TW202146311A - Performing operations on a workpiece using electromagnetic forces - Google Patents

Performing operations on a workpiece using electromagnetic forces Download PDF

Info

Publication number
TW202146311A
TW202146311A TW110104035A TW110104035A TW202146311A TW 202146311 A TW202146311 A TW 202146311A TW 110104035 A TW110104035 A TW 110104035A TW 110104035 A TW110104035 A TW 110104035A TW 202146311 A TW202146311 A TW 202146311A
Authority
TW
Taiwan
Prior art keywords
magnetic
workpiece
electromagnets
objects
magnetic object
Prior art date
Application number
TW110104035A
Other languages
Chinese (zh)
Inventor
大衛 艾倫 派史杜巴
約翰 史蒂芬 派卡
彼得 康迪 尼爾
Original Assignee
加拿大商11885111加拿大有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商11885111加拿大有限公司 filed Critical 加拿大商11885111加拿大有限公司
Publication of TW202146311A publication Critical patent/TW202146311A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

This invention relates to a method for feeding magnetic objects in a stream which are singulated each from the next in a supply path where there is provided a series of electromagnets which provides a sequence of magnetic fields along the supply path to direct the magnetic objects by the series of electromagnets in a required direction toward a required location. The method can be used for carrying out an operation on a workpiece by interaction of the objects as individual tools with the workpiece including sorting, shaping, material removal, physical modification, chemical modification, addition of material cutting, polishing, abrading peening and addition of energy. A lubricant/purge material is supplied to the workpiece to arrive at different times relative to the tools.

Description

使用電磁力在工件上實行操作Use electromagnetic force to perform operations on workpieces

本發明涉及使用電磁力在工件上實行操作。 相關申請的相交引用The present invention relates to the use of electromagnetic forces to perform operations on workpieces. CROSS-REFERENCE TO RELATED APPLICATIONS

本申請案涉及如在2018年2月1日以WO 2018/018155公開的PCT申請案PCT/CA2017/050907中所述的用於在流中單粒化顆粒的方法和裝置,其對應於美國申請案第15/662794號。This application relates to a method and apparatus for singulating particles in a stream as described in PCT application PCT/CA2017/050907 published as WO 2018/018155 on February 1, 2018, which corresponds to the US application Case No. 15/662794.

自動固定件機器廣泛用於製造組裝產品。在現有技術中,在將固定件轉移到將固定件放置在要組裝的零件中的裝置之前,現有技術中使用了幾種方法來對固定件進行單粒化和定向。碗式給料器通過振動螺旋坡道來操作。振動將能量提供給中央儲存器中無序的固定件集合,從而導致固定件重新定向。調整振動頻率(通常是從60 Hz到400 Hz),以便與要單粒化的固定件產生共振。具有偏好定向的固定件(長軸基本上與局部坡道軸對齊)沿著螺旋坡道推進,而具有不偏好定向的固定件則落入中央儲存器中。在另一個變型中,利用步進給料器將固定件之群組進給到振動坡道。在另一個變型中,將固定件進給到具有定向特徵的間歇振動的板上。振動一段時間後,通過機器視覺檢測固定件的定向,並且使用自動拾取器提取那些具有偏好定向的固定件。這些裝置會產生很大的聽覺噪音,而必須加以抑制。上述現有技術方法每秒只能供應幾個零件。關於這一點,PCT公開案WO 2019/195946中公開了一種用於對物體進行單粒化和定向的配置,以便增加每秒可供應給自動固定裝置的零件數量,從而提高製造速度、減少單粒化設備的尺寸、降低單粒化設備的成本並且降低單粒化設備的噪聲。然而,所述配置需要與物體機械性接合。Automatic fastener machines are widely used in the manufacture of assembled products. Several methods have been used in the prior art to singulate and orient the fixtures before transferring them to a device that places the fixtures in the part to be assembled. Bowl feeders are operated by vibrating screw ramps. The vibrations provide energy to the disordered collection of fixtures in the central reservoir, causing the fixtures to reorient. Adjust the vibration frequency (usually from 60 Hz to 400 Hz) to resonate with the fixture to be singulated. Fixtures with a preferred orientation (long axis substantially aligned with the local ramp axis) advance along the helical ramp, while fixtures with a non-preferred orientation drop into the central reservoir. In another variation, a step feeder is used to feed the group of fixtures to the vibrating ramp. In another variation, the fixture is fed onto an intermittently vibrating plate with directional features. After vibrating for a period of time, the orientation of the fixtures is detected by machine vision, and an automatic picker is used to extract those fixtures with a preferred orientation. These devices produce loud audible noises that must be suppressed. The prior art method described above can only supply a few parts per second. In this regard, PCT publication WO 2019/195946 discloses an arrangement for singulation and orientation of objects in order to increase the number of parts per second that can be supplied to an automatic fixture, thereby increasing manufacturing speed and reducing singulation reduce the size of the singulation equipment, reduce the cost of the singulation equipment, and reduce the noise of the singulation equipment. However, the arrangement requires mechanical engagement with the object.

根據本發明,一種用於從大量供應的磁性物體的流中供給磁性物體的方法,該方法包括: 提供大量供應的磁性物體; 將磁性物體形成為磁性物體的移動流,磁性物體彼此單粒化; 其中磁性物體從移動流被供給到供應路徑; 其中沿著供應路徑提供了一系列電磁鐵,電磁鐵被操作以沿著供應路徑提供一序列的磁場,該序列的磁場將力施加到磁性物體上;以及 通過該序列的電磁鐵將磁性物體在所需方向上引導朝向所需位置。According to the present invention, a method for feeding magnetic objects from a stream of magnetic objects in bulk, the method comprising: Provide a large supply of magnetic objects; Forming magnetic objects into a moving stream of magnetic objects that singulate each other; wherein the magnetic object is supplied to the supply path from the moving stream; wherein a series of electromagnets are provided along the supply path, the electromagnets are operated to provide a sequence of magnetic fields along the supply path, the sequence of magnetic fields applying a force to the magnetic object; and The magnetic object is directed in the desired direction towards the desired location by this sequence of electromagnets.

本文中的配置可特別地用在一種用於通過利用電磁力平移和定向經單粒化的磁性物體來對工件執行一個或多個操作的方法中。工件可以是磁性物體或非磁性物體。工件上的操作可以包括以下群組中的一或多個:分類、成形、材料去除、物理改性、化學改性、添加材料切割、拋光、研磨衝擊(abrading peening)和添加能量。The configurations herein may be particularly useful in a method for performing one or more operations on a workpiece by using electromagnetic forces to translate and orient a singulated magnetic object. The workpiece can be a magnetic object or a non-magnetic object. Operations on the workpiece may include one or more of the following group: sorting, forming, material removal, physical modification, chemical modification, addition of material cutting, polishing, abrading peening, and addition of energy.

分類操作獲取經單粒化的磁性物體並且基於每個磁性物體的測量特性來改變至少一個動力學特性,其中動力學特性是位置、速度或取向中的一種。The sorting operation takes the singulated magnetic objects and changes at least one dynamic property based on a measured property of each magnetic object, where the dynamic property is one of position, velocity, or orientation.

成形和物理改性操作利用磁性物體的動量和動能通過材料去除、塑性變形和改變工件內原子排列的任何組合來使工件成形。Forming and physical modification operations utilize the momentum and kinetic energy of a magnetic object to shape a workpiece by any combination of material removal, plastic deformation, and altering the arrangement of atoms within the workpiece.

對於材料添加和化學改性操作而言,磁性物體將材料或能量輸送到工件上的位置。該材料可以是要添加到工件上的材料,或者該材料可以是催化劑。可通過產生和/或將光子引導到工件上的位置、通過向工件上的位置提供電能、通過向工件上的位置提供化學能、或通過向工件上的位置提供熱能來添加能量。For material addition and chemical modification operations, a magnetic object delivers material or energy to a location on the workpiece. The material may be the material to be added to the workpiece, or the material may be a catalyst. Energy may be added by generating and/or directing photons to locations on the workpiece, by providing electrical energy to locations on the workpiece, by providing chemical energy to locations on the workpiece, or by providing thermal energy to locations on the workpiece.

根據本發明中可與以下任何特徵一起獨立使用的重要特徵,提供了一種單粒化元件,該單粒化元件供應彼此分離的多個磁性物體。本文的方法可與在以上引用的PCT申請案PCT/CA2017/050907中公開和所請之用於單粒化物體的配置一起使用。According to important features of the present invention, which may be used independently of any of the following features, there is provided a singulation element that supplies a plurality of magnetic objects separated from each other. The methods herein can be used with the configuration disclosed and claimed in the above-referenced PCT application PCT/CA2017/050907 for singulated objects.

本發明對在所施加的磁場中經受力或力矩的物體起作用。在本文中使用的術語“磁性物體”的含義是,該物體在所施加的磁場下的相互作用能大於kT,其中k為玻爾茲曼常數,T為絕對溫度(Kelvin):亦即,在所施加的磁場下的相互作用能大於熱能。較佳地,相互作用能遠大於室溫下的熱能。對於包含鐵磁性元素(例如,Fe,Ni和Co)的鐵磁性材料以及包含稀土元素(最常見地,Gd,Nd和Sm)的材料而言,通常情況是確切的。然而,對於由與所施加的磁場為弱相互作用的順磁性或反磁性材料組成的物體而言,溫度可能會降低到相互作用能變得大於熱能的程度。The present invention works on objects that are subjected to a force or moment in an applied magnetic field. As used herein, the term "magnetic object" means that the object has an interaction energy greater than kT under an applied magnetic field, where k is the Boltzmann constant and T is the absolute temperature (Kelvin): that is, at The interaction energy under the applied magnetic field is greater than the thermal energy. Preferably, the interaction energy is much greater than the thermal energy at room temperature. This is generally true for ferromagnetic materials containing ferromagnetic elements (eg, Fe, Ni, and Co) and materials containing rare earth elements (most commonly, Gd, Nd, and Sm). However, for objects composed of paramagnetic or diamagnetic materials that interact weakly with the applied magnetic field, the temperature may decrease to the point where the interaction energy becomes greater than the thermal energy.

術語“複合磁性物體(composite magnetic object)”是指包括多個部分的物體,其中至少兩個部分具有不同的成分,並且其中具有第一成分的部分與外部磁場的相互作用不同於具有第二成分的部分與外部磁場的相互作用。The term "composite magnetic object" refers to an object comprising a plurality of parts, wherein at least two parts have different compositions, and wherein the part with a first composition interacts with an external magnetic field differently than with a second composition part of the interaction with the external magnetic field.

術語“綜合磁性物體(complex magnetic object)”是指包括多個部分的物體,其中至少兩個部分具有不同的磁矩。The term "complex magnetic object" refers to an object comprising multiple parts, wherein at least two parts have different magnetic moments.

術語“綜合複合磁性物體”是指包括多個部分的物體,其中至少兩個部分由在外部磁場下具有不同相互作用的不同材料組成,並且其中至少兩個部分具有不同的磁矩。The term "synthetic composite magnetic object" refers to an object comprising a plurality of parts, wherein at least two parts are composed of different materials that have different interactions under an external magnetic field, and wherein at least two parts have different magnetic moments.

術語“磁鐵”是指永久磁鐵、電磁鐵或兩者的組合(其在一些文獻中已知為電永磁鐵)。The term "magnet" refers to a permanent magnet, an electromagnet, or a combination of both (which is known in some literature as an electro-permanent magnet).

本文使用的術語“電磁鐵”是指由至少一根導線組成的磁鐵,其中當電流在導線中流動時,磁鐵的磁場發生變化。因此,在本文的範圍內,永久磁鐵和導線的組合被視為是電磁鐵。As used herein, the term "electromagnet" refers to a magnet consisting of at least one wire, wherein the magnetic field of the magnet changes when an electric current flows in the wire. Therefore, within the scope of this article, the combination of permanent magnet and wire is considered to be an electromagnet.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性定向裝置,其用於響應於對經單粒化的物體的至少一個定向參數的檢測來定向所選擇的磁性物體。磁性定向裝置包括用於測量磁性物體的位置和定向的檢測器以及用於磁性物體的每個自由度的至少一個電磁鐵,其中每個電磁鐵被定位成從不同方向將磁通量傳遞到磁性物體的至少一部分。According to important optional features of the present invention, which may be used independently of any of the features above or below, there is provided a magnetic orientation device for orienting a selected object in response to detection of at least one orientation parameter of a singulated object of magnetic objects. The magnetic orientation device includes a detector for measuring the position and orientation of the magnetic object and at least one electromagnet for each degree of freedom of the magnetic object, wherein each electromagnet is positioned to deliver magnetic flux to the magnetic object from a different direction at least part of it.

較佳地,在重新定向的過程中的任何時刻,電磁鐵圍繞磁性物體的質心以相等的立體角間隔開;或替代地,電磁鐵圍繞所述磁性物體所遵循的路徑以相等的間隔隔開。磁性物體的磁矩經受與所施加的磁場對準的力矩。Preferably, at any time during the reorientation process, the electromagnets are spaced at equal solid angles around the center of mass of the magnetic object; or alternatively, the path followed by the electromagnets around the magnetic object is spaced at equal intervals. open. The magnetic moment of a magnetic object experiences a moment aligned with the applied magnetic field.

較佳地,由電磁鐵產生的所施加磁場的方向與磁性物體的磁矩呈30度或更小的角度。在需要改變定向超過30度的情況下,可以呈30度或30度以下的一序列的步驟來施加磁場,其中磁性物體的磁矩在接下來的步驟之前與所施加的磁場對準。Preferably, the direction of the applied magnetic field produced by the electromagnet is at an angle of 30 degrees or less to the magnetic moment of the magnetic object. Where a change in orientation of more than 30 degrees is desired, the magnetic field may be applied in a sequence of steps of 30 degrees or less, wherein the magnetic moment of the magnetic object is aligned with the applied magnetic field prior to the next step.

在重要的實施例中,所施加的磁場的方向和大小經決定以在多個步驟中的每個步驟處提供動態計算所需的力。在重要的實施例中,磁性物體的動力學包括平移和旋轉。In important embodiments, the direction and magnitude of the applied magnetic field is determined to provide the force required for the dynamic calculation at each of the plurality of steps. In important embodiments, the dynamics of the magnetic object include translation and rotation.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性轉向裝置,其用於響應於對經單粒化的磁性物體的至少一個參數的檢測來轉向所選擇的磁性物體。所檢測的參數可以是例如取向或品質參數。在該實施例中,基於磁性物體的所測量的參數來選擇路徑,並且產生基本上沿所選擇的路徑定向的磁場梯度以將物體吸引到所選擇的路徑並沿著所選擇的路徑吸引。可用單一個電磁鐵產生磁場。較佳地,至少兩個電磁鐵用於提供橫向於路徑的場分量。此特徵對於適應從不同方向入射的物體是很有用的。According to important optional features of the present invention, which may be used independently of any of the features above or below, there is provided a magnetic steering device for steering a selected magnetic object in response to detection of at least one parameter of a singulated magnetic object of magnetic objects. The detected parameters may be, for example, orientation or quality parameters. In this embodiment, the path is selected based on measured parameters of the magnetic object, and a magnetic field gradient oriented substantially along the selected path is generated to attract the object to and along the selected path. A magnetic field can be generated with a single electromagnet. Preferably, at least two electromagnets are used to provide a field component transverse to the path. This feature is useful for accommodating objects incident from different directions.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性轉向裝置,用於響應於使用者輸入而沿不同的路徑轉向所選擇的磁性物體。磁性轉向裝置包括檢測器、控制裝置以及在不同路徑中的一或多個電磁鐵,電磁鐵被配置為產生沿路徑軸的縱向磁場分量和橫向於路徑軸的磁場分量。檢測器將物體的速度和位置傳達給控制裝置,並且控制裝置通過動力學計算來決定將物體轉向到選定路徑所需的磁力。接著,控制裝置啟動一或多個電磁鐵以提供所需的磁場。在啟動時,縱向磁場梯度沿路徑軸吸引物體,並且橫向梯度作用以降低横向於路徑軸的物體速度。例如,三個工具可共享用於不同操作的經單粒化的固定件的共同流,並且磁性轉向裝置響應於來自每個工具之準備好接收固定件的信號,按照優先順序將固定件轉向到每個工具。使用者可例如沿著第一路徑使第一批100個物體轉向以填充第一封裝,隨後沿著第二路徑使第二批100個物體轉向以填充第二封裝。According to important optional features of the present invention, which may be used independently of any of the above or below features, there is provided a magnetic steering device for steering a selected magnetic object along different paths in response to user input. The magnetic steering device includes a detector, a control device, and one or more electromagnets in different paths, the electromagnets being configured to generate a longitudinal magnetic field component along the path axis and a magnetic field component transverse to the path axis. The detector communicates the object's velocity and position to the control, and the control uses kinetic calculations to determine the magnetic force required to steer the object to the chosen path. Next, the control device activates one or more electromagnets to provide the desired magnetic field. At start-up, the longitudinal magnetic field gradient attracts the object along the path axis, and the transverse gradient acts to reduce the object velocity transverse to the path axis. For example, three tools may share a common flow of singulated fixtures for different operations, and the magnetic steering device steers the fixtures in priority order in response to signals from each tool that they are ready to receive the fixture each tool. The user may, for example, steer a first batch of 100 objects along a first path to fill a first package, and then steer a second batch of 100 objects along a second path to fill a second package.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性平移裝置,用於沿一路徑平移磁性物體。磁性平移裝置由控制裝置和沿著該路徑的位置處排列的電磁鐵的陣列組成,該電磁鐵的陣列由控制裝置依序啟動以將物體吸引到每個連續的電磁鐵位置。在一些實施例中,只要在第一電磁鐵被關閉並且第二電磁鐵被開啟之前,物體到達與第一電磁鐵的位能阱相對應的離散位置,則電磁鐵的陣列就類似於步進馬達進行操作。對於以規則的間隔將物體遞送到陣列的末端而言,此模式很有用。According to important optional features of the present invention, which may be used independently of any of the above or below features, there is provided a magnetic translation device for translating a magnetic object along a path. The magnetic translation device consists of a control device and an array of electromagnets arranged at positions along the path, the array of electromagnets being sequentially activated by the control device to attract the object to each successive electromagnet position. In some embodiments, the array of electromagnets is similar to a stepper as long as the object reaches discrete locations corresponding to the potential energy well of the first electromagnet before the first electromagnet is turned off and the second electromagnet is turned on motor to operate. This mode is useful for delivering objects at regular intervals to the end of the array.

在另一實施例中,只在物體到達第一電磁位能最小值之前吸引物體的第一電磁鐵依序被關閉,並且隨後的電磁鐵被開啟,則電磁鐵的陣列類似於線性馬達進行操作。此模式可產生更均勻的速度和加速度。由於電磁傳輸的能量效率通常大於氣動傳輸的能量效率,因此此特徵可替代磁性物體的氣動運輸而特別有用的。在一示例中,磁性物體可沿從旋轉軸起半徑增加的方向上穿過旋轉管道而被單粒化,如以上引用的PCT申請案PCT/CA2017/050907中所述。隨後可通過啟動電磁鐵的陣列將經單粒化的物體帶回到軸向位置,以供工具使用。In another embodiment, the first electromagnets that attract the object are turned off in sequence only before the object reaches the first electromagnetic potential energy minimum, and the subsequent electromagnets are turned on, then the array of electromagnets operates similar to a linear motor . This mode produces more uniform velocity and acceleration. Since the energy efficiency of electromagnetic transport is generally greater than that of pneumatic transport, this feature may be particularly useful as an alternative to pneumatic transport of magnetic objects. In one example, the magnetic object may be singulated through a rotating pipe in a direction of increasing radius from the axis of rotation, as described in the above-referenced PCT application PCT/CA2017/050907. The singulated object can then be brought back to the axial position for use by the tool by activating the array of electromagnets.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種用於向磁性物體的一部分添加材料的元件,其中磁性物體的位置和定向由磁場控制,並且其中要添加的材料至少部分取決於磁性物體的所測量的特性。所添加的材料可以例如是添加到螺絲的頭部的潤滑劑、添加到螺栓的頭部的標記材料、多種結構材料或要測試的材料。According to an important optional feature of the present invention, which may be used independently of any of the above or below features, there is provided an element for adding material to a portion of a magnetic object, wherein the position and orientation of the magnetic object is controlled by a magnetic field, and wherein the adding The material depends at least in part on the measured properties of the magnetic object. The added material may be, for example, lubricant added to the head of the screw, marking material added to the head of the bolt, various structural materials or materials to be tested.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種輻射裝置,該輻射裝置將輻射引導朝向磁性物體的一部分。該輻射可以是光子、電子、中子、原子、分子或離子。According to an important optional feature of the present invention, which may be used independently of any of the above or below features, there is provided a radiation device that directs radiation towards a portion of a magnetic object. The radiation can be photons, electrons, neutrons, atoms, molecules or ions.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種檢測器陣列,該檢測器陣列可操作以測量磁性物體的至少一個特性。檢測器陣列可包括一個構件或多個構件。檢測器陣列可例如響應於入射在磁性物體上的輻射而測量從磁性物體的一部分散射、反射或發射的輻射,並且分析所測量的輻射以提供關於磁性物體的所述部分的材料的資訊。檢測器陣列可例如針對不同的入射角來測量磁性物體的一個表面的雙向反射率函數。陣列中的每個檢測器可以是光譜儀,該光譜儀測量作為能量、頻率或波長的函數而接收到的輻射的強度。檢測器陣列例如可以是高速照相機,其根據時間函數來測量磁性物體的位置和定向,並且分析照相機圖框率(camera frame)以提供關於磁性物體的速度和角速度的資訊。According to important optional features of the present invention, which may be used independently of any of the above or below features, there is provided a detector array operable to measure at least one property of a magnetic object. The detector array may include one member or multiple members. The detector array may measure radiation scattered, reflected or emitted from a portion of the magnetic object, eg, in response to radiation incident on the magnetic object, and analyze the measured radiation to provide information about the material of the portion of the magnetic object. The detector array may, for example, measure the bidirectional reflectance function of one surface of the magnetic object for different angles of incidence. Each detector in the array may be a spectrometer that measures the intensity of the radiation received as a function of energy, frequency, or wavelength. The detector array may be, for example, a high-speed camera that measures the position and orientation of the magnetic object as a function of time, and analyzes the camera frame to provide information about the velocity and angular velocity of the magnetic object.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種檢測器陣列,該檢測器陣列可操作以測量在磁性物體上操作的工件的至少一個特性。檢測器陣列可包括一個構件或多個構件。檢測器陣列可例如響應於入射在工件上的輻射而測量從工件的一部分散射、反射或發射的輻射,並且分析所測量的輻射以提供關於磁性物體的所述部分的材料的資訊。檢測器陣列可以例如是測量工件中的空腔形狀的聲學陣列,其中該空腔是通過磁性物體從工件內部去除材料而產生的。檢測器陣列可例如測量工件上的位置的X射線繞射圖案,並且分析繞射圖案以確定晶體結構和取向。檢測器陣列可例如測量工件上的磁矩,並從所測量的磁矩推斷出工件的取向和位置。According to important optional features of the present invention which may be used independently of any of the above or below features, there is provided a detector array operable to measure at least one characteristic of a workpiece operating on a magnetic object. The detector array may include one member or multiple members. The detector array may measure radiation scattered, reflected or emitted from a portion of the workpiece, eg, in response to radiation incident on the workpiece, and analyze the measured radiation to provide information about the material of the portion of the magnetic object. The detector array may, for example, be an acoustic array that measures the shape of a cavity in the workpiece created by the removal of material from the interior of the workpiece by a magnetic object. The detector array may, for example, measure the X-ray diffraction pattern of a location on the workpiece, and analyze the diffraction pattern to determine crystal structure and orientation. The detector array may, for example, measure magnetic moments on the workpiece and infer the orientation and position of the workpiece from the measured magnetic moments.

在可與之前或之後的實施例結合使用的實施例中,來自輻射裝置的輻射可與磁性物體的材料相互作用,以加熱、熔化、退火、融合或燒蝕磁性物體的一部分。In embodiments that may be used in conjunction with the preceding or following embodiments, radiation from the radiation device may interact with the material of the magnetic object to heat, melt, anneal, fuse, or ablate a portion of the magnetic object.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性換向裝置,其用於響應於對經單粒化的磁性物體的至少一個參數的檢測來沿彈道軌道引導磁性物體。磁性換向裝置在靠近管道端部的區域中施加磁場,該磁場作用在管道中行進的磁性物體上以改變磁性物體的速度。在磁性物體離開磁場區域之後,磁性物體的速度決定了磁性物體的彈道軌跡。所檢測的參數可以例如是磁性物體的品質參數,並且選擇出口速度(和彈道軌跡)以使得具有不同品質參數的磁性物體落在不同的箱。磁性物體可以例如是礦石顆粒。According to important optional features of the present invention, which may be used independently of any of the features above or below, there is provided a magnetic reversing device for moving along a ballistic trajectory in response to detection of at least one parameter of a singulated magnetic object Orbits guide magnetic objects. The magnetic reversing device applies a magnetic field in the area near the end of the pipe, which acts on the magnetic object traveling in the pipe to change the speed of the magnetic object. After the magnetic object leaves the magnetic field region, the velocity of the magnetic object determines the ballistic trajectory of the magnetic object. The detected parameter may be, for example, the quality parameter of the magnetic object, and the exit velocity (and ballistic trajectory) is selected so that magnetic objects with different quality parameters fall in different bins. The magnetic objects can be, for example, ore particles.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種磁性換向裝置,用於響應於使用者輸入而沿彈道軌道引導磁性物體。除彈道軌跡是由使用者選擇之外,磁性換向裝置如上所述地操作。例如,使用者可選擇彈道軌跡,該彈道軌跡使磁性物體以特定的入射角和速度撞擊另一目標物體或工件上的特定位置。According to important optional features of the present invention, which may be used independently of any of the above or below features, there is provided a magnetic reversing device for guiding a magnetic object along a ballistic trajectory in response to user input. The magnetic reversing device operates as described above, except that the ballistic trajectory is selected by the user. For example, a user may select a ballistic trajectory that causes a magnetic object to strike another target object or a specific location on the workpiece at a specific angle of incidence and velocity.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種在磁性物體路徑和工件之間引起相對運動的元件。磁性物體路徑由磁性物體定向元件、磁性物體平移元件或其組合所產生。相對運動在一些實施例中是旋轉的,相對運動在一些實施例中是平移的,並且相對運動在一些實施例中既是旋轉的又是平移的。在一些實施例中,外部磁場在包含工件的至少一部分的限定體積內來平移和/或旋轉磁性物體。在一些實施例中,工件進一步相對於外部磁場的限定體積來平移和/或旋轉。According to important optional features of the present invention which may be used independently of any of the above or below features, there is provided an element for inducing relative motion between the magnetic object path and the workpiece. The magnetic object path is produced by a magnetic object orientation element, a magnetic object translation element, or a combination thereof. The relative motion is rotational in some embodiments, the relative motion is translational in some embodiments, and the relative motion is both rotational and translational in some embodiments. In some embodiments, the external magnetic field translates and/or rotates the magnetic object within a defined volume containing at least a portion of the workpiece. In some embodiments, the workpiece is further translated and/or rotated relative to the defined volume of the external magnetic field.

根據本發明中可與以上或以下任何特徵一起獨立使用的重要可選特徵,提供了一種控制工件中多個位置的溫度的元件,使得每個位置可具有不同的溫度。According to an important optional feature of the present invention, which may be used independently of any of the above or below features, there is provided an element for controlling the temperature of a plurality of locations in a workpiece such that each location may have a different temperature.

在可與之前或之後的實施例結合使用的實施例中,磁性物體是研磨料,並且磁性物體與目標物體或工件的衝擊會從目標物體或工件上去除至少一些材料。In embodiments that may be used in conjunction with the preceding or following embodiments, the magnetic object is an abrasive, and impact of the magnetic object with the target object or workpiece removes at least some material from the target object or workpiece.

在可與之前或之後的實施例結合使用的實施例中,磁性物體的衝擊改變了目標物體或工件的特性,例如金屬表面的加工硬化。磁性物體可例如硬化工件的第一空間區域,而不硬化工件的需要更大彈性的第二空間區域。在一些實施例中,磁性物體衝擊在工件上執行加工操作,該加工操作使目標物體的形狀變形和/或重塑。In an embodiment that can be used in conjunction with the previous or subsequent embodiments, the impact of the magnetic object changes properties of the target object or workpiece, such as work hardening of a metal surface. The magnetic object may, for example, harden a first spatial region of the workpiece without hardening a second spatial region of the workpiece that requires greater elasticity. In some embodiments, the impact of the magnetic object on the workpiece performs a machining operation that deforms and/or reshapes the shape of the target object.

在可與之前或之後的實施例結合使用的實施例中,磁性物體是切割工具,並且切割工具的衝擊力從目標物體去除了選定材料。在該實施例中,切割工具通過上述討論的方法被單粒化和定向。切割工具由檢測器在定向過程期間檢查,並且與工具適用性有關的參數是經測量。例如,可檢查切割工具的切削邊緣的鋒利度以確定切割邊緣是鋒利的還是鈍的。取決於所測量的參數,切割工具可通過以上討論的方法轉向到廢料箱,或者轉向到操作以增加切割工具的速度的磁性平移裝置。最後,切割工具在彈道軌道上被引導朝向將要去除材料的目標物體上的位置。切割工具隨後可被回收並且被引導到單粒化設備的供應管道以供再次使用。該實施例相對於習知銑削操作而言具有四個優點。首先,可通過檢查或通過每次操作使用新的切割工具來確保切割邊緣始終鋒利。第二,工具的作用範圍不受工具軸桿的長度限制。此特徵對於軸桿的斷裂是問題的小直徑工具而言特別重要。第三,切割工具不會過熱,因為它僅用於一次切割。第四,可測量與磁性物體工具的每次交互作用對工件的影響,並且可交互地調整後續的磁性物體工具的動量以在工件上產生期望效果。只要在工件上的切割作用是用顆粒流實現,則該實施例類似於噴水切割機。噴水切割機具有需要維護的磨損表面,這會浪費生產時間和更換零件的成本。由於本實施例沒有磨損表面,因此本實施例的磁性切割機中避免了這些成本。此外,由於切割工具是個別引導的,因此該實施例允許比噴水切割機更精確的切割。與雷射切割器不同,本實施例的磁性切割機可切割出直線邊緣並且不受工件材料或厚度的限制。In an embodiment that may be used in conjunction with the preceding or following embodiments, the magnetic object is a cutting tool, and the impact of the cutting tool removes selected material from the target object. In this embodiment, the cutting tool is singulated and oriented by the methods discussed above. The cutting tool is checked by the detector during the orientation process and parameters related to tool suitability are measured. For example, the sharpness of the cutting edge of the cutting tool can be checked to determine whether the cutting edge is sharp or blunt. Depending on the parameter being measured, the cutting tool can be steered to a waste bin by the methods discussed above, or to a magnetic translation device that operates to increase the speed of the cutting tool. Finally, the cutting tool is guided on a ballistic trajectory towards the position on the target object from which material is to be removed. The cutting tool can then be recovered and directed to the supply line of the singulation plant for reuse. This embodiment has four advantages over conventional milling operations. First, make sure the cutting edge is always sharp by inspection or by using a new cutting tool for each operation. Second, the range of action of the tool is not limited by the length of the tool shaft. This feature is particularly important for small diameter tools where breakage of the shaft is a problem. Third, the cutting tool does not overheat because it is only used for one cut. Fourth, the effect of each interaction with the magnetic object tool on the workpiece can be measured, and the momentum of subsequent magnetic object tools can be interactively adjusted to produce the desired effect on the workpiece. This embodiment is similar to a water jet cutting machine as long as the cutting action on the workpiece is achieved with a particle flow. Water jet cutting machines have wear surfaces that require maintenance, which wastes production time and the cost of replacement parts. These costs are avoided in the magnetic cutter of this embodiment since there are no wear surfaces in this embodiment. Furthermore, since the cutting tools are individually guided, this embodiment allows for a more precise cut than a water jet cutter. Unlike the laser cutter, the magnetic cutter of this embodiment can cut straight edges and is not limited by the material or thickness of the workpiece.

在可與之前或之後的實施例結合使用的實施例中,將一序列的磁性物體施加到工件上的位置,並在鄰近工件位置的位置施加一序列的流體流,其中磁性物體在與流體流不同的時間到達工件。流體可以是氣體或液體。磁性物體可例如在工件位置上切割、拋光、研磨或執行衝擊操作。流體流可例如在工件位置附近提供冷卻、潤滑和切屑去除。磁性物體和流體流到達工件位置或鄰近工件位置的時間在時間上是分開的,使得在衝擊工件位置之前,磁性物體的動量不會被流體流的動量所改變。流體流例如可通過週期性地阻擋流動的斷流器輪來調節。鄰近斷流器輪的感測器將斷流器狀態傳達給控制元件,並且控制元件向磁陣列產生信號,從而使磁性物體到達的時間與流體流到達的時間不同。例如,控制元件可設置斷流器輪的相位和角速度,使得磁性物體和流體流在不同時間到達工件位置。例如,控制元件可啟動調節流體流的閥,使得磁性物體和流體流在不同時間到達工件位置。In an embodiment that can be used in conjunction with the preceding or following embodiments, a sequence of magnetic objects is applied to locations on the workpiece and a sequence of fluid flows is applied at locations adjacent to the workpiece locations, wherein the magnetic objects are in contact with the fluid flow The workpiece arrives at different times. Fluids can be gases or liquids. The magnetic object may, for example, be cut, polished, ground or impacted at the workpiece location. The fluid flow can provide cooling, lubrication, and chip removal, for example, near the workpiece location. The times at which the magnetic object and the fluid flow arrive at or adjacent to the workpiece location are separated in time such that the momentum of the magnetic object is not altered by the momentum of the fluid flow prior to impacting the workpiece location. Fluid flow can be regulated, for example, by interrupter wheels that periodically block flow. A sensor adjacent to the interrupter wheel communicates the interrupter status to the control element, and the control element generates a signal to the magnetic array so that the magnetic object arrives at a different time than the fluid flow. For example, the control element may set the phase and angular velocity of the interrupter wheel so that the magnetic object and fluid flow arrive at the workpiece location at different times. For example, the control element may actuate a valve that regulates fluid flow so that the magnetic object and fluid flow arrive at the workpiece location at different times.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括一組磁矩,該磁矩作用為磁性軸承以限制複合磁性物體圍繞由在磁性軸承力矩的位置處的外部磁場的方向所確定的軸旋轉的運動。In an embodiment, which may be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a set of magnetic moments that act as magnetic bearings to constrain the composite magnetic object around an external magnetic field at the location of the magnetic bearing moments. The movement of rotation about an axis determined by the direction.

在可與之前或之後的實施例結合使用的實施例中,綜合磁性物體包括一組磁矩,磁矩作用以響應於所述一組磁矩的位置處的外部磁場來約束綜合磁性物體的質心的位置,其中,外部磁場在時間上被調節,從而在磁性物體上產生力而抵抗約束位置的位移。In an embodiment that may be used in conjunction with the preceding or following embodiments, the integrated magnetic object includes a set of magnetic moments that act to constrain the mass of the integrated magnetic object in response to an external magnetic field at the location of the set of magnetic moments The position of the heart, where the external magnetic field is temporally modulated to create a force on the magnetic object against displacement of the confinement position.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括一組磁矩,其作用是產生使複合磁性物體平移的力。In an embodiment that may be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a set of magnetic moments that act to generate a force that translates the composite magnetic object.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括一組磁矩,其作用以產生使複合磁性物體旋轉的力矩。In an embodiment that can be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a set of magnetic moments that act to produce a moment that rotates the composite magnetic object.

在可與之前或之後的實施例結合使用的實施例中,磁性物體在相加法性過程中被添加到選定位置處的目標物體或工件上。In an embodiment that can be used in conjunction with the preceding or following embodiments, the magnetic object is added to the target object or workpiece at the selected location in an additive process.

在可與之前或之後的實施例結合使用的實施例中,待添加的複合磁性物體包括與外部磁場為強烈相互作用的多個部分,並且用於將物體整體定位和定向為嵌入在與外部磁場為弱相互作用的材料中。例如,複合磁性物體可由具有嵌入的鐵薄片的二氧化矽組成。In an embodiment that can be used in conjunction with the preceding or following embodiments, the composite magnetic object to be added comprises multiple parts that interact strongly with the external magnetic field, and is used to position and orient the object as a whole to be embedded in the external magnetic field. for weakly interacting materials. For example, composite magnetic objects may be composed of silicon dioxide with embedded iron flakes.

在可與之前或之後的實施例結合使用的實施例中,在外部磁場下將複合磁性物體引導到目標或工件的選定位置的路徑上,其中將複合磁性物體的一部分添加到目標或工件中,並且將複合磁性物體的一部分分離並且沿著不同的路徑引導。In an embodiment that may be used in conjunction with the preceding or following embodiments, the composite magnetic object is guided on a path to a selected location of the target or workpiece under an external magnetic field, wherein a portion of the composite magnetic object is added to the target or workpiece, And part of the composite magnetic object is separated and guided along different paths.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括與外部磁場為強烈相互作用的第一部分、與外部磁場為弱相互作用的第二部分以及在第一部分和第二部分之間形成連接的第三部分,其中第三部分包括可通過操作去除的材料,並且其中第一部分和第二部分在操作之後沿著不同的路徑單獨地行進。例如,複合磁性物體可由鐵氧體珠和與可通過加熱去除之黏合劑連接的二氧化矽(silica)玻璃珠組成,將二氧化矽珠添加到選定位置的工件上,並且將鐵氧體珠引導到回收容器。In an embodiment that can be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a first portion that interacts strongly with the external magnetic field, a second portion that interacts weakly with the external magnetic field, and A connected third portion is formed therebetween, wherein the third portion includes material that can be removed by the operation, and wherein the first portion and the second portion travel separately along different paths after the operation. For example, a composite magnetic object may consist of ferrite beads and silica glass beads attached to a binder that can be removed by heating, the silica beads are added to the workpiece at selected locations, and the ferrite beads Guide to recycling container.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括第一部分,該第一部分在沒有施加磁場的存在下包圍第二部分並且在施加磁場的存在下不包圍第二部分,其中第一部分與外部磁場為強烈相互作用,並且其中第二部分可獨立於第一部分而在至少一條路徑上行進。In an embodiment that can be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a first portion that surrounds the second portion in the absence of an applied magnetic field and does not surround the second portion in the presence of an applied magnetic field, wherein the first portion is strongly interacting with the external magnetic field, and wherein the second portion can travel on at least one path independently of the first portion.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括第一部分,該第一部分在沒有第一施加磁場的存在下包圍第二部分並且在第二施加磁場的存在下不包圍第二部分,其中第一部分與外部磁場為強烈相互作用,並且其中第二部分可獨立於第一部分而在至少一條路徑上行進。In an embodiment that may be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a first portion that surrounds the second portion in the absence of the first applied magnetic field and does not surround the second portion in the presence of the second applied magnetic field A second portion, wherein the first portion is strongly interacting with the external magnetic field, and wherein the second portion can travel on at least one path independently of the first portion.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括與外部磁場為強相互作用的第一部分,該第一部分由與外部磁場為弱相互作用的第二部分包圍,其中第一部分可通過添加熱能的操作與第二部分分離。例如,複合磁性物體可以是被硫族化合物玻璃包圍的鐵珠,其在外部磁場的作用下被引導到目標或工件位置的路徑上以進行添加性過程。熱的施加導致硫族化合物玻璃的黏著度降低,使得鐵珠可在第二外部磁場下沿不同方向被吸引。由於硫族化合物玻璃的黏著度降低,鐵珠穿過硫族化合物玻璃,而硫族化合物玻璃的動量使其在目標或工件上沿路徑繼續進行以用於添加處理。較佳地,以與低黏著度玻璃的動量相反的方向從加熱的低黏著度玻璃中提取鐵珠,使得低黏著度玻璃的方向不變。在此示例中,鐵珠的居里溫度為1043 K,硫族化合物玻璃的玻璃轉化溫度為423K。通常,第一部分的居里溫度必須高於第二部分的玻璃轉化溫度。In an embodiment that can be used in conjunction with the preceding or following embodiments, the composite magnetic object includes a first portion that interacts strongly with the external magnetic field, the first portion is surrounded by a second portion that interacts weakly with the external magnetic field, wherein the first portion interacts weakly with the external magnetic field. One part can be separated from the second part by the operation of adding thermal energy. For example, the composite magnetic object can be an iron bead surrounded by chalcogenide glass, which is guided in the path of a target or workpiece location by an external magnetic field for additive processing. The application of heat causes the adhesion of the chalcogenide glass to decrease so that the iron beads can be attracted in different directions under the second external magnetic field. Due to the reduced adhesion of the chalcogenide glass, the iron beads pass through the chalcogenide glass, and the momentum of the chalcogenide glass causes it to continue along the path on the target or workpiece for additive processing. Preferably, the iron beads are extracted from the heated low-tack glass in a direction opposite to the momentum of the low-tack glass, so that the direction of the low-tack glass is unchanged. In this example, the Curie temperature of the iron beads is 1043 K, and the glass transition temperature of the chalcogenide glass is 423 K. Typically, the Curie temperature of the first part must be higher than the glass transition temperature of the second part.

在可與之前或之後的實施例結合使用的實施例中,複合磁性物體包括第一部分,該第一部分與外部磁場為強相互作用且部分地包圍第二部分,該第二部分與外部磁場為弱相互作用,其中第二部分可在不接觸第一部分的情況下行進在至少一個方向。例如,複合磁性物體可以是包含藍寶石光學件的鈷杯狀物。鈷杯狀物的口部通過施加的磁場而引導朝向一位置以用於添加過程,並且杯狀物在藍寶石光學件上沿該方向施加動量。施加第二磁場使鈷杯狀物在無需在藍寶石光學元件上施加力的情況下反轉方向。藍寶石光學件繼續到達目標或工件上的位置以用於添加過程。In an embodiment that may be used in conjunction with the preceding or following embodiments, the composite magnetic object comprises a first portion that interacts strongly with the external magnetic field and partially surrounds a second portion that is weak to the external magnetic field interact, wherein the second portion can travel in at least one direction without contacting the first portion. For example, the composite magnetic object may be a cobalt cup containing sapphire optics. The mouth of the cobalt cup is directed toward a position for the addition process by the applied magnetic field, and the cup imparts momentum in that direction on the sapphire optic. Applying a second magnetic field causes the cobalt cup to reverse direction without exerting a force on the sapphire optic. The sapphire optics continue to reach a position on the target or workpiece for the additive process.

在可與之前或之後的實施例結合使用的實施例中,磁性物體或其一部分被熔化並且接著添加到目標物體。熔化可能發生在管道中、鄰近管道出口、或鄰近目標物體或工件。可通過施加射頻電場通過感應來熔化磁性物體或其一部分。物體可穿過黑體區域被熱輻射而融化。物體可能會被雷射輻射融化。In an embodiment that can be used in conjunction with the preceding or following embodiments, the magnetic object or a portion thereof is melted and then added to the target object. Melting may occur in the pipe, near the outlet of the pipe, or near the target object or workpiece. Magnetic objects or parts thereof can be melted by induction by applying a radio frequency electric field. Objects can be melted by thermal radiation through the blackbody region. Objects may be melted by laser radiation.

在可與之前或之後的實施例結合使用的實施例中,在三維打印過程中,幾滴熔融金屬合金被添加到目標物體或工件。在其他實施例中,熔融液滴是光學材料、電子材料或聚合物材料。可控制液滴的大小和溫度,以控制經沉積的材料的原子結構。例如,可將熔融液滴淬火以產生金屬性玻璃,或將其退火並緩慢冷卻以產生晶體結構。每個熔融液滴或一組液滴的冷卻速率和熱歷程可能不同,因此同一原子組成的不同液滴可能具有不同的晶體排序或為非晶態。每個液滴或一組液滴中的材料溫度都可在添加到工件之前和之後進行調節。滴狀材料的溫度調節例如可在添加到工件之前是輻射性的,而在添加到工件之後主要是導電的。每個熔融液滴的組成可以不同,從而允許產生複合三維物體。例如,可通過添加具有不同折射率的液滴的序列來製造梯度折射率光學件。In an embodiment that can be used in conjunction with the preceding or following embodiments, during the three-dimensional printing process, a few drops of molten metal alloy are added to the target object or workpiece. In other embodiments, the molten droplets are optical materials, electronic materials, or polymeric materials. The size and temperature of the droplets can be controlled to control the atomic structure of the deposited material. For example, molten droplets can be quenched to produce metallic glasses, or annealed and slowly cooled to produce crystalline structures. The cooling rate and thermal history of each molten droplet or group of droplets may be different, so different droplets of the same atomic composition may have different crystalline orderings or be amorphous. The material temperature in each droplet or group of droplets can be adjusted before and after addition to the workpiece. The temperature adjustment of the droplet material may, for example, be radiative prior to addition to the workpiece and predominantly conductive after addition to the workpiece. The composition of each molten droplet can be different, allowing the creation of composite three-dimensional objects. For example, gradient index optics can be fabricated by adding a sequence of droplets with different indices of refraction.

在可與之前或之後的實施例結合使用的重要實施例中,熔融的材料液滴被添加到工件中,包含單晶晶種和液滴中的材料結晶以生長單晶。In an important embodiment, which may be used in conjunction with the preceding or following embodiments, a molten droplet of material is added to the workpiece, containing a single crystal seed crystal and the material in the droplet crystallizes to grow a single crystal.

在可與之前或之後的實施例結合使用的實施例中,熔融液滴在電場存在下被添加到工件中,以在結晶過程中引起極化以及結晶軸與外加電場的對準。通過這種方法,可在整個三維結構中以可控方式改變結晶軸的極化和對準。該效果例如可用於製造具有各向異性特性的壓電構件。該效果例如可用於製造具有在空間上變化的各向異性折射率的光學構件。In an embodiment that can be used in conjunction with the preceding or following embodiments, molten droplets are added to the workpiece in the presence of an electric field to induce polarization and alignment of the crystallographic axis with the applied electric field during crystallization. In this way, the polarization and alignment of the crystallographic axes can be varied in a controllable manner throughout the three-dimensional structure. This effect can be used, for example, to manufacture piezoelectric members with anisotropic properties. This effect can be used, for example, to produce optical components with a spatially varying anisotropic refractive index.

在可與之前或之後的實施例結合使用的實施例中,熔融液滴在磁場的存在下被添加到工件,以在目標物體中引起空間變化的磁矩。可例如使用此方法來製造響應於所施加的磁場而改變形狀的微型機器人。In an embodiment that can be used in conjunction with the previous or following embodiments, molten droplets are added to the workpiece in the presence of a magnetic field to induce spatially varying magnetic moments in the target object. This method can be used, for example, to fabricate microrobots that change shape in response to an applied magnetic field.

在可與之前或之後的實施例結合使用的實施例中,多種材料被添加到工件,其中每種材料由磁性物體傳送,並且磁性物體的位置和定向由外部磁場控制。In an embodiment that can be used in conjunction with the preceding or following embodiments, multiple materials are added to the workpiece, wherein each material is conveyed by a magnetic object, and the position and orientation of the magnetic object is controlled by an external magnetic field.

在可與之前或之後的實施例結合使用的實施例中,多種材料被添加到工件,其中每種材料具有不同的折射率且其中每種材料由磁性物體傳送,並且磁性物體的位置和定向由外部磁場控制。具有不同折射率的材料可例如組裝成用於光學計算的三維電路。In an embodiment that can be used in conjunction with the preceding or following embodiments, multiple materials are added to the workpiece, wherein each material has a different index of refraction and wherein each material is conveyed by a magnetic object, and the position and orientation of the magnetic object is determined by External magnetic field control. Materials with different indices of refraction can, for example, be assembled into three-dimensional circuits for optical computing.

在可與之前或之後的實施例結合使用的實施例中,多種材料被添加到工件,其中每種材料具有不同的電子特性且其中每種材料由磁性物體傳送,並且磁性物體的位置和定向由外部磁場控制。具有不同電子特性的材料可例如組裝成三維電性電路。In an embodiment that can be used in conjunction with the previous or subsequent embodiments, multiple materials are added to the workpiece, wherein each material has different electronic properties and wherein each material is transported by a magnetic object, and the position and orientation of the magnetic object is determined by External magnetic field control. Materials with different electronic properties can be assembled, for example, into three-dimensional electrical circuits.

本發明的磁性配置大致上在圖1中以200表示。如圖1示意性地表示,磁力可用於在如區域206中所示的管道內定位物體、沿如區域中207所示的不同路徑引導物體、沿如區域中208所示的管道推動物體以及沿如區域209中所示的彈道路徑引導物體。在此處所描述的特徵可單獨使用或組合使用。The magnetic configuration of the present invention is generally indicated at 200 in FIG. 1 . As schematically represented in FIG. 1 , magnetic forces can be used to position objects within a pipe as shown in area 206 , guide objects along different paths as shown in area 207 , push objects along a pipe as shown in area 208 , and The ballistic path as shown in area 209 guides the object. The features described herein can be used alone or in combination.

在圖1中,來自單粒化裝置50的經單粒化的磁性物體74進入管道91。每個物體的位置由感測器網絡(sensor net)依據時間函數進行測量,該感測器網絡包括鄰近管道區域206、207和208定位的一或多個感測器,如201例示性地表示。感測器網絡與控制器元件202通信,如203所示。控制器元件包括計算裝置和電性元件,計算裝置和電性元件作用以調節經由導線204提供給每個電磁鐵205的電壓和/或電流。為了簡單起見,在此僅示出了一條導線,但是可理解到每個電磁鐵皆連接到控制單元。計算元件包括用於將數據儲存在機器可讀取媒體上並且傳送關於電磁鐵和感測器輸入(未示出)操作的數據的元件。在某些情況下,可將多個永久磁鐵(未示出)添加到所示配置以提供偏置場,並且淨磁場是偏置場和由電磁鐵產生的磁場的向量和。此特徵在時間平均場有偏好方向的應用中可減少能量消耗。In FIG. 1 , singulated magnetic objects 74 from singulation device 50 enter conduit 91 . The position of each object is measured as a function of time by a sensor net comprising one or more sensors positioned adjacent to the pipe regions 206, 207 and 208, as exemplarily represented by 201 . The sensor network is in communication with the controller element 202 as shown at 203 . The controller elements include computing devices and electrical elements that act to regulate the voltage and/or current provided to each electromagnet 205 via the wires 204 . For simplicity, only one wire is shown here, but it is understood that each electromagnet is connected to the control unit. The computing elements include elements for storing data on a machine-readable medium and communicating data regarding the operation of electromagnets and sensor inputs (not shown). In some cases, multiple permanent magnets (not shown) may be added to the configuration shown to provide a bias field, and the net magnetic field is the vector sum of the bias field and the magnetic field produced by the electromagnets. This feature can reduce energy consumption in applications where the time-averaged field has a preferred direction.

物體定向區域206排列有電磁鐵205的陣列,該電磁鐵205的陣列操作以沿不同方向產生磁場,如211、212、213、214和215所示。物體定向區域可被非磁性壁210部分地包圍,非磁性壁210作用以約束物體運動並為電磁鐵205的陣列提供機械支撐。陣列中的電磁鐵數量至少等於物體的自由度數量。壁210可例如約束磁性物體74在平面中移動,從而消除一個平移自由度,並且亦可能阻礙旋轉自由度。可替代地,物體可在自由空間中定向而不接觸壁210,並且壁在不規則操作的情況下僅充當屏障。電磁鐵的陣列的空間範圍可由物體的平移速度和所需的物體通過量來決定。在物體具有足夠小的平移速度以使得來自任何電磁鐵的磁場在定向區域206中行進的距離內幾乎恆定的最簡單情況下,僅需要六個電磁鐵就可以六個自由度來定向物體。較佳地,電磁鐵被間隔開並且定向成指向共同的中心,並且每個電磁鐵佔據相等的立體角。可使用更多的電磁鐵來更好地定義淨磁場的方向。在物體在定向步驟中平移通過來自個別電磁鐵的磁場的區域來進行之更一般情況下,需要更多的電磁鐵才能為每個定向步驟在空間中提供磁場。Object orientation region 206 is arranged with an array of electromagnets 205 that operate to generate magnetic fields in different directions, as shown at 211 , 212 , 213 , 214 and 215 . The object orientation region may be partially surrounded by non-magnetic walls 210 that act to constrain object movement and provide mechanical support for the array of electromagnets 205 . The number of electromagnets in the array is at least equal to the number of degrees of freedom of the object. Wall 210 may, for example, constrain magnetic object 74 to move in a plane, thereby eliminating one translational degree of freedom, and may also hinder rotational degrees of freedom. Alternatively, the object may be oriented in free space without contacting the wall 210, and the wall only acts as a barrier in case of irregular operation. The spatial extent of the array of electromagnets can be determined by the translation velocity of the object and the required throughput of the object. In the simplest case where the object has a translation velocity small enough that the magnetic field from any electromagnet is nearly constant over the distance traveled in the orientation region 206, only six electromagnets are required to orient the object with six degrees of freedom. Preferably, the electromagnets are spaced apart and oriented to point toward a common center, and each electromagnet occupies an equal solid angle. More electromagnets can be used to better define the direction of the net magnetic field. In the more general case where the object is translated in an orientation step through the region of the magnetic field from the individual electromagnets, more electromagnets are required to provide the magnetic field in space for each orientation step.

在定向過程中的每個時間間隔,對於物體的力和力矩與所施加的磁場和物體的磁矩之間的內積成正比,並且力和力矩將使物體與所施加的磁場對齊。在此考量下,在所施加的磁場和物體的磁矩之間的角度必須小於90度。在接近90度的角度下,系統是不穩定的並且可能會朝向亦或遠離所需方向旋轉。較佳地,物體用呈30度或更小的多個步驟來定向。At each time interval in the orientation process, the forces and moments on the object are proportional to the inner product between the applied magnetic field and the object's magnetic moment, and the forces and moments will align the object with the applied magnetic field. For this consideration, the angle between the applied magnetic field and the magnetic moment of the object must be less than 90 degrees. At angles close to 90 degrees, the system is unstable and may rotate toward or away from the desired direction. Preferably, the object is oriented in steps of 30 degrees or less.

如圖1中所示,物體221被檢測器201檢測到接近以211表示的第一磁性區,第一磁性區與物體行進方向定向成30度。響應於來自檢測器201的物體位置和方向資訊,控制器202打開兩個或多個電磁鐵以產生磁場211。物體被吸引到磁場211中的最高磁通量的區域,並且經受朝向與磁場方向對準的力矩。檢測器201監測物體的位置的變化,並且在物體到達磁軸211之前,控制器202關閉在211的磁場並且使在212的下一個磁軸打開。漸增地在213、214和215重複該過程以將物體旋轉到所需定向。As shown in FIG. 1, an object 221 is detected by the detector 201 in proximity to a first magnetic region, indicated at 211, which is oriented at 30 degrees to the direction of travel of the object. In response to object position and orientation information from detector 201 , controller 202 turns on two or more electromagnets to generate magnetic field 211 . Objects are attracted to the regions of highest magnetic flux in the magnetic field 211 and experience a moment towards alignment with the direction of the magnetic field. The detector 201 monitors changes in the position of the object, and before the object reaches the magnetic axis 211, the controller 202 turns off the magnetic field at 211 and turns on the next magnetic axis at 212. This process is repeated incrementally at 213, 214 and 215 to rotate the object to the desired orientation.

圖2示出了用於通過控制裝置202在圖1的定向區域206中定向物體的確定性演算法(deterministic algorithm)。該演算法將離開定向區域206的物體的所需位置、速度和定向作為輸入。在一些實施例中,該演算法計算在定向區域206的入口和出口之間的一系列定位點(waypoint),其中每個定位點具有一組所需的位置、速度和定向參數。此處的討論中,定位點參數將接著成為所需的參數。該演算法開始於檢測進入定向區域206的物體的位置、速度和定向。在下一步驟中,決定物體的動力學特性。這些動力學特性包括質量、形狀、慣性力矩以及與表面和空氣阻力的摩擦係數。在涉及一系列相似或相同物體的情況下,動力學特性可從先前的測量中得知,因此可從儲存媒體中獲得。在涉及具有可變的特性的物體的情況下,通過測量物體對已知力的響應來確定動力學特性。例如,在初始步驟中,已知的磁場是在不同的(較佳是正交的)方向上在短時間間隔內施加,並且物體對磁場的響應是通過檢測器網201觀察到。控制裝置202接著從觀察結果中計算出一組初始的動力學特性。基於該組初始的動力學特性,控制裝置202通過古典動力學計算出產生在朝向所需最終或定位點參數的位置、速度和定向參數上的變化而所需施加的磁力。該演算法接下來嘗試找到最接近所需磁場之電磁鐵的陣列的一輸入組合,且接著產生該磁場。檢測器201響應於所施加的場來測量物體的位置、速度和取向參數的變化,並且控制裝置202計算在實際參數與所計算參數之間的差異。該差異可用於改善動力學參數的估計值。此特徵對於具有不規則形狀的磁性物體特別有用,因為在少量測量值下的初始動力學特性可能具有較大的不確定性。如果位置、速度和取向參數在所需最終參數的容限範圍內,則演算法終止。否則,該演算法將執行以下之另一次迭代:從古典動力學計算所需磁力、用可得的電磁鐵提供近似磁場、施加磁場達一較短的時間間隔,以及觀察結果。應注意到,在某些情況下,所產生的場分量可簡單地用於抵抗重力並保持物體懸浮在空間中而不會與壁210發生摩擦。FIG. 2 shows a deterministic algorithm for orienting objects in the orientation region 206 of FIG. 1 by the control device 202 . The algorithm takes as input the desired position, velocity and orientation of the object leaving the orientation zone 206 . In some embodiments, the algorithm calculates a series of waypoints between the entrance and exit of the orientation region 206, where each waypoint has a desired set of position, velocity, and orientation parameters. In the discussion here, the anchor parameter will then become the required parameter. The algorithm begins by detecting the position, velocity, and orientation of objects entering the orientation region 206 . In the next step, the dynamic properties of the object are determined. These dynamic properties include mass, shape, moment of inertia, and coefficient of friction with surfaces and air resistance. In the case of a series of similar or identical objects, the kinetic properties are known from previous measurements and are therefore available from the storage medium. In the case of objects with variable properties, the dynamic properties are determined by measuring the object's response to known forces. For example, in an initial step, known magnetic fields are applied over short time intervals in different (preferably orthogonal) directions, and the response of the object to the magnetic fields is observed through the detector mesh 201 . The control device 202 then calculates an initial set of kinetic characteristics from the observations. Based on this initial set of kinetic properties, the control device 202 calculates through classical dynamics the magnetic force required to be applied to produce a change in position, velocity and orientation parameters towards the desired final or anchor point parameters. The algorithm then attempts to find an input combination of an array of electromagnets that is closest to the desired magnetic field, and then generates the magnetic field. The detector 201 measures changes in the position, velocity and orientation parameters of the object in response to the applied field, and the control device 202 calculates the difference between the actual parameter and the calculated parameter. This difference can be used to improve estimates of kinetic parameters. This feature is especially useful for magnetic objects with irregular shapes, as the initial dynamics at a small number of measurements can have large uncertainties. If the position, velocity and orientation parameters are within the tolerances of the desired final parameters, the algorithm terminates. Otherwise, the algorithm performs another iteration of: calculating the required magnetic force from classical dynamics, providing an approximate magnetic field with available electromagnets, applying the magnetic field for a short time interval, and observing the results. It should be noted that, in some cases, the resulting field component may simply be used to defy gravity and keep the object suspended in space without friction with the wall 210 .

圖1示意性地示出了通過導線217與控制裝置202連接並在控制裝置202的控制下的操作裝置216。在區域206、207、208和209中可以有任意數量的離散操作裝置216來對磁性物體執行不同的操作。在空間上不同的區域206、207、208和209中可以有任意數量的不同類型的操作裝置來對磁性物體執行操作。FIG. 1 schematically shows the operating device 216 connected to and under the control of the control device 202 by means of wires 217 . There may be any number of discrete manipulation devices 216 in regions 206, 207, 208 and 209 to perform different manipulations on magnetic objects. There may be any number of different types of manipulation devices in the spatially distinct regions 206, 207, 208 and 209 to perform manipulations on magnetic objects.

在一些實施例中,操作裝置216將輻射引導朝向磁性物體的一部分,並且該輻射在磁性物體上的某個位置處引起物理或化學變化。輻射可例如加熱、融合、熔化或燒蝕一部分磁性物體,從而引起物理變化。輻射可例如用於使磁性一部分物體光聚合,從而引起化學變化。In some embodiments, the manipulation device 216 directs radiation towards a portion of the magnetic object, and the radiation causes a physical or chemical change at a location on the magnetic object. Radiation can, for example, heat, fuse, melt, or ablate a portion of a magnetic object, causing physical changes. Radiation can be used, for example, to photopolymerize a magnetic part of the object, thereby causing chemical changes.

在一些實施例中,操作裝置216將材料添加到磁性物體221、231、241、261或271的至少一部分。例如,添加的材料可以是添加到螺釘的螺紋的潤滑劑或添加到螺釘的頭部的墨水標記。In some embodiments, manipulation device 216 adds material to at least a portion of magnetic object 221 , 231 , 241 , 261 or 271 . For example, the added material may be lubricant added to the threads of the screw or ink marks added to the head of the screw.

圖1示出了區域207中的磁性閘門配置,其中磁性物體231接近具有三個分支232、233和234的閘門。檢測器201測量物體231的位置和速度,並且控制器202計算沿著基於由物體的所需使用所選擇的路徑232、233和234中之一者來引導物體231的所需磁場。如所示,電磁鐵235和236可組合使用以基本上沿著路徑232產生具有橫向分量的磁場。控制單元改變橫向分量,以針對不同物體231的位置和速度的變化進行調整,以操縱每個物體以沿著路徑232而到工具67。在一些實施例中,單一個電磁鐵可用於將物體吸引到每個路徑。類似地,控制器202可啟動電磁鐵237和238,以操縱物體231以沿著路徑233而朝向緩衝器240。同樣地,控制器202可啟動電磁鐵238和239,以操縱物體231以沿著路徑234而朝向輸送區域08。FIG. 1 shows a magnetic gate configuration in region 207 where a magnetic object 231 approaches the gate with three branches 232 , 233 and 234 . Detector 201 measures the position and velocity of object 231, and controller 202 calculates the required magnetic field to guide object 231 along one of paths 232, 233 and 234 selected based on the desired use of the object. As shown, electromagnets 235 and 236 may be used in combination to generate a magnetic field having a transverse component substantially along path 232 . The control unit varies the lateral component to adjust for changes in position and velocity of the different objects 231 to steer each object to the tool 67 along the path 232 . In some embodiments, a single electromagnet may be used to attract objects to each path. Similarly, controller 202 may activate electromagnets 237 and 238 to steer object 231 toward bumper 240 along path 233 . Likewise, controller 202 may activate electromagnets 238 and 239 to manipulate object 231 to follow path 234 toward delivery area 08 .

檢測器201檢測進入輸送區域208的物體的位置和速度,並且控制器202沿區域208依次沿縱向位置242、243、244、245、246、247、248、249和250來啟動電磁鐵陣列。在一實施例中,電磁鐵的陣列可操作為線性步進馬達,以使得物體在被轉移到陣列中的下一個電磁鐵之前被每個電磁鐵吸引並保持達一使用者定義的時間間隔。此特徵對於必須以特定時間間隔將物體遞送到排列尾端處的操作的應用是很有用的。在另一實施例中,該陣列操作為線性馬達。亦即,當物體241接近電磁鐵242時,電磁鐵242被開啟以吸引物體241。在物體241到達電磁鐵242的位置之前,電磁鐵242被關閉並且電磁鐵243被打開。在該示例中,該過程被重複進行直到物體241到達以250表示的陣列中最後一個電磁鐵的位置為止。因此,物體241可以恆定速度被步進式地輸送或加速而朝著最後的陣列構件250。控制器202可基於物體位置的動態計算、來自檢測器201的測量或是前述兩者來調節電磁鐵啟動的時機。在磁性物體之間的距離可由檢測器201測量,並且陣列中的磁鐵以增加或減小在磁性物體之間的距離的方式操作。Detector 201 detects the position and velocity of objects entering transport zone 208 and controller 202 activates an array of electromagnets along longitudinal positions 242, 243, 244, 245, 246, 247, 248, 249 and 250 in sequence along zone 208. In one embodiment, the array of electromagnets is operable as a linear stepper motor such that an object is attracted to each electromagnet and held for a user-defined time interval before being transferred to the next electromagnet in the array. This feature is useful for applications where objects must be delivered to the tail end of the array at specific time intervals. In another embodiment, the array operates as a linear motor. That is, when the object 241 approaches the electromagnet 242 , the electromagnet 242 is turned on to attract the object 241 . Before the object 241 reaches the position of the electromagnet 242, the electromagnet 242 is turned off and the electromagnet 243 is turned on. In this example, the process is repeated until object 241 reaches the position of the last electromagnet in the array, indicated at 250 . Thus, the object 241 may be conveyed or accelerated in steps toward the last array member 250 at a constant speed. The controller 202 may adjust the timing of electromagnet activation based on dynamic calculations of the object's position, measurements from the detector 201, or both. The distance between the magnetic objects can be measured by the detector 201, and the magnets in the array operate in a manner that increases or decreases the distance between the magnetic objects.

在另一配置中,檢測器201檢測到接近氣隙209的物體,並且控制器202啟動電磁鐵251和252以在物體上施加橫向速度分量。術語“氣隙”的含義為包括對穿過該區域的材料提供最小拉力的介質的區域。在一些實施例中,“氣隙”可包含大氣。在一些實施例中,“氣隙”可包含非反應氣體。在一些實施例中,“氣隙”可包含壓力在大氣壓力以下的氣體。在一些實施例中,“氣隙”可以是壓力例如小於1E-5 Torr的真空區域。In another configuration, detector 201 detects an object approaching air gap 209, and controller 202 activates electromagnets 251 and 252 to impose a lateral velocity component on the object. The term "air gap" is meant to include the area of the medium that provides the least pulling force on the material passing through that area. In some embodiments, the "air gap" may contain the atmosphere. In some embodiments, the "air gap" may contain a non-reactive gas. In some embodiments, the "air gap" may contain gas at a pressure below atmospheric pressure. In some embodiments, an "air gap" may be a vacuum region with a pressure, eg, less than 1E-5 Torr.

在氣隙209中如261所示,可將物體向上引導到箱陣列262。磁性物體261在氣隙209中的運動由檢測器273檢測,檢測器273通過導線274與控制裝置202通信。在本說明書中,術語“檢測器”是指在此所描述功能所需的多個檢測器。在一些實施例中,物體從單粒化供給件91接近氣隙。在其他實施例中,氣隙209可以是在取向區域206和/或輸送區域208之前。物體261遵循彈道軌跡朝向箱陣列262,並且在所示的示例中落入箱263。亦即,可將物體以特定定向引導到圓錐形區域內的特定位置,該圓錐形區域由電磁鐵242至252(包括電磁鐵242和252)向物體施加的縱向和橫向速度所決定,並且每個物體的方向和定向可通過檢測器273進行驗證。在一些實施例中,部分地基於物體的測量參數將物體引導到不同的箱。In the air gap 209, as shown at 261, objects may be directed upwards to the bin array 262. The movement of the magnetic object 261 in the air gap 209 is detected by a detector 273 which communicates with the control device 202 via a wire 274 . In this specification, the term "detector" refers to the plurality of detectors required for the functions described herein. In some embodiments, the object approaches the air gap from the singulation feed 91 . In other embodiments, the air gap 209 may precede the orientation region 206 and/or the transport region 208 . Object 261 follows a ballistic trajectory towards bin array 262 and falls into bin 263 in the example shown. That is, an object can be directed to a specific location within a conical area determined by the longitudinal and lateral velocities applied to the object by electromagnets 242 to 252 (including electromagnets 242 and 252), and each The orientation and orientation of the individual objects can be verified by detector 273 . In some embodiments, objects are directed to different bins based in part on measurement parameters of the objects.

在另一配置中,檢測器201檢測到接近氣隙209的物體,並且控制器202啟動電磁鐵251和252以在氣隙209中所示的物體271上施加橫向速度分量。磁性物體271遵循彈道軌道朝向工件272,並在工件272上執行操作。檢測器273可操作以確認磁性物體271的軌跡和取向以及在工件272上執行操作的效果。可選地,在對工件272執行操作之後,在281處示意性地示出的磁性物體被收集並沿著路徑282返回到單粒化裝置50。In another configuration, detector 201 detects an object approaching air gap 209 and controller 202 activates electromagnets 251 and 252 to impose a lateral velocity component on object 271 shown in air gap 209 . The magnetic object 271 follows a ballistic trajectory towards the workpiece 272 and performs operations on the workpiece 272 . Detector 273 is operable to confirm the trajectory and orientation of magnetic object 271 and the effect of performing operations on workpiece 272 . Optionally, after performing operations on workpiece 272, magnetic objects, shown schematically at 281, are collected and returned to singulation device 50 along path 282.

通過導線276與控制裝置202通信的輻射源275引導輻射,該輻射可以是入射在工件272的位置上的光子、電子、中子、原子、離子或分子。在本說明書中,術語“輻射源”是指在此所描述功能所需的多個輻射源。在一些實施例中,輻射源275可提供輻射,該輻射由工件272反射、散射、吸收或透射並且隨後被檢測器273檢測到以提供關於物體271與工件272的相互作用的資訊。例如,輻射源275可提供具有在400 nm與1050 nm之間的波長範圍內的光子以照射工件及鄰近區域,並且檢測器273是具有對所述波長範圍敏感的光二極體陣列的照相機。在其他實施例中,輻射源275可提供輻射,該輻射導致與物體271的到達相配合的工件272上的物理或化學變化。例如,輻射源275可以是雷射,其照射並加熱工件272上的選定位置以促進在工件272與物體271之間的化學反應。例如,可加熱工件272的區域以促進物體271與工件272的融合。例如,工件272的區域可被加熱,以使物體271的動量使工件272的所述區域的原子結構變形或改變。A radiation source 275 , which communicates with the control device 202 via wires 276 , directs radiation, which may be photons, electrons, neutrons, atoms, ions, or molecules incident on the location of the workpiece 272 . In this specification, the term "radiation source" refers to a plurality of radiation sources required for the functions described herein. In some embodiments, radiation source 275 may provide radiation that is reflected, scattered, absorbed or transmitted by workpiece 272 and then detected by detector 273 to provide information about the interaction of object 271 with workpiece 272 . For example, radiation source 275 may provide photons having a wavelength range between 400 nm and 1050 nm to illuminate the workpiece and adjacent regions, and detector 273 is a camera with a photodiode array sensitive to that wavelength range. In other embodiments, radiation source 275 may provide radiation that causes physical or chemical changes on workpiece 272 that cooperate with the arrival of object 271 . For example, radiation source 275 may be a laser that illuminates and heats selected locations on workpiece 272 to promote a chemical reaction between workpiece 272 and object 271 . For example, areas of workpiece 272 may be heated to facilitate fusion of object 271 with workpiece 272 . For example, a region of workpiece 272 may be heated such that the momentum of object 271 deforms or changes the atomic structure of the region of workpiece 272 .

如圖1示意性地表示,部分區域208可穿過以27和28表示的工件區段,並且該區域內的磁性物體可對工件區段27和28進行操作。該區域208的選擇僅是出於說明性目的。區域206、207或208的任何部分可穿過工件的一部分並在工件上執行操作。As schematically represented in FIG. 1 , a portion of the region 208 may pass through the workpiece segments, indicated at 27 and 28 , and magnetic objects within this region may operate on the workpiece segments 27 and 28 . The selection of this area 208 is for illustrative purposes only. Any portion of regions 206, 207 or 208 may pass through a portion of the workpiece and perform operations on the workpiece.

在圖3至8中,應理解為包括磁性陣列、光源、檢測器、感測器、馬達和位移元件在內的所有功能性構是與控制元件202通信並由其控制。為了簡單起見,在此未明確示出到控制器202的連接。In Figures 3 to 8, it should be understood that all functional structures including the magnetic array, light sources, detectors, sensors, motors and displacement elements are in communication with and controlled by the control element 202. For simplicity, the connection to the controller 202 is not explicitly shown here.

圖3和4是圖1的配置用於對工件加工的示意圖。圖3示出了圖1用於切割工件區塊301的配置。管道區域208中的磁性物體241可以是經定向的工具或沒有較佳定向的研磨材料。磁性物體241在管道208中被加速,並通過操縱磁鐵251和252被引導通過氣隙209朝向工件301上的位置。如302所示,工件區塊301可平移以產生相對於管道208的運動。工件和管道的相對運動結合由操緃磁鐵251和252所控制的磁性物體的方向向量共同決定了朝向工件以及在工件內入射有磁性物體271之路徑303以執行切割操作。輻射源275以同調光277照射工件。磁性物體271的撞擊和影響由與控制器202通信的光檢測器273觀察到。光檢測器273包括將從工件反射的光與參考值進行比較的干涉儀,並且控制器202使用來自檢測器273的資訊來計算每個磁性物體271的切割深度的變化。控制器202可使用關於每個磁性物體對工件301的衝擊和影響的資訊,以計算隨後磁性物體的能量、動量和定向,並通過如沿圖1所示的路徑的任何部分啟動所需的磁場來產生所需的能量、動量和定向。控制器202可在機器可讀取媒體上儲存針對每個磁性物體之所使用的磁場以及對工件影響的資訊,並且如此收集的資訊可用於優化製造過程。在一些實施例中,通過來自檢測器273的反饋來個別控制每個磁性物體,從而比現有技術方法提供了更佳的控制和精度。在其他實施例中,僅控制用於磁性物體之集合的平均參數。在這種情況下,本發明的方法在功能上類似於噴水切割機,其優點在於研磨料的磁浮效應極大地減少了將研磨顆粒輸送到工件的系統的磨損。所減少的磨損可減少停機時間,並減少更換磨損部件的費用。在一些實施例中,可用氣體或液體流沖洗鄰近切割操作的區域,以去除切割物和用過的磁性物體。3 and 4 are schematic views of the configuration of FIG. 1 for machining a workpiece. FIG. 3 shows the configuration of FIG. 1 for cutting workpiece block 301 . The magnetic objects 241 in the duct region 208 may be oriented tools or abrasive materials that are not preferably oriented. Magnetic object 241 is accelerated in pipe 208 and directed through air gap 209 towards position on workpiece 301 by manipulating magnets 251 and 252 . As shown at 302 , the workpiece block 301 can be translated to create motion relative to the pipe 208 . The relative motion of the workpiece and the pipe, combined with the direction vector of the magnetic object controlled by the manipulator magnets 251 and 252, together determine the path 303 towards the workpiece and into which the magnetic object 271 is incident to perform the cutting operation. Radiation source 275 illuminates the workpiece with coherent light 277 . The impact and impact of the magnetic object 271 is observed by a light detector 273 in communication with the controller 202 . The light detector 273 includes an interferometer that compares the light reflected from the workpiece with a reference value, and the controller 202 uses the information from the detector 273 to calculate the change in the depth of cut for each magnetic object 271 . The controller 202 can use the information about the impact and effect of each magnetic object on the workpiece 301 to calculate the energy, momentum and orientation of the subsequent magnetic objects and activate the required magnetic field by any part of the path as shown in FIG. 1 . to generate the required energy, momentum and orientation. The controller 202 can store information on the magnetic field used and the effect on the workpiece for each magnetic object on a machine-readable medium, and the information so collected can be used to optimize the manufacturing process. In some embodiments, each magnetic object is individually controlled by feedback from detector 273, providing better control and accuracy than prior art methods. In other embodiments, only the average parameters for the collection of magnetic objects are controlled. In this case, the method of the present invention is functionally similar to a water jet cutting machine, with the advantage that the magnetic levitation effect of the abrasive greatly reduces the wear of the system that delivers the abrasive particles to the workpiece. The reduced wear reduces downtime and reduces the expense of replacing worn parts. In some embodiments, the area adjacent to the cutting operation may be flushed with a gas or liquid flow to remove cuttings and spent magnetic objects.

圖4示出了另一種配置,其中來自加速區域208的研磨磁性物體241的流通過電磁鐵251和252穿過氣隙209被引導到旋轉平台310上的工件301。探測器273通過輻射源275的同調照明277來監測研磨磁性物體在工件上的軌跡和作用。如在311所示,加速區域208可相對於工件301來平移,使得研磨磁性顆粒被引導朝向工件301表面上的任何位置。在所示的示例中,工件301是光學構件,並且檢測器273操作以通過干涉測量學來測量表面曲率。該表面可通過本方法精確地研磨,因為入射在工件301上的每個研磨顆粒271的動量和定向可通過控制元件202針對要去除之材料的量來校準。輻射源275可提供輻射,該輻射加熱工件上的位置,從而在去除材料之後允許材料流動並使表面平滑。FIG. 4 shows another configuration in which the flow of abrasive magnetic objects 241 from acceleration zone 208 is directed through air gap 209 through electromagnets 251 and 252 to workpiece 301 on rotating platform 310 . The detector 273 monitors the trajectory and action of the abrasive magnetic object on the workpiece by coherent illumination 277 of the radiation source 275 . As shown at 311 , the acceleration region 208 may be translated relative to the workpiece 301 such that abrasive magnetic particles are directed toward any location on the surface of the workpiece 301 . In the example shown, workpiece 301 is an optical member, and detector 273 operates to measure surface curvature by interferometry. This surface can be accurately ground by the present method because the momentum and orientation of each abrasive particle 271 incident on the workpiece 301 can be calibrated by the control element 202 for the amount of material to be removed. Radiation source 275 may provide radiation that heats locations on the workpiece, allowing the material to flow and smooth the surface after the material is removed.

流體流261由流體源260產生,並被引導到工件上的一位置,該位置鄰近於在工件上受研磨磁性物體所撞擊的位置。流體流被繞著軸263旋轉的斷流器262週期性地中斷。感測器264測量斷流器的角位移,並將所述位移傳送到控制元件202(未示出)。控制元件202可調節斷流器262的角速度和相位。控制元件202產生致使磁性物體在與流體流不同的時間到達工件位置的信號。Fluid flow 261 is generated by fluid source 260 and directed to a location on the workpiece adjacent to the location on the workpiece where the abrasive magnetic object is struck. Fluid flow is periodically interrupted by interrupters 262 that rotate about shaft 263 . Sensor 264 measures the angular displacement of the cutout and communicates the displacement to control element 202 (not shown). The control element 202 can adjust the angular velocity and phase of the interrupter 262 . The control element 202 generates a signal that causes the magnetic object to reach the workpiece position at a different time than the fluid flow.

應該注意到,由於厄恩肖定理(Earnshaw Theorem)的緣故,沒有磁場可為磁性物體提供平衡位置。然而,可通過快速地調節所施加的磁場以抵抗遠離固定點的運動來使磁性物體241以較小的幅度圍繞固定點振盪。這種動態平衡的方法例如在現有技術的磁性軸承中用於平衡圍繞單個固定點的力。在本發明中,動態平衡是關於使用者所指定的任意曲線路徑上的點。It should be noted that, due to Earnshaw Theorem, no magnetic field can provide an equilibrium position for a magnetic object. However, the magnetic object 241 can be caused to oscillate around the fixed point with smaller amplitudes by quickly adjusting the applied magnetic field to resist movement away from the fixed point. This method of dynamic balancing is used, for example, in prior art magnetic bearings to balance forces around a single fixed point. In the present invention, dynamic balance is about points on an arbitrary curvilinear path specified by the user.

圖5、6、7和8示出圖1的配置用於對工件施加材料的示意圖。圖5、6、7和8是有關於添加有非最終形式的材料(原始材料)。圖7至10僅在將材料輸送到工件272的細節上有所不同。Figures 5, 6, 7 and 8 show schematic views of the configuration of Figure 1 for applying material to a workpiece. Figures 5, 6, 7 and 8 relate to material added in a non-final form (raw material). 7 to 10 differ only in the details of delivering material to workpiece 272 .

圖5、6和7包括圖1以200示意性地表示的磁性配置,其中複合磁性物體由來自磁性配置200的區域208的操緃電磁鐵251和252引導穿過氣隙209而朝向工件272。在圖7中,在200A和200B處示出了圖1中的磁性配置的兩個實例,以示出可使用多個磁性配置來向單一個工件添加材料。每個磁性配置200可例如添加不同類型的材料。磁性配置200A包括操縱電磁鐵251A和252A,該電磁鐵251A和252A引導複合磁性物體471A從區域208A穿過氣隙209朝向工件272。磁性配置200B包括操縱電磁鐵251B和252B,該電磁鐵251A和252A引導複合磁性物體471B從區域208B穿過氣隙209朝向工件272。在圖5至8中,工件272被安裝在具有整合式溫度控制器402的平台401上。溫度控制器402可操作以將不同位置的工件272的溫度調節為不同的值。工件272可被製造在如403所示的經取向的晶種上,並且鄰近工件的區域可具有如404所示的所施加的外部電場。如果存在晶種403,則可以將電場設置為有利於沿選定方向或沿著特定結晶軸而結晶。在圖5、6和7中,氣隙209由輻射裝置275照射,並且氣隙209中的複合磁性物體的軌跡由檢測器273測量並傳輸到控制元件202。控制元件202比較經測量的和經計算的軌跡,並調整至操縱磁鐵251和252的輸出以使隨後的複合磁性物體的差異最小化。在圖7中,有兩個檢測器273A和273B,其分別測量從磁性配置200A和200B投射的複合磁性物體的軌跡。控制裝置202響應於來自檢測器273A和273B的測量來調節每個磁性配置的操縱磁鐵參數。當添加材料時,檢測器273、273A和273B還用於測量工件272的特性變化,並且控制裝置202使用所測量的特性來調節材料的添加以及由溫度控制器402在每個位置添加材料的溫度。圖5、6和8示意性地示出了輻射源410,其將輻射411引導朝向複合磁性物體。在圖7中,有兩個獨立的輻射源410A和410B提供輻射411A和411B。輻射411、411A和411B可以例如是雷射、射頻源或黑體輻射器,其可操作以在複合磁性物體中存入能量並改變其溫度。輻射源275用於照明,而輻射源410、410A和410B用於對磁性物體執行操作。5 , 6 and 7 include the magnetic configuration shown schematically at 200 in FIG. 1 in which a composite magnetic object is guided through air gap 209 towards workpiece 272 by operating electromagnets 251 and 252 from region 208 of magnetic configuration 200 . In FIG. 7, two examples of the magnetic configuration of FIG. 1 are shown at 200A and 200B to show that multiple magnetic configurations can be used to add material to a single workpiece. Each magnetic configuration 200 may, for example, add a different type of material. Magnetic configuration 200A includes steering electromagnets 251A and 252A that guide composite magnetic object 471A from region 208A through air gap 209 toward workpiece 272 . Magnetic configuration 200B includes steering electromagnets 251B and 252B that guide composite magnetic object 471B from region 208B through air gap 209 toward workpiece 272 . In FIGS. 5-8 , workpiece 272 is mounted on platform 401 with integrated temperature controller 402 . The temperature controller 402 is operable to adjust the temperature of the workpiece 272 at different locations to different values. The workpiece 272 may be fabricated on the oriented seed crystals as shown at 403 and the regions adjacent to the workpiece may have an applied external electric field as shown at 404 . If a seed crystal 403 is present, the electric field can be set to favor crystallization in a selected direction or along a particular crystallographic axis. In FIGS. 5 , 6 and 7 , the air gap 209 is illuminated by the radiation device 275 and the trajectory of the composite magnetic object in the air gap 209 is measured by the detector 273 and transmitted to the control element 202 . The control element 202 compares the measured and calculated trajectories and adjusts to manipulate the outputs of the magnets 251 and 252 to minimize the variance of the subsequent composite magnetic object. In Figure 7, there are two detectors 273A and 273B which measure the trajectory of the composite magnetic object projected from the magnetic configurations 200A and 200B, respectively. Control device 202 adjusts the steering magnet parameters for each magnetic configuration in response to measurements from detectors 273A and 273B. Detectors 273, 273A, and 273B are also used to measure changes in properties of workpiece 272 when material is added, and control 202 uses the measured properties to adjust the addition of material and the temperature at which material is added by temperature controller 402 at each location . Figures 5, 6 and 8 schematically illustrate a radiation source 410 directing radiation 411 towards the composite magnetic object. In Figure 7, there are two independent radiation sources 410A and 410B providing radiation 411A and 411B. Radiation 411, 411A, and 411B may be, for example, a laser, a radio frequency source, or a blackbody radiator, which is operable to store energy in the composite magnetic object and change its temperature. Radiation source 275 is used for illumination, while radiation sources 410, 410A and 410B are used to perform operations on magnetic objects.

在圖5中,由嵌入弱磁性材料425中的鐵磁性材料424組成的複合磁性物體421被區域208中的電磁鐵242至250(見圖1)的陣列加速,並且通過偏轉磁鐵251和252而朝著工件272上的目標位置423偏轉。如405所示,平台401可旋轉任何角度並沿任何方向平移,以暴露出工件272的任何表面以添加材料。與控制元件202通信的檢測器273可通過氣隙209追縱複合磁性物體421到達工件272上的目標位置423的軌跡,並使用該資訊來調整偏轉磁鐵251和252的操作參數,以針對隨後的複合磁性物體421來改善放置磁鐵的精度。輻射源275照射工件272,並且檢測器273接收到的有關經反射輻射的資訊經處理以提供有關成形工件272的資訊。與控制裝置202通信的輻射源410將輻射411引導到氣隙區域209中的複合磁性物體422上。輻射411可加熱、軟化或熔化複合磁性物體422,以促進其與工件272的合併。可在氣隙209中將複合磁性物體422加熱到高於其鐵磁性部件424的居里溫度的溫度,而不會影響已經建立的彈道軌道。檢測器273還可操作以監視複合磁性物體422中的材料與工件272的合併。工件272安裝在以401示意性示出的平台上,該平台可具有如405所示的六個自由度,以調節路徑208和工件272的相對位置。平台401可例如包括可提供角度自由度的測角計和可提供平移自由度的XYZ平移台。平台401的平移和旋轉可用於在圓錐形區內的工件272上產生一系列位置,可通過調節路徑區域208的操縱磁鐵251和252來接取這些位置。平台401可進一步包括熱控制元件402,該熱控制元件402可操作以調節容納材料的位置423的溫度。可將溫度設定為例如使由複合磁性物體421添加到工件272的材料反應、熔化、退火或融合。圖5的配置可用於3D打印金屬結構。通過將具有不同組成的複合磁性物體引導到不同的位置,可以在空間上改變金屬結構的組成。來自添加材料的原子將擴散到工件的主體中,其動力學由溫度和原子的局部排序決定。在一些實施例中,如404所示的外部電場被施加到工件。電場為晶體生長提供了較佳的方向。該方法的優點在於,幾乎任何固體材料都可與鐵磁性顆粒混合並且經壓制、熔合或熔化成具有受外部磁場與其中所含鐵磁性顆粒相互作用的動力學特性的物體。本發明的範圍包括出於影響動力學目的的複合磁性物體的概念,但是不包括可用於製造複合磁性物體的方法。In FIG. 5, a composite magnetic object 421 consisting of ferromagnetic material 424 embedded in a weakly magnetic material 425 is accelerated by an array of electromagnets 242 to 250 (see FIG. 1) in region 208, and by deflecting magnets 251 and 252 Deflected towards target position 423 on workpiece 272 . As shown at 405, the platform 401 can be rotated by any angle and translated in any direction to expose any surface of the workpiece 272 for material addition. Detector 273 in communication with control element 202 can follow the trajectory of composite magnetic object 421 through air gap 209 to target location 423 on workpiece 272 and use this information to adjust the operating parameters of deflection magnets 251 and 252 for subsequent Composite magnetic objects 421 to improve the accuracy of magnet placement. The radiation source 275 illuminates the workpiece 272 and the information about the reflected radiation received by the detector 273 is processed to provide information about the shaped workpiece 272 . Radiation source 410 in communication with control device 202 directs radiation 411 onto composite magnetic object 422 in air gap region 209 . Radiation 411 may heat, soften, or melt composite magnetic object 422 to facilitate its merging with workpiece 272 . The composite magnetic object 422 can be heated in the air gap 209 to a temperature above the Curie temperature of its ferromagnetic component 424 without affecting the already established ballistic trajectory. Detector 273 is also operable to monitor the incorporation of material in composite magnetic object 422 with workpiece 272 . The workpiece 272 is mounted on a platform, shown schematically at 401 , which can have six degrees of freedom, as shown at 405 , to adjust the relative position of the path 208 and the workpiece 272 . Stage 401 may, for example, include a goniometer, which may provide angular degrees of freedom, and an XYZ translation stage, which may provide translational degrees of freedom. The translation and rotation of the platform 401 can be used to create a series of positions on the workpiece 272 in the conical region, which can be accessed by adjusting the steering magnets 251 and 252 of the path region 208 . The platform 401 may further include a thermal control element 402 operable to adjust the temperature of the location 423 containing the material. The temperature may be set, for example, to react, melt, anneal, or fuse the material added to workpiece 272 by composite magnetic object 421 . The configuration in Figure 5 can be used to 3D print metal structures. The composition of metallic structures can be spatially altered by directing composite magnetic objects with different compositions to different locations. Atoms from the additive material will diffuse into the bulk of the workpiece with kinetics determined by the temperature and the local ordering of the atoms. In some embodiments, an external electric field as shown at 404 is applied to the workpiece. The electric field provides a better direction for crystal growth. The advantage of this method is that almost any solid material can be mixed with ferromagnetic particles and pressed, fused or melted into objects with kinetic properties that are subject to the interaction of an external magnetic field with the ferromagnetic particles contained therein. The scope of the present invention includes the concept of composite magnetic objects for the purpose of influencing kinetics, but does not include methods that can be used to manufacture composite magnetic objects.

在圖6中,複合磁性物體431由鐵磁性顆粒441、連接構件442和有效載荷構件443組成。複合磁性物體431由區域208中的電磁鐵242至250的陣列加速,並通過偏轉磁鐵251和252朝向工件272上的目標位置433偏轉。如406所示,磁性設備可沿任何方向平移,以便可將材料添加到工件272的任何表面。在432處的氣隙209中,通過輻射411去除連接構件442,使得鐵磁性顆粒441和有效載荷元件443獨立地在相同的軌道上行進。在432處的在411的輻射還可加熱並可能熔化有效載荷粒子446,該有效載荷粒子以液滴形式在447處到達目標位置433。取決於433處的溫度,液體液滴可被淬火至玻璃態或添加至結晶區域。在去除連接構件442之後,在451和452處示出的第二陣列的電磁鐵將鐵磁性顆粒441吸引到管道453中,從中可將其再循環以形成另一個複合磁性物體。有效負載粒子446沿著針對區域208中的複合磁性物體431設置的軌跡繼續前進,如447所示。連接構件442可以例如是膠水或熔點低於鐵磁性顆粒441的居里溫度的物質。第二輻射源(未示出)可用摻雜原子或離子照射工件272以改變所添加的材料的電子特性。In FIG. 6 , the composite magnetic object 431 is composed of ferromagnetic particles 441 , connecting members 442 and payload members 443 . Composite magnetic object 431 is accelerated by the array of electromagnets 242 to 250 in region 208 and deflected towards target location 433 on workpiece 272 by deflection magnets 251 and 252 . As shown at 406, the magnetic device can be translated in any direction so that material can be added to any surface of the workpiece 272. In the air gap 209 at 432, the connecting member 442 is removed by radiation 411 so that the ferromagnetic particles 441 and the payload element 443 independently travel on the same track. The radiation at 411 at 432 may also heat and possibly melt the payload particles 446, which arrive at the target location 433 at 447 as droplets. Depending on the temperature at 433, the liquid droplets can be quenched to a glassy state or added to the crystalline region. After removal of connecting member 442, the electromagnets of the second array shown at 451 and 452 attract ferromagnetic particles 441 into conduit 453, from which they can be recycled to form another composite magnetic object. The payload particle 446 proceeds along the trajectory set for the composite magnetic object 431 in the region 208, as shown at 447. The connecting member 442 may be, for example, glue or a substance whose melting point is lower than the Curie temperature of the ferromagnetic particles 441 . A second radiation source (not shown) may irradiate the workpiece 272 with dopant atoms or ions to alter the electronic properties of the added material.

在圖7中,複合磁性物體471A包括被第一殼材料466A包圍的鐵磁性芯467A。類似地,複合磁性物體471B包括被第二殼材料466B包圍的鐵磁性芯467B。複合磁性物體471A被區域208A中的電磁鐵的陣列加速,並通過操縱電磁鐵251A和252A引導朝向工件272上的位置465A。如407A所示,磁性設備200A可沿任何方向平移,以便可將材料添加到工件272的任何表面。複合磁性物體471B被區域208B中的電磁鐵的陣列加速,並通過操縱電磁鐵251B和252B引導朝向工件272上的位置465B。如407B所示,磁性設備200B可沿任何方向平移,以便可將材料添加到工件272的任何表面。在氣隙區域209中,複合磁性體分別通過來自放射源410A和410B的輻射411A和411B照射。入射到複合磁性物體471A上的輻射411A導致第一殼材料466A的黏著度降低,並且在黏著度降低之後,電磁鐵451A和452A的陣列吸引鐵磁性芯462A朝向管道區域453A,可從中將鐵磁性芯462A回收為另一個複合磁性物體445A。殼材料466A的殘餘黏著度與作用在鐵磁性顆粒467A上的磁性吸引力相結合,導致殼材料和鐵磁性芯462A分離,並且殼材料伸長,如463A所示。伸長的殼材料繼續朝向工件272上的目標位置465A,如464A所示。入射到複合磁性物體471B上的輻射411B導致第一殼材料466B的黏著度降低,並且在黏著度降低之後,電磁鐵451B和452B的陣列吸引鐵磁性芯462B朝向管道區域453B,可從中將鐵磁性芯462B回收為另一個複合磁性物體445B。殼材料466B的殘餘黏著度與作用在鐵磁性顆粒467B上的磁引力相結合,導致殼材料和鐵磁性芯462B分離,並且殼材料伸長,如463B所示。伸長的殼材料繼續朝向工件272上的目標位置465B,如464B所示。殼材料466A和466B可以例如是熔點低於鐵磁性芯467A和467B的居里溫度以下的不同的光學玻璃。在氣隙209中可操作的電磁鐵陣列451A和452A較佳地產生第一磁場以在與複合磁性物體471A的方向相反的方向上吸引鐵磁性芯467A。這將導致第一殼材料466A的黏性阻力(viscosity drag)和速度降低,但方向不變。在氣隙209中可操作的電磁鐵陣列451B和452B較佳地產生第一磁場以在與複合磁性物體471B的方向相反的方向上吸引鐵磁性芯467B。這將導致第一殼材料466B的黏性阻力和速度降低,但方向不變。在將各別鐵磁性芯與殼材料分離之後,鐵磁性芯可遵循具有橫向於初始路徑的分量的路徑。替代地,只要控制元件202執行動力學計算通過調節複合磁性物體的初始軌跡來補償由於芯的分離引起的橫向黏性阻力,就可將鐵磁性芯從殼材料沿任何方向分離。第一殼材料466A在位置465A處入射在工件272上,並且第二殼材料466B在位置465B處入射在工件272上。工件272安裝在旋轉平台401上,以便於製造具有旋轉對稱性的物品,例如透鏡。由控制裝置202控制的輻射源275用一系列不同的波長照射透鏡,並且由檢測器273A和273B測量折射,並由控制器202分析。控制裝置202在機器可讀取儲存媒體上儲存關於所添加的材料和透鏡的光學特性的資訊。隨後,所儲存的資訊用於品質保證和優化製造過程。In Figure 7, composite magnetic object 471A includes a ferromagnetic core 467A surrounded by a first shell material 466A. Similarly, composite magnetic object 471B includes ferromagnetic core 467B surrounded by second shell material 466B. Composite magnetic object 471A is accelerated by the array of electromagnets in region 208A and directed toward location 465A on workpiece 272 by manipulating electromagnets 251A and 252A. As shown at 407A, the magnetic device 200A can be translated in any direction so that material can be added to any surface of the workpiece 272. Composite magnetic object 471B is accelerated by the array of electromagnets in region 208B and directed toward location 465B on workpiece 272 by manipulating electromagnets 251B and 252B. As shown at 407B, the magnetic device 200B can be translated in any direction so that material can be added to any surface of the workpiece 272. In the air gap region 209, the composite magnetic body is irradiated by radiation 411A and 411B from radiation sources 410A and 410B, respectively. Radiation 411A incident on composite magnetic object 471A causes a reduction in the adhesion of first shell material 466A, and after the reduction in adhesion, the array of electromagnets 451A and 452A attracts ferromagnetic core 462A towards conduit region 453A, from which ferromagnetic Core 462A is recycled as another composite magnetic object 445A. The residual tack of the shell material 466A, combined with the magnetic attractive force acting on the ferromagnetic particles 467A, causes the shell material and the ferromagnetic core 462A to separate and the shell material to elongate, as shown at 463A. The elongated shell material continues toward the target location 465A on the workpiece 272, as shown at 464A. Radiation 411B incident on composite magnetic object 471B causes a reduction in the adhesion of first shell material 466B, and after the reduction in adhesion, the array of electromagnets 451B and 452B attracts ferromagnetic core 462B toward conduit region 453B, from which ferromagnetic Core 462B is recycled as another composite magnetic object 445B. The residual tack of the shell material 466B, combined with the magnetic attraction on the ferromagnetic particles 467B, causes the shell material and the ferromagnetic core 462B to separate and the shell material to elongate, as shown at 463B. The elongated shell material continues toward the target location 465B on the workpiece 272, as shown at 464B. Shell materials 466A and 466B can be, for example, different optical glasses with melting points below the Curie temperature of ferromagnetic cores 467A and 467B. Electromagnet arrays 451A and 452A operable in air gap 209 preferably generate a first magnetic field to attract ferromagnetic core 467A in a direction opposite that of composite magnetic object 471A. This will result in a reduction in the viscosity drag and velocity of the first shell material 466A, but in the same direction. Electromagnet arrays 451B and 452B operable in air gap 209 preferably generate a first magnetic field to attract ferromagnetic core 467B in a direction opposite that of composite magnetic object 471B. This will cause the viscous drag and velocity of the first shell material 466B to decrease, but not in the same direction. After separating the respective ferromagnetic cores from the shell material, the ferromagnetic cores may follow a path with a component transverse to the original path. Alternatively, the ferromagnetic core can be separated from the shell material in any direction as long as the control element 202 performs kinetic calculations by adjusting the initial trajectory of the composite magnetic object to compensate for the lateral viscous resistance due to separation of the core. The first shell material 466A is incident on the workpiece 272 at a location 465A, and the second shell material 466B is incident on the workpiece 272 at a location 465B. The workpiece 272 is mounted on the rotating platform 401 to facilitate the manufacture of articles with rotational symmetry, such as lenses. A radiation source 275 controlled by control device 202 illuminates the lens with a range of different wavelengths, and refraction is measured by detectors 273A and 273B and analyzed by controller 202. The control device 202 stores information on the added material and the optical properties of the lens on a machine-readable storage medium. The stored information is then used for quality assurance and optimization of the manufacturing process.

圖8示出了一種配置,其中複合磁性物體471由被鐵磁性保持件476部分包圍的有效載荷物體477組成。鐵磁性保持件476包括沿著輸送軸對準的輸送通道,有效載荷物體可通過該輸送通道而離開保持件。在一些實施例中,鐵磁性保持件476包括具有不同磁矩的多個磁域(magnetic domain),其中至少一個域在存在第一外部磁場的情況下阻隔輸送通道並保持有效載荷物體477,並且在存在第二外部磁場的情況下不阻隔或保持有效載荷物體477。在其他實施例中,有效載荷物體477通過慣性力被保持在鐵磁性保持件476中。複合磁性物體471在管道208中被加速,並通過以251和252表示的操縱電磁體陣列而引導朝向工件272上的位置475。在複合磁性物體471進入氣隙209之後,在451和452處的第二個電磁鐵陣列在氣隙區域209中產生了磁場,該磁場用於將鐵磁性保持件472吸引到管道453中的位置445C。氣隙區域209中的磁場在與複合磁性物體471的方向相反的方向上加速鐵磁性保持件472,直到鐵磁性保持件472和有效載荷物體473在空間上分離,從而使有效載荷物體473的動量保持不變。隨後,有效載荷物體473可以接收輻射411並改變物理狀態,如474所示。輻射411可例如通過添加熱能來降低有效載荷物體473的黏著度。與有效載荷物體473的動量相比,由輻射(通常是光子)傳遞的動量幾乎是很小,因此在474處的有效載荷物體的動量和方向與在473處的有效載荷物體473的動量和方向基本上相同。有效載荷物體繼續到達目標位置475,並添加到工件272。如408處所示,工件472可以六個自由度安裝在平台401上。FIG. 8 shows a configuration in which the composite magnetic object 471 consists of a payload object 477 partially surrounded by a ferromagnetic holder 476 . Ferromagnetic holder 476 includes a transport channel aligned along the transport axis through which payload objects may exit the holder. In some embodiments, the ferromagnetic retainer 476 includes a plurality of magnetic domains having different magnetic moments, wherein at least one domain blocks the delivery channel and retains the payload object 477 in the presence of the first external magnetic field, and The payload object 477 is not blocked or retained in the presence of the second external magnetic field. In other embodiments, the payload object 477 is held in the ferromagnetic holder 476 by inertial forces. Composite magnetic object 471 is accelerated in conduit 208 and directed towards position 475 on workpiece 272 by an array of steering electromagnets, indicated at 251 and 252 . After composite magnetic object 471 enters air gap 209, a second array of electromagnets at 451 and 452 creates a magnetic field in air gap region 209 that is used to attract ferromagnetic retainer 472 to position in conduit 453 445C. The magnetic field in the air gap region 209 accelerates the ferromagnetic retainer 472 in the opposite direction to that of the composite magnetic object 471 until the ferromagnetic retainer 472 and the payload object 473 are spatially separated, thereby causing the momentum of the payload object 473 constant. The payload object 473 may then receive the radiation 411 and change its physical state, as shown at 474 . Radiation 411 may reduce the stickiness of payload object 473, eg, by adding thermal energy. The momentum transferred by the radiation (usually photons) is almost small compared to the momentum of the payload object 473, so the momentum and direction of the payload object at 474 is the same as the momentum and direction of the payload object 473 at 473 Basically the same. The payload object continues to the target location 475 and is added to the workpiece 272 . As shown at 408, workpiece 472 can be mounted on platform 401 with six degrees of freedom.

圖5至圖8的配置可通過將具有不同電子和電洞濃度的材料添加到工件272中以用於製造三維電子設備。替代地,所添加的材料可擴散到工件的預先存在的材料中,從而改變電子和電洞的濃度。電子裝置可以是例如具有連接配置的電晶體或電晶體陣列,這可能是習知蝕刻方法難以實現的。The configurations of FIGS. 5-8 can be used to fabricate three-dimensional electronic devices by adding materials with different electron and hole concentrations to workpiece 272 . Alternatively, the added material may diffuse into the pre-existing material of the workpiece, thereby changing the concentration of electrons and holes. The electronic device may be, for example, transistors or transistor arrays with a connected configuration, which may be difficult to achieve with conventional etching methods.

圖5至圖8的配置可用於製造諸如反射鏡、棱鏡、透鏡和光柵之類的習知光學件以及具有新穎特性的光學件。例如,可通過以規則圖案添加具有不同折射率的材料來製造光子晶體。例如,可以製造梯度折射率光學件,其中折射率在多個方向上非線性地變化。例如,可製造三維光學計算裝置。例如,可製造由本發明人於2018年11月29日公開的PCT公開案WO 2018/213923中描述的光調變器。例如,可製造表面特徵以增強光譜信號。The configurations of FIGS. 5-8 can be used to fabricate conventional optics such as mirrors, prisms, lenses, and gratings, as well as optics with novel properties. For example, photonic crystals can be fabricated by adding materials with different refractive indices in a regular pattern. For example, gradient index optics can be fabricated in which the index of refraction varies nonlinearly in multiple directions. For example, three-dimensional optical computing devices can be fabricated. For example, the light modulator described in PCT publication WO 2018/213923 published by the present inventors on Nov. 29, 2018 can be fabricated. For example, surface features can be fabricated to enhance spectral signals.

圖5至圖8的配置可用作蝕刻的替代,以製造諸如LED和光電二極體之類的光電裝置。The configurations of Figures 5-8 can be used as an alternative to etching to fabricate optoelectronic devices such as LEDs and photodiodes.

在特別有用的配置中,可通過將一系列的複合磁性物體將材料添加到經定向的單晶晶種403中,通過圖3所示的配置來生長單晶,其中將單晶晶種保持在略低於晶體熔點的溫度,並在略高於晶體熔點的溫度下加入材料,並在晶體存在的情況下使其緩慢冷卻。該方法與眾所周知的布里奇曼方法(Bridgeman method)的不同之處在於,暴露了在晶體和液態之間的界面層,並且可由檢測器273直接監視以提供反饋。也就是說,輻射源275可提供准直的中子或X射線而入射在工件上以產生繞射圖案。新層的繞射圖案可由檢測器273監測,並在冷卻期間由控制器202進行分析。如果繞射圖樣與晶種的繞射圖樣一致,則添加更多的材料,並且如果不一致,則重新加熱表面層。此外,晶體生長的晶體面的空間範圍可比單個複合磁性物體的材料所覆蓋的面積大得多。在這種情況下,可在其他區域退火的同時,在新材料完成結晶的位置處選擇性地添加材料。In a particularly useful configuration, a single crystal can be grown by the configuration shown in FIG. 3 by adding material to an oriented single crystal seed crystal 403 by adding a series of composite magnetic objects, wherein the single crystal seed crystal is held in The material is added at a temperature slightly below the melting point of the crystals, and slightly above the melting point of the crystals, and allowed to cool slowly in the presence of the crystals. This method differs from the well-known Bridgeman method in that the interfacial layer between the crystal and the liquid state is exposed and can be directly monitored by the detector 273 to provide feedback. That is, the radiation source 275 may provide collimated neutrons or X-rays incident on the workpiece to produce a diffraction pattern. The diffraction pattern of the new layer can be monitored by detector 273 and analyzed by controller 202 during cooling. If the diffraction pattern matches that of the seed crystal, add more material, and if not, reheat the surface layer. Furthermore, the spatial extent of the crystallographic facets of the crystal growth can be much larger than the area covered by the material of a single composite magnetic object. In this case, material can be selectively added where the new material has finished crystallizing while other regions are being annealed.

27:工件 28:工件 50:單粒化裝置 67:工具 74:磁性物體 91:管道/單粒化供給件 200:磁性配置 200A:磁性配置 200B:磁性配置 201:感測器 202:控制器元件 203:感測器網絡 204:導線 205:電磁鐵 206:區域 207:區域 208:區域 208A:區域 208B:區域 209:氣隙 210:非磁性壁/壁 211:磁場 212:磁場 213:磁場 214:磁場 215:磁場 216:操作裝置 217:導線 221:磁性物體 231:磁性物體 232:路徑/分支 233:路徑/分支 234:路徑/分支 235:電磁鐵 236:電磁鐵 237:電磁鐵 238:電磁鐵 239:電磁鐵 240:緩衝器 241:磁性物體 242:位置/電磁鐵 243:位置/電磁鐵 244:位置 245:位置 246:位置 247:位置 248:位置 249:位置 250:位置/陣列構件/陣列 251:電磁鐵/操緃磁鐵 251A:電磁鐵 251B:電磁鐵 252:電磁鐵/操緃磁鐵 252A:電磁鐵 252B:電磁鐵 260:流體源 261:磁性物體 262:斷流器 263:箱/軸 264:感測器 271:磁性物體 272:工件 273:檢測器 273A:檢測器 273B:檢測器 275:輻射源 276:導線 277:同調光/同調照明 281:磁性物體 282:路徑 301:工件區塊/工件 302:平移 303:路徑 310:旋轉平台 311:平移 401:平台 402:溫度控制器/熱控制元件 403:晶種 404:外部電場 405:旋轉和/或平移 406:旋轉和/或平移 407A:平移 407B:平移 408:六個自由度 410:輻射源 410A:輻射源 410B:輻射源 411:輻射 411A:輻射 411B:輻射 421:複合磁性物體 422:複合磁性物體 423:目標位置 424:鐵磁性材料/鐵磁性部件 425:弱磁性材料 431:複合磁性物體 432:位置 433:位置 441:鐵磁性顆粒 442:連接構件 443:有效載荷元件 445A:複合磁性物體 445B:複合磁性物體 445C:位置 446:有效載荷粒子 447:位置 451:位置 451A:電磁鐵/電磁鐵陣列 451B:電磁鐵/電磁鐵陣列 452:位置 452A:電磁鐵/電磁鐵陣列 452B:電磁鐵/電磁鐵陣列 453:管道 453A:管道區域 453B:管道區域 462A:鐵磁性芯 462B:鐵磁性芯 463A:伸長 463B:伸長 464A:伸長的殼材料 464B:伸長的殼材料 465A:目標位置 465B:目標位置 466A:殼材料 466B:殼材料 467A:鐵磁性顆粒/鐵磁性芯 467B:鐵磁性顆粒/鐵磁性芯 471:複合磁性物體 471A:複合磁性物體 471B:複合磁性物體 472:鐵磁性保持件 473:有效載荷物體 474:位置 475:位置 476:鐵磁性保持件 477:有效載荷物體27: Workpiece 28: Workpiece 50: Single granulation device 67: Tools 74: Magnetic Objects 91: Pipe/Single Pellet Supply 200: Magnetic Configuration 200A: Magnetic configuration 200B: Magnetic Configuration 201: Sensor 202: Controller element 203: Sensor Network 204: Wire 205: Electromagnet 206: Area 207: Area 208: Area 208A: Area 208B: Area 209: Air Gap 210: Non-magnetic Wall/Wall 211: Magnetic Field 212: Magnetic Field 213: Magnetic Field 214: Magnetic Field 215: Magnetic Field 216: Operating device 217: Wire 221: Magnetic Objects 231: Magnetic Objects 232: path/branch 233: path/branch 234: path/branch 235: Electromagnet 236: Electromagnet 237: Electromagnet 238: Electromagnet 239: Electromagnet 240: Buffer 241: Magnetic Objects 242: Position/Electromagnet 243: Position/Electromagnet 244: Location 245: Location 246: Location 247: Location 248: Location 249: Location 250:Position/Array Member/Array 251: Electromagnet/Fuck Magnet 251A: Electromagnet 251B: Electromagnet 252: Electromagnet/Fuck Magnet 252A: Electromagnet 252B: Electromagnet 260: Fluid Source 261: Magnetic Objects 262: Circuit Breaker 263: Box/Shaft 264: Sensor 271: Magnetic Objects 272: Artifact 273: Detector 273A: Detector 273B: Detector 275: Radiation Source 276: Wire 277: Coherent Lighting / Coherent Lighting 281: Magnetic Objects 282: Path 301: Artifact block/artifact 302: Pan 303: Path 310: Rotating Platform 311: Pan 401: Platform 402: Temperature Controller/Thermal Control Element 403: Seed 404: External Electric Field 405: Rotate and/or translate 406: Rotate and/or translate 407A: Pan 407B: Pan 408: Six degrees of freedom 410: Radiation Source 410A: Radiation source 410B: Radiation Sources 411: Radiation 411A: Radiation 411B: Radiation 421: Composite Magnetic Objects 422: Composite Magnetic Objects 423: target location 424: Ferromagnetic Materials / Ferromagnetic Components 425: Weak Magnetic Materials 431: Composite Magnetic Objects 432: Location 433: Location 441: Ferromagnetic particles 442: Connecting components 443: Payload Element 445A: Composite Magnetic Objects 445B: Composite Magnetic Objects 445C: Location 446: Payload Particles 447: Location 451: Location 451A: Electromagnet / Electromagnet Array 451B: Electromagnet / Electromagnet Array 452: Location 452A: Electromagnet / Electromagnet Array 452B: Electromagnet / Electromagnet Array 453: Pipe 453A: Duct Area 453B: Piping Area 462A: Ferromagnetic Core 462B: Ferromagnetic Core 463A: Elongation 463B: Elongation 464A: Elongated Shell Material 464B: Elongated Shell Material 465A: Target position 465B: Target Location 466A: Shell Material 466B: Shell Material 467A: Ferromagnetic Particles/Ferromagnetic Cores 467B: Ferromagnetic particles/ferromagnetic cores 471: Composite Magnetic Objects 471A: Composite Magnetic Objects 471B: Composite Magnetic Objects 472: Ferromagnetic holder 473: Payload Object 474: Location 475: Location 476: Ferromagnetic holder 477: Payload Object

現在將結合附圖描述本發明的實施例,其中:Embodiments of the present invention will now be described with reference to the accompanying drawings, in which:

[圖1]是用於定位、轉向和平移磁性物體的配置的示意圖;[FIG. 1] is a schematic diagram of a configuration for positioning, steering and translating a magnetic object;

[圖2]是圖1的磁性定向配置的操作流程圖;[Fig. 2] is a flow chart of the operation of the magnetic orientation configuration of Fig. 1;

[圖3]是圖1的配置用於在工件上執行切割操作的示意圖;[FIG. 3] is a schematic diagram of the configuration of FIG. 1 for performing a cutting operation on a workpiece;

[圖4]是圖1的配置用於在工件上執行流引導操作的示意圖;[FIG. 4] is a schematic diagram of the configuration of FIG. 1 for performing a flow-directing operation on a workpiece;

[圖5]是圖1的配置用於將複合磁性物體添加至工件的示意圖;[Fig. 5] is a schematic diagram of the configuration of Fig. 1 for adding a composite magnetic object to a workpiece;

[圖6]是圖1的配置用於將非磁性材料添加至工件的示意圖;[Fig. 6] is a schematic diagram of the configuration of Fig. 1 for adding a non-magnetic material to a workpiece;

[圖7]是圖1的配置用於將兩種類型的非磁性材料添加至工件的示意圖;以及[ FIG. 7 ] is a schematic diagram of the configuration of FIG. 1 for adding two types of non-magnetic materials to a workpiece; and

[圖8]是圖1的配置用於從保持件(container)將非磁性材料添加至工件的示意圖。[ FIG. 8 ] is a schematic diagram of the configuration of FIG. 1 for adding a non-magnetic material to a workpiece from a container.

27:工件 27: Workpiece

28:工件 28: Workpiece

50:單粒化裝置 50: Single granulation device

67:工具 67: Tools

74:磁性物體 74: Magnetic Objects

91:管道/單粒化供給件 91: Pipe/Single Pellet Supply

200:磁性配置 200: Magnetic Configuration

201:感測器 201: Sensor

202:控制器元件 202: Controller element

203:感測器網絡 203: Sensor Network

204:導線 204: Wire

205:電磁鐵 205: Electromagnet

206:區域 206: Area

207:區域 207: Area

208:區域 208: Area

209:氣隙 209: Air Gap

210:非磁性壁/壁 210: Non-magnetic Wall/Wall

211:磁場 211: Magnetic Field

212:磁場 212: Magnetic Field

213:磁場 213: Magnetic Field

214:磁場 214: Magnetic Field

215:磁場 215: Magnetic Field

216:操作裝置 216: Operating device

217:導線 217: Wire

221:磁性物體 221: Magnetic Objects

231:磁性物體 231: Magnetic Objects

232:路徑/分支 232: path/branch

233:路徑/分支 233: path/branch

234:路徑/分支 234: path/branch

235:電磁鐵 235: Electromagnet

236:電磁鐵 236: Electromagnet

237:電磁鐵 237: Electromagnet

238:電磁鐵 238: Electromagnet

239:電磁鐵 239: Electromagnet

240:緩衝器 240: Buffer

241:磁性物體 241: Magnetic Objects

242:位置/電磁鐵 242: Position/Electromagnet

243:位置/電磁鐵 243: Position/Electromagnet

244:位置 244: Location

245:位置 245: Location

246:位置 246: Location

247:位置 247: Location

248:位置 248: Location

249:位置 249: Location

250:位置/陣列構件/陣列 250:Position/Array Member/Array

251:電磁鐵/操緃磁鐵 251: Electromagnet/Fuck Magnet

252:電磁鐵/操緃磁鐵 252: Electromagnet/Fuck Magnet

261:磁性物體 261: Magnetic Objects

262:斷流器 262: Circuit Breaker

263:箱/軸 263: Box/Shaft

271:磁性物體 271: Magnetic Objects

272:工件 272: Artifact

273:檢測器 273: Detector

275:輻射源 275: Radiation Source

276:導線 276: Wire

281:磁性物體 281: Magnetic Objects

282:路徑 282: Path

Claims (37)

一種用於從大量供應的磁性物體的流(stream)中供給所述磁性物體的方法,所述方法包括: 提供大量供應的所述磁性物體; 將所述磁性物體形成為彼此單粒化的所述磁性物體的移動流; 其中所述磁性物體從所述移動流被供給到供應路徑; 其中沿著所述供應路徑提供了一系列的電磁鐵,所述系列的電磁鐵被操作以沿著所述供應路徑提供一序列的磁場,該序列的磁場將力施加到所述磁性物體上;以及 通過所述系列的電磁鐵在所需方向上將所述磁性物體導向所需位置。A method for feeding magnetic objects from a stream of magnetic objects in bulk, the method comprising: providing a large supply of said magnetic object; forming the magnetic objects into a moving stream of the magnetic objects singulated to each other; wherein the magnetic object is supplied from the moving stream to a supply path; wherein a series of electromagnets are provided along the supply path, the series of electromagnets being operative to provide a series of magnetic fields along the supply path, the series of magnetic fields applying a force to the magnetic object; as well as The magnetic object is directed to the desired position in the desired direction by the series of electromagnets. 如請求項1的方法,其中所述系列的電磁鐵亦可操作以改變所述磁性物體的定向。The method of claim 1, wherein the series of electromagnets are also operable to change the orientation of the magnetic object. 如請求項2的方法,其中在需要改變定向超過30度的情況下,以呈30度或30度以下的一序列的步驟來施加所述磁場,其中所述磁性物體的磁矩在後續步驟之前與所施加的所述磁場對準。The method of claim 2, wherein in the event that a change in orientation of more than 30 degrees is required, the magnetic field is applied in a sequence of steps of 30 degrees or less, wherein the magnetic moment of the magnetic object precedes subsequent steps aligned with the applied magnetic field. 如請求項2或3的方法,其中在重新定向處理中的任何時刻,所述電磁鐵圍繞所述磁性物體的質心以相等的立體角間隔開。The method of claim 2 or 3, wherein at any time during the reorientation process, the electromagnets are spaced at equal solid angles about the center of mass of the magnetic object. 如前述請求項任一項的方法,其中所述系列的電磁鐵用於至少部分地響應於所述磁性物體的至少一個測量參數而沿不同路徑來驅動所述磁性物體。A method as in any preceding claim, wherein the series of electromagnets are used to drive the magnetic object along different paths in response, at least in part, to at least one measured parameter of the magnetic object. 如前述請求項任一項的方法,其中被啟動以沿著路徑來驅動所述磁性物體中之一者的所述序列的磁場至少部分取決於所述磁性物體的所測量特性。A method as in any preceding claim, wherein the magnetic field of the sequence activated to drive one of the magnetic objects along a path depends at least in part on a measured characteristic of the magnetic object. 如前述請求項任一項的方法,其中所述序列的磁場響應於使用者輸入而沿不同路徑來驅動所述磁性物體。A method as in any preceding claim, wherein the sequence of magnetic fields drives the magnetic object along different paths in response to user input. 如前述請求項任一項的方法,其中所述序列的磁場在限定所述供應路徑的管道的一端作用以沿彈道路徑來驅動所述磁性物體。A method as in any preceding claim, wherein the sequence of magnetic fields acts at one end of a conduit defining the supply path to drive the magnetic object along a ballistic path. 如前述請求項任一項的方法,其中感測器經提供以用於在多個定向上檢測所述磁性物體中每一個的特性。A method as in any preceding claim, wherein sensors are provided for detecting properties of each of the magnetic objects in a plurality of orientations. 如前述請求項任一項的方法,其中所述流中的所述磁性物體在圍繞橫向於所述管道的旋轉軸旋轉的單粒化管道中彼此單粒化。A method as claimed in any preceding claim, wherein the magnetic objects in the stream are singulated to each other in a singulation duct that rotates transverse to an axis of rotation of the duct. 如前述請求項任一項的方法,其中所述系列的電磁鐵被依序地操作,使得每個電磁鐵在下一個電磁鐵被啟動時關閉。A method as in any preceding claim, wherein the series of electromagnets are operated sequentially such that each electromagnet turns off when the next electromagnet is activated. 如前述請求項任一項的方法,其中所述電磁鐵圍繞所述磁性物體所遵循的路徑以相等的間隔隔開。A method as claimed in any preceding claim, wherein the paths followed by the electromagnets around the magnetic object are spaced at equal intervals. 如前述請求項任一項的方法,其中所述磁性物體中的每一個是包括操作部分和鐵磁性部分的複合磁性物體,並且其中所述磁性物體的所述操作部分的至少一些在到達所述位置之前與所述鐵磁性部分分開。A method as claimed in any preceding claim, wherein each of the magnetic objects is a composite magnetic object comprising an operative portion and a ferromagnetic portion, and wherein at least some of the operative portions of the magnetic object reach the The position was previously separated from the ferromagnetic part. 如前述請求項任一項的方法,其中所述路徑包括所述磁性物體移動所沿著的所述管道的引導表面。A method as claimed in any preceding claim, wherein the path includes a guide surface of the conduit along which the magnetic object moves. 如前述請求項任一項的方法,其中所述系列的電磁鐵用於以受控速率沿著所述供應路徑來驅動所述磁性物體。A method as in any preceding claim, wherein the series of electromagnets is used to drive the magnetic object along the supply path at a controlled rate. 如前述請求項任一項的方法,其中所述方法被配置用於在工件上執行操作,並且其中所述磁性物體包括磁性操作工具,所述磁性操作工具朝著所述工件移動,從而在所述位置處將所述操作執行在所述工件上,其通過在所述工件上的需要部位處進行所述磁性操作工具與所述工件的相互作用。A method as in any one of the preceding claims, wherein the method is configured to perform an operation on a workpiece, and wherein the magnetic object comprises a magnetic operating tool that is moved towards the workpiece so as to be The operation is performed on the workpiece at the location by interacting the magnetic operating tool with the workpiece at a desired location on the workpiece. 如請求項16的方法,其中在所述工件上的所述操作包括以下群組中的一或多個:分類、成形、材料去除、物理改性、化學改性、添加材料切割(addition of material cutting)、拋光、研磨衝擊(abrading peening)和添加能量。The method of claim 16, wherein the operation on the workpiece comprises one or more of the following group: sorting, forming, material removal, physical modification, chemical modification, addition of material cutting), polishing, abrading peening and adding energy. 如請求項16或17的方法,其中所述磁性操作工具由檢測器檢測,並且與工具的適用性有關的參數被測量出來。A method as claimed in claim 16 or 17, wherein the magnetically operating tool is detected by a detector and a parameter related to the suitability of the tool is measured. 如請求項18的方法,其中根據所測量的所述參數,使所述磁性操作工具從使用中轉向。The method of claim 18, wherein the magnetically operating tool is diverted from use based on the measured parameter. 如請求項18的方法,其中根據所測量的所述參數,通過所述系列的電磁鐵操作所述電磁操作工具以改變所述電磁操作工具的速度。The method of claim 18, wherein the electromagnetically operated tool is operated by the series of electromagnets to vary the speed of the electromagnetically operated tool based on the measured parameter. 如請求項16至20任一項的方法,其中在所述操作之後,將所述磁性操作工具中的每一個回收並引導至所述大量供應中以供再次使用。The method of any of claims 16 to 20, wherein after said operating, each of said magnetic handling tools is recovered and directed into said bulk supply for reuse. 如請求項16至21任一項的方法,其中第一序列的磁場將所述磁性操作工具中的第一者驅動到所述工件上的第一位置,其中所述第一者與所述工件的相互作用引起所述檢測器測量的在所述工件中的變化,並且其中第二序列的磁場將所述磁性操作工具中的第二者驅動至所述工件上的第二位置,所述第二位置至少部分地取決於由所述檢測器測量的在所述工件中的所述變化。The method of any one of claims 16 to 21, wherein a first sequence of magnetic fields drives a first of the magnetically operating tools to a first position on the workpiece, wherein the first is associated with the workpiece The interaction of the detectors causes a change in the workpiece measured by the detector, and wherein a second sequence of magnetic fields drives a second of the magnetically operating tools to a second position on the workpiece, the first The two positions depend at least in part on the change in the workpiece measured by the detector. 如請求項16至22任一項的方法,其中所述供應路徑的至少一部分與所述工件整合成一體。The method of any of claims 16 to 22, wherein at least a portion of the supply path is integrated with the workpiece. 如請求項16至23任一項的方法,其中所述磁性操作工具是切割工具,並且所述切割工具的衝擊從所述工件去除選定材料。The method of any of claims 16 to 23, wherein the magnetically operating tool is a cutting tool, and the impact of the cutting tool removes selected material from the workpiece. 如請求項16至23任一項的方法,其中所述磁性操作工具是研磨構件。The method of any of claims 16 to 23, wherein the magnetically operating tool is an abrasive member. 如請求項23或24的方法,其中潤滑劑/清洗材料被供應到所述磁性操作工具和/或所述工件。A method as claimed in claim 23 or 24, wherein lubricant/cleaning material is supplied to the magnetic operating tool and/or the workpiece. 如請求項26的方法,其中所述潤滑劑/清洗材料被供應到所述工件,使得所述潤滑劑/清洗材料和所述磁性操作工具在不同時間到達。The method of claim 26, wherein the lubricant/cleaning material is supplied to the workpiece such that the lubricant/cleaning material and the magnetic operating tool arrive at different times. 如請求項27的方法,其中所述潤滑劑/清洗材料的流由週期性地阻止流動的斷流器輪(chopper wheel)所調節。The method of claim 27, wherein the flow of the lubricant/cleaning material is regulated by a chopper wheel that periodically blocks flow. 如請求項16至23任一項的方法,其中所述磁性操作工具中的每一個至少部分地包括配置成施加到所述工件的添加材料。The method of any one of claims 16 to 23, wherein each of the magnetic operating tools at least partially includes an additive material configured to be applied to the workpiece. 如請求項29的方法,其中所述添加材料被熔化並被添加到所述工件。The method of claim 29, wherein the additive material is melted and added to the workpiece. 如請求項29或30的方法,其中所述添加材料包括多個不同類型的材料。The method of claim 29 or 30, wherein the additive material comprises a plurality of different types of materials. 如請求項29至31任一項的方法,其中所述添加材料在三維印刷處理中被添加到所述工件。The method of any of claims 29 to 31, wherein the additive material is added to the workpiece in a three-dimensional printing process. 如請求項29至32任一項的方法,其中所述添加的材料的功能至少部分取決於下方基板的結構。A method as in any one of claims 29 to 32, wherein the function of the added material depends at least in part on the structure of the underlying substrate. 如請求項33的方法,其中所述下方基板包括晶種,並且所添加的材料結晶以生長單晶。The method of claim 33, wherein the underlying substrate includes a seed crystal, and the added material crystallizes to grow a single crystal. 如請求項16至34任一項的方法,其中在所述磁性物體和所述工件之間提供相對運動,所述相對運動是旋轉的、平移的或是其組合。The method of any of claims 16 to 34, wherein relative motion is provided between the magnetic object and the workpiece, the relative motion being rotational, translational, or a combination thereof. 如請求項35的方法,其中所述外部磁場在包含所述工件的至少一部分的限定體積內平移和/或旋轉。The method of claim 35, wherein the external magnetic field translates and/or rotates within a defined volume containing at least a portion of the workpiece. 如請求項35的方法,其中所述工件進一步相對於所述外部磁場的所述限定體積來平移和/或旋轉。The method of claim 35, wherein the workpiece is further translated and/or rotated relative to the defined volume of the external magnetic field.
TW110104035A 2020-02-04 2021-02-04 Performing operations on a workpiece using electromagnetic forces TW202146311A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062969983P 2020-02-04 2020-02-04
US62/969,983 2020-02-04

Publications (1)

Publication Number Publication Date
TW202146311A true TW202146311A (en) 2021-12-16

Family

ID=80783738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104035A TW202146311A (en) 2020-02-04 2021-02-04 Performing operations on a workpiece using electromagnetic forces

Country Status (1)

Country Link
TW (1) TW202146311A (en)

Similar Documents

Publication Publication Date Title
US12064844B2 (en) Performing operations on a workpiece using electromagnetic forces
CN110337359A (en) Use the increasing material manufacturing in mobile building space
CN110191792A (en) Use the increasing material manufacturing of mobile scanning area
US6636676B1 (en) Particle guidance system
EP0426810B1 (en) System for continuously replenishing a melt
US7994451B2 (en) Laser beam processing machine
US5327625A (en) Apparatus for forming nanometric features on surfaces
US20180154443A1 (en) Optics, detectors, and three-dimensional printing
US8136651B2 (en) Method and apparatus for orienting articles
KR20210020019A (en) Transport device for transporting one or more wafers
JP2020519217A (en) Transport device with a stator for controlled transport of a transport body relative to a stator
CN101658976B (en) Laser processing apparatus
CN107984748A (en) Constant pressure filament driver for the extruder head in three-dimensional body printer
CN110621426A (en) Processing method and processing system
CN110167697A (en) Use the increasing material manufacturing of selectivity weight coating machine
TW202146311A (en) Performing operations on a workpiece using electromagnetic forces
CN1260404C (en) Method for crystallizing amorphous silicon using nanoparticles
US20240083105A1 (en) Systems and methods for controlling additive manufacturing processes
JP4707209B2 (en) Ceramic structure manufacturing equipment
JP2020532448A (en) Equipment and methods for manufacturing large workpieces using movable manufacturing units
JP2019523830A (en) 3D object forming device
CN112313770A (en) Ion milling device
CN116783027A (en) DED nozzle for AM device and adapter capable of being assembled and disassembled to DED nozzle
JP2021519687A (en) Elementalization and orientation of objects for feeding
Ghodsi et al. Investigation of effective parameters of drop-on-demand droplet generator