TW202147403A - Tunable stress compensation in layered structures - Google Patents

Tunable stress compensation in layered structures Download PDF

Info

Publication number
TW202147403A
TW202147403A TW109131247A TW109131247A TW202147403A TW 202147403 A TW202147403 A TW 202147403A TW 109131247 A TW109131247 A TW 109131247A TW 109131247 A TW109131247 A TW 109131247A TW 202147403 A TW202147403 A TW 202147403A
Authority
TW
Taiwan
Prior art keywords
porous layer
layer
stress
starting material
layered structure
Prior art date
Application number
TW109131247A
Other languages
Chinese (zh)
Inventor
理查 哈蒙德
羅迪尼 培賽爾
Original Assignee
英商Iqe有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Iqe有限公司 filed Critical 英商Iqe有限公司
Publication of TW202147403A publication Critical patent/TW202147403A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76245Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using full isolation by porous oxide silicon, i.e. FIPOS techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7605Making of isolation regions between components between components manufactured in an active substrate comprising AIII BV compounds

Abstract

A layered structure having controllable stress is described herein. The layered structure includes a starting material, a porous layer formed over a starting material having tunable porosity and/or thickness, a stressor material deposited within the porous layer, and an epitaxial layer formed over the porous layer. The porous layer and the stressor material within the porous layer induce controllable stress in the starting material. Additionally, techniques for controlling stress in the layered structure are described herein. A process for controlling stress in the layered structure includes forming a porous layer having tunable porosity and thickness over a starting material, inducing stress in the starting material including depositing a stressor material within the porous layer, and tuning the induced stress using the tunable porosity and/or thickness of the porous layer.

Description

分層結構中的可調應力補償Adjustable Stress Compensation in Layered Structures

關聯案的交叉引用:本案為於2020年6月5日提交的審查中(co-pending)及共同所有(commonly-owned)的國際專利申請案第PCT/EP2020/065719號的部份延續案(continuation-in-part, CIP),且主張其優先權。而國際專利申請案第PCT/EP2020/065719號依據35U.S.C. §119(e)主張於2019年6月6日提交之共同所有的美國專利臨時案第62/858,279號的優先權。Cross-reference to related cases: This case is a partial continuation of the co-pending and commonly-owned international patent application No. PCT/EP2020/065719 filed on June 5, 2020 ( continuation-in-part, CIP), and claim its priority. And International Patent Application No. PCT/EP2020/065719 claims priority under 35 U.S.C. §119(e) to commonly owned US Patent Provisional Application No. 62/858,279, filed on June 6, 2019.

前述案件各自的整體內容,全部特此明確地納入本文作為參考。The entire contents of each of the foregoing cases are hereby expressly incorporated herein by reference in their entirety.

由於所沉積的層與位於其下之基板相比,可能具有不同熱膨脹,因此在半導體基底上沉積半導體及/或介電層會導致成品晶圓的顯著應力。在一些情況下,應力可能會導致晶圓彎曲。在高溫下沉積磊晶層可能在室溫下誘發位於其下的基板或磊晶層的應力。這可能導致晶圓在材料系統中破裂或磊晶層的固有特性之多餘的改變。此外,在位於其下的基底上造成的效應,對於任何後續的元件製造及/或元件處理可能是有問題的。例如,由於在晶圓彎曲的情況下誘發的彎曲,用於微影技術的微影焦點可能不與晶片表面重合(亦即,晶圓表面的區域將會失焦)。Depositing semiconductor and/or dielectric layers on a semiconductor substrate can cause significant stress to the finished wafer due to the fact that the deposited layers may have different thermal expansion than the underlying substrate. In some cases, the stress may cause the wafer to bend. Deposition of an epitaxial layer at high temperature may induce stress in the underlying substrate or epitaxial layer at room temperature. This can lead to wafer cracking in the material system or unwanted changes in the intrinsic properties of the epitaxial layer. Furthermore, the resulting effects on the underlying substrate may be problematic for any subsequent component fabrication and/or component handling. For example, the lithography focus for lithography techniques may not coincide with the wafer surface (ie, areas of the wafer surface will be out of focus) due to bending induced in the case of wafer bending.

因此,本揭露針對控制分層結構中的應力。本文描述適合用於處理及製造半導體元件的分層結構,以及用於補償應力及隨後在分層結構中設置層的特性的技術。可以調整多孔半導體區域以控制分層結構中的淨應力。多孔半導體區域具有維持其晶體結構的優點,且從而支持任何後續的沉積(例如,半導體層之後續的磊晶生長)。此外,可調整的多孔區域使得隨後沉積的層的較佳性質可被修飾。Accordingly, the present disclosure is directed to controlling stress in layered structures. Described herein are layered structures suitable for use in processing and fabricating semiconductor elements, as well as techniques for compensating for stress and subsequently setting the properties of layers in the layered structure. The porous semiconductor region can be tuned to control the net stress in the layered structure. The porous semiconductor region has the advantage of maintaining its crystalline structure and thus supports any subsequent deposition (eg, subsequent epitaxial growth of the semiconductor layer). In addition, the adjustable porous area allows the preferred properties of subsequently deposited layers to be modified.

具體地,分層結構包括在起始材料(例如,矽晶圓)層之上的可調多孔層。如上所述,可以調整多孔層以修飾沉積在多孔層之上的層的層特性。例如,可以調整多孔層以設定分層結構中的淨應力以抵抗晶圓破裂。在另一示例中,可以調整多孔層以修飾在多孔層之上的磊晶層的一個或多個層特性。在一些實施例中,可調多孔層在起始晶圓中誘發彎曲。在這樣的實施例中,可以使用多孔層來調整誘發的彎曲,以在分層結構中設定淨應力。Specifically, the layered structure includes a tunable porous layer over a layer of starting material (eg, a silicon wafer). As described above, the porous layer can be tuned to modify the layer properties of the layer deposited over the porous layer. For example, the porous layer can be tuned to set the net stress in the layered structure to resist wafer cracking. In another example, the porous layer may be tuned to modify one or more layer properties of the epitaxial layer overlying the porous layer. In some embodiments, the tunable porous layer induces bending in the starting wafer. In such embodiments, the porous layer can be used to tune the induced bending to set the net stress in the layered structure.

可以調整多孔層以抗衡來自沉積層的部份預期應力。應力的一些非限制性示例包括壓縮、拉伸、剪切、扭轉及彎曲。在一些情況下,可以調整多孔層以抗衡大部份預期應力。藉由抗衡預期應力,分層結構可以設計為具有一些取決於淨應力的較佳特性。例如,可以將分層結構設計為平面的或非平面的。可以藉由變化其孔隙率及/或厚度來調整多孔層,以補償分層結構中的部份應力。在一些情況下,大部份應力可以被補償。具有可調多孔層的分層結構可以支持半導體元件的製造及處理技術,其技術取決於受結構中淨應力影響的層特性。結果,由於修飾來自可調多孔層誘發應力的特性,包括具有可調多孔層的分層結構的半導體元件可以具有改善的性能。The porous layer can be adjusted to counteract some of the expected stress from the deposited layer. Some non-limiting examples of stress include compression, tension, shear, torsion, and bending. In some cases, the porous layer can be adjusted to counteract most of the expected stresses. By counteracting the expected stress, the layered structure can be designed to have some preferred properties that depend on the net stress. For example, the hierarchical structure can be designed to be planar or non-planar. The porous layer can be tuned by varying its porosity and/or thickness to compensate for some of the stress in the layered structure. In some cases, most of the stress can be compensated. Hierarchical structures with tunable porous layers can support semiconductor device fabrication and processing techniques that depend on the layer properties that are affected by the net stress in the structure. As a result, semiconductor elements including layered structures with tunable porous layers may have improved performance due to the modification of properties of induced stress from tunable porous layers.

控制分層結構中的應力包括在起始材料層之上形成具有可調孔隙率及厚度的多孔層。起始材料層可以是基板。例如,起始材料層可以是矽(Si)基板。在一些實施方式中,多孔層由起始材料層的一部份形成。在這樣的實施方式中,起始材料及多孔層包括相同的第IV族(group IV)元素。例如,起始材料及多孔層都可以包括Si或由Si製成。多孔層可以從一部份起始材料使用任何合適的技術形成,像是電化學蝕刻(electrochemical etching)或陽極氧化(anodization)。Controlling the stress in the layered structure includes forming a porous layer with tunable porosity and thickness over the starting material layer. The starting material layer may be a substrate. For example, the starting material layer may be a silicon (Si) substrate. In some embodiments, the porous layer is formed from a portion of the starting material layer. In such embodiments, the starting material and the porous layer comprise the same group IV elements. For example, both the starting material and the porous layer may include or be made of Si. The porous layer can be formed from a portion of the starting material using any suitable technique, such as electrochemical etching or anodization.

在一些實施方式中,可調多孔層的孔隙率可以是均勻的。可替代地,多孔層的孔隙率可以是垂直漸變及/或水平漸變,這可以導致不同孔隙率的區域。例如,可調多孔層可以具有10%孔隙率的第一區域及30%孔隙率的第二區域。In some embodiments, the porosity of the tunable porous layer can be uniform. Alternatively, the porosity of the porous layer may be vertically graded and/or horizontally graded, which may result in regions of different porosity. For example, the tunable porous layer may have a first region of 10% porosity and a second region of 30% porosity.

控制分層結構中的應力可以包括調節多孔層的孔隙度或層厚度。例如,增加電化學蝕刻的持續時間會增加多孔層的孔隙率。替代地或額外地,調節在電化學蝕刻中施加的電流密度可以控制多孔層的厚度及孔隙度。在一些實施方式中,調整多孔層包括保持在可調多孔層中的晶體結構。晶體結構使得隨後可以在可調多孔層之上沉積或生長層。Controlling stress in the layered structure may include adjusting the porosity or layer thickness of the porous layer. For example, increasing the duration of electrochemical etching increases the porosity of the porous layer. Alternatively or additionally, adjusting the current density applied in the electrochemical etching can control the thickness and porosity of the porous layer. In some embodiments, tuning the porous layer includes maintaining a crystalline structure in the tunable porous layer. The crystal structure allows subsequent deposition or growth of layers on top of the tunable porous layer.

在一些實施方式中,使用多孔層控制分層結構中的應力包括在多孔層之範圍內沉積應力源材料。在不影響多孔層的結晶性之下沉積應力源材料。例如,應力源材料可以覆蓋多孔層之範圍內的孔隙。在一些實施方式中,應力源材料沉積在多孔層的一部份的範圍內。多孔層的一部份可以包括大部份多孔層。多孔層的一部份可以包括多孔層中的任何區域(例如,多孔層的表面附近的區域)。應力源材料可以使用任何合適的沉積技術來沉積。一些非限制性示例包括原子層沉積及任何類型的化學氣相沉積(例如,電漿化學氣相沉積)。In some embodiments, using the porous layer to control stress in the layered structure includes depositing a stressor material within the porous layer. The stressor material is deposited without affecting the crystallinity of the porous layer. For example, the stressor material may cover the pores within the confines of the porous layer. In some embodiments, the stressor material is deposited within a portion of the porous layer. A portion of the porous layer may include most of the porous layer. A portion of the porous layer may include any region in the porous layer (eg, a region near the surface of the porous layer). The stressor material can be deposited using any suitable deposition technique. Some non-limiting examples include atomic layer deposition and any type of chemical vapor deposition (eg, plasma chemical vapor deposition).

來自可調多孔層的誘發應力可以藉由在可調多孔層之範圍內沉積應力源材料進一步調整。壓力源材料可以修飾來自可調多孔層的誘發應力。例如,應力源材料可以增加來自可調多孔層的誘發應力。可以使用孔隙率及/或多孔層的層厚度來調整誘發之應力,以抗衡如前所述的預期應力。可以在任何時候調整感應應力(例如,當在多孔層上形成層時)。作為實施例,在晶圓破裂的情況下,破裂可能是由第一張應力引起的。誘發之應力可以是與第一張應力相對的第二張應力,以防止破裂。在此示例中,可以藉由調節多孔層的孔隙率來調整第二張應力,以補償全部或部份的第一張應力。The induced stress from the tunable porous layer can be further tuned by depositing stressor materials within the tunable porous layer. The stressor material can modify the induced stress from the tunable porous layer. For example, the stressor material can increase the induced stress from the tunable porous layer. The induced stress can be adjusted using the porosity and/or the layer thickness of the porous layer to counteract the expected stress as previously described. The induced stress can be adjusted at any time (eg, when forming a layer on a porous layer). As an example, in the case of wafer cracking, the cracking may be caused by the first tensile stress. The induced stress may be a second tensile stress opposite the first tensile stress to prevent cracking. In this example, the second tensile stress can be adjusted by adjusting the porosity of the porous layer to compensate for all or part of the first tensile stress.

應力源材料可以是具有與多孔層的材料不同的晶格間距的任何材料。例如,如果多孔層是多孔矽,應力源材料可以是(1)金屬氮化物(例如,氮化鋁(AlN)或氮化鎵(GaN)),或(2)包括矽成分的合金,其中矽成分可以是(a)碳化矽(SiC)或SiC同質異形體、(b)氧化矽(SiOX ),或(c)矽鍺(Si1-X GeX )。應力源材料可以基於晶格間距不同地修飾誘發之應力,從而允許基於應力源材料的選擇進行選擇,以控制分層結構中的應力。例如,可調多孔層之範圍內的應力源材料可以允許多孔層具有更寬的可調範圍以補償應力。The stressor material can be any material that has a different lattice spacing than the material of the porous layer. For example, if the porous layer is porous silicon, the stressor material can be (1) a metal nitride (eg, aluminum nitride (AlN) or gallium nitride (GaN)), or (2) an alloy including a silicon component, where silicon ingredient may be (a) silicon carbide (SiC) or SiC allomorphs, (b) silicon oxide (SiO X), or (c) silicon-germanium (Si 1-X Ge X) . The stressor material can modify the induced stress differently based on the lattice spacing, allowing selection based on the selection of the stressor material to control the stress in the layered structure. For example, tunable stressor materials within the porous layer may allow the porous layer to have a wider tunable range to compensate for stress.

如上所述,調整多孔層可以用於在起始材料中誘發初始彎曲,且控制分層結構中的淨應力。初始的晶圓彎曲度可以藉由沉積氧作為應力源材料,以氧化可調多孔層來進一步調整。氧化多孔層會在起始材料上造成應力,從而可能導致起始材料彎曲。在一些實施方式中,誘發的彎曲度與由可調多孔層之上的沉積層導致的曲率相反。例如,可以利用誘發的彎曲度將基板彎曲成凹形,以抵抗由半導體層的磊晶生長導致的預期的凸形彎曲。As discussed above, tuning the porous layer can be used to induce initial bending in the starting material and control the net stress in the layered structure. The initial wafer bow can be further tuned by depositing oxygen as a stressor material to oxidize the tunable porous layer. Oxidizing the porous layer can cause stress on the starting material, which can lead to bending of the starting material. In some embodiments, the induced curvature is the opposite of the curvature caused by the deposited layer over the tunable porous layer. For example, the induced curvature can be used to bend the substrate into a concave shape to resist the expected convex curvature caused by epitaxial growth of the semiconductor layer.

在一些實施方式中,在起始材料層之上形成多孔層包括在起始材料層的第一表面上形成多孔層。如上所述,可調多孔層可用於控制來自在多孔層之上形成的層(例如,磊晶層)的應力。該層可以直接形成在多孔層上。替代地,該層可以形成在與起始材料的第一表面相對的第二表面上的多孔層之上。在任一種配置中,可以調整可調多孔層以控制應力,如本揭露所述。In some embodiments, forming the porous layer over the starting material layer includes forming the porous layer on the first surface of the starting material layer. As described above, the tunable porous layer can be used to control stress from layers (eg, epitaxial layers) formed over the porous layer. This layer may be formed directly on the porous layer. Alternatively, the layer may be formed over a porous layer on a second surface opposite the first surface of the starting material. In either configuration, the tunable porous layer can be tuned to control stress, as described in this disclosure.

在一些實施方式中,在多孔層之上的沉積層包括與起始材料熱異質(thermally dissimilar)的材料。例如,在可調多孔層之上生長的磊晶層可以具有與起始材料不同的熱膨脹係數。在此示例中,當在高溫形成磊晶層時,不同的熱膨脹速率可以造成分層結構的非零淨應力。非零淨應力可以彎曲分層結構。可以調整多孔層以平衡從氧化多孔層之上沉積的層而引起的,或者是預期引起的應力。例如,可以調整多孔層以補償由於沉積層具有與起始材料熱異質的材料而導致的不同熱膨脹引起的應力。In some embodiments, the deposited layer over the porous layer includes a material that is thermally dissimilar to the starting material. For example, an epitaxial layer grown on top of the tunable porous layer may have a different coefficient of thermal expansion than the starting material. In this example, when the epitaxial layer is formed at high temperature, the different thermal expansion rates can cause non-zero net stress of the layered structure. Non-zero net stress can bend layered structures. The porous layer can be adjusted to balance the stress induced, or expected to induce, from the layer deposited over the oxidized porous layer. For example, the porous layer can be tuned to compensate for stress due to the different thermal expansion of the deposited layer having a material that is thermally heterogeneous to the starting material.

在一些實施方式中,調整多孔層以在分層結構中設定淨應力。如前所述,可以在多孔層上沉積層之前調整多孔層。額外地或替代地,當在多孔層上形成層之時,可以調整多孔層。在一些實施方式中,從調整多孔層誘發的彎曲度用於修飾在多孔層之上的沉積層的特性。例如,在多孔層之上進行微影圖案化期間的應力可以造成修飾分層結構中層的性質,像是使層表面移出焦點。在此示例中,多孔層的調整可以幫助維持用於微影製程的層表面的較佳性質,像是維持焦點在層表面上。In some embodiments, the porous layer is tuned to set the net stress in the layered structure. As previously mentioned, the porous layer may be conditioned prior to depositing the layer on the porous layer. Additionally or alternatively, the porous layer can be adjusted as the layer is formed on the porous layer. In some embodiments, the tortuosity induced from tuning the porous layer is used to modify the properties of the deposited layer over the porous layer. For example, stress during lithographic patterning over a porous layer can result in modifying the properties of the layers in the layered structure, such as moving the surface of the layer out of focus. In this example, the adjustment of the porous layer can help maintain better properties of the layer surface for the lithography process, such as maintaining focus on the layer surface.

如本揭露中所描述,分層結構中的應力藉由調整多孔層來補償。分層結構包括起始材料的層、在起始材料之上具有可調孔隙率及厚度的多孔層,以及在多孔層之上形成的層。多孔層保持結晶性以便支撐任何隨後沉積的層。分層結構可以包括沉積在多孔層之範圍內的應力源材料。可調多孔層及應力源材料在起始材料中誘發可控制的應力。應力源材料可以是具有與多孔層之材料不同的晶格間距的任何材料。與單獨的可調多孔層相比,應力源材料可以修飾誘發之應力,以更好地抗衡衡預期應力。As described in this disclosure, the stress in the layered structure is compensated by adjusting the porous layer. The layered structure includes a layer of starting material, a porous layer with adjustable porosity and thickness over the starting material, and a layer formed over the porous layer. The porous layer remains crystalline in order to support any subsequently deposited layers. The layered structure may include stressor material deposited within the porous layer. The tunable porous layer and stressor material induce controllable stress in the starting material. The stressor material can be any material that has a different lattice spacing than the material of the porous layer. The stressor material can modify the induced stress to better counteract the expected stress than the tunable porous layer alone.

在一些實施方式中,可調多孔層的一部分藉由在多孔層之範圍內沉積氧作為應力源材料而被氧化,以進一步調整淨應力。在一些情況下,可調多孔層的大多數被氧化。多孔層可以藉由變化多孔層的孔隙率及/或厚度來調整。在一些實施方式中,多孔層在起始材料層中誘發可調彎曲度。在這樣的實施方式中,誘發的彎曲度可以藉由變化多孔層的孔隙率及/或厚度調整。In some embodiments, a portion of the tunable porous layer is oxidized by depositing oxygen as a stressor material within the confines of the porous layer to further tune the net stress. In some cases, the majority of the tunable porous layer is oxidized. The porous layer can be adjusted by varying the porosity and/or thickness of the porous layer. In some embodiments, the porous layer induces tunable tortuosity in the starting material layer. In such embodiments, the induced tortuosity can be adjusted by varying the porosity and/or thickness of the porous layer.

在一些實施方式中,在可調多孔層之上形成的層是在可調多孔層之上磊晶生長的半導體層。例如,半導體層可以包括或者可以是氮化鎵(gallium nitride, GaN)。在另一個非限制性示例中,半導體層可以包括稀土(rare earth, RE)合金(例如,稀土元素的合金及氮化鋁 (aluminum nitride, AlN)。例如,半導體層可以包括氮化鈧鋁(scandium aluminum nitride, ScAlN)。In some embodiments, the layer formed over the tunable porous layer is a semiconductor layer epitaxially grown over the tunable porous layer. For example, the semiconductor layer may include or may be gallium nitride (GaN). In another non-limiting example, the semiconductor layer may include a rare earth (RE) alloy (eg, an alloy of rare earth elements and aluminum nitride (AlN). For example, the semiconductor layer may include scandium aluminum nitride ( scandium aluminum nitride, ScAlN).

使用本揭露中描述的任何技術,應力可以藉由調整分層結構中的可調多孔層來補償。應當注意,本揭露中描述的任何層可以使用適合的薄膜沉積技術或技術的組合來形成。一些非限制性示例包括化學氣相沉積(chemical vapor deposition),分子束磊晶(molecular beam epitaxy)及原子層沉積(atomic layer deposition)。Using any of the techniques described in this disclosure, stress can be compensated by adjusting the tunable porous layers in the layered structure. It should be noted that any of the layers described in this disclosure may be formed using suitable thin film deposition techniques or combinations of techniques. Some non-limiting examples include chemical vapor deposition, molecular beam epitaxy, and atomic layer deposition.

本揭露針對控制分層結構中的應力。本文介紹適合用於整合半導體元件的分層結構,以及用於控制應力及隨後調節分層結構中的層性質的技術。在一些實施方式中,此技術可以用於補償由於與基板熱異質的材料的沉積而導致的基板中應力。在本揭露的一些態樣中,所描述的技術使得能夠在半導體元件的後續處理及製造期間修飾取決於淨應力的層性質。The present disclosure is directed to controlling stress in hierarchical structures. This article describes layered structures suitable for integrating semiconductor components, as well as techniques for controlling stress and subsequently tuning the properties of layers in the layered structure. In some embodiments, this technique can be used to compensate for stresses in the substrate due to deposition of materials thermally heterogeneous to the substrate. In some aspects of the present disclosure, the described techniques enable modification of net stress dependent layer properties during subsequent processing and fabrication of semiconductor elements.

第1圖表示根據本揭露之標的的一些實施方式的具有可控應力的分層結構100的示例。分層結構100包括起始材料102,在起始材料102之上形成的可調多孔層104,以及沉積在可調多孔層104之上的層106。可調多孔層104在分層結構100中被氧化。FIG. 1 illustrates an example of a layered structure 100 with controllable stress in accordance with some implementations of the presently disclosed subject matter. The layered structure 100 includes a starting material 102 , a tunable porous layer 104 formed over the starting material 102 , and a layer 106 deposited over the tunable porous layer 104 . The tunable porous layer 104 is oxidized in the layered structure 100 .

在分層結構100中,已經調整多孔層104以平衡分層結構100中的淨應力。在一些實施方式中,調整多孔層104以平衡淨應力導致修飾起始材料102及/或層106的層性質。在分層結構100中,調整多孔層會導致起始材料102在沉積層106之後保持平坦。這樣的分層結構可以支持取決於平坦基板的半導體元件製造及處理技術(例如,微影圖案化或磊晶生長)。In the layered structure 100 , the porous layer 104 has been adjusted to balance the net stress in the layered structure 100 . In some embodiments, tuning the porous layer 104 to balance the net stress results in modifying the layer properties of the starting material 102 and/or the layer 106 . In the layered structure 100, adjusting the porous layer causes the starting material 102 to remain flat after the layer 106 is deposited. Such layered structures can support semiconductor device fabrication and processing techniques (eg, lithographic patterning or epitaxial growth) that depend on flat substrates.

第2圖係根據本揭露之標的的一些實施方式的具有可控應力的分層結構200及210的示例。例如,具有磊晶半導體層216的分層結構210可以是平衡分層結構100中淨應力的結果。分層結構200表示在起始材料202之上形成多孔層204。FIG. 2 is an example of layered structures 200 and 210 with controllable stress in accordance with some implementations of the presently disclosed subject matter. For example, the layered structure 210 with the epitaxial semiconductor layer 216 may be the result of balancing the net stress in the layered structure 100 . Layered structure 200 represents the formation of porous layer 204 over starting material 202 .

多孔層204形成在起始材料202之上。在一些實施方式中,多孔層204由起始材料202的一部分形成。例如,起始材料可以是矽(Si)基板。在此示例中,可以使用任何合適的技術或技術組合(像是電化學蝕刻或陽極氧化)從矽基板的表面部分形成多孔層。在這樣的實施方式中,多孔層204及起始材料202將以相同的元素組成開始。例如,起始材料202可以是矽,導致多孔矽層204的形成。起始材料202,以及因此多孔層204也可以是其他第IV族材料,或其他更一般地材料。Porous layer 204 is formed over starting material 202 . In some embodiments, porous layer 204 is formed from a portion of starting material 202 . For example, the starting material may be a silicon (Si) substrate. In this example, the porous layer may be formed from the surface portion of the silicon substrate using any suitable technique or combination of techniques, such as electrochemical etching or anodization. In such an embodiment, the porous layer 204 and the starting material 202 would start with the same elemental composition. For example, the starting material 202 may be silicon, resulting in the formation of the porous silicon layer 204 . The starting material 202, and thus the porous layer 204, may also be other Group IV materials, or other materials more generally.

在一些實施方式中,可調多孔層的孔隙率可以是均勻的。替代地,多孔層的孔隙率可以是垂直漸變及/或水平漸變,這可以導致不同孔隙率的區域。例如,可調多孔層可以具有10%孔隙率的第一區域及30%孔隙率的第二區域。In some embodiments, the porosity of the tunable porous layer can be uniform. Alternatively, the porosity of the porous layer may be graded vertically and/or horizontally, which may result in regions of different porosity. For example, the tunable porous layer may have a first region of 10% porosity and a second region of 30% porosity.

分層結構210表示在起始材料202之上的可調多孔層214。在此示例中的多孔層214已經被氧化。氧化多孔層214可以是在氧化製程或另一合適的製程之後的多孔層204。可以利用任何合適的技術或技術的組合(例如,熱氧化,濕式氧化等)來執行這個氧化多孔層的製程。例如,可以使用熱氧化來氧化多孔矽層以形成多孔二氧化矽(SiO2 )層。Layered structure 210 represents a tunable porous layer 214 over starting material 202 . The porous layer 214 in this example has been oxidized. The oxidized porous layer 214 may be the porous layer 204 after an oxidation process or another suitable process. This process of oxidizing the porous layer may be performed using any suitable technique or combination of techniques (eg, thermal oxidation, wet oxidation, etc.). For example, a thermal oxidation of the porous silicon oxide layer to form a porous silicon dioxide (SiO 2) layer.

在一些實施方式中,設定可調多孔層的淨應力以修飾起始材料層的層性質。在分層結構210中,多孔層214在起始材料202中誘發彎曲度。誘發的彎曲度可以藉由變化氧化多孔層214的孔隙率及/或厚度來調整,以補償分層結構210中的預期應力(例如,由於預期將來在高溫下沉積磊晶層),從而抵消預期的完成結構的不良彎曲。例如,基板可以使用誘發的彎曲度彎曲成凹面,以抵抗由於在氧化多孔層之上的半導體層生長磊晶而引起的預期凸面曲線。In some embodiments, the net stress of the tunable porous layer is set to modify the layer properties of the starting material layer. In layered structure 210 , porous layer 214 induces tortuosity in starting material 202 . The induced tortuosity can be adjusted by varying the porosity and/or thickness of the oxidized porous layer 214 to compensate for anticipated stresses in the layered structure 210 (eg, due to anticipated future deposition of epitaxial layers at elevated temperatures), thereby counteracting the anticipated of poor bending of the finished structure. For example, the substrate may be curved concavely using induced tortuosity to resist the expected convexity profile due to epitaxial growth of the semiconductor layer over the oxidized porous layer.

多孔層214具有一個或多個可調參數(例如,孔隙率、厚度、氧化)。例如,多孔層可以具有介於0.1-100微米之間的厚度。在一些實施方式中,控制層狀結構中的應力包括調整多孔層的孔隙率及厚度。例如,增加電化學蝕刻的持續時間會增加多孔層的孔隙率。作為另一示例,在電化學蝕刻期間調節施加的電流密度可以控制多孔層的厚度及孔隙度。Porous layer 214 has one or more adjustable parameters (eg, porosity, thickness, oxidation). For example, the porous layer may have a thickness between 0.1-100 microns. In some embodiments, controlling the stress in the layered structure includes adjusting the porosity and thickness of the porous layer. For example, increasing the duration of electrochemical etching increases the porosity of the porous layer. As another example, adjusting the applied current density during electrochemical etching can control the thickness and porosity of the porous layer.

分層結構210具有在氧化多孔層214及起始材料202之上的磊晶半導體層216。調整多孔層214以抵消藉由在分層結構210中的磊晶半導體層216的沉積引入的應力。一個結果是分層結構210保持平面。Layered structure 210 has epitaxial semiconductor layer 216 over oxidized porous layer 214 and starting material 202 . The porous layer 214 is tuned to counteract the stress introduced by the deposition of the epitaxial semiconductor layer 216 in the layered structure 210 . One result is that the layered structure 210 remains flat.

在一些實施方式中,調整多孔層包括誘發彎曲度。在這樣的實施方式中,誘發彎曲度可以包括將多孔層氧化(例如,形成氧化多孔層214)。在一些實施方式中,調整多孔層包括調整多孔層的孔隙率及/或厚度。可以調整多孔層以抗衡來自稍後要沉積的沉積層的預期應力的一部分。在某些情況下,可以調整多孔層以抗衡預期應力的大部分。藉由抗衡預期應力,可以將分層結構設計為具有取決於淨應力的一些較佳性質。在一些實施方式中,調整多孔層以誘發彎曲度會造成起始材料(例如,起始材料202)的彎曲,以反抗來自隨後沉積的層的預期彎曲。藉由調整誘發的彎曲度以具有與磊晶半導體層216的彎曲相反的彎曲,在磊晶層216的沉積之後可以形成具有零淨應力的分層結構210。在一些實施方式中,可調多孔層維持晶體結構。晶體結構可以使隨後的磊晶能夠生長。例如,氧化多孔層214具有晶體結構以在分層結構210中支撐磊晶層216。在一些實施方案中,起始材料及可調多孔層共享相同的元素組成(例如,第IV族元素)。例如,起始材料202及氧化多孔層214都可以包括矽或實質上由矽製造。In some embodiments, adjusting the porous layer includes inducing tortuosity. In such embodiments, inducing tortuosity may include oxidizing the porous layer (eg, forming oxidized porous layer 214). In some embodiments, adjusting the porous layer includes adjusting the porosity and/or thickness of the porous layer. The porous layer can be adjusted to counteract a portion of the expected stress from the deposited layer to be deposited later. In some cases, the porous layer can be adjusted to counteract a substantial portion of the expected stress. By counteracting the expected stress, the layered structure can be designed to have some preferred properties that depend on the net stress. In some embodiments, tuning the porous layer to induce tortuosity causes bending of the starting material (eg, starting material 202 ) to oppose the expected bending from subsequently deposited layers. By adjusting the induced curvature to have a curvature opposite that of the epitaxial semiconductor layer 216 , a layered structure 210 with zero net stress may be formed after deposition of the epitaxial layer 216 . In some embodiments, the tunable porous layer maintains a crystalline structure. The crystal structure can enable subsequent epitaxial growth. For example, the oxidized porous layer 214 has a crystal structure to support the epitaxial layer 216 in the layered structure 210 . In some embodiments, the starting material and the tunable porous layer share the same elemental composition (eg, Group IV elements). For example, both the starting material 202 and the oxidized porous layer 214 may include or be fabricated substantially from silicon.

在一些實施方式中,在多孔層之上的沉積層包括與起始材料熱異質的材料。例如,在可調多孔層214之上生長的磊晶層216可以具有與起始材料202不同的熱膨脹係數。在此示例中,當在高溫下形成磊晶層216時,不同的熱膨脹速率可以對分層結構210造成非零淨應力。非零淨應力可以彎曲分層結構。可以調整多孔層以平衡應力,其應力是由於在多孔層之上的層的沉積而引起的,或者是預期引起的。例如,可以調整來自氧化多孔層214的誘發彎曲度,以補償由於磊晶層216具有與起始材料202熱異質的材料而由不同的熱膨脹引起的應力。In some embodiments, the deposited layer over the porous layer includes a material that is thermally heterogeneous to the starting material. For example, epitaxial layer 216 grown over tunable porous layer 214 may have a different coefficient of thermal expansion than starting material 202 . In this example, the different rates of thermal expansion can cause non-zero net stress to layered structure 210 when epitaxial layer 216 is formed at high temperatures. Non-zero net stress can bend layered structures. The porous layer can be adjusted to balance the stress caused by, or expected to be caused by, the deposition of layers on top of the porous layer. For example, the induced tortuosity from the oxidized porous layer 214 can be adjusted to compensate for the stress caused by the different thermal expansion due to the epitaxial layer 216 having a thermally heterogeneous material from the starting material 202 .

在一些實施方式中,調節多孔層以在分層結構中設定淨應力。如前所述,可以在多孔層之上沉積層之前調整多孔層。額外地或替代地,當在氧化多孔層之上形成層時,可以調整多孔層。在一些實施方式中,從調整多孔層誘發的彎曲度被用來修飾可調多孔層之上沉積層的特性。例如,在多孔層之上的微影圖案化期間的應力可能會修飾分層結構中的層性質,像是將層表面移出焦點。在此示例中,多孔層的調整可以幫助維持用於微影製程的層表面的較佳性質,像是維持層表面的聚焦。In some embodiments, the porous layer is adjusted to set a net stress in the layered structure. As previously mentioned, the porous layer can be adjusted prior to depositing the layer over the porous layer. Additionally or alternatively, when a layer is formed over the oxidized porous layer, the porous layer can be adjusted. In some embodiments, the tortuosity induced from the tunable porous layer is used to modify the properties of the layer deposited over the tunable porous layer. For example, stress during lithographic patterning over a porous layer may modify layer properties in the layered structure, like moving the layer surface out of focus. In this example, the tuning of the porous layer can help maintain better properties of the layer surface for the lithography process, such as maintaining the focus of the layer surface.

第3圖及第4圖表示根據本揭露之標的的一些實施方式的由特定材料製成的分層結構300和400的示例。分層結構300具有矽基板302、在基板302之上的氧化多孔矽層304,以及在氧化多孔矽層304之上的氮化鎵(GaN)層306。分層結構400具有矽基板402,在基板402之上的氧化多孔矽層404,以及在氧化多孔矽層404之上的氮化鈧鋁(ScAlN)層406。半導體層306及406可以使用任何適當的技術(例如,化學氣相沉積)來形成。在一些實施方式中,可以在多孔層之上沉積半導體層之前在可調多孔層之上形成一個或多個中間層。例如,中間層可以形成在多孔矽層404之上,以改善沉積氮化鈧鋁層406的支撐。Figures 3 and 4 represent examples of layered structures 300 and 400 made of certain materials, according to some embodiments of the presently disclosed subject matter. The layered structure 300 has a silicon substrate 302 , an oxidized porous silicon layer 304 over the substrate 302 , and a gallium nitride (GaN) layer 306 over the oxidized porous silicon layer 304 . The layered structure 400 has a silicon substrate 402 , an oxidized porous silicon layer 404 over the substrate 402 , and a scandium aluminum nitride (ScAlN) layer 406 over the oxidized porous silicon layer 404 . Semiconductor layers 306 and 406 may be formed using any suitable technique (eg, chemical vapor deposition). In some embodiments, one or more intermediate layers may be formed over the tunable porous layer prior to depositing the semiconductor layer over the porous layer. For example, an intermediate layer may be formed over the porous silicon layer 404 to improve support for depositing the scandium aluminum nitride layer 406 .

在一些實施方式中,調整多孔層以平衡由於在可調多孔層之上形成的層而引起的分層結構的淨應力。例如,多孔層304及404可能已被不同地調整以支撐它們各自的半導體層306及406。調整多孔層可以使熱異質材料能夠磊晶沉積。例如,氮化鎵及矽具有不同的熱膨脹係數。在高溫下氮化鎵層306的磊晶沉積可能導致矽基板302在室溫下的彎曲。氧化多孔矽層304可以藉由調節孔隙率及/或厚度來調整。例如,可以將層304調整為具有15微米的厚度及20%的孔隙率,以平衡層狀結構300中的淨應力,且使氮化鎵層306的表面在室溫下保持平面。可以進一步調整多孔層以補償由隨後半導體元件處理所引起的應力。In some embodiments, the porous layer is tuned to balance the net stress of the layered structure due to layers formed on top of the tunable porous layer. For example, porous layers 304 and 404 may have been adjusted differently to support their respective semiconductor layers 306 and 406 . Tuning the porous layer can enable epitaxial deposition of thermally heterogeneous materials. For example, gallium nitride and silicon have different thermal expansion coefficients. Epitaxial deposition of the gallium nitride layer 306 at high temperatures may cause bowing of the silicon substrate 302 at room temperature. The oxidized porous silicon layer 304 can be adjusted by adjusting the porosity and/or thickness. For example, layer 304 can be adjusted to have a thickness of 15 microns and a porosity of 20% to balance the net stress in layered structure 300 and keep the surface of gallium nitride layer 306 planar at room temperature. The porous layer can be further tuned to compensate for stresses induced by subsequent processing of the semiconductor element.

第5圖表示根據本揭露之標的的一些實施方式的由具有可變孔隙率、厚度及氧化的可調多孔層引起的曲率的比較曲線圖500及510。曲線圖500表示在孔隙率為20%,並且變化層厚度及氧化多孔層中彎曲度的曲線圖。曲線502表示與具有相同孔隙率及厚度的未氧化多孔層比較,氧化多孔層的彎曲度曲率的趨勢。曲線圖510表示在孔隙率為30%,並且變化層厚度及氧化多孔層中的彎曲度的曲率。曲線512表示與具有相同孔隙率及厚度的未氧化多孔層比較,氧化多孔層的彎曲度曲率的趨勢。特別地,具有相同孔隙率及厚度的氧化多孔層的曲率(例如,曲線502及512)大於未氧化多孔層的曲率。第5圖顯示在未氧化多孔層及氧化多孔層兩者中的可測量誘發彎曲度,但是氧化多孔層的誘發彎曲度具有適於改善分層結構中應力控制的可調特性。FIG. 5 shows comparative graphs 500 and 510 of the curvature induced by a tunable porous layer having variable porosity, thickness, and oxidation, according to some embodiments of the presently disclosed subject matter. Graph 500 represents a graph of tortuosity in an oxidized porous layer at 20% porosity and varying layer thicknesses. Curve 502 represents the trend of tortuosity curvature of an oxidized porous layer compared to an unoxidized porous layer of the same porosity and thickness. Graph 510 represents the curvature at 30% porosity and varying layer thickness and tortuosity in the oxidized porous layer. Curve 512 represents the trend of tortuosity curvature of an oxidized porous layer compared to an unoxidized porous layer of the same porosity and thickness. In particular, the curvature of the oxidized porous layer (eg, curves 502 and 512 ) having the same porosity and thickness is greater than the curvature of the unoxidized porous layer. Figure 5 shows measurable induced tortuosity in both the unoxidized porous layer and the oxidized porous layer, but the induced tortuosity of the oxidized porous layer has tunable properties suitable for improving stress control in the layered structure.

第6圖表示根據本揭露之標的的一些實施方式的用於控制分層結構中應力的製程600的流程圖。製程600從步驟602開始。在步驟602,在起始材料之上形成具有可調孔隙率及厚度的多孔層。例如,在起始材料202之上形成多孔層204。在步驟604處,多孔層被氧化。在步驟606處,藉由多孔層的氧化誘發彎曲度。FIG. 6 illustrates a flow diagram of a process 600 for controlling stress in a layered structure in accordance with some implementations of the presently disclosed subject matter. Process 600 begins at step 602 . At step 602, a porous layer with adjustable porosity and thickness is formed over the starting material. For example, a porous layer 204 is formed over the starting material 202 . At step 604, the porous layer is oxidized. At step 606, tortuosity is induced by oxidation of the porous layer.

在步驟608處,使用磊晶或其他合適的技術在氧化多孔層之上形成層。在步驟610處,藉由變化氧化多孔層的孔隙率及/或厚度,調整起始材料中的誘發彎曲度以設定分層結構中的淨應力。由製程700引起的一些非限制性示例可以包括分層結構100至分層結構300。例如,在氧化多孔層214之上磊晶生長半導體層216。在此示例中,調整誘發的彎曲度以平衡淨應力,保持平坦的半導體層216。在此示例中,多孔層214可能已經被調整以修飾層216的其他特性。替代地,在步驟604至步驟606處,為了步驟608處預期的沉積,可以調整未氧化多孔層以修飾層的性質。At step 608, a layer is formed over the oxidized porous layer using epitaxy or other suitable techniques. At step 610, by varying the porosity and/or thickness of the oxidized porous layer, the induced tortuosity in the starting material is adjusted to set the net stress in the layered structure. Some non-limiting examples resulting from process 700 may include layered structure 100 through layered structure 300 . For example, a semiconductor layer 216 is epitaxially grown over the oxidized porous layer 214 . In this example, the induced curvature is adjusted to balance the net stress, keeping the semiconductor layer 216 flat. In this example, porous layer 214 may have been adjusted to modify other properties of layer 216 . Alternatively, at steps 604 to 606, for the desired deposition at step 608, the unoxidized porous layer may be adjusted to modify the properties of the layer.

第7圖表示根據本揭露之標的的一些實施方式的具有可控制的應力的分層結構700的示例。分層結構700具有起始材料702、位於起始材料702之上的多孔層704、沉積在多孔層704之範圍內的應力源706,以及沉積在多孔層704上的層708。應當注意,在多孔層704的區域中表示了應力源706,以在應力源706及多孔層704之間進行區分,並且類似地表示在第8圖至第13圖中。然而,如前所述,應力源材料可以在全部多孔層之範圍內,或在多孔層的一部分之範圍內。多孔層704之範圍內的應力源706可用於修飾分層結構700中誘發之應力。應力源706沉積在多孔層704之範圍內而不影響多孔層704的結晶性(crystallinity)。可以使用任何合適的沉積技術來沉積應力源706。一些非限制性示例包括原子層沉積及任何類型的化學氣相沉積(例如,電漿化學氣相沉積)。FIG. 7 illustrates an example of a layered structure 700 with controllable stress in accordance with some implementations of the presently disclosed subject matter. Layered structure 700 has a starting material 702 , a porous layer 704 overlying the starting material 702 , a stressor 706 deposited within the porous layer 704 , and a layer 708 deposited on the porous layer 704 . It should be noted that the stressor 706 is represented in the region of the porous layer 704 to distinguish between the stressor 706 and the porous layer 704, and is similarly represented in FIGS. 8-13. However, as previously discussed, the stressor material may be within the entire porous layer, or within a portion of the porous layer. The stressor 706 within the porous layer 704 can be used to modify the stress induced in the layered structure 700 . The stressor 706 is deposited within the confines of the porous layer 704 without affecting the crystallinity of the porous layer 704 . The stressor 706 may be deposited using any suitable deposition technique. Some non-limiting examples include atomic layer deposition and any type of chemical vapor deposition (eg, plasma chemical vapor deposition).

應力源706沉積在多孔層704的一部分的範圍內。在一些實施方式中,該部分包括多孔層的大部分並且在多孔層的任何區域之範圍內(例如,多孔層的表面附近的區域)。應力源706可以是與多孔層704的材料不同的晶格間距的材料。在一些實施方式中,多孔層704及應力源706可以是氧化多孔層104,其中應力源將是氧。The stressor 706 is deposited within a portion of the porous layer 704 . In some embodiments, the portion includes a majority of the porous layer and is within any region of the porous layer (eg, regions near the surface of the porous layer). The stressor 706 may be a material of a different lattice spacing than the material of the porous layer 704 . In some embodiments, porous layer 704 and stressor 706 may be oxidized porous layer 104, where the stressor will be oxygen.

在分層結構700中,多孔層704及應力源706在起始材料702中誘發應力。可以使用孔隙度及多孔層704的層厚度調整誘發之應力,以抗衡來自沉積層708的預期應力。可以在任何時候調整誘發之應力(例如,在形成沉積層708之後)。In layered structure 700 , porous layer 704 and stressor 706 induce stress in starting material 702 . The induced stress can be adjusted using the porosity and layer thickness of the porous layer 704 to counteract the expected stress from the deposited layer 708 . The induced stress can be adjusted at any time (eg, after the deposition layer 708 is formed).

第8圖及第9圖表示根據本揭露之標的的一些實施方式的具有可控制的應力的分層結構800至分層結構900的示例。分層結構800和900可以具有相似的層,但是有不同的配置。FIGS. 8 and 9 illustrate examples of layered structures 800 to 900 with controllable stress in accordance with some implementations of the presently disclosed subject matter. Hierarchies 800 and 900 may have similar layers, but different configurations.

分層結構800具有在起始材料801之上的多孔層802、在多孔層802的表面附近的區域的範圍之內的應力源804,以及在多孔層802之上的沉積層806。分層結構800中的這種配置可以將誘發之應力集中在靠近應力的預期區域(例如,由於在多孔層802之上的沉積層806而容易發生晶圓破裂的區域)。The layered structure 800 has a porous layer 802 over the starting material 801 , a stressor 804 within the confines of an area near the surface of the porous layer 802 , and a deposition layer 806 over the porous layer 802 . Such a configuration in layered structure 800 can concentrate induced stress near areas where the stress is expected (eg, areas prone to wafer cracking due to deposition layer 806 over porous layer 802).

分層結構900具有在起始材料901的第一表面上有應力源904的多孔層902,以及在與起始材料901的第一表面相反的第二表面上的多孔層之上形成的層906。分層結構900中的這種配置可以改善由於多孔層902而引起的誘發之應力的調整效果(例如,以促進基底及磊晶層的晶片接合)。Layered structure 900 has a porous layer 902 with stressors 904 on a first surface of starting material 901 and a layer 906 formed over the porous layer on a second surface opposite the first surface of starting material 901 . This configuration in the layered structure 900 can improve the tuning effect of the induced stress due to the porous layer 902 (eg, to facilitate wafer bonding of the substrate and epitaxial layers).

第10圖至第13圖表示根據本揭露之標的的一些實施方式的由特定材料製成的分層結構1000至分層結構1300的示例。為了簡單起見,以一種配置表示分層結構1000至分層結構1300。然而,分層結構1000至分層結構1300可以在分層結構的任何構造中,且每一層可以包括如本揭露所描述的任何合適的材料。分層結構1000具有矽基板1002、在基板1002上方的多孔矽層1004、SiC應力源1006,以及在多孔矽層1004之上的GaN層1008。分層結構1100具有矽基板1102、在基板1102上方的多孔矽層1104、SiC應力源1106,以及在多孔矽層1104之上的ScAlN層1108。分層結構1200具有矽基板1202、在基板1202之上的多孔矽層1204、AlN應力源1206、以及在多孔矽層1204之上的GaN層1208。分層結構1300具有矽基板1302,在基板1302之上的多孔矽層1304,AlN應力源1306,以及在多孔矽層1304之上的ScAlN層1308。在一些實施方式中,可以在多孔層之上沉積一個層之前,在可調多孔層之上形成一個或更多中間層(intermediate layer)。例如,可以在多孔矽層1104之上形成中介層(interlayer)以改善對ScAlN層1108的沉積的支撐。FIGS. 10-13 illustrate examples of layered structures 1000-1300 made of specific materials in accordance with some embodiments of the presently disclosed subject matter. For simplicity, hierarchies 1000 through 1300 are shown in one configuration. However, layered structures 1000-1300 may be in any configuration of layered structures, and each layer may include any suitable material as described in this disclosure. The layered structure 1000 has a silicon substrate 1002 , a porous silicon layer 1004 over the substrate 1002 , a SiC stressor 1006 , and a GaN layer 1008 over the porous silicon layer 1004 . The layered structure 1100 has a silicon substrate 1102 , a porous silicon layer 1104 over the substrate 1102 , a SiC stressor 1106 , and a ScAlN layer 1108 over the porous silicon layer 1104 . The layered structure 1200 has a silicon substrate 1202 , a porous silicon layer 1204 over the substrate 1202 , an AlN stressor 1206 , and a GaN layer 1208 over the porous silicon layer 1204 . The layered structure 1300 has a silicon substrate 1302, a porous silicon layer 1304 over the substrate 1302, an AlN stressor 1306, and a ScAlN layer 1308 over the porous silicon layer 1304. In some embodiments, one or more intermediate layers may be formed over the tunable porous layer before depositing a layer over the porous layer. For example, an interlayer may be formed over the porous silicon layer 1104 to improve support for the deposition of the ScAlN layer 1108 .

第14圖表示根據本揭露之標的的一些實施方式的用於控制分層結構中的應力的製程1400的流程圖。製程1400從步驟1402開始。在步驟1402,在起始材料上形成可調多孔層,可調多孔層具有可調的孔隙率及可調的厚度。在步驟1404,在起始材料中誘發應力,其中誘發應力包括在可調多孔層之範圍內沉積應力源材料。誘發之應力可以包括壓應力及/或張應力。在步驟1406,在可調多孔層之上形成層。 在步驟1408,調整來自應力源材料誘發之應力,以控制在分層結構中的應力。調整誘發之應力包括調整可調多孔層的孔隙率及/或厚度。FIG. 14 illustrates a flow diagram of a process 1400 for controlling stress in a layered structure in accordance with some implementations of the presently disclosed subject matter. Process 1400 begins at step 1402 . At step 1402, a tunable porous layer is formed on the starting material, the tunable porous layer having tunable porosity and tunable thickness. At step 1404, stress is induced in the starting material, wherein inducing the stress includes depositing a stressor material within the tunable porous layer. The induced stress may include compressive stress and/or tensile stress. At step 1406, a layer is formed over the tunable porous layer. At step 1408, the stress induced from the stressor material is adjusted to control the stress in the layered structure. Adjusting the induced stress includes adjusting the porosity and/or thickness of the tunable porous layer.

本文描述的生長及/或沉積可以使用一個或多個化學氣相沉積(chemical vapor deposition, CVD)、金屬有機化學氣相沉積(metalorganic chemical vapor deposition, MOCVD)、有機金屬氣相磊晶(organometallic vapor phase epitaxy, OMVPE)、原子層沉積(atomic layer deposition, ALD)、分子束磊晶(molecular beam epitaxy, MBE)、鹵化物氣相磊晶(halide vapor phase epitaxy, HVPE)、脈衝雷射沉積(pulsed laser deposition, PLD)、電漿化學氣相沉積(plasma chemical vapor deposition, PVD),及/或物理氣相沉積(physical vapor deposition, PVD)執行。The growth and/or deposition described herein may use one or more of chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), organometallic vapor deposition phase epitaxy (OMVPE), atomic layer deposition (ALD), molecular beam epitaxy (MBE), halide vapor phase epitaxy (HVPE), pulsed laser deposition (pulsed laser deposition) laser deposition (PLD), plasma chemical vapor deposition (PVD), and/or physical vapor deposition (PVD) are performed.

如本文所描述,一層指的是覆蓋表面的實質上均勻的厚度的材料。一層可以是連續的或不連續的(亦即,在材料的區域之間具有間隙)。例如,一層可以完全或部分覆蓋表面,或被分割成離散區域,其共同定義這個層(亦即,使用選擇性區域磊晶形成的區域)。As described herein, a layer refers to a substantially uniform thickness of material covering a surface. A layer may be continuous or discontinuous (ie, with gaps between regions of material). For example, a layer may fully or partially cover the surface, or be divided into discrete regions that collectively define the layer (ie, regions formed using selective area epitaxy).

單片積體(monolithically-integrated)的意思為形成在一基板表面上,通常是藉由在表面上沉積一層。Monolithically-integrated means formed on the surface of a substrate, usually by depositing a layer on the surface.

「位於…上」的意思是「存在於」底部材料或底層之上。這底層可包括中間層,如過渡層,以確保合適的表面。例如,如果一種材料被描述為「位於基板上」,這意味著(1)該材料與基板有親密接觸;或(2)該材料與位於基板上的一個或多個過渡層接觸。"On" means "present on" the bottom material or substrate. This bottom layer may include intermediate layers, such as transition layers, to ensure a suitable surface. For example, if a material is described as being "on a substrate," that means (1) the material is in intimate contact with the substrate; or (2) the material is in contact with one or more transition layers that are on the substrate.

單晶是指實質上只包含一種單位晶格的晶體結構。然而,單晶層可能會出現一些晶體缺陷,如堆積缺陷、錯位或其他常見的晶體缺陷。A single crystal refers to a crystal structure containing substantially only one kind of unit lattice. However, a single crystal layer may exhibit some crystal defects such as stacking defects, dislocations or other common crystal defects.

單晶域(domain)是指晶體結構基本上只包含一種單位晶格的結構和基本上只包含一種單位晶格的取向。換句話說,單域晶體沒有雙相晶域或反相晶域。A single crystal domain refers to a structure in which the crystal structure contains substantially only one unit cell and an orientation in which substantially only one unit cell is contained. In other words, single-domain crystals do not have dual-phase or anti-phase domains.

單相(phase)是指同時為單晶和單晶域結構的晶體結構。A single phase refers to a crystal structure that is both a single crystal and a single crystal domain structure.

基板的意思是形成在沉積層上的材料。例示性的基板包括但不限於:塊狀氮化鎵晶圓、塊狀碳化矽晶圓、塊狀藍寶石晶圓、塊狀鍺晶圓、塊狀矽晶圓,其中晶圓包含均質厚度的單晶體材料;複合晶圓,例如絕緣層上矽晶圓,絕緣層上矽晶圓包含位在二氧化矽層上的矽層,其中二氧化矽層位在塊狀矽操作晶圓 (bulk silicon handle wafer) 上;或多孔鍺、氧化物及矽上的鍺、矽上的鍺、圖案化的鍺、鍺上鍺錫,及/或類似物;或用作在其上或其中形成元件的基礎層的任何其他材料。此種適合作為基板層及塊狀基板的其他材料之實例,包括但不限於氧化鋁、砷化鎵、磷化銦、氧化矽、二氧化矽、硼矽酸鹽玻璃,以及和派熱克斯玻璃 (pyrex)。一基板可具有單一塊狀晶圓或複數個子層。具體而言,一基板 (例如,矽、鍺等等) 可以包括多個不連續的多孔部分。複數個不連續的多孔部分可具有不同的密度,且可水平分佈或垂直分層。Substrate means the material formed on the deposited layer. Exemplary substrates include, but are not limited to, bulk gallium nitride wafers, bulk silicon carbide wafers, bulk sapphire wafers, bulk germanium wafers, bulk silicon wafers, wherein the wafers comprise single crystals of uniform thickness Materials; composite wafers, such as a silicon-on-insulator wafer, a silicon-on-insulator wafer comprising a silicon layer on a silicon dioxide layer on a bulk silicon handle wafer ); or porous germanium, oxides and germanium-on-silicon, germanium-on-silicon, patterned germanium, germanium-tin-on-germanium, and/or the like; or used as a base layer on or in which devices are formed any other material. Examples of such other materials suitable as substrate layers and bulk substrates include, but are not limited to, aluminum oxide, gallium arsenide, indium phosphide, silicon oxide, silicon dioxide, borosilicate glass, and Pyrex Glass (pyrex). A substrate can have a single bulk wafer or multiple sub-layers. Specifically, a substrate (eg, silicon, germanium, etc.) may include a plurality of discrete porous portions. The plurality of discrete porous sections can have different densities and can be distributed horizontally or layered vertically.

半導體是指導電率介於絕緣體及大多數金屬的導電率之間的任何固體物質。示例的半導體層由矽組成。半導體層可包括單塊晶圓或複數個子層。具體而言,矽半導體層可包括多個不連續的多孔部分。複數個不連續多孔部分,可具有不同的密度,且可以水平分佈或垂直分層。A semiconductor is any solid substance whose conductivity is between that of an insulator and that of most metals. An exemplary semiconductor layer consists of silicon. The semiconductor layer may comprise a single wafer or a plurality of sub-layers. Specifically, the silicon semiconductor layer may include a plurality of discontinuous porous portions. A plurality of discontinuous porous sections, which may have different densities, may be distributed horizontally or layered vertically.

描述及/或描繪第一層為「配置在第二層上」、「在第二層上」、「形成在第二層上」或「在第二層上方」,第一層即可為鄰近第二層,或有一或更多個中間層可在第一層和第二層之間。描述和/或描繪第一層為「直接在第二層或一基板上」或「直接在第二層或一基板之上方」,第一層即可為鄰近第二層或基板,而沒有中間層出現,亦即並無機率會因第一層和第二層或基板的混合,而有中間合金層的形成。另外,描述及/或描繪第一層為「在第二層或一基板上」、「在第二層或一基板之上方」、「直接在第二層或一基板上」或「直接在第二層或一基板之上方」,可包括整個第二層及基板,或第二層或基板的一部份。Describes and/or depicts a first layer as "disposed on," "on," "formed on," or "over," a first layer may be adjacent The second layer, or one or more intermediate layers may be between the first layer and the second layer. Describe and/or depict a first layer as "directly on a second layer or a substrate" or "directly over a second layer or a substrate", the first layer may be adjacent to the second layer or substrate without intervening Layers appear, that is, there is no chance that an intermediate alloy layer will be formed due to the mixing of the first and second layers or the substrate. Additionally, describing and/or depicting the first layer as "on a second layer or a substrate", "over a second layer or a substrate", "directly on a second layer or a substrate" or "directly on a second layer or a substrate" "Above two layers or a substrate" may include the entire second layer and substrate, or a portion of the second layer or substrate.

在層生長期間,基板放置在基板架上,所以頂面或上表面是基板或層距離基板支架最遠之表面,而底面或下表面是基板或層距離基板支架最近之表面。這裡描繪和描述之任何結構都可以是更大結構的一部分,且在這些結構的上面和/或下面可有附加的層。為了清楚起見,這裡的圖可以省略這些額外的層,儘管這些額外的層可以是揭露結構的一部分。此外,所描述的結構可以以單位重複之,即使這種重複沒有在圖中描繪出來。During layer growth, the substrate is placed on a substrate holder, so the top or top surface is the surface of the substrate or layer furthest from the substrate holder and the bottom or bottom surface is the surface of the substrate or layer closest to the substrate holder. Any structures depicted and described herein may be part of larger structures, and there may be additional layers above and/or below those structures. For the sake of clarity, the figures here may omit these additional layers, although the additional layers may be part of the disclosed structure. Furthermore, the described structures may be repeated in units even if such repetition is not depicted in the figures.

如本文及之後的申請專利範圍中所使用的,解釋「 A及B之一」應意指「A或B」。As used herein and in the following claims, the interpretation "one of A and B" shall mean "A or B."

從以上描述可明顯看出,在不脫離本揭露的範圍的情況下,各種技術可以用於實現本文描述的概念。所述實施例在所有方面都應被認為是說明性的,而非限制性的。另當理解的是,本文所述的技術和結構不限於本文描述的特定示例,而是可以在不脫離本揭露範圍的情況下,以其他示例實現。相似地,儘管操作以特定順序繪製在圖式中,但不應理解為要求以所示的特定順序或連續的順序來執行操作,或者執行所有列出的操作,以達成預期的結果。It will be apparent from the above description that various techniques may be used to implement the concepts described herein without departing from the scope of the present disclosure. The examples are to be considered in all respects as illustrative and not restrictive. It is also to be understood that the techniques and structures described herein are not limited to the specific examples described herein, but may be implemented in other examples without departing from the scope of the present disclosure. Similarly, although operations are depicted in the figures in a particular order, this should not be construed as requiring that the operations be performed in the particular order shown, or sequential order, or that all listed operations be performed, to achieve the desired results.

100、200、210、300、400、700、800、900、1000、1100、1200、1300:分層結構 102、202、702、801、901:起始材料 104、204、704、802、902:多孔層 106、708、806、906:沉積層 214:氧化多孔層 216:磊晶半導體層 302、402、1002、1102、1202、1302:矽基版 304、404:氧化多孔矽層 306:氮化鎵層 406:氮化鈧鋁層 500、510:曲線圖 502、512:曲線 600、1400:流程圖 602、604、606、608、610、1402、1404、1406、1408:步驟 706、804、904:應力源 1004、1104、1204、1304:多孔矽層 1006、1106:SiC應力源 1206、1306:AlN應力源 1008、1208:GaN層 1108、1308:ScAlN層100, 200, 210, 300, 400, 700, 800, 900, 1000, 1100, 1200, 1300: Hierarchical structure 102, 202, 702, 801, 901: Starting materials 104, 204, 704, 802, 902: Porous layer 106, 708, 806, 906: Deposited layers 214: oxidized porous layer 216: Epitaxial semiconductor layer 302, 402, 1002, 1102, 1202, 1302: Silicon version 304, 404: Oxidized porous silicon layer 306: GaN layer 406: scandium aluminum nitride layer 500, 510: Graph 502, 512: Curve 600, 1400: Flowchart 602, 604, 606, 608, 610, 1402, 1404, 1406, 1408: Steps 706, 804, 904: Stressors 1004, 1104, 1204, 1304: Porous silicon layer 1006, 1106: SiC stressor 1206, 1306: AlN stressor 1008, 1208: GaN layer 1108, 1308: ScAlN layer

本揭露根據一個或更多的各種實施方式,參考以下圖式詳細描述。提供圖式只用於說明的目的,且僅描繪典型或示例性實施方式。提供這些圖式是為了促進對本文揭露的概念的理解,且不應被認為是對這些概念的廣泛性,範圍或適用性的限制。應當注意,為了清楚和易於說明,這些附圖不一定按比例製作。 第1圖表示根據本揭露之標的的一些實施方式的具有可控應力的分層結構的示例; 第2圖表示根據本揭露之標的的一些實施方式的具有可控應力的分層結構的示例; 第3圖及第4圖表示根據本揭露之標的的一些實施方式的由特定材料製成的分層結構的示例; 第5圖表示根據本揭露之標的的一些實施方式的由具有可變孔隙率、厚度及氧化的可調多孔層引起的曲率的比較曲線圖表500及510; 第6圖表示根據本揭露之標的的一些實施方式的用於控制分層結構中的應力的製程的流程圖; 第7圖表示根據本揭露之標的的一些實施方式的具有可控制的應力的分層結構的示例; 第8圖及第9圖表示根據本揭露之標的的一些實施方式的具有可控制的應力的分層結構的示例; 第10圖至第13圖表示根據本揭露之標的的一些實施方式的由特定材料製成的分層結構的示例;以及 第14圖表示根據本揭露之標的的一些實施方式的用於控制分層結構中的應力的製程的流程圖。The present disclosure, according to one or more various embodiments, is described in detail with reference to the following drawings. The drawings are provided for purposes of illustration only and depict only typical or exemplary embodiments. These drawings are provided to facilitate an understanding of the concepts disclosed herein and should not be considered to limit the breadth, scope, or applicability of these concepts. It should be noted that for clarity and ease of illustration, the drawings have not necessarily been made to scale. FIG. 1 represents an example of a layered structure with controllable stress in accordance with some embodiments of the presently disclosed subject matter; FIG. 2 represents an example of a layered structure with controllable stress in accordance with some embodiments of the presently disclosed subject matter; FIGS. 3 and 4 represent examples of layered structures made of specific materials in accordance with some embodiments of the presently disclosed subject matter; FIG. 5 represents comparative graphs 500 and 510 of curvature caused by a tunable porous layer with variable porosity, thickness, and oxidation, according to some embodiments of the presently disclosed subject matter; FIG. 6 represents a flow diagram of a process for controlling stress in a layered structure in accordance with some embodiments of the presently disclosed subject matter; FIG. 7 represents an example of a layered structure with controllable stress in accordance with some embodiments of the presently disclosed subject matter; FIGS. 8 and 9 represent examples of layered structures with controllable stress in accordance with some embodiments of the presently disclosed subject matter; FIGS. 10-13 represent examples of layered structures made of particular materials in accordance with some embodiments of the presently disclosed subject matter; and 14 represents a flow diagram of a process for controlling stress in a layered structure in accordance with some embodiments of the presently disclosed subject matter.

1400:流程圖1400: Flowchart

1402、1204、1206、1208:步驟1402, 1204, 1206, 1208: Steps

Claims (20)

一種在分層結構中控制應力之方法,該方法包含: 形成一多孔層在一起始材料之上,該多孔層具有可調的一孔隙率及可調的一厚度; 在該起始材料中誘發一應力,在該起始材料中誘發該應力包含: 在該多孔層之範圍沉積一應力源材料;以及 調整在該起始材料中誘發之該應力,調整誘發之該應力包含: 調整該多孔層之該孔隙率或該厚度中的至少一個。A method of controlling stress in a layered structure comprising: forming a porous layer on the starting material, the porous layer has an adjustable porosity and an adjustable thickness; inducing a stress in the starting material, inducing the stress in the starting material comprising: depositing a stressor material within the porous layer; and Adjusting the stress induced in the starting material, adjusting the induced stress comprises: At least one of the porosity or the thickness of the porous layer is adjusted. 如請求項1所述之方法,其中誘發該應力包含誘發壓應力或張應力中的至少一個。The method of claim 1, wherein inducing the stress comprises inducing at least one of a compressive stress or a tensile stress. 如請求項1所述之方法,其中在該多孔層之範圍內沉積該應力源材料包含沉積一材料作為該應力源材料,該材料具有與該多孔層之相異材料的不同晶格間距。The method of claim 1, wherein depositing the stressor material within the porous layer comprises depositing a material as the stressor material, the material having a different lattice spacing from a dissimilar material of the porous layer. 如請求項1所述之方法,其中在該起始材料之上形成該多孔層包含在該起始材料之一第一表面上形成該多孔層,且其中該方法進一步包含在該多孔層之上形成一磊晶層,該磊晶層在與該第一表面相對之該起始材料之一第二表面上。The method of claim 1, wherein forming the porous layer over the starting material comprises forming the porous layer on a first surface of the starting material, and wherein the method further comprises overlying the porous layer An epitaxial layer is formed on a second surface of the starting material opposite the first surface. 如請求項1所述之方法,其中調整誘發之該應力包含補償該應力,該應力由該起始材料的熱膨脹係數,以及在該起始材料之上形成的一磊晶層的熱膨脹係數之間的一差異引起。The method of claim 1, wherein adjusting the induced stress comprises compensating for the stress between the coefficient of thermal expansion of the starting material and the coefficient of thermal expansion of an epitaxial layer formed over the starting material caused by a difference. 如請求項1所述之方法,其中調整誘發之該應力包含設定在該分層結構中之一淨應力,以修飾形成在該多孔層之上的一磊晶層之特性。The method of claim 1, wherein adjusting the induced stress comprises setting a net stress in the layered structure to modify properties of an epitaxial layer formed over the porous layer. 如請求項1所述之方法,其中在該多孔層之範圍內沉積該應力源材料包含在不影響該多孔層結晶性之下,沉積該應力源材料。The method of claim 1, wherein depositing the stressor material within the porous layer comprises depositing the stressor material without affecting the crystallinity of the porous layer. 如請求項1所述之方法,其中在該起始材料之上形成該多孔層包含從該起始材料之一部份形成該多孔層。The method of claim 1, wherein forming the porous layer over the starting material comprises forming the porous layer from a portion of the starting material. 如請求項1所述之方法,其中沉積該應力源材料包含使用原子層沉積(atomic layer deposition, ALD)進行沉積。The method of claim 1, wherein depositing the stressor material comprises depositing using atomic layer deposition (ALD). 如請求項1所述之方法,其中在該多孔層之範圍內沉積該應力源材料包含沉積(a)包含矽之一合金及(b)一金屬氮化物之一。The method of claim 1, wherein depositing the stressor material within the porous layer comprises depositing (a) an alloy comprising silicon and (b) one of a metal nitride. 一種具有可調整應力之分層結構,包含: 一起始材料; 一多孔層,該多孔層位在該起始材料之上,其中該多孔層之一孔隙率及一厚度為可調整的; 一應力源材料,該應力源材料位在該多孔層之範圍內,其中該多孔層及該應力源材料在該起始材料中誘發一應力,且使用該多孔層之該孔隙率或該厚度中的至少一個調整誘發之該應力;以及 一磊晶層,該磊晶層位在該多孔層之上。A layered structure with adjustable stress consisting of: a starting material; a porous layer on the starting material, wherein a porosity and a thickness of the porous layer are adjustable; a stressor material located within the porous layer, wherein the porous layer and the stressor material induce a stress in the starting material and use the porosity or the thickness of the porous layer the stress induced by at least one adjustment of ; and an epitaxial layer, the epitaxial layer is located on the porous layer. 如請求項11所述之分層結構,其中誘發之該應力包含壓應力或張應力中的至少一個。The layered structure of claim 11, wherein the induced stress comprises at least one of compressive stress or tensile stress. 如請求項11所述之分層結構,其中在該多孔層之範圍內之該應力源材料具有與該多孔層之相異材料不同之一晶格間距。The layered structure of claim 11, wherein the stressor material within the porous layer has a different lattice spacing than dissimilar materials of the porous layer. 如請求項11所述之分層結構,其中該多孔層形成在該起始材料之一第一表面上,且該磊晶層形成在與該第一表面相對之該起始材料之一第二表面上。The layered structure of claim 11, wherein the porous layer is formed on a first surface of the starting material, and the epitaxial layer is formed on a second one of the starting materials opposite the first surface on the surface. 如請求項11所述之分層結構,其中該起始材料及該磊晶層具有不同的熱膨脹係數。The layered structure of claim 11, wherein the starting material and the epitaxial layer have different coefficients of thermal expansion. 如請求項11所述之分層結構,其中調整誘發之該應力,以在該分層結構中設定一淨應力,以修正在該多孔層之上的該磊晶層之特性。The layered structure of claim 11, wherein the induced stress is adjusted to set a net stress in the layered structure to modify properties of the epitaxial layer over the porous layer. 如請求項11所述之分層結構,其中該多孔層維持結晶體。The layered structure of claim 11, wherein the porous layer remains crystalline. 如請求項11所述之分層結構,其中該起始材料及該多孔層包含相同的第IV族元素。The layered structure of claim 11, wherein the starting material and the porous layer comprise the same Group IV element. 如請求項11所述之分層結構,其中該多孔層之範圍內之該應力源材料包含(a)包含矽之一合金及(b)一金屬氮化物之一。The layered structure of claim 11, wherein the stressor material within the porous layer comprises (a) an alloy comprising silicon and (b) one of a metal nitride. 如請求項11所述之分層結構,其中該磊晶層包含一稀土合金。The layered structure of claim 11, wherein the epitaxial layer comprises a rare earth alloy.
TW109131247A 2019-06-06 2020-09-11 Tunable stress compensation in layered structures TW202147403A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962858279P 2019-06-06 2019-06-06
PCT/EP2020/065719 WO2020245423A1 (en) 2019-06-06 2020-06-05 Tunable stress compensation in layered structures
WOPCT/EP2020/065719 2020-06-05

Publications (1)

Publication Number Publication Date
TW202147403A true TW202147403A (en) 2021-12-16

Family

ID=71094299

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109119077A TW202113928A (en) 2019-06-06 2020-06-05 Tunable stress compensation in layered structures
TW109131247A TW202147403A (en) 2019-06-06 2020-09-11 Tunable stress compensation in layered structures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109119077A TW202113928A (en) 2019-06-06 2020-06-05 Tunable stress compensation in layered structures

Country Status (2)

Country Link
TW (2) TW202113928A (en)
WO (2) WO2020245423A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202102999D0 (en) * 2021-03-03 2021-04-14 Poro Tech Ltd Method of controlling bow in a semiconductor structure,semiconductour structure and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103598A (en) * 1995-07-13 2000-08-15 Canon Kabushiki Kaisha Process for producing semiconductor substrate
FR2887370B1 (en) * 2005-06-17 2007-12-28 Commissariat Energie Atomique METHOD FOR MANUFACTURING ISOLATED TRANSISTOR WITH CONSTRAINED CHANNEL
US20150035123A1 (en) * 2013-08-01 2015-02-05 International Business Machines Corporation Curvature compensated substrate and method of forming same
WO2016209282A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Gan devices on engineered silicon substrates
US10347591B2 (en) * 2016-09-16 2019-07-09 Ii-Vi Delaware, Inc. Metallic, tunable thin film stress compensation for epitaxial wafers

Also Published As

Publication number Publication date
WO2020245423A1 (en) 2020-12-10
WO2021244769A1 (en) 2021-12-09
TW202113928A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP7217781B2 (en) Layer structure for RF filters fabricated with rare earth oxides and epitaxial aluminum nitride
TWI728130B (en) EPITAXIAL A1N/cREO STRUCTURE FOR RF FILTER APPLICATIONS
JP4907256B2 (en) Semiconductor heterostructure and method for forming a semiconductor heterostructure
US6146457A (en) Thermal mismatch compensation to produce free standing substrates by epitaxial deposition
JP4493646B2 (en) Buffer structure for modifying a silicon substrate for subsequent target material deposition and method of forming the buffer structure
TWI822908B (en) Iii-n to rare earth transition in a semiconductor structure
TW202147403A (en) Tunable stress compensation in layered structures
US11355340B2 (en) Semiconductor material having tunable permittivity and tunable thermal conductivity
US9356094B2 (en) Method for making a semi-conducting substrate located on an insulation layer
TW202113169A (en) Integrated epitaxial metal electrodes for modified devices
US11611001B2 (en) Localized strain fields in epitaxial layer over cREO
WO2021192551A1 (en) Method for forming semiconductor layer
US20220149802A1 (en) High purity piezoelectric thin film and method of manufacturing element using same thin film
TW202105461A (en) Integrated epitaxial metal electrodes
TW202249299A (en) Method of controlling bow in a semiconductor structure, semiconductor structure and semiconductor device
TW202107707A (en) Dielectric passivation for layered structures
Inoki et al. Lateral Epitaxial Overgrowth of GaSb on GaAs and GaSb Substrates