之統計學顯著差異,在圖134B、圖134C及圖134E中表示為###(P<0.001),而在圖134D及圖134F中表示為**(P<0.01)。
圖135A至圖135D顯示用於AAV基因治療載體m069-VGF-pri-Tau-pri-APP(圖135A)、m070-VGF-pri-Tau-pri-APP(圖135B)、m071-NRF2-pri-Tau-pri-APP(圖135C)和m072-NRF2-pri-Tau-pri-APP(圖135D)之表現匣的示意圖。該等AAV載體係複製缺陷型血清型9(AAV9),其含有一個編碼靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列、另一個編碼靶向人澱粉樣蛋白前驅蛋白(APP)之治療性miRNA前驅物的核苷酸序列、和另一個編碼其表現改善對神經元疾病諸如AD之治療結果的核苷酸序列。詳而言之,於此等實施例中,m069-VGF-pri-Tau-pri-APP(圖135A)含有一個編碼人分泌肽VGF(非頭孢菌素)(VGF)的核苷酸序列、一個編碼靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)的核苷酸序列、和一個編碼靶向人APP蛋白質之治療性miRNA前驅物(Pri-APP)的核苷酸序列;m070-VGF-pri-Tau-pri-APP(圖135B)含有一個編碼人分泌肽VGF(非頭孢菌素)(VGF)的核苷酸序列、一個編碼靶向人tau蛋白質之治療性 miRNA前驅物(Pri-tau)的核苷酸序列、和一個編碼靶向人APP蛋白質之治療性miRNA前驅物(Pri-APP)的序列;m071-NRF2-pri-Tau-pri-APP(圖135C)含有一個編碼人核因子類紅血球2相關因子2(NRF2)的核苷酸序列、一個編碼靶向人tau蛋白質的治療性miRNA前驅物(Pri-tau)的核苷酸序列、和一個編碼靶向人APP蛋白質之治療性miRNA前驅物(Pri-APP)的序列;並且m072-NRF2-pri-Tau-pri-APP(圖135D)含有一個編碼人核因子類紅血球2相關因子2(NRF2)的核苷酸序列、一個編碼靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)的核苷酸序列、和一個編碼靶向人APP蛋白質之治療性miRNA前驅物(Pri-APP)的核苷酸序列。轉殖基因之表現由CAG啟動子驅動,該啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因的剪接受體。表現盒亦含有猿猴病毒40 polyA(SV40pA)訊號序列。AAV2之反向末端重複序列(ITR)位於表現匣側翼。
圖136A顯示,在以m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對VGF mRNA顯著增加。圖136B顯示,在以m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對NRF2 mRNA顯著增加。圖136C及圖136D顯示,在以m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP(圖136C)或以m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP(圖136D)治療一個月後,PS19小鼠的海馬體中的相對Tau mRNA顯著增加。向小鼠雙側注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)、或基因治療載體((L)-2x109)或(H)-2x1010病毒載體基因組(vg)每注射位點),注射入海馬體內。一個月後,收穫海馬體。總RNA係經單離並逆轉錄。基因表現係藉由實時qRT- PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用單因數變異數分析和Tukey多重比較測試,進行統計學分析。與PBS之統計學顯著差異表示為**(P<0.01);而劑量之間的統計學顯著差異表示為#(P<0.05)。
圖137A顯示,在以m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP治療一個月後,藉由西方印漬術測得的PS19小鼠的海馬體中的相對VGF蛋白質顯著增加。圖137B顯示,在以m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,藉由西方印漬術測得的PS19小鼠的海馬體中的NRF2蛋白質顯著增加。圖137C顯示,在以m069-VGF-pri-Tau-pri-APP、m070-VGF-pri-Tau-pri-APP、m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,藉由西方印漬術測得的PS19小鼠的海馬體中的相對Tau蛋白質顯著增加。圖137D顯示,在以m069-VGF-pri-Tau-pri-APP、m070-VGF-pri-Tau-pri-APP、m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,藉由西方印漬術測得的PS19小鼠的海馬體中的相對磷酸化的Tau蛋白質顯著增加。向小鼠雙側注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)、或基因治療載體((L)-2x109)或(H)-2x1010病毒載體基因組(vg)每注射位點),注射入海馬體內。一個月後,收穫海馬體。隨後,執行西方印漬術以及後續的光密度測定法分析。圖表示均值±SEM。使用GraphPad Prism軟體(版本5),使用單因數變異數分析和Tukey多重比較測試,進行統計學分析。與PBS之統計學顯著差異表示為**(P<0.01);而劑量之間的統計學顯著差異表示為#(P<0.05)。
1.概述
本文中揭示之方法係提供新穎且經改善之多核苷酸及其用途,係用於使用miRNA進行緘默化。本發明之多核苷酸優先(如果不是唯一性地)產生miRNA導引股序列,該序列靶向標靶RNA諸如編碼與疾病或病症相關或造成疾病或病症之突變蛋白質的mRNA。
本發明之多核苷酸部分地基於以下發現:miRNA之突變製程,從藉由RNA聚合酶II在細胞核內進行之pri-miRNA的最初轉錄,到其後續被核RNase諸如Drosha加工為pre-miRNA,到透過Exportn-5之作用將所得pre-miRNA輸出至胞質液中,到藉由胞質液RNase切丁酶將pre-miRNA進一步加工為成熟miRNA,係對於經常與shRNA途徑相關之中間產物的毒性水準蓄積不太敏感。
儘管給定的經加工之miRNA的兩股理論上皆可被裝載到RISC複合體,但僅彼等RISC-導引股複合體係產生性複合體,蓋因僅導引股序列與標靶RNA序列互補。換言之,偶然形成之RISC-隨從股複合體係非產生性者,其中該隨從股很大概率上具有與標靶RNA序列相同之序列,並因此不能用以抑制從標靶mRNA轉譯。因此,所欲者係miRNA之僅一股(亦即,導引股)係被裝載或優先被裝載到RISC,使得形成更具產生性之RISC-miRNA導引股複合體。
因此,本發明之多核苷酸復基於以下發現:pre-miRNA的某些框架區序列及二級結構係特別有諸如促進將導引股而非隨從股裝載到RISC。
於某些具體例中,細胞質中生成之導引股與隨從股的比率為至少20:1(例如,21:1)、50:1、65:1(例如,69:1)、100:1、140:1(例如,144:1)、200:1、 300:1、450:1(例如,452:1)、600:1、800:1、1000:1、1500:1、1900:1(例如,1950:1)、2500:1、3000:1(例如,3102:1)、5000:1或更高。
因此,一方面,本發明係提供多核苷酸,其包含:(a)pre-miRNA之框架區,其不包括用於pre-miRNA之導引股及隨從股的天然序列;(b)異源導引股,其係插入該框架區內替換該pre-miRNA之導引股的天然序列;以及,(c)異源隨從股,其係插入該框架區內替換該pre-miRNA之隨從股的天然序列,其中,該多核苷酸實質上維持該pre-miRNA(具有該pre-miRNA之導引股的天然序列,並且具有該pr-miRNA之隨從股的天然序列)的二級結構及/或該pr-miRNA的自由能;其中,當藉由胞質核酸酶(例如,切丁酶)加工該pre-miRNA時,係將該異源導引股併入RISC複合體以允許該RISC複合體以靶向與該導引股互補之標靶RNA,以及,其中,當將該多核苷酸加工為miRNA時,該異源導引股係比該異源隨從股優先地加載到RISC。
如本文所用,「pre-mi-RNA」指稱藉由核核酸酶諸如Drosha或其功能性等效物得到的經轉錄之pri-miRNA的加工產物。
如本文所用,「(pre-miRNA之)框架區」指稱pre-mi-RNA序列,其在藉由胞質液RNase諸如切丁酶或其同源物加工pre-miRNA以產生成熟miRNA之後不存在於成熟miRNA中。此類框架區可包括pre-miRNA中之形成二級結構的序列,包括鹼基配對主幹部、環圈及/或突出部序列。
本發明之多核苷酸中的「主幹部,stem region」通常包括兩個或更多個鹼基對,諸如3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或更多個鹼基對。惟,在某些空間環境中,一個鹼基對有時亦可指稱為主幹。於某些具體例中,主幹部中之兩個或更多個將會配對鹼基對實際上可能 不形成鹼基對。例如,兩個將會配對鹼基對的側翼可能具有兩個主幹部,每個主幹部完美地鹼基配對。惟,如果主幹中存在三個或更多個未配對之將會配對鹼基對,則可接續出現者不能超過兩對(例如,3個接續對),此時不稱之為突出部(參見下文)。
本發明之多核苷酸中的「環圈」指稱一個或多個核苷酸(諸如2、3、4、5、6、7、8、9或10個核苷酸)的單股延伸,其中環圈的最5’端核苷酸和最3’端核苷酸各自鏈接至主幹中經鹼基配對的核苷酸。
本發明之多核苷酸中的「突出部」指稱一個或兩個但不或未鹼基配對的核苷酸延伸,其在兩端接合兩個主幹。突出部可以為對稱的(亦即,兩個單股延伸具有相同數目的核苷酸)或不對稱的(亦即,兩個單股延伸具有不同數目的核苷酸,或者僅在一個單股延伸或另一股為0個核苷酸)。不對稱的突出部在一個單股具有至少兩個未鹼基配對的核苷酸,而不對稱的突出部可在一股具有恰好一個未配對的核苷酸而在另一股具有0個核苷酸。
如本文所用,「導引股」廣義上指稱作為可與標靶RNA配對之潛在序列而被裝載到RISC的任意單股RNA。狹義上,導引股具體地指稱一種被裝載到RISC的單股RNA,其可以事實上與標靶mRNA配對以引起mRNA之基因緘默化(亦即,導引股與標靶mRNA序列互補)。
如本文所用,「隨從股」指稱與siRNA、shRNA、miRNA、pre-miRNA或pri-miRNA中的導引股相反/互補的序列。偶爾,可能將隨從股裝載到RISC以產生非產生性複合體,因為隨從股不被設計為與任意所欲標靶mRNA互補,或者可以與脫靶mRNA部分互補並且可導致非所欲之脫靶基因緘默化。
如本文所用,「用於pre-miRNA之導引股及隨從股的天然序列」 指稱用於某些天然存在之pre-miRNA的天然存在的導引股序列及隨從股序列。此天然導引股序列被替換為同源導引股序列,使得後者特異性地靶向區別於/不同於該天然導引股序列所靶向者的標靶mRNA。同樣,天然隨從股序列被替換為同源隨從股,其與同源導引股互補以形成實質上類似於由天然導引股與天然隨從股形成者的二級結構,及/或在折疊為相應pre-miRNA中具有實質上相同的自由能。
根據本發明,並且藉由取以下發現之優點:pre-miRNA的某些框架區在切丁酶裂解時優先促進將一股(導引股)以與另一個(隨從股)相反之方式併入RISC,將pre-miRNA之天然導引股序列替換為所欲之同源導引股序列將會優先將同源導引股序列併入RISC,以進行有效的基於miRNA之基因緘默化。
亦根據本發明,需要將pre-miRNA之天然隨從股替換為同源隨從股,使得同源導引股與同源隨從股之間的鹼基配對在很大程度上維持pre-miRNA之初始二級結構特徵及/或初始pre-miRNA之總體自由能。
於某些具體例中,本發明之多核苷酸實質上保留自其衍生框架區之初始pre-miRNA的全部結構特徵,包括一個或多個主幹、環圈及/或突出部。
於某些具體例中,本發明之多核苷酸與原始pre-miRNA的不同之處在於,本發明之多核苷酸在主幹中具有一個或多個(例如,1、2或3個)額外鹼基對,及/或在環圈或突出部中具有一個或多個(例如,1、2或3個)額外鹼基。
於某些具體例中,本發明之多核苷酸與原始pre-miRNA的不同之處在於,本發明之多核苷酸在主幹中少了1、2或3個鹼基對,及/或在環圈或突出部中少了1、2或3個鹼基。
於某些具體例中,本發明之多核苷酸具有與原始pre-miRNA實質 上相同(例如,±1%、2%、5%、10%或20%)的總體自由能(△G)。針對pre-miRNA的二級結構預測及與之相關的自由能(△G)可使用任意本領域認可之軟體諸如基於網路的軟體程式計算。一種此類程式係mfold網路伺服器(最初由華盛頓大學醫學院(Washington University’s School of Medicine)於1995年引入,目前依託倫斯勒理工學院(Rensselaer Polytechnic Institute),由位於奧巴尼的紐約州立大學藝術與科學學院RNA研究所(The RNA Institute,College of Arts and Sciences,State University of New York at Albany)主理)。用於多核苷酸(RNA)的作為另一種選擇的二級結構預測軟體係RNAfold網路伺服器(維也納大學理論化學研究所(Institute for Theoretical Chemistry,University of Vienna)),其使用標準或內建設定預測單股RNA或DNA序列的二級結構。例如,所使用的算法可以僅基於最小自由能(MFE),或基於最小自由能(MFE)及分配函數。
於某些具體例中,該異源導引股係比該異源隨從股優先地裝載到RISC。此優先裝載可能部分地取決於細胞質中生成之導引股與隨從股的比率,該比率為至少20:1(例如,21:1)、50:1、65:1(例如,69:1)、100:1、140:1(例如,144:1)、200:1、300:1、450:1(例如,452:1)、600:1、800:1、1000:1、1500:1、1900:1(例如,1950:1)、2500:1、3000:1(例如,3102:1)、5000:1或更高。
於某些具體例中,本發明之該多核苷酸包含pri-miRNA,該pri-miRNA係包含位於該pre-miRNA之框架區側翼的側翼區域,並且該側翼區域可藉由核RNase III複合蛋白(例如,Drosha-DGCR8複合體)移除。與此具體例中,本發明之多核苷酸當藉由RNA Pol II轉錄以形成pri-miRNA時,不僅包含可在藉由核RNase III諸如Drosha加工時形成的pre-miRNA,亦包含位於最終之pre-miRNA兩個末端的側翼區,該等側翼區可進一步促進將pri-miRNA加工為pre- miRNA之下游加工效率。
側翼區編碼序列可自編碼原始pri-miRNA之基因組DNA序列獲得。於某些具體例中,位於pre-miRNA之5’或3’末端之側翼區的尺寸係獨立為約25bp、30bp或100bp。
於某些具體例中,該pre-miRNA或pri-miRNA係起源於miR30(例如,具有經修飾之頂端環圈序列)、miR30a、miR-21、miR23a、miR451a、miR125a、miR16-1、miR150或miR20a。
於某些具體例中,pre-miRNA具有如關於下表中任意者中之pre-miRNA或pri-miRNA序列所揭示的框架區序列。
於某些具體例中,該異源導引股與標靶mRNA互補。序列互補性之程度可係約100%、97%、95%、93%、90%、87%、85%或約80%。
於某些具體例中,該標靶mRNA係編碼蛋白質,該蛋白質之消除係改善疾病或病症諸如神經元疾病或病症的治療結果。
於某些具體例中,該神經元疾病或病症係阿茲海默症(AD)、巴金森症(PD)、tau蛋白病(tauopathy)相關疾病諸如進行性核上神經麻痺症(PSP)、皮質基底節退行(CBD)、匹克症。
於某些具體例中,可被消除或下調以治療神經元疾病或病症(例如,AD)的蛋白質為APP、Tau及/或BACE1。
於相關之方面,本發明係提供如下述章節所揭示之多核苷酸。
於某些具體例中,本發明之多核苷酸係RNA。於某些具體例中,該RNA可含有非天然或經修飾之核糖核苷酸。於某些具體例中,該RNA僅含有A、U、C及/或G。
於相關之方面,本發明係提供編碼如本文所揭示的本發明之任一RNA多核苷酸的DNA。
於某些具體例中,該DNA包含載體諸如病毒載體。於某些具體例中,該病毒載體係腺相關病毒(AAV)載體或慢病毒載體。
於某些具體例中,該病毒載體係AAV載體。
很多AAV病毒一旦跨越血腦屏障(BBB)並到達CNS,此類AAV病毒就具有針對神經元細胞或神經元組織的天然向性。某些AAV病毒,諸如AAV9,亦可經靜脈遞送並且仍成功越過BBB進入CNS。惟,當透過例如直接顱內注射將AAV病毒載體局部地直接遞送至CNS(例如,腦)內時,其不必依賴於某些病毒載體越過BBB的天然能力。
因此,於某些具體例中,編碼本發明之多核苷酸的AAV載體係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10(諸如AAV-cy10或AAV-rh10)、AAV11、AAVrh74、AAVrh.39、AAVrh.43、AAVrh.8及rAAVrh.10,或者經工程化之AAV殼體變異體諸如AAV-2i8、AAV2G9、AAV-LK3、AAV-DJ及AAV-Anc80。
於某些具體例中,AAV載體係用於藉由直接顱內注射而局部遞送之神經元標靶細胞。大範圍之AAV殼體,包括假型rAAV2/1、rAAV2/2及rAAV2/5、hu.32、hu.37、pi.2、hu.11、rh.8、hu.48R3、bb2、cy5、rh20、rh39、rh43、AAV7、AAV8及AAV9,業經藉由直接顱內注射證明了其CNS基因轉移特性(Burger et al.,Mol Ther. 10:302-317,2004;Cearley et al.,Mol Ther.16:1710-1718,2008;Cearley and Wolfe,Mol Ther. 13:528-537,2006;Lawlor et al.,Mol Ther. 17:1692-1702,2009)。可選擇基於不同AAV血清型或假型的載體用於神經系統中之具體應用, 取決於其在腦及標靶神經元組織之不同區域內的優先或全局向性。
於某些具體例中,該病毒載體係AAV9。藉由經靜脈內注射的使用強啟動子如CBA之AAV9轉導的CNS中之大多數(>90%)細胞係星狀細胞或神經元。載體廣泛分佈,在腦的從嗅球到小腦的全部區域中皆檢測到經轉導之細胞。
於某些具體例中,無論殼體如何,本發明之病毒載體包含AAV2 ITR序列。
於某些具體例中,本發明之該病毒載體復包含啟動子,該啟動子可操作地鏈接至包含該pre-miRNA之pri-miRNA並驅動其轉錄。
例如,於某些具體例中,該啟動子係CAG啟動子。
CAG啟動子(亦指稱為CBA及CB)係很多基因治療研究中最常用的啟動子,蓋因其係介導CNS及其他組織中的長效基因表現的強啟動子。這種雜合啟動子匣最初係使用巨細胞病毒(CMV)即刻早期(IE)增強子融合至雞β-肌動蛋白啟動子而設計,其包括300bp之上游區域及內含子1的一部分,因為其攜帶跨物種保守的強增強子。下游剪接接納體係替換為兔β-球蛋白基因之外顯子3中的剪接接納體。CAG/CBA/CB啟動子通常被視為普遍存在之啟動子,蓋因其作用於大量組織及細胞類型。
於某些其他具體例中,該啟動子係CMV啟動子、Rous氏肉瘤病毒(RSV)啟動子、人GUSB啟動子、小鼠磷酸甘油酯激酶(PGK)啟動子、大鼠神經元特異性烯醇酶(NSE)啟動子。來自在不同動物模型中進行之臨床前研究的大量資料業經顯示,在哺乳動物腦內,於此等啟動子下的AAV介導之轉殖基因表現安定且長效。
於某些具體例中,本發明之病毒載體復包含調節性元件序列,諸 如WPRE(土撥鼠肝炎轉錄後調節元件)序列。
於某些其他具體例中,本發明之DNA復包含轉錄終止序列及/或polyA訊號序列,諸如牛生長激素polyA(bGHpA)訊號序列或猿猴病毒40 polyA(SV40pA)訊號序列。
於某些其他具體例中,本發明之DNA復包含用於蛋白質之編碼序列。
於某些其他具體例中,該蛋白質係報導子基因產物,諸如螢光蛋白(例如,GFP、EGFP、YFP等)。
於某些其他具體例中,該蛋白質係其表現改善神經元疾病或病症諸如阿茲海默症(AD)的治療結果的蛋白質。例如,該蛋白質可以係αAPP、BDNF、VGF、Nrf2或VEGF。
於某些其他具體例中,該DNA載體編碼多種蛋白質,該等蛋白質之一者或多者的表現改善神經元疾病或病症諸如阿茲海默症(AD)的治療結果。
於某些其他具體例中,該DNA載體編碼兩種或更多種本發明之多核苷酸,該等多核苷酸各自編碼與不同標靶mRNA互補的不同異源導引股。
例如,於一個具體例中,該病毒載體可包含本發明之三種多核苷酸,其各自獨立地編碼與用於APP、Tau或BACE1之mRNA互補的異源導引股。編碼APP靶向miRNA、Tau靶向miRNA及BACE1靶向miRNA的多核苷酸之具體次序可以不受限於任意具體次序,並且如所欲者為6種可能排列之任一者。
於某些具體例中,當本發明之多種多核苷酸為本發明之相同的DNA載體所包含時,每種多核苷酸可基於相同或不同的框架區序列,該等序列促進將導引序列優先裝載到RISC複合體。例如,如果相同DNA載體包含用於三 種pri-miRNA之編碼序列,各自針對三種特異性標靶基因之一者諸如APP、Tau及BACE1,則全部三種pri-miRNA可基於相同pre-miRNA框架區序列及/或pri-miRNA側翼區序列,或者三種pri-miRNA中僅兩者可共享相同pre-miRNA框架區序列及/或pri-miRNA側翼區序列,或者全部三種pri-miRNA可具有不同pre-miRNA框架區序列及/或pri-miRNA側翼區序列。用於任意pre-miRNA或pri-miRNA的每一框架區及/或側翼區可以基於本文所揭示之任意序列,諸如SEQ ID NO:1至SEQ ID NO:117中之任一者。
例如,僅舉幾個示例性具體例,與APP mRNA互補之導引股可於miR30之框架區內,與Tau mRNA互補之導引股可於miR21之框架內,而與BACE1 mRNA互補之導引股可於miR125之框架區內。
於特定的具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’:第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、編碼包含miR30之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR21之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR125之側翼區和框架區以及與BACE1 mRNA互補之導引序列的pri-miRNA的多核苷酸、用於VGF或BDNF或Nrf2的編碼區、polyA訊號序列和轉錄終止序列、以及第二AAV2 ITR序列。
於替代性之特定具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’:第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、用於VGF或BDNF或Nrf2之編碼區域、編碼包含miR30之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR21之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多 核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR125之側翼區和框架區以及與BACE1 mRNA互補之導引序列的pri-miRNA的多核苷酸、polyA訊號序列(例如,牛生長激素polyA(bGHpA))和轉錄終止序列、以及第二AAV2 ITR序列。
於另一特定具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’,第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、用於VGF或BDNF或Nrf2之編碼區、編碼包含miR30a之側翼區和框架區以及靶向Tau mRNA之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、視需要之土撥鼠肝炎轉錄後調節元件(WPRE)、polyA訊號序列(例如,bGHpA)及第二AAV2 ITR序列。
於另一特定具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’,第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、編碼包含miR30a之側翼區和框架區以及靶向Tau mRNA之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、用於VGF或BDNF或Nrf2之編碼區、視需要之土撥鼠肝炎轉錄後調節元件(WPRE)、polyA訊號序列(例如,bGHpA)及第二AAV2 ITR序列。
於一特定具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’,第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、用於VGF或BDNF或Nrf2之編碼區、編碼包含miR30a之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR23a之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:2,RENA-002-A或者SEQ ID NO:32,RENA-032-A)、polyA訊號序列(例如,SV40pA)及第二AAV2 ITR序列。
於另一特定具體例中,本發明之DNA(例如,AAV)載體可包含,從5’至3’,第一AAV2 ITR序列、啟動子(諸如CAG啟動子)、視需要之報導子基因(諸如EGFP)、用於VGF或BDNF或Nrf2之編碼區、編碼包含miR30a之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR16-1之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸(例如,SEQ ID NO:2,RENA-002-A或者SEQ ID NO:32,RENA-032-A)、polyA訊號序列(例如,SV40pA)及第二AAV2 ITR序列。
於某些具體例中,該DNA載體係質體。該質體可包含位於DNA側翼之AAV ITR序列,其可以在合適的包封細胞系(例如,供給AAV repcap蛋白者)中包封到AAV病毒中。例如,位於AAV ITR序列之間的序列(包括ITR序列)的總體尺寸不超過AAV病毒的包封能力(例如,約4.7kb)。
於某些具體例中,該質體復包含細菌複製起源序列(諸如用於在大腸桿菌內複製的ORI序列),以及,視需要,抗生素選擇標記物(諸如AmpR基因)。
本發明之相關方面係提供包含本發明之DNA載體的重組病毒。例如,重組病毒可以係AAV病毒諸如AAV9病毒或重組慢病毒。
該AAV病毒可包含AAV1、AAV2及/或AAV9殼蛋白。
本發明之另一相關方面係提供一種治療有此需要之受試者的神經元疾病或病患諸如阿茲海默症的方法,該方法包括向該受試者施用本發明之重組病毒。
2.多核苷酸
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的89個核苷酸之pre-miRNA序列:
S1-B1-S2-B2-S3-L,
其中:
S1至S3係主幹,B1及B2係突起部,並且L係環圈,
S1係約20至22bp,具有位於N7-N83、N8-N82和N12-N78的3個錯配bp,
S2係約7至13bp,較佳係11至13bp,具有位於N25(含)與N30(含)之間的至多1個錯配bp,
S2係約3至8bp,較佳4至5bp,
B1係1個鹼基之不對稱突起部,其鏈接S1與S2且位於下部股,較佳地,該1個鹼基之突起部係於N67-N69的U,較佳係於N67的U,
B2係5個鹼基之不對稱突起部,其鏈接S2與S3且位於上部股,較佳地,係於N34-N38或N35-N39(例如,N36-N38係UUA),
L係9個鹼基的環圈(較佳係5’-UCUAAAAUU-3’),以及
其中,S2於S3之組合長度係約13至17bp,較佳係15至16bp,
前提條件為N14-N35不是5’-UAGCAGCACGUAAAUAUUGGCG-3’(SEQ ID NO:121),並且前提條件為N56-N77不是5’-CCAGUAUUAACUGUGCUGCUGA-3’(SEQ ID NO:122)。
如本文所用,「錯配鹼基對」指稱兩個核苷酸,其將是主幹中之鹼基對但係用於序列錯配(亦即,除G:C對、A:U對、及G:U對之外),諸如A:A、 C:C、A:G等。序列中僅可接續存在至多2個錯配鹼基對。
如本文所用,「上部股」指稱,當多核苷酸中存在一個單個環圈時,多核苷酸5’至環圈之部分。
如本文所用,「下部股」指稱,當多核苷酸中存在一個單個環圈時,多核苷酸3’至環圈之部分。
代表性的本發明之具有上述二級結構的pre-miRNA於圖10至圖24中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0040-1
Figure 110111624-A0202-12-0041-2
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-UAUUCAUAGCUCUUAUGAUAGCAAU-3’(SEQ ID NO:123)、上揭所涵蓋的89個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:1至SEQ ID NO:15中之任一者)以及3’側翼區序列5’-CAUACUCUACAGUUGUGUUUUAAUG-3’(SEQ ID NO:124)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的71個核苷酸之pre-miRNA序列:
S1-B1-S2-B2-S3-B3-S4-L,
其中:
S1至S4係主幹,B1至B3係突起部,並且L係環圈,
S1係約8至9bp,具有於N5-N67的1個錯配bp(例如,於N5之C以及於N67之A),
S2係約16至17bp,具有0、1或2個錯配bp,
S3係約3bp,
S4係約2bp,
B1係不對稱之突起部,其鏈接S1與S2,且具有位於上部股的0至3個鹼基(較佳1個鹼基)(例如,N9)以及位於下部股的1至2個鹼基(較佳2個鹼基)(例如,N62-N63),
B2係1個鹼基之不對稱突起部,其鏈接S2與S3且較佳位於上部股(例如,N27,較佳係G或U),
B3係1個鹼基之不對稱突起部,其鏈接S3與S4且較佳位於下部股(例如,於N41之U),
L係6個鹼基的環圈(較佳係5’-UUUAGU-3’),以及
其中B2-S3-B3-S4視需要融合以形成6bp之主幹,或者突出部及3bp之主幹,
前提條件為N8-N30不是5’-UAAAGUGCUUAUAGUGCAGGUAG-3’(SEQ ID NO:125),並且前提條件為N44-N65不是5’-ACUGCAUUAUGAGCACUUAAAG-3’(SEQ ID NO:126)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖25至圖39中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0044-3
Figure 110111624-A0202-12-0045-4
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-UGGUCUAUCUGAUGUGACAGCUUCU-3’(SEQ ID NO:127)、上揭所涵蓋的71個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:16至SEQ ID NO:30中之任一者)以及3’側翼區序列5’-UAGCUGUAGAACUCCAGCUUCGGCC-3’(SEQ ID NO:128)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的73個核苷酸之pre-miRNA序列:
S1-B1-S2-L,
其中:
S1及S2係主幹,B1係突起部,並且L係環圈,
S1係約9至12bp,具有於N3-N71及N7-N67的2個錯配bp(例如,兩個C:A錯配),
S2係約19至22bp,具有通常1個但至多3個錯配bp,
B1係1個鹼基之不對稱突起部,其將S1及S2鏈接在底部股,
L係10個鹼基的環圈(較佳係5’-CUUCCUGUCA-3’;SEQ ID NO:129),以及
其中,S1與S2之組合長度係約31bp,
前提條件為N9-N30不是5’-GGGGUUCCUGGGGAUGGGAUUU-3’(SEQ ID NO:130),並且
前提條件為N45-N65不是5’-AUCACAUUGCCAGGGAUUUCC-3’(SEQ ID NO:131)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖40至圖54中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之3’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0047-5
Figure 110111624-A0202-12-0048-6
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-GGUGCCCCCCUCACCCCUGUGCCAC-3’(SEQ ID NO:132)、上揭所涵蓋的73個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:31至SEQ ID NO:45中之任一者)以及3’側翼區序列5’-CUGAGCUCUGCCACCGAGGAUGCUG-3’(SEQ ID NO:133)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的84個核苷酸之pre-miRNA序列:
U-S1-B1-S2-B2-S3-B3-S4-B4-S5-L,
其中:
U係未配對之5’突出鹼基(例如,C)及未配對之3’突出鹼基(例如,G);
S1至S5係主幹,B1至B4係突起部,並且L係環圈,
S1係約6bp,
S2係約2bp,
S3係約15至23bp,較佳15至19bp,具有至多2個較佳1個錯配bp,
S4係約1至10bp,較佳6至9bp,具有至多1個錯配bp,
S5係約3至4bp,較佳3bp,
B1係1個鹼基之不對稱突起部,其鏈接S1與S2且位於上部股(例如,於N8之U),
B2係1個鹼基之不對稱突起部,其鏈接S2與S3且位於下部股(例如,於N75之A),
B3係1個鹼基之不對稱突起部,其鏈接S1與S2且位於上部股(例如,U或C),
B4係不對稱突起部,其鏈接S4與S5,具有位於上部股之2個鹼基以及位於下部股之3個鹼基,或者具有位於上部股之1個鹼基以及位於下部股之2個鹼基,以及
L係4個鹼基的環圈(較佳係5’-GGCU-3’),
其中,S3與S4之組合長度係約23至25bp,並且
前提條件為N16-N37不是5’-UCUCCCAACCCUUGUACCAGUG-3’(SEQ ID NO:134),並且前提條件為N51-N72不是5’-CUGGUACAGGCCUGGGGGACAG-3’(SEQ ID NO:135)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖55至圖69中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0051-7
Figure 110111624-A0202-12-0052-8
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-CCCGAGGCAGCAGCGGCAGCGGCGGCUCCU-3’(SEQ ID NO:136)、上揭所涵蓋的84個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:46至SEQ ID NO:60中之任一者)以及3’側翼區序列5’-CCCGGCACCGGCAGGCCCCAAGGGGUGAGG-3’(SEQ ID NO:137)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的86個核苷酸之pre-miRNA序列:
U-S1-B1-S2-B2-S3-B3-S4-L,
其中:
U係未配對之5’突出鹼基(例如,U)及未配對之3’突出鹼基(例如,C);
S1至S4係主幹,B1至B3係突起部,並且L係環圈,
S1係約5bp,
S2係約16至20bp,較佳17至19bp,具有至多2個錯配bp,
S3係約6至11bp,較佳7至9bp,
S4係約2至4bp,
B1係不對稱突起部,其鏈接S1與S2,具有位於上部股之3個鹼基(例如,於N7-N9之5’-UCU-3’)以及位於下部股之3個鹼基(例如,於N78-N80之5’-CGU-3’),
B2係2個鹼基之不對稱突起部,其鏈接S2與S3且位於上部股,
B3係不對稱突起部,其鏈接S3與S4,具有位於上部股之0至1個鹼基以及位於下部股之4至5個鹼基,較佳係僅具有位於下部股之4個鹼基,
L係4個鹼基的環圈(較佳係5’-ACAU-3’),
其中,S2於S3之組合長度係約25至27bp,較佳係26至27bp,並且
前提條件為N15-N38不是5’-UCCCUGAGACCCUUUAACCUGUGA-3’(SEQ ID NO:138),並且前提條件為N53-N74不是5’-ACAGGUGAGGUUCUUGGGAGCC-3’(SEQ ID NO:139)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖70至圖84中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0055-9
Figure 110111624-A0202-12-0056-10
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-UCUACCGGGCCACCGCACACCAUGU-3’(SEQ ID NO:140)、上揭所涵蓋的86個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:61至SEQ ID NO:75中之任一者)以及3’側翼區序列5’-CAACCACACACCUGGGGAAUUGCUG-3’(SEQ ID NO:141)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的70個核苷酸之pre-miRNA序列:
U-S1-B1-S2-B2-S3-B3-S4-L,
其中:
U係2個未配對的5’-突出鹼基(例如,UG),
S1至S4係主幹,B1至B3係突起部,並且L係環圈,
S1係約13至17bp,具有至多4個誤配bp(例如,於N7及N8),
S2係約8至12bp,具有至多1個錯配bp,
S3係約4bp,
S4係約1bp,
B1係1個鹼基之不對稱突起部,其鏈接S1與S2,且具有位於上部股之1個鹼基,
B2係1個鹼基之不對稱突起部,其鏈接S2與S3,且具有位於上部股之1個鹼基(例如,A),
B3係1個鹼基之不對稱突起部,其鏈接S3與S4,且具有位於上部股之1個鹼基(例如,U),
L係5個鹼基的環圈(較佳係5’-AAUCU-3’),
其中,S2與S3之組合長度係約25bp,並且
前提條件為N8-N29不是5’-UAGCUUAUCAGACUGAUGUUGA-3’(SEQ ID NO:142),並且前提條件為N46-N66不是5’-CAACACCAGUCGAUGGGCUGU-3’(SEQ ID NO:142)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖85至圖99中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0059-11
Figure 110111624-A0202-12-0060-12
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列5’-UGACAUCUCCAUGGCUGUACCACCU-3’(SEQ ID NO:143)、上揭所涵蓋的70個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:76至SEQ ID NO:90中之任一者)以及3’側翼區序列5’-CAUUUUGGUAUCUUUCAUCUGACCA-3’(SEQ ID NO:144)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的72個核苷酸之pre-miRNA序列:U-S1-L,
其中:
U係未配對之5’突出鹼基(例如,C)及未配對之3’突出鹼基(例如,A);
S1係主幹,並且L係環圈,
S1係約33bp,具有至多2個誤配bp(例如,於N7-N66之A:A),以及
L係4個鹼基的環圈,
前提條件為N17-N38不是5’-AAACCGUUACCAUUACUGAGUU-3’(SEQ ID NO:145),並且前提條件為N39-N56不是5’-UAGUAAUGGUAAUGGUUC-3’(SEQ ID NO:146)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖100至圖102中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0061-13
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列
Figure 110111624-A0202-12-0061-14
Figure 110111624-A0202-12-0061-15
Figure 110111624-A0202-12-0061-16
(SEQ ID NO: 147)、上揭所涵蓋的70個核苷酸之pre-miRNA序列中的任一者(例如,SEQ ID NO:91至SEQ ID NO:93中之任一者)以及3’側翼區序列
Figure 110111624-A0202-12-0062-19
Figure 110111624-A0202-12-0062-17
Figure 110111624-A0202-12-0062-18
(SEQ ID NO:148)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的69個核苷酸之pre-miRNA序列:
S1-B1-S2-L,
其中:
S1及S2係主幹,B1係突起部,並且L係環圈,
S1係約27bp,具有至多1個誤配bp(例如,於N4-N66),
S2係約3bp,
B1係5個鹼基之不對稱突起部,其鏈接S1與S2且位於下部股,
L係4個鹼基的環圈(較佳係5’-AAGC-3’),以及
前提條件為N4-N25不是5’-UGUAAACAUCCUCGACUGGAAG-3’(SEQ ID NO:149),並且前提條件為N45-N66不是5’-CUUUCAGUCGGAUGUUUGCAGC-3’(SEQ ID NO:150)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖103至圖116中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’或3’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0063-20
Figure 110111624-A0202-12-0064-21
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列
Figure 110111624-A0202-12-0064-26
Figure 110111624-A0202-12-0064-22
Figure 110111624-A0202-12-0064-23
(SEQ ID NO:151)、上揭所涵蓋的69個核苷酸之PRE-MIRNA序列中的任一者(例如,SEQ ID NO:94至SEQ ID NO:107中之任一者)以及3’側翼區序列
Figure 110111624-A0202-12-0064-27
Figure 110111624-A0202-12-0064-24
Figure 110111624-A0202-12-0064-25
(SEQ ID NO:152)。
於某些具體例中,本發明之多核苷酸包含具有下列二級結構的71個核苷酸之pre-miRNA序列:
S1-B1-S2-B2-S3-L,
其中:
S1至S3係主幹,B1及B2係突起部,並且L係環圈,
S1係約15至17bp,諸如16bp,具有至多1個誤配bp(例如,於N4-N68),
S2係約8至12bp,諸如10bp,
S2係約3至6bp,諸如4bp,
B1係2個鹼基之不對稱突起部,其鏈接S1與S2且位於上部股,
B2係5個鹼基之不對稱突起部,其鏈接S2與S3且位於下部股,以及
L係4個鹼基的環圈(較佳係5’-AAGC-3’),
其中,S1-S3之組合長度係約29至30bp,
前提條件為N6-N27不是5’-UGUAAACAUCCUCGACUGGAAG-3’(SEQ ID NO:153),並且前提條件為N47-N68不是5’-CUUUCAGUCGGAUGUUUGCAGC-3’(SEQ ID NO:154)。
代表性的本發明之具有上述二級結構的pre-miRNA於圖117至圖126中示出,該等圖亦包括於各自結構下之預計自由能(△G)值。於此等本發明之pre-miRNA多核苷酸中,異源導引股序列係位於異源隨從股序列之5’。在以下各自之pre-miRNA序列中,異源導引股序列及異源隨從股序列係以斜體加粗序列和雙下劃線序列示出。pre-miRNA中之剩餘序列係框架區序列。
Figure 110111624-A0202-12-0066-28
所有以「A」終結之pri-miRNA皆含有靶向相同標靶轉錄本之導引序列(但可能靶向相同標靶轉錄本之不同區域);以「B」終結之pri-miRNA和以「T」終結之pri-miRNA亦如是,各自針對不同之標靶轉錄本。
於某些具體例中,本發明之多核苷酸包含pri-miRNA序列,該pri-miRNA序列包含5’側翼區序列
Figure 110111624-A0202-12-0067-30
Figure 110111624-A0202-12-0067-31
Figure 110111624-A0202-12-0067-32
(SEQ ID NO:155)、上揭所涵蓋的71個核苷酸之PRE-MIRNA序列中的任一者(例如,SEQ ID NO:108至SEQ ID NO:117中之任一者)以及3’側翼區序列
Figure 110111624-A0202-12-0067-35
Figure 110111624-A0202-12-0067-34
Figure 110111624-A0202-12-0067-33
(SEQ ID NO:156)。
於某些具體例中,本發明之多核苷酸包含編碼本文所揭示之本發明之pre-miRNA或pri-miRNA中任一者的DNA。
於某些具體例中,本發明之多核苷酸包含載體,該載體包含本發明之DNA,諸如病毒載體。病毒載體可係AAV載體或慢病毒載體。AAV載體可係AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV13、AAV14、AAV15、AAV16中之任一者,或者任意具有對於所欲之標靶組織或細胞類型諸如神經元細胞之向性的其他重組AAV載體。
於某些其他具體例中,本發明之DNA載體編碼一種或多種蛋白質,該一種或多種蛋白質之表現係改善神經元疾病或病症諸如阿茲海默症(AD)的治療結果。
於某些具體例中,本發明之DNA載體編碼腦衍生神經滋養因子 (BDNF),其係與典型神經生長因子(NGF)相關之神經滋養素家族生長因子的成員。於某些具體例中,BDNF具有NM_170735.5(藉由引用併入本文)之多核苷酸序列或其功能性變異體(諸如密碼子優化之變異體)或片段。所編碼之BDNF蛋白質序列係列述如下。
Figure 110111624-A0202-12-0068-37
Figure 110111624-A0202-12-0068-36
(SEQ ID NO:157)
神經滋養因子係見於腦內及周邊。事後分析業經顯示,阿茲海默症患者腦組織中之BDNF量級降低,但關聯之屬性尚不清楚。有一些研究表明,神經滋養因子具有對抗澱粉樣蛋白β毒性的保護作用。
於某些具體例中,BDNF基因或編碼序列不包括下列單一核苷酸多形性(SNF)之一者或多者或任一者:rs6265(其編碼V66M突變)、C270T、rs7103411、rs2030324、rs2203877、rs2049045及rs7124442。
於某些具體例中,本發明之DNA載體編碼VGF。
VGF或「VGF神經因子誘導蛋白」係所分泌之蛋白質或神經肽前驅物,其可在調節能量恆定、新陳代謝及突觸可塑性中發揮作用。用於VGF之人RefSeq係NP_003369(藉由引用併入),並且用於VGF之鼠RefSeq係NP_001034474(藉由引用併入)。
於某些具體例中,本發明之DNA載體編碼核因子類紅血球2相關因子2(NRF2)轉錄因子,其亦稱為核因子類紅血球衍生2-樣2。人體內之Nrf2 係由NFE2L2基因編碼。其係鹼性白胺酸拉鏈(bZIP)蛋白,其調節抗氧化劑蛋白質之表現,該抗氧化劑蛋白質起到免受由損傷及驗證觸發之氧化性損害的作用。
於某些具體例中,Nrf2具有如下列任一者之蛋白質序列:NP_001138884、NP_001138885、NP_001300829、NP_001300830、NP_001300831及NP_035032。
於某些具體例中,本發明之DNA載體編碼VEGF(血管內皮生長因子(VEGF),最初稱為血管滲透性因子(VPF),或在發現其他家族成員諸如VEGF-B、VEGF-C、VEGF-D、VEGF-E和VEGF-F之後稱為VEGF-A;以及胎盤生長因子(PGF))。VEGF係由刺激血管形成之細胞產生的訊號蛋白。VEGF係PDGF家族的半胱胺酸-結生長因子。
於某些具體例中,VEGF之編碼序列係以下同型中之任一者:NM_001025366.3、NM_001025367.3、NM_001025368.3、NM_001025369.3、NM_001025370.3、NM_001033756.3、NM_001171622.2、NM_001171623.1、NM_001171624.1、NM_001171625.1、NM_001171626.1、NM_001171627.1、NM_001171628.1、NM_001171629.1、NM_001171630.1、NM_001204384.1、NM_001204385.2、NM_001287044.2、NM_001317010.1及NM_003376.6。
本發明之某些示例性多核苷酸包含下列任一者之ITR-至-ITR序列。於某些具體例中,該多核苷酸係封裝在AAV病毒顆粒(諸如包封在AAV9殼體或具有類似於AAV9之向性的殼體中的AAV病毒顆粒)中的單股DNA序列。於某些具體例中,該多核苷酸係該封裝在AAV病毒顆粒中之單股DNA序列的反向互補,其亦可在宿主細胞內部產生相同的轉錄本。於某些具體例中,該多核苷酸係質體,其可用來使用本領域公認之方法轉染宿主細胞諸如AAV封裝細胞 系,該方法係諸如分別向AAV封裝細胞系提供ITR-至-ITR序列(用於Rep及Cap之編碼序列)以及其他AAV封裝所需之輔助功能的三重轉染方法。於某些具體例中,該多核苷酸係用於AAV產生之HSV載體。
AAV測試件之示例性ITR-至-ITR序列
Figure 110111624-A0202-12-0071-238
Figure 110111624-A0202-12-0072-40
Figure 110111624-A0202-12-0073-41
Figure 110111624-A0202-12-0074-42
Figure 110111624-A0202-12-0075-43
Figure 110111624-A0202-12-0076-44
Figure 110111624-A0202-12-0077-45
Figure 110111624-A0202-12-0078-46
Figure 110111624-A0202-12-0079-47
Figure 110111624-A0202-12-0080-48
Figure 110111624-A0202-12-0081-49
Figure 110111624-A0202-12-0082-50
Figure 110111624-A0202-12-0083-51
Figure 110111624-A0202-12-0084-52
3.病毒產生
本發明之另一方面提供產生本發明之rAAV的方法,包括將本發明之rAAV載體引入封裝細胞系中,該封裝細胞系在誘導時構成性地或提供反式rep/cap蛋白。
於某些具體例中,該封裝細胞系是HEK293細胞系、HeLa細胞或A549細胞。
通常,受試rAAV載體可使用多種本領域公認方法之任一者產生。於某些具體例中,rAAV載體係基於無輔助病毒之瞬時轉染方法使用全順式及反式組分(例如,載體質體及封裝質體,與自腺病毒單離之輔助基因一起)在宿主細胞諸如293細胞中產生。於某些具體例中,rAAV載體係使用基於重組單純皰疹病毒(rHSV)之AAV產生系統產生,該系統利用rHSV載體將AAV載體及RepCap基因帶入細胞內。於某些具體例中,rAAV載體係基於桿狀病毒系統產生,該系統需要用若干桿狀病毒載體同時感染昆蟲細胞以遞送rAAV載體匣以及RepCap基因。於某些具體例中,rAAV載體係基於衍生自HeLa或A549的AAV產生細胞系產生,該細胞系安定地荷載AAV Rep/cap基因。AAV載體匣可以安定地併入宿主基因組中,亦或可以藉由含有該盒之腺病毒引入。
[實施例]
實施例1:Tau siRNA在293T細胞中之外源性Tau表現的驗證
使用編碼Tau蛋白質之5811-bp人MAPT mRNA(NM_005910.5)來篩選並最終鑑定來自商業來源的靶向mRNA之12種siRNA。業經證實,全部12種siRNA皆以劑量依賴性模式展現高達90%的人MAPT mRNA(編碼Tau蛋白)減弱,且IC50值係界於0.007nM至0.160nM之間(數據未顯示)。
IC50值係使用基於體外轉染之bDNA(支化DNA)檢定法量測。簡 而言之,在組織培養板中,使用Lipofectamine 2000將每一種抗人Tau siRNA(或對照siRNA)轉染到HCT 116細胞內,採用從0.09pM至24nM範圍內的10個siRNA濃度。在轉染後大約24小時,使用bDNA檢定法測定每一樣本的人Tau(MAPT)及人GAPDH(作為內部對照)之mRNA表現量級。
支化DNA(bDNA)檢定法提供了一種用於核酸分子之可靠定量的獨特且有力之工具。與標靶擴增方法諸如PCR的根本性不同之處在於,bDNA檢定法藉由增強報告訊號而直接量測生理學量級之核酸分子,而非複製標靶序列作為偵檢之手段,並因此避免了在標靶序列之提取及擴增時的固有誤差。bDNA檢定法採用使用合成性寡核苷酸探針及bDNA分子之線性訊號擴增,並且可準確且精確地量測大約500至10,000,000個分子。
使用這一方法,將經標準化至人GAPDH mRNA的人MAPT mRNA相對表現量級對遞增濃度之每一siRNA作圖。
為了進一步證實此等siRNA可事實上減弱外源表現之Tau/MAPT mRNA,將293T細胞在24孔組織培養板中以最優密度鋪板進行轉染。隨後,在20pmol/孔之經共轉染的針對Tau mRNA之siRNA不存在或存在下,用可商購的表現Tau之質體(Cat.# RC216166,OriGene Technologies,Inc.,Rockville,MD)以0.2μg/孔之劑量轉染293T細胞。將經轉染之293T細胞復溫育72小時,在藉由北方印漬術評估Tau mRNA表現量級。參見圖2。
資料顯示,所測試的靶向Tau之siRNA各自有效地減弱了Tau mRNA(參見圖2左圖)。同時,對照siRNA不具有實質上之減弱(參見圖2右圖)。定量結果係顯示於圖2之柱狀圖中。
實施例2:Tau shRNA在293T細胞中之外源性Tau表現的驗證
本實施例表明,有效之siRNA可被轉化為針對相同標靶mRNA的有效之shRNA。
在本實施例中,被證實具有針對Tau mRNA之有效減弱活性的siRNA分子中之一者,亦即siRNA#5,係第一個藉由添加環圈序列以鏈接導引股與隨從股而「被轉化」為等效shRNA,而不改變由該導引股及隨從股形成之雙股RNA(dsRNA)區。位於dsRNA區下游之3’末端UU突出亦可添加至shRNA設計中。
使用該方法,將siRNA#5 Tau轉化為三種shRNA分子(shTau#5 V1至V3),其各自可從質體(例如p-AV-H1-shTau#5 V1至V3,或簡稱為p-shTau)表現。三種型式之轉化shRNA的不同之處係環圈區的序列。V1之環圈區域係基於miR-30之環圈區域(5’-CATTCAAGAGATG-3’,SEQ ID NO:118)。V2之環圈區域係基於miR-30A之環圈區域(5’-TAGTGAAGCCACAGATGTA-3’,SEQ ID NO:119)。V3之環圈區域係基於miR-21之環圈區域(5’-ACCCTGACCCAGT-3’,SEQ ID NO:120)。
為了測試此等p-shTau構建體針對外源表現之Tau/MAPT mRNA的有效性,將293T細胞在24孔組織培養板中以最優密度鋪板進行轉染。隨後,在遞增量(0、0.2、1.0及2.0μg/孔)之經共轉染的shRNA編碼質體(p-shTau質體中之一者)不存在或存在下,用可商購的表現Tau-p-Tau之質體(Cat.# RC216166,OriGene Technologies,Inc.,Rockville,MD)以0.2μg/孔之劑量轉染293T細胞。編碼混雜型式之shRNA的對照質體係用作陰性對照。將經轉染之293T細胞復溫育72小時,在藉由北方印漬術評估Tau mRNA表現水準。參見圖3A。實驗係重複三次。
數據一致地顯示,全部三種p-shTau質體皆有效地減弱了Tau mRNA表現,且p-shTau V2最為有效。參見圖3B之柱狀圖,其將減弱效率在統計學顯著程度定量。
實施例3:pri-miRNA在293T細胞中之外源性表現之標靶的驗證
本實施例表明,受試pri-miRNa構建體可以有效地減弱外源性表現之標靶mRNA。
在本實驗中,通常,將約0.2μg之每一pri-miRNA與0.2μg的以FLAG標記之表現全長度標靶蛋白質的質體共同過度表現48小時。將來自每一經pri-miRNA轉染之孔的總蛋白質針對FLAG標籤進行免疫印漬,以測定由每一pri-miRNA減弱的量。使用混雜之pri-miRNA作為陰性對照。使用過度表現標靶蛋白質之質體作為陽性對照,並且不使用任意經共轉染之pri-miRNA。相對於該陽性對照,計算各pri-miRNA的相對減弱。執行單因數變異數分析(One way-ANOVA)測試以測定各pri-miRNA與陽性對照之間的表現差異的顯著性。執行Holm-Sidak多重比較測試。****<0.0001,***<0.001,**<0.01,*<0.1。結果係顯示於圖4A至圖4C。
詳而言之,於圖4A中,Tau係標靶蛋白質/mRNA,並且所測試之pri-miRNA包括RENA-109-T、RENA-110-T、RENA-111-T、RENA-112-T、RENA-113-T、RENA-116-T、RENA-015-T、RENA-030-T、RENA-075-T、RENA-060-T及RENA-115-T。參見上述序列。
於圖4B,APP係標靶蛋白質/mRNA,並且所測試之pri-miRNA包括RENA-002-A、RENA-017-A、RENA-032-A、RENA-047-A、RENA-115A及 RENA-091-A。參見上述序列。
於圖4C,BACE1係標靶蛋白質/mRNA,並且所測試之pri-miRNA包括RENA-093-B、RENA-096-B、RENA-097-B、RENA-098-B、RENA-099-B、RENA-100-B、RENA-103-B、RENA-104-B、RENA-105-B、RENA-106-B、RENA-107-B及RENA-108-B。參見上述序列。
數據一致地顯示,全部三種類型之pri-miRNA設計皆有效的減弱了標靶mRNA表現。
實施例4:使用抗Tau shRNA在PS19小鼠中之Tau表現的體內減弱
本實驗表明,shRNA具有對抗外源性表現之Tau mRNA的有效體外活性,亦在阿茲海默症的小鼠PS19模型中具有對抗內源性表現之Tau mRNA的有效體內活性。
PS19基因轉殖鼠(B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J,(C57BL/6 x C3H)F1,Stock# 008169,The Jackson Lab)係廣泛使用之tau蛋白病(tauopathy)模型,最初在賓夕法尼亞大學醫學院(UPenn School of Medicine)研發。PS19小鼠表現突變人微管相關蛋白質Tau,亦即MAPT,由小鼠朊病毒蛋白(Prnp)啟動子驅動。該轉殖基因編碼疾病相關之P301S突變,並且包括四個微管結合域及一個N端插入物(4R/1N)。轉殖基因在Chr3:140354280-140603283(Build GRCm38/mm10)插入,造成不影響任何已知基因的249Kb缺失。突變人Tau之表現比內源性小鼠蛋白高五倍(Yoshiyamaet al.,Neuron.53(3):337-351,2007)。
如2007年首次報導者,在混合背景上,PS19小鼠在八個月後發展出神經元丟失及腦萎縮,主要發生在海馬體中,但蔓延到其他腦區,包括新皮 質及內嗅皮質。它們在新皮質、杏仁核、海馬體、腦幹及脊髓中發展出廣泛蔓延的神經纖維糾結樣包涵物。糾結病變係伴有小膠質細胞形成及星狀細胞形成,但不伴有澱粉樣斑塊(Yoshiyamaet al.,supra)。此後,PS19小鼠業經與C57BL/6J回交以生成同源異基因株,儘管該同源異基因株尚未被完全表徵為混合背景小鼠,但亦顯示糾結病變及神經元丟失。它們在大約六個月大時開始在腦幹及脊髓內發展出神經纖維糾結樣包涵物。後來,在約九個月大時,在海馬體及腦幹內觀察到明顯的神經元丟失(Maruyama et al.,Neuron.79(6):1094-1108,2013)。
在本實驗中,藉由直接海馬體注射,在PS19小鼠中測試了靶向Tau mRNA的shRNA構建體之藥理/治療作用。詳而言之,將靶向人Tau mRNA之hTau#5V2 shRNA插入AAV9載體,該載體亦編碼作為報導子基因的GFP(AAV9.H1.shhuMAPT#5V2.GFP,或AAV9 V2構建體)。將大約1.8×1013GC/mL的V2構建體(保存在甘油於PBS中的5%溶液中)稀釋在dPBS中,然後經由立體定位注射直接注射到不同群組中的4週齡雄性PS19小鼠的海馬體內。用於海馬體內注射之參數包括:A/P:-2.5mm;M/L:-2.0mm;以及D/V:-2.0mm。以三個劑量量級,注射大約2μL,注射時間為10分鐘。將V2構建體注射到右側海馬體中,並將陰性對照(媒介物)注射到同一小鼠的左側海馬體中。每個實驗群組中有總計8隻小鼠。
在注射後6或12週,犧牲實驗小鼠以評估終點之一者。一個終點係自實驗小鼠單離之新鮮冷凍腦(海馬體)組織中的Tau mRNA以及,視需要,蛋白質表現。Tau mRNA係藉由qRT-PCR定量。如果獲得足夠之組織,則亦藉由使用Tau特異性抗體的西方印漬術來評估總Tau蛋白質及經磷酸化之Tau(p-Tau)表現。另一個主要終點係藉由IHC(免疫組織化學)評估的海馬體中之Tau表現。 作為業經接受AAV9構建體並表現所編碼之GFP且很可能表現shRNA的指示,亦證實了GFP之表現。參見圖5。
圖6A至圖6C中的結果表明,向海馬體內遞送AAV9-shTau#5V2顯著降低了PS19小鼠體內的Tau mRNA及磷-Tau(pT181)。
詳而言之,於圖6A中,西方印漬術證實,當與陰性(鹽水)對照比較時,在注射shTau#5V2構建體的海馬體內,總Tau蛋白質表現(如藉由抗Tau單株抗體Tau5及Tau46量測者)及磷-Tau(pT181)表現(如藉由抗pT181單株抗體量測者)兩者皆顯著減少。柱狀圖顯示,總Tau蛋白質減弱(Tau KD)為約70%至75%,並且Tau pT181磷酸化減弱為約75%至80%。同時,與對照相比,pTau/總Tau比率接近0.8。
類似地,在圖6B中,與dPBS媒介物相比,注射shhuMAPT的海馬體中的Tau/MAPT mRNA表現減少80%至85%。
在圖6C中,GFP表現在很大程度上被限制在海馬體右側內(因此shTau#5V2很可能亦如此)。值得注意,抗pT181抗體在海馬體左側明顯地顯示強pT181表現,而在很可能表現shTau#5V2的右側,沒有顯著的pT181染色(如果有什麼變化)。
數據表明,針對Tau的shRNA構建體可有效地減少PS19小鼠的海馬體內的Tau蛋白質及mRNA體內表現。這表明,RNAi可能是治療阿茲海默症小鼠模型的有效措施。
實施例5:使用抗APP miRNA之APP表現之體外減弱
本實驗表明,針對APP之受試miRNA具有減弱APP表現的潛在體外活性。
根據本發明之方法設計針對人APP mRNA的pri-miRNA,從被 證明具有減弱人APP mRNA表現之有效體外活性的siRNA開始。使用基於miR-30骨幹/框架序列的siRNA序列構建pri-miRNA(miR30-APP2-pri-miRNA),並將其編碼序列選殖到能夠在合適的提供Rep/Cap蛋白質之封裝細胞系中生成AAV病毒的質體載體(pAV)中。
詳而言之,pAV載體包含,除了Amp抗性基因以及細菌複製起始序列(Ori)以外,5’AAV2 ITR、CAG啟動子、EGFP報導子基因編碼序列、5’miR-30a、APP2隨從股、miR-30a環圈、APP2導引股、3’miR-30a、SV40 polyA訊號序列及3’AAV2 ITR。參見圖8中之質體圖譜。
將約1.0或0.2μg之構建體pAV-CAG-EGFP-miR30-APP2-pri-miRNA(或簡稱為pAV-pri)與0.4μg之編碼經FLAG標記之標靶APP mRNA(p-APP)的質體共轉染到293T細胞內,並且使用西方印漬術及發光檢定法量測經FLAG標記之APP的表現。編碼靶向非人基因之pri-miRNA in miR30骨幹的小尺寸對照載體係用作該實驗中之陰性對照。作為陽性對照,於平行實驗中使用0.2μg的編碼包含相同siRNA序列之shRNA的pAV載體(p-shAPP)。
圖9A中之數據顯示,pri-miRNA顯著減少APP蛋白質表現,其減少之程度高於針對APP的shRNA。柱狀圖顯示,1.0μg及0.2μg的pAV-pri兩者皆統計學顯著地減少體外相對APP表現(分別減少約80%或95%)。
圖9B比較了針對APP之shRNA與針對APP之pri-miRNA的減弱效率。數據顯示,shRNA及pri-miRNA兩者皆顯著減少APP表現,無論共轉染0.3μg或0.03μg的編碼標靶APP mRNA之質體。事實上,在較高(0.3μg)之標靶APP質體載荷下,pri-miRNA構建體似乎比shRNA更有效。
實施例6:AAV載體產生
製造含有多個核苷酸序列的基因治療載體,其中該等核苷酸序列編碼:1)靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau),由起源於miR30a的pri-miRNA框架區(其不包括pri-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區作為pre-miRNA之導引股天然序列的替換;以及2)其表現改善阿茲海默症(AD)治療結果的蛋白質,諸如VGF、NRF2或BDNF。
根據本發明之方法設計針對人tau mRNA的pri-miRNA,從被證明具有減弱人tau mRNA表現之有效體外活性的siRNA開始。pri-miRNA係基於被插入miR-30a骨幹/框架序列中的siRNA構建,並且其編碼序列係與蛋白質之編碼序列一起選殖到質體載體(pAV)中,該蛋白質之表現改善阿茲海默症(AD)的治療結果,該蛋白質係諸如VGF、NRF2或BDNF。
將該等序列選殖到含有來自將DNA封裝到殼體內所需之AAV2的反向末端重複序列(ITR)的質體骨幹中。在HEK293細胞中轉染之後,使用三質體方法,使用具有特異性表現匣的質體與攜帶AAV9殼體之反式質體以及pHelper質體一起來封裝AAV(Mancuso,et al.,Nature.461,784-787,2009)。
在轉染之後72小時,藉由吸取並與培養基一起以3,000 xg離心15分鐘而收穫細胞。隨後,將細胞合併到一個50mL錐形管中,並使用10mL化學裂解緩衝液(89mL的AAV緩衝液(15mM NaCl、50mM Tris-HCl、0.05% Tween pH 8.5、1mL Trition X-100(1% v/v))以及10mL的10X Tris-EDTA pH 7.6、10μL F-68)於4℃在管旋轉器以速度五裂解隔夜。培養基係經PEG及NaCl處理(最終濃度為8% PEG/0.5M NaCl)並且在冰上溫育兩小時,隨後以3,000 xg離心15分鐘。藉由吸取將AAV球丸溶解在PBS/Pluronic F-68(0.001%)中,並放置在 管旋轉器上隔夜。次日,將核酸酶(benzonase)(50U/mL)添加到經裂解之細胞中,並與PEG AAV管一起在溫水浴中於37℃溫育三十分鐘。將PEG AAV及經裂解之細胞在獨立的試管中以3,000 xg離心15分鐘,將上清液匯集為一試管的部分澄清之AAV,隨後以4,200 xg離心15分鐘以完成澄清化。隨後,將上清液加載到使用Beckman QuickSeal試管的碘克沙醇(iodixanol)梯度,並在18℃於Beckman Ti 70.1旋轉器中以69,000超離心一小時十分鐘,藉由用18號針在40%碘克沙醇級分底部穿孔並且用5mL注射器抽吸AAV而收穫純AAV。隨後,AAV係使用Amicon 100kDa MW截留過濾器濃縮,並使用最終體積約為1.5mL的PBS/F-68(0.001%)進行3次緩衝交換,隨後分為等量小樣,在液態氮中快速冷凍並在-80℃儲存備用。AAV係使用qPCR滴定以測定每毫升之病毒基因組拷貝數,並於SDS-PAGE凝膠上運行以進行純化(Mancuso,etal.,Nature.461,784-787,2009)。
實施例7:基因治療測試品(m059)在PS19小鼠中的持續、短期體內藥理/治療作用
在本實驗中,藉由直接海馬體注射,在PS19小鼠中測試了含有多個核苷酸序列的複製缺陷型重組AAV血清型9(AAV9)基因治療測試品(m059)的藥理/治療作用,其中該等核苷酸序列編碼:1)靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau),由起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區作為pre-miRNA之導引股天然序列的替換;以及2)人VGF神經生長因子誘導蛋白(VGF)。在該具體測試品(m059)中,轉殖基因之表現由CAG啟動子驅動,該CAG啟動子含有巨細胞病毒(CMV) 早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體。位於ITR之間的表現匣含有,從5’至3’,含有CAG啟動子的DNA鏈段,該CAG啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體;人VGF基因;起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區內作為pre-miRNA之導引股天然序列的替換;土撥鼠肝炎轉錄後調節元件(WPRE);以及牛生長激素polyA(bGHpA)多腺苷酸化訊號。AAV2之反向末端重複序列(ITR)位於表現匣側翼(圖127A)。
經由立體定位注射,向3月齡PS19小鼠的海馬體進行雙側注射,注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)或者AAV9基因治療載體m059-VGF-pri-Tau(以2x109(低)或2x1010(高)病毒載體基因組(vg)每次注射)。用於海馬體內注射之坐標係:A/P:-2.5mm;M/L:-2.0mm;以及D/V:-2.0mm。一個月後,犧牲實驗小鼠以評估海馬體內之生化改變。圖128顯示來自西方印漬分析之結果,表明在將AAV9基因治療載體m059-VGF-pri-Tau雙側注射到PS19小鼠的海馬體內之後一個月,總tau及經磷酸化之tau降低,並且人分泌肽VGF(非頭孢菌素)(VGF)增加(圖128A)。藉由對總tau(Tau-5小鼠單株抗體)(圖128B)及經磷酸化之tau(AT180抗Tau磷抗體)(圖128C)的光密度分析顯示,該改變係統計學顯著。圖128A至圖128C中的結果表明,向海馬體內遞送m059-VGF-pri-Tau顯著降低了PS19小鼠體內的Tau mRNA及磷-Tau(pT181),並增加了VGF表現。這表明,含有編碼靶向人tau蛋白質(Pri-tau)及人VGF神 經生長因子誘導蛋白(VGF)的治療性miRNA前驅物的核苷酸序列的重組AAV可以是阿茲海默症小鼠模型中的有效治療措施。
實施例8:基因治療測試品(m067)在PS19小鼠中的持續、短期體內藥理/治療作用
在本實驗中,藉由直接海馬體注射,在PS19小鼠中測試了含有多個轉殖基因的複製缺陷型重組AAV血清型9(AAV9)基因治療測試品(m067)的藥理/台療作用,其中該等轉殖基因編碼:1)靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau),由起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區作為pre-miRNA之導引股天然序列的替換;以及2)人核因子類紅血球2相關因子2(NRF2)。在該具體測試品(m067)中,轉殖基因之表現由CAG啟動子驅動,該CAG啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體。位於ITR之間的表現匣含有,從5’至3’,含有CAG啟動子的DNA鏈段,該CAG啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體;人NRF2基因;起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區內作為pre-miRNA之導引股天然序列的替換;土撥鼠肝炎轉錄後調節元件(WPRE);以及牛生長激素polyA(bGHpA)多腺苷酸化訊號。AAV2之反向末端重複序列(ITR)位於表現匣側翼(圖127B)。
經由立體定位注射,向3月齡PS19小鼠的海馬體進行雙側注射,注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)或者AAV9基因治療載體m067-NRF2-pri-Tau(以2x109(低)或2x1010(高)病毒載體基因組(vg)每次注射)。用於海馬體內注射之坐標係:A/P:-2.5mm;M/L:-2.0mm;以及D/V:-2.0mm。一個月後,犧牲實驗小鼠以評估海馬體內之生化改變。圖129顯示,在用m067-NRF2-pri-Tau治療一個月之後,PS19小鼠的海馬體中的相對Tau mRNA增加(圖129A)並且蛋白質增加(圖129B)。於圖129A中,總RNA係經單離及逆轉錄。相對Tau基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。PS19小鼠的海馬體的西方印漬分析(圖129B)表明,在將m067(以2x109或2x1010病毒載體基因組(vg)每次注射)雙側注射到海馬體內之後一個月,總tau以及經磷酸化之tau降低。藉由對總tau(Tau-5小鼠單株抗體)(圖129C)及經磷酸化之tau(抗Tau磷抗體)(圖129D)的光密度分析顯示,該改變係統計學顯著。
核因子類紅血球2相關因子2(NRF2)係鹼性白胺酸拉鏈轉錄因子蛋白,其調節抗氧化劑蛋白質之表現,該蛋白質保護免於氧化性損害。在正常條件下,NRF2在細胞質中結合至KEAP1(Kelch樣類紅血球細胞衍生蛋白質,具有CNC同源相關蛋白1)。KEAP1靶向NRF2,以透過泛素-蛋白酶體系統進行降解。在細胞氧化應激條件下,KEAP1上的親核性半胱胺酸巰基被改變,導致別位組態改變,從KEAP1釋放NRF2。隨後,NRF2能夠在細胞核內蓄積,(與Maf蛋白質)形成異源二聚體,其結合至很多抗氧化基因(例如,血紅素加氧酶1,HO-1;超氧化物歧化酶1,SOD1;NAD(P)H脫氫酶[醌]1,NQO-1;以及麩胺基硫S-轉移酶,GST)的上游啟動子區域內之抗氧化劑反應元件(ARE),並且啟動其轉 錄(Ma,Q.Annu.Rev.Pharmacol.Toxicol.53,401-426,2013)。
圖130顯示,在用m067-NRF2-pri-Tau治療一個月之後,PS19小鼠的海馬體中的相對NRF2 mRNA增加(圖130A)並且NRF2和血紅素加氧酶-1(HO-1)蛋白質增加(圖130B)。對小鼠進行雙側注射,將2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)或者m067-NRF2-pri-Tau(m067(L)-2x109及m067(H)-2x1010病毒基因組(vg)每位點的基因治療載體注射到海馬體中。一個月後,收穫海馬體。(圖130A)總RNA係經單離及逆轉錄。相對NRF2基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。(圖130B)PS19小鼠的海馬體的西方印漬分析表明,在將REN-001(m067)雙側注射到海馬體內一個月後,NRF2及HO-1蛋白質增加。藉由光密度分析進行的NRF2定量(圖130C)及HO-1定量(圖130D)顯示該等增加係統計學顯著。這表明,含有編碼靶向人tau蛋白質(Pri-tau)及人NRF2的治療性miRNA前驅物的核苷酸序列的重組AAV可以是阿茲海默症小鼠模型中的有效治療措施。
實施例9:在經培養之人神經元中驗證m067轉殖基因的藥理有效性
在本實驗中,在經培養之人神經元中測試基因治療測試品(m067)的藥理作用。使用Amaxa 4D Nucleofector裝置、X-單元(Lonza)以及Amaxa P4原代細胞X套組L和程式DN100,用質體(PS060:含有綠色螢光蛋白之對照質體;PS046:含有NRF2轉殖基因之質體;m032:含有靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)的質體;以及m067:含有見於AAV9基因治療載體m067-NRF2-pri-Tau(含有NRF2-priTau組合)中之表現匣的質體)轉染經培養之人神經幹細胞。5 μg質體DNA係用於750,000個細胞。於核轉染之後,將神經元於過渡培養基(PhoenixSongs Biologicals,21003-250)中接種在聚-D-離胺酸(PDL)/層連結蛋白包被的12孔盤中。48小時後,將培養基替換為神經分化培養基(PhoenixSongs Biologicals,21004-250)。令幹細胞在分化培養基中生長六天。(圖131A)經分化之人神經元的西方印漬分析表明,只有m067質體(含有見於具有NRF2-priTau組合之AAV9基因治療載體m067-NRF2-pri-Tau中的表現盒)能夠顯著降低經磷酸化之tau(圖131B)及總tau(圖131C),澱粉樣蛋白前驅蛋白(APP)之量級沒有改變(圖131D),並且HO-1蛋白(圖131E,HO-1係NRF2之關鍵標靶酶,其在來自氧化應激之細胞損失方面扮演重要角色)及突觸蛋白-1(一種突觸形成標記物)兩者增加(圖131F)。此等結果表明,基因治療測試品m067的編碼靶向人tau蛋白質(Pri-tau)及人NRF2之治療性miRNA前驅物的核苷酸序列在人細胞中減少人tau並增加HO-1中有效,類似於在小鼠模型中觀察到的結果。
實施例10:基因治療測試品(m106)在PS19小鼠中的持續、短期體內藥理/治療作用
在本實驗中,藉由直接海馬體注射,在PS19小鼠中測試了含有多個轉殖基因的複製缺陷型重組AAV血清型9(AAV9)基因治療測試品(m106)的藥理/治療作用,其中該等轉殖基因編碼:1)靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau),由起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區作為pre-miRNA之導引股天然序列的替換;以及2)人腦衍生神經滋養因子(BDNF)。在該具體測試品(m106)中,轉殖基因之表現由CAG啟動子驅動,該CAG啟動子含有巨細胞病毒(CMV)早期增強 子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體。位於ITR之間的表現匣含有,從5’至3’,含有CAG啟動子的DNA鏈段,該CAG啟動子含有巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子及第一內含子、以及兔β-球蛋白基因之剪接接納體;起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T),該異源導引股被插入該框架區內作為pre-miRNA之導引股天然序列的替換;人BDNF基因;土撥鼠肝炎轉錄後調節元件(WPRE);以及牛生長激素polyA(bGHpA)多腺苷酸化訊號。AAV2之反向末端重複序列(ITR)位於表現匣側翼(圖127C)。
經由立體定位注射,向3月齡PS19小鼠的海馬體內進行雙側注射,注射2μL每位點(總計4μL)的空殼體對照(一種AAV9構建體,其缺失載體基因組並因此不能夠遞送基因有效載荷)或m106-pri-Tau-BDNF(2x1010病毒載體基因組(vg)每注射位點)。用於海馬體內注射之坐標係:A/P:-2.5mm;M/L:-2.0mm;以及D/V:-2.0mm。一個月後,犧牲實驗小鼠以評估海馬體內之生化改變。
總RNA係經單離並逆轉錄。相對BDNF或Tau基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至空殼體以獲得相對倍數表現。圖132顯示,在使用m106-pri-Tau-BDNF治療一個月之後,PS19小鼠的海馬體內的人腦衍生神經滋養因子(BDNF)mRNA的相對表現顯著增加(圖132A),而Tau mRNA的相對表現顯著降低(圖132B)。PS19小鼠之海馬體或皮質的西方印漬分析(圖132C)表明,在海馬體和皮質兩者中,磷酸化肌旋蛋白受體激酶B(TrkB;一種BDNF受體)之量級沒有改變(圖132D),但 磷酸化cAMP反應元件結合蛋白(CREB;BDNF之下游效應子)顯著增加(圖132E)。BDNF結合至TrkB受體係觸發細胞內訊號級聯,該級聯活化cAMP反應元件結合蛋白(CREB)之磷酸化以及負責神經元發育及存活之基因的轉錄。此等結果表明,m106-pri-Tau-BDNF治療導致具有功能活性的BDNF。
圖133顯示西方印漬分析之結果(圖133A),表明多個神經保護性傳訊路徑藉由使用m106-pri-Tau-BDNF進行治療而得以活化。光密度分析表明,在雙側注射m106-pri-Tau-BDNF之後一個月,海馬體內之總tau(圖133B)及經磷酸化之tau(圖133C)顯著降低,但皮質中無此效果,並且在海馬體及皮質兩者中,血紅素加氧酶-1(HO-1,一種在減輕來自氧化應激之細胞損失方面扮演重要角色的酶)增加(圖133D)。雙側注射m106-pri-Tau-BDNF亦增加皮質中(但不增加海馬體中)突觸後緻密物95(PSD-95,一種調節突觸結構及可塑性至蛋白質,且係突觸形成之常見標記物)之量級(圖133E),並且增加皮質及海馬體兩者中之雙皮質素(DCX,一種由神經元前驅細胞表現之神經形成標記物)量級(圖133F)。
此等結果表明,含有編碼靶向人tau蛋白質(Pri-tau)及人BDNF的治療性miRNA前驅物的核苷酸序列的重組AAV係誘導神經形成及突觸形成,並且可以是阿茲海默症小鼠模型中的有效治療措施。
實施例11:基因治療測試品(m059和m067)在PS19小鼠中的持續、長期體內藥理/治療作用
在本實驗中,在施用六個月之後,評估複製缺陷型重組AAV血清型9(AAV9)基因治療測試品m059和m067的藥理/治療作用。圖134顯示來自西方印漬分析之結果(圖134A),表明在PS19小鼠腦內的持續、長期生物學作用。對小鼠海馬體內進行雙側注射,注射2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水 (PBS)或者AAV9基因治療載體m059-VGF-pri-Tau、m067-NRF2-pri-Tau或m063-sAPPα-pri-Tau(AAV9載體,其含有一個編碼可溶澱粉樣蛋白前驅蛋白α(sAPPα)的序列、非澱粉樣蛋白原性澱粉樣蛋白前驅蛋白的分泌蛋白質水解片段、以及另一個編碼靶向人tau蛋白質的治療性miRNA前驅物)。AAV9載體之劑量為2x109或2x1010病毒載體基因組(vg)每注射位點,注射入海馬體內。用於海馬體內注射之坐標係:A/P:-2.5mm;M/L:-2.0mm;以及D/V:-2.0mm。
六個月後,收穫海馬體。光密度分析表明,在使用全部AAV9載體治療六個月之後,海馬體中之總tau(圖134B)及經磷酸化之tau(圖134C)係(相對於對照)顯著降低。AAV9基因治療載體m059-VGF-pri-Tau在2x109病毒基因組(vg)每注射位點(而非2x1010)下增加海馬體內的突觸後緻密物95(PSD-95)(一種調節突觸結構及可塑性之蛋白質,且係突觸形成之常見標記物),而m063-sAPPα-pri-Tau治療降低PSD-95量級,而m067-NRF2-pri-Tau治療對於PSD-95量級不起作用(圖134D)。血紅素加氧酶-1(HO-1)(一種在減輕來自氧化應激之細胞損失方面扮演重要角色的酶)之量級在m067-NRF2-pri-Tau治療後增加,但不受m059-VGF-pri-Tau或m063-sAPPα-pri-Tau影響(圖134E)。膠質原纖酸性蛋白質(GFAP)(一種由星狀細胞表現之中間絲蛋白)之量級在較高劑量之m059-VGF-pri-Tau治療下增加(但在較低劑量治療下不增加),在兩種劑量之m067-NRFf2-pri-Tau治療下增加,而不受任一劑量之m063-sAPPα-pri-Tau影響(圖134F)。此等結果表明,使用含有基因組之AAV9基因治療進行治療而誘導的生化改變能夠在阿茲海默症之小鼠模型內產生持續的治療作用,其中該基因組編碼靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)以及其表現改善阿茲海默症治療結果的蛋白質(在該種情況下係VGF或NRF2)兩者。
實施例12:靶向Tau及APP兩者之AAV9基因治療載體在PS19小鼠中的短期體內藥理/治療作用
在本實驗中,藉由直接海馬體注射,在PS19小鼠體內測試了含有多個核苷酸序列之複製缺陷型重組AAV血清型9(AAV9)基因測試品的藥理/治療作用,該核苷酸序列編碼:1)人VGF或人NRF2;2)靶向人tau蛋白質的治療性miRNA前驅物(Pri-Tau),由起源於miR30a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)和靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T)組成;以及3)靶向人澱粉樣蛋白前驅蛋白(APP)的治療性miRNA前驅物(Pri-APP),由起源於miR16-1或miR23a的pre-miRNA框架區(其不包括pre-miRNA之導引股及隨從股的天然序列)和靶向人APP蛋白質的異源導引股(SEQ ID NO:2,RENA-002-A或SEQ ID NO:32,RENA-032-A)組成。圖135顯示用於AAV9基因治療載體m069-VGF-pri-Tau-pri-APP(圖135)、m070-VGF-pri-Tau-pri-APP(圖135B)、m071-NRF2-pri-Tau-pri-APP(圖135C)及m072-NRF2-pri-Tau-pri-APP(圖135D)的特異性表現匣之示意圖。
位於ITR之間的表現匣含有,從5’至3’,含有CAG啟動子的DNA鏈段,其包含巨細胞病毒(CMV)早期增強子元件、該啟動子、雞β-肌動蛋白基因之第一外顯子和第一內含子、以及兔β-球蛋白基因之剪接接納體(或為人VGF基因(m069和m070)或為人NRF2基因(m071和m072));起源於miR30a的pre-miRNA框架區(其不包含pre-miRNA之導引股及隨從股的天然序列)以及靶向人tau蛋白質的異源導引股(SEQ ID NO:105;RENA-109-T);靶向人澱粉樣蛋白前驅蛋白(APP)的治療性miRNA前驅物(Pri-APP),由起源於miR16-1(m069和m071)或miR23a(m070和m072)的pre-miRNA框架區(其不包括pre-miRNA之導 引股及隨從股的天然序列)以及靶向人APP蛋白質的異源導引股(或為SEQ ID NO:2;RENA-002-A,在m069和m071中,或為SEQ ID NO:32;RENA-032-A,在m070和m072中)組成;以及猿猴病毒40 polyA(SV40pA)訊號序列。AAV2之反向末端重複序列(ITR)位於表現匣側翼(圖135A至圖135D)。
對小鼠進行雙側注射,將2μL每位點(總計4μL)的杜爾貝科磷酸鹽緩衝鹽水(dPBS)或者2x109或2x1010病毒基因組(vg)每位點的基因治療載體注射到海馬體中。一個月後,收穫海馬體。總RNA係經單離並逆轉錄。基因表現係藉由實時qRT-PCR量測並標準化至GAPDH mRNA表現。相對基因表現係標準化至dPBS以獲得相對倍數表現。圖136A顯示,在用m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對VGF mRNA顯著增加。圖136B顯示,在用m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對NRF2 mRNA顯著增加。圖136C及圖136D顯示,在用m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP(圖136C)或者m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP(圖136D)治療一個月後,PS19小鼠的海馬體中的相對Tau mRNA顯著降低。
圖137A顯示,藉由西方印漬術測定,在用m069-VGF-pri-Tau-pri-APP或m070-VGF-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對VGF蛋白質顯著增加。圖137B顯示,藉由西方印漬術測定,在用m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對NRF2蛋白質顯著增加。圖136C顯示,藉由西方印漬術測定,在用m069-VGF-pri-Tau-pri-APP、m070-VGF-pri-Tau-pri-APP、m071-NRF2-pri-Tau-pri- APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對Tau蛋白質顯著降低。圖136C顯示,藉由西方印漬術測定,在用m069-VGF-pri-Tau-pri-APP、m070-VGF-pri-Tau-pri-APP、m071-NRF2-pri-Tau-pri-APP或m072-NRF2-pri-Tau-pri-APP治療一個月後,PS19小鼠的海馬體中的相對經磷酸化之Tau蛋白質顯著降低。此等結果提示,重組AAV在阿茲海默症小鼠模型中可係有效之治療措施,其中該重組AAV係含有編碼其表現改善阿茲海默症(AD)治療結果的蛋白質諸如BDNF、VGF或NRF2的核苷酸序列,該核苷酸序列與至少兩個編碼靶向人tau蛋白質之治療性miRNA前驅物(Pri-tau)及靶向人APP之治療性miRNA前驅物(Pri-APP)的核苷酸序列偶聯。

Claims (28)

  1. 一種多核苷酸,其係包含:
    (a)pre-miRNA之框架區,其不包括用於pre-miRNA之導引股及隨從股的天然序列;
    (b)異源導引股,其係插入該框架區內替換該pre-miRNA之導引股的天然序列;以及,
    (c)異源隨從股,其係插入該框架區內替換該pre-miRNA之隨從股的天然序列,
    其中,該多核苷酸實質上維持該pre-miRNA(具有該pre-miRNA之導引股的天然序列,並且具有該pr-miRNA之隨從股的天然序列)的二級結構及/或該pr-miRNA的自由能;
    其中,當藉由胞質核酸酶(例如,切丁酶)加工該pre-miRNA時,係將該異源導引股併入RISC複合體以允許該RISC複合體以靶向與該導引股互補之標靶RNA,以及,
    其中,當將該多核苷酸加工為miRNA時,該異源導引股係比該異源隨從股優先地裝載到RISC。
  2. 如請求項1所述之多核苷酸,其係包含pri-miRNA,該pri-miRNA包含pre-miRNA,該pri-miRNA係包含於該pre-miRNA之框架區側翼的側翼區域,並且該側翼區域可藉由核核酸酶(例如,Drosha)移除。
  3. 如請求項1或2所述之多核苷酸,其中,該pre-miRNA或pri-miRNA係起源於microRNA,與其隨從股相比,其更偏好將其導引股併入該RISC複合體(例如,以至少20:1(例如,21:1)、50:1、65:1(例如,69:1)、100:1、140:1(例 如,144:1)、200:1、300:1、450:1(例如,452:1)、600:1、800:1、1000:1、1500:1、1900:1(例如,1950:1)、2500:1、3000:1(例如,3102:1)、5000:1或更高之比率)。
  4. 如請求項1至3中任一項所述之多核苷酸,其中,該pre-miRNA或pri-miRNA係起源於miR30、miR30a、miR-21、miR23a、miR451a、miR125a、miR16-1、miR150、miR23a或miR20a;視需要,該pre-miRNA或pri-miRNA係起源於miR30a、miR23a或miR16-1。
  5. 如請求項1至4中任一項所述之多核苷酸,其中,該異源導引股係與標靶mRNA互補。
  6. 如請求項5所述之多核苷酸,其中,該標靶mRNA係編碼蛋白質,該蛋白質之消除係改善阿茲海默症(AD)的治療結果。
  7. 如請求項6所述之多核苷酸,其中,該蛋白質係APP、Tau或BACE1。
  8. 一種多核苷酸,其係SEQ ID NO:1至SEQ ID NO:117中之任一者,諸如SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:105。
  9. 一種DNA,其係編碼如請求項1至8所述之多核苷酸中的任一者,諸如SEQ ID NO:2、SEQ ID NO:32或SEQ ID NO:105的多核苷酸。
  10. 如請求項9所述之DNA,其係包含病毒載體。
  11. 如請求項10所述之DNA,其中,該病毒載體係腺相關病毒(AAV)載體或慢病毒載體。
  12. 如請求項11所述之DNA,其中,該AAV載體係包含AAV2 ITR序列。
  13. 如請求項10至12中任一項所述之DNA,其中,該病毒載體 復包含啟動子,該啟動子可操作地鏈接至包含該pre-mRNA之pri-miRNA並驅動其轉錄。
  14. 如請求項13所述之DNA,其中,該啟動子係CAG或CMV啟動子。
  15. 如請求項10至14中任一項所述之DNA,復包含WPRE(土撥鼠肝炎轉錄後調節元件)序列、轉錄終止序列及/或polyA訊號序列(諸如牛生長激素polyA(bGHpA)訊號序列或猿猴病毒40 polyA(SV40pA)訊號序列)。
  16. 如請求項10至15中任一項所述之DNA,復包含用於蛋白質之編碼序列。
  17. 如請求項16所述之DNA,其中,該蛋白質係其表現改善阿茲海默症(AD)的治療結果的蛋白質。
  18. 如請求項17所述之DNA,其中,該蛋白質係αAPP、BDNF、VGF、Nrf2或VEGF。
  19. 如請求項11至18中任一項所述之DNA,其中,該病毒載體包含兩種或更多種如請求項1至8中任一項所述之多核苷酸,各自編碼與不同標靶mRNA互補的異源導引股;視需要,該兩種或更多種多核苷酸之一者係包含SEQ ID NO:105,並且該兩種或更多種多核苷酸之另一者係包含SEQ ID NO:2或SEQ ID NO:32。
  20. 如請求項19所述之DNA,其中,該病毒載體係包含三種如請求項1至8項中任一項所述之多核苷酸,其獨立地編碼與用於APP、Tau及BACE1之mRNA互補的異源導引股。
  21. 如請求項20所述之DNA,其中該與APP mRNA互補的導引 股係於miR30、miR16-1或miR-23a的框架區內,該與Tau mRNA互補的導引股係於miR21或miR30a(諸如miR30a)的框架區內,並且該與BACE1 mRNA互補的導引股係於miR125的框架區內。
  22. 如請求項19、20或21所述之DNA,其係包含,從5’至3’:
    (1)第一AAV2 ITR序列、該CAG啟動子、視需要之報導子基因(諸如EGFP)、編碼包含miR30之側翼區和框架區以及與APP mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR21之側翼區和框架區以及與Tau mRNA互補之導引序列的pri-miRNA的多核苷酸、編碼包含miR125之側翼區和框架區以及與BACE1 mRNA互補之導引序列的pri-miRNA的多核苷酸、用於VGF(或BDNF或Nrf2)的編碼區、polyA訊號序列和轉錄終止序列、以及第二AAV2 ITR序列;
    (2)第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:158;
    (3)第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:159;
    (4)第一AAV2 ITR序列、該CAG啟動子、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核 苷酸(例如,SEQ ID NO:105;RENA-109-T)、人BDNF編碼序列、土撥鼠肝炎轉錄後調節元件(WPRE)、牛生長激素polyA(bGHpA)多腺苷酸化訊號、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:164;
    (5)第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR16-1之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:2;RENA-002-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:160;
    (6)第一AAV2 ITR序列、該CAG啟動子、人VGF編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR23a之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:32;RENA-032-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:161;
    (7)第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR16-1之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:2;RENA-002-A)、猿猴病 毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:162;或,
    (8)第一AAV2 ITR序列、該CAG啟動子、人NRF2編碼序列、編碼包含miR30a之側翼區和框架區以及靶向人tau mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:105;RENA-109-T)、編碼包含miR23a之側翼區和框架區以及靶向人APP mRNA之異源導引序列的pri-miRNA或pre-miRNA的多核苷酸(例如,SEQ ID NO:32;RENA-032-A)、猿猴病毒40 polyA(SV40pA)訊號序列、以及第二AAV2 ITR序列;視需要,該ITR-至-ITR序列係SEQ ID NO:163。
  23. 如請求項9至22中任一項所述之DNA,其係質體。
  24. 如請求項23所述之DNA,其中,該質體包含細菌複製起源序列(諸如用於在大腸桿菌內複製的ORI序列),以及,視需要,抗生素選擇標記物(諸如AmpR基因)。
  25. 一種重組病毒,其包含如請求項11至22中任一項所述之DNA。
  26. 如請求項25所述之重組病毒,其係重組AAV病毒或重組慢病毒。
  27. 如請求項26所述之重組病毒,其中,該AAV病毒係具有AAV1、AAV2及/或AAV9衣殼蛋白。
  28. 一種治療有此需要之受試者的阿茲海默症的方法,該方法包括向該受試者施用如請求項25至27中任一項所述之重組病毒。
TW110111624A 2020-03-30 2021-03-30 阿茲海默症的治療 TW202204616A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063001648P 2020-03-30 2020-03-30
US63/001,648 2020-03-30

Publications (1)

Publication Number Publication Date
TW202204616A true TW202204616A (zh) 2022-02-01

Family

ID=75625646

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111624A TW202204616A (zh) 2020-03-30 2021-03-30 阿茲海默症的治療

Country Status (2)

Country Link
TW (1) TW202204616A (zh)
WO (1) WO2021202509A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741781A3 (en) * 2002-02-20 2007-06-06 Sirna Therapeutics, Inc. RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
AU2003300239A1 (en) * 2003-12-29 2005-07-21 Galapagos Genomics N.V. Modulators of bone homeostasis identified in a high-throughput screen

Also Published As

Publication number Publication date
WO2021202509A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11371044B2 (en) RNAi induced huntingtin gene suppression
Mason et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons
CA2580189C (en) Sirna-mediated gene silencing of alpha synuclein
Sapru et al. Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi
Franich et al. AAV vector–mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington's disease
JP2021118740A (ja) バリアントRNAi
Rodríguez-Lebrón et al. Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer's disease
JP2021534814A (ja) アルファ−シヌクレインに対するバリアントRNAi
US20230323391A1 (en) Transgene expression system
US20220010314A1 (en) Rnai induced reduction of ataxin-3 for the treatment of spinocerebellar ataxia type 3
TW202204616A (zh) 阿茲海默症的治療
US20230136245A1 (en) Gene therapy for neurodegenerative disorders using polynucleotide silencing and replacement
WO2023198663A1 (en) Nucleic acid regulation of snca
WO2022268835A1 (en) Gene constructs for silencing alpha-synuclein and uses thereof
WO2023198745A1 (en) Nucleic acid regulation of apoe
WO2023201329A1 (en) Gene silencing by recombinant aav-amirna in alexander disease
US20180327778A1 (en) Animal models for brain inflammation and white matter degeneration
NZ733296B2 (en) Rnai induced huntingtin gene suppression