TW202202814A - Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method - Google Patents
Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method Download PDFInfo
- Publication number
- TW202202814A TW202202814A TW110121718A TW110121718A TW202202814A TW 202202814 A TW202202814 A TW 202202814A TW 110121718 A TW110121718 A TW 110121718A TW 110121718 A TW110121718 A TW 110121718A TW 202202814 A TW202202814 A TW 202202814A
- Authority
- TW
- Taiwan
- Prior art keywords
- ultrasonic
- signal
- time
- fluid
- transit time
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7082—Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Measuring Volume Flow (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
本實施例涉及一種適用於小直徑管道的超音波流量測量裝置及用於其之控制器及超音波流量測量方法。This embodiment relates to an ultrasonic flow measurement device suitable for small diameter pipes, a controller therefor, and an ultrasonic flow measurement method.
時差超音波流量計是將兩個具有特定諧振頻率的壓電超音波感測器放置在流體流經的管道中,並在兩個壓電超音波感測器之間發射及接收超音波訊號,從而測量流體之流速及流量的裝置。The time difference ultrasonic flowmeter is to place two piezoelectric ultrasonic sensors with a specific resonance frequency in the pipeline through which the fluid flows, and transmit and receive ultrasonic signals between the two piezoelectric ultrasonic sensors. A device for measuring the velocity and flow of fluids.
這些傳統的超音波流量計用於各種領域,例如各種工業現場。These conventional ultrasonic flow meters are used in various fields, such as various industrial sites.
但是,在小直徑或低流量管道的情況下,超音波測量方法存在無測量或測量誤差的問題,因為超音波感測器之間的距離很近,或者由於流速低而使超音波通過時間差小。However, in the case of small diameter or low flow pipes, the ultrasonic measurement method has the problem of no measurement or measurement error, because the distance between the ultrasonic sensors is very close, or the ultrasonic transit time difference is small due to the low flow rate .
因此,需要開發一種適用於小直徑管道的流量測量裝置。Therefore, there is a need to develop a flow measurement device suitable for small diameter pipes.
本實施例可提供一種適用於小直徑管道的超音波流量測量裝置及用於其之控制器及超音波流量測量方法。This embodiment can provide an ultrasonic flow measurement device suitable for small diameter pipes, a controller therefor, and an ultrasonic flow measurement method.
根據一種實施例,用於超音波流量測量裝置的該控制器,其中一對超音波感測器設置在流體流經的測量管的至少一側,該控制器可包括:複數個開關,分別連接該對超音波感測器,以開啟或關閉用於傳送接收訊號之訊號接收路徑,用於傳送發射訊號;雜訊消除單元,消除傳送至該訊號接收路徑的該接收訊號的雜訊;時間數位轉換器,輸出數位碼,該數位碼對應從中消除了該雜訊的該接收訊號的接收時間與發射訊號的發射時間之間的時間差;以及控制單元,接收在相對於該流體的移動方向的正向訊號發射及反向訊號發射的期間分別輸出的兩個數位碼,並使用接收到的該兩個數位碼計算該流體的流速及流量。According to one embodiment, the controller for an ultrasonic flow measurement device, wherein a pair of ultrasonic sensors is disposed on at least one side of a measuring tube through which the fluid flows, the controller may include: a plurality of switches, respectively connected to The pair of ultrasonic sensors is used to turn on or off the signal receiving path used for transmitting the receiving signal, so as to transmit the transmitting signal; the noise eliminating unit is used to eliminate the noise of the receiving signal transmitted to the signal receiving path; the time digital a converter, outputting a digital code, the digital code corresponding to the time difference between the reception time of the reception signal from which the noise is eliminated and the transmission time of the transmission signal; and a control unit, receiving in a positive direction relative to the moving direction of the fluid The two digital codes respectively output during the forward signal transmission and the reverse signal transmission are used to calculate the flow velocity and flow rate of the fluid.
該複數個開關可包括第一開關及第二開關,該第一開關可連接到該對超音波感測器中的任何一個與該時間數位轉換器之間的訊號接收路徑,並在相對於該流體的該移動方向的該正向訊號發射的期間關閉該訊號接收路徑,且該第二開關可連接到該對超音波感測器中的另一個與該時間數位轉換器之間的該訊號接收路徑,並在相對於該流體的該移動方向的該反向訊號發射的期間關閉該訊號接收路徑。The plurality of switches may include a first switch and a second switch, the first switch may be connected to a signal receiving path between any one of the pair of ultrasonic sensors and the time-to-digital converter, and is opposite to the time-to-digital converter The signal receiving path is closed during the transmission of the forward signal in the moving direction of the fluid, and the second switch can be connected to the signal receiving between the other one of the pair of ultrasonic sensors and the time-to-digital converter path, and closes the signal receiving path during the transmission of the reverse signal relative to the moving direction of the fluid.
該開關可包括T/R(發射/接收)開關。The switch may comprise a T/R (transmit/receive) switch.
該控制單元可藉由不包括該超音波感測器及該測量管之間的區域的通過距離(transit distance)與該兩個超音波感測器之間的超音波訊號的通過距離的比值,來校正對應於該數位碼的通過時間,以及使用該校正後的通過時間來計算該流體的該流速及該流量。The control unit can be determined by not including the ratio of the transit distance of the area between the ultrasonic sensor and the measuring tube to the transit distance of the ultrasonic signal between the two ultrasonic sensors, to correct the transit time corresponding to the digital code, and use the corrected transit time to calculate the flow rate and the flow rate of the fluid.
在該正向訊號發射的期間的該通過時間可由方程式、獲得,在該反向訊號發射的期間的該通過時間可由方程式、獲得,c可為該流體的聲速,v可為該流體的平均速度,L可為該兩個超音波感測器之間的該超音波訊號的該通過距離,L'可為不包括該超音波感測器與該測量管之間的區域的該通過距離,而θ可為該超音波感測器的傾角。The transit time during the transmission of the forward signal can be obtained from the equation , Obtained, the transit time during the transmission of the reverse signal can be obtained from the equation , Obtain, c can be the sound velocity of the fluid, v can be the average velocity of the fluid, L can be the passing distance of the ultrasonic signal between the two ultrasonic sensors, and L' can be excluding the ultrasonic The passing distance of the area between the ultrasonic sensor and the measuring tube, and θ may be the inclination angle of the ultrasonic sensor.
該控制單元可計算對應於數位碼的第一通過時間及藉由方程式計算出的第二通過時間,並藉由計算出的平均值校正第一通過時間。在該正向訊號發射過程中,該第二通過時間由方程式得到,而在該反向訊號發射過程中,該第二通過時間由方程式得到,c為該流體的聲速,v為該流體的平均速度,L為該兩個超音波感測器之間的該超音波訊號的該通過距離,而θ是該超音波感測器的傾角。The control unit can calculate the first transit time corresponding to the digital code and the second transit time calculated by the equation, and correct the first transit time by the calculated average value. During the forward signal transmission, the second transit time is given by the equation obtained, and during the transmission of the reverse signal, the second transit time is given by the equation Obtain, c is the sound velocity of the fluid, v is the average velocity of the fluid, L is the passing distance of the ultrasonic signal between the two ultrasonic sensors, and θ is the inclination of the ultrasonic sensor .
該雜訊消除單元可包括低雜訊放大器(LNA)。The noise cancellation unit may include a low noise amplifier (LNA).
根據一種實施例,超音波流量測量裝置可包括流體流過的測量管;一對超音波感測器,設置在該測量管的至少一側;以及控制部,連接到該測量管,該控制部包括根據請求項1-3及5中任一項的該控制器及容納該控制器的殼體。According to one embodiment, an ultrasonic flow measurement device may include a measurement tube through which fluid flows; a pair of ultrasonic sensors disposed on at least one side of the measurement tube; and a control portion connected to the measurement tube, the control portion Comprising the controller according to any one of claims 1-3 and 5, and a housing accommodating the controller.
超音波流量測量裝置可更包括連接管,該連接管連接該測量管及該控制部,其中設置有電連接該對超音波感測器及該控制器的纜線。The ultrasonic flow measurement device may further include a connecting pipe, which connects the measuring pipe and the control part, and wherein a cable is arranged to electrically connect the pair of ultrasonic sensors and the controller.
根據一種實施例,該超音波流量測量裝置的超音波流量測量方法,該超音波流量測量裝置包括時間數位轉換器,以測量一對超音波感測器之間的通過時間,該對超音波感測器設置在流體流經的測量管的至少一側,可包括以下步驟:藉由在相對於流體的移動方向的正向方向上發射超音波訊號,由該時間數位轉換器來測量該超音波訊號的正向通過時間;藉由在反向方向上發射該超音波訊號,由該時間數位轉換器來測量該超音波訊號的反向通過時間;使用該測量到的正向通過時間及反向通過時間來計算該流體的流速及流量。According to one embodiment, the ultrasonic flow measurement method of the ultrasonic flow measurement device includes a time-to-digital converter to measure the transit time between a pair of ultrasonic sensors, the pair of ultrasonic sensors The measuring device is arranged on at least one side of the measuring tube through which the fluid flows, and may comprise the steps of: measuring the ultrasonic wave by the time-to-digital converter by emitting an ultrasonic signal in a forward direction relative to the moving direction of the fluid The forward transit time of the signal; by transmitting the ultrasonic signal in the reverse direction, the reverse transit time of the ultrasonic signal is measured by the time-to-digital converter; using the measured forward transit time and reverse The velocity and flow of the fluid are calculated over time.
在測量該正向通過時間的該步驟中,由該時間數位轉換器測得的該正向通過時間可通過方程式來校正,在正向訊號發射過程中,該正向通過時間可由方程式、來獲得,c可為該流體的聲速,v可為該流體的平均速度,L可為該兩個超音波感測器之間的該超音波訊號的該通過距離,L'可為不包括該超音波感測器與該測量管之間的區域的該通過距離,而θ可為該超音波感測器的傾角。In the step of measuring the forward transit time, the forward transit time measured by the time-to-digital converter can be corrected by the equation, and during the forward signal transmission, the forward transit time can be obtained by the equation , to obtain, c can be the sound velocity of the fluid, v can be the average velocity of the fluid, L can be the passing distance of the ultrasonic signal between the two ultrasonic sensors, and L' can be excluding the The passing distance of the area between the ultrasonic sensor and the measuring tube, and θ may be the inclination angle of the ultrasonic sensor.
在測量該反向通過時間的該步驟中,由該時間數位轉換器測得的該反向通過時間可通過方程式來校正,在反向訊號發射過程中,該反向通過時間可由方程式、來獲得,c可為該流體的聲速,v可為該流體的平均速度,L可為該兩個超音波感測器之間的該超音波訊號的該通過距離,L'可為不包括該超音波感測器與該測量管之間的區域的該通過距離,而θ可為該超音波感測器的傾角。In the step of measuring the reverse transit time, the reverse transit time measured by the time-to-digital converter can be corrected by the equation, and in the reverse signal transmission process, the reverse transit time can be obtained by the equation , to obtain, c can be the sound velocity of the fluid, v can be the average velocity of the fluid, L can be the passing distance of the ultrasonic signal between the two ultrasonic sensors, and L' can be excluding the The passing distance of the area between the ultrasonic sensor and the measuring tube, and θ may be the inclination angle of the ultrasonic sensor.
在測量該正向通過時間的該步驟中,藉由由該時間數位轉換器測得的該正向通過時間及由方程式計算的通過時間的平均值可被計算,該正向通過時間可由計算的平均值來校正,在正向訊號發射過程中,該通過時間可由方程式得到,c可為該流體的聲速,v可為該流體的平均速度,L為該兩個超音波感測器之間的該超音波訊號的該通過距離,而θ可為該超音波感測器的傾角。In the step of measuring the forward transit time, the average value of the forward transit time measured by the time-to-digital converter and the transit time calculated by the equation can be calculated, and the forward transit time can be calculated by During the forward signal transmission process, the transit time can be calculated by the equation Obtain, c can be the sound velocity of the fluid, v can be the average velocity of the fluid, L can be the passing distance of the ultrasonic signal between the two ultrasonic sensors, and θ can be the ultrasonic sensor the inclination of the device.
在測量該反向通過時間的該步驟中,藉由由該時間數位轉換器測得的該反向通過時間及由方程式計算的通過時間的平均值可被計算,該反向通過時間可由計算的平均值來校正,在反向訊號發射過程中,該通過時間可由方程式得到,c可為該流體的聲速,v可為該流體的平均速度,L為該兩個超音波感測器之間的該超音波訊號的該通過距離,而θ可為該超音波感測器的傾角。In the step of measuring the reverse transit time, the average of the reverse transit time measured by the time-to-digital converter and the transit time calculated by the equation can be calculated, and the reverse transit time can be calculated by The average value is corrected. During the reverse signal transmission, the transit time can be calculated by the equation Obtained, c can be the sound speed of the fluid, v can be the average velocity of the fluid, L is the passing distance of the ultrasonic signal between the two ultrasonic sensors, and θ can be the ultrasonic sensor tilt angle of the device.
根據一個實施例,在與超音波感測器連接的訊號接收路徑上提供開關及LNA,發射訊號時該開關關閉,接收訊號時該開關開啟,使得當接收到微弱訊號時,接收器的整體靈敏度可增加且雜訊可減少。According to one embodiment, a switch and an LNA are provided on the signal receiving path connected to the ultrasonic sensor, the switch is closed when transmitting a signal, and the switch is open when receiving a signal, so that when a weak signal is received, the overall sensitivity of the receiver can increase and noise can decrease.
根據實施例,由於接收器的整體靈敏度可增加且雜訊減少,有可能降低測量值的錯誤率。According to an embodiment, it is possible to reduce the error rate of the measured values since the overall sensitivity of the receiver can be increased and the noise reduced.
根據實施例,當外部因素產生的高壓雜訊作為衝擊波形式的訊號被接收時,該開關被操作以保護內部電路且可能穩定測量。According to an embodiment, when a high voltage noise generated by an external factor is received as a signal in the form of a shock wave, the switch is operated to protect the internal circuit and possibly stable measurement.
以下,將參照所附圖式詳細描述本發明的較佳實施例。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
然而,本發明的技術構思不限於將要描述的一些實施例,而是能以各種不同的形式實施,並且在本發明的技術構思的範圍內,一種或多種元件可選擇性地組合及替換以在實施例之間使用。However, the technical idea of the present invention is not limited to some embodiments to be described, but can be implemented in various forms, and within the scope of the technical idea of the present invention, one or more elements may be selectively combined and replaced to used between examples.
此外,除非明確定義及描述,否則本發明實施例中使用的術語(包括技術及科學術語)將被本發明所屬領域的普通技術人員一般理解。可以考慮相關技術領域的上下文含義來解釋常用術語,例如詞典中定義的術語。Also, unless explicitly defined and described, terms (including technical and scientific terms) used in the embodiments of the present invention will be commonly understood by those of ordinary skill in the art to which the present invention belongs. Commonly used terms, such as terms defined in dictionaries, may be interpreted in consideration of contextual meanings in the relevant technical field.
另外,本發明實施例中所使用的術語用於描述實施例,並不用於限制本發明。In addition, the terms used in the embodiments of the present invention are used to describe the embodiments, and are not used to limit the present invention.
在本說明書中,單數形式也可包括複數形式,除非文中特別說明,如果它被描述為「A及/與B及C中的至少一個(或多於一個)」,它可以包括一個可以與A、B及C組合的所有組合中的一個或複數個。In this specification, the singular form may also include the plural form, unless the context specifically dictates otherwise, if it is described as "A and/and at least one (or more than one) of B and C", it may include one which may be combined with A One or more of all combinations of , B, and C.
此外,在描述本發明實施例的組成元件時可使用諸如第一、第二、A、B、(a)及(b)之類的術語。Also, terms such as first, second, A, B, (a), and (b) may be used when describing constituent elements of the embodiments of the present invention.
這些術語僅用於將組成元件與其他組成元件分開來,並不以該術語來限定組成元件的性質、順序或順序。These terms are only used to distinguish a constituent element from other constituent elements, and the terms are not used to limit the nature, order, or sequence of the constituent elements.
並且,如果一個元件被描述為「連接」、「耦接」或「接觸」到另一個元件,則該元件直接連接、耦接或接觸到另一個元件。此外,可以包括由於該組件與另一組件之間的又一組件而「連接」、「耦接」或「接觸」的情況。Also, if an element is described as being "connected," "coupled," or "contacting" another element, it is directly connected, coupled, or in contact with the other element. In addition, it may include that the component is "connected," "coupled," or "contacted" by another component between the component and another component.
此外,當描述為形成或放置在每個組件的「頂部(上)或底部(下)」上時,頂部(頂)或底部(底)不僅包括兩個組件直接接觸的情況,還包括還有一個或複數個其他組件形成或設置在兩個組件之間的情況。此外,當表述為「頂部(頂)或底部(底)」時,不僅可以包括向上方向的含義,還可以包括基於一個組件的向下方向的含義。Furthermore, when described as being formed or placed on the "top (top) or bottom (bottom)" of each component, the top (top) or bottom (bottom) includes not only the case where the two components are in direct contact, but also A situation where one or more other components are formed or disposed between two components. Further, when expressed as "top (top) or bottom (bottom)", not only the upward direction but also the downward direction based on one component may be included.
一實施例提出了一種新的概念,其中訊號傳輸路徑及訊號接收路徑分別連接到超音波感測器,並且開關設置在訊號接收路徑上,使得在發送訊號時該開關關閉,並且接收訊號時該開關開啟。An embodiment proposes a new concept, wherein the signal transmission path and the signal reception path are respectively connected to the ultrasonic sensor, and the switch is arranged on the signal reception path, so that the switch is turned off when a signal is sent, and the switch is turned off when a signal is received. The switch is on.
圖1a至1f是示出根據本發明實施例的超音波流量測量裝置的視圖。1a to 1f are views showing an ultrasonic flow measurement device according to an embodiment of the present invention.
參照圖1a及1b,根據本發明實施例的超音波流量測量裝置可包括流體流過的測量管100、超音波感測器200、控制部300及連接管400。1a and 1b, an ultrasonic flow measurement device according to an embodiment of the present invention may include a
測量管100形成為圓柱形,使得流體可以流過內部流路(flow path)。測量管100例如插入並連接到水及污水管的中間並連接到水及污水管內部的管道,並且管道之直徑及測量管100內之流路直徑可以是相同的。The
測量管100可包括主體部110、固定部120、耦接部130及蓋140。主體部110形成為圓柱形並且具有流體流過的流路,並且固定部120具有形成在主體部110的一側或兩側上的一對,而一對超音波感測器200設置在固定部110上,一對耦接部130形成於本體部110的兩端並連接至管道,且蓋140耦接至該對固定部120以密封每個固定部120的內部。此外,固定部120可具有連接孔100a,用於連接超音波感測器200及控制部300的纜線通過該連接孔100a插入在其一側。The
此外,測量管100的材質可包括合成樹脂及金屬。此時,構成測量管100的主體部110、固定部120及耦接部130可一體地形成。In addition, the material of the
超音波感測器200可傾斜地設置並耦接到測量管100的一側或兩側,並且包括一對,以向在測量管100內部的流路中流動的流體發送及接收超音波訊號。即,超音波感測器200可包括第一超音波感測器200a及第二超音波感測器200b。第一超音波感測器200a可發射超音波訊號並且第二超音波感測器200b可接收超音波訊號,或者第二超音波感測器200b可發射超音波訊號並且第一超音波感測器200a可接收超音波訊號。The
此時,超音波感測器200可設置為與測量管100內部的流路間隔一預定距離。超音波訊號的通過距離(transit distance)可由間隔距離來增加。At this time, the
控制部300可連接到安裝在測量管100中的該對超音波感測器200,並通過從該對超音波感測器200接收超音波訊號並利用所發射的超音波訊號的通過時間差,來計算流過測量管100內部的流路的流體的流速及流量。The
控制部300可包括殼體310及控制器320。控制器320可設置在殼體310內部,並且控制器320可以藉由纜線連接到安裝在測量管100中的超音波感測器,並藉由使用在兩個超音波感測器之間所發射及接收的超音波訊號來測量流體的流速及流量。此外,用於連接超音波感測器200及控制器300的纜線插入通過的連接孔300a係可形成在殼體310的一側上。The
連接管400可設置在測量管100及控制部300之間,並且藉由形成在測量管100的一側上的複數個緊固件100b及形成在控制部300的一側上的複數個緊固件300b旋擰而固定地耦接。The connecting
連接管400將形成在測量管100的一側上的連接孔100a及形成在殼體310的一側上的連接孔300a連接,使得連接超音波感測器及控制器之纜線位於殼體內部且被防止從外界接觸,連接管400固定地連接到測量管100。The connecting
如圖1c所示,不使用圖1b所述的連接管400,也可能直接連接測量管100的連接孔100a及控制部300的連接孔300a。As shown in FIG. 1 c , instead of using the connecting
根據本實施例的超音波流量測量裝置可依據需要在構造上有一些變化,如圖1d至圖1f所示。The ultrasonic flow measurement device according to the present embodiment may have some changes in configuration as required, as shown in FIGS. 1 d to 1 f .
圖2a及2b是用於說明超音波感測器及控制部之間的連接關係的視圖。2a and 2b are views for explaining the connection relationship between the ultrasonic sensor and the control section.
參照圖2a及2b,根據實施例,設置在測量管100中的一對超音波感測器200a及200b及控制部300可藉由通過連接管400的纜線10來連接。即,纜線10可設置在形成在測量管100的一側上的連接孔100a、連接管400及形成在殼體310的一側上的連接孔300a中並與之連接。2a and 2b, according to an embodiment, a pair of
另外,由於測量管100及控制部300通過連接管400連接、且被設置為間隔開連接管400的長度,所以可隔熱及絕緣。In addition, since the
圖3是示出根據本發明實施方式的超音波流量測量裝置的結構的剖視圖。3 is a cross-sectional view showing the structure of an ultrasonic flow measurement device according to an embodiment of the present invention.
參照圖3,根據實施例的超音波流量測量裝置是反射型的,並且包括一對超音波感測器200a及200b,其分別設置在形成在主體部110的一側上的一對固定部120a及120b的每一個上,以及該對超音波感測器200a及200b係與流體流動過的流路間隔開一預定距離L11及L21。這裡,超音波感測器的直徑及固定部的直徑可設計為彼此相同。3 , the ultrasonic flow measurement device according to the embodiment is a reflection type, and includes a pair of
在這種情況下,超音波感測器200a及200b可被分成產生實際超音波訊號的一端的第一部及支撐第一部的第二部。超音波感測器的直徑可代表第一部的直徑,第一部的直徑可等於或小於第二部的直徑。In this case, the
此時,固定部120a及120b藉由相對於主體部的中心軸傾斜預定角度θ而形成,並且預定角度可形成在30度至60度的範圍內,較佳地,在45度。At this time, the fixing
從第一超音波感測器200a產生的超音波訊號可在流路的內表面上反射一次並傳送到第二超音波感測器200b,或者從第二超音波感測器200b產生的超音波訊號可在流路的內表面上反射一次並傳送到第一超音波感測器200a。The ultrasonic signal generated from the first
根據該實施例,由於該對超音波感測器被設置為與流路間隔一預定距離,所以超音波訊號的通過路徑可增加L11+L21。According to this embodiment, since the pair of ultrasonic sensors are arranged to be spaced apart from the flow path by a predetermined distance, the passing path of the ultrasonic signal can be increased by L11+L21.
圖4是示出圖2a所示之控制器的詳細配置的視圖,而圖5a及5b是用於說明訊號傳輸路徑及訊號接收路徑的視圖。4 is a view showing a detailed configuration of the controller shown in FIG. 2a, and FIGS. 5a and 5b are views for explaining a signal transmission path and a signal reception path.
參照圖4,根據實施例的控制器320可包括控制單元321及時間數位轉換器(TDC)322、第一雜訊消除單元323、第二雜訊消除單元324、第一開關325、第二開關326、介面327、顯示單元328及輸出單元329。4 , the
控制單元321可產生具有脈衝數的發射訊號,該發射訊號係在相對於流體流動的正向或反向方向上藉由超音波感測器200a及200b發射。The
控制單元321可被提供有從時間數位轉換器322產生的數位碼,其對應於發射訊號及接收訊號之間的時間差,並使用對應所接收到的數位碼的該時間差(即通過時間)來測量流體的流速及流量。The
控制單元321可分別測量流體正向流動或反向流動的通過時間。在使用超音波通過時間差測量流速的一般方法中,當正向及反向方向上的通過時間差增加時,可靠性增加。因此,在本實施例中,超音波感測器設置為與測量管內的流路間隔預定距離,以增加通過時間差,從而延長通過路徑。The
時間數位轉換器322是將時間資訊轉換成數位碼的裝置,可產生成與兩個輸入訊號(即發射訊號及接收訊號)之間的時間差(即通過時間)對應的數位碼。這裡,輸入訊號可以是脈衝形式,也可以是來自不同訊號源的簡單上升訊號。The time-to-
這種時間數位轉換器例如用於類比數位轉換器(ADC)、鎖相迴路(PLL)、延遲鎖定迴路(DLL)、影像感測器、形狀掃描裝置、距離測量裝置等。Such time-to-digital converters are used, for example, in analog-to-digital converters (ADCs), phase locked loops (PLLs), delay locked loops (DLLs), image sensors, shape scanning devices, distance measuring devices, and the like.
時間數位轉換器322通常直接連接,以用於與超音波感測器之阻抗匹配。但是,當接收最終訊號時,由於高頻訊號具有相對較低的訊號水平並且對干擾非常敏感,因此使用低雜訊放大器來提高接收器的整體靈敏度並降低雜訊。The time-to-
第一雜訊消除單元323連接到時間數位轉換器322及第一超音波感測器之間的訊號接收路徑P12,並且可消除通過第一超音波感測器200a接收的訊號的雜訊。即,第一雜訊消除單元323可消除由第一超音波感測器200a接收到的頻帶外的訊號。The first
第二雜訊消除單元324連接到時間數位轉換器322及第二超音波感測器之間的訊號接收路徑P22,並且可消除通過第二超音波感測器200b接收的訊號的雜訊。即,第二雜訊消除單元324可消除由第二超音波感測器200b接收到的頻帶外的訊號。The second
這裡,以第一雜訊消除單元323及第二雜訊消除單元324實現為低雜訊放大器(LNA)的情況為例進行描述,但本發明不限於此,各種組件都可適用。Here, the case where the first
第一開關325可連接到第一雜訊消除單元323及第一超音波感測器200a之間的訊號接收路徑P12,以被打開或關閉。當訊號通過第一超音波感測器200a發射時,第一開關324可關閉,從而可阻止由訊號傳輸路徑P11發射的訊號進入訊號接收路徑P12。The
第二開關326可連接到第二雜訊消除單元324及第二超音波感測器200b之間的訊號接收路徑P22,以被打開或關閉。當訊號通過第二超音波感測器200b發射時,第二開關326可關閉,從而可阻止由訊號傳輸路徑P21發射的訊號進入第二訊號接收路徑P22。The
在這種情況下,第一開關325及第二開關326可以是例如T/R(發送/接收)開關。In this case, the
當在發送或接收訊號的過程中可能由外部因素產生的衝擊波形式的高壓雜訊連同該訊號被接收到時,第一開關325及第二開關326進行操作,使得可保護內部電路並進行穩定的測量。When a high-voltage noise in the form of a shock wave that may be generated by an external factor is received together with the signal in the process of transmitting or receiving a signal, the
介面327可通過與外部終端互相作用來發送或接收數據。這裡,介面327例如可以是將並行數據轉換為串行數據並發送的通用非同步步接收發送器(UART),但不限於此,並且可應用各種方法。The
顯示單元328可在螢幕上顯示計算出的流速、瞬時流量及積分(integrated)流量。The
輸出單元329能以類比方式輸出計算流量、瞬時流量及積分流量。例如,輸出單元329可將計算出的流量轉換為電流或電壓的大小,以輸出轉換後的流量。The
輸出單元329可包括數位類比轉換器(DAC) 329a及類比輸出單元329b。數位類比轉換器329a可將數位訊號轉換為類比訊號並將其輸出到類比輸出單元329b。The
參照圖5a,根據實施例的訊號傳輸路徑P11可包括控制單元321、時間數位轉換器322及第一超音波感測器200a。由控制單元321產生的要發射的具有脈衝的發射訊號係可通過時間數位轉換器322提供給第一超音波感測器200a。5a, the signal transmission path P11 according to the embodiment may include a
根據實施例的訊號接收路徑P22可包括第二超音波感測器200b、第二開關326、第二雜訊消除單元324、時間數位轉換器322及控制單元321。藉由第二超音波感測器200b接收到的訊號可依次通過第二開關326、第二雜訊消除單元324及時間數位轉換器322提供給控制單元321。The signal receiving path P22 according to the embodiment may include the second
參照圖5b,根據實施例的訊號傳輸路徑P21可包括控制單元321、時間數位轉換器322及第二超音波感測器200b。由控制單元321產生的要發射的具有脈衝的發射訊號係可通過時間數位轉換器322提供給第二超音波感測器200b。5b, the signal transmission path P21 according to the embodiment may include a
根據實施例的訊號接收路徑P12可包括第一超音波感測器200a、第一開關325、第一雜訊消除單元323、時間數位轉換器322及控制單元321。藉由第一超音波感測器200a接收到的訊號可依次通過第一開關325、第一雜訊消除單元323及時間數位轉換器322提供給控制單元321。The signal receiving path P12 according to the embodiment may include the first
圖6是示出了根據本發明第一實施例的超音波流量測量方法的視圖。FIG. 6 is a view showing an ultrasonic flow measurement method according to a first embodiment of the present invention.
參照圖6,根據實施例的超音波流量測量裝置(以下稱為測量裝置)在相對於流體的流動的正向方向上發射超音波訊號(S610),並且可測量在正向方向上發射的超音波訊號的正向通過時間(tdownstream )。正向通過時間可從時間數位轉換器獲得(S620)。6 , the ultrasonic flow measurement device (hereinafter referred to as the measurement device) according to the embodiment emits an ultrasonic signal in a forward direction with respect to the flow of the fluid (S610), and can measure the ultrasonic signal emitted in the forward direction. Forward transit time (t downstream ) of the sonic signal. The forward transit time may be obtained from a time-to-digital converter (S620).
該正向通過時間可在下面的方程式1中定義。 [方程式1] 其中c為該流體的聲速,v為該流體流動的平均速度,L為該兩個超音波感測器之間的該超音波訊號的該通過距離,而θ是該超音波感測器的傾角。這裡,參考圖3,L是L11、L12、L21及L22的總和。The forward transit time can be defined in Equation 1 below. [Equation 1] where c is the sound speed of the fluid, v is the average velocity of the fluid flow, L is the passing distance of the ultrasonic signal between the two ultrasonic sensors, and θ is the inclination of the ultrasonic sensor . Here, referring to FIG. 3, L is the sum of L11, L12, L21, and L22.
接下來,測量裝置在相對於流體流動的反向方向上發射超音波訊號(S630),並且可測量在反向方向上發射的超音波訊號的反向通過時間(tupstream )。可從時間數位轉換器獲得反向通過時間(S640)。Next, the measuring device transmits the ultrasonic signal in the reverse direction with respect to the fluid flow (S630), and may measure the reverse transit time (t upstream ) of the ultrasonic signal transmitted in the reverse direction. The reverse transit time may be obtained from the time-to-digital converter (S640).
反向通過時間可在下面的[方程式2]中定義。 [方程式2] The reverse transit time can be defined in [Equation 2] below. [Equation 2]
上述[方程式1]及[方程式2]總結為以下[方程式3]。 [方程式3]、 The above [Equation 1] and [Equation 2] are summarized as the following [Equation 3]. [Equation 3] ,
接下來,測量裝置可使用通過時間(tupstream 及tdownstream )計算流速(S650)。流速v及聲速c分別從[方程式3]的兩個方程式中獲得,並在下面的[方程式4]及[方程式5]中定義。 [方程式4] [方程式5] Next, the measuring device may calculate the flow rate using the transit times (t upstream and t downstream ) (S650). The flow velocity v and the sound velocity c are obtained from the two equations of [Equation 3], respectively, and are defined in the following [Equation 4] and [Equation 5]. [Equation 4] [Equation 5]
接下來,測量裝置可使用計算出的流速(v)來計算體積流量(S660)。Next, the measuring device may calculate the volume flow using the calculated flow rate (v) (S660).
此時,由於測量管內受流量影響的面積係在超音波訊號通過距離的範圍,L'=L12+L21,因此正向通過時間及反向通過時間可計算為通過距離L'與通過距離L的比率,並在下面的方程式6中定義。 [方程式6]、 At this time, since the area affected by the flow in the measuring tube is within the range of the ultrasonic signal passing distance, L'=L12+L21, so the forward passing time and the reverse passing time can be calculated as the passing distance L' and the passing distance L , and is defined in Equation 6 below. [Equation 6] ,
如果將上述[方程式6]定義為通過時間,則可表示為下面的[方程式7]。 [方程式7]、 If the above [Equation 6] is defined as the transit time, it can be expressed as the following [Equation 7]. [Equation 7] ,
如果將[方程式7]應用到[方程式4]中,則[方程式4]中的元素(tupstream -tdownstream )(即兩個通過時間的差Δt)係用流體不流過的面積計算、L11及L21來計算。但是,當從總通過距離L(=L11+L12+L21+L22)的正向時間中減去反向時間時,與僅(L12+L22)的時間差的計算結果相同的值係通過補償得到。因此,如果不乘以[方程式7]所示之通過距離的比率而應用,則其定義如下面的[方程式8]。 [方程式8] If [Equation 7] is applied to [Equation 4], the element in [Equation 4] (t upstream - t downstream ) (that is, the difference Δt between the two transit times) is calculated using the area through which the fluid does not flow, L11 and L21 to calculate. However, when the reverse time is subtracted from the forward time of the total passing distance L (=L11+L12+L21+L22), the same value as the calculation result of the time difference of only (L12+L22) is obtained by compensation. Therefore, if applied without multiplying by the ratio of the passing distance shown in [Equation 7], it is defined as [Equation 8] below. [Equation 8]
如果使用[方程式8],體積流量(即流量qv )定義如下[方程式9] [方程式9] If [Equation 8] is used, the volumetric flow rate (ie, flow rate q v ) is defined as follows [Equation 9] [Equation 9]
這裡,A代表流體在測量管內流動所經過的流路之橫截面的面積。Here, A represents the area of the cross section of the flow path through which the fluid flows in the measuring tube.
圖7是示出了根據本發明第二實施例的超音波流量測量方法的視圖。FIG. 7 is a view showing an ultrasonic flow measurement method according to a second embodiment of the present invention.
參照圖7,根據實施例的超音波流量測量裝置(以下稱為測量裝置)在相對於流體的流動的正向方向上發射超音波訊號(S710),並且可測量在正向方向上發射的超音波訊號的正向通過時間(tdownstream )。正向通過時間(tdownstream )可從時間數位轉換器獲得(S720)。7 , the ultrasonic flow measurement device (hereinafter referred to as the measurement device) according to the embodiment emits an ultrasonic signal in a forward direction with respect to the flow of the fluid (S710), and can measure the ultrasonic signal emitted in the forward direction. Forward transit time (t downstream ) of the sonic signal. The forward transit time (t downstream ) may be obtained from the time-to-digital converter (S720).
此時,測量裝置可計算所獲得的正向通過時間tdownstream 及由方程式1計算出的正向通過時間的平均值,並通過正向通過時間tdownstream 來校正計算出的平均值(S721)。At this time, the measuring device may calculate an average value of the obtained forward passing time t downstream and the forward passing time calculated by Equation 1, and correct the calculated average value by the forward passing time t downstream (S721).
接下來,測量裝置在相對於流體流動的反向方向上發射超音波訊號(S730),並且可測量在反向方向上發射的超音波訊號的反向通過時間(tupstream )。可從時間數位轉換器獲得反向通過時間(S740)。Next, the measuring device transmits the ultrasonic signal in the reverse direction with respect to the fluid flow (S730), and the reverse transit time (t upstream ) of the ultrasonic signal transmitted in the reverse direction may be measured. The reverse transit time may be obtained from the time-to-digital converter (S740).
此時,測量裝置可計算所取得的反向通過時間tupstream 及由方程式2計算出的反向通過時間的平均值,並通過反向通過時間tupstream 來校正計算出的平均值(S741)。At this time, the measuring device may calculate an average value of the acquired reverse transit time t upstream and the reverse transit time calculated by Equation 2, and correct the calculated average value by the reverse transit time t upstream ( S741 ).
接下來,測量裝置可使用通過時間(tupstream 及tdownstream )來計算流速(S750)。Next, the measuring device may calculate the flow rate using the transit times (t upstream and t downstream ) (S750).
接下來,測量裝置可使用計算出的流速來計算體積流量(S760)。Next, the measuring device may calculate the volume flow using the calculated flow rate (S760).
本實施例中使用的術語「單元」是指諸如現場可程式邏輯閘陣列(FPGA)或ASIC之類的軟體或硬件組件,並且「單元」執行某這些角色。但是,「單元」不限於軟體或硬體。「單元」可被配置為存儲在可定址存儲介質中或者可被建構為執行一個或複數個處理器。因此,作為示例,「單元」包括諸如軟體組件、物件導向的軟體組件、分類組件及任務組件、程序、函數、屬性及過程、子例程、程序碼段、驅動程序、韌體、微碼、電路、數據、數據庫、數據結構、表格、數組及變數。由組件及「單元」提供的功能可與較少數量的組件及「單元」組合或進一步分離為附加組件及「單元」。此外,組件及「單元」可被實現為在裝置或安全多媒體卡中執行一個或複數個CPU。The term "unit" as used in this embodiment refers to a software or hardware component such as a Field Programmable Logic Gate Array (FPGA) or ASIC, and a "unit" performs some of these roles. However, "unit" is not limited to software or hardware. A "unit" may be configured to be stored in an addressable storage medium or may be structured to execute one or more processors. Thus, a "unit" includes, by way of example, software components, object-oriented software components, class and task components, programs, functions, properties and procedures, subroutines, program code segments, drivers, firmware, microcode, Circuits, data, databases, data structures, tables, arrays and variables. The functionality provided by components and "units" may be combined with a smaller number of components and "units" or further separated into additional components and "units". Furthermore, components and "units" may be implemented to execute one or more CPUs in a device or secure multimedia card.
以上已經參照本發明的較佳實施例進行了描述,但是應當理解,本領域技術人員可在不脫離本發明的精神及範圍的範圍內對本發明進行各種修改及改變,如在以下請求項中提出。The above has been described with reference to the preferred embodiments of the present invention, but it should be understood that those skilled in the art can make various modifications and changes to the present invention without departing from the spirit and scope of the present invention, as set forth in the following claims .
10:纜線
100:測量管
100a:連接孔
100b:緊固件
110:主體部
120:固定部
120a:固定部
120b:固定部
130:耦接部
140:蓋
200:超音波感測器
200a:超音波感測器
200b:超音波感測器
300:控制部
300a:連接孔
300b:緊固件
310:殼體
320:控制器
321:控制單元
322:時間數位轉換器
323:第一雜訊消除單元
324:第二雜訊消除單元
325:第一開關
326:第二開關
327:介面
328:顯示單元
329:輸出單元
329a:數位類比轉換器
329b:類比輸出單元
400:連接管
L11:預定距離
L12:距離
L21:預定距離
L22:距離
P11:訊號傳輸路徑
P12:訊號接收路徑
P21:訊號傳輸路徑
P22:訊號接收路徑
θ:傾角10: Cable
100: Measuring
[圖1a至1f]是示出根據本發明實施例的超音波流量測量裝置的視圖。[Figs. 1a to 1f] are views showing an ultrasonic flow measurement device according to an embodiment of the present invention.
[圖2a及2b]是用於說明超音波感測器及控制部之間的連接關係的視圖。[ FIGS. 2 a and 2 b ] are views for explaining the connection relationship between the ultrasonic sensor and the control section.
[圖3]是示出根據本發明實施方式的超音波流量測量裝置的結構的剖視圖。[ Fig. 3 ] is a cross-sectional view showing the structure of an ultrasonic flow measurement device according to an embodiment of the present invention.
[圖4]是示出圖2a所示之控制器的詳細配置的視圖。[Fig. 4] is a view showing a detailed configuration of the controller shown in Fig. 2a.
[圖5a及5b]是用於說明訊號傳輸路徑及訊號接收路徑的視圖。5a and 5b are views for explaining a signal transmission path and a signal reception path.
[圖6]是示出了根據本發明第一實施例的超音波流量測量方法的視圖。[ Fig. 6 ] is a view showing an ultrasonic flow measurement method according to a first embodiment of the present invention.
[圖7]是示出了根據本發明第二實施例的超音波流量測量方法的視圖。[ Fig. 7 ] is a view showing an ultrasonic flow measurement method according to a second embodiment of the present invention.
200a:超音波感測器 200a: Ultrasonic sensor
200b:超音波感測器 200b: Ultrasonic sensor
320:控制器 320: Controller
321:控制單元 321: Control Unit
322:時間數位轉換器 322: Time to Digitizer
323:第一雜訊消除單元 323: The first noise elimination unit
324:第二雜訊消除單元 324: Second noise removal unit
325:第一開關 325: First switch
326:第二開關 326: Second switch
327:介面 327: Interface
328:顯示單元 328: Display unit
329:輸出單元 329: output unit
329a:數位類比轉換器 329a: Digital-to-Analog Converters
329b:類比輸出單元 329b: Analog output unit
P11:訊號傳輸路徑 P11: Signal transmission path
P12:訊號接收路徑 P12: Signal receiving path
P21:訊號傳輸路徑 P21: Signal transmission path
P22:訊號接收路徑 P22: Signal receiving path
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0076496 | 2020-06-23 | ||
KR1020200076496A KR102191395B1 (en) | 2020-06-23 | 2020-06-23 | Apparatus for measuring ultrasonic flow, controller for the same and method for measuring ultrasonic flow |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202202814A true TW202202814A (en) | 2022-01-16 |
TWI779665B TWI779665B (en) | 2022-10-01 |
Family
ID=73780527
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110121718A TWI779665B (en) | 2020-06-23 | 2021-06-15 | Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method |
TW111121252A TWI794112B (en) | 2020-06-23 | 2021-06-15 | Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111121252A TWI794112B (en) | 2020-06-23 | 2021-06-15 | Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102191395B1 (en) |
TW (2) | TWI779665B (en) |
WO (1) | WO2021261814A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102191395B1 (en) * | 2020-06-23 | 2020-12-15 | (주)발맥스기술 | Apparatus for measuring ultrasonic flow, controller for the same and method for measuring ultrasonic flow |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11507723A (en) * | 1995-06-07 | 1999-07-06 | パナメトリクス インコーポレイテッド | Ultrasonic path bundles and systems |
AU2003902318A0 (en) * | 2003-05-14 | 2003-05-29 | Vision Fire And Security Pty Ltd | Improved Sensing Apparatus And Method |
US6950768B2 (en) * | 2003-09-08 | 2005-09-27 | Daniel Industries, Inc. | Self-tuning ultrasonic meter |
US7117104B2 (en) * | 2004-06-28 | 2006-10-03 | Celerity, Inc. | Ultrasonic liquid flow controller |
JP2007155574A (en) * | 2005-12-07 | 2007-06-21 | Ricoh Elemex Corp | Ultrasonic flowmeter |
JP2008014840A (en) * | 2006-07-06 | 2008-01-24 | Toshiba Corp | Ultrasonic flowmeter |
JP2010156599A (en) * | 2008-12-26 | 2010-07-15 | Ricoh Elemex Corp | Ultrasonic flowmeter |
US20110239781A1 (en) * | 2010-03-31 | 2011-10-06 | Alan Petroff | Open Channel Meter for Measuring Velocity |
KR101324574B1 (en) * | 2012-07-05 | 2013-11-01 | 한국표준과학연구원 | Clamp-on type ultrasonic flowmeter and the measuring method of correction data |
US9494454B2 (en) * | 2013-12-06 | 2016-11-15 | Joseph Baumoel | Phase controlled variable angle ultrasonic flow meter |
CN105737918B (en) * | 2014-12-11 | 2019-05-10 | 通用电气公司 | For measuring the ultrasonic method and device of fluid flow |
GB201700428D0 (en) * | 2017-01-10 | 2017-02-22 | Able Instr & Controls Ltd | Apparatus and method for flare flow measurement |
KR102191395B1 (en) * | 2020-06-23 | 2020-12-15 | (주)발맥스기술 | Apparatus for measuring ultrasonic flow, controller for the same and method for measuring ultrasonic flow |
-
2020
- 2020-06-23 KR KR1020200076496A patent/KR102191395B1/en active IP Right Grant
-
2021
- 2021-06-10 WO PCT/KR2021/007274 patent/WO2021261814A1/en active Application Filing
- 2021-06-15 TW TW110121718A patent/TWI779665B/en active
- 2021-06-15 TW TW111121252A patent/TWI794112B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI794112B (en) | 2023-02-21 |
TWI779665B (en) | 2022-10-01 |
TW202238080A (en) | 2022-10-01 |
KR102191395B1 (en) | 2020-12-15 |
WO2021261814A1 (en) | 2021-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4164865A (en) | Acoustical wave flowmeter | |
JP7076638B2 (en) | Ultrasonic flowmeter with lens combination | |
WO2017222874A1 (en) | Multiphase in situ flow sensing with ultrasonic tomography and vortex shedding | |
US5594181A (en) | Ultrasonic flow meter | |
US9243942B2 (en) | Flow line mounting arrangement for flow system transducers | |
TWI794112B (en) | Ultrasonic flow measurement device, controller therefor and ultrasonic flow measuring method | |
US20190170550A1 (en) | Ultrasonic transducers using adaptive multi-frequency hopping and coding | |
WO2013183292A1 (en) | Ultrasonic echo sounder transducer and ultrasonic flow meter equipped with same | |
WO2018139193A1 (en) | Ultrasonic device | |
KR100523650B1 (en) | Vibration rotation sensor Control method and device for reducing quantification noise in electronic device | |
US10088347B2 (en) | Flow data acquisition and telemetry processing system | |
WO2018179699A1 (en) | Ultrasonic gas sensor device | |
EP1439377A2 (en) | Ultrasound flow meter using a parabolic reflecting surface | |
US6854339B2 (en) | Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface | |
KR102427611B1 (en) | Method for measuring a distance using ultrasonic waves and device therefor | |
KR102631133B1 (en) | Device and method for ultrasonic gas meter flow measurement | |
US11448537B2 (en) | Ultrasonic flowmeter with vibration-resistant operating mode | |
GB1580524A (en) | Flow meter | |
JP2564396B2 (en) | Ultrasonic vortex flowmeter | |
JPS5918642B2 (en) | Strange thing | |
JPH0554609B2 (en) | ||
JP3757559B2 (en) | Coriolis mass flow meter | |
CN116359892A (en) | Semiconductor integrated circuit device, ultrasonic sensor, and vehicle | |
JPH0712609A (en) | Ultrasonic flowrate measuring device | |
JPH0664134B2 (en) | Underwater acoustic positioning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |