TW202147025A - 用於預測隨機貢獻者之方法 - Google Patents

用於預測隨機貢獻者之方法 Download PDF

Info

Publication number
TW202147025A
TW202147025A TW110117440A TW110117440A TW202147025A TW 202147025 A TW202147025 A TW 202147025A TW 110117440 A TW110117440 A TW 110117440A TW 110117440 A TW110117440 A TW 110117440A TW 202147025 A TW202147025 A TW 202147025A
Authority
TW
Taiwan
Prior art keywords
error
values
error contribution
data
contribution
Prior art date
Application number
TW110117440A
Other languages
English (en)
Other versions
TWI784519B (zh
Inventor
奎索思托摩斯 巴提斯塔奇斯
馬克辛 帕薩瑞可
李維拉 貝納多 安德列斯 奧亞孫
亞伯拉罕 史拉奇特
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20174556.9A external-priority patent/EP3910418A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202147025A publication Critical patent/TW202147025A/zh
Application granted granted Critical
Publication of TWI784519B publication Critical patent/TWI784519B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706837Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

本文所描述為一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的方法。該方法包括:獲得具有多個資料集之訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵之一誤差貢獻的誤差貢獻值,且其中每一資料集係與識別該對應資料集之該誤差貢獻之一源的一實際分類相關聯;及基於該訓練資料來訓練一機器學習模型以預測該等資料集中之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差的一成本函數減小。

Description

用於預測隨機貢獻者之方法
本文中之描述係關於微影設備及程序,且更特定言之係關於用以判定印刷圖案(例如,晶圓上之光罩或抗蝕劑層中)的隨機變化之工具,該等隨機變化可用以偵測缺陷(例如,光罩或晶圓上的缺陷)以及最佳化圖案化程序,諸如光罩最佳化及源最佳化。
微影設備為將所要圖案施加至基板之目標部分上的機器。微影設備可用於(例如)積體電路(IC)之製造中。舉例而言,智慧電話中之IC晶片可小達個人的拇指,且可包含20億以上的電晶體。製造IC係一複雜且耗時之程序,其中電路組件係在不同層中且包括數百個單獨的步驟。甚至一個步驟中之誤差皆具有導致最終IC具有問題的可能,且可引起裝置失效。高程序良率及高晶圓產出量可受缺陷之存在影響,尤其當需要操作員干預以用於檢視缺陷時。檢測工具(諸如,光學或電子顯微鏡(SEM))用於缺陷之識別中以有助於維持高產量及低成本。
在一實施例中,提供一種包含指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵之一誤差貢獻源的方法。該方法包括:獲得具有多個資料集之訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵之一誤差貢獻的誤差貢獻值,且其中每一資料集係與識別該對應資料集之該誤差貢獻之一源的一實際分類相關聯;及基於該訓練資料來訓練一機器學習模型以預測該資料集之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差的一成本函數減小。
在一實施例中,提供一種包含指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行一種用於判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的方法。該方法包括:輸入一指定資料集至一機器學習模型,該指定資料集具有表示對特徵的來自該多個源中之一者之一誤差貢獻的誤差貢獻值;及執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為該指定資料集中該等誤差貢獻值的該誤差貢獻源。
此外,在實施例中,提供一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的方法。該方法包括:獲得具有多個資料集之訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵之一誤差貢獻的誤差貢獻值,且其中每一資料集係與識別該對應資料集之該誤差貢獻之一源的一實際分類相關聯;及基於該訓練資料來訓練一機器學習模型以預測該資料集之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差的一成本函數減小。
此外,在實施例中,提供一種用於判定對印刷於一基板上之一圖案之多個特徵之一誤差貢獻源的方法。該方法包括:輸入一指定資料集至一機器學習模型,該指定資料集具有表示對特徵的來自該多個源中之一者之一誤差貢獻的誤差貢獻值;及執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為該指定資料集中該等誤差貢獻值的該誤差貢獻源。
此外,在實施例中,提供一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的設備。該設備包括儲存一指令集之一記憶體;及至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一種方法:獲得具有多個資料集之訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵之一誤差貢獻的誤差貢獻值,且其中每一資料集係與識別該對應資料集之該誤差貢獻之一源的一實際分類相關聯;及基於該訓練資料訓練一機器學習模型以預測該資料集之一參考資料集的一分類,使得判定該參考資料集之預測分類與實際分類之間的差的一成本函數減小。
此外,在實施例中,提供一種包含指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之一特徵的誤差貢獻之方法。該方法包括:獲得具有多個資料集之訓練資料,其中該資料集包括第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的第一誤差貢獻資料;及基於訓練資料來訓練一機器學習模型以預測第一資料集的誤差貢獻資料,使得指示預測誤差貢獻資料與第一誤差貢獻資料之間的差的成本函數減小。
此外,在實施例中,提供一種包含指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行一種用於判定誤差貢獻資料的方法,該誤差貢獻資料包含來自多個源之對待印刷於基板上之圖案之特徵的誤差貢獻。該方法包括接收待印刷於一第一基板上之指定圖案之特徵集合的影像資料;輸入該影像資料至一機器學習模型;及執行該機器學習模型以判定包含來自多個源之對特徵集合之誤差貢獻的誤差貢獻資料。
此外,在實施例中,提供一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之特徵的誤差貢獻之方法。該方法包括:獲得具有多個資料集之訓練資料,其中該資料集包括第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的第一誤差貢獻資料;及基於訓練資料來訓練一機器學習模型以預測第一資料集的誤差貢獻資料,使得指示預測誤差貢獻資料與第一誤差貢獻資料之間的差的成本函數減小。
此外,在實施例中,提供一種用於判定誤差貢獻資料的方法,該誤差貢獻資料包含來自多個源之對印刷於一基板上之一圖案之一特徵的誤差貢獻。該方法包括接收待印刷於一第一基板上之指定圖案之特徵集合的影像資料;輸入該影像資料至一機器學習模型;及執行該機器學習模型以判定包含來自多個源之對特徵集合之誤差貢獻的誤差貢獻資料。
此外,在實施例中,提供一種用於訓練一機器學習模型以判定印刷於一基板上之一圖案之一特徵的誤差貢獻之設備。該設備包括儲存一指令集之一記憶體;及至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一種方法:獲得具有多個資料集之訓練資料,其中資料集包括第一資料集,該第一資料集具有(a)印刷於一基板上之一圖案之一或多個特徵的第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的第一誤差貢獻;及基於該訓練資料訓練一機器學習模型以預測該第一資料集之預測誤差貢獻資料,使得指示預測誤差貢獻資料與第一誤差貢獻資料之間的差的一成本函數減小。
此外,在實施例中,提供一種用於判定誤差貢獻資料的設備,該誤差貢獻資料包含來自多個源之對印刷於一基板上之一圖案之一特徵的誤差貢獻。該設備包括儲存一指令集的記憶體;及至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一種方法:接收待印刷於第一基板上之指定圖案之一組特徵的影像資料;輸入該影像資料至一機器學習模型;及執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含來自多個源之對該特徵集合的誤差貢獻。
此外,在一實施例中,提供一種電腦程式產品,其包含上面記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦系統執行時實施前述方法。
微影設備為將所要圖案施加至基板之目標部分上的機器。將所要圖案轉印至基板上之此程序被稱作圖案化程序。圖案化程序可包括用以將圖案自圖案化裝置(諸如,光罩)轉印至基板的圖案化步驟。此外,可接著存在一或多個相關圖案處理步驟,諸如藉由顯影設備進行的抗蝕劑顯影、使用烘烤工具烘烤基板、使用蝕刻設備將圖案蝕刻至基板上等等。各種變化(例如,歸因於檢測工具、光罩或抗蝕劑中任一者的隨機變化、誤差或雜訊)可潛在地限制半導體大規模製造(high volume manufacturing;HVM)的微影實施。為了表徵、理解及判定此類變化,行業需要一種用以針對多種設計圖案量測此等變化的可信方法。
一些實施例使用獨立分量分析(ICA)方法導出隨機變化。在ICA方法中,多個特徵之量測值資料使用多個感測器獲得。舉例而言,三個量測值資料集合使用三個不同感測器獲得,且此等三個量測值資料集合作為三個信號輸入至ICA方法,該ICA方法分解三個輸入信號以獲得對應於來自三個源,諸如光罩、抗蝕劑及諸如掃描電子顯微鏡(SEM)之檢測工具的誤差貢獻之三個輸出信號。然而,在一些狀況下,ICA方法可能亦不能判定哪一輸出信號對應於來自哪一源的誤差貢獻,此是因為來自各種源的誤差貢獻可為類似的,且因此ICA方法可能不能在其之間區分。
本發明之一些實施例識別誤差貢獻值之給定信號的誤差貢獻源。機器學習(ML)模型經訓練以區分雷子各種源的誤差貢獻,且經訓練ML模型用以判定給定信號的分類(例如,誤差貢獻源)。
雖然ICA方法可用以自多個源判定誤差貢獻,但ICA方法藉由如下假設來表徵:誤差貢獻係來自不同源的誤差之線性混合體。在一些實施例中,額外雜訊源,例如除了使用ICA判定之彼等雜訊外的來自源的雜訊可存在,且若此等雜訊源在使用ICA方法時並未被移除,則藉由ICA方法判定之誤差貢獻可能並非準確的。因此,ICA方法可能藉由以上假設來約束。本發明之實施例實施ML模型以自一組源判定誤差貢獻。舉例而言,ML模型使用各種特徵及與彼等特徵相關聯的誤差貢獻量測值訓練以預測針對給定特徵之來自該組源的誤差貢獻。用於訓練ML模型之誤差貢獻兩側可使用數個方法來獲得,該等方法並不受如下假設約束:誤差貢獻係來自該組源的誤差之線性混合體。為了預測,特徵(例如,接觸孔)之影像作為輸入提供至ML模型,且ML模型預測針對輸入特徵之來自各種源的誤差貢獻。藉由基於使用並未藉由誤差貢獻係該組源之線性混合體的假設約束之方法來判定的誤差貢獻來訓練ML模型,藉由ML模型預測之誤差貢獻資料可能不受額外雜訊源的存在影響,藉此改良判定誤差貢獻上的準確性。
作為簡要介紹,圖1說明例示性微影投影設備10A。
儘管在本文中可特定地參考IC之製造,但應明確地理解,本文中之描述具有許多其他可能應用。舉例而言,該等實施例可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。熟習此項技術者將瞭解,在此類替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被視為可分別與更一般之術語「光罩」、「基板」及「目標部分」互換。
在本文檔中,術語「輻射」及「射束」用於涵蓋所有類型的電磁輻射,包括紫外線幅射(例如,具有為365、248、193、157或126 nm之波長)及EUV (極紫外線輻射,例如具有在5至20 nm範圍內之波長)。
如本文中所使用之術語「最佳化(optimizing/optimization)」意謂:調整微影投影設備,使得微影之結果或程序具有更理想特性,諸如,設計佈局在基板上的投影之較高準確度、較大程序窗等等。
另外,微影投影設備可屬於具有兩個或更多個基板台(或兩個或更多個圖案化裝置台)之類型。在此等「多載物台」裝置中,可並行地使用額外台,或可在一或多個台上進行預備步驟,同時將一或多個其他台用於曝光。舉例而言,以引用之方式併入本文中之US 5,969,441中描述雙載物台微影投影設備。
上文所提及之圖案化裝置包含或可形成設計佈局。可利用電腦輔助設計(computer-aided design;CAD)程式來產生設計佈局,此程序常常被稱作電子設計自動化(electronic design automation;EDA)。大多數CAD程式遵循一預定設計規則集合,以便產生功能設計佈局/圖案化裝置。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義電路裝置(諸如閘、電容器等等)之間的空間容許度。以便確保該等電路裝置或線彼此不會以不理想方式相互作用。設計規則限制通常稱作「臨界尺寸(CD)。」可將電路之臨界尺寸界定為線或孔之最小寬度,或兩條線或兩個孔之間的最小空間。因此,CD判定經設計裝置之總大小及密度。當然,積體電路製造中之目標中之一者係(經由圖案化裝置)在基板上如實地再生原始電路設計。
本文中所使用之術語「光罩」或「圖案化裝置」可被廣泛地解譯為係指可用以向入射輻射射束賦予經圖案化橫截面之通用圖案化裝置,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此上下文中,亦可使用術語「光閥」。除經典光罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化裝置之實例亦包括: -可程式化鏡面陣列。此裝置之實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此設備所隱含之基本原理為(例如):反射表面之經定址區域將入射輻射反射為繞射輻射,而未經定址區域將入射輻射反射為非繞射輻射。使用適當濾光片,可自經反射射束濾除該非繞射輻射,從而之後僅留下繞射輻射;以此方式,射束變得根據矩陣可定址表面之定址圖案而圖案化。可使用合適電子構件來執行所需矩陣定址。可例如自以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號搜集到關於此類鏡面陣列之更多資訊。 -可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此構造之一實例。
主要組件為:輻射源12A,其可為深紫外準分子雷射源或包括極紫外線(EUV)源及照明光學件之其他類型源(如上文所論述,微影投影設備自身不必具有輻射源)、界定部分同調性(表示為西格瑪)且可包括塑形來自源12A之輻射的光學件14A、16Aa及16Ab的照明光學件;圖案化裝置14A;及透射光學件16Ac,其將圖案化裝置之圖案之影像投影至基板平面22A上。投影光學件之光瞳平面處之可調整濾光片或孔徑20A可限定照射於基板平面22A上之射束角度之範圍,其中最大可能角度定義投影光學件之數值孔徑NA=sin(Θmax )。
在系統之最佳化程序中,可將該系統之優值(figure of merit)表示為成本函數。最佳化程序歸結為找到使成本函數最小化的系統之參數(設計變數)集合之程序。成本函數取決於最佳化之目標而可具有任何合適形式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之預期值(例如,理想值)之偏差的加權均方根(RMS);成本函數亦可為此等偏差之最大值(亦即,最差偏差)。本文之術語「評估點」應被廣泛地解譯為包括系統之任何特性。歸因於系統之實施之實務性,系統之設計變數可限於有限範圍或可相互相依。在微影投影設備之狀況下,約束常常與硬體之物理屬性及特性(諸如可調諧範圍,或圖案化裝置可製造性設計規則)相關聯,且評估點可包括基板上之抗蝕劑影像上的實體點,以及諸如劑量及焦點之非物理特性。
在微影投影設備中,源提供照明(亦即,光);投影光學件經由圖案化裝置而對照明進行導向及塑形,且將照明導向至基板上。此處,術語「投影光學件」被廣泛地定義為包括可變更輻射射束之波前的任何光學組件。舉例而言,投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為在基板位準處之輻射強度分佈。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以在其中作為潛伏「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑層中之抗蝕劑的溶解度之空間分佈。可使用抗蝕劑模型以自空中影像演算抗蝕劑影像,可在揭示內容之全文據此以引用方式併入的共同讓渡之美國專利申請案第12/315,849號中找到此情形之實例。抗蝕劑模型僅係關於抗蝕劑層之屬性(例如,在曝光、PEB及顯影期間發生之化學程序之效應)。微影投影設備之光學屬性(例如,源、圖案化裝置及投影光學件之屬性)指明空中影像。由於可改變用於微影投影設備中之圖案化裝置,所以需要使圖案化裝置之光學屬性與至少包括源及投影光學件的微影投影設備之其餘部分之光學屬性分離。
圖2中說明用於模擬微影投影設備中之微影的例示性流程圖。源模型31表示源之光學特性(包括輻射強度分佈或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件引起的對輻射強度分佈或相位分佈之改變)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局33引起的輻射強度分佈或相位分佈之改變),該設計佈局為在圖案化裝置上或由圖案化裝置形成之特徵之配置的表示。可自設計佈局模型35、投影光學件模型32及設計佈局模型35來模擬空中影像36。可使用抗蝕劑模型37自空中影像36模擬抗蝕劑影像38。微影之模擬可(例如)預測抗蝕劑影像中之輪廓及CD。
更具體言之,應注意,源模型31可表示源之光學特性,該等光學特性包括但不限於NA均方偏差(σ)設定,以及任何特定照明源形狀(例如,離軸輻射源,諸如,環形、四極及偶極等等)。投影光學件模型32可表示投影光學件之光學特性,該等光學特性包括像差、失真、折射率、實體大小、實體尺寸等等。設計佈局模型35亦可表示實體圖案化裝置之物理屬性,如(例如)全文以引用方式併入之美國專利第7,587,704號中所描述。模擬之目標係準確地預測例如邊緣置放、空中影像強度斜率及CD,可接著將該等邊緣置放、空中影像強度斜率及CD與預期設計進行比較。預期設計通常被定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計佈局。
自此設計佈局,可識別被稱作「剪輯」之一或多個部分。在實施例中,提取剪輯集合,其表示設計佈局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。如熟習此項技術者將瞭解,此等圖案或剪輯表示設計之小部分(例如,電路、晶胞或圖案),且該等剪輯尤其表示需要特定關注或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可類似或具有臨界特徵係藉由體驗而識別(包括由客戶提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的類似行為。剪輯通常含有一或多個測試圖案或量規圖案。
可由客戶基於設計佈局中要求特定影像最佳化之已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,初始較大剪輯集合可能藉由使用識別臨界特徵區域之某種自動化(諸如,機器視覺)方法或手動方法自整個設計佈局提取。
圖案化程序(例如,抗蝕劑程序)之隨機變化由於每毫焦耳劑量「少數」光子與較佳低劑量程序之組合(例如,在減小特徵之電位及曝光劑量規格方面)潛在地限制半導體大規模製造(例如,HVM)之EUV微影實施,此情形又影響圖案化程序之產品良率或晶圓產出率或兩者。在一實施例中,抗蝕劑層之隨機變化可以由例如極端條件下的以下各者描述之不同故障模式顯現:線寬粗糙度(LWR)、線邊緣粗糙度(LER)、局部CD非均一性、閉合的孔或溝槽或虛線。此等隨機變化影響且限制有成效的大規模製造(HVM)。為了表徵、理解及預測隨機變化,行業需要一種用以針對多種設計圖案量測此等變化的可信方法。
量測隨機變化之現有方法涉及用於不同特徵的不同量測技術。舉例而言,在一個方向(例如,x或y)上量測線/空間,可在兩個方向(例如,x及y)上量測印刷於基板上之接觸孔或接觸孔圖案陣列。作為量測之一實例,圖案量測為線寬粗糙度(LWR) (一個方向性量測之實例),且重複密集觸點陣列量測為局部CD均一性(LCDU) (兩個方向性量測之實例)。各種隨機貢獻者引起特徵之LWR/LCDU上的變化。
為了控制、減少及預測隨機貢獻者,半導體行業需要一種用以準確地量測隨機貢獻者之穩健解決方案。當前,行業針對線量測LWR且針對重複觸點陣列量測LCDU以估計隨機貢獻者。此外,此等量測僅集中於圖案層級(例如,每圖案一個數目)而非其中出現熱點之邊緣點層級(例如,沿著圖案之輪廓線的點)。
在實施例中,諸如掃描電子顯微鏡(SEM)之度量衡工具用以表徵與所要圖案相關聯的隨機貢獻者。在由SEM工具俘獲之SEM影像資料中,雜訊嵌入於其中。在實施例中,SEM影像可經分析以判定特徵之CD (例如,接觸孔之CD)、為CD自CD分佈之平均值之偏差的差量CD,及接觸孔的LCDU。在實施例中,術語「局部」(例如,LCDU中)可指特定區域(例如,單位晶胞或特定晶粒。在實施例中,接觸孔或LCDU之CD可能受包括以下各者的多個貢獻者影響:(i)SEM雜訊(或SEM誤差貢獻) δCDSEM ,(ii)光罩雜訊(或光罩誤差貢獻) δCDMASK 。及(iii)抗蝕劑雜訊(或抗蝕劑誤差貢獻),δCDRESIST 。在以下等式中,所量測接觸孔的
Figure 02_image001
可表達為: CD =
Figure 02_image003
+ δCDMASK + δCDRESIST + δCDSEM … (1) 其中
Figure 02_image005
為多個接觸孔的平均CD。
光罩雜訊可來源於光罩製造期間之誤差。抗蝕劑雜訊(亦被稱作散粒雜訊)可來源於抗蝕劑中之化學層連同用於將圖案印刷於基板中的微影設備之光源的光子散粒雜訊,且SEM相關雜訊可來源於SEM (例如,來自電子側翼的散粒雜訊)。在現有技術中,雜訊之分解可基於線性巢套技術執行。舉例而言,接觸孔之局部臨界尺寸均一性(LCDU)具有各種貢獻,包括SEM雜訊、光罩雜訊及抗蝕劑雜訊。在一實施例中,可將LCDU資料提供至線性巢套模型,以分解三個貢獻。
在實施例中,為了準備用於使用現有技術之分解方法的資料,專用實驗針對採取量測來執行,該等量測包括將設計圖案印刷於基板上,使用相同SEM度量衡配方兩次來俘獲印刷於基板上之圖案的影像,及啟用配方中的局部對準以減小不同量測重複之間的SEM量測方位偏移。可在不同晶粒當中執行類似量測。在一實施例中,(例如,待掃描之區域之中心處的)錨特徵通常包括於SEM之視場(FOV)中,以有助於在不同量測(及不同晶粒)當中對準SEM影像。
在本發明中,參考基板之量測使用之術語「重複」係指使用指定度量衡配方在基板之指定方位處進行的多個量測。舉例而言,重複資料係指以指定度量衡配方(例如,導降能量、探針電流、掃描速率等)獲取之基板上之第一方位(例如,指定晶粒之中心)處的複數個影像。在一實施例中,至少兩個重複資料由該複數個影像產生。
現有技術之缺點包括(但不限於)以下內容。專用實驗可需要針對獲得量測值來執行,其為耗時、成本過高的,消耗顯著計算資源及製造資源。量測程序包括至少兩個重複。接著,在任兩個量測重複之間存在大的(x,y,z)置放偏移。舉例而言,在執行SEM度量衡配方多次時,配方必須針對各配方執行而執行全域及局部對準(例如,晶圓對準)。即使在局部對準(其減小量測產出率)之情況下,典型(x,y)置放誤差大致為10 nm。在與相同晶粒方位相關聯之時滯差中存在較大變化,因此,存在量測與基板之抗蝕劑相關聯之較大SEM收縮不確定性。舉例而言,在執行SEM度量衡配方兩次時,亦難以控制不同晶粒當中的第一量測重複與第二量測重複之間的時間流逝。時間流逝使兩次量測重複之間的收縮不確定性增大。此收縮不確定性將使諸如SEM雜訊、光罩雜訊及抗蝕劑之分解結果的準確度降級。存在更長的資料獲取時間及更大的晶圓受損機率。舉例而言,為了獲取基板上之定義方位處之良好品質SEM影像,度量衡工具必須針對各配方執行來執行聚焦調整、全域及局部對準。此導致更長的獲取時間,且晶圓受損機率更大。在利用SEM射束執行焦點及局部對準時,SEM射束可損壞晶圓表面。
本發明使用獨立分量分析(ICA)方法來分解LWR/LCDU/CD分佈。所揭示方法之一些優勢包括消除執行專用實驗及多個重複的需要,且使分解要求的SEM影像之數目最小化(相較於藉由先前已知方法所要求通常具有顯著較小數目個SEM影像)。另外,所揭示方法相較於現有方法在較小度量衡量測時間及較小晶圓損害情況下執行分解。在一實施例中,該方法使用大型FOV及高產出率SEM工具(諸如HMI),其在短時間情況下獲取覆蓋大的晶圓區域之SEM影像。雖然用於導出誤差貢獻者之以下實施例參考CD分佈及LCDU資料來描述,但實施例不受約束於CD分佈及LCDU資料,其亦可用以藉由分解特徵之LWR資料來導出誤差貢獻。
圖3為符合各種實施例的說明用於使用ICA分解資料之方法300的方塊圖。ICA為信號處理中的已知分解方法,然而,該分解方法為方便起見簡潔描述如下。ICA為用於在不具有關於原始信號之任何資訊的情況下進行線性混合信號之盲源信號分離的技術。ICA試圖將多變量信號分解成獨立非高斯信號。作為一實例,聲波通常為在每一時間t由來自若干源之信號的數值加成構成的信號。問題接著為是否有可能自所觀測總信號分離此等貢獻源。當統計獨立假設正確時,混合信號之盲ICA分離給予極好結果。
ICA之簡單應用為「雞尾酒會問題」,其中基礎話語信號(例如,第一源信號301及第二源信號302)與由房間中同時談話之人員組成的樣本資料分離。樣本資料可為同時講話之不同人的不同觀測。舉例而言,第一觀測結果可為藉由定位於房間中之第一方位處之第一感測器311 (例如,麥克風)輸出之兩個源信號301及302的第一混合信號305,且第二觀測結果可為藉由位於不同於第一位置之第二位置的第二感測器312 (例如,麥克風)輸出的兩個源信號301及302的第二混合信號306。基於ICA方法實施之分解器模組320可分析混合信號305及306為線性混合信號,判定混合矩陣(A) 313,且使用未混合矩陣314分解線性混合信號以判定原始源信號301及302。
在一些實施例中,ICA判定混合矩陣如下。在ICA中,n 個混合信號(例如,混合信號305及306)表示為n 個獨立分量s的n 個線性混合體x1,...,xn (例如,源信號301及302)。 xj = aj1 s1 + aj2 s2 + ... + ajn sn ,對於所有j  ... (2)
在一些實施例中,線性混合體為係數之集合及解譯變數(自變數)的線性函數,其值用以預測因變量的最終結果。在以上等式2中,因變量可為xj,係數之集合為aj1 至ajn ,且解譯變數可為s1 至sn
使x指明元素為線性混合體x1至xn的向量,且同樣使s指明元素s1至sn的向量。使A指明具有係數aij 的矩陣。使用此向量-矩陣標號,以上混合模型可撰寫為 x = As … (3) 或 x =
Figure 02_image007
… (4)
在一些實施例中,等式4中之統計模型被稱作獨立分量分析或ICA模型。ICA模型為生產性模型,此情形意謂,其描述觀測資料如何藉由混合組分si的程序來產生。獨立分量為潛時變數,從而意謂其不可被直接觀測到。又,混合矩陣(A) 313假定為未知的。觀測到的全部為隨機向量x,且A及s兩者可使用該隨機向量來估計。此情形必須在一般假設情況下儘可能進行。
ICA模型執行數個程序(例如,線性混合源信號、白化混合信號,該等經混合信號為了簡潔此處未予以描述)以判定混合矩陣(A) 313。接著,在估計混合矩陣(A) 313之後,混合矩陣(A) 313之逆矩陣314,例如W被獲得,其接著用以藉由下式獲得源分量s : s = Wx … (5)
在一些實施例中,ICA係基於如下兩個假設:(1)源信號si 為彼此獨立的,且(2)每一源信號中之值si 具有非高斯分佈。另外,在ICA中,約束中之一者可為,若N個源存在,則至少N個觀測值(例如,感測器或麥克風)被需要以恢復原始N個信號。雖然以下段落描述使用三個輸入信號來導出三個誤差貢獻者,但應注意,三個以上的輸入信號可用以導出三個誤差貢獻者。在另一實例中,若兩個誤差貢獻者將被導出,則兩個或兩個以上輸入信號可被需要。在一些實施例中,ICA方法可使用許多演算法,諸如FastICA、infomax、JADE及核心獨立分量分析中的一者來實施。
在一些實施例中,ICA方法可用於判定對印刷於基板上之接觸孔之LCDU/CD分佈的誤差貢獻者,諸如δCDMASK 、δCDRESIST 及δCDSEM 中,此情形至少參考圖4至圖9在下文描述。應注意,誤差貢獻者之分解並不限於ICA方法,且ICA方法的其他變化,諸如重構ICA (RICA)方法或正規正交ICA方法可予以使用。
圖4為根據實施例的展示印刷於基板上之接觸孔之實例SEM影像及CD值圖形的方塊圖。SEM影像405可為印刷於基板上之設計圖案的影像,該影像使用諸如SEM之影像獲取工具獲得。印刷於基板上之設計圖案可包括說明於SEM影像405中之多個特徵,諸如接觸孔410。一或多個量測值可自SEM影像405獲得,諸如δCDMASK 、δCDRESIST 及δCDSEM 的多個誤差貢獻者中之每一者可使用該一或多個量測值來導出。此類量測值之實例可包括下文詳細描述的CD分佈(例如,CD值或δCD值)或LCDU。
在一些實施例中,接觸孔410之輪廓線可使用與SEM影像405相關聯的臨限值來獲得。舉例而言,SEM影像405可為灰度影像,且臨限值可為像素值(例如,對應於灰度影像中的白色帶),諸如如圖形415中所展示的30%、50%或70%。圖形415展示接觸孔之針對各種臨限值(例如,白色帶值)之輪廓線的CD值。在一些實施例中,若白色像素之值為「1」,且黑色像素為「0」,則白色帶的30%之臨限值可為「1」之30%,即「0.3」。輪廓線(例如,輪廓線高度)之位置且因此輪廓線之CD可針對該臨限值獲得。在一些實施例中,臨限值對應於關於圖3中之ICA方法所描述的感測器。
輪廓線之位置且因此輪廓線之CD通常受誤差貢獻者影響。因此,第一臨限值421之輪廓線的CD值(例如,30%)可用作混合信號,或用於導出混合信號,該混合信號可輸入至ICA方法以供分解用於獲得對CD分佈的誤差貢獻者。在一些實施例中,δCD值可被用作輸入至ICA方法之混合信號而非使用CD值。在一些實施例中,接觸孔之δCD值可為接觸孔之平均CD值與CD值之間的差。在一些實施例中,平均CD值為多個接觸孔之CD值的平均值。另外,在一些實施例中,δCD值可運用移位至「0」的平均CD值來判定(此情形意謂平均值自所有接觸孔之CD值減去)。在一些實施例中,接觸孔之δCD值可為接觸孔之輪廓線上之指定點與接觸孔之參考輪廓線上之參考點之間的距離。參考輪廓線可自目標圖案獲得,其自對應接觸孔之光罩圖案來模擬。
在一些實施例中,接觸孔之δCD值與誤差貢獻者之間的關係可表達為: δCD = δCDMASK + δCDRESIST + δCDSEM … (6)
為了使用ICA分解誤差貢獻者,在一些實施例中,δCD可表示為誤差貢獻者之線性混合體如下: δCD = a11*δCDMASK + a12*δCDRESIST + a13*δCDSEM … (7) 其中a11至a13為線性混合體之係數集合及ICA之混合矩陣(A) 313的部分。
δCD值可被用作至ICA方法的輸入。然而,在一些實施例中,由於存在三個誤差貢獻者,因此至少三個不同δCD值針對分解程序可需要,此係由於ICA具有作為輸入被要求之混合式的信號數目必須等於或大於導出或分解需要的源分量的數目。因此,δCD值針對白色帶之三個不同臨限值獲得,例如,第一δCD值,即δCD30 % 基於第一臨限值421下的CD值(例如,白色帶之30%)獲得,第二δCD值,即δCD50 % 基於第二臨限值422下之CD值(例如,白色帶的50%)獲得,且第三δCD值,即δCD70 % 基於第三臨限值423下之CD值(例如,白色帶的70%)獲得。三個δCD值可表示為誤差之貢獻者的三個不同線性混合體如下: δCD30% = a11*δCDMASK + a12*δCDRESIST + a13*δCDSEM … (8) δCD50% = a21*δCDMASK + a22*δCDRESIST + a23*δCDSEM … (9) δCD70% = a31*δCDMASK + a32*δCDRESIST + a33*δCDSEM … (10) 或
Figure 02_image009
… (11) 其中A=
Figure 02_image011
為混合矩陣313,且 δCDMASK 、δCDRESIST 及δCDSEM 為等式8至10中誤差貢獻者的函數。舉例而言,δCDMASK 可被視為δCDMASK ( 30 %) 、δCDMASK ( 50 %) 及δCDMASK ( 70 %) 值的平均值,或δCDMASK 可被視為δCDMASK ( 30 %) 、δCDMASK ( 50 %) 及δCDMASK ( 70 %) 值中的一者。
雖然以上δCD值,即δCD30 % 、δCD50 % 及δCD70 % 關於一個量測點來判定,數個此類δCD值針對導致三個不同信號之三個臨限值中之每一者的多個量測點獲得,其中第一信號包括多個δCD30 % 值,第二信號包括多個δCD50 % 值,且第三信號包括多個δCD70 % 值。
圖5展示根據實施例的特徵的對應於在多個量測點處獲得之多個臨限值中每一者之量測值的圖形。圖形505展示針對三個臨限值中之每一者在各種量測點處獲得的CD值。舉例而言,圖形505展示為在30%的第一臨限值421處獲得之第一組CD值515、在50%的第二臨限值422處獲得的第二組CD值520,及在70%的第三臨限值423處獲得的第三組CD值525。各組CD值為其中向量大小為量測點之數目的CD值之向量。數組CD值進一步經處理(例如,計算平均值且將平均值移位至「0」)以獲得臨限值中每一者的δCD值。舉例而言,第一組δCD值515a自第一組CD值515獲得,第二組δCD值520a自第二組CD值520獲得,且第三組δCD值525a自第三組CD值525獲得。在一些實施例中,每一組δCD值可經輸入作為至分解器模組320的混合信號。
在一些實施例中,量測點或度量衡點(例如,CD值經量測的點)可係在同一接觸孔上或不同的接觸孔上。
圖6為根據實施例的說明分解與特徵相關聯之量測值資料以獲得誤差貢獻者的分解器模組之方塊圖。分解器模組320分解諸如CD分佈資料之量測值資料從而獲得諸如δCDMASK 、δCDRESIST 及δCDSEM 的誤差貢獻者,該等誤差貢獻者引起對CD分佈的變化。在一些實施例中,CD分佈資料包括接觸孔的δCD值,諸如接觸孔之第一組δCD值515a、第二組δCD值515a及第三組δCD值525a。
在一些實施例中,分解器模組320使用ICA方法來實施,該ICA方法至少參考圖3詳細地論述。如上文所述,ICA方法可需要N個混合信號來將N個混合信號分解成N個獨立分量。在一些實施例中,由於LCDU資料可包括來自三個源(例如,δCDMASK 、δCDRESIST 及δCDSEM )的變化,因此三個輸入信號615、620及625經提供至分解器模組320。第一輸入信號615可包括第一組δCD值515a,第二輸入信號620可包括第二組δCD值520a,且第三輸入信號625可包括第三組δCD值525a。
分解器模組320可處理接觸孔之第一組δCD值515a、第二組δCD值520a及第三組δCD值525a (例如,基於如上文至少參考圖3所描述之ICA方法)以判定混合矩陣613,該混合矩陣為藉由第一組δCD值515a、第二組δCD值520a及第三組δCD值525a表示之線性混合體的係數集合。在一些實施例中,混合矩陣613類似於展示於等式3或11中的混合矩陣(A) 313。在獲得混合矩陣613之後,分解器模組320依據混合矩陣613的逆矩陣614及第一組δCD值515a、第二組δCD值520a及第三組δCD值525a獲得誤差貢獻者,如下文所展示。應注意,混合矩陣613之逆矩陣614在實施例中可為偽逆矩陣,其中混合矩陣613並非正方形矩陣(例如,感測器之數目大於需要分解之源的數目)。
Figure 02_image013
… (12)
因此,分解器模組320可基於等式12判定誤差貢獻者中每一者的值。分解器模組320可輸出對應於δCDMASK 、δCDRESIST 及δCDSEM 誤差貢獻的三個信號或資料集。舉例而言,第一輸出信號或資料集可包括對應於δCDMASK 誤差貢獻601的值,第二輸出信號或資料集可包括對應於δCDRESIST 誤差貢獻602的值,且第三輸出信號或資料集可包括對應於δCDSEM 誤差貢獻603的值。在圖6中,誤差貢獻展示為圖形。在一些實施例中,每一輸出資料集可為向量,且向量的大小與對應於輸入混合信號615至625之向量的大小相同。
在一些實施例中,分解器模組320可依據單一值而非向量或除了作為向量外可判定特定誤差貢獻。舉例而言,分解器模組320可判定第一資料集601中值之平均值為δCDMASK 誤差貢獻。
在一些實施例中,誤差貢獻值601至603可用於改良/最佳化圖案化程序的各種態樣,諸如源最佳化或光罩最佳化或最佳近接校正程序。舉例而言,基於δCDMASK 誤差貢獻或δCDRESIST 誤差貢獻,用以印刷圖案之光罩/圖案化裝置或微影設備的一或多個參數可經調整,使得印刷於基板上之圖案滿足指定規則。可經調整之參數可包括源、圖案化裝置、投影光學件之可調整參數,劑量,焦點,設計佈局/圖案的特性等。通常,最佳化或改良圖案化程序包括調整一或多個參數,直至與程序相關聯的一或多個成本函數經最小化或滿足指定規則。最佳化之一些實例至少參考以下圖13至圖16來描述。
雖然以上分解程序使用諸如第一組δCD值515a、第二組δCD值520a及第三組δCD值525a的CD分佈資料作為輸入615至625,從而判定誤差貢獻者,但在一些實施例中,分解程序亦可使用LCDU資料作為輸入615至625來獲得誤差貢獻者。
圖7A及圖7B為根據實施例的用於分解誤差貢獻者之LCDU資料的圖形。在一些實施例中,LCDU為CD分佈的3σ值。在一些實施例中,LCDU值可經由焦點及劑量值自焦點曝光矩陣(FEM)晶圓獲得。不同參數可被用作感測器以產生不同混合信號(例如,可被用作至分解器模組320的輸入)。舉例而言,劑量位階可被用作感測器,且不同的LCDU資料集合可針對不同劑量位階獲得作為輸入信號615至625 (例如,如圖7A之圖形中所展示)。
如圖7A之圖形中所說明,第一LCDU資料集715包括針對第一劑量位階(例如,45.60 mj/cm2 )經由聚焦對應於LCDU的值,第二LCDU資料集720包括針對第二次劑量位階(例如,52.44 mj/cm2 )經由聚焦對應於LCDU的值,且第三LCDU資料集725包括針對第三劑量位階(例如,59.2 mj/cm2 )經由聚焦對應於LCDU的值。
每一LCDU資料集可表達為三個誤差貢獻者的線性混合體,如以下等式中所展示(例如,類似於等式8至10之CD分佈線性混合體)。 LCDU1 = a11*LCDUMASK + a12*LCDURESIST + a13*LCDUSEM … (13) LCDU2 = a21*LCDUMASK + a22*LCDURESIST + a23*LCDUSEM … (14) LCDU3 = a31*LCDUMASK + a32*LCDURESIST + a33*LCDUSEM … (15)
以上LCDU資料集715至725可分別作為輸入615至625經提供至分解器模組320。分解器模組320處理第一、第二及第三LCDU資料集(例如,基於上文至少參考圖3所描述的ICA方法且類似於至少參考圖6描述之第一組δCD值515a、第二組δCD值520a及第三組δCD值525a)以判定誤差貢獻者,諸如LCDUMASK 、LCDURESIST 及LCDUSEM (例如,類似於δCDMASK 誤差貢獻601、δCDRESIST 誤差貢獻602及δCDSEM 誤差貢獻603)。
在另一實例中,SEM影像中之白色帶值可用作感測器(例如,如至少參考圖4所描述),且LCDU資料的不同集合可針對白色帶之不同臨限位準獲得作為輸入信號615至625 (例如,如圖7B之圖形中所展示)。如圖7B之圖形中所說明,第一LCDU資料集765包括對應於白色帶之第一臨限值(例如,30%)之LCDU的值,第二LCDU資料集770包括對應於白色帶之第二臨限值(例如,50%)之LCDU的值,且第三LCDU資料集775包括對應於針對白色帶之第三臨限值(例如,70%)之LCDU的值。每一LCDU資料集可表達為如等式13至15中所展示之三個誤差貢獻者的線性混合體,且可被輸入至分解器模組320作為輸入615至625,從而獲得誤差貢獻,諸如LCDUMASK 、LCDURESIST 及LCDUSEM
在另一實例中,聚焦位階可用作感測器,且不同的LCDU資料集合可針對不同聚焦位階獲得作為輸入信號615至625。舉例而言,可獲得包括第一聚焦位階下多個劑量值之LCDU值的第一LCDU資料集、第二LCDU資料集包括第二聚焦位階下針對多個劑量值之LCDU值,且第三LCDU資料集包括第三聚焦位階下針對多個劑量值的LCDU值。
圖8A為根據實施例的用於分解特徵之量測值以導出針對特徵的來自多個源之誤差貢獻的程序800之流程圖。在一些實施例中,設計圖案之特徵可為接觸孔,且多個此類接觸孔可印刷於基板上。在操作805處,獲得印刷於基板上之圖案的一影像801。在一些實施例中,影像801可包括SEM影像405。在一些實施例中,影像801使用諸如SEM之工具獲得。在一些實施例中,可獲得圖案之多個影像。
在操作810處,圖案之特徵的多個量測值811使用影像801獲得。舉例而言,量測值811可包括針對不同感測器值之多個接觸孔的CD分佈資料(例如,CD或δCD值)或LCDU資料。不同參數可用作感測器。舉例而言,與影像801相關聯之臨限值,諸如影像801之白色帶可用作感測器,且針對白色帶之不同臨限值的量測值811可包括在第一臨限值421 (例如,白色帶的30%)處獲得之第一組δCD值515a,在第二臨限值422 (例如,白色帶之50%)獲得之第二組δCD值520a及在第三臨限值423 (例如,白色帶之70%)下獲得的第三組δCD值525a,如至少參考圖4及圖5來描述。
在另一實例中,劑量位階可用於感測器,且針對不同劑量位階之量測值811可包括針對第一劑量位階獲得的第一LCDU資料集715、針對第二劑量位階獲得的第二LCDU資料集720及針對第三劑量位階獲得的第三LCDU資料集725,如至少參考圖7A所描述。
在操作815處,量測值811中的每一者關聯至多個誤差貢獻的線性混合體以產生多個線性混合體816。在一些實施例中,誤差貢獻使用ICA方法(例如,至少參考圖3及圖6所描述)來導出。由於存在三個誤差貢獻者(例如,δCDMASK 、δCDRESIST 及δCDSEM ),因此至少三個不同線性混合體816值可被需要用於分解程序,此係由於ICA方法具有如下約束:被需要作為輸入的混合信號之數目必須等於需要被導出或自輸入分解的源分量之數目。因此,三個不同線性混合體816可必須被產生。在一個實例中,三個不同線性混合體816可包括可使用等式8至10表示的第一組δCD值515a、第二組δCD值520a及第三組δCD值525a。在另一實例中,三個不同線性混合體816可包括可使用等式13至15表示的第一LCDU資料集715、第二LCDU資料集720及第三LCDU資料集725。
在操作820處,誤差貢獻821自線性混合體816導出。在一些實施例中,線性混合體816使用如至少參考圖3及圖6所描述的ICA方法來分解。舉例而言,包括第一組δCD值515a、第二組δCD值520a及第三組δCD值525a的線性混合體816可藉由提供前述各者作為至分解器模組320的輸入615至625 (例如,使用ICA方法實施)來分解以導出誤差貢獻者821,諸如光罩誤差貢獻(例如,δCDMASK 誤差貢獻601)、抗蝕劑誤差貢獻(例如,δCDRESIST 誤差貢獻602)及SEM誤差貢獻(例如,δCDSEM 誤差貢獻603),如至少參考圖6所描述。在另一實例中,包括第一LCDU資料集715、第二LCDU資料集720及第三LCDU資料集725的線性混合體816可藉由提供前述各者作為至分解器模組320的輸入615至625來分解以導出誤差貢獻者821,諸如光罩誤差貢獻(例如,LCDUMASK )、抗蝕劑誤差貢獻(例如,LCDURESIST )及SEM誤差貢獻(例如,LCDUSEM )。
圖8B為根據實施例的用於使用ICA自線性混合體導出誤差貢獻之程序850的流程圖。在一些實施例中,執行程序850作為圖8A之程序800之操作820的部分。在操作855處,線性混合體816使用ICA方法來處理以判定混合矩陣,例如混合矩陣613,該混合矩陣為線性混合體816的藉由第一組δCD值515a、第二組δCD值520a及第三組δCD值525a表示的係數集合。混合矩陣613可如於等式3或11中所展示來表達。在一些實施例中,混合矩陣613如至少參考圖3及圖6所描述來判定。
在操作860處,混合矩陣A 613的逆矩陣例如如等式12中所展示判定以獲得未混合矩陣614。
在操作865處,誤差貢獻821使用未混合矩陣614自線性混合體816導出,例如如等式12中所展示。
圖9為根據實施例的用於獲得圖8之分解程序之量測值的程序900之流程圖。在一些實施例中,程序900可作為圖8A之操作810的部分執行。在操作905處,獲得圖案之特徵的輪廓線906。舉例而言,輪廓線906可包括SEM影像405中接觸孔的輪廓線。在一些實施例中,已知數目種方法中的任一者可用以判定接觸孔的輪廓線。舉例而言,定限技術可應用於SEM影像以獲得特徵的輪廓線。在一些實施例中,定限技術可基於灰度SEM影像之像素值的改變來判定輪廓線,例如具有滿足指定臨限值(例如,白色帶值的)之值的像素可形成特徵的輪廓線。圖10展示使用一種此類技術獲得之特徵的輪廓線。
在一些實施例中,歸因於雜訊的存在(例如,來自諸如光罩、抗蝕劑及SEM之多個源的誤差貢獻),輪廓線906經受變形,從而產生不同輪廓線高度,諸如906a、906b及906c。在一些實施例中,變形輪廓線906a至906c可藉由定限SEM影像至不同臨限值來識別,且輪廓線906之CD值可針對不同臨限值來獲得。舉例而言,輪廓線906a可識別為將SEM影像405定限至第一臨限值(例如,如所描述至少參考圖4及圖5描述之白色帶值的30%),且輪廓線906b可識別為將SEM影像405定限至第二臨限值(例如,如至少參考圖4及圖5所描述的白色帶值的50%)。
在操作910處,CD值針對不同臨限值獲得。舉例而言,指定臨限值1051可為第一臨限值421 (例如,白色帶值的30%),如圖4之圖形415中所展示,且CD值可對應於第一臨限值421。
CD值可使用多種方法中之任一者來獲得。圖10展示根據實施例的獲得輪廓線之CD值的方法。在一些實施例中,輪廓線906之CD值藉由界定圖例(例如,與輪廓線906相關聯之量測點)來量測。對於量測值,不同圖例經界定,使得每一圖例(例如,圖例1005)在垂直於輪廓線906的方向上穿過輪廓線906。此類圖例可經應用以量測具有任何任意形狀的任何輪廓線。每一圖例可經延伸以與輪廓線906相交,此被稱作量測點。一維(1D)影像(例如,諸如像素值對x的SEM信號,其為來自特定參考點之特定像素的座標)自圖例1006產生,如圖形1050中所展示。指定臨限值1051可應用至1D影像以獲得圖例1005的部署dx,此情形提供針對指定臨限1051的圖例(例如,量測點)之輪廓線906的CD值。在一些實施例中,1-D影像經受不同臨限值以獲得對應於不同臨限值的CD值。舉例而言,若指定臨限值1051為第一臨限值421 (例如,白色帶值的30%),則部署dx可為對應於第一臨限值421的CD值,如圖形415中所展示。在另一實例中,若指定臨限值1051為第二臨限值422 (例如,白色帶值的50%),則部署dx可為對應於第二臨限值422的CD值,如圖形415中所展示。在另一實例中,若指定臨限值1051為第三臨限值423 (例如,白色帶值的70%),則部署dx可為對應於第三臨限值423的CD值,如圖形415中所展示。
在操作910結束時,對應於不同臨限值(例如,三個不同臨限值420至422)的不同CD值(例如,三個不同CD值)可針對特定圖例(或量測點)獲得。在一些實施例中,操作905及910重複有限數目個反覆(例如,使用者界定之數目)以獲得有限數目個量測點(例如,圖例)之每一臨限值的CD值。量測點可係在相同接觸孔或不同接觸孔中。在905及910之有限數目個反覆結束時,產生不同組的CD值。舉例而言,產生具有針對各種量測點之CD值的以下各值:第一組CD值515,其對應於30%的第一臨限值421,如圖5中所展示;第二組CD值520,其對應於50%的第二臨限值422;及第三組CD值525,其對應於70%的第三臨限值423。
在操作915處,判定CD值的平均值916。CD值可包括在操作910中獲得的彼等值,諸如第一組CD值515、第二組CD值520及第三組CD值525。
在操作920處,平均值916可經移位至給定值(例如,「0」)。在一些實施例中,將平均值916移位至指定值可包括自CD值中的每一者減去平均值916與指定值之間的差。
在操作925處,δCD值針對第一組CD值515、第二組CD值520及第三組CD值525中的每一CD值獲得。舉例而言,對應於第一臨限值421的圖5之第一組δCD值515a係獲得自第一組CD值515,對應於第一臨限值421的第二組δCD值520a獲得自第二組CD值520,且對應於第一臨限值421的第三組δCD值525a獲得自第三組CD值520。
在一些實施例中,在獲得第一組δCD值515a、第二組δCD值520及第三組δCD值525a之後,程序900可返回至程序800的操作815。
圖11描繪符合各種實施例之掃描電子顯微鏡(SEM)工具的實施例。在一些實施例中,檢測設備可為得到經曝光或轉印於基板上之結構(例如,裝置之一些或所有結構)之影像的SEM。自電子源ESO發射之初級電子射束EBP係由聚光透鏡CL會聚且接著傳遞通過射束偏轉器EBD1、E×B偏轉器EBD2及物鏡OL以在一焦點下輻照基板台ST上之基板PSub。
在藉由電子射束EBP輻照基板PSub時,二次電子由基板PSub產生。該等二次電子係由E×B偏轉器EBD2偏轉且由二次電子偵測器SED偵測。二維電子射束影像可藉由以下操作獲得:與例如在X或Y方向上由射束偏轉器EBD1對電子射束進行二維掃描或由射束偏轉器EBD1對電子射束EBP進行反覆掃描同步地偵測自樣本產生之電子,以及在X或Y方向中之另一者上藉由基板台ST連續移動基板PSub。
由二次電子偵測器SED偵測到之信號藉由類比/數位(A/D)轉換器ADC轉換為數位信號,且將數位信號發送至影像處理系統IPU。在實施例中,影像處理系統IPU可具有記憶體MEM以儲存數位影像中之所有或部分以供處理單元PU處理。處理單元PU (例如,經專門設計之硬體或硬體及軟體之組合)經組態以將數位影像轉換成或處理成表示數位影像之資料集。此外,影像處理系統IPU可具有經組態以將數位影像及對應資料集儲存於參考資料庫中之儲存媒體STOR。顯示裝置DIS可與影像處理系統IPU連接,使得操作員可藉助於圖形使用者介面進行設備之必需操作。
圖12示意性地說明檢測設備之另一實施例。該系統用以檢測樣本載物台89上之樣本90 (諸如基板)且包含帶電粒子射束產生器81、聚光器透鏡模組82、探針形成物鏡模組83、帶電粒子射束偏轉模組84、二次帶電粒子偵測器模組85及影像形成模組86。
帶電粒子射束產生器81產生初級帶電粒子射束91。聚光透鏡模組82將所產生之初級帶電粒子射束91聚光。探針形成物鏡模組83將經聚光初級帶電粒子射束聚焦為帶電粒子射束探針92。帶電粒子射束偏轉模組84使所形成之帶電粒子射束探針92橫越緊固於樣本載物台89上之樣本90上的所關注區域之表面進行掃描。在一實施例中,帶電粒子射束產生器81、聚光器透鏡模組82及探針形成物鏡模組83或其等效設計、替代方案或其任何組合一起形成產生掃描帶電粒子射束探針92之帶電粒子射束探針產生器。
二次帶電粒子偵測器模組85偵測在由帶電粒子射束探針92轟擊後即自樣本表面發射的二次帶電粒子93 (亦可能與來自樣本表面之其他反射或散射帶電粒子一起)以產生二次帶電粒子偵測信號94。影像形成模組86 (例如,計算裝置)與二次帶電粒子偵測器模組85耦接以自二次帶電粒子偵測器模組85接收二次帶電粒子偵測信號94,且相應地形成至少一個經掃描影像。在一實施例中,二級帶電粒子偵測器模組85及影像形成模組86或其等效設計、替代方案或其任何組合一起形成影像形成設備,該影像形成設備根據由帶電粒子射束探針92轟擊的自樣本90發射之所偵測二級帶電粒子形成掃描影像。
如上文所提及,可處理SEM影像以提取描述該影像中表示裝置結構之物件之邊緣的輪廓。接著經由量度,諸如CD量化此等輪廓。因此,通常經由諸如邊緣至邊緣距離(CD)或影像之間的簡單像素差之過分簡單化度量來比較及量化裝置結構的影像。偵測影像中之物件之邊緣以便量測CD的典型輪廓線模型使用影像梯度。實際上,彼等模型依賴於強的影像梯度。但在實踐中,影像通常有雜訊且具有不連續邊界。諸如平滑化、自適應定限、邊緣偵測、磨蝕及膨脹之技術可用以處理影像梯度輪廓模型之結果,以定址有雜訊且不連續影像,但最終將導致高解析度影像之低解析度量化。因此,在大多數例項中,對裝置結構之影像以減少雜訊以及自動化邊緣偵測的數學操縱導致影像之解析度之損失,藉此導致資訊之損失。因此,結果為相當於複雜的高解析度結構之簡單化表示之低解析度量化。
因此,期望具有可保留解析度且又描述使用圖案化程序而產生或預期產生之結構(例如,電路特徵、對準標記或度量衡目標部分(例如,光柵特徵)等)的一般形狀之數學表示,而不論例如該等結構係在潛在抗蝕劑影像中、在經顯影抗蝕劑影像中,抑或例如藉由蝕刻而轉印至基板上之層。在微影或其他圖案化程序之內容背景中,結構可為正製造之裝置或其一部分,且影像可為該結構之SEM影像。在一些情況下,該結構可為半導體裝置(例如,積體電路)之特徵。在一些情況下,結構可為用於對準量測程序中以判定一物件(例如,基板)與另一物件(例如,圖案化裝置)之對準的對準標記或其部分(例如,對準標記之光柵),或為用以量測圖案化程序之參數(例如,疊對、焦點、劑量等等)之度量衡目標或其部分(例如,度量衡目標之光柵)。在一實施例中,度量衡目標為用於量測(例如)疊對之繞射光柵。
在一實施例中,根據圖3之方法判定的與印刷圖案有關的量測資料(例如,隨機變化)可用於最佳化圖案化程序或調整圖案化程序之參數。作為實例,OPC解決如下事實:投影於基板上之設計佈局之影像的最終大小及置放將不相同於或簡單地僅取決於該設計佈局在圖案化裝置上之大小及置放。應注意,可在本文中互換地利用術語「光罩」、「倍縮光罩」、「圖案化裝置」。又,熟習此項技術者應認識到,尤其是在微影模擬/最佳化之內容背景中,術語「光罩」/「圖案化裝置」及「設計佈局」可被互換地使用,此係因為在微影模擬/最佳化中,未必使用實體圖案化裝置,而是可使用設計佈局以表示實體圖案化裝置。對於存在於某一設計佈局上之小特徵大小及高特徵密度,給定特徵之特定邊緣之位置將在某種程度上受到其他鄰近特徵之存在或不存在影響。此等近接效應起因於自一個特徵耦接至另一特徵的微小量之輻射或諸如繞射及干涉之非幾何光學效應。類似地,近接效應可起因於在通常後繼微影之曝光後烘烤(PEB)、抗蝕劑顯影及蝕刻期間之擴散及其他化學效應。
為了確保設計佈局之經投影影像係根據給定目標電路設計之要求,需要使用設計佈局之複雜數值模型、校正或預失真來預測及補償近接效應。論文「Full-Chip Lithography Simulation and Design Analysis - How OPC Is Changing IC Design」(C. Spence,Proc. SPIE,第5751卷,第1至14頁(2005年))提供當前「以模型為基礎」之光學近接校正程序的綜述。在典型的高端設計中,設計佈局之幾乎每一特徵皆具有某種修改,以便達成經投影影像至目標設計之高保真度。此等修改可包括邊緣位置或線寬之移位或偏置,以及意欲輔助其他特徵之投影的「輔助」特徵之應用。
在一晶片設計中通常存在數百萬個特徵的情況下,將以模型為基礎之OPC應用於目標設計涉及良好的程序模型及相當大的計算資源。然而,應用OPC通常並非「嚴正科學(exact science)」,而為並非總是補償所有可能近接效應之經驗反覆程序。因此,需要藉由設計檢測(亦即,使用經校準數值程序模型之密集型全晶片模擬)來驗證OPC之效應,例如,在應用OPC及任何其他RET之後的設計佈局,以便最小化將設計瑕疵建置至圖案化裝置圖案中的可能性。此情形係藉由如下各者驅動:製造高端圖案化裝置在數百萬美元之範圍內的巨大成本;以及對產品製作時程之影響,其係由重做或修復實際圖案化裝置(一旦其已被製造)導致。
OPC及全晶片RET驗證兩者可係基於如例如美國專利申請案第10/815,573號及Y. Cao等人之題為「Optimized Hardware and Software For Fast, Full Chip Simulation」(Proc. SPIE, 第5754卷,405(2005年))之論文中描述的數值模型化系統及方法。
一個RET係關於設計佈局之全域偏置之調整。全域偏置為設計佈局中之圖案與意欲印刷於基板上之圖案之間的差。舉例而言,25 nm直徑之圓形圖案可藉由設計佈局中之50 nm直徑圖案或藉由設計佈局中之20 nm直徑圖案但以高劑量印刷於基板上。
除了對設計佈局或圖案化裝置之最佳化(例如,OPC)以外,亦可與圖案化裝置最佳化聯合地抑或分離地最佳化照明源,以致力於改良總微影保真度。術語「照明源」及「源」在此文件中可互換使用。自1990年代以來,已引入諸如環形、四極及偶極之許多離軸照明源,且該等離軸照明源已提供用於OPC設計之更多自由度,藉此改良成像結果。如吾人所知,離軸照明為用以解析圖案化裝置中含有之精細結構(亦即,目標特徵)之被證實方式。然而,當與傳統照明源相比時,離軸照明源通常提供針對空中影像(aerial image;AI)之較小輻射強度。因此,變得需要試圖最佳化照明源,以在較精細解析度與經減小輻射強度之間達成最佳平衡。
舉例而言,可在Rosenbluth等人之題為「Optimum Mask and Source Patterns to Print A Given Shape」(Journal of Microlithography, Microfabrication, Microsystems 1(1),第13至20頁(2002年))之論文中找到眾多照明源最佳化途徑。將源分割成若干區,該等區中之每一者對應於光瞳光譜之某區。接著,將源分佈假定為在每一源區中為均一的,且針對程序窗來最佳化每一區之亮度。然而,源分佈在每一源極區中均勻之此假設並不總是有效的,且因此,此方法之有效性受到損害。在Granik之題為「Source Optimization for Image Fidelity and Throughput」(Journal of Microlithography, Microfabrication, Microsystems 3(4),第509至522頁(2004年))之論文中所闡述的另一實例中,綜述若干現有源最佳化方法,且提出議將源最佳化問題轉換成一系列非負最小平方最佳化的基於照明器像素之方法。儘管此等方法已證實一些成就,但其通常需要多次複雜反覆以進行收斂。另外,可難以判定用於一些額外參數(諸如,Granik方法中之γ)之適當/最佳值,此情形規定在最佳化用於基板影像保真度之源與該源之平滑度要求之間的取捨。
對於低k1 光微影,源及圖案化裝置兩者之最佳化有用於確保用於臨界電路圖案之投影的可行程序窗。一些演算法(例如,Socha等人之Proc. SPIE,第5853卷,2005年,第180頁)在空間頻域中將照明離散化成獨立源點且將光罩離散化成繞射階,且基於可藉由光學成像模型自源點強度及圖案化裝置繞射階而預測之程序窗度量(諸如,曝光寬容度)來分離地公式化成本函數(其被定義為選定設計變數之函數)。如本文所使用之術語「設計變數」包含微影投影設備或微影程序之參數集合,例如,微影投影設備之使用者可調整之參數,或使用者可藉由調整彼等參數而調整之影像特徵。應瞭解,微影投影程序之任何特性(包括源、圖案化裝置、投影光學件之特性,及/或抗蝕劑特性)可在最佳化中之設計變數當中。成本函數常常為設計變數之非線性函數。接著,使用標準最佳化技術以最小化成本函數。
相關地,不斷地減低設計規則之壓力已驅使半導體晶片製造者在現有193 nm ArF微影的情況下更深入於低k1 微影時代。朝向較低k1 之微影對RET、曝光工具及針對微影親和設計之需要提出了很高的要求。未來可使用1.35 ArF超數值孔徑(NA)曝光工具。為了幫助確保電路設計可運用可工作程序窗而產生至基板上,源圖案化裝置最佳化(在本文中被稱作源光罩最佳化(source-mask optimization)或SMO)正變成用於2x nm節點之顯著RET。
2009年11月20日申請且公開為WO2010/059954之題為「Fast Freeform Source and Mask Co-Optimization Method」的共同讓渡之國際專利申請案第PCT/US2009/065359號中描述允許在無約束之情況下且在可實行之時間量內使用成本函數來同步地最佳化源及圖案化裝置的源及圖案化裝置(設計佈局)最佳化方法及系統,該專利申請案據此以全文引用的方式併入本文中。
2010年6月10日申請且公開為美國專利申請公開案第2010/0315614號之題為「Source-Mask Optimization in Lithographic Apparatus」的共同讓渡之美國專利申請案第12/813456號中描述涉及藉由調整源之像素來最佳化源的另一源及光罩最佳化方法及系統,該專利申請案據此以全文引用之方式併入本文中。
在微影投影設備中,作為一實例,將成本函數表達為:
Figure 02_image015
(等式1) 其中
Figure 02_image017
N 個設計變數或其值。
Figure 02_image019
可為設計變數
Figure 02_image021
之函數,諸如,針對
Figure 02_image023
之設計變數之值集合在一評估點處的特性之實際值與預期值之間的差。
Figure 02_image025
為與
Figure 02_image027
相關聯之權重常數。可向比其他評估點或圖案更臨界之評估點或圖案指派較高的
Figure 02_image029
值。亦可向具有較多出現次數之圖案或評估點指派較高的
Figure 02_image031
值。評估點之實例可為基板上之任何實體點或圖案、虛擬設計佈局上之任何點,或抗蝕劑影像,或空中影像,或其組合。
Figure 02_image033
亦可為諸如LWR之一或多個隨機效應之函數,該一或多個隨機效應為設計變數
Figure 02_image035
之函數。成本函數可表示微影投影設備或基板之任何合適的特性,例如特徵之失效率、焦點、CD、影像移位、影像失真、影像旋轉、隨機效應、產出率、CDU或其組合。CDU為局部CD變化(例如,局部CD分佈之標准偏差的三倍)。CDU可被互換地稱作LCDU。在一個實施例中,成本函數表示CDU、產出率及隨機效應(亦即,為CDU、產出率及隨機效應之函數)。在一個實施例中,成本函數表示EPE、產出率及隨機效應(亦即,為EPE、產出率及隨機效應之函數)。在一個實施例中,設計變數
Figure 02_image037
包含劑量、圖案化裝置之全域偏置、來自源之照明之形狀,或其組合。由於抗蝕劑影像常常規定基板上之電路圖案,故成本函數常常包括表示抗蝕劑影像之一些特性之函數。舉例而言,此評估點之
Figure 02_image039
可僅僅為抗蝕劑影像中之一點與彼點之預期位置之間的距離(亦即,邊緣置放誤差
Figure 02_image041
)。設計變數可為任何可調整參數,諸如,源、圖案化裝置、投影光學件、劑量、焦點等等之可調整參數。投影光學件可包括被統稱為「波前操控器」之組件,其可用以調整輻照射束之波前及強度分佈或相移之形狀。投影光學件較佳地可調整沿著微影投影設備之光學路徑之任何方位處(諸如,在圖案化裝置之前、在光瞳平面附近、在影像平面附近、在焦平面附近)之波前及強度分佈。投影光學件可用以校正或補償由(例如)源、圖案化裝置、微影投影設備中之溫度變化、微影投影設備之組件之熱膨脹造成的波前及強度分佈之某些失真。調整波前及強度分佈可改變評估點及成本函數之值。可自模型模擬此等變化或實際上量測此等變化。當然,
Figure 02_image043
不限於等式1中之形式。
Figure 02_image043
可呈任何其他合適之形式。
應注意,
Figure 02_image045
之正常加權均方根(RMS)被定義為
Figure 02_image047
,因此,使
Figure 02_image045
之加權RMS最小化等效於使等式1中所定義之成本函數
Figure 02_image050
最小化。因此,出於本文中之記法簡單性,可互換地利用
Figure 02_image052
之加權RMS與等式1。
另外,若考慮使程序窗(PW)最大化,則吾人可將來自不同PW條件之同一實體方位視為(等式1)中之成本函數之不同評估點。舉例而言,若考慮N 個PW條件,則吾人可根據評估點之PW條件來分類該等評估點且將成本函數撰寫為:
Figure 02_image054
(等式1') 其中
Figure 02_image056
為在第u 個PW條件
Figure 02_image058
Figure 02_image060
的值。當
Figure 02_image062
為EPE時,接著使以上成本函數最小化等效於使在各種PW條件下之邊緣移位最小化,因此,此情形導致使PW最大化。詳言之,若PW亦由不同光罩偏置組成,則使以上成本函數最小化亦包括使光罩誤差增強因數(MEEF)最小化,該光罩誤差增強因數被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。
設計變數可具有約束,該等約束可被表達為
Figure 02_image064
,其中
Figure 02_image066
為設計變數之可能值集合。可藉由微影投影設備之良率或所要產出率強加對設計變數之一個可能約束。所要良率或產出率可限制劑量,且因此具有針對隨機效應之蘊涵(例如,對隨機效應強加下限)。較高產出率通常導致較低劑量、較短較長曝光時間及較大隨機效應。較高良率通常導致可能對隨機風險敏感的受限設計。基板產出率、良率及隨機效應最小化之考慮可約束設計變數之可能值,此係因為隨機效應為設計變數之函數。在無藉由所要產出率強加之此約束的情況下,最佳化可得到不切實際的設計變數之值集合。舉例而言,若劑量係在設計變數當中,則在無此約束之情況下,最佳化可得到使產出率經濟上不可能的劑量值。然而,約束之有用性不應解釋為必要性。產出率可受到對圖案化程序之參數之以失效率為基礎的調整影響。期望在維持高產出率的同時具有特徵之較低失效率。產出率亦可受抗蝕劑化學反應影響。較慢抗蝕劑(例如,要求適當地曝光較高量之光的抗蝕劑)導致較低產出率。因此,基於涉及由於抗蝕劑化學反應或波動引起的特徵之失效率以及針對較高產出率之劑量要求的最佳化程序,可判斷圖案化程序之適當參數。
因此,最佳化程序為在約束
Figure 02_image068
下找到使成本函數最小化之設計變數之值集合,亦即,找到:
Figure 02_image070
(等式2) 圖13中說明根據一實施例之最佳化微影投影設備之一般方法。此方法包含定義複數個設計變數之多變數成本函數的步驟S1202。設計變數可包含選自照明源之特性(1200A) (例如,光瞳填充比率,即,傳遞通過光瞳或孔徑的源之輻射的百分比)、投影光學件之特性(1200B)及設計佈局之特性(1200C)的任何合適組合。舉例而言,設計變數可包括照明源之特性(1200A)及設計佈局之特性(1200C) (例如,全域偏置),但不包括投影光學件之特性(1200B),此情形導致SMO。替代地,設計變數可包括照明源之特性(1200A)、投影光學件之特性(1200B)及設計佈局之特性(1200C),此情形導致源-光罩-透鏡最佳化(SMLO)。在步驟S1204中,同時地調整設計變數,使得成本函數移動朝向收斂。在步驟S1206中,判定是否滿足預定終止條件。預定終止條件可包括各種可能性,亦即,成本函數可得以最小化或最大化(如由所使用之數值技術所要求)、成本函數之值已等於臨限值或已超越臨限值、成本函數之值已達到預設誤差限制內,或達到預設反覆數目。若滿足步驟S1206中之條件中之任一者,則方法結束。若皆未滿足步驟S1206中之條件中之任一者,則反覆地重複步驟S1204及S1206直至獲得所要結果為止。最佳化未必導致用於設計變數之單一值集合,此係因為可存在由諸如失效率、光瞳填充因數、抗蝕劑化學反應、產出率等等之因素引起的實體抑制。最佳化可提供用於設計變數及相關聯效能特性(例如,產出率)之多個值集合,且允許微影設備之使用者選取一或多個集合。
在微影投影設備中,可交替地最佳化源、圖案化裝置及投影光學件(被稱作交替最佳化),或可同時地最佳化源、圖案化裝置及投影光學件(被稱作同時最佳化)。如本文所使用之術語「同時的」、「同時地」、「聯合的」及「聯合地」意謂源、圖案化裝置、投影光學件之特徵的設計變數或任何其他設計變數被允許同時改變。如本文所使用之術語「交替的」及「交替地」意謂並非所有設計變數皆被允許同時改變。
在圖14中,同步地執行所有設計變數之最佳化。此流程可被稱為同時流程或共同最佳化流程。替代地,交替地執行所有設計變數之最佳化,如圖14中所說明。在此流程中,在每一步驟中,使一些設計變數固定,同時最佳化其他設計變數以使成本函數最小化;接著,在下一步驟中,使一不同變數集合固定,同時最佳化其他變數集合以使成本函數最小化。交替地執行此等步驟,直至滿足收斂或某些終止條件為止。
如圖14之非限制性實例流程圖中所展示,首先,獲得設計佈局(步驟S1302),接著,在步驟S1304中執行源最佳化之步驟,其中最佳化(SO)照明源之所有設計變數以使成本函數最小化,而使所有其他設計變數固定。接著,在下一步驟S1306中,執行光罩最佳化(MO),其中最佳化圖案化裝置之所有設計變數以最小化成本函數,同時使所有其他設計變數固定。交替地執行此等兩個步驟,直至在步驟S1308中滿足某些終止條件為止。可使用各種終止條件,諸如,成本函數之值變得等於臨限值,成本函數之值超越臨限值,成本函數之值達到預設誤差極限內,或達到預設數目次反覆等等。應注意,SO-MO交替最佳化係用作該替代流程之實例。該替代流程可採取許多不同形式,諸如:SO-LO-MO交替最佳化,其中交替地且反覆地執行SO、LO(透鏡最佳化)及MO;或可執行第一SMO一次,接著交替地且反覆地執行LO及MO;等等。最後,在步驟S1310中獲得最佳化結果之輸出,且程序停止。
如之前所論述之圖案選擇演算法可與同時或交替最佳化整合。舉例而言,當採用交替最佳化時,首先可執行全晶片SO,識別『熱點』及/或『溫點』,接著執行MO。鑒於本發明,次最佳化之眾多排列及組合係可能的,以便達成所要最佳化結果。
圖15A展示最佳化之一個例示性方法,其中成本函數經最小化。在步驟S502中,獲得設計變數之初始值,包括設計變數之調諧範圍(若存在)。在步驟S504中,設置多變數成本函數。在步驟S506中,在圍繞用於第一反覆步驟(i=0)之設計變數之起點值的小的足夠鄰域內擴展成本函數。在步驟S508中,應用標準多變數最佳化技術以使成本函數最小化。應注意,最佳化問題可在S508中之最佳化程序期間或在最佳化程序中之較後階段可施加約束,諸如,調諧範圍。步驟S520指示出針對已為了最佳化微影程序而選擇之經識別評估點之給定測試圖案(亦被稱為「量規」)進行每一反覆。在步驟S510中,預測微影回應。在步驟S512中,比較步驟S510之結果與步驟S522中獲得之所要或理想微影回應值。若在步驟S514中滿足終止條件,亦即,最佳化產生足夠接近於所要值之微影回應值,則接著在步驟S518中輸出設計變數之最終值。輸出步驟亦可包括使用設計變數之最終值來輸出其他函數,諸如,輸出光瞳平面(或其他平面)處之波前像差調整映像、經最佳化源映像,及經最佳化設計佈局等等。若未滿足終止條件,則在步驟S516中,運用第i反覆之結果更新設計變數之值,且程序返回至步驟S506。下文詳細地闡述圖15A之程序。
在一例示性最佳化程序中,未假定或近似設計變數
Figure 02_image072
Figure 02_image074
之間的關係,除了
Figure 02_image076
足夠平滑(例如,存在一階導數
Figure 02_image078
)之外,其通常在微影投影設備中有效。可應用諸如高斯-牛頓(Gauss-Newton)演算法、雷文柏格-馬括特(Levenberg-Marquardt)演算法、梯度下降演算法、模擬退火、遺傳演算法之演算法以找到
Figure 02_image080
此處,將高斯-牛頓演算法用作實例。高斯-牛頓演算法為適用於一般非線性多變數最佳化問題之反覆方法。在設計變數
Figure 02_image082
採取值
Figure 02_image084
之第i次反覆中,高斯-牛頓演算法線性化
Figure 02_image086
附近之
Figure 02_image088
,且接著計算在
Figure 02_image090
附近之給出
Figure 02_image092
之最小值的值
Figure 02_image094
。設計變數
Figure 02_image096
在第(i+1)次反覆中採取值
Figure 02_image098
。此反覆繼續直至收斂(亦即,
Figure 02_image100
不再減小)或達到預設數目次反覆為止。
具體言之,在第i反覆中,在
Figure 02_image102
附近,
Figure 02_image104
(等式3)
根據等式3之近似,成本函數變為:
Figure 02_image106
(等式4) 其為設計變數
Figure 02_image035
之二次函數。除設計變數
Figure 02_image109
外,每一項為常數。
若設計變數
Figure 02_image111
不在任何約束下,則可藉由N 個線性等式進行求解而導出
Figure 02_image113
Figure 02_image115
,其中
Figure 02_image117
若設計變數
Figure 02_image119
係在呈J 個不等式(例如,
Figure 02_image119
之調諧範圍)之約束下,
Figure 02_image121
(其中
Figure 02_image123
);且在K 個等式(例如,設計變數之間的相互相依性)之約束下,
Figure 02_image125
(其中
Figure 02_image127
),最佳化程序變為經典二次規劃問題,其中
Figure 02_image129
Figure 02_image131
Figure 02_image133
Figure 02_image135
為常數。可針對每一反覆來強加額外約束。舉例而言,可引入「阻尼因數」
Figure 02_image137
以限制
Figure 02_image139
Figure 02_image141
之間的差,以使得等式3成立。此等約束可表達為
Figure 02_image143
。可使用(例如)Jorge Nocedal及Stephen J.Wright (Berlin New York: Vandenberghe. Cambridge University Press)之Numerical Optimization (第2版)中描述的方法來導出
Figure 02_image145
代替使
Figure 02_image147
之RMS最小化,最佳化程序可將評估點當中之最大偏差(最差缺陷)之量值最小化至其預期值。在此方法中,可替代地將成本函數表達為
Figure 02_image149
(等式5), 其中
Figure 02_image151
為用於
Figure 02_image153
之最大允許值。此成本函數表示評估點當中之最差缺陷。使用此成本函數之最佳化會使最差缺陷之量值最小化。反覆貪心演算法可用於此最佳化。
等式5之成本函數可被近似為:
Figure 02_image155
(等式6), 其中q 為正偶數,諸如,至少4,較佳地為至少10。等式6模仿等式5之行為,同時允許藉由使用諸如最深下降方法、共軛梯度方法等之方法來分析上執行最佳化且使最佳化加速。
使最差缺陷大小最小化亦可與
Figure 02_image157
之線性化組合。具體言之,如在等式3中一樣,近似
Figure 02_image159
。接著,將對最差缺陷大小之約束撰寫為不等式
Figure 02_image161
,其中
Figure 02_image163
Figure 02_image165
為指定用於
Figure 02_image167
之最小允許偏差及最大允許偏差之兩個常數。插入等式3,將此等約束轉變為如下等式,(其中p=1、……、P),
Figure 02_image169
(等式6') 且
Figure 02_image171
(等式6'')
由於等式3通常僅在
Figure 02_image173
附近有效,故倘若在此附近不能達成所要約束
Figure 02_image175
(其可藉由不等式當中之任何衝突予以判定),則可放寬常數
Figure 02_image177
Figure 02_image179
直至可達成該等約束為止。此最佳化程序使最小化
Figure 02_image181
附近之最差缺陷大小。接著,每一步驟逐步地減小最差缺陷大小,且反覆地執行每一步驟,直至滿足某些終止條件為止。此情形將導致最差缺陷大小之最佳減小。
用以最小化最差缺陷之另一方式在每一反覆中調整權重
Figure 02_image183
。舉例而言,在第i 反覆之後,若第r 評估點為最差缺陷,則可在第( i + 1 ) 次反覆中增加
Figure 02_image185
,以使得向彼評估點之缺陷大小之減小給出較高優先級。
另外,可藉由引入拉格朗日(Lagrange)乘數來修改等式4及等式5中之成本函數,以達成對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的折衷,亦即,
Figure 02_image187
(等式 6''') 其中λ為指定對缺陷大小之RMS之最佳化與對最差缺陷大小之最佳化之間的取捨之預設常數。詳言之,若λ=0,則此等式變為等式4,且僅最小化缺陷大小之RMS;而若λ=1,則此等式變為等式5,且僅最小化最差缺陷大小;若0<λ<1,則在最佳化中考慮以上兩種情況。可使用多種方法來解決此最佳化。舉例而言,相似於先前所描述之方法,可調整每一反覆中之加權。替代地,相似於自不等式使最差缺陷大小最小化,等式6'及6''之不等式可被視為在二次規劃問題之解算期間的設計變數之約束。接著,可遞增地放寬對最差缺陷大小之界限,或遞增地增加用於最差缺陷大小之權重,計算用於每一可達成最差缺陷大小之成本函數值,且選擇使總成本函數最小化之設計變數值作為用於下一步驟之初始點。藉由反覆地進行此操作,可達成此新成本函數之最小化。
最佳化微影投影設備可擴展程序窗。較大程序窗在程序設計及晶片設計方面提供更多靈活性。程序窗可被定義為使抗蝕劑影像在抗蝕劑影像之設計目標之某一極限內的焦點及劑量值集合。應注意,此處所論述之所有方法亦可延伸至可藉由除了曝光劑量及散焦以外之不同或額外基參數而建立的廣義程序窗定義。此等基參數可包括(但不限於)諸如NA、均方偏差、像差、偏振之光學設定,或抗蝕劑層之光學常數。舉例而言,如早先所描述,若PW亦由不同光罩偏置組成,則最佳化包括光罩誤差增強因數(MEEF)之最小化,該光罩誤差增強因數(MEEF)被定義為基板EPE與誘發性光罩邊緣偏置之間的比率。關於對焦點及劑量值所定義之程序窗在本發明中僅用作一實例。下文描述根據一實施例的最大化程序窗之方法。
在第一步驟中,自程序窗中之已知條件
Figure 02_image189
開始(其中f 0 為標稱焦點,且ε0 為標稱劑量),使在
Figure 02_image191
附近下方之成本函數中之一者最小化:
Figure 02_image193
(等式7)。 或
Figure 02_image195
(等式7') 或
Figure 02_image197
(等式7'')
若允許標稱焦點f 0 及標稱劑量ε0 移位,則其可與設計變數
Figure 02_image199
聯合地最佳化。在下一步驟中,若可找到
Figure 02_image201
之值集合,則接受
Figure 02_image203
作為程序窗之部分,使得成本函數係在預設極限內。
替代地,若不允許焦點及劑量移位,則在焦點及劑量固定於標稱焦點f 0 及標稱劑量ε0 的情況下最佳化設計變數
Figure 02_image205
。在替代實施例中,若可找到
Figure 02_image207
之值集合,則接受
Figure 02_image209
作為程序窗之部分,以使得成本函數在預設極限內。
本發明中早先所描述之方法可用以使等式7、7'或7''之各別成本函數最小化。若設計變數為投影光學件之特性,諸如任尼克係數,則使等式7、7'或7''之成本函數最小化導致基於投影光學件最佳化(亦即LO)之程序窗最大化。若設計變數為除了投影光學件之特性以外的源及圖案化裝置之特性,則使等式7、7'或7''之成本函數最小化會導致基於SMLO之程序窗最大化,如圖14中所說明。若設計變數為源及圖案化裝置之特性,則使等式7、7'或7''之成本函數最小化會導致基於SMO之程序窗最大化。等式7、7'或7''之成本函數亦可包括至少一個
Figure 02_image211
,諸如在等式7或等式8中之
Figure 02_image211
,其為諸如2D特徵之LWR或局部CD變化以及產出率之一或多個隨機效應的函數。
圖16展示同步SMLO程序可如何使用高斯-牛頓演算法以用於最佳化之一個特定實例。在步驟S702中,識別設計變數之開始值。亦可識別用於每一變數之調諧範圍。在步驟S704中,使用設計變數來定義成本函數。在步驟S706中,圍繞用於設計佈局中之所有評估點之起始值而展開成本函數。在選用步驟S710中,執行全晶片模擬以覆蓋全晶片設計佈局中之所有臨界圖案。在步驟S714中獲得所要微影回應度量(諸如CD或EPE),且在步驟S712中將所要微影回應度量與彼等數量之經預測值進行比較。在步驟S716中,判定一程序窗。步驟S718、S720及S722類似於如相對於圖15A所描述之對應步驟S514、S516及S518。如之前所提及,最終輸出可為光瞳平面中之波前像差映圖,其經最佳化以產生所要成像效能。最終輸出亦可為經最佳化源映圖或經最佳化設計佈局。
圖15B展示用以最佳化成本函數之例示性方法,其中設計變數
Figure 02_image214
包括可僅採取離散值之設計變數。
該方法藉由界定照明源之像素群組及圖案化裝置之圖案化裝置圖案塊而開始(步驟S802)。通常,像素群組或圖案化裝置圖案塊亦可被稱作微影程序組件之劃分部。在一個例示性方法中,將照明源劃分成117個像素群組,且針對圖案化裝置界定94個圖案化裝置圖案塊(實質上如上文所描述),從而引起總共211個劃分部。
在步驟S804中,選擇一微影模型作為用於光微影模擬之基礎。光微影模擬產生用於演算光微影度量或回應之結果。將一特定光微影度量界定為待最佳化之效能度量(步驟S806)。在步驟S808中,設定用於照明源及圖案化裝置之初始(預最佳化)條件。初始條件包括用於照明源之像素群組及圖案化裝置之圖案化裝置圖案塊的初始狀態,使得可參考初始照明形狀及初始圖案化裝置圖案。初始條件亦可包括光罩偏置、NA,及焦點斜坡範圍。儘管步驟S802、S804、S806及S808被描繪為依序步驟,但應瞭解,在本發明之其他實施例中,可以其他順序執行此等步驟。
在步驟S810中,對像素群組及圖案化裝置圖案塊順位。可使像素群組及圖案化裝置圖案塊在順位中交錯。可使用各種順位方式,包括:依序地(例如,自像素群組1至像素群組117且自圖案化裝置圖案塊1至圖案化裝置圖案塊94)、隨機地、根據該等像素群組及圖案化裝置圖案塊之實體方位(例如,將較接近於照明源之中心之像素群組順位得較高),及根據該像素群組或圖案化裝置圖案塊之變更如何影響效能度量。
一旦對像素群組及圖案化裝置圖案塊順位,則調整照明源及圖案化裝置以改良效能度量(步驟S812)。在步驟S812中,按順位次序分析像素群組及圖案化裝置圖案塊中之每一者,以判斷像素群組或圖案化裝置圖案塊之變更是否將導致改良的效能度量。若判定效能度量將被改良,則相應地變更像素群組或圖案化裝置圖案塊,且所得經改良效能度量及經修改照明形狀或經修改圖案化裝置圖案形成基線以供比較以用於後續分析較低順位之像素群組及圖案化裝置圖案塊。換言之,保持改良效能度量之變更。隨著進行及保持對像素群組及圖案化裝置圖案塊之狀態之變更,初始照明形狀及初始圖案化裝置圖案相應地改變,使得經修改照明形狀及經修改圖案化裝置圖案由步驟S812中之最佳化程序引起。
在其他方法中,亦在S812之最佳化程序內執行像素群組或圖案化裝置圖案塊之圖案化裝置多邊形形狀調整及成對輪詢。
在一替代實施例中,交錯式同步最佳化工序可包括變更照明源之像素群組,且在發現效能度量之改良的情況下,逐步升高及降低劑量以尋找進一步改良。在又一替代實施例中,可藉由圖案化裝置圖案之偏置改變來替換劑量或強度之逐步升高及降低,以尋找同時最佳化程序之進一步改良。
在步驟S814中,進行關於效能度量是否已收斂之判定。舉例而言,若在步驟S810及S812之最後若干反覆中已證明效能度量之很小改良或無改良,則可認為效能度量已收斂。若效能度量尚未收斂,則在下一反覆中重複步驟S810及S812,其中自當前反覆之經修改照明形狀及經修改圖案化裝置用作用於下一反覆之初始照明形狀及初始圖案化裝置(步驟S816)。
上文所描述之最佳化方法可用以增加微影投影設備之產出率。舉例而言,成本函數可包括為曝光時間之函數的
Figure 02_image216
。此成本函數之最佳化較佳地受到隨機效應之量度或其他度量約束或影響。特定言之,用於增加微影程序之產出率之電腦實施方法可包括最佳化係微影程序之一或多個隨機效應之函數且係基板之曝光時間之函數的成本函數,以便使曝光時間最小化。
在一個實施例中,成本函數包括為一或多個隨機效應之函數的至少一個
Figure 02_image159
。隨機效應可包括特徵之失效、如在圖3之方法中所判定之量測資料(例如,SEPE)、2D特徵之LWR或局部CD變化。在一個實施例中,隨機效應包括抗蝕劑影像之特性之隨機變化。舉例而言,此等隨機變化可包括特性之失效率、線邊緣粗糙度(LER)、線寬粗糙度(LWR)及臨界尺寸均一性(CDU)。在成本函數中包括隨機變化會允許找到使隨機變化最小化之設計變數的值,藉此減小缺陷之歸因於隨機效應之風險。
圖17為圖示電腦系統100之方塊圖,該電腦系統可幫助實施本文揭示的各種方法及系統。電腦系統100包括用於傳遞資訊之匯流排102或其他通信機構,及與匯流排102耦接以供處理資訊的處理器104 (或多個處理器104及105)。電腦系統100亦包括主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存裝置,其耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令。主記憶體106在執行待由處理器104執行之指令期間亦可用於儲存暫時變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令之唯讀記憶體(ROM) 108或其他靜態儲存裝置。提供儲存裝置110 (諸如磁碟或光碟)且將其耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字鍵和其他鍵的輸入裝置114可耦接至匯流排102,以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入裝置為游標控制件116,諸如滑鼠、軌跡球或游標方向鍵,以用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動。此輸入裝置通常具有在兩個軸線(第一軸(例如x)及第二軸(例如y))上的兩個自由度,此允許裝置在平面中指定位置。觸控面板(螢幕)顯示器亦可被用作輸入裝置。
根據一個實施例,本文中所描述之一或多種方法的數個部分可藉由電腦系統100回應於處理器104執行含有於主記憶體106中之一或多個指令的一或多個序列而執行。可將此等指令自另一電腦可讀媒體(諸如,儲存裝置110)讀取至主記憶體106中。主記憶體106中含有之指令序列的執行使得處理器104執行本文中所描述之程序步驟。亦可使用多處理配置中之一或多個處理器,以執行含於主記憶體106中的指令序列。在一替代實施例中,可代替或結合軟體指令來使用硬佈線電路。因此,本文中之描述不限於硬體電路及軟體之任何特定組合。
如本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包括(但不限於)非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存裝置110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸電纜、銅線及光纖,包括包含匯流排102的線。傳輸媒體亦可呈聲波或光波之形式,諸如在射頻(RF)及紅外(IR)資料通信期間所產生之聲波或光波。電腦可讀媒體之常見形式包括(例如)軟磁碟、撓性磁碟、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器104以供執行時涉及電腦可讀媒體之各種形式。舉例而言,初始地可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體內,且使用數據機經由電話線而發送指令。在電腦系統100局部之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體擷取並執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存裝置110上。
電腦系統100亦較佳包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦接,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供對對應類型之電話線之資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供至相容LAN之資料通信連接。亦可實施無線鏈路。在任何此實施中,通信介面118發送且接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光學信號。
網路鏈路120通常經由一或多個網路而將資料通信提供至其他資料裝置。舉例而言,網路鏈路120可經由區域網路122將提供至主機電腦124之連接或由網際網路服務提供者(ISP) 126操作之資料裝備的連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」128)來提供資料通信服務。區域網路122及網際網路128兩者使用攜載數位資料串流的電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號為輸送資訊的例示性形式之載波,該等信號將數位資料攜載至電腦系統100且自電腦系統100攜載數位資料。
電腦系統100可經由網路、網路鏈路120及通信介面118發送訊息及接收資料,包括程式碼。在網際網路實例中,伺服器130可經由網際網路128、ISP 126、區域網路122及通信介面118傳輸用於應用程式之所請求程式碼。舉例而言,一個此類經下載應用程式可提供實施例之照明最佳化。所接收程式碼可在其經接收時由處理器104執行,或儲存於儲存裝置110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。
圖18示意性地描繪可利用本文所描述之方法而最佳化照明源的例示性微影投影設備。設備包含: - 照明系統IL,其用以調節輻射射束B。在此特定情況下,照明系統亦包含輻射源SO; - 第一物件台(例如,光罩台) MT,其具備用以固持圖案化裝置MA (例如,倍縮光罩)之圖案化裝置固持器,且連接至用以相對於項目PS來準確地定位該圖案化裝置之第一定位器; - 第二物件台(基板台)WT,其配備有用以固持基板W (例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器; - 投影系統(「透鏡」) PS (例如,折射、反射或反射折射光學系統),其用以將圖案化裝置MA之經輻照部分成像至基板W之目標部分C (例如,包含一或多個晶粒)上。
如本文中所描繪,該設備屬於透射類型(亦即,具有透射光罩)。然而,一般而言,其亦可屬於例如反射類型(具有反射光罩)。或者,設備可使用另一種圖案化裝置作為經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。
源SO (例如,水銀燈或準分子雷射)產生輻射射束。舉例而言,此射束係直接地或在已橫穿諸如射束擴展器Ex之調節構件之後饋入至照明系統(照明器) IL中。照明器IL可包含調整構件AD,以用於設定射束中之強度分佈之外部徑向範圍或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,其通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,入射於圖案化裝置MA上之射束B在其橫截面中具有所要均一性及強度分佈。
關於圖18應注意,源SO可係在微影投影設備之外殼內(此常常為源SO為(例如)汞燈時之狀況),但其亦可遠離微影投影設備,該源產生之輻射射束經導引至該設備中(例如,藉助於合適導向鏡面);此後一情境常常為當源SO為準分子雷射(例如,基於KrF、ArF或F2 雷射作用)時之狀況。
射束PB隨後截取被固持於圖案化裝置台MT上之圖案化裝置MA。在已橫穿圖案化裝置MA的情況下,射束B傳遞通過透鏡PL,透鏡PL將射束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如,以便使不同目標部分C定位於射束PB之路徑中。類似地,第一定位構件可用以(例如)在自圖案化裝置庫機械地擷取圖案化裝置MA之後或在掃描期間相對於射束B之路徑來準確地定位圖案化裝置MA。一般而言,將憑藉未在圖18中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之狀況下,圖案化裝置台MT可僅連接至短衝程致動器,或可固定。
所描繪工具可用於兩種不同模式中: - 在步進模式中,將圖案化裝置台MT保持基本上靜止,且將整個圖案化裝置影像一次性投影((亦即,單次「閃光」)至目標部分C上。接著在x方向或y方向上使基板台WT移位,使得不同目標部分C可由射束PB輻照; - 在掃描模式中,基本上相同情境適用,惟在單次「閃光」中不曝光給定目標部分C除外。確切而言,圖案化裝置台MT在給定方向(所謂的「掃描方向」,例如,y方向)上以速度v移動,以使得使投影射束B在圖案化裝置影像上進行掃描;同時,基板台WT以速度V = Mv在相同或相對方向上同時地移動,其中M為透鏡PL之放大率(通常,M = 1/4或1/5)。以此方式,可在不必損害解析度的情況下曝光相對大目標部分C。
圖19示意性地描繪可利用本文中所描述之方法最佳化照明源的另一例示性微影投影設備LA。
微影投影設備LA包括: - 源收集器模組SO; - 照明系統(照明器) IL,其經組態以調節輻射射束B (例如,EUV輻射)。 - 支撐結構(例如,光罩台) MT,其經建構以支撐圖案化裝置(例如,光罩或倍縮光罩) MA且連接至經組態以準確地定位圖案化裝置之第一定位器PM; - 基板台(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W且連接至經組態以準確地定位基板之第二定位器PW;及 - 投影系統(例如,反射性投影系統) PS,其經組態以將藉由圖案化裝置MA賦予給輻射射束B之圖案投影於基板W的目標部分C (例如,包含一或多個晶粒)上。
如此處所描繪,設備LA屬於反射類型(例如,使用反射光罩)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以光罩可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可運用X射線微影來產生甚至更小的波長。因為大多數材料在EUV及x射線波長下具吸收性,所以圖案化裝置構形(topography)上之經圖案化吸收材料薄片段(例如,多層反射器之頂部上之TaN吸收器)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)的地方。
參考圖19,照明器IL自源收集器模組SO接收極紫外輻射射束。用以產生EUV輻射之方法包括但未必限於用在EUV範圍內之一或多種發射譜線將具有至少一元素(例如,氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿(「LPP」))中,可藉由用雷射射束來輻照燃料(諸如,具有譜線發射元素之材料小滴、流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖19中未繪示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射射束。所得電漿發射輸出輻射(例如,EUV輻射),該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射射束時,雷射與源收集器模組可為分離實體。
在此等狀況下,不認為雷射形成微影設備之部分,且輻射射束係憑藉包含(例如)合適導向鏡面或射束擴展器之射束遞送系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射射束之角強度分佈的調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍或內部徑向範圍(通常分別被稱作σ-外部及σ-內部)。另外,照明器IL可包含各種其他組件,諸如,琢面化場鏡面元件及琢面化光瞳鏡面裝置。照明器可用以調節輻射射束,以在其橫截面中具有期望的均一性及強度分佈。
該輻射射束B入射於圖案化裝置(例如,光罩) MA上,該圖案化裝置MA固持於支撐結構(例如,光罩台) MT上,且藉由圖案化裝置圖案化。在自圖案化裝置(例如,光罩) MA反射之後,輻射射束B穿過投影系統PS,投影系統PS將該輻射射束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2 (例如,干涉量測裝置、線性編碼器或電容性感測器),可準確地移動基板台WT,例如,以便使不同目標部分C定位於輻射射束B之路徑中。類似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射射束B之路徑來準確定位圖案化裝置(例如光罩) MA。可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如,光罩) MA及基板W。
所描繪設備LA可用於以下模式中之至少一者中: 1. 在步進模式中,在將賦予至輻射射束之整個圖案一次性投影(亦即,單次靜態曝光)至目標部分C上的同時使支撐結構(例如,光罩台) MT及基板台WT保持基本上靜止。接著,使基板台WT在X或Y方向上移位以使得可曝光不同目標部分C。 2. 在掃描模式下,同步地掃描支撐結構(例如,光罩台) MT及基板台WT,同時將賦予至輻射射束之圖案投影至目標部分C上(亦即,單次動態曝光)。可藉由投影系統PS之縮小率及影像反轉特性來判定基板台WT相對於支撐結構(例如,光罩台) MT之速度及方向。 3. 在另一模式中,在將被賦予至輻射射束之圖案投影至目標部分C上時,使支撐結構(例如,光罩台) MT保持基本上靜止,從而固持可程式化圖案化裝置,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間的順次輻射脈衝之間根據需要而更新可程式化圖案化裝置。此操作模式可易於應用於利用可程式化圖案化裝置(諸如,上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
圖20更詳細地展示設備LA,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置,使得可將真空環境維持於源收集器模組SO之圍封結構220中。可藉由放電產生電漿源來形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,Xe氣體、Li蒸汽或Sn蒸汽)來產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由引起至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之有效率產生,可需要為(例如) 10 Pa之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供經激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由定位於源腔室211中之開口中或後方的視情況選用的氣體障壁或污染物截留器230 (在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染物截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。如在此項技術中為吾人所知,本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室211可包括可為所謂掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射,以沿著由點虛線「O」指示之光軸而聚焦在虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置以使得中間焦點IF位於圍封結構220中之開口221處或靠近開口221。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24,琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24經配置以提供在圖案化裝置MA處之輻射射束21之所要角分佈,以及在圖案化裝置MA處之輻射強度之所要均一性。在由支撐結構MT固持之圖案化裝置MA處反射輻射射束21後,隨即形成經圖案化射束26,且經圖案化射束26藉由投影系統PS經由反射元件28、30成像至由基板台WT固持之基板W上。
比所展示元件多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影設備之類型,光柵光譜濾光器240可視情況存在。此外,可存在比諸圖中所示出之鏡面多的鏡面,例如,在投影系統PS中可存在比圖20中所示出之反射元件多1至6個的額外反射元件。
如圖20中所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之一實例。掠入射反射器253、254及255經安置成圍繞光軸O軸向地對稱的,且此類型之收集器光學件CO係較佳地結合放電產生電漿源(常常被稱為DPP源)使用。
替代地,源收集器模組SO可為如圖21中所展示之LPP輻射系統之部分。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十電子伏特的電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射自電漿發射,由近正入射收集器光學件CO收集,且聚焦至圍封結構220中的開口221上。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其供能夠產生愈來愈短波長之新興成像技術使用。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193 nm波長且甚至能夠藉由使用氟雷射來產生157 nm波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20 nm至5 nm之範圍內的波長,以便產生在此範圍內之光子。
雖然本文所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示概念可供與任何類型之微影成像系統一起使用,例如,用於在除了矽晶圓以外的基板上之成像之微影成像系統。
前述段落描述將CD分佈或LCDU資料分解成來自各種源的誤差貢獻。舉例而言,如至少參考圖6所描述,分解器模組320將分別可包括多個接觸孔之第一組δCD值515a、第二組δCD值520a及第三δCD 525a的三個輸入信號615、620及625分解成三個輸出信號601、602及603,該三個輸出信號表示來自源,諸如光罩、抗蝕劑及SEM的誤差貢獻。然而,在一些實施例中,分解器模組320可能不能判定哪一輸出信號對應於誤差貢獻來自哪一源,此是因為在一些實施例中,來自各種源的誤差貢獻可為類似的,且因此分解器模組320可能不能區分該等源。
本發明識別誤差貢獻值之給定信號的誤差貢獻源。在一些實施例中,機器學習(ML)模型經訓練以區分來自各種源的誤差貢獻,且經訓練的ML模型用以判定給定信號之分類(例如,誤差貢獻源)或識別誤差貢獻源的標記。
圖22為根據實施例的說明表示誤差貢獻值之資料集或誤差貢獻信號基於誤差貢獻之源的分類之方塊圖。表示誤差貢獻值之誤差貢獻信號2205輸入至分類器模型2250,該分類器模型在一些實施例中為ML模型,該ML模型經訓練以判定輸入信號的分類(例如,信號中之誤差貢獻值的源)。分類器模型2250分析信號2205且判定或預測誤差貢獻信號2205的分類2225。分類2225可指示針對信號2205中誤差貢獻值的誤差貢獻源,諸如光罩、抗蝕劑或SEM。分類2225值可採用多個格式中的任一者。在一些實施例中,分類2225可經輸出作為機率值(例如,0.0至1.0),該機率值指示信號2205中之誤差貢獻值係來自指定源的機率。舉例而言,分類2225值可為「PRESIST =0.98」,該值指示存在信號2205中之誤差貢獻值為抗蝕劑雜訊的「98%」機率。在一些實施例中,分類2225的值可指示誤差貢獻值係來自源中之每一者的機率。舉例而言,分類2225的值可為「PRESIST =0.98」、「PMASK =0.015」及「PSEM =0.005」,其指示存在信號2205中之誤差貢獻值為抗蝕劑雜訊的「98%」機率、信號2205中之誤差貢獻值為光罩雜訊的「1.5%」機率,且信號2205中之誤差貢獻值為SEM雜訊的「0.5%」機率。在一些實施例中,分類2225可為列舉值,該列舉值可指示多個源中的一者。舉例而言,分類2225可為每一數字指示指定誤差貢獻源的「1」、「2」或「3」。在另一實例中,分類2225可為指示指定誤差貢獻源的文字,諸如「抗蝕劑」、「光罩」或「SEM」。
在一些實施例中,信號2205可使用至少參考圖6描述的多個方法中之任一者,例如ICA方法來產生。信號2205可為分解器模組320之輸出信號中的任一者,諸如第一輸出信號601、第二輸出信號602及第三輸出信號603。信號601至603可包括對應於δCDMASK 誤差貢獻(例如,光罩雜訊)、δCDRESIST 誤差貢獻602(例如,抗蝕劑雜訊)及δCDSEM 誤差貢獻(例如,SEM雜訊)的值。在圖6中,誤差貢獻601至603基於源來分類,但至少在一些實施例中,分解器模組320可能不能識別輸出信號的誤差貢獻源。訓練分類器模型2250的細節至少在下文參考圖23來論述。
圖23為根據實施例的說明用以基於誤差貢獻源對誤差貢獻信號分類的圖22之分類器模型之訓練的方塊圖。在一些實施例中,分類器模型2250為使用神經網路,諸如迴旋神經網路(CNN)、深CNN或遞迴神經網路實施的ML模型。以下段落描述使用CNN進行分類,但應注意分類不限於CNN,且可使用其他ML技術。簡言之,用於判定誤差貢獻信號2305之分類的CNN模型係由輸入層2330及輸出層2335以及輸入層2330與輸出層2335之間的多個隱藏層(諸如迴旋層、正規化層及池化層)組成。作為訓練之部分,最佳化隱藏層之參數以得到損失函數之最小值。在一些實施例中,CNN模型可經訓練以使與度量衡或微影相關之任何程序或數個程序之組合的行為來模型化。
在一些實施例中,基於CNN之分類器模型2250用以判定誤差貢獻信號之分類的訓練包括調整模型參數,諸如CNN之加權及偏置,使得預測、判定或產生分類的成本函數被最小化。在一些實施例中,調整模型參數值包括調整以下值:CNN之層的一或多個權重、CNN之層的一或多個偏置、CNN之超參數及/或CNN之層的數目。在一些實施例中,層數目為CNN之超參數,其可預先選擇且在訓練程序期間可以不改變。在一些實施例中,可執行一系列訓練程序,其中可修改層的數目。
在一些實施例中,訓練分類器模型2250涉及判定成本函數之值且漸進地調整CNN之一或多個層的權重,使得成本函數減小(在實施例中,經最小化,或並不減小超出指定臨限值)。在一些實施例中,成本函數指示輸入信號2305之預測分類2320 (例如,CNN之輸出向量的)與輸入信號2305之實際分類(例如,指定或具備輸入信號2305)之間的差。在一些實施例中,成本函數可為損耗函數,諸如二元交叉熵。藉由修改CNN模型參數(例如,權重、偏置、步幅等)之值來減小成本函數差。在一實施例中,計算成本函數為
Figure 02_image219
Figure 02_image221
。在此步驟中,至CNN之輸入包括輸入信號及輸入信號的對應實際分類,且為CNN之權重及偏置的
Figure 02_image223
具有可經隨機地選擇的初始值。
在一些實施例中,對應於成本函數之梯度可為dcost/dparameter,其中
Figure 02_image225
值可基於等式(例如,參數=參數-learning_rate*gradient)來更新。參數可為權重及/或偏置,且learning_rate可為用以調諧訓練程序之超參數且可由使用者或電腦選擇以改良訓練程序之收斂(例如,較快速收斂)。
分類器模型2250使用經標記之訓練資料2325來訓練,該經標記之訓練資料包括表示來自多個源之誤差貢獻值的多個誤差貢獻信號,諸如第一誤差貢獻信號2305、第二誤差貢獻信號2310及第三誤差貢獻信號2315。訓練資料2325中之每一誤差貢獻信號包括(a)來自指定源的對印刷於基板上之一組接觸孔的誤差貢獻值,及(b)指示指定誤差貢獻源的標記(例如,誤差貢獻信號之實際分類)。舉例而言,第一誤差貢獻信號2305可包括(a)與印刷於基板上之第一組接觸孔相關聯的第一組誤差貢獻值,及(b)指示誤差貢獻源為「抗蝕劑」的標記。類似地,第二誤差貢獻信號2310可包括(a)與印刷於基板上之第一組接觸孔相關聯的第二組誤差貢獻值,及(b)指示誤差貢獻源為「光罩」的標記;且第三誤差貢獻信號2315可包括(a)與印刷於基板上之第一組接觸孔相關聯的第三組誤差貢獻值,及(b)指示誤差貢獻源為「SEM」的標記。訓練資料2325可包括針對各種接觸孔的各種此類誤差貢獻信號。在一些實施例中,訓練資料2325經拆分成每一子集包括針對不同組之接觸孔的誤差貢獻信號的數個子集。舉例而言,第一訓練資料子集可包括針對第一接觸孔子集的三個誤差貢獻信號(例如,針對每一源的一個誤差貢獻信號),且第二訓練資料子集包括針對第二接觸孔子集的三個誤差貢獻信號(例如,針對每一源的一個誤差貢獻)。分類器模型2250藉由在不同訓練階段輸入不同子集來訓練。
在一些實施例中,訓練分類器模型2250為反覆程序,且每一反覆可涉及輸入不同訓練資料(例如,誤差貢獻輸入信號,諸如輸入信號2305),預測對應誤差貢獻信號的分類2320,基於實際分類(例如,設置於標記中)及預測分類2320判定成本函數,且使成本函數最小化。在一些實施例中,第一組反覆運用第一訓練資料子集執行,接著第二組反覆運用第二組訓練資料來執行等等。在若干訓練反覆之後(例如,當成本函數經最小化或並不減小超出指定臨限值時),最佳化
Figure 02_image227
值經獲得,且進一步用作經訓練分類器模型2250的模型參數值。經訓練分類器模型2250接著可用以藉由使用誤差貢獻信號作為至經訓練分類器模型2250的輸入來預測任何所要誤差貢獻信號的分類,例如如至少參考圖22所描述。
訓練資料2325可以已知數種方法中的任一者來產生。產生用於訓練分類器模型2250之誤差貢獻信號的一個此類實例方法至少參考以下圖24來描述。
圖24為根據實施例的用於產生誤差貢獻信號之程序2400的流程圖。在一些實施例中,程序2400為線性巢套式模型,該巢套式模型用以分解與一組接觸孔相關聯的LCDU資料為來自多個源的誤差貢獻。在Lorusso、Gian、Rispens、Gijsbert、Rutigliani、Vito、Roey、Frieda、Frommhold、Andreas及Schiffelers、Guido的題為「Roughness decomposition: an on-wafer methodology to discriminate mask, metrology, and shot noise contributions」的論文(-2019/03/26,10.1117/12.2515175)中詳細描述,該論文以全文引用的方式併入本文中。然而,分解程序2400為方便起見在下文簡潔描述。程序2400可用以產生多個誤差貢獻信號,諸如圖23的訓練資料2325,該訓練資料可用於訓練分類器模型2250。
在操作2405處,量測程序經執行以獲得印刷於基板上之多個接觸孔的量測值資料2401,諸如CD。量測值可自CDU晶圓及FEM晶圓獲得。LCDU經分解成3個分量:光罩雜訊、抗蝕劑雜訊(其包括散粒雜訊)及SEM雜訊。量測程序可根據以下原理來設計: ●  選擇倍縮光罩上之「N」個接觸孔 ●  每一接觸孔在等效條件下成像「M」次 ●  每一影像(接觸孔之N*M個晶圓影像)運用SEM量測「S」次
在此實驗中,倍縮光罩上具有相同(所欲)尺寸的N個接觸孔予以選擇,且通常為接觸孔陣列的部分。倍縮光罩上所選擇之接觸孔的實際大小可歸因於光照誤差發生變化。光罩誤差藉由每一曝光轉譯為晶圓,且因此導致存在於每一曝光結果中該晶圓CD量測值中的系統性指紋。晶圓CD可變性之殘餘隨機成分係歸因於抗蝕劑雜訊(連同散粒雜訊)及SEM雜訊。為了分離SEM誤差分量,所有晶圓CD如表1中所概述被量測S次(獲得每一所量測方位的S個影像)。
   曝光1 曝光2 曝光M
接觸孔1 CD111 CD112 CD11S CD121 CD122 CD12S CD1M1 CD1M2 CD1MS
接觸孔2 CD211 CD212 CD21S CD221 CD222 CD22S CD2M1 CD2M2 CD2MS
接觸孔N CDN11 CDN12 CDN1S CDN21 CDN22 CDN2S CDNM1 CDNM2 CDNMS
表1
接觸孔之CD可撰寫為: CDijk =
Figure 02_image229
+ δCDi MASK +  δCDij SN + δCDijk SEM … i=1:N,j=1:M,k=1:S …。(1A) 其中
Figure 02_image231
為橫越實驗的平均CD,且可判定為:
Figure 02_image233
=
Figure 02_image235
,        ...  (2A) δCDi MASK 可為存在於倍縮光罩接觸孔 中光罩雜訊的對基板之效應,δCDij SN 為連同藉由接觸孔i 的曝光j 產生之散粒雜訊一起存在的抗蝕劑雜訊,且δCDijk SEM 為歸因於SEM誤差的剩餘隨機雜訊。
在獲得量測資料2401之後,在操作2410處,誤差貢獻2411自量測資料2401導出如下。舉例而言,以下等式表示來自諸如光罩、抗蝕劑及SEM之源的誤差貢獻者2411:
Figure 02_image237
…  (3A)
Figure 02_image239
…  (4A)
Figure 02_image241
…  (5A)
倍縮光罩上第i 接觸孔的光罩雜訊δCDi MASK 為來自總平均CD的此接觸孔之所有量測值(所有曝光及SEM輪次)上平均的基板CD之偏差。散粒雜訊δCDij SN 為在光罩誤差因數下巢套的因數,且其位準取決於光罩雜訊的位準。δCDij SN 量測接觸孔i 之曝光j 的效應。特定言之,對於倍縮光罩接觸孔i ,δCDij SN 為曝光j 之後基板CD自針對此接觸孔量測的平均CD (在所有曝光及SEM輪次上平均)的偏差。特定第i 孔及第j 曝光的量測中,SEM雜訊δCDijk SEM 為第k 量測值自此影像之所有量測上平均的CD之偏差。
如可瞭解,對應於源中之每一者的誤差貢獻值2411使用等式3A至5A來計算。以上程序2400可用以產生針對多個接觸孔的多個誤差貢獻者信號,該等接觸孔可用作訓練資料2325以對分類器模型2250進行訓練,例如如至少參考圖23所描述。
圖25A為根據實施例的用於訓練分類器模型以判定誤差貢獻者信號之分類的程序2500之流程圖。在操作2505處,獲得具有多個資料集或誤差貢獻者信號的訓練資料,該等資料集或誤差貢獻者信號表示來自多個源的對印刷於基板上之特徵的誤差貢獻。舉例而言,訓練資料可為訓練資料2325,該訓練資料包括誤差貢獻信號,諸如第一誤差貢獻信號2305、第二誤差貢獻信號2310及第三誤差貢獻信號2315。舉例而言,第一誤差貢獻信號2305可包括(a)與印刷於基板上之第一組接觸孔相關聯的第一組誤差貢獻值,及(b)指示誤差貢獻源為「抗蝕劑」的標記。類似地,第二誤差貢獻信號2310可包括(a)與印刷於基板上之第一組接觸孔相關聯的第二組誤差貢獻值,及(b)指示誤差貢獻源為「光罩」的標記;且第三誤差貢獻信號2315可包括(a)與印刷於基板上之第一組接觸孔相關聯的第三組誤差貢獻值,及(b)指示誤差貢獻源為「SEM」的標記。訓練資料2325可包括針對各種接觸孔的各種此類誤差貢獻信號。
在一些實施例中,訓練資料2325經拆分成每一子集包括針對不同組之接觸孔的誤差貢獻信號的數個子集。舉例而言,第一訓練資料子集2325可包括針對第一接觸孔子集的三個誤差貢獻信號(例如,針對每一源的一個誤差貢獻信號),且訓練資料2325的第二子集包括針對第二接觸孔子集的三個誤差貢獻信號(例如,針對每一源的一個誤差貢獻)。
在一些實施例中,訓練資料2325使用多個方法中之任何方法,諸如至少參考以上圖24描述之線性巢套式模型來產生。
在操作2510處,分類器模型2250基於訓練資料來訓練以自訓練資料預測每一誤差貢獻者信號的分類。在一些實施例中,分類器模型2250為CNN模型。分類器模型2250藉由輸入來自訓練資料2325之第一誤差貢獻信號2305來執行。分類器模型2250預測第一誤差貢獻信號2305的分類2320 (例如,誤差貢獻源),且計算成本函數,該成本函數判定第一誤差貢獻信號2305之經預測分類與實際分類之間的差。分類器模型2250之訓練為反覆程序且繼續(例如,藉由輸入來自訓練資料2325之不同子集的不同誤差貢獻信號),直至成本函數減小(例如,超出指定臨限值或不再減小),即來自訓練資料2325之誤差貢獻者信號中任一者的經預測分類類似於對應誤差貢獻者信號的實際分類。訓練程序之額外細節至少參考圖以下圖25B予以描述。
在成本函數已滿足指定準則(例如,並不再減小,已減小超出指定臨限值,或其減小至指定臨限值以下的速率)之後,分類器模型2250被認為經訓練,且可用以預測任何所要誤差貢獻信號的分類,例如如至少參考圖22所描述。
圖25B為根據實施例的用於訓練分類器模型以判定誤差貢獻者信號之分類的流程2550之流程圖。在一些實施例中,程序2550作為程序2500之操作2510的部分執行。
在操作2555處,分類器模型2250藉由輸入諸如第一誤差貢獻信號2305之參考誤差貢獻信號來執行,以輸出參考誤差貢獻信號的預測分類,諸如第一誤差貢獻信號2305的經預測分類2320。
在操作2560處,分類器模型2250之成本函數經計算例如為預測分類與實際分類之間的差。舉例而言,成本函數2561經判定為第一誤差貢獻信號2305之預測分類2320與實際分類之間的差。在一些實施例中,針對第一誤差貢獻信號2305之誤差貢獻源的實際分類經提供為具有第一誤差貢獻信號2305的標記。
在操作2565處,分類器模型2250經調整,使得成本函數2561減小。在一些實施例中,調整分類器模型2250以減小成本函數2561包括調整模型參數,諸如分類器模型2250的權重及偏置(例如,CNN模型的參數)。
在操作2570處,判定成本函數2561是否減小(例如,判定並不再減小,已減小超出指定臨限值,或其減小的速率低於指定臨限值)。
若成本函數2561減小,則分類器模型2250被認為經訓練,且程序返回至程序2500的操作2510。然而,若成本函數2561尚未減小,則操作2555至2570運用來自訓練資料2325的不同誤差貢獻信號重複,直至成本函數2561減小。舉例而言,第一組反覆可藉由輸入第一訓練資料子集執行,該第一訓練資料子集包括針對第一接觸孔子集的三個誤差貢獻信號(例如,每一源一個誤差貢獻),接著第二組反覆運用第二訓練資料子集執行,該第二訓練資料子集包括針對第二接觸孔子集的三個誤差貢獻信號(例如,每一源一個誤差貢獻信號)等等,直至該成本函數2561減小。
圖26為根據實施例的用於判定誤差貢獻信號之源的程序2600之流程圖。在操作2605處,諸如誤差貢獻信號2205的誤差貢獻信號被輸入至分類器模型2250。在一些實施例中,誤差貢獻信號2205包括對印刷於基板上之圖案之一組特徵的表示來自多個源中之一者的誤差貢獻之多個誤差貢獻值。舉例而言,誤差貢獻信號2205可表示來自諸如光罩、抗蝕劑或SEM之源的誤差貢獻。誤差貢獻信號2205可使用已知數個方法中的任一者來產生。舉例而言,誤差貢獻信號2205可使用ICA方法自與多個接觸孔相關聯之CD分佈或LCDU資料來產生,如至少參考以上圖6來描述。
在操作2610處,誤差貢獻信號2205經輸入至經訓練的分類器模型2250以判定分類2225,該分類指示誤差貢獻信號2205中誤差貢獻值的源。分類器模型2250可以多個格式中之任一者來輸出分類2225的值。在一些實施例中,分類2225可經輸出作為機率值(例如,0.0至1.0),該機率值指示信號2205中之誤差貢獻值係來自指定源的機率。舉例而言,分類2225的值可為「PRESIST =0.98」,該值指示存在誤差貢獻信號2205中之誤差貢獻值為抗蝕劑雜訊的「98%」機率。在一些實施例中,分類2225的值可指示誤差貢獻值係來自源中之每一者的機率。舉例而言,分類2225的值可為「PRESIST =0.98」、「PMASK =0.015」及「PSEM =0.005」,其指示存在信號2205中之誤差貢獻值為抗蝕劑雜訊的「98%」機率、信號2205中之誤差貢獻值為光罩雜訊的「1.5%」機率,且信號2205中之誤差貢獻值為SEM雜訊的「0.5%」機率。在一些實施例中,分類器模型2250可經組態以判定誤差貢獻源作為具有最高機率的源。
本發明使用ML模型來判定來自多個源的誤差貢獻。ML模型經訓練以預測針對給定特徵之來自各種源的誤差貢獻。舉例而言,特徵(例如,接觸孔)之影像提供為至ML模型的輸入,且ML模型針對輸入特徵預測來自各種源的誤差貢獻。訓練ML模型的細節至少參考圖27至圖28來描述,且預測誤差貢獻至少參考圖29至圖30來描述。
圖27A為根據實施例的用於訓練誤差貢獻模型以預測來自多個源的誤差貢獻的程序2700之流程圖。圖28為根據實施例的展示訓練誤差貢獻模型以判定來自多個源之誤差貢獻的方塊圖。在一些實施例中,誤差貢獻模型2805為使用諸如CNN、深CNN或遞迴神經網路的神經網路實施之ML模型。
在操作2705處,獲得多個資料集作為訓練資料2810,其中每一資料集包括印刷於基板上之圖案之特徵的影像資料及具有表示來自不同源之對特徵之誤差貢獻之誤差貢獻值的誤差貢獻資料。舉例而言,第一資料集2815可包括圖案(例如,接觸孔)之第一特徵的第一影像資料2816及具有誤差貢獻值的第一誤差貢獻資料2817,該等誤差貢獻值表示來自諸如光罩、抗蝕劑及SEM之多個源的對第一特徵之誤差貢獻。第一影像資料2816可包括第一特徵的影像。特徵之影像可使用諸如SEM之檢測工具來獲得。舉例而言,第一誤差貢獻資料2817可包括δCDMASK 、δCDRESIST 及δCDSEM 值分別作為來自源(即光罩、抗蝕劑及SEM)的誤差貢獻。如上文至少參考等式1所描述,δCD為給定特徵之CD值自數個特徵之CD值之平均值的偏差。誤差貢獻值可使用特徵之量測值資料,諸如CD來獲得。舉例而言,誤差貢獻值可使用線性巢套式模型來獲得,如至少參考圖24所描述。訓練資料可包括針對各種特徵之此類資料集。
在操作2710處,將訓練資料2810提供為至誤差貢獻模型2805的輸入從而訓練誤差貢獻模型2805以自訓練資料預測誤差貢獻資料。誤差貢獻模型2805之訓練為反覆程序,且經繼續(例如,藉由輸入訓練資料2810之的相同資料集或資料集的不同子集),直至成本函數減小(例如,超出指定臨限值或並不再減小)。訓練程序之額外細節至少參考以下圖27B予以描述。在成本函數已滿足指定準則(例如,並不再減小,已減小超出指定臨限值,或其減小的速率低於指定臨限值)之後,誤差貢獻模型2805被認為是「經過訓練的」,且可用以預測針對任何所要特徵的誤差貢獻值,例如如至少參考圖28所描述。
圖27B為根據實施例的用於訓練誤差貢獻模型以預測來自多個源的誤差貢獻的程序2750之流程圖。在一些實施例中,程序2750作為程序2700之操作2710的部分執行。
在操作2755處,誤差貢獻模型2805藉由輸入諸如第一資料集2815的參考資料集來執行以輸出具有針對參考資料集之誤差貢獻值的預測誤差貢獻資料2820。在一些實施例中,預測誤差貢獻資料2820可為誤差貢獻值,諸如δCDMASK 、δCDRESIST 及δCDSEM 的集合。
在操作2760處,誤差貢獻模型2805之成本函數經計算為例如與參考資料集相關聯之預測誤差貢獻資料2820與實際誤差貢獻資料之間的差。舉例而言,成本函數2761經判定為預測誤差貢獻資料2820中的誤差貢獻值之經預測集合與來自第一誤差貢獻資料2817之誤差貢獻值集合之間的差。在一些實施例中,來自第一誤差貢獻資料2817的誤差貢獻值集合經提供為具有第一影像資料2816的標記。
在操作2765處,誤差貢獻模型2805經調整,使得成本函數2761減小。在一些實施例中,用以減小成本函數2761的調整誤差貢獻模型2805包括調整模型參數,諸如誤差貢獻模型2805的權重及偏置。
在操作2770處,判定成本函數2761是否已滿足訓練準則(例如,成本函數並不再減小,已減小超出指定臨限值,或其減小之速率低於指定臨限值)。
若成本函數2761已滿足訓練準則,則誤差貢獻模型2805被認為經訓練且程序返回至程序2700的操作2710。然而,若成本函數2761尚未減小,則操作2755至2770運用來自訓練資料2810的不同資料集或相同資料集來重複,直至成本函數2761減小。舉例而言,第一反覆集合可藉由輸入針對第一接觸孔之子集的訓練資料2810之第一子集來執行,接著第二反覆集合可運用針對第二接觸孔之子集的訓練資料2810之第二子集執行,等等,直至成本函數2761減小。
圖29為根據實施例的用於判定來自多個源之對印刷於基板上之圖案之特徵之誤差貢獻的程序2900之流程圖。圖30為根據實施例的用於判定來自多個源的對待印刷於基板上之圖案之特徵的誤差貢獻之方塊圖。在操作2905處,誤差貢獻值經預測針對的特徵之影像資料3005,諸如接觸孔之影像輸入至經訓練誤差貢獻模型2805。在一些實施例中,影像3005可使用諸如SEM的檢測工具來獲得。
在操作2910處,誤差貢獻模型2805運用影像資料3005執行以產生誤差貢獻資料3025的預測。誤差貢獻資料3025可包括誤差貢獻值,該等誤差貢獻值表示來自多個源之對影像資料3005中之特徵的誤差貢獻。舉例而言,預測誤差貢獻資料3025可包括誤差貢獻值,諸如δCDMASK 、δCDRESIST 及δCDSEM 的集合,該等誤差貢獻值為分別來自諸如光罩、抗蝕劑及SEM之源的誤差貢獻。
雖然前述段落描述依據δCD預測誤差貢獻,但誤差貢獻模型2805亦可用以依據LCDU預測誤差貢獻。舉例而言,對特徵之LCDU的來自諸如光罩、抗蝕劑及SEM之源的誤差貢獻可分別表示為諸如LCDUMASK 、LCDURESIST 及LCDUSEM 。誤差貢獻模型2805可使用LCDU值並非δCD值來訓練。舉例而言,在訓練誤差貢獻模型2805之程序2700中,訓練資料2810中資料集中的每一者可包括多個影像及作為誤差貢獻值的LCDU值集合。舉例而言,第一資料集2815可包括對應於數個特徵(例如,接觸孔)之數個影像作為影像資料2816,以及表示來自各種源之對特徵之LCDU之誤差貢獻的一組LCDUMASK 、LCDURESIST 及LCDUSEM 作為誤差貢獻資料2817。在一些實施例中,類似於δCD值,LCDU誤差貢獻值可自線性巢套式模型獲得,如至少參考圖24所描述。在預測程序期間,對應於LCDU誤差貢獻值之預測將被產生針對之數個特徵(例如,接觸孔)的數個影像經輸入作為至經訓練誤差貢獻模型2805的影像資料3005。經訓練之誤差貢獻模型2805產生一組LCDUMASK 、LCDURESIST 及LCDUSEM 值,該等值表示來自各種源之誤差貢獻作為誤差貢獻資料3025。
另外,雖然前述段落描述產生針對特徵之誤差貢獻值的預測,但誤差貢獻模型2805亦可用以預測針對特徵上之多個量測點的誤差貢獻。舉例而言,誤差貢獻模型2805可預測針對特徵上之第一量測點的第一組誤差貢獻值(例如,δCD1 MASK 、δCD1 RESIST 及δCD1 SEM ),及針對第二量測點之第二組誤差貢獻值(例如,δCD2 MASK 、δCD2 RESIST 及δCD2 SEM )。誤差貢獻模型2805可每特徵使用多組誤差貢獻值而非單一組誤差貢獻值來訓練。舉例而言,在訓練誤差貢獻模型2805的程序2700中,訓練資料2810中的每一資料集可包括特徵之影像,及每一組誤差貢獻值對應於特徵上單一量測點的多組誤差貢獻值。舉例而言,若量測點之數目「n 」為「20」,則第一資料集2815可包括第一特徵之影像作為影像資料2816,且誤差貢獻資料2817可包括「20」組誤差貢獻值-一個集合針對「20」個量測點中的每一者。在預測程序期間,誤差貢獻值之預測將被產生針對的特徵之影像經輸入作為至經訓練誤差貢獻模型2805的該影像資料3005。經訓練誤差貢獻模型2805產生「n 」組誤差貢獻值之預測作為誤差貢獻資料3025,其中每一組誤差貢獻值對應於特徵上「n 」個量測點中的一者。誤差貢獻模型2805可以數種方式來組態以預測特徵上「n 」個量測點的誤差貢獻值。舉例而言,用以實施誤差貢獻模型2805之神經網路模型的密集層可經組態以產生n * m 個值,其中n 為特徵上之量測點的數目,且m 為對誤差源之源貢獻的數目(例如,針對諸如光罩、抗蝕劑及SEM之源為「3」)。在另一實例中,特徵之影像可(例如,使用神經網路編碼器)編碼成n * m 個值,該等值可作為訓練資料輸入至誤差貢獻模型2805以訓練誤差貢獻模型2805以產生針對特徵上n 個量測點中每一者的誤差貢獻值之預測。
可使用以下條項進一步描述實施例: 1.      一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於分解來自多個源的對印刷於一基板上之一圖案之多個特徵的誤差貢獻之方法,該方法包含: 獲得該基板上之該圖案的一影像; 使用該影像獲得該圖案之一特徵的複數個量測值,其中該等量測值針對不同感測器值獲得; 使用一分解方法使該複數個量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。 2.      如條項1之電腦可讀媒體,其中該等不同感測器值對應於與該影像相關聯的不同臨限值,其中每一臨限值對應於該影像中一像素值的一臨限值。 3.      如條項2之電腦可讀媒體,其中每一量測值對應於該等不同臨限值中之一者下該特徵的一臨界尺寸(CD)值。 4.      如條項2之電腦可讀媒體,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該影像的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 5.      如條項4之電腦可讀媒體,其進一步包含: 基於該光罩誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。 6.      如條項4之電腦可讀媒體,其進一步包含: 基於該抗蝕劑誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。 7.      如條項3至6中任一項之電腦可讀媒體,其中獲得該等量測值包括: 獲得具有第一複數個差量CD值的一第一信號,該第一複數個差量CD值係來自該等不同臨限值中之一第一臨限值下的複數個量測點, 獲得具有第二複數個差量CD值的一第二信號,該第二複數個差量CD值係來自該等不同臨限值中之一第二臨限值下的該複數個量測點,且 獲得具有第三複數個差量CD值的一第三信號,該第三複數個差量CD值係來自該等不同臨限值中之一第三臨限值下的該複數個量測點。 8.      如條項7之電腦可讀媒體,其中每一差量CD值按臨限值且按量測點來判定,且指示一給定特徵之一CD值自該等特徵之複數個CD值之一平均值的一偏差。 9.      如條項7之電腦可讀媒體,其中每一差量CD值指示一給定臨限值下一給定特徵之一輪廓線上的一指定點與該給定特徵之一參考輪廓線上之一參考點之間的一距離,其中該參考輪廓線為該給定特徵之該輪廓線的一模擬版本。 10.   如條項7之電腦可讀媒體,其中使每一量測值相關包括: 使該第一信號中的該第一複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第一線性混合體相關, 使該第二信號中的該第二複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第二線性混合體相關,且 使該第三信號中的該第三複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第三線性混合體相關。 11.   如條項10之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 使用該第一線性混合體、該第二線性混合體及該第三線性混合體且自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導出:(a)具有複數個該等影像獲取工具誤差貢獻的一第一輸出信號,(b)具有複數個該等光罩誤差貢獻的一第二輸出信號,及(c)具有複數個該等抗蝕劑誤差貢獻的一第三輸出信號。 12.   如條項11之電腦可讀媒體,其中每一誤差貢獻依據該第一臨限值位準、該第二臨限值位準及該第三臨限值位準下的該對應誤差貢獻來判定。 13.   如條項11之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 判定具有一組係數之一混合矩陣,該組係數分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值產生對應於每一差量CD值的該等誤差貢獻之該第一線性混合體、該第二線性混合體及該第三線性混合體, 判定該混合矩陣的一逆矩陣,及 使用該混合矩陣之該逆矩陣分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導判定:(a)具有該複數個該等影像獲取工具誤差貢獻的該第一輸出信號,(b)具有該複數個該等光罩誤差貢獻的該第二輸出信號,及(c)具有該複數個該等抗蝕劑誤差貢獻的該第三輸出信號。 14.   如條項2至3中任一項之電腦可讀媒體,其中獲得該等量測值包括: 獲得該特徵的對應於該等不同臨限值中之一第一臨限值的一第一輪廓線, 獲得該第一輪廓線的一第一CD值, 獲得該特徵的對應於該等不同臨限值中之一第二臨限值的一第二輪廓線,且 獲得該第二輪廓線的一第二CD值。 15.   如條項14之電腦可讀媒體,其進一步包含: 獲得該第一CD值之一第一差量CD值,其中該第一差量CD指示該第一CD值自在該第一臨限值下在複數個量測點處量測之複數個第一CD值之一平均值的一偏差。 16.   如條項15之電腦可讀媒體,其中獲得該第一差量CD值包括: 獲得對應於該複數個量測點處該第一臨限值的該複數個第一CD值, 獲得該複數個第一CD值的一平均值, 將該平均值移位至一零值,且 獲得該第一差量CD值作為該第一CD值與該平均值之間的一差。 17.   如條項15之電腦可讀媒體,其中該複數個量測點定位於該圖案之(a)該特徵或(b)複數個特徵中的至少一者上。 18.   如條項15至17中任一項之電腦可讀媒體,其中使每一量測值相關包括: 使對應於該第一臨限值之該第一差量CD值與該等誤差貢獻之一第一誤差貢獻及一第二誤差貢獻的一第一線性混合體相關,及 使對應於該第二臨限值之一第二差量CD值與該第一誤差貢獻及該第二誤差貢獻的一第二線性混合體相關。 19.   如條項18之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 使用該分解方法自該第一差量CD值及該第二差量CD值且該第一線性混合體及該第二線性混合體導出該第一誤差貢獻及該第二誤差貢獻。 20.   如條項1之電腦可讀媒體,其中該等量測值對應於該特徵的針對該等不同感測器值的一局部臨界尺寸均一性(LCDU)值。 21.   如條項1及20中任一項之電腦可讀媒體,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同劑量位階。 22.   如條項1及20中任一項之電腦可讀媒體,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同聚焦位階。 23.   如條項20至21中任一項之電腦可讀媒體,其進一步包含: 基於一指定聚焦位階獲得對應於一第一劑量位階的一第一LCDU值,及 基於該指定聚焦位階獲得對應於一第二劑量位階的一第二LCDU值。 24.   如條項20或22中任一項之電腦可讀媒體,其進一步包含: 基於一指定劑量位階獲得對應於一第一聚焦位階的一第一LCDU值,及 基於該指定劑量位階獲得對應於一第二聚焦位階的一第二LCDU值。 25.   如條項23或24中任一項之電腦可讀媒體,其中使每一量測值相關包括: 使該第一LCDU值與該等誤差貢獻之一第一誤差貢獻與該等誤差貢獻之一第二誤差貢獻的一第一線性混合體相關,及 使該第二LCDU值與該第一誤差貢獻及該第二誤差貢獻的一第二線性混合體相關。 26.   如條項25之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 使用該分解方法自該第一LCDU值及該第二LCDU值且該第一線性混合體及該第二線性混合體導出該第一誤差貢獻及該第二誤差貢獻。 27.   如條項1之電腦可讀媒體,其中該等量測值對應於該特徵的針對該等不同感測器值之一線寬粗糙度(LWR)值。 28.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於分解來自多個源的對與印刷於一基板上之一圖案相關聯之多個特徵的誤差貢獻之一方法,該方法包含: 獲得該圖案之一影像; 獲得該圖案之該等特徵之輪廓線之不同高度下的複數個差量臨界尺寸(CD)值,其中該複數個差量CD值包括:(a)對應於一第一輪廓線高度之該等特徵的一第一組差量CD值,(b)對應於一第二輪廓線高度的該等特徵之一第二組差量CD值,及(c)對應於一第三輪廓線高度的該等特徵之一第三組差量CD值; 使用一分解方法使(a)該第一組差量CD值與一第一誤差貢獻、一第二誤差貢獻及一第三誤差貢獻的一第一線性混合體相關,(b)該第二組差量CD值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第二線性混合體相關,(c)該第三組差量CD值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第三線性混合體相關;及 自該等線性混合體且使用該分解方法導出該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻。 29.   如條項28之電腦可讀媒體,其中每一差量CD值指示一特徵之一CD值自該等特徵的於一指定輪廓線高度下在複數個量測點處量測的複數個CD值之一平均值的一偏差。 30.   如條項28之電腦可讀媒體,其中每一差量CD值指示一給定輪廓線高度下一特徵之一輪廓線上的一指定點與該特徵之一參考輪廓線上之一參考點之間的一距離,其中該參考輪廓線為該給定特徵之該輪廓線的一模擬版本。 31.   如條項28之電腦可讀媒體,其中每一輪廓線高度藉由定限該影像至一指定值的像素值來判定。 32.   如條項28之電腦可讀媒體,其進一步包含: 基於該等誤差貢獻中之一或多者調整用以印刷該圖案之一微影設備之一光罩或一源中的至少一者的一或多個參數。 33.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於分解來自多個源的對與一基板上之一圖案相關聯之多個特徵的誤差貢獻之一方法,該方法包含: 獲得與該圖案相關聯之局部臨界尺寸均一性(LCDU)資料,其中該LCDU資料針對用以印刷該圖案之一微影設備之一源的一指定聚焦位階包括(a)該圖案之該等特徵的對應於該源之一第一劑量位階的一第一組LCDU值,(b)該等特徵的對應於一第二劑量位階之一第二組LCDU值,及(c)該等特徵的對應於一第三劑量位階的一第三組LCDU值; 使用一分解方法使(a)該第一組LCDU值與一第一誤差貢獻、一第二誤差貢獻及一第三誤差貢獻的一第一線性混合體相關,(b)該第二組LCDU值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第二線性混合體相關,(c)該第三組LCDU值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第三線性混合體相關;及 自該等線性混合體且使用該分解方法導出該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻。 34.   一種用於分解來自多個源之對與印刷於一基板上之一圖案相關聯之多個特徵的誤差貢獻的方法,該方法包含: 獲得該基板上之該圖案的一影像; 使用該影像獲得該圖案之一特徵的複數個量測值,其中該等量測值對應於與該影像相關聯的不同臨限值; 使用一分解方法使該複數個量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。 35.   如條項34之方法,其中每一量測值對應於該等特徵在該等不同臨限值中之一者處的一臨界尺寸(CD)值。 36.   如條項35之方法,其中每一臨限值對應於該影像中一像素值的一臨限值。 37.   如條項35至36中任一項之方法,其中該等誤差貢獻包括: 對該CD值的一第一誤差貢獻、一第二誤差貢獻及一第三誤差貢獻,其中該第一誤差貢獻係來自用以印刷該圖案的一抗蝕劑,該第二誤差貢獻係來自用以印刷該圖案於該基板上的一光罩,且該第三誤差貢獻係來自用以獲取該影像的一影像獲取工具。 38.   一種用於分解來自多個源之對與印刷於一基板上之一圖案相關聯之一或多個特徵的誤差貢獻的方法,該方法包含: 獲得與該圖案相關聯之局部臨界尺寸均一性(LCDU)資料,其中該LCDU資料針對用以印刷該圖案之一微影設備之一源的一指定聚焦位階包括(a)該圖案之一或多個特徵的對應於該源之一第一劑量位階的一第一組LCDU值,(b)該一或多個特徵的對應於一第二劑量位階之一第二組LCDU值,及(c)該一或多個特徵的對應於一第三劑量位階的一第三組LCDU值; 使用一分解方法使(a)該第一組LCDU值與一第一誤差貢獻、一第二誤差貢獻及一第三誤差貢獻的一第一線性混合體相關,(b)該第二組LCDU值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第二線性混合體相關,(c)該第三組LCDU值與該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻的一第三線性混合體相關;及 自該等線性混合體且使用該分解方法導出該第一誤差貢獻、該第二誤差貢獻及該第三誤差貢獻。 39.   一種用於分解來自多個源之對印刷於一基板上之一圖案之多個特徵的誤差貢獻的設備,該設備包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一方法: 獲得該基板上之該圖案的一影像; 使用該影像獲得該圖案之一特徵的複數個量測值,其中該等量測值針對不同感測器值獲得; 使用一分解方法使該複數個量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。 40.   如條項39之設備,其中該等不同感測器值對應於與該影像相關聯之不同臨限值,其中每一臨限值對應於該影像中一像素值的一臨限值。 41.   如條項40之設備,其中每一量測值對應於該特徵在該等不同臨限值中之一者處的一臨界尺寸(CD)值。 42.   如條項40之設備,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該影像的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 43.   如條項42之設備,其進一步包含: 基於該光罩誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。 44.   如條項42之設備,其進一步包含: 基於該抗蝕劑誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。 45.   如條項41至44中任一項之設備,其中獲得該等量測值包括: 獲得具有第一複數個差量CD值的一第一信號,該第一複數個差量CD值係來自該等不同臨限值中之一第一臨限值下的複數個量測點, 獲得具有第二複數個差量CD值的一第二信號,該第二複數個差量CD值係來自該等不同臨限值中之一第二臨限值下的該複數個量測點,且 獲得具有第三複數個差量CD值的一第三信號,該第三複數個差量CD值係來自該等不同臨限值中之一第三臨限值下的該複數個量測點。 46.   如條項45之設備,其中每一差量CD值按臨限值且按量測點來判定,且指示一給定特徵之一CD值自該等特徵之複數個CD值之一平均值的一偏差。 47.   如條項45之設備,其中每一差量CD值指示一給定臨限值下一給定特徵之一輪廓線上的一指定點與該給定特徵之一參考輪廓線上之一參考點之間的一距離,其中該參考輪廓線為該給定特徵之該輪廓線的一模擬版本。 48.   如條項45之設備,其中使每一量測值相關包括: 使該第一信號中的該第一複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第一線性混合體相關, 使該第二信號中的該第二複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第二線性混合體相關,且 使該第三信號中的該第三複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第三線性混合體相關。 49.   如條項48之設備,其中導出該等誤差貢獻中之每一者包括: 使用該第一線性混合體、該第二線性混合體及該第三線性混合體自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導出:(a)具有複數個該等影像獲取工具誤差貢獻的一第一輸出信號,(b)具有複數個該等光罩誤差貢獻的一第二輸出信號,及(c)具有複數個該等抗蝕劑誤差貢獻的一第三輸出信號。 50.   如條項49之設備,其中導出該等誤差貢獻中之每一者包括: 使用獨立分量分析(ICA)方法導出該等誤差貢獻中的每一者。 51.   如條項50之設備,其中使用該ICA方法導出該等誤差貢獻中之每一者包括: 判定具有一組係數之一混合矩陣,該組係數分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值產生對應於每一差量CD值的該等誤差貢獻之該第一線性混合體、該第二線性混合體及該第三線性混合體, 判定該混合矩陣的一逆矩陣,及 使用該混合矩陣之該逆矩陣分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導判定:(a)具有該複數個該等影像獲取工具誤差貢獻的該第一輸出信號,(b)具有該複數個該等光罩誤差貢獻的該第二輸出信號,及(c)具有該複數個該等抗蝕劑誤差貢獻的該第三輸出信號。 52.   如條項49之設備,其中導出該等誤差貢獻中之每一者包括: 使用重建構ICA方法或正交ICA方法來導出該等誤差貢獻中的每一者。 53.   如條項40至41中任一項之設備,其中獲得該等量測值包括: 獲得該特徵的對應於該等不同臨限值中之一第一臨限值的一第一輪廓線, 獲得該第一輪廓線的一第一CD值, 獲得該特徵的對應於該等不同臨限值中之一第二臨限值的一第二輪廓線,且 獲得該第二輪廓線的一第二CD值。 54.   如條項53之設備,其進一步包含: 獲得該第一CD值之一第一差量CD值,其中該第一差量CD指示該第一CD值自在該第一臨限值下在複數個量測點處量測之複數個第一CD值之一平均值的一偏差。 55.   如條項54之設備,其中獲得該第一差量CD值包括: 獲得對應於該複數個量測點處該第一臨限值的該複數個第一CD值, 獲得該複數個第一CD值的一平均值, 將該平均值移位至一零值,且 獲得該第一差量CD值作為該第一CD值與該平均值之間的一差。 56.   如條項55之設備,其中該複數個量測點定位於該圖案之(a)該特徵或(b)複數個特徵中的至少一者上。 57.   如條項53至55中任一項之設備,其中使每一量測值相關包括: 使對應於該第一臨限值之該第一差量CD值與該等誤差貢獻之一第一誤差貢獻及一第二誤差貢獻的一第一線性混合體相關,及 使對應於該第二臨限值之一第二差量CD值與該第一誤差貢獻及該第二誤差貢獻的一第二線性混合體相關。 58.   如條項57之設備,其中導出該等誤差貢獻中之每一者包括: 使用該分解方法自該第一差量CD值及該第二差量CD值且該第一線性混合體及該第二線性混合體導出該第一誤差貢獻及該第二誤差貢獻。 59.   如條項39之設備,其中該等量測值對應於該特徵的針對該等不同感測器值的一局部臨界尺寸均一性(LCDU)值。 60.   如條項39及60中任一項之設備,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同劑量位階。 61.   如條項39及60中任一項之設備,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同聚焦位階。 62.   如條項59至60中任一項之設備,其進一步包含: 基於一指定聚焦位階獲得對應於一第一劑量位階的一第一LCDU值,及 基於該指定聚焦位階獲得對應於一第二劑量位階的一第二LCDU值。 63.   如條項59或61中任一項之設備,其進一步包含: 基於一指定劑量位階獲得對應於一聚焦位階之一第一臨限值的一第一LCDU值,及 基於該指定劑量位階獲得對應於該聚焦位階之一第二臨限值的一第二LCDU值。 64.   如條項62或63中任一項之設備,其中使每一量測值相關包括: 使該第一LCDU值與該等誤差貢獻之一第一誤差貢獻與該等誤差貢獻之一第二誤差貢獻的一第一線性混合體相關,及 使該第二LCDU值與該第一誤差貢獻及該第二誤差貢獻的一第二線性混合體相關。 65.   如條項64之設備,其中導出該等誤差貢獻中之每一者包括: 使用該分解方法自該第一LCDU值及該第二LCDU值且該第一線性混合體及該第二線性混合體導出該第一誤差貢獻及該第二誤差貢獻。 66.   如條項39之設備,其中該等量測值對應於該特徵之針對該等不同感測器值的一線寬粗糙度(LWR)。 67.   一種電腦程式產品,其包含上面記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如以上條項中任一項之方法。 68.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於對一機器學習模型進行訓練以判定對待印刷於一基板上之一圖案之多個特徵的誤差貢獻之一源的方法,該方法包含: 獲得具有多個資料集的訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵之 一誤差貢獻的誤差貢獻值,且其中每一資料集係與一實際分類相關聯,該實際分類識別該對應資料集之該誤差貢獻的一源;及 基於該訓練資料訓練一機器學習模型來預測該資料集之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差之一成本函數減小。 69.   如條項68之電腦可讀媒體,其中獲得該訓練資料包括: 使用用於印刷該圖案之一設備之不同焦點及劑量位階值獲得與該等特徵相關聯的局部臨界尺寸均一性(LCDU)資料。 70.   如條項69之電腦可讀媒體,其中獲得該訓練資料包括: 分解與該等特徵相關聯之LCDU資料以自該等多個源中之每一者導出該等誤差貢獻值。 71.   如條項68之電腦可讀媒體,其中獲得該訓練資料包括: 產生(a)該訓練資料之一第一資料集,該第一資料集具有表示來自該多個源之一第一源之一誤差貢獻的誤差貢獻值,(b)該訓練資料之一第二資料集,該第二資料集具有表示來自該多個源之一第二源之一誤差貢獻的誤差貢獻值,及(c)該訓練資料之一第三資料集,該第三資料集具有表示來自該多個源之一第三源之一誤差貢獻的誤差貢獻值,且 使(d)該第一資料集與一第一分類相關聯,該第一分類識別該第一源為該誤差貢獻源,(e)使該第二資料集與一第二分類相關聯,該第二分類將該第二源識別為該誤差貢獻源,及(f)該第三資料集與一第三分類相關聯,該第三分類識別該第三源為該誤差貢獻源。 72.   如條項71之電腦可讀媒體,其中該第一源為用以獲取該圖案之一影像的一影像獲取工具,其中該第二源為用以將該圖案印刷於該基板上之一光罩,且其中該第三源為用以印刷該圖案的一抗蝕劑連同用以印刷該圖案於該基板上之一設備之一光子散粒雜訊。 73.   如條項71之電腦可讀媒體,其中產生該第一資料集包括: 產生該第一資料集、該第二資料集及該第三資料集的多個群組,其中每一群組包括針對該等特徵之一不同子集的分別表示來自該第一源、該第二源及該第三源之一誤差貢獻的誤差貢獻值。 74.   如條項68之電腦可讀媒體,其中訓練該機器學習模型為每一反覆包括以下各者的一反覆程序: (a)使用該訓練資料來執行該機器學習模型以輸出該參考資料集之該預測分類, (b)判定該成本函數為該預測分類與該實際分類之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 75.   如條項68至74中任一項之電腦可讀媒體,其中該機器學習模型為一迴旋神經網路。 76.   如條項68之電腦可讀媒體,其進一步包含: 接收具有誤差貢獻值之一指定資料集,該等誤差貢獻值表示對印刷於一指定基板上之一指定圖案之一組特徵的來自該多個源中之一者的一誤差貢獻;及 執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為針對該指定資料集中該等誤差貢獻值的該誤差貢獻源。 77.   如條項76之電腦可讀媒體,其中接收該指定資料集包括: 使用一分解方法來分解與該組特徵相關聯的多個量測值以導出來自該多個源中每一者的表示誤差貢獻之資料集集合,其中該指定資料集為資料集集合中的一者且對應於來自多個源中之一者的誤差貢獻。 78.   如條項77之電腦可讀媒體,其中分解該等量測值包括: 獲得該指定圖案之一影像; 使用該影像獲得該等量測值,其中該等量測值針對不同感測器值獲得; 使用該分解方法使該等量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。 79.   如條項78之電腦可讀媒體,其中該等不同感測器值對應於與該影像相關聯的不同臨限位準,其中每一量測值對應於該等不同臨限值中之一者處該組特徵中之一特徵的一差量臨界尺寸(CD)值,其中該差量CD值指示該特徵之一CD值自該組特徵之複數個CD值之一平均值的一偏差。 80.   如條項79中任一項之電腦可讀媒體,其中該等不同臨限值中之每一臨限值對應於該影像中一像素值的一臨限值。 81.   如條項78之電腦可讀媒體,其中該等量測值對應於該特徵的在該等不同感測器值處之LCDU值。 82.   如條項81之電腦可讀媒體,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同劑量位階。 83.   如條項81之電腦可讀媒體,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同聚焦位階。 84.   如條項78至83中任一項之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 使用獨立分量分析(ICA)方法作為該分解方法導出該等誤差貢獻中的每一者。 85.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的一方法,該方法包含: 處理該圖案之一或多個影像以獲得一資料集集合,其中該資料集集合中之每一資料集具有表示來自多個源中之一者對該等特徵的一誤差貢獻的誤差貢獻值; 輸入該多個資料集中之一指定資料集至一機器學習模型;及 執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為針對該指定資料集中該等誤差貢獻值的該誤差貢獻源。 86.   如條項85中任一項之電腦可讀媒體,其中執行該機器學習模型來判定該分類包括: 使用多個資料集來訓練該機器學習模型以判定該指定資料集的該分類,其中該多個資料集中之每一資料集包括對該等特徵的表示來自該多個源中之一者之一誤差貢獻的誤差貢獻值,且其中每一資料集係與一實際分類相關聯,該實際分類識別該對應資料集之誤差貢獻值之該誤差貢獻的一源。 87.   如條項86中任一項之電腦可讀媒體,其中訓練該機器學習模型包括: 訓練該機器學習模型來判定該資料集之一參考資料集的一預測分類,使得判定該參考資料集之該預測分類與一實際分類之間的一差之一成本函數減小。 88.   如條項87之電腦可讀媒體,其中訓練該機器學習模型為每一反覆包括以下各者的一反覆程序: (a)使用該多個資料集執行該機器學習模型以輸出該參考資料集的該預測分類, (b)判定該成本函數為該預測分類與該實際分類之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 89.   如條項86之電腦可讀媒體,其中訓練該機器學習模型包括: 產生(a)該多個資料集之一第一資料集,該第一資料集具有表示來自該多個源之一第一源之一誤差貢獻的誤差貢獻值,(b)該多個資料集之一第二資料集,該第二資料集具有表示來自該多個源之一第二源之一誤差貢獻的誤差貢獻值,及(c)該多個資料集之一第三資料集,該第三資料集具有表示來自該多個源之一第三源之一誤差貢獻的誤差貢獻值,且 使(d)該第一資料集與一第一分類相關聯,該第一分類識別該第一源為該誤差貢獻源,(e)使該第二資料集與一第二分類相關聯,該第二分類將該第二源識別為該誤差貢獻源,及(f)該第三資料集與一第三分類相關聯,該第三分類識別該第三源為該誤差貢獻源。 90.   如條項89之電腦可讀媒體,其中產生該第一資料集包括: 產生該第一資料集、該第二資料集及該第三資料集的多個群組,其中每一群組包括針對該等特徵之一不同子集的分別表示來自該第一源、該第二源及該第三源之一誤差貢獻的誤差貢獻值。 91.   如條項90之電腦可讀媒體,其進一步包含: 在該第一資料集、該第二資料集及該第三資料集之另一群組之後,藉由輸入該第一資料集、該第二資料集及該第三資料集的一個群組來訓練該機器學習模型。 92.   如條項85之電腦可讀媒體,其中處理該一或多個影像以獲得該資料集集合包括: 獲得該等特徵之輪廓線之不同高度下的複數個差量臨界尺寸(CD)值,其中該複數個差量CD值包括:(a)該等特徵的對應於一第一輪廓線高度之一第一組差量CD值,(b)該等特徵之對應於一第二輪廓線高度的一第二組差量CD值,及(c)該等特徵之對應於一第三輪廓線高度的一第三組差量CD值; 使用一分解方法使(a)該第一組差量CD值與來自該多個源之該誤差貢獻的一第一線性混合體相關,(b)該第二組差量CD值與來自該多個源之該誤差貢獻的一第二線性混合體相關,(c)該第三組差量CD值與來自該多個源之該誤差貢獻的一第三線性混合體相關;及 自該等線性混合體且使用該分解方法導出來自該等源中之每一者的該誤差貢獻, 其中該資料集集合中的一第一資料集包括表示來自該多個源中之一第一者之一誤差貢獻的誤差貢獻值, 其中該資料集集合之一第二資料集包括來自該多個源中之一第二源之一誤差貢獻的誤差貢獻值,且 其中該資料集集合中的一第三資料集包括表示來自該多個源中之一第三者之一誤差貢獻的誤差貢獻值。 93.      如條項92之電腦可讀媒體,其中每一輪廓線高度藉由定限該一或多個影像至一指定值的像素值來判定。 94.      如條項85之電腦可讀媒體,其中處理該一或多個影像以獲得該資料集集合包括: 獲得與該圖案相關聯之局部臨界尺寸均一性(LCDU)資料,其中該LCDU資料針對用以印刷該圖案之一微影設備之一源的一指定聚焦位階包括(a)該等特徵的對應於該源之一第一劑量位階的一第一組LCDU值,(b)該等特徵的對應於一第二劑量位階之一第二組LCDU值,及(c)該等特徵的對應於一第三劑量位階的一第三組LCDU值; 使用一分解方法使(a)該第一組LCDU值與來自該多個源之該誤差貢獻的一第一線性混合體相關,(b)該第二組LCDU值與來自該多個源之該誤差貢獻的一第二線性混合體相關,(c)該第三組LCDU值與來自該多個源之該誤差貢獻的一第三線性混合體相關;及 自該等線性混合體且使用該分解方法導出來自該等源中之每一者的該誤差貢獻, 其中該資料集集合中的一第一資料集包括表示來自該多個源中之一第一者之一誤差貢獻的誤差貢獻值, 其中該資料集集合之一第二資料集包括來自該多個源中之一第二源之一誤差貢獻的誤差貢獻值,且 其中該資料集集合中的一第三資料集包括表示來自該多個源中之一第三者之一誤差貢獻的誤差貢獻值。 95.      一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的一方法,該方法包含: 將具有誤差貢獻值的一指定資料集輸入至一機器學習模型,該等誤差貢獻值表示來自多個源中之一者對該等特徵之一誤差貢獻;及 執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為針對該指定資料集中該等誤差貢獻值的該誤差貢獻源。 96.      如條項95中任一項之電腦可讀媒體,其中輸入該指定資料集包括: 處理該圖案之一影像以獲得一資料集集合,其中該資料集集合中之每一資料集具有表示對該等特徵之來自該多個源中之一者之一誤差貢獻的誤差貢獻值,其中該指定資料集為該資料集集合中的一個資料集。 97.      一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源之方法,該方法包含: 獲得具有多個資料集的訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵的一誤差貢獻的誤差貢獻值,且其中每一資料集係與一實際分類相關聯,該實際分類識別該對應資料集之該誤差貢獻的一源;及 基於該訓練資料訓練一機器學習模型來預測該資料集之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差之一成本函數減小。 98.      如條項97之方法,其中獲得該訓練資料包括: 使用用於印刷該圖案之一設備之不同焦點及劑量位階值獲得與該等特徵相關聯的局部臨界尺寸均一性(LCDU)資料或LWR資料。 99.      如條項98之方法,其中獲得該訓練資料包括: 分解與該等特徵相關聯之LCDU資料或LWR資料以自該等多個源中之每一者導出該等誤差貢獻。 100.   如條項97之方法,其中獲得該訓練資料包括: 產生(a)該訓練資料之一第一資料集,該第一資料集具有表示來自該多個源之一第一源之一誤差貢獻的誤差貢獻值,(b)該訓練資料之一第二資料集,該第二資料集具有表示來自該多個源之一第二源之一誤差貢獻的誤差貢獻值,及(c)該訓練資料之一第三資料集,該第三資料集具有表示來自該多個源之一第三源之一誤差貢獻的誤差貢獻值,且 使(d)該第一資料集與一第一分類相關聯,該第一分類識別該誤差貢獻的一源為該第一源,(e)使該第二資料集與一第二分類相關聯,該第二分類將該誤差貢獻的一源識別為該第二源,及(f)該第三資料集與一第三分類相關聯,該第三分類識別該誤差貢獻之一源為該第三源。 101.   如條項100之方法,其中該第一源為用以獲取該圖案之一影像的一影像獲取工具,其中該第二源為用以印刷該圖案於該基板上的一光罩,且其中該第三源為用以印刷該圖案的一抗蝕劑連同用以印刷該圖案於一基板上之一設備的一光子散粒雜訊。 102.   如條項100之方法,其中產生該第一資料集包括: 產生該第一資料集、該第二資料集及該第三資料集的多個群組,其中每一群組包括針對該等特徵之一不同子集的分別表示來自該第一源、該第二源及該第三源之一誤差貢獻的誤差貢獻值。 103.   如條項97之方法,其中訓練該機器學習模型為其中每一反覆包括以下各者的一反覆程序: (a)使用該訓練資料來執行該機器學習模型以輸出該參考資料集之該預測分類, (b)判定該成本函數為該預測分類與該實際分類之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 104.   一種用於判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的方法,該方法包含: 處理該圖案之一影像以獲得一資料集集合,其中該資料集集合中之每一資料集具有表示來自多個源中之一者對該等特徵的一誤差貢獻的誤差貢獻值; 輸入該多個資料集中之一指定資料集至一機器學習模型;及 執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為針對該指定資料集中該等誤差貢獻值的該誤差貢獻源。 105.   一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之多個特徵的一誤差貢獻源的設備,該設備包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一方法: 獲得具有多個資料集的訓練資料,其中每一資料集具有表示來自多個源中之一者對該等特徵的一誤差貢獻的誤差貢獻值,且其中每一資料集係與一實際分類相關聯,該實際分類識別該對應資料集之該誤差貢獻的一源;及 基於該訓練資料訓練一機器學習模型來預測該資料集之一參考資料集的一分類,使得判定該參考資料集之該預測分類與該實際分類之間的一差之一成本函數減小。 106.   如條項105之設備,其中獲得該訓練資料包括: 獲得針對具有特徵之一影像上不同臨限位準的與該等特徵相關聯之局部臨界尺寸均一性(LCDU)資料或線寬粗糙度(LWR)資料,或使用用於印刷該圖案之一設備的不同聚焦位階值及劑量位階值。 107.   如條項106之設備,其中獲得該訓練資料包括: 分解與該等特徵相關聯之LCDU資料或LWR資料以自該多個源中之每一者導出該等誤差貢獻值。 108.   如條項105之設備,其中獲得該訓練資料包括: 產生(a)該訓練資料之一第一資料集,該第一資料集具有表示來自該多個源之一第一源之一誤差貢獻的誤差貢獻值,(b)該訓練資料之一第二資料集,該第二資料集具有表示來自該多個源之一第二源之一誤差貢獻的誤差貢獻值,及(c)該訓練資料之一第三資料集,該第三資料集具有表示來自該多個源之一第三源之一誤差貢獻的誤差貢獻值,且 使(d)該第一資料集與一第一分類相關聯,該第一分類識別該第一源為該誤差貢獻源,(e)使該第二資料集與一第二分類相關聯,該第二分類將該第二源識別為該誤差貢獻源,及(f)該第三資料集與一第三分類相關聯,該第三分類識別該第三源為該誤差貢獻源。 109.   如條項108之設備,其中該第一源為用以獲取該圖案之一影像的一影像獲取工具,其中該第二源為用以印刷該圖案於該基板上的一光罩,且其中該第三源為用以印刷該圖案的一抗蝕劑連同用以印刷該圖案於一基板上之一設備的一光子散粒雜訊。 110.   如條項108之設備,其中產生該第一資料集包括: 產生該第一資料集、該第二資料集及該第三資料集的多個群組,其中每一群組包括針對該等特徵之一不同子集的分別表示來自該第一源、該第二源及該第三源之一誤差貢獻的誤差貢獻值。 111.   如條項105之設備,其中訓練該機器學習模型為每一反覆包括以下各者的一反覆程序: (a)使用該訓練資料來執行該機器學習模型以輸出該參考資料集之該預測分類, (b)判定該成本函數為該預測分類與該實際分類之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 112.   如條項105至111中任一項之設備,其中該為遞迴神經網路。 113.   如條項105之設備,其進一步包含: 接收具有誤差貢獻值之一指定資料集,該等誤差貢獻值表示對印刷於一指定基板上之一指定圖案之一組特徵的來自該多個源中之一者的一誤差貢獻;及 執行該機器學習模型以判定與該指定資料集相關聯的一分類,其中該分類識別該多個源中之一指定源為針對該指定資料集中該等誤差貢獻值的該誤差貢獻源。 114.   如條項113之設備,其中接收該指定資料集包括: 使用一分解方法來分解與該組特徵相關聯的多個量測值以導出來自該多個源中每一者的表示誤差貢獻之資料集集合,其中該指定資料集為資料集集合中的一者且對應於來自多個源中之一者的誤差貢獻。 115.   如條項114之設備,其中分解該等量測值包括: 獲得該指定圖案之一影像; 使用該影像獲得該等量測值,其中該等量測值針對不同感測器值獲得; 使用該分解方法使該等量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。 116.   如條項115之設備,其中該等不同感測器值對應於與該影像相關聯的不同臨限位準,其中每一量測值對應於該等不同臨限值中之一者處該組特徵中之一特徵的一差量臨界尺寸(CD)值,其中該差量CD值指示該特徵之一CD值自該組特徵之複數個CD值之一平均值的一偏差。 117.   如條項116之設備,其中該CD值為該特徵之一所量測輪廓線與該特徵之一經模擬輪廓之間的一差。 118.   如條項116之設備,其中該等不同臨限值中之每一臨限值對應於該影像中一像素值的一臨限值。 119.   如條項115之設備,其中該等量測值對應於該特徵的在該等不同感測器值處之LCDU值或LWR值。 120.   如條項119之設備,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同劑量位階。 121.   如條項119之設備,其中該等不同感測器值對應於與用以印刷該圖案之一微影設備之一源相關聯的不同聚焦位階。 122.   如條項115至121中任一項之設備,其中導出該等誤差貢獻中之每一者包括: 使用ICA方法作為分解方法導出該等誤差貢獻中的每一者。 123.   一種電腦程式產品,其包含上面記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如以上條項中任一項之方法。 124.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之一特徵的誤差貢獻之方法,該方法包含: 獲得具有多個資料集之訓練資料,其中該等資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對該一或多個特徵之誤差貢獻的一第一誤差貢獻資料;及 基於該訓練資料訓練一機器學習模型以預測該第一資料集之誤差貢獻資料,使得指示該預測誤差貢獻資料與該第一誤差貢獻資料之間的一差之一成本函數減小。 125.   如條項124之電腦可讀媒體,其中該第一影像資料包括該一或多個特徵中之一特徵的一第一影像,且其中該第一誤差貢獻資料包括對應於該第一特徵之差量臨界尺寸(CD)值的一第一組誤差貢獻值。 126.   如條項125之電腦可讀媒體,其中每一差量CD值指示該第一特徵之一CD值自該一或多個之複數個CD值之一平均值的一偏差。 127.   如條項124之電腦可讀媒體,其中該第一影像資料包括該一或多個特徵之多個特徵的一第一組影像,且其中該第一誤差貢獻資料包括對應於該等特徵之局部CD均一性(LCDU)值的一第一組誤差貢獻值。 128.   如條項124之電腦可讀媒體,其中該第一誤差貢獻資料包括對應於該一或多個特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 129.   如條項124之電腦可讀媒體,其中該第一誤差貢獻資料基於該一或多個特徵之量測值資料來判定。 130.   如條項129之電腦可讀媒體,其中該量測值資料包含該一或多個特徵中之一特徵的一CD值或該一或多個特徵中之多個特徵的一LCDU值。 131.   如條項124之電腦可讀媒體,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 132.   如條項124之電腦可讀媒體,其中訓練該機器學習模型為每一反覆包括以下各者的一反覆程序: (a)使用該多個資料集執行該機器學習模型以輸出該預測誤差貢獻資料, (b)判定該成本函數為該預測誤差貢獻資料與該第一誤差貢獻資料之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 133.   如條項124之電腦可讀媒體,其進一步包含: 接收待印刷於一指定基板上之一指定圖案之一組特徵的影像資料;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含對該組特徵的來自該多個源之誤差貢獻。 134.   如條項133之電腦可讀媒體,其中該影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 135.   如條項133之電腦可讀媒體,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 136.   如條項133之電腦可讀媒體,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 137.   如條項133之電腦可讀媒體,其進一步包含: 基於該等誤差貢獻中之一光罩誤差貢獻調整用以印刷該指定圖案之一微影設備的一光罩或一源中之至少一者的一或多個參數。 138.   如條項133之電腦可讀媒體,其進一步包含: 基於該等誤差貢獻中之一抗蝕劑誤差貢獻調整用以印刷該指定圖案之一微影設備之一光罩或一源中的至少一者的一或多個參數。 139.   一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行用於判定誤差貢獻資料的一方法,該誤差貢獻資料包含來自多個源之對印刷於一基板上之一圖案之一特徵的誤差貢獻,該方法包含: 接收待印刷於一第一基板上之一指定圖案之一組特徵的影像資料; 輸入該影像資料至一機器學習模型;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含來自多個源之對該組特徵的誤差貢獻。 140.   如條項139之電腦可讀媒體,其中該影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 141.   如條項139之電腦可讀媒體,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 142.   如條項139之電腦可讀媒體,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 143.   如條項139之電腦可讀媒體,其中執行該機器學習模型以判定該誤差貢獻資料包括: 使用多個資料集訓練該機器學習模型,其中該資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的一第一誤差貢獻資料。 144.   如條項143之電腦可讀媒體,其中該第一影像資料包括該一或多個特徵中之一特徵的一第一影像,且其中該第一誤差貢獻資料包括對應於該第一特徵之差量CD值的一第一組誤差貢獻值。 145.   如條項143之電腦可讀媒體,其中該第一影像資料包括該一或多個特徵之多個特徵的一第一組影像,且其中該第一誤差貢獻資料包括對應於該等特徵之LCDU值的一第一組誤差貢獻值。 146.   如條項143之電腦可讀媒體,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 147.   一種用於訓練一機器學習模型以判定對印刷於一基板上之一圖案之一特徵的誤差貢獻之方法,該方法包含: 獲得具有多個資料集之訓練資料,其中該等資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對該一或多個特徵之誤差貢獻的一第一誤差貢獻資料;及 基於該訓練資料訓練一機器學習模型以預測該第一資料集之誤差貢獻資料,使得指示該預測誤差貢獻資料與該第一誤差貢獻資料之間的一差之一成本函數減小。 148.   如條項147之方法,其中該第一影像資料包括一或多個特徵中之一特徵的一第一影像,且其中該第一誤差貢獻資料包括對應於該第一特徵之差量臨界尺寸(CD)值的一第一組誤差貢獻值。 149.   如條項148之方法,其中每一差量CD值指示該第一特徵之一CD值自該一或多個特徵之複數個CD值之一平均值的一偏差。 150.   如條項147之方法,其中該第一影像資料包括該一或多個特徵之多個特徵的一第一組影像,且其中該第一誤差貢獻資料包括對應於該等特徵之局部CD均一性(LCDU)值的一第一組誤差貢獻值。 151.   如條項147之方法,其中該第一誤差貢獻資料包括對應於該一或多個特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 152.   如條項147之方法,其中該第一誤差貢獻資料基於一或多個特徵之量測值資料來判定。 153.   如條項152之方法,其中該量測值資料包含一或多個特徵中之一特徵的一CD值或一或多個特徵中之多個特徵的LCDU值。 154.   如條項147之方法,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 155.   如條項147之方法,其中訓練該機器學習模型為其中每一反覆包括以下各者的一反覆程序: (a)使用該多個資料集執行該機器學習模型以輸出該預測誤差貢獻資料, (b)判定該成本函數為該預測誤差貢獻資料與該第一誤差貢獻資料之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 156.   如條項147之方法,其進一步包含: 接收待印刷於一指定基板上之一指定圖案之一組特徵的影像資料;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含對該組特徵的來自該多個源之誤差貢獻。 157.    如條項156之方法,其中影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 158.   如條項156之方法,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 159.   如條項156之電腦可讀媒體,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 160.   如條項156之方法,其進一步包含: 基於該等誤差貢獻中之一光罩誤差貢獻調整用以印刷該指定圖案之一微影設備的一光罩或一源中之至少一者的一或多個參數。 161.   如條項156之方法,其進一步包含: 基於該等誤差貢獻中之一抗蝕劑誤差貢獻調整用以印刷該指定圖案之一微影設備之一光罩或一源中的至少一者的一或多個參數。 162.   一種用於判定誤差貢獻資料的方法,該誤差貢獻資料包含來自多個源之對印刷於一基板上之一圖案之一特徵的誤差貢獻,該方法包含: 接收待印刷於一第一基板上之一指定圖案之一組特徵的影像資料; 輸入該影像資料至一機器學習模型;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含來自多個源之對該組特徵的誤差貢獻。 163.   如條項162之方法,其中影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 164.   如條項162之方法,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 165.   如條項162之電腦可讀媒體,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 166.   如條項162之方法,其中執行該機器學習模型以判定該誤差貢獻資料包括: 使用多個資料集訓練該機器學習模型,其中該資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的一第一誤差貢獻資料。 167.   如條項162之方法,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 168.   一種用於訓練一機器學習模型模型以判定對印刷於一基板上之一圖案之一特徵之誤差貢獻的設備,該設備包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一方法: 獲得具有多個資料集之訓練資料,其中該等資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對該一或多個特徵之誤差貢獻的一第一誤差貢獻資料;及 基於該訓練資料訓練一機器學習模型以預測該第一資料集之誤差貢獻資料,使得指示該預測誤差貢獻資料與該第一誤差貢獻資料之間的一差之一成本函數減小。 169.   如條項168之設備,其中該第一影像資料包括一或多個特徵中之一特徵的一第一影像,且其中該第一誤差貢獻資料包括對應於該第一特徵之差量臨界尺寸(CD)值的一第一組誤差貢獻值。 170.   如條項169之設備,其中每一差量CD值指示該第一特徵之一CD值自一或多個特徵之複數個CD值之一平均值的一偏差。 171.   如條項168之設備,其中該第一影像資料包括一或多個特徵中之多個特徵的一第一組影像,且其中該第一誤差貢獻資料包括對應於該等特徵之局部CD均一性(LCDU)值的一第一組誤差貢獻值。 172.   如條項168之設備,其中該第一誤差貢獻資料包括對應於該一或多個特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 173.   如條項168之設備,其中該第一誤差貢獻資料基於一或多個特徵之量測值資料來判定。 174.   如條項173之設備,其中該量測值資料包含該一或多個特徵中之一特徵的一CD值或該一或多個特徵中之多個特徵的一LCDU值。 175.   如條項168之設備,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。 176.   如條項168之設備,其中訓練該機器學習模型為每一反覆包括以下各者的一反覆程序: (a)使用該多個資料集執行該機器學習模型以輸出該預測誤差貢獻資料, (b)判定該成本函數為該預測誤差貢獻資料與該第一誤差貢獻資料之間的差, (c)調整該機器學習模型, (d)根據該調整判定該成本函數是否減小,且 (e)回應於該成本函數不減小,重複步驟(a)、(b)、(c)及(d)。 177.   如條項168之設備,其進一步包含: 接收待印刷於一指定基板上之一指定圖案之一組特徵的影像資料;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含對該組特徵的來自該多個源之誤差貢獻。 178.    如條項177之設備,其中影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 179.   如條項177之設備,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 180.   如條項177之設備,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 181.   如條項177之設備,其進一步包含: 基於該等誤差貢獻中之一光罩誤差貢獻調整用以印刷該指定圖案之一微影設備的一光罩或一源中之至少一者的一或多個參數。 182.   如條項177之設備,其進一步包含: 基於該等誤差貢獻中之一抗蝕劑誤差貢獻調整用以印刷該指定圖案之一微影設備之一光罩或一源中的至少一者的一或多個參數。 183.   一種用於判定誤差貢獻資料的設備,該誤差貢獻資料包含來自多個源之對印刷於一基板上之一圖案之一特徵的誤差貢獻,該設備包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一方法: 接收待印刷於一第一基板上之一指定圖案之一組特徵的影像資料; 輸入該影像資料至一機器學習模型;及 執行該機器學習模型以判定誤差貢獻資料,該誤差貢獻資料包含來自多個源之對該組特徵的誤差貢獻。 184.   如條項183之設備,其中影像資料包括該組特徵中之一特徵的一影像,且其中該誤差貢獻資料包括對應於與特徵相關聯之差量CD值的誤差貢獻值。 185.   如條項183之設備,其中該影像資料包括該組特徵之一組影像,且其中該誤差貢獻資料包括對應於與該組特徵相關聯之LCDU值的誤差貢獻值。 186.   如條項183之設備,其中該誤差貢獻資料包括對應於該組特徵中之一特徵上多個量測點的多組誤差貢獻值,其中該等組的誤差貢獻值包括一第一組誤差貢獻值,該第一組誤差貢獻值表示該等量測點中之一第一量測點處來自該多個源的誤差貢獻。 187.   如條項183之設備,其中執行該機器學習模型以判定該誤差貢獻資料包括: 使用多個資料集訓練該機器學習模型,其中該資料集包括一第一資料集,該第一資料集具有(a)待印刷於一基板上之一圖案之一或多個特徵的一第一影像資料,及(b)包含來自多個源之對一或多個特徵之誤差貢獻的一第一誤差貢獻資料。 188.   如條項183之設備,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,該影像獲取工具誤差貢獻與用以獲取該第一影像資料的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,且 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。
如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述組件包括A或B,則除非另外特別陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件包括A、B或C,則除非另外特定陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C或A及B及C。諸如「至少一個」的表達不必修飾以下清單的全部,且不必修飾清單中的每一成員,使得「A、B及C中之至少一者」應理解為包括僅一個A、僅一個B、僅一個C,或A、B及C的任何組合。片語「A及B中之一者」或「A及B中之任一者」應最廣意義上解譯以包括一個A或一個B。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見的是,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
0:點虛線/光軸指示之光軸 10A:例示性微影投影設備 12A:輻射源 14A:光學件/圖案化裝置 16Aa:光學件 16Ab:光學件 16Ac:透射光學件 20A:濾光片或孔徑 21:輻射射束 22:琢面化場鏡面裝置 22A:基板平面 24:琢面化光瞳鏡面裝置 26:圖案化射束 28:反射元件 30:反射元件 31:源模型 32:投影光學件模型 33:給定設計佈局 35:設計佈局模型 36:空中影像 37:抗蝕劑模型 38:抗蝕劑影像 81:帶電粒子射束產生器 82:聚光器透鏡模組 83:探針形成物鏡模組 84:帶電粒子射束偏轉模組 85:二次帶電粒子偵測器模組 86:影像形成模組 89:樣本載物台 90:樣本 91:初級帶電粒子射束 92:帶電粒子射束探針 93:二次帶電粒子 94:二次帶電粒子偵測信號 100:電腦系統 102:匯流排 104:處理器 105:處理器 106:主記憶體 108:唯讀記憶體(ROM) 110:儲存裝置 112:顯示器 114:輸入裝置 116:游標控制件 118:通信介面 120:網路鏈路 122:區域網路 124:主機電腦 126:網際網路服務提供者(ISP) 128:全球封包資料通信網/網際網路 130:伺服器 210:EUV輻射發射電漿/極熱電漿/高度離子化電漿 211:源腔室 212:收集器腔室 220:圍封結構 221:開口 230:污染物截留器 240:光柵光譜濾光器 251:上游輻射收集器側 252:下游輻射收集器側 253:掠入射反射器 254:掠入射反射器 255:掠入射反射器 320:分解器模組 300:使用獨立分量分析(ICA)分解資料之方法 301:第一源信號 302:第二源信號 305:第一混合信號 306:第二混合信號 311:第一感測器 312:第二感測器 313:混合矩陣(A) 314:未混合矩陣 320:分解器模組 405:SEM圖像 410:接觸孔 415:圖形 421:第一臨限值 422:第二臨限值 423:第三臨限值 505:圖形 515:第一組臨界尺寸(CD)值 515a:第一組δCD值 520:第二組臨界尺寸(CD)值 520a:第二組δCD值 525:第三組臨界尺寸(CD)值 525a:第三組δCD值 601:δCDMASK 誤差貢獻/第一輸出信號 602:δCDRESIST 誤差貢獻/第二輸出信號 603:δCDSEM 誤差貢獻/第三輸出信號 613:混合矩陣 614:逆矩陣 615:輸入混合信號 620:輸入混合信號 625:輸入混合信號 715:第一LCDU資料集 720:第二LCDU資料集 725:第三LCDU資料集 765:第一LCDU資料集 770:第二LCDU資料集 775:第三LCDU資料集 800:用於分解特徵之量測值以導出針對特徵的來自多個源之誤差貢獻的程序 801:影像 805:操作 810:操作 811:量測值 815:操作 816:線性混合體 820:操作 821:誤差貢獻 850:用於使用獨立分量分析(ICA)自線性混合體導出誤差貢獻之程序 855:操作 860:操作 865:操作 900:用於獲得圖8之分解程序之量測值的程序 905:操作 906:輪廓線 906a:輪廓線高度 906b:輪廓線高度 906c:輪廓線高度 910:操作 915:操作 916:CD值的平均值 920:操作 925:操作 1050:圖形 1051:指定臨限值 1200A:照明源之特性 1200B:投影光學件之特性 1200C:設計佈局之特性 2205:誤差貢獻信號 2225:分類 2250:分類器模型 2305第一誤差貢獻信號 2310:第二誤差貢獻信號 2315:第三誤差貢獻信號 2320:分類 2325:經標記之訓練資料 2330:輸入層 2335:輸出層 2400:用於產生誤差貢獻信號之程序 2401:量測值資料 2405:操作 2410:操作 2411:誤差貢獻/誤差貢獻者 2500:用於訓練分類器模型以判定誤差貢獻者信號之分類的程序 2505:操作 2510:操作 2550:用於訓練分類器模型以判定誤差貢獻者信號之分類的流程 2555:操作 2560:操作 2561:成本函數 2565:操作 2570:操作 2600:用於判定誤差貢獻信號之源的程序 2605:操作 2610:操作 2700:用於訓練誤差貢獻模型以預測來自多個源的誤差貢獻的程序 2705:操作 2710:操作 2750:用於訓練誤差貢獻模型以預測來自多個源的誤差貢獻的程序 2755:操作 2760:操作 2761:成本函數 2765:操作 2770:操作 2805:誤差貢獻模型 2810:訓練資料 2815:第一資料集 2816:第一影像資料 2817:第一誤差貢獻資料 2820:經預測誤差貢獻資料 2900:用於判定來自多個源之對印刷於基板上之圖案之特徵之誤差貢獻的程序 2905:操作 2910:操作 3005:影像資料 3025:誤差貢獻資料 ADC:類比/數位(A/D)轉換器 AD:調整構件 B:輻射射束 C:目標部分 CL:聚光透鏡 CO:聚光器 DIS:顯示裝置 ESO:電子源 EBP:初級電子射束 EBD1:射束偏轉器 EBD2:E×B偏轉器 Ex:射束擴展器 IF:虛擬源點/中間焦點 IL:照明系統/照明光學件單元 IPU:影像處理系統 IN:積光器 LA:設備 MEM:記憶體 MT:第一物件台/光罩台 MA:圖案化裝置 M1、M2:對準標記 OL:物鏡 PB:射束 PSub:基板 PS:投影系統/項目 PS2:位置感測器 PU:處理單元 PL:透鏡 PM:第一定位器 PW:第二定位器 P1:基板對準標記 P2:基板對準標記 RF:射頻 S502:操作 S504:操作 S506:操作 S508:操作 S510:操作 S512:操作 S514:操作 S516:操作 S518:操作 S520:操作 S522:操作 S702:操作 S704:操作 S706:操作 S708:操作 S710:操作 S712:操作 S714:操作 S716:操作 S718:操作 S720:操作 S722:操作 S802:操作 S804:操作 S806:操作 S808:操作 S810:操作 S812:操作 S814:操作 S816:操作 S1202:操作 S1204:操作 S1206:操作 S1302:操作 S1304:操作 S1306:操作 S1308:操作 S1310:操作 ST:基板台 SEM:掃描電子顯微鏡 SED:二次電子偵測器 STOR:儲存媒體 SO:源收集器模組/輻射源 W:基板 WT:第二物件台/基板台
現將參考隨附圖式僅作為實例來描述實施例,在該等圖式中:
圖1為根據一實施例之微影系統之各種子系統的方塊圖。
圖2為根據一實施例的對應於圖1中之子系統之模擬模型的方塊圖。
圖3為根據實施例之使用獨立分量分析(ICA)來分析資料的方塊圖。
圖4為根據實施例的展示印刷於基板上之接觸孔之實例掃描電子顯微鏡(SEM)影像及臨界尺寸(CD)值之曲線的方塊圖。
圖5展示根據實施例的對應於在多個量測點處獲得之多個臨限值之特徵的量測值之曲線。
圖6為根據實施例的說明分解與特徵相關聯之量測值資料以獲得誤差貢獻者的分解器模組之方塊圖。
圖7A為根據實施例的用於分解誤差貢獻者之LCDU資料的圖形。
圖7B為根據實施例的用於分解誤差貢獻者之LCDU資料的另一圖形。
圖8A為根據實施例的用於分解特徵之量測值以自多個源導出誤差貢獻的程序之流程圖。
圖8B為根據實施例的用於使用ICA自線性混合體導出誤差貢獻之程序的流程圖。
圖9為根據實施例的用於獲得圖8A之分解程序之量測值的程序之流程圖。
圖10為根據實施例的展示用於獲得各種臨限值之輪廓線之量測值的程序誤差貢獻因素之圖式。
圖11示意性地描繪根據實施例的SEM之實施例。
圖12示意性地描繪根據一實施例之電子射束檢測設備的一實施例。
圖13為說明根據一實施例之聯合最佳化之實例方法之態樣的流程圖。
圖14展示根據一實施例之另一最佳化方法的一實施例。
圖15A、圖15B及圖16展示根據一實施例之各種最佳化程序的實例流程圖。
圖17為根據一實施例之實例電腦系統的方塊圖。
圖18為根據一實施例之微影投影設備的示意圖。
圖19為根據一實施例之另一微影投影設備的示意圖。
圖20為根據一實施例之圖19中之設備的更詳細視圖。
圖21為根據一實施例之圖19及圖20之設備之源收集器模組SO的更詳細視圖。
圖22為根據實施例的說明表示誤差貢獻值之資料集或誤差貢獻信號基於誤差貢獻之源的分類之方塊圖。
圖23為根據實施例的說明用以基於誤差貢獻源對誤差貢獻信號分類的圖22之分類器模型之訓練的方塊圖。
圖24為根據實施例的用於產生誤差貢獻信號之程序的流程圖。
圖25A為根據實施例的用於訓練分類器模型以判定誤差貢獻者信號之分類的流程之流程圖。
圖25B為根據實施例的用於訓練分類器模型以判定誤差貢獻者信號之分類的程序之流程圖。
圖26為根據實施例的用於判定誤差貢獻信號之源的程序之流程圖。
圖27A為根據實施例的用於訓練誤差貢獻模型以預測來自多個源之誤差貢獻的程序之流程圖。
圖27B為根據實施例的用於訓練誤差貢獻模型以預測來自多個源之誤差貢獻的程序之流程圖。
圖28為根據實施例的展示訓練誤差貢獻模型以判定來自多個源之誤差貢獻的方塊圖。
圖29為根據實施例的用於判定來自多個源之對印刷於基板上之圖案之特徵的誤差貢獻之程序的流程圖。
圖30為根據實施例的用於判定來自多個源的對待印刷於基板上之圖案之特徵的誤差貢獻之方塊圖。
現將參考圖式詳細地描述實施例,該等圖式被提供為說明性實例以便使熟習此項技術者能夠實踐該等實施例。值得注意地,以下諸圖及實例不意欲將範疇限於單一實施例,而是藉助於所描述或所說明元件中之一些或全部之互換而使其他實施例係可能的。在任何方便之處,貫穿圖式將使用相同元件符號以指相同或類似部件。在可使用已知組件來部分地或完全地實施此等實施例之某些元件的情況下,將僅描述理解實施例所必需之此等已知組件的彼等部分,且將省略此等已知組件之其他部分的詳細描述以免混淆實施例之描述。在本說明書中,展示單數組件之實施例不應被視為限制性的;實情為,除非本文中另外明確陳述,否則範疇意欲涵蓋包括複數個相同組件之其他實施例,且反之亦然。此外,申請人不意欲使本說明書或申請專利範圍中之任何術語歸結於不常見或特殊涵義,除非如此明確闡述。另外,範疇涵蓋本文中藉助於說明而提及之組件的目前及將來已知等效者。
2805:誤差貢獻模型
2810:訓練資料
2815:第一資料集
2816:第一影像資料
2817:第一誤差貢獻資料
2820:經預測誤差貢獻資料

Claims (15)

  1. 一種具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時使得該電腦執行一種用於分解來自多個源的對印刷於一基板上之一圖案之多個特徵的誤差貢獻之方法,該方法包含: 獲得該基板上之該圖案的一影像; 使用該影像獲得該圖案之一特徵的複數個量測值,其中該等量測值係針對不同感測器值獲得; 使用一分解方法使該複數個量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。
  2. 如請求項1之電腦可讀媒體,其中該等不同感測器值對應於與該影像相關聯的不同臨限值,其中每一臨限值對應於該影像中一像素值的一臨限值。
  3. 如請求項2之電腦可讀媒體,其中每一量測值對應於該等不同臨限值中之一者下該特徵的一臨界尺寸(CD)值。
  4. 如請求項2之電腦可讀媒體,其中該等誤差貢獻包括: 一影像獲取工具誤差貢獻,其與用以獲取該影像的一影像獲取工具相關聯, 一光罩誤差貢獻,其與用以印刷該圖案於該基板上之一光罩相關聯,及 一抗蝕劑誤差貢獻,其與用以印刷該圖案的一抗蝕劑相關聯,其中該抗蝕劑誤差貢獻包括光阻化學雜訊及與用以印刷該圖案之一微影設備的一源相關聯的一散粒雜訊。
  5. 如請求項4之電腦可讀媒體,其進一步包含: 基於該光罩誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。
  6. 如請求項4之電腦可讀媒體,其進一步包含: 基於該抗蝕劑誤差貢獻調整該光罩或用以印刷該圖案之一微影設備之一源中的至少一者的一或多個參數。
  7. 如請求項3之電腦可讀媒體,其中獲得該等量測值包括: 獲得具有第一複數個差量CD值的一第一信號,該第一複數個差量CD值係在該等不同臨限值中之一第一臨限值下來自複數個量測點, 獲得具有第二複數個差量CD值的一第二信號,該第二複數個差量CD值係在該等不同臨限值中之一第二臨限值下來自該複數個量測點,且 獲得具有第三複數個差量CD值的一第三信號,該第三複數個差量CD值係在該等不同臨限值中之一第三臨限值下來自該複數個量測點。
  8. 如請求項7之電腦可讀媒體,其中每一差量CD值按臨限值且按量測點來判定,且指示一給定特徵之一CD值自該等特徵之複數個CD值之一平均值的一偏差。
  9. 如請求項7之電腦可讀媒體,其中每一差量CD值指示給定臨限值下一給定特徵之一輪廓線上的一指定點與該給定特徵之一參考輪廓線上之一參考點之間的一距離,其中該參考輪廓線為該給定特徵之該輪廓線的一模擬版本。
  10. 如請求項7之電腦可讀媒體,其中使每一量測值相關包括: 使該第一信號中的該第一複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第一線性混合體相關, 使該第二信號中的該第二複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第二線性混合體相關,且 使該第三信號中的該第三複數個差量CD值中之每一者與該影像獲取工具誤差貢獻、光罩誤差貢獻及抗蝕劑誤差貢獻之一第三線性混合體相關。
  11. 如請求項10之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 使用該第一線性混合體、該第二線性混合體及該第三線性混合體且自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導出:(a)具有複數個該等影像獲取工具誤差貢獻的一第一輸出信號,(b)具有複數個該等光罩誤差貢獻的一第二輸出信號,及(c)具有複數個該等抗蝕劑誤差貢獻的一第三輸出信號。
  12. 如請求項11之電腦可讀媒體,其中每一誤差貢獻依據第一臨限位準、第二臨限位準及第三臨限位準下的該對應誤差貢獻來判定。
  13. 如請求項11之電腦可讀媒體,其中導出該等誤差貢獻中之每一者包括: 判定具有一組係數之一混合矩陣,該組係數分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值產生對應於每一差量CD值的該等誤差貢獻之該第一線性混合體、該第二線性混合體及該第三線性混合體, 判定該混合矩陣的一逆矩陣,及 使用該混合矩陣之該逆矩陣分別自該第一複數個差量CD值、該第二複數個差量CD值及該第三複數個差量CD值導判定:(a)具有該複數個該等影像獲取工具誤差貢獻的該第一輸出信號,(b)具有該複數個該等光罩誤差貢獻的該第二輸出信號,及(c)具有該複數個該等抗蝕劑誤差貢獻的該第三輸出信號。
  14. 如請求項2之電腦可讀媒體,其中該獲得該等量測值包括: 獲得該特徵的對應於該等不同臨限值中之一第一臨限值的一第一輪廓線, 獲得該第一輪廓線的一第一CD值, 獲得該特徵的對應於該等不同臨限值中之一第二臨限值的一第二輪廓線,且 獲得該第二輪廓線的一第二CD值。
  15. 一種用於分解來自多個源之對印刷於一基板上之一圖案之多個特徵的誤差貢獻的設備,該設備包含: 一記憶體,其儲存一指令集;及 至少一個處理器,其經組態以執行該指令集以使得該設備執行如下一方法: 獲得該基板上之該圖案的一影像; 使用該影像獲得該圖案之一特徵的複數個量測值,其中該等量測值係針對不同感測器值獲得; 使用一分解方法使該複數個量測值中的每一量測值與該等誤差貢獻之一線性混合體相關以產生該等誤差貢獻之複數個線性混合體;及 自該等線性混合體且使用該分解方法導出該等誤差貢獻中的每一者。
TW110117440A 2020-05-14 2021-05-14 用於分解來自多個源之對印刷於基板上之圖案之多個特徵的誤差貢獻的設備及相關的非暫時性電腦可讀媒體 TWI784519B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP20174556.9A EP3910418A1 (en) 2020-05-14 2020-05-14 Method for direct decomposition of stochastic contributors
EP20174556.9 2020-05-14
EP20177933.7 2020-06-03
EP20177933 2020-06-03
EP21171063 2021-04-28
EP21171063.7 2021-04-28

Publications (2)

Publication Number Publication Date
TW202147025A true TW202147025A (zh) 2021-12-16
TWI784519B TWI784519B (zh) 2022-11-21

Family

ID=75953855

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110117440A TWI784519B (zh) 2020-05-14 2021-05-14 用於分解來自多個源之對印刷於基板上之圖案之多個特徵的誤差貢獻的設備及相關的非暫時性電腦可讀媒體
TW111141388A TW202323976A (zh) 2020-05-14 2021-05-14 用於分解來自多個源之對印刷於基板上之圖案之多個特徵的誤差貢獻的設備及相關的非暫時性電腦可讀媒體

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111141388A TW202323976A (zh) 2020-05-14 2021-05-14 用於分解來自多個源之對印刷於基板上之圖案之多個特徵的誤差貢獻的設備及相關的非暫時性電腦可讀媒體

Country Status (5)

Country Link
US (1) US20230081821A1 (zh)
KR (1) KR20230004633A (zh)
CN (1) CN115605811A (zh)
TW (2) TWI784519B (zh)
WO (1) WO2021229030A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230131950A1 (en) * 2021-10-25 2023-04-27 Applied Materials Israel Ltd. Mask inspection for semiconductor specimen fabrication
CN114782801B (zh) * 2022-03-01 2023-01-10 泰瑞数创科技(北京)股份有限公司 一种基于机器学习的控制点自动布设方法及装置
WO2024170211A1 (en) * 2023-02-13 2024-08-22 Asml Netherlands B.V. Method and system for identifying a center of a pattern using automatic thresholding
CN118071979B (zh) * 2024-04-25 2024-07-09 无锡星微科技有限公司杭州分公司 一种基于深度学习的晶圆预对准方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
JP2938568B2 (ja) 1990-05-02 1999-08-23 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン 照明装置
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
CN102662309B (zh) 2005-09-09 2014-10-01 Asml荷兰有限公司 采用独立掩模误差模型的掩模验证系统和方法
CN102224459B (zh) 2008-11-21 2013-06-19 Asml荷兰有限公司 用于优化光刻过程的方法及设备
US8786824B2 (en) 2009-06-10 2014-07-22 Asml Netherlands B.V. Source-mask optimization in lithographic apparatus
NL2005719A (en) * 2009-12-18 2011-06-21 Asml Netherlands Bv Method of measuring properties of dynamic positioning errors in a lithographic apparatus, data processing apparatus, and computer program product.
NL2013417A (en) * 2013-10-02 2015-04-07 Asml Netherlands Bv Methods & apparatus for obtaining diagnostic information relating to an industrial process.
WO2016034428A2 (en) * 2014-09-01 2016-03-10 Asml Netherlands B.V. Method of measuring a property of a target structure, inspection apparatus, lithographic system and device manufacturing method
US11016397B2 (en) * 2015-12-17 2021-05-25 Asml Netherlands B.V. Source separation from metrology data
US10983227B2 (en) * 2017-08-14 2021-04-20 Kla-Tencor Corporation On-device metrology using target decomposition
WO2019166190A1 (en) * 2018-02-27 2019-09-06 Stichting Vu Metrology apparatus and method for determining a characteristic of one or more structures on a substrate

Also Published As

Publication number Publication date
KR20230004633A (ko) 2023-01-06
TWI784519B (zh) 2022-11-21
US20230081821A1 (en) 2023-03-16
WO2021229030A1 (en) 2021-11-18
CN115605811A (zh) 2023-01-13
TW202323976A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
TWI747212B (zh) 在圖案化程序中判斷圖案之方法
TWI745863B (zh) 訓練機器學習模型以判定光罩的光學接近校正的方法及相關聯電腦程式產品
TWI750597B (zh) 用於判定一基板上的一印刷圖案之量測資料之方法及相關電腦程式產品
CN111149063B (zh) 确定器件制造工艺的控制参数的方法
CN107430347B (zh) 图像对数斜率(ils)优化
CN113924525B (zh) 用于确定对掩模的特征的校正的方法
TWI784519B (zh) 用於分解來自多個源之對印刷於基板上之圖案之多個特徵的誤差貢獻的設備及相關的非暫時性電腦可讀媒體
US12085863B2 (en) Method for determining stochastic variation associated with desired pattern
US20230244152A1 (en) Systems, methods, and products for determining printing probability of assist feature and its application
US12092963B2 (en) Method of determining characteristic of patterning process based on defect for reducing hotspot
CN114514476A (zh) 用于确定视场设定的方法
US20230333483A1 (en) Optimization of scanner throughput and imaging quality for a patterning process
EP3910418A1 (en) Method for direct decomposition of stochastic contributors