TW202141837A - 鋰離子電池及其製造方法 - Google Patents

鋰離子電池及其製造方法 Download PDF

Info

Publication number
TW202141837A
TW202141837A TW110111103A TW110111103A TW202141837A TW 202141837 A TW202141837 A TW 202141837A TW 110111103 A TW110111103 A TW 110111103A TW 110111103 A TW110111103 A TW 110111103A TW 202141837 A TW202141837 A TW 202141837A
Authority
TW
Taiwan
Prior art keywords
layer
anode
cathode
current collecting
battery
Prior art date
Application number
TW110111103A
Other languages
English (en)
Inventor
法比安 加本
Original Assignee
法商I Ten公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商I Ten公司 filed Critical 法商I Ten公司
Publication of TW202141837A publication Critical patent/TW202141837A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

電池1000包含由陽極20、電解質30及陰極50形成的至少一單元電池100,界定堆疊結構,堆疊結構及電池具有六個面,即彼此相對的兩個端面F1、F2、彼此相對的兩個側面F3、F5以及彼此相對的兩個長軸面F4、F6,應理解的是電池的第一長軸面F6包含至少一陽極連接區域1002且電池的第二長軸面F4包含至少一陰極連接區域1006,陽極與陰極連接區域1002、1006彼此側向相對,其中在電池的第一長軸方向XX'中,各個陽極電流收集基板10凸出於各個陽極層20、各個電解層30或浸漬於電解質的分離層31、各個陰極層50以及各個陰極電流收集基板層40,且在電池中相反於第一長軸方向XX'的第二長軸方向XX''中,各個陰極電流收集基板40凸出於各個陽極層20、各個電解層30或浸漬於電解質的分離層31、各個陰極層50以及各個陽極電流收集基板層10。

Description

鋰離子電池及其製造方法
本發明係關於電池領域,特別係關於鋰離子電池(lithium-ion battery)。本發明關於一種具有新穎結構而能有較長壽命的鋰離子電池。本發明更關於這種電池的一種新穎製造方法。
可充電的全固態(all-solid-state)鋰離子電池為已知的。國際專利文獻WO 2016/001584 (I-TEN)描述一種由陽極箔(foil)及陰極箔製成的鋰離子電池,其中陽極箔包含依序由陽極層及電解層遮蔽的導體基板,陰極箔包含依序由陰極層及電解層遮蔽的導體基板;在被沉積之前或之後,這些箔被切割成U形圖案(pattern)。這些箔接著被交錯堆疊以形成多個單元電池(unit cell)的堆疊結構。陽極及陰極箔切割圖案被放置於「頭對尾(head-to-tail)」構造中而使得陰極與陽極的疊層側向偏移。在堆疊步驟之後,約為十微米厚的厚層體封裝系統(thick-layer encapsulation system)被沉積於堆疊結構上並位於堆疊結構中的可用腔室中。這樣的方式一方面確保了結構在切割平面的剛性(stiffness),另一方面能防止電池單元受到大氣的影響。一旦堆疊結構已經被製造出並被封裝,堆疊結構便會沿切割平面被切割以獲得單元電池,且電池的陰極連接區域及陽極連接區域暴露於各個切割平面。當完成這些切割步驟時,封裝系統可以被撕離(torn off),進而使得電池的不透水密封(impervious seal)產生破裂的情形。終端(即電性接點)也應被添加至這些陰極及陽極連接區域能被明顯看見的地方。
這樣的已知方案應明顯具有特定的缺點。具體來說,依據電極的位置設計,特別是多層電池(multi-layer battery)的多個電極的多個邊緣之鄰近性以及切割的整潔度(cleanness),在端部會發生電流漏出,通常是以潛變短路(creeping short-circuit)的形式發生。儘管在電池的周圍以及鄰近陰極與陽極連接區域之處使用封裝系統,這種潛變短路仍會降低電池效能。此外,有時會觀察到封裝系統在電池上以令人不滿意的方式沉積,特別是在電池中位在由電極的側向偏移產生的空間中的多個邊緣。
由Suzuki提交的美國專利文獻US 2018/212210也揭露一種包含多個單元電池的電池。所得到的堆疊結構被放置於插設(interpose)有樹脂的金屬殼體中。這樣的方式機械式地固定了電池,而使得電池不會在運作過程中移動。這樣的樹脂也避免了發生短路的風險,其中這種短路可能源自於單元電池與金屬殼體的接觸,特別是在潛在衝擊或震動的過程中。
最後,引述由Matsushita提交的日本專利文獻JP 2007/005279。此文獻揭露一種藉由燒結(sintering)得到的全固態電池。此電池因此沒有包含電解材料也沒有包含使用這種電解質浸泡的分離層(layer of a separator)。
本發明在於至少部分地克服上述習知技術的某些缺點,尤其係在於得到一種具有高能量密度(energy density)及高功率密度(power density)的可充電鋰離子電池。
本發明特別在於增加具有高能量密度及高功率密度的可充電鋰離子電池之生產輸出量(production output)並以較低的成本產生較有效的封裝。
本發明特別在於提出一種方法,此方法能降低發生潛變或突發的短路之風險並允許具有低自放電率(self-discharge rate)的電池被製造。
本發明特別在於提出一種方法,此方法使壽命很長的電池能以簡單、可靠且快速的方式製造。
本發明更在於提供一種簡單、快速且低成本的電池製造方法。
本發明首先關於一種電池,包含至少一單元電池,各個單元電池依序包含一陽極電流收集基板、一陽極層、至少一電解層及/或浸漬於一電解質的至少一分離層、一陰極層以及一陰極電流收集基板,
其中,當電池包含多個單元電池時,單元電池依序往下設置,即單元電池根據相對電池的一主平面之一正面方位重疊而較佳地使得:
陽極電流收集基板為相鄰的兩個單元電池之陽極電流收集基板,並且
陰極電流收集基板為相鄰的兩個單元電池的陰極電流收集基板,
至少一單元電池或單元電池界定出一堆疊結構,
堆疊結構及電池具有六個面,即
所謂的兩個端面,二端面彼此相對(特別是彼此平行),二端面大致上平行於陽極電流收集基板的一或多者、陽極層的一或多者、電解層的一或多者或浸漬於電解質的分離層的一或多者,且二端面大致上平行於陰極層的一或多者以及陰極電流收集基板的一或多者,
所謂的兩個側面,二側面彼此相對,特別是彼此平行,以及
所謂的兩個長軸面,二長軸面彼此相對,特別是彼此平行,
應理解的是電池的第一長軸面包含至少一陽極連接區域,且電池的第二長軸區域包含至少一陰極連接區域,至少一陽極連接區域以及至少一陰極連接區域側向地彼此相對,
特徵在於
於電池的一第一長軸方向中,各個陽極電流收集基板凸出於各個陽極層、各個電解層或浸漬於電解質的各個分離層、各個陰極層以及各個陰極電流收集基板,並且
於相對於第一長軸方向的電池的一第二長軸方向中,各個陰極電流收集基板凸出於各個陽極層、各個電解層或浸漬於電解質的各個分離層、各個陰極層以及各個陽極電流收集基板。
於一個特定的實施例中:
各個陽極電流收集基板凸出於一第一端平面,第一端平面由各個陽極層、各個電解層或各個分離層、各個陰極層以及各個陰極電流收集基板的多個第一長軸端所界定及/或
各個陰極電流收集基板凸出於一第二端平面,第二端平面由各個陽極層、各個電解層或各個分離層、各個陰極層以及各個陽極電流收集基板的多個第二長軸端所界定。
根據本發明的具體有利實施例,根據本發明的電池包含一封裝系統,封裝系統遮蓋堆疊結構的外周緣之至少部分,該封裝系統包含至少一不透水遮蓋層,至少一不透水遮蓋層的透濕率小於10-5 g/m2 ·d,該封裝系統於各個長軸面至少直接接觸於電解層及/或浸漬於電解質的分離層。較佳地,封裝系統於各個長軸面也直接接觸於陽極層、陰極層以及未凸出的電流收集基板。
有利地,封裝系統為電性絕緣的,封裝系統的電導率有利地小於10e-11 S·m-1 ,特別是小於10e-12 S·m-1
有利地,封裝系統遮蓋堆疊結構的外周緣之至少部分,封裝系統遮蓋堆疊結構的端面、側面以及至少部分的長軸面而使得
僅有沿電池的第一長軸方向從各個陽極層、各個電解層或各個分解層、各個陰極層及各個陰極電流收集基板凸出的各個陽極電流收集基板的各個陽極邊緣齊平於第一長軸面,且使得
僅有沿電池的第二長軸方向從各個陽極層、各個電解層或各個分解層、各個陰極層及各個陽極電流收集基板凸出的各個陰極電流收集基板的各個陰極邊緣齊平於第二長軸面,第二長軸面較佳地相對且平行於第一長軸面,
應理解的是各個陽極邊緣界定一陽極連接區域,且各個陰極邊緣界定一陰極連接區域。
根據本發明再另一態樣,封裝系統包含:
選用的一第一遮蓋層,較佳地選自聚對二甲苯、氟代聚對二甲苯、聚醯亞胺、環氧樹脂、矽樹脂、聚醯胺、溶膠凝膠氧化矽、有機氧化矽及/或上述之混合物,並沉積於堆疊結構的外周緣之至少部分,
選用的一第二遮蓋層,由電性絕緣材料組成,並藉由原子層沉積而沉積在堆疊結構的外周緣之至少部分上或是第一遮蓋層上,
不透水的至少一第三遮蓋層,較佳地具有小於10-5 g/m2 ·d的透濕率,至少一第三遮蓋層由陶瓷材料及/或低熔點玻璃製成(較佳地為熔點低於600°C的玻璃),並沉積於堆疊結構的外周緣之至少部分上或是第一遮蓋層上,
應理解的是當第二遮蓋層存在時,
該第二遮蓋層以及該第三遮蓋層得以重複接續z次,並沉積於至少一第三遮蓋層的外周緣上,其中z ≥ 1,並且
封裝系統的最後一個層體為透濕率小於10-5 g/m2 ·d且由陶瓷材料及/或低熔點玻璃製成的不透水遮蓋層。
根據本發明再另一態樣,至少陽極連接區域,較佳地為包含至少一陽極連接區域的第一長軸面被一陽極接觸件遮蓋,且至少陰極連接區域,較佳地為包含至少一陰極連接區域的第二長軸面被一陰極接觸件遮蓋,
應理解的是該陽極接觸件以及該陰極接觸件能在堆疊結構以及一外部導電元件之間產生電性接觸。
根據本發明再另一態樣,各個陽極與陰極接觸件包含:
一第一電連接層,設置於至少陽極連接區域以及至少陰極連接區域,較佳地設置於包含至少一陽極連接區域的第一長軸面以及包含至少一陰極連接區域的第二長軸面,
第一電連接層包含填充導電微粒的材料,較佳地為填充導電微粒的聚合樹脂及/或藉由溶膠凝膠方法得到的材料,更佳地為填充有石墨的聚合樹脂,
第二電連接層,包含設置於填充導電微粒的材料之第一電連接層上的一金屬箔。
根據本發明再另一態樣,包含至少一陽極連接區域的第一長軸面以及由各個陽極層、各個電解層及/或各個分離層、各個陰極層以及各個陰極電流收集基板的第一長軸端所界定第一端平面之間的最小距離介於0.01毫米至0.5毫米之間,及/或
包含至少一陰極連接區域的第二長軸面以及由各個陽極層、各個電解層及/或各個分離層、各個陰極層以及各個陽極電流收集基板的第二長軸端所界定之第二端平面之間的最小距離介於0.01毫米至0.5毫米之間。
本發明更相關於一種至少一電池的製造方法,
各個電池包含至少一單元電池,
各個單元電池依序包含一陽極電流收集基板、一陽極層、至少一電解層及/或浸漬於一電解質的至少一分離層、一陰極層以及一陰極電流收集基板,
其中,當電池包含多個單元電池時,單元電池依序往下設置,即單元電池根據相對電池的一主平面之一正面方位重疊而較佳地使得:
陽極電流收集基板為相鄰的兩個單元電池之陽極電流收集基板,並且
陰極電流收集基板為相鄰的兩個單元電池的陰極電流收集基板,
至少一單元電池或單元電池界定出一堆疊結構,
堆疊結構及電池具有六個面,即,
所謂的兩個端面,二端面彼此相對(特別是彼此平行),二端面大致上平行於陽極電流收集基板的一或多者、陽極層的一或多者、電解層的一或多者或浸漬於電解質的分離層的一或多者,且二端面大致上平行於陰極層的一或多者以及陰極電流收集基板的一或多者,
所謂的兩個側面,二側面彼此相對,特別是彼此平行,以及
所謂的兩個長軸面,二長軸面彼此相對,特別是彼此平行,
應理解的是電池的第一長軸面包含至少一陽極連接區域,且電池的第二長軸區域包含至少一陰極連接區域,至少一陽極連接區域以及至少一陰極連接區域側向地彼此相對,
而使得
於電池的一第一長軸方向中,各個陽極電流收集基板凸出於各個陽極層、各個電解層或浸漬於電解質的各個分離層、各個陰極層以及各個陰極電流收集基板,並且
於相對於第一長軸方向的電池的一第二長軸方向中,各個陰極電流收集基板凸出於各個陽極層、各個電解層或浸漬於電解質的各個分離層、各個陰極層以及各個陽極電流收集基板,
製造方法包含:
步驟1,提供至少一陽極電流收集基板箔,至少一陽極電流收集基板箔具有多個凹槽、多個未塗佈區域以及塗佈有陽極層且選擇性塗佈有電解層或分離層的多個塗佈區域並於以下稱為陽極箔,
步驟2,提供至少一陰極電流收集基板箔,至少一陰極電流收集基板箔具有多個凹槽、多個未塗佈區域以及塗佈有該陰極層且選擇性塗佈有該電解層或該分離層的多個塗佈區域並於以下稱為陰極箔,
步驟3,生成交錯有具有凹槽、未塗佈區域以及塗佈區域之至少一陽極箔以及具有凹槽、未塗佈區域以及塗佈區域之至少一陰極箔之一堆疊結構,以得到依序包含陽極電流收集基板、陽極層、至少一電解層或至少一分離層、陰極層以及陰極電流收集基板的至少一單元電池,並且
使得
於電池的第一長軸方向中,各個陽極電流收集基板凸出於各個陽極層、各個電解層及/或各個分離層、各個陰極層以及各個陰極電流收集基板,並且
於相對於第一長軸方向的電池的第二長軸方向中,各個陰極電流收集基板凸出於各個陽極層、各個電解層及/或各個分離層、各個陰極層以及各個陽極電流收集基板,
步驟4,將步驟3得到的交錯箔之堆疊結構熱處理及/或機械加壓以形成加固的堆疊結構,
選用的步驟5,製作出第一對切割線以使電池的一列分離於從加固的堆疊結構形成的電池的至少一另一列,
選用的步驟6,用例如為液態電解質或包含鋰鹽的離子液之相載體鋰離子浸漬步驟4中得到的加固的堆疊結構或是在進行步驟5時浸漬步驟5中得到的電池的列,而使得分離層浸漬於電解質,
選用的步驟7,製作第二對的切割線而暴露:
沿電池的第一長軸方向從各個陽極層、各個電解層或各個分離層、各個陰極層及各個陰極電流收集基板凸出的各個陽極電流收集基板的一陽極邊緣,各個陽極邊緣界定至少一陽極連接區域,以及
沿電池的第二長軸方向從各個陽極層、各個電解層或各個分離層、各個陰極層及各個陽極電流收集基板凸出的各個陰極電流收集基板的一陰極邊緣,各個陰極邊緣界定至少一陰極連接區域,
在進行步驟5時,第二對的切割線使一個電池分離於從些電池的列形成的至少一個另一電池。
在此方法的一個特定實施例中,若有進行步驟6時在步驟6之後,或是若沒有進行步驟6且有進行步驟5時在步驟5之後,沒有進行步驟5及步驟6時在步驟4之後,且在步驟7之前,進行封裝加固的堆疊結構或電池的列之步驟8,其中較佳地是電池的列或堆疊結構的外周緣的至少部分被一封裝系統遮蓋,較佳地是電池的列或堆疊結構的端面、電池的列或堆疊結構的側面以及至少部分的第一長軸面以及第二長軸面被封裝系統遮蓋,而使得:
僅有沿電池的第一長軸方向從各個陽極層、各個電解層或各個分離層、各個陰極層及各個陰極電流收集基板凸出的各個陽極電流收集基板的各個陽極邊緣齊平於第一長軸面,並使得
僅有沿電池的第二長軸方向從各個陽極層、各個電解層或各個分離層、各個陰極層及各個陽極電流收集基板凸出的各個陰極電流收集基板的各個陰極邊緣齊平於第二長軸面,第二長軸面及第一長軸面較佳地彼此相對且平行,
應理解的是各個陽極邊緣界定至少一陽極連接區域且各個陰極邊緣界定至少一陰極連接區域;
封裝系統包含:
選用的至少一第一遮蓋層,較佳地選自聚對二甲苯、氟代聚對二甲苯、聚醯亞胺、環氧樹脂、矽樹脂、聚醯胺、溶膠凝膠氧化矽、有機氧化矽及/或上述之混合物,並沉積於電池的列或堆疊結構的外周緣之至少部分,
選用的一第二遮蓋層,由電性絕緣材料組成,並藉由原子層沉積而沉積在
電池的列或堆疊結構的外周緣之至少部分上,
或是第一遮蓋層上,以及
不透水的至少一第三遮蓋層,較佳地具有小於10-5 g/m2 ·d的透濕率,至少一第三遮蓋層由陶瓷材料及/或低熔點玻璃(較佳地為熔點低於600°C的玻璃)製成,並沉積於電池的列或堆疊結構的外周緣之至少部分上或是第一遮蓋層上,
應理解的是第二遮蓋層以及至少一第三遮蓋層得以重複接續z次,並沉積於至少一第三遮蓋層的外周緣上,其中z ≥ 1,且封裝系統的最後一個層體較佳地為透濕率小於10-5 g/m2 ·d且由陶瓷材料及/或低熔點玻璃製成的不透水遮蓋層。
在根據本發明的方法之能與以上結合的另一個特定實施例中,在步驟7之後,至少陽極連接區域,較佳地為包含至少一陽極連接區域的第一長軸面被一陽極接觸件遮蓋,陽極接觸件在堆疊結構以及一外部導電元件之間能產生電性接觸,並且
至少陰極連接區域,較佳地為包含至少一陰極連接區域的第二長軸面被一陰極接觸件遮蓋,陰極接觸件在堆疊結構以及外部導電元件之間能產生電性接觸,
陽極接觸件以及陰極接觸件的生成包含:
在至少一陽極連接區域以及至少一陰極連接區域,較佳地為包含至少一陽極連接區域的第一長軸面以及包含至少一陰極連接區域的第二長軸面上沉積一第一電連接層,第一電連接層較佳地由填充導電微粒的聚合樹脂及/或藉由溶膠凝膠方法得到的材料製成,
選用地,當第一電連接層由填充導電微粒的聚合樹脂及/或藉由溶膠凝膠方法得到的材料製成時,在聚合化聚合樹脂及/或藉由溶膠凝膠方法得到的材料的步驟之後進行乾燥步驟,以及
在第一電連接層上沉積一第二電連接層,第二電連接層包含設置於第一電連接層上的一金屬箔,
選用地在第二電連接層上沉積包含一導電油墨的一第三電連接層。
通常,以下的幾何標號相關於此電池:
ZZ表示所謂的正面方位(frontal orientation),即正交於不同的堆疊之層體之平面;
當從上觀看時(即在正面方位上觀看時),XX表示所謂的長軸方位(longitudinal orientation)方位,長軸方位包含於堆疊之層體的平面中且平行於這些層體的最大尺寸;
當從上觀看時,YY表示所謂的側向或橫向方位,側向或橫向方位包含於堆疊的層體之平面中且平行於這些層體的最小尺寸。
通常,相關於這三個方位中的每一者之兩個方向是參照圖10呈現的箔之平面所給定的。
參照圖10中呈現的箔之平面,右側及左側方向因此相關於方位XX,前側及背側方向相關於方位YY,且上側及下側方向相關於方位ZZ。
通常,從右側指向左側的第一長軸方向XX'以及相對於第一長軸方向XX'的第二長軸方向XX''(即從左側指向右側)係參照圖10中呈現的箔之平面所界定。再次參照圖10中呈現的箔之平面,界定有從前側指向背側之第一側向方向YY'、相對於第一側向方向之第二側向方向YY''、從頂側指向底側之第一正面方向ZZ',以及相對於第一正面方向的第二正面方向ZZ''。
根據本發明的方法首先包含製造交錯的箔之堆疊結構I的步驟,這些箔依據實際情況於以下稱為「陽極箔」或是「陰極箔」。如以下所詳述,各個陽極箔用於形成多個電池的陽極,且各個陰極箔用於形成多個電池的陰極。圖1中的示例呈現具有單元本體5e的兩個陰極箔以及具有單元本體2e的兩個陽極箔。實際上,此堆疊結構是藉由更多數量的箔所形成,此數量通常是介於一千到一萬之間。所使用且構成相反極性的交錯箔之堆疊結構I的箔中,具有單元本體5e的陰極箔之數量相等於具有單元本體2e的陽極箔之數量。
在一有利的實施例中,各個箔在其四個端具有穿孔(perforation)7而使得當這些穿孔7重疊時,這些箔中的所有陰極與陽極會根據本發明排列,這將於以下詳述(請參閱圖1、圖2及圖3)。位在箔的四個端之這些穿孔7能由任何合適的手段形成,特別是在製造之後於陽極與陰極箔上形成,或是在製造陽極與陰極箔之前在基板箔(陽極電流收集基板10、陰極電流收集基板40)上形成。
各個陽極箔包含至少部分塗佈有陽極材料的主動層的陽極電流收集基板10,其中陽極材料的主動層於以下稱為陽極層20。各個陰極箔包含至少部分塗佈有陰極材料的主動層之陰極電流收集基板40,其中陰極材料的主動層於以下稱為陰極層50。各個主動層能為固態的,具體來說係具有濃密(dense)或多孔的(porous)本質。此外,為了防止相反極性的兩個主動層之間發生任何的電性接觸,電解層30或隨後用電解質浸漬的分離層31設置在先前塗佈有主動層的這些電流收集基板的至少其中一者的主動層上,與相對的主動層接觸。電解層30或分離層31能設置於陽極層20上及/或陰極層50上;電解層30或分離層31與包含其之陰極箔及/或陽極箔為一體成型。
有利地,陽極電流收集基板10或陰極電流收集基板40各自的兩個表面至少部分地分別塗佈有陽極層20或陰極層50,且選擇性地分別塗佈有分別設置於陽極層20或陰極層50上的電解層30或分離層31。如此一來,陽極電流收集基板10或陰極電流收集基板40作為相鄰的兩個單元電池100、100'之電流收集器。在電池中使用這些基板增加了具有高能量密度及高功率密度的可充電電池之生產輸出量。
以下將描述其中一個陽極箔的機械結構,且應理解的是其他的陽極箔具有相同的結構。此外,如以下所述,陰極箔的結構相似於陽極箔的結構。
如圖2所示,具有單元本體60、60'的陽極箔2e具有四邊形外形,且實質上具有正方形外形。如以下所述,陽極箔2e界定了所謂的多孔的中心區域4,且單元本體被製作於多孔中心區域4中。請參照這些單元本體的位置設計(positioning),定義箔的所謂的側向或橫向方位YY以及箔的所謂的水平方位XX,其中側向或橫向方位YY對應於這些單元本體的側向方位,而水平方位XX正交於方位YY。中心區域4的邊界由周緣框6界定,周緣框6為堅固的(solid),即獨立於(free)單元本體。這個框的功能具體來說是確保各個箔能輕易被裝卸(handling)。
單元本體60、60'分佈於依序往下設置的列L1至列Ly中以及彼此鄰設的行R1至行Rx中。作為非限制性示例,在表面安裝裝置(surface-mount device,SMD)類型的微電池(micro-battery)之製造的範疇中,所使用的陽極與陰極箔能為100毫米(mm) x 100毫米的晶片。通常,這些箔的列之數量介於10至500之間,且行的數量介於10至500之間。能藉由改變箔的尺寸並據此調整每個陽極箔及陰極箔的列與行之數量,來達到所需的電池容量。能根據實際需求調整陽極及陰極箔的尺寸。如圖2所示,兩個相鄰的列能藉由橋接(bridge)材料8分離,其中橋接材料8的高度H8 介於0.05 mm至5 mm之間。兩個相鄰的行能藉由跨接片(strip)材料9分離,其中跨接片材料9的寬度L9 介於0.05 mm至5 mm之間。陽極及陰極箔的這些橋接材料8及跨接片材料9使得這些箔具有足夠的機械剛性而能被輕易裝卸。
如以下所詳述,單元本體60、60'、60''包含排除區域(即未塗佈區域72、82)、塗佈區域71、81及凹槽70、80。這些凹槽70、80較佳地為工字形並為穿槽,即這些凹槽70、80分別穿過箔中相對的頂面及底面。這些凹槽70、80較佳地具有四邊形外形,且實質上為長方形形式。在設置任何陽極或陰極材料之前,這些凹槽70、80能藉由化學蝕刻、電鑄(electroforming)、雷射切割、微打孔(microperforation)或衝壓(stamping)以本來就習知的方式直接產生於電流收集基板上。這些凹槽70、80也能被製造於以下元件上:
至少部分塗佈有陽極或陰極材料層的電流收集基板,或是
至少部分塗佈有陽極或陰極材料層的電流收集基板,且陽極或陰極材料層本身上塗佈有電解層或分離層,即在陽極或陰極箔上。
當凹槽70被製造於這種至少部分塗佈的基板中時,能例如藉由雷射切割(或雷射剝蝕)、飛秒雷射切割(femtosecond laser cutting)、微打孔或衝壓而以本來就習知的方式製造凹槽70、80。製造於所有陰極箔中的凹槽70依序往上重疊。製造於所有陽極箔中的凹槽80依序往上重疊。
現在將描述呈現於圖3中的其中一個單元本體60,應理解的是陽極箔的所有單元本體60、60'為相同的,且陰極箔的所有單元本體60、60''為相同的。
圖3呈現陽極單元本體60、60'。
各個單元本體60、60'、60''包含較佳地為工字形並作為穿槽的凹槽80、70、排除區域(即未塗佈區域82、72)以及塗佈區域81、71。
陽極單元本體60'的塗佈區域81應被理解為表示陽極箔中被陽極層20遮蓋的區域,或是被陽極層20以及電解層30或分離層31遮蓋的區域。陽極單元本體60'的排除區域或未塗佈區域82應被理解為表示陽極箔中沒有被陽極層20遮蓋的區域,或是沒有被陽極層20以及電解層30或分離層31遮蓋的區域。
陽極未塗佈區域82為沒有任何電解材料或分離層的區域,且也沒有任何陽極材料。當於陽極箔上被產生時,這些陽極未塗佈區域82是以移除或防止任何電解材料或分離層及陽極材料的設置且留下至少部分的陽極電流收集基板10之方式產生。因此,在電池的第一長軸方向XX'中,各個陽極電流收集基板10凸出於各個陽極層20並凸出於各個電解層30或以電解質浸漬的分離層31。當電流收集基板完全被陽極層20遮蓋時,陽極層20本身選擇性地被電解層30或分離層31遮蓋,且能藉由雷射剝蝕產生陽極未塗佈區域82以部分地移除陽極層20或是塗佈有電解層30或分離層31的陽極層20。陽極未塗佈區域82也能藉由電流收集基板的局部縫模塗佈(slot-die coating)以本來就習知的方式產生。電流收集基板的局部縫模塗佈特別允許了陽極層20在基板上的局部設置,且選擇性地隨後根據相同的方法用電解層30或分離層31遮蓋。在基板的行進方向上具有對稱性之基板上的縫模塗佈允許未塗佈區域82能直接被留在基板上;這減少了在陽極箔上製造單元本體的方法之步驟的數量。
在上視圖中,相對單元本體60、60'、60''的中心線YH來說,同個單元本體60、60'、60''一側的未塗佈區域82、72與另一側的凹槽80、70彼此對稱。
各個陽極未塗佈區域82產生於各個陰極凹槽70的延伸(continuation)中,且各個陰極未塗佈區域72產生於各個陽極凹槽80的延伸中。
在產生凹槽80、塗佈區域81及未塗佈區域82之後得到的陽極箔將於以下稱為具有單元本體2e的陽極箔。
將使用以下的標號:
H80 為整個陽極凹槽的高度並通常介於0.25 mm至10 mm之間;
L80 為整個陽極凹槽的寬度,並通常介於0.25 mm至10 mm之間;
H82 為各個陽極排除區域的高度,並通常介於0.25 mm至10 mm之間;
L82 為各個陽極排除區域的寬度,並通常介於0.25 mm至10 mm之間。
相似地,各個陰極箔也被提供有不同列及行的陰極單元本體60、60'',且陰極單元本體60、60''的數量等於陽極單元本體60、60'的數量。
如圖4具體所示,各個陰極單元本體60''的結構實質上相似於各個陽極單元本體60'的結構,即此陰極單元本體60''包含排除區域或未塗佈區域72、塗佈區域71及凹槽70。
陰極單元本體60''的排除區域或未塗佈區域72應理解為表示陰極箔5e中沒有被陰極層50遮蓋的區域,或是沒有被陰極層50以及電解層30或分離層31遮蓋的區域。
陰極單元本體60''的塗佈區域81應理解為表示陰極箔5e中被陰極層50遮蓋的區域,或是被陰極層50以及電解層30或分離層31遮蓋的區域。
陰極未塗佈區域72的尺寸相同於陽極凹槽80的尺寸,且相似地,陽極未塗佈區域82的尺寸相似於陰極凹槽70的尺寸。
在上視圖中,陰極未塗佈區域72重疊於陽極凹槽80之上,且陽極未塗佈區域82重疊於陰極凹槽70之上。
陽極單元本體60'以及陰極單元本體60''之間的差異於一方面陰極未塗佈區域72及陽極未塗佈區域82相對彼此倒置(inverted)。另一方面,陰極凹槽70及陽極凹槽80相對彼此倒置。如此一來,在上視圖中,各個陽極未塗佈區域82產生於各個陰極凹槽70的延伸中,且各個陰極未塗佈區域72產生於各個陽極凹槽80的延伸中。
陰極未塗佈區域72為沒有任何電解材料或分離層且沒有任何陰極材料的區域。當被產生於陰極箔上時,這些陰極未塗佈區域72是以移除或防止任何電解材料或分離層及陰極材料的設置並留下至少部分的陽極電流收集基板10之方式被產生。如此一來,在電池的第二長軸方向XX''中,相對於第一長軸方向XX',各個陰極電流收集基板40凸出於各個陰極層50並凸出於各個電解層30或浸漬於電解質的分離層31。當電流收集基板完全被陰極層50遮蓋時,陰極層50本身可選擇地被電解層30或分離層31遮蓋,且能藉由雷射剝蝕產生陰極未塗佈區域72以部分地移除陰極層50或塗佈有電解層30或分離層31的陰極層50。也能藉由電流收集基板的局部縫模塗佈產生陰極未塗佈區域72。電流收集基板的局部縫模塗佈特別允許陰極層50在基板上的局部設置,且選擇性地隨後根據相同的方法被電解層30或分離層31遮蓋。在基板的行進方向中為對稱之基板上的縫模塗佈允許未塗佈區域72能直接留在基板上;這降低了在陰極箔上製造單元本體的方法中的步驟之數量。
在產生凹槽70、塗佈區域71及未塗佈區域72之後得到的陰極箔於以下稱為具有單元本體5e的陰極箔。
接著會產生交錯有具有單元本體2e的至少一陽極箔以及具有單元本體5e的至少一陰極箔的堆疊結構I,以得到至少一單元電池,其中各個單元電池依序包含陽極電流收集基板10、陽極層20、電解層30或浸漬或隨後浸漬於電解質的分離層31、陰極層50以及陰極電流收集基板40。
堆疊結構I包含交替佈置的至少一陽極箔2e以及至少一陰極箔5e,其中至少一陽極箔2e具有凹槽80、未塗佈區域82及塗佈區域81且至少一陰極箔5e具有凹槽70、未塗佈區域72及塗佈區域71。因此得以獲得至少一單元電池100,至少一單元電池100依序包含陽極電流收集基板10、陽極層20、電解層30及/或分離層31、陰極層50及陰極電流收集基板40。
此堆疊結構I被製造而使得:
於電池的第一長軸方向XX'中,各個陽極電流收集基板10凸出於各個陽極層20、各個電解層30及/或分離層31、各個陰極層50以及各個陰極電流收集基板40,以及
在相對於所述第一長軸方向XX'之電池的第二長軸方向XX''中,各個陰極電流收集基板40凸出於各個陽極層20、各個電解層30及/或分離層31、各個陰極層50以及各個陽極電流收集基板10。
在所述電池包含多個單元電池100、100'、100''的情況中,所述單元電池100、100'、100''依序往下設置(即根據相對圖10所呈現的電池之主平面的正面方位ZZ重疊)而較佳地使得:
陽極電流收集基板10為相鄰的兩個單元電池100、100'、100''之陽極電流收集基板10,且其中
陰極電流收集基板40為相鄰的兩個單元電池100、100'、100''之陰極電流收集基板40。
假設以上所述之堆疊結構經過確保其本身的整體機械穩定度之步驟。本來就習知的這些步驟特別包含使不同的層體熱壓成型。如以下所述,以這種方式加固(consolidated)的此堆疊結構允許了個別的電池之形成,且電池之數量等於列的數量(於圖2中以Y表示)以及行的數量(於圖2中以X表示)之乘積。
為此,請參閱圖5,呈現有三個列Ln-1 至Ln+1 以及三個行Rn-1 至Rn+1 。如圖16及圖17所示,根據本發明,且當堆疊結構I包含多個列(即至少兩列的單元本體,且這些列於以下也稱為電池列Ln )時,第一對的切割線DXn 、DX'n 用來使電池1000的某一列Ln 分離於從所述加固的堆疊結構形成的電池中之電池的至少一另一列Ln-1 、Ln+1 。各個切割線以本來就習知的方式製成並以貫穿的方式製成,即延伸通過堆疊結構的整個高度。非限制性的示例包含藉由鋸斷法(sawing)切割(特別是切割成方塊)、裁切機切割(guillotine cutting)或雷射切割。此外,堆疊結構中沒有形成電池的箔之區域90是以填滿實線的方式呈現,而凹槽的空間則留白,且排除區域的空間為灰色的。
特別如作為圖5中的其中一個單元本體60、60'之局部放大圖的圖6所示,於第一長軸方向XX'上或於第二長軸方向XX''上,各個切割線係於電池的長軸方位上中立地(indifferently)被製作。切割線DXn 、DX'n 較佳地彼此平行且較佳地正交於單元本體60、60'、60''的未塗佈區域72、82之準線(alignment)以及凹槽80、70之準線。
請再次參閱圖5,各個最終的電池在前端及後端由兩個切割線DXn 、DX'n (或稱為切割面)界定且在右端及左端由第二對的切割線DYn 、DY'n (或稱為切割面)界定,其中切割線DXn 、DX'n 較佳地彼此平行且切割線DYn 、DY'n 較佳地彼此平行。
於此圖5中,一旦沿切割線Dn 、D'n 以及切割線DYn 、DY'n 切割,電池1000會如圖所示被生成(hatched)。
在這些情況中,請參閱此圖6,在非限制性的示例之形式中,使用下列標號:
距離Dca對應於包含至少一陽極連接區域1002的電池之第一長軸面F6與第一端平面DYa之間的最小距離。此距離Dca介於0.01 mm至0.05 mm之間,應理解的是此距離Dca小於或等於L82 / L70
距離Dcc對應於包含至少一陰極連接區域1006的電池之第二長軸面F4與第二端平面DY'a之間的最小距離。此距離Dcc介於0.01 mm至0.05 mm之間,應理解的是此距離Dcc小於或等於L72 / L80
圖7為沿延伸通過電池的割面線VII-VII繪示之剖面示意圖。圖7呈現具有單元本體2e的兩個陽極箔之交替佈置以及具有單元本體5e的兩個陰極箔之交替佈置。在同一圖中,給出下列標號:也呈現於圖6中的單元本體60、60'之凹槽70、80、塗佈區域71、81及未塗佈區域72、82以及根據本發明有利實施例的相鄰單元電池。
具有單元本體2e的陽極箔包含塗佈有陽極層20的陽極電流收集基板10,陽極層20選擇性地塗佈有電解層30或是隨後浸漬於電解質之分離層31。各個具有單元本體5e的陰極箔包含塗佈有陰極層50的陰極電流收集基板40,陰極層50選擇性的塗佈有電解層30或隨後浸漬於電解質的分離層31。為了防止相反極性的兩個主動層之間(即陽極層20與陰極層50之間)產生任何電性接觸,會設有至少一電解層30及/或浸漬或隨後浸漬於電解質的至少一分離層31。圖7呈現單元電池100,單元電池100依序包含陽極電流收集基板10、陽極層20、至少一電解層30或浸漬或隨後浸漬於電解質的分離層31、陰極層50及陰極電流收集基板40。
有利地,單元電池100'的陽極電流收集基板10能鄰接(adjoined)於相鄰的單元電池100''之陽極電流收集基板10。相似地,單元電池100的陰極電流收集基板40能鄰接於相鄰的單元電池100'之陰極電流收集基板40。
在一有利實施例中,陽極電流收集基板10及陰極電流收集基板40能分別作為兩個相鄰的單元電池之電流收集器,這具體來說呈現在圖7中。如以上所解釋,陽極電流收集基板10及陰極電流收集基板40各自的兩個面分別塗佈有陽極層20或陰極層50,且選擇性地塗佈有分別設置於陽極層20或陰極層50上的電解層30或分離層31。這樣的配置方式增加了電池的生產輸出量。
如圖7所示,各個具有單元本體2e的陽極箔以及具有單元本體5e的陰極箔被佈置而使得各個陽極未塗佈區域72被製造於各個陽極凹槽80的延伸中,且使得各個陽極未塗佈區域82被製造於各個陰極凹槽70的延伸中。
在第一長軸方向XX'中,各個陽極電流收集基板10凸出於第一端平面DYa,第一端平面DYa由各個陽極層20、各個電解層30或分離層31、各個陰極層50及各個陰極電流收集基板40的第一長軸端界定。
在相對於所述第一長軸方向XX'的電池的第二長軸方向XX''中,各個陰極電流收集基板40凸出於各個陽極層20、各個電解層30或浸漬或隨後浸漬於電解質的分離層31、各個陰極層50以及各個陽極電流收集基板10。
此為本發明特別有利的特徵,這是因為此特徵防止電池的側邊緣發生短路,防止電流漏出之發生,並有利於在陽極連接區域1002及陰極連接區域1006上製造電性接點(electrical contact)。
在剖面示意圖中,陰極未塗佈區域72重疊於陽極凹槽80之上,且陽極未塗佈區域82重疊於陰極凹槽70之上。
有利地,在生成具有單元本體2e的陽極箔以及具有單元本體5e的陰極箔之堆疊結構之後,堆疊結構I藉由熱及/或機械處理加固(此處理能為同時施加壓力及高溫的熱壓處理)。使電池能被組裝的堆疊結構的熱處理有利地在介於50°C及500°C之間的溫度下進行,較佳地在低於350°C的溫度進行。待組裝的具有單元本體2e的陽極箔以及具有單元本體5e的陰極箔之堆疊結構的機械壓縮(mechanical compression)是在10百萬帕(MPa)至100 MPa之壓力下進行,較佳地在20 MPa至50 MPa之間的壓力下進行。
已描述製成電池的層體之加固堆疊結構的生成。接著,當堆疊結構I包含多個列(即至少兩列的單元本體,以下也稱為電池列Ln)時,能製作出一對切割線DXn 、DX'n 以將電池1000的某一列Ln 分離於從所述加固堆疊結構形成的電池之至少一其他列Ln-1 、Ln+1 。如上所述,以貫穿的方式製作(即延伸通過堆疊結構的整個高度)的各個切割線是以本來就習知的方式製作。如圖17所示,電池列Ln 具有六個面,即:
彼此相對的兩個所謂的端面FF1、FF2,端面FF1、FF2具體來說彼此平行,且大致上平行於一或多個陽極電流收集基板10、一或多個陽極層20、一或多個電解層30或浸漬於電解質31的一或多個分離層30、一或多個陰極層50以及一或多個陰極電流收集基板40;
彼此相對的兩個所謂的側面FF3、FF5,側面FF3、FF5具體來說彼此平行且平行於電池1000的側面F3、F5;以及
彼此相對的兩個所謂的長軸面FF4、FF6,長軸面FF4、FF6具體來說彼此平行且平行於電池1000的長軸面F4、F6。
當分離層作為電解主基質(electrolyte host matrix)使用時,在初始的堆疊結構I包含多個電池列Ln 時以及在第一對切割線DXn 、DX'n 已經被製成以將電池1000的某一列Ln 分離於從所述加固堆疊結構形成的電池1000的至少一其他列Ln-1 、Ln+1 時,先前得到的加固堆疊結構或電池1000的列Ln 能被浸漬。先前得到的加固堆疊結構或電池1000的列Ln 的浸漬能藉由相載體鋰離子(phase carrying lithium ion)產生,如液態電解質(liquid electrolytes)或包含鋰鹽(lithium salt)的離子液(ionic liquid),而使得所述分離層31浸漬於電解質。
如圖8所示,在生成選擇性地浸漬於相載體鋰離子之加固的堆疊結構之後,此堆疊結構或電池1000的列Ln 藉由沉積封裝系統95而被封裝,以確保電池的單元不會受到外在環境影響。封裝系統需有利地為化學地穩定,且能承受高溫且不會被外在環境滲透以滿足其作為阻隔層(barrier layer)的功能。
堆疊結構能遮蓋有封裝系統,且封裝系統包含:
選用的密集且絕緣的第一遮蓋層,較佳地選自聚對二甲苯(parylene)、氟代聚對二甲苯(parylene F)、聚醯亞胺(polyimide)、環氧樹脂(epoxy resins)、矽樹脂(silicone)、聚醯胺(polyamide)、溶膠凝膠氧化矽(sol-gel silica)、有機氧化矽(organic silica)及/或上述之混合物,並沉積於陽極與陰極箔的堆疊結構上;以及
選用的第二遮蓋層,由電性絕緣材料組成,並藉由原子層沉積而沉積在陽極與陰極箔的堆疊結構上或所述第一遮蓋層上;以及
以特別有利的方式,不透水的至少一第三遮蓋層,較佳地具有小於10-5 g/m2 ·d的透濕率(water vapour permeance,WVTR),此第三遮蓋層由陶瓷材料及/或低熔點玻璃(較佳地為熔點低於600°C的玻璃)製成,並沉積於陽極與陰極箔的堆疊結構或第一遮蓋層之外周緣。
應理解的是,至少一第二遮蓋層以及至少一第三遮蓋層能重複接續z次,其中z ≥ 1,且至少沉積於第三遮蓋層的外周緣,且封裝系統的最後一層為不透水的遮蓋層,較佳地具有小於10-5 g/m2 ·d的透濕率,其由陶瓷材料及/或低熔點玻璃製成。
這樣的順序能重複z次,其中z ≥ 1。其具有阻隔效果,且阻隔效果隨著z的量值增加而增加。
所產生的結果為堅固且不透水的封裝,這種封裝特別防止水氣通過封裝系統以及接觸件之間的介面(請參閱圖11中的介面A)。
對於本發明的目的來說,不透水層界定為具有小於10-5 g/m2 ·d的透濕率(WVTR)。透濕率能藉由美國專利文件7,624,621的標的方法來量測,且也有於發行於Thin Solid Films 6+550 (2014) 85-89且由A. Mortier et al.所著之公開刊物"Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates"中描述。
通常,選用的第一遮蓋層選自由下列物組成之群組:矽樹脂(例如藉由浸漬或來自六甲基二矽氧烷(hexamethyldisiloxane,HMDSO)的電漿加強化學蒸氣沉積(plasma-enhanced chemical vapour deposition)沉積)、環氧樹脂、聚醯亞胺、聚醯胺、聚對二甲苯(poly-para-xylylene)(也稱為poly(p-xylylene)並較佳地稱為帕里綸)及/或上述之混合物。當第一遮蓋層被沉積時,第一遮蓋層防止電池的敏感元件(sensitive element)受到其環境影響。所述第一這蓋層的厚度較佳地介於0.5微米(µm)至3 µm之間。
第一遮蓋層特別適用於電池的電解及電極層具有多孔特性的情況:第一遮蓋層會作為平坦化層(planarisation layer)並也具有阻隔效果。舉例來說,此第一層體能列在(line)於層體的表面上開放的多個微孔,以封閉其之通道(access)。
在此第一遮蓋層中,可使用不同的聚對二甲苯異構物(variant),能使用聚對二甲苯C、聚對二甲苯D、聚對二甲苯N(CAS 1633-22-3)、聚對二甲苯F或聚對二甲苯C、D、N及/或F的混合物。聚對二甲苯為介電、透明、半晶質的材料,並具有高的熱力穩定度(thermodynamic stability)、對溶劑優異的抗性(resistance)以及很低的滲透率(permeability)。聚對二甲苯也具有阻隔性質(barrier properties)。聚對二甲苯F較佳地屬於本發明的範疇。
此第一遮蓋層有利地從藉由在電池堆的表面上之化學氣相沉積的氣態單體(gaseous monomer)之凝結所得到,這產生了堆疊結構所有能觸及的(accessible)表面的一致(conformal)、薄且均勻之遮蓋。此第一遮蓋層有利地為堅固的;第一遮蓋層不能被視為可撓曲的表面。
也為選用的第二遮蓋層藉由電絕緣材料形成,較佳地為無機材料。第二遮蓋層藉由原子層沉積(atomic layer deposition,ALD)、電漿增強化學氣相沉積(Plasma-enhanced chemical vapor deposition,PECVD)、高密度電漿化學蒸氣沉積(high density plasma chemical vapour deposition,HDPCVD)或電感耦合電漿化學蒸氣沉積(inductively coupled plasma chemical vapour deposition,ICP CVD)沉積,以得到先前遮蓋有第一遮蓋層的堆疊結構中能觸及之所有表面的一致遮蓋。藉由原子層沉積所沉積的層體就機械方面來說很脆弱且需要堅固的承受面實現他們的保護作用。在可撓曲的表面上沉積脆弱的層體會導致裂縫的形成,進而使得此保護層損失整體性(integrity)。此外,藉由原子層沉積所沉積的層體之增長會被基板的本質所影響。在具有不同化學本質的區域之基板上藉由原子層沉積來沉積層體將會具有不一致的(inhomogeneous)增長,這會造成此保護層損失整體性。為此,此選用的第二層體較佳地承載所述選用的第一層體而確保得到化學增長一致的基板。
原子層沉積技術特別適用於以完全不透水且一致的方式遮蓋具有高粗糙度的表面。原子層沉積技術允許了一致的層體之生成,沒有如孔洞(所謂的「沒有針孔(pinhole-free)」的層體)之缺點,且呈現(represent)非常良好的阻隔效果。其透濕率(WVTR)非常低。透濕率(water vapour transmission rate,WVTR)用於評估封裝系統的透濕程度。透濕率越低,則封裝系統越不透水。此第二層體的厚度有利地以作為對氣體所需的不透水程度(即所需的透濕率)之函數為原則進行選擇,並取決於所使用的沉積技術(具體來說從原子層沉積、電漿增強化學氣相沉積、高密度電漿化學蒸氣沉積及電感耦合電漿化學蒸氣沉積之中挑選)。
所述第二遮蓋層能由陶瓷材料、玻璃質材料(vitreous material)或玻璃陶瓷材料(glass-ceramic material)製成,如以氧化物、氧化鋁(Al2 O3 )、五氧化二鉭(Ta2 O5 )、氮化物、磷酸鹽(phosphate)、氮氧化矽(oxynitride)或矽氧烷(siloxane)之形式。此第二遮蓋層之厚度較佳地介於10奈米(nm)至10 µm,較佳地介於10 nm至50 nm。
藉由原子層沉積、電漿增強化學氣相沉積、高密度電漿化學蒸氣沉積或電感耦合電漿化學蒸氣沉積而沉積在第一遮蓋層上的此第二遮蓋層第一可賦予(render)結構不透水性(即防止水滲透到物體內部),第二可特別保護較佳地由氟代聚對二甲苯(parylene F)製成的第一遮蓋層免於受到空氣、水氣及熱暴露(thermal exposure)的影響以防止其劣化。此第二遮蓋層因此延長了經封裝的電池之壽命。
所述第二遮蓋層也能直接沉積在陽極與陰極箔的堆疊結構上,即在沒有沉積所述第一遮蓋層的情況中。
第三遮蓋層需要為不透水的且較佳地具有小於10-5 g/m2 ·d的透濕率(WVTR)。此第三遮蓋層由陶瓷材料及/或低熔點玻璃(較佳地為熔點低於600°C的玻璃)形成,並沉積在陽極與陰極箔的堆疊結構或第一遮蓋層之外周緣。使用於此第三層體中的陶瓷及/或玻璃材料有利地選自:
低熔點玻璃(通常低於600°C),較佳地為SiO2 -B2 O3 、Bi2 O3 -B2 O3 、ZnO-Bi2 O3 -B2 O3 、TeO2 -V2 O5 、PbO-SiO2
氧化物、氮化物、氮氧化矽、Six Ny 、SiO2 、SiON、非晶矽(amorphous silicon)或SiC。
這些玻璃能藉由模制(moulding)或浸塗(dip coating)沉積。
陶瓷材料有利地在低溫藉由電漿增強化學氣相沉積或較佳地藉由高密度電漿化學蒸氣沉積或電感耦合電漿化學蒸氣沉積來沉積;這些方法允許了具有良好的不透水性之層體被沉積。
如上所述,根據本發明的電池包含封裝系統,封裝系統有利地以連續的層體之形式生成。這在電池的所有表面上得到了高度不透水的封裝。此外,此封裝具有非常小的整體尺寸,而允許生產微型電池(microbatteries)所需的微小化(miniaturization)。
封裝系統的以上描述說明了相對Suzuki提交之美國專利文獻US 2018/212210所揭露的內容之顯著差異以及其技術功效。在習知技術的電池中,接觸於電池的樹脂沒有實現不透水的封裝功能。具體來說,此樹脂沒有如上所述之滲透特徵(permeance feature)。
此外,由Suzuki提交的此文獻相關於固態電池。相反地,根據本發明之電池能不完全為固態的。在這樣的情況中,此電池的長軸端為「開放(open)」類型。具體地如圖9所示,在相對的長軸面F4、F6上,不透水的封裝系統有利地放置在直接接觸分離層31或電解層30的多個端之位置。因此,此封裝系統能分別「封閉(close)」電解層30與分離層31中的孔隙(pores),這具體地使電池內部的奈米限制(nano-confined)的電解質能以滿意的方式被保留。在替代實施例中,雖然未繪示,但此封裝系統能不接觸於其他層體。然而,此封裝較佳地在堆疊結構的相對長軸面上接觸於電池中除了凸出基板之外的所有元件。
此外,根據本發明的封裝系統有利地為電性絕緣的。對於本發明的目的來說,代表封裝系統的電導率較佳地小於10e-11 S·m-1 ,特別是小於10e-12 S·m-1 。這樣的特徵因為避免了短路而為有利的,同時允許了用於與取放型電子元件放置機器(pick-and-place type electronic component placement machine)的相容性之相對的正及負連接之重工(reworked)。這樣的特徵能與前述由Suzuki提交的專利文獻之揭露內容作比較,其中不透水性係由金屬本質(metallic nature)的外殼體所提供。
如圖9所示,因此被塗佈的堆疊結構接著藉由任何合適的方式沿切割線DYn 、DY'n 被切割,以暴露陽極連接區域1002以及陰極連接區域1006並得到單元電池。
如圖9及圖10所示,在加固及封裝的堆疊結構中沿切割線DYn 、DY'n 進行的切割使得:
僅有各個陽極電流收集基板10的各個陽極邊緣1002'凸出於第一端平面DYa,此第一端平面在電池的第一長軸方向XX'中藉由各個陽極層20、各個電解層30及/或分離層31、各個陰極層50以及各個陰極電流收集基板40的第一長軸端界定,並齊平於第一長軸面F6,且使得
僅有各個陰極電流收集基板40的各個陰極邊緣1006'凸出於第二端平面DY'a,此第二表面在電池的第二長軸方向XX''中藉由各個陽極層20、各個電解層30及/或分離層31、各個陰極層50以及各個陽極電流收集基板10的第二長軸端所界定,並齊平於第二長軸面F4,所述第二長軸面F4較佳地相對且平行於第一長軸面F6,
應理解的是,各個陽極邊緣1002'界定出陽極連接區域1002且各個陰極邊緣1006'界定出陰極連接區域1006。
接觸件97、97'、97''(電性接點)分別添加於陰極連接區域1006及陽極連接區域1002明顯可見(apparent)之處。這些接觸區域較佳地設置於電池的堆疊結構之相對側,以收集電流(側向電流收集器)。接觸件97、97'、97''至少設置於陰極連接區域1006上並至少設置於陽極連接區域1002上,較佳地設置於至少包含陰極連接區域1006且受到塗佈及切割的堆疊結構之表面上,以及至少包含陽極連接區域1002且受到塗佈及切割的堆疊結構之表面上(如圖11所示)。
因此,至少陽極連接區域1002,較佳地包含至少陽極連接區域1002的至少第一長軸面F6,更佳地包含至少陽極連接區域1002的第一長軸面F6與鄰近於此第一長軸面F6的面F1、F2、F3、F5的端97'a,被能在堆疊結構I以及外部導電元件之間產生電性接觸的陽極接觸件97'遮蓋。此外,至少陰極連接區域1006,較佳地包含至少陰極連接區域1006的至少第二長軸面F4,更佳地包含至少陰極連接區域1006的第二長軸面F4與鄰近於此第二長軸面F4的面F1、F2、F3、F5的端97''a,被能在堆疊結構I以及外部導電元件之間產生電性接觸的陰極接觸件97''遮蓋。
較佳地,接觸件97、97'、97''藉由連續的多個層體之堆疊結構I構成於陰極連接區域1006以及陽極連接區域1002的附近,這些層體包含第一電連接層以及第二電連接層,其中第一電連接層包含填充有導電微粒的材料,較佳地為填充有導電微粒的聚合樹脂(polymeric resin)及/或藉由溶膠凝膠(sol-gel)方法得到的材料,更佳地為填充有石墨的聚合樹脂,且第二層體由設置於第一層體上的金屬箔組成。
第一電連接層使隨後的第二電連接層能被固定且同時在連接處提供「可撓性」,而在電路受到熱及/或振動應力時不會使電性接點損毀。
第二電連接層為金屬箔。此第二電連接層用於為電池提供抗水氣的持續(lasting)防護。一般來說,在給定材料厚度之情況下,金屬可產生高度不透水的薄膜,較陶瓷基之(ceramic-based)薄膜更加不透水且甚至較聚合物基的(polymer-based)薄膜更加不透水,其通常對水分子的通過(passage)沒有非常不透水。第二電連接層藉由降低接觸件的透濕率而增加了電池的壽命。
較佳地,包含導電油墨(conductive ink)之第三電連接層能被沉積於第二電連接層上;其目的為降低透濕率進而增加電池的壽命。
接觸件97、97'、97''允許電性連接於各個端在正及負之間轉換。這些接觸件97、97'、97''使不同的電池元件之間能達到並聯電性連接。為此,僅有陰極連接凸出於一端,且陽極連接在另一端為可用的。
國際專利申請WO 2016/001584描述了多個單元電池的堆疊結構,其由陽極與陰極箔透過交錯及側向偏移的方式堆疊而成(如圖12所示),且封裝於封裝系統295中以防止電池2000的單元受到外在環境影響。為了得到具有暴露的陽極連接區域2002及陰極連接區域2006之單元電池,這些封裝的堆疊結構之切割是沿通過電極與封裝系統的交錯連續疊層之切割面來進行。因為習知技術中的電池之封裝系統與電極具有不同的密度,沿此切割面進行的切割會產生封裝系統在鄰近切割面之處剝離之風險,這會進一步造成短路。在國際專利申請WO 2016/001584中,在封裝過程中,封裝層填充了承受U形切割的箔之堆疊結構的間隙。插設在這些間隙的此封裝層為厚的且沒有以良好的方式黏合於堆疊結構,這導致封裝系統2095在後續的切割過程中剝離的風險。
根據本發明,使用帶有單元本體的箔消除了這種風險,在這種單元本體中:
在第一長軸方向XX'中,各個陽極電流收集基板10凸出於第一端平面DYa,此第一平面藉由各個陽極層20、各個電解層30及/或分離層31、各個陰極層50以及各個陰極電流收集基板40的第一長軸端界定,並且
在電池中相對於所述第一長軸方向XX'的第二長軸方向XX''中,各個陰極電流收集基板40凸出於各個陽極層20、各個電解層30或浸漬或後續浸漬於電解質的分離層31、各個陰極層50以及各個陽極電流收集基板10。
因為陰極與陽極箔的交錯重疊關係,所以單元本體的熱壓機械結構在鄰近切割之處非常堅固。在使用這種堅固的結構以及承載單元本體的箔之情況下,會使切割過程中的缺陷數量降低,且使切割速度增加,進而提升電池的生產輸出量。
根據本發明,切割線DYn 、DY'n 通過相似密度的具有單元本體2e之陽極箔以及具有單元本體5e的陰極箔,而產生高品質且整齊(clean)的切割。此外,在鄰近切割線DYn 、DY'n 之處,在第一長軸方向XX'中沒有任何的陽極材料、電解質、浸漬或沒浸漬於電解質的分離層以及陰極與陰極電流收集基板的陽極電流收集基板10之存在,以及在第二長軸方向XX''中沒有任何陽極材料、電解質、浸漬或沒浸漬於電解質的分離層以及陽極與陰極電流收集基板的陰極電流收集基板40之存在防止產生任何短路及電流漏出的風險,並促進了在連接區域1002、1006的電性接觸。陽極連接區域1002及陰極連接區域1006較佳地彼此側向地相對。
根據本發明的電池之特殊結構防止了在電池的長軸面F4、F6產生之短路,防止了電流漏出,並促進了在陽極連接區域1002與陰極連接區域1006的電性接觸。具體來說,在包含陽極與陰極連接區域的電池之長軸面F4、F6上沒有電極材料及電解材料防止了鋰離子的側向漏出並促進了電池的平衡;彼此接觸的電極的有效表面(effective surface)由第一端平面DYa及第二端平面DY'a界定且實質上如圖7製圖10所示一樣。
於一替代實施例中,如圖5及圖16所示,能根據本發明得到電池1000'。這些電池1000'對應於相對軸線Z1000 旋轉180度的電池1000,其中軸線Z1000 平行於通過電池的中心C1000 之正向軸線ZZ。電池1000、1000'能具有相同的尺寸。電池1000、1000'能具有相同或相異的長軸尺寸。在相同的堆疊結構中生成電池1000、1000'使電池的生產輸出量最佳化同時使材料碎料(material offcuts)90最小化。
根據本發明的電池能由根據本發明的不同替代實施例之單元本體製成。在一非限制性的示例中,如圖13所示,單元本體的塗佈區域71、81能藉由在電流收集基板40、10上以在基板的行進方向對稱之方式進行縫模塗佈而被生成。這使得未塗佈區域72、82能直接留在基板上且因此減少了在陰極與陽極箔上製造單元本體的方法之步驟數量。相同行R的各個單元本體的排除區域能為共用的(common)且形成排除跨接片82'(如圖13及圖14所示)。
如圖15所示,根據本發明並根據本發明的此相同替代實施例可得到額外的電池1000'。這些電池1000'對應於相對軸線Z1000 旋轉180度的電池1000,其中軸線Z1000 平行於通過電池的中心C1000 之正向軸線ZZ。在相同的堆疊結構中生成電池1000、1000'使電池的生產輸出量最佳化同時使材料碎料90最小化。
在沒有繪示的一替代實施例中,行Rn 的各個單元本體之排除區域能從共用於相同行Rn 的各個單元本體之排除跨接片生成,而使電池的生產輸出量最佳化同時防止材料碎料90之生成。交錯箔的堆疊結構之中心部4因此完全地用於製造根據本發明的電池。
圖18至圖20呈現本發明更進一步的實施例。在這些圖式中,任何相似於第一實施例的元件之元件是以相同標號再加上300所標註。
如圖20所示,電池1300相異於上述之電池1000,具體的差異在於電池1300包含由封裝系統395遮蓋的單個單元電池400。此單個單元電池從圖20中的頂部到底部依序包含:
陽極電流收集基板310、
陽極層320、
浸漬於電解質的分離層331,且分離層能由上述之電解層取代、
陰極層350,以及
陰極電流收集基板340。
請參閱圖18,單元電池的不同元件首先依序往上放置。此架構大致上藉由在基板上的局部化沉積(localised deposition)所得到。電流收集器的一部分沒有被沉積物遮蓋。位於相對的端面F1、F2之電流收集基板310、340被設置而使得其相對端在相對的長軸面F4、F6上凸出於其他層體。接著,如圖19所示,這些元件被封裝系統395遮蓋。
接著沿圖19中呈現的垂直線392、393進行切割。如圖20所示,上述之切割使電流收集基板310、340各自的邊緣311、341暴露。須注意的是,在兩個相反的方向中,這些邊緣由封裝系統395的區域394、396遮蓋,其沿長軸方位XX凸出。
圖21呈現本發明的再另一實施例。在這些圖式中,任何相似於第一實施例的元件之元件是以相同標號再加上400所標註。
相似於電池1000,圖21中的電池1400包含在正面方位ZZ中依序往下設置的多個單元電池500。相對於此電池1000來說,電池1400具有相似於上述之封裝系統395之封裝系統495。具體地,封裝系統495具有沿方位XX凸出的多個區域494、496。相似於電池1300,這些區域494、496是由沿切割線492、493進行切割而形成,切割線492、493在圖21中以垂直虛點線呈現。這些切割使屬於不同的電流收集基板410、440之邊緣411、441暴露。
圖22至圖24呈現本發明的更進一步之實施例,其需與圖18至圖20中呈現的實施例進行比較。在圖22至圖24中,相似於圖18至圖20中呈現的實施例之元件的元件是以相同標號再加上200所標註。
相似於電池1300,圖24中呈現的電池1500包含由封裝系統595遮蓋的單個單元電池600。此單個電池從圖24中的頂部到底部依序包含:
陽極電流收集基板510、
陽極層520、
浸漬於電解質的分離層531,分離層能由上述之電解層取代、
陰極層550,以及
陰極電流收集基板540。
然而,電池1500與電池1300差異之處首先在於電流收集基板510、540沒有沿長軸方位XX凸出於其他層體。此外,電池1500配有兩個額外的元件,即位於單元電池600的相對端面之電連接件560、570。各個連接件具體來說彼此相同且通常具有小於300 µm的厚度,厚度較佳地小於100 µm。
各個連接件有利地由導電材料製成,特別是金屬材料。金屬材料具體包含鋁、銅或不鏽鋼。為了提升其可焊性(weldability),這些材料上能塗佈有一層薄的金、鎳或錫。
現在將一方面描述連接件560及電流收集基板510之間的接合方式且另一方面描述連接件570以及電流收集基板540之間的接合方式。這些接合方式通常由導電黏著劑(conductive adhesive)(特別是石墨黏著劑)或是充有銅或鋁金屬奈米微粒的黏著劑形成。此導電黏著層沒有繪示於圖24中,且通常具有0.1微米至數微米的厚度。或者,此導電黏著層能由焊接取代。
如圖22所示,各個連接件560、570以在長軸方位中偏移的方式被置於其各自對應的電流收集基板510、540。更具體來說,這些連接件的第一端界定出凸部562、572,凸部562、572從單元電池的長軸面F4、F6沿兩個相反的方向凸出。此外,在連接件中相對這些凸部的一端,各個連接件從單元電池退縮以界定出各自的肩部564、574。這樣的配置方式為有利的選用特徵且讓連接件能從其他層體中更容易被視覺地辨識出來。
配有連接件的單元電池600接著被封裝系統遮蓋。如圖23所示,單元電池的長軸及側向面以及肩部564、574首先被部分封裝系統595'遮蓋。請參閱圖24,連接件的端面接著被遮蓋以形成最終的封裝系統595。最後,進行切割,且此切割沒有被繪示但相似於圖19中沿垂直線392、393進行的切割。這樣的切割使連接件的邊緣566、576暴露。於此示例中,封裝系統以兩個連續的步驟被提供,但應理解的是也可提供單一的步驟。
圖25呈現圖22至圖24中呈現的實施例之替代實施例。於圖25中,相似於圖22至圖24中的元件之元件是以相同標號再加上100所標註。如以上所述,電連接件560、570在長軸方位中沿兩個相反的方向凸出於單元電池。相反地,如圖25所示,電池1600的電連接件660、670皆沿同個方向凸出,即圖25中的向右方向。
圖18至圖25以及圖22至圖25中呈現的實施例有多個具體優點。具體來說,它們相關於「單個單元電池」類型的電池,其特別適用於需要高能量密度的特定應用情形。此外,這樣的架構使封裝作業更容易進行。
最後,圖22至圖25中呈現的實施例相關於也具有多個具體優點的電連接件之使用。此因此避免了在基板上進行局部化沉積之需求,而使得此電流收集基板的整個表面能由電極材料塗佈。因為在連接件有生成側向偏移,所以無需具體如圖18、圖19及圖20中的實施例之情況一樣要在電流收集器上製作局部化沉積。
請參閱圖22至圖25中的實施例,本發明更關於一種包含至少一單元電池形成的堆疊結構之電池1500,特別係由單個單元電池600形成,各個單元電池依序包含陽極電流收集基板510、陽極層520、至少一電解層530及/或浸漬於電解質的至少一分離層531、陰極層550以及陰極電流收集基板540,
所述堆疊結構及所述電池具有六個面,即
兩個所謂的端面F1、F2,端面F1、F2彼此相對且大致上平行於所述層體以及所述電流收集基板、
兩個所謂的長軸面F4、F6,長軸面F4、F6彼此相對且分別包含陽極與陰極連接區域,以及
兩個彼此相對的所謂的側面,
電池的特徵在於更包含位於堆疊結構的相對端面上之兩個電連接件560、570,各個電連接件的第一端(凸部562、572)分別沿長軸方位XX凸出超過堆疊結構的長軸面F4、F6。
根據根據本發明的此額外目的之此電池的其他特徵:
連接件560的第一端562沿一第一方向凸出超過第一長軸面F4,且另一個連接件570的第一端572沿相反於第一方向的方向凸出超過另一個長軸面F6。
二連接件660、670的第一端662、672沿相同的方向凸出超過相同的長軸面F4。
各個電連接件分別透過導電黏著劑接合至相對應的電流收集基板。
電流收集基板、陽極層、陰極層以及分離層皆沒有凸出超過堆疊結構的長軸面。
相對於相對堆疊結構的一凸出端,各個電連接件界定出一肩部564、574。
根據本發明的方法特別適用於製造完全固態電池,即電極與電解質為固態且沒有包含液態甚至是浸漬於固態的電池。
根據本發明的方法特別適用於製造被視為準固態(quasi-solid-state)的電池,這種電池包含浸漬於電解質的至少一分離層31。分離層較佳地為多孔無機層並具有:
大於30%的孔隙率(porosity),較佳地為介孔的(mesoporous),孔隙率較佳地介於35%至50%之間,更佳地介於40 %至50%之間,
孔洞具有小於50 nm的平均直徑D50。
分離層的厚度有利地小於10 µm,較佳地介於2.5 µm至4.5 µm之間,以無須劣化分離層的性質而降低電池的最終厚度。分離層的孔洞浸漬有電解質,較佳地為相載體鋰離子,如液態電解質或包含鋰鹽的離子液。孔洞中(特別是介孔中)之「奈米限制」或「奈米陷入(nano-entrapped)」之液體無法再被排出。上述液體是由於此稱為「介孔結構中的吸收(absorption in the mesoporous structure)」之現象所限制(其沒有在鋰離子電池的相關內容中描述),且無法再被排出,即使在單元電池被置於真空環境時也無法再被排出。電池因此可視為準固態電池。
根據本發明的電池能為鋰離子微電池(lithium-ion microbattery)、鋰離子迷你電池(lithium-ion mini-battery),或高電力鋰離子電池。具體地,根據本發明的電池能被設計或進行尺寸改變而具有小於或等於約1毫安培小時(mAh)的電量(通常稱為「微電池」),具有大於約1 mAh高達約1安培小時(Ah)的電力(通常稱為「迷你電池」),或具有大於約1 Ah的電量(通常稱為「高電力電池」)。通常,微電池被設置為相容於製造微電子元件的方法。
這三種電力範圍的每一者之電池能被生成而:
具有「固態」類型的層體,即沒有浸漬於液體或黏性狀態物(所述液體或黏性狀態物可為能作為電解質的鋰離子導電媒介),
或具有浸漬於液體或黏著狀態物之介孔「固態」類型的層體,通常是鋰離子導電媒介,液體或黏著狀態物自發性地穿過層體且不再從層體浮現(emerge)而使得層體能被視為準固態的,
或具有浸漬的多孔層體(即具有能被浸漬於液體或黏性狀態物的開放孔洞之網路的層體,液體或黏性狀態物賦與這些層體濕的特性(wet properties)。
I:堆疊結構 2e:單元本體 4:中心區域 5e:單元本體 6:周緣框 7:穿孔 8:橋接材料 9:跨接片材料 10:陽極電流收集基板 20:陽極層 30:電解層 31:分離層 40:陰極電流收集基板 50:陰極層 60、60'、60'':單元本體 70、80:凹槽 71、81:塗佈區域 72、82:未塗佈區域 82':排除跨接片 90:材料碎料 95:封裝系統 97、97'、97'':接觸件 97'a、97''a:端 100、100'、100'':單元電池 295:封裝系統 310、510:陽極電流收集基板 311、341、411、441、566、576:邊緣 320、520:陽極層 331、531:分離層 340、540:陰極電流收集基板 350、550:陰極層 392、393:垂直線 394、396、494、496:區域 395、495、595、595':封裝系統 400、500、600:單元電池 410、440:電流收集基板 492、493:切割線 560、570、660、670:連接件 562、572:凸部 564、574:肩部 1000、1000':電池 1002:陽極連接區域 1002':陽極邊緣 1006:陰極連接區域 1006':陰極邊緣 1300、1400、1500、1600:電池 2000:電池 2002:陽極連接區域 2006:陰極連接區域 DXn、DX'n:切割線 DYn、DY'n:切割線 Dca、Dcc:距離 F1、F2、F3、F4、F5、F6:面 DYa、DY'a:端平面 L9、L72、L80、L82:寬度 H8、H80、H82:高度 FF1、FF2:端面 FF3、FF5:側面 FF4、FF6:長軸面 A:介面 Z1000:軸線 C1000:中心 L、Ln、Ln-1、Ln+1:列 R、Rn、Rn-1、Rn+1:行 YH:中心線 H70:凹槽70的整體高度 L70:凹槽70的整體寬度 H72:陰極箔中的未塗佈區域的整體高度 L71:陰極箔中的塗佈區域的整體寬度 L81:陽極箔中的塗佈區域的整體寬度 H81:陽極箔中的塗佈區域的整體高度 Dca':電池1000'之第一長軸面以及第一端平面之間的最小距離 Dcc':電池1000'之第二長軸面以及第二端平面之間的最小距離 l1000:電池的寬度 L1000:電池的長度 R1000:電池1000相對軸線Z1000的旋轉
作為非限制性示例的相關圖式呈現本發明的不同態樣及實施例。 圖1為用於依照根據本發明的電池製造方法形成堆疊結構的陽極與陰極箔之立體圖,這些陽極與陰極箔具有包含未塗佈區域、塗佈區域及凹槽的單元本體。 圖2為呈現一個箔的前視圖,特別是呈現圖1中的一個陽極箔。 圖3為前視圖的局部放大圖,並呈現在根據本發明或根據本發明替代實施例的陽極箔中製造的單元本體,此單元本體由未塗佈區域(以下稱為排除區域)、塗佈區域及凹槽組成。 圖4為立體圖的局部放大圖,並呈現位於鄰近的箔中的這些單元本體之未塗佈區域(或排除區域)、塗佈區域及凹槽。 圖5為上視圖,並呈現在前述圖式中的堆疊結構中提供的不同單元本體進行的切割步驟。 圖6為上視圖的局部放大圖,並呈現單元本體中完成的切割。 圖7為沿圖6中的割面線VII-VII繪示的剖面示意圖,並呈現根據本發明或根據本發明替代實施例的陽極與陰極單元本體之堆疊結構,這些單元本體各由未塗佈區域、塗佈區域及凹槽組成。 圖8為沿圖6中的割面線VII-VII繪示的剖面示意圖,並呈現封裝在封裝系統中的多個單元本體之堆疊結構。 圖9為沿割面線VII-VII繪示的剖面示意圖,並呈現包含封裝系統的根據本發明之電池,其特別能藉由前述圖式中呈現的方法所獲得。 圖10為立體圖並呈現包含封裝系統的根據本發明的電池,其特別能藉由前述圖式中呈現的方法所獲得。 圖11為沿割面線VII-VII繪示的剖面示意圖,並呈現包含封裝系統及接觸件的根據本發明的電池,其特別能藉由前述圖式中呈現的方法所獲得。 圖12為根據習知技術的電池之立體圖。 圖13為前視圖,並呈現根據本發明替代實施例的一個箔,特別是陽極排除區域以單排除跨接片(single exclusion strip)的形式製造的陽極箔。 圖14為上視圖,並呈現位於根據本發明一替代實施例之堆疊結構中的不同單元本體上進行的切割步驟。 圖15為上視圖,並呈現位於根據本發明一替代實施例之堆疊結構中的不同單元本體上進行的切割步驟以及根據此替代實施例得到的電池。 圖16為根據本發明的電池列(battery line)的上視圖。 圖17為立體圖,並呈現包含封裝系統的根據本發明的電池列,其特別能藉由前述圖式中呈現的方法所獲得。 圖18至圖20為前視圖,並呈現根據本發明另一實施例的電池之連續製造步驟,其中此電池包含單個單元且各個電流收集器形成一凸部(tab)。 圖21為相似於圖8的前視圖,並呈現圖8中的電池之實施例的一替代實施例。 圖22至圖24為相似於圖18至圖21的前視圖,並呈現使用金屬網格類型(metal grid-type)的電連接支撐件之根據本發明再另一實施例的電池之連續製造步驟。 圖25為相似於圖24的前視圖,並呈現圖24中的實施例的一替代實施例。
I:堆疊結構
10:陽極電流收集基板
20:陽極層
30:電解層
31:分離層
40:陰極電流收集基板
50:陰極層
95:封裝系統
100、100'、100":單元電池
1000:電池
1002:陽極連接區域
1002':陽極邊緣
1006:陰極連接區域
1006':陰極邊緣
DYn、DY'n:切割線
Dca、Dcc:距離
F1、F2、F3、F4、F5、F6:面
DYa、DY'a:端平面
L1000:電池的長度

Claims (26)

  1. 一種電池,包含至少一單元電池,該至少一單元電池依序包含一陽極電流收集基板、一陽極層、至少一電解層及/或浸漬於一電解質的至少一分離層、一陰極層以及一陰極電流收集基板,該至少一單元電池界定出一堆疊結構,該堆疊結構及該電池具有六個面,該六個面包含:所謂的兩個端面,該二端面彼此相對,該二端面大致上平行於該些陽極電流收集基板的一或多者、該些陽極層的一或多者、該些電解層的一或多者或浸漬於該電解質的該些分離層的一或多者,且該二端面大致上平行於該些陰極層的一或多者以及該些陰極電流收集基板的一或多者,所謂的兩個側面,該二側面彼此相對,以及所謂的一第一長軸面以及所謂的一第二長軸面,該第一長軸面以及該第二長軸面彼此相對,該電池的該第一長軸面包含至少一陽極連接區域,且該電池的該第二長軸區域包含至少一陰極連接區域,該至少一陽極連接區域以及該至少一陰極連接區域側向地彼此相對,其中於該電池的一第一長軸方向中,各個該陽極電流收集基板凸出於各個該陽極層、各個該電解層或浸漬於該電解質的各個該分離層、各個該陰極層以及各個該陰極電流收集基板,並且於相對於該第一長軸方向的該電池的一第二長軸方向中,各個該陰極電流收集基板凸出於各個該陽極層、各個該電解層或浸漬於該電解質的各個該分離層、各個該陰極層以及各個該陽極電流收集基板。
  2. 如請求項1所述之電池,其中該電池包含多個單元電池,該些單元電池依序往下設置,該些單元電池根據相對該電池的一主平面之一正面方位重疊,該些電池界定出該堆疊結構。
  3. 如請求項2所述之電池,其中各個該陽極電流收集基板為相鄰的兩個該些單元電池之各該陽極電流收集基板,並且各個該陰極電流收集基板為相鄰的兩個該些單元電池的各該陰極電流收集基板。
  4. 如請求項1或3所述之電池,其中彼此相對的該二端面彼此平行,彼此相對的該二側面彼此平行,並且彼此相對的該第一長軸面以及該第二長軸面彼此平行。
  5. 如請求項1所述之電池,其中各個該陽極電流收集基板凸出於一第一端平面,該第一端平面由各個該陽極層、各個該電解層或各個該分離層、各個該陰極層以及各個該陰極電流收集基板的多個第一長軸端所界定。
  6. 如請求項1所述之電池,其中各個該陰極電流收集基板凸出於一第二端平面,該第二端平面由各個該陽極層、各個該電解層或各個該分離層、各個該陰極層以及各個該陽極電流收集基板的多個第二長軸端所界定。
  7. 如請求項1所述之電池,更包含一封裝系統,該封裝系統遮蓋該堆疊結構的外周緣之至少部分,該封裝系統包含至少一不透水遮蓋層,該至少一不透水遮蓋層的透濕率小於10-5 g/m2 ·d,該封裝系統於各個該第一長軸面以及該第二長軸面至少直接接觸於各個該電解層及/或浸漬於該電解質的各個該分離層。
  8. 如請求項7所述之電池,其中該封裝系統於各個該第一長軸面以及該第二長軸面也直接接觸於各個該陽極層、各個該陰極層以及該陽極電流收集基板與該陰極電流收集基板中未凸出的部分。
  9. 如請求項7所述之電池,其中該封裝系統為電性絕緣的,該封裝系統的電導率有利地小於10e-11 S·m-1
  10. 如請求項7所述之電池,其中該封裝系統遮蓋該堆疊結構的該二端面、該二側面以及至少部分的該第一長軸面以及該第二長軸面而使得:僅有沿該電池的該第一長軸方向從各個該陽極層、各個該電解層或各個該分解層、各個該陰極層及各個該陰極電流收集基板凸出的各個該陽極電流收集基板的各個陽極邊緣齊平於該第一長軸面,且使得僅有沿該電池的該第二長軸方向從各個該陽極層、各個該電解層或各個該分解層、各個該陰極層及各個該陽極電流收集基板凸出的各個該陰極電流收集基板的各個陰極邊緣齊平於該第二長軸面,各個該陽極邊緣界定該至少一陽極連接區域,且各個該陰極邊緣界定該至少一陰極連接區域。
  11. 如請求項7所述之電池,其中該封裝系統包含:一第一遮蓋層,沉積於該堆疊結構的外周緣之至少部分,一第二遮蓋層,由電性絕緣材料組成,並藉由原子層沉積而沉積在該堆疊結構的外周緣之至少部分上或是該第一遮蓋層上,不透水的至少一第三遮蓋層,該至少一第三遮蓋層由陶瓷材料及/或低熔點玻璃製成,並沉積於該堆疊結構的外周緣之至少部分上或是該第一遮蓋層上,當該第二遮蓋層存在時,該第二遮蓋層以及該至少一第三遮蓋層得以重複接續z次,並沉積於該至少一第三遮蓋層的外周緣上,其中z ≥ 1,並且該封裝系統的最後一個層體為由陶瓷材料及/或低熔點玻璃製成的不透水遮蓋層。
  12. 如請求項11所述之電池,其中該第一遮蓋層選自聚對二甲苯、氟代聚對二甲苯、聚醯亞胺、環氧樹脂、矽樹脂、聚醯胺、溶膠凝膠氧化矽、有機氧化矽及/或上述之混合物。
  13. 如請求項1所述之電池,其中該至少一陽極連接區域被一陽極接觸件遮蓋,並且該至少一陰極連接區域被一陰極接觸件遮蓋,其中該陽極接觸件以及該陰極接觸件在該堆疊結構以及一外部導電元件之間產生電性接觸。
  14. 如請求項13所述之電池,其中包含該至少一陽極連接區域的該第一長軸面被該陽極接觸件遮蓋,並且包含該至少一陰極連接區域的該第二長軸面被該陰極接觸件遮蓋。
  15. 如請求項13所述之電池,其中各個該陽極接觸件以及該陰極接觸件包含:一第一電連接層,設置於該至少一陽極連接區域以及該至少一陰極連接區域,該第一電連接層包含填充導電微粒的材料,以及一第二電連接層,包含設置於填充導電微粒的材料之該第一電連接層上的一金屬箔。
  16. 如請求項5所述之電池,其中包含該至少一陽極連接區域的該第一長軸面以及由各個該陽極層、各個該電解層及/或各個該分離層、各個該陰極層以及各個該陰極電流收集基板的該些第一長軸端所界定該第一端平面之間的最小距離介於0.01毫米至0.5毫米之間,及/或包含該至少一陰極連接區域的該第二長軸面以及由各個該陽極層、各個該電解層及/或各個該分離層、各個該陰極層以及各個該陽極電流收集基板的該些第二長軸端所界定之該第二端平面之間的最小距離介於0.01毫米至0.5毫米之間。
  17. 一種至少一電池的製造方法,該至少一電池包含至少一單元電池,該至少一單元電池依序包含一陽極電流收集基板、一陽極層、至少一電解層及/或浸漬於一電解質的至少一分離層、一陰極層以及一陰極電流收集基板,該至少一單元電池界定出一堆疊結構,該堆疊結構及該至少一電池具有六個面,該六個面包含:所謂的兩個端面,該二端面彼此相對,該二端面大致上平行於該些陽極電流收集基板的一或多者、該些陽極層的一或多者、該些電解層的一或多者或浸漬於該電解質的該些分離層的一或多者,且該二端面大致上平行於該些陰極層的一或多者以及該些陰極電流收集基板的一或多者,所謂的兩個側面,該二側面彼此相對,以及所謂的一第一長軸面以及所謂的一第二長軸面,該第一長軸面以及該第二長軸面彼此相對,該電池的該第一長軸面包含至少一陽極連接區域,且該電池的該第二長軸區域包含至少一陰極連接區域,該至少一陽極連接區域以及該至少一陰極連接區域側向地彼此相對,其中於該電池的一第一長軸方向中,各個該陽極電流收集基板凸出於各個該陽極層、各個該電解層或浸漬於該電解質的各個該分離層、各個該陰極層以及各個該陰極電流收集基板,並且於相對於該第一長軸方向的該電池的一第二長軸方向中,各個該陰極電流收集基板凸出於各個該陽極層、各個該電解層或浸漬於該電解質的各個該分離層、各個該陰極層以及各個該陽極電流收集基板,該製造方法包含:步驟1,提供至少一陽極箔,該至少一陽極箔具有多個凹槽、多個未塗佈區域以及塗佈有該陽極層且選擇性塗佈有該電解層或該分離層的多個塗佈區域,步驟2,提供至少一陰極箔,該至少一陰極箔具有多個凹槽、多個未塗佈區域以及塗佈有該陰極層且選擇性塗佈有該電解層或該分離層的多個塗佈區域,步驟3,生成交錯有具有該些凹槽、該些未塗佈區域以及該些塗佈區域之該至少一陽極箔以及具有該些凹槽、該些未塗佈區域以及該些塗佈區域之該至少一陰極箔之一堆疊結構,以得到依序包含該陽極電流收集基板、該陽極層、至少一電解層或該至少一分離層、該陰極層以及該陰極電流收集基板的該至少一單元電池,並且其中於該電池的該第一長軸方向中,各個該陽極電流收集基板凸出於各個該陽極層、各個該電解層及/或各個該分離層、各個該陰極層以及各個該陰極電流收集基板,並且於相對於該第一長軸方向的該電池的該第二長軸方向中,各個該陰極電流收集基板凸出於各個該陽極層、各個該電解層及/或各個該分離層、各個該陰極層以及各個該陽極電流收集基板,步驟4,將步驟3得到的交錯箔之該堆疊結構熱處理及/或機械加壓以形成加固的該堆疊結構,步驟5,製作出第一對切割線以使該些電池的一列分離於從加固的該堆疊結構形成的該些電池的至少一另一列,步驟6,用相載體鋰離子浸漬步驟4中得到的加固的該堆疊結構或是在進行步驟5時浸漬步驟5中得到的該些電池的該列,而使得該分離層浸漬於該電解質,步驟7,製作第二對的切割線而暴露:沿該電池的該第一長軸方向從各個該陽極層、各個該電解層或各個該分離層、各個該陰極層及各個該陰極電流收集基板凸出的各個該陽極電流收集基板的一陽極邊緣,各個該陽極邊緣界定該至少一陽極連接區域,以及沿該電池的該第二長軸方向從各個該陽極層、各個該電解層或各個該分離層、各個該陰極層及各個該陽極電流收集基板凸出的各個該陰極電流收集基板的一陰極邊緣,各個該陰極邊緣界定該至少一陰極連接區域,在進行步驟5時,該第二對的切割線使一個該電池分離於從該些電池的該列形成的至少一個另一該電池。
  18. 如請求項17所述之方法,其中若有進行步驟6時在步驟6之後,或是若沒有進行步驟6且有進行步驟5時在步驟5之後,或沒有進行步驟5及步驟6時在步驟4之後,且在步驟7之前,進行封裝加固的該堆疊結構或該些電池的該列之步驟8,其中該些電池的該列或該堆疊結構的外周緣的至少部分被一封裝系統遮蓋、且該些電池的該列或該堆疊結構的該些端面、該些電池的該列或該堆疊結構的該些側面以及至少部分的該第一長軸面以及該第二長軸面被該封裝系統遮蓋,而使得:僅有沿該電池的該第一長軸方向從各個該陽極層、各個該電解層或各個該分離層、各個該陰極層及各個該陰極電流收集基板凸出的各個該陽極電流收集基板的各個該陽極邊緣齊平於該第一長軸面,並使得僅有沿該電池的該第二長軸方向從各個該陽極層、各個該電解層或各個該分離層、各個該陰極層及各個該陽極電流收集基板凸出的各個該陰極電流收集基板的各個該陰極邊緣齊平於該第二長軸面,各個該陽極邊緣界定該至少一陽極連接區域且各個該陰極邊緣界定該至少一陰極連接區域;該封裝系統包含:至少一第一遮蓋層,沉積於該些電池的該列或該堆疊結構的外周緣之至少部分,一第二遮蓋層,由電性絕緣材料組成,並藉由原子層沉積而沉積在該些電池的該列或該堆疊結構的外周緣之至少部分上,或是該第一遮蓋層上,以及不透水的至少一第三遮蓋層,該至少一第三遮蓋層由陶瓷材料及/或低熔點玻璃製成,並沉積於該些電池的該列或該堆疊結構的外周緣之至少部分上或是該第一遮蓋層上,該第二遮蓋層以及該至少一第三遮蓋層得以重複接續z次,並沉積於該至少一第三遮蓋層的外周緣上,其中z ≥ 1,且該封裝系統的最後一個層體為由陶瓷材料及/或低熔點玻璃製成的不透水遮蓋層。
  19. 如請求項17或18所述之方法,其中在步驟7之後,該至少一陽極連接區域被一陽極接觸件遮蓋,該陽極接觸件在該堆疊結構以及一外部導電元件之間產生電性接觸,並且該至少一陰極連接區域被一陰極接觸件遮蓋,該陰極接觸件在該堆疊結構以及該外部導電元件之間產生電性接觸,該陽極接觸件以及該陰極接觸件的生成包含:在該至少一陽極連接區域以及該至少一陰極連接區域上沉積一第一電連接層,該第一電連接層由填充導電微粒的材料製成,當該第一電連接層由填充導電微粒的聚合樹脂及/或藉由溶膠凝膠方法得到的材料製成時,在聚合化聚合樹脂及/或藉由溶膠凝膠方法得到的材料的步驟之後進行乾燥步驟,以及在該第一電連接層上沉積一第二電連接層,該第二電連接層包含設置於該第一電連接層上的一金屬箔,在該第二電連接層上沉積包含一導電油墨的一第三電連接層。
  20. 如請求項17至19中任一項所述之方法,其中當有進行步驟5時步驟5及/或步驟7中的該些切割線由雷射剝蝕產生。
  21. 一種電池,包含由至少一單元電池形成的一堆疊結構,該至少一單元電池依序包含一陽極電流收集基板、一陽極層、至少一電解層及/或浸漬於一電解質的至少一分離層、一陰極層以及一陰極電流收集基板,該堆疊結構及該電池具有六個面,該六個面包含:所謂的兩個端面,該二端面彼此相對且彼此平行,該二端面大致上平行於該些陽極電流收集基板、該些陽極層、該些電解層或浸漬於該電解質的該些分離層,且該二端面大致上平行於該些陰極層以及該些陰極電流收集基板,所謂的兩個長軸面,該二長軸面彼此相對且分別包含一陽極連接區域以及一陰極連接區域,所謂的兩個側面,該二側面彼此相對,該電池更包含位於該堆疊結構的相對的該些端面之二電連接件,各個該電連接件的一第一端於一長軸方位中凸出超過該堆疊結構的各個該長軸面。
  22. 如請求項21所述之電池,其中其中一個該電連接件的該第一端沿一第一方向凸出超過其中一個該長軸面,且另一個該電連接件的該第一端沿相反於該第一方向的方向凸出超過另一個該長軸面。
  23. 如請求項21所述之電池,其中該二電連接件的該二第一端沿相同的方向凸出超過相同的該長軸面。
  24. 如請求項21所述之電池,其中各個該電連接件分別接合至該陽極電流收集基板以及該陰極電流收集基板。
  25. 如請求項21所述之電池,其中該陽極電流收集基板、該陰極電流收集基板、該陽極層、該陰極層以及該分離層皆沒有凸出超過該堆疊結構的該些長軸面。
  26. 如請求項21所述之電池,其中相對於相對堆疊結構的一凸出端,各個該電連接件界定出一肩部。
TW110111103A 2020-03-30 2021-03-26 鋰離子電池及其製造方法 TW202141837A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20166569.2A EP3890077A1 (fr) 2020-03-30 2020-03-30 Batterie á ions de lithium et son procédé de fabrication
EP20166569.2 2020-03-30

Publications (1)

Publication Number Publication Date
TW202141837A true TW202141837A (zh) 2021-11-01

Family

ID=70058135

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111103A TW202141837A (zh) 2020-03-30 2021-03-26 鋰離子電池及其製造方法

Country Status (9)

Country Link
US (1) US20230122314A1 (zh)
EP (2) EP3890077A1 (zh)
JP (1) JP2023519702A (zh)
KR (1) KR20220160672A (zh)
CN (1) CN115885403A (zh)
CA (1) CA3173247A1 (zh)
IL (1) IL296779A (zh)
TW (1) TW202141837A (zh)
WO (1) WO2021198843A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238645B2 (ja) * 2003-06-12 2009-03-18 日産自動車株式会社 バイポーラ電池
JP5165843B2 (ja) * 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
FR2897434B1 (fr) 2006-02-15 2014-07-11 Commissariat Energie Atomique Procede et dispositif de mesure de permeation
JP4301286B2 (ja) * 2006-12-21 2009-07-22 トヨタ自動車株式会社 蓄電装置
FR3023418B1 (fr) 2014-07-01 2016-07-15 I Ten Batterie entierement solide comprenant un electrolyte en materiau polymere solide reticule
WO2018123319A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
JP6772855B2 (ja) * 2017-01-20 2020-10-21 トヨタ自動車株式会社 全固体電池
CN110521047A (zh) * 2017-03-28 2019-11-29 株式会社村田制作所 全固态电池、电子设备、电子卡、可穿戴设备及电动车辆

Also Published As

Publication number Publication date
CN115885403A (zh) 2023-03-31
JP2023519702A (ja) 2023-05-12
EP3890077A1 (fr) 2021-10-06
WO2021198843A1 (fr) 2021-10-07
CA3173247A1 (fr) 2021-10-07
KR20220160672A (ko) 2022-12-06
IL296779A (en) 2022-11-01
EP4128410A1 (fr) 2023-02-08
US20230122314A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
CN100495797C (zh) 包括贯穿连接的微电池的生产方法
CN110809830B (zh) 用于电子元件和电池的封装系统
EP2044642B1 (en) Photolithographic manufacture of a solid-state microbattery
KR20080058284A (ko) 확장 캐비티를 갖는 전류-전극 집전체 어셈블리를 포함하는리튬 축전지 및 그것의 제조 방법
KR20130014531A (ko) 마이크로배터리 및 그 제조 방법
US20220069357A1 (en) Method for manufacturing batteries and battery obtained by said method
TW202141837A (zh) 鋰離子電池及其製造方法
US20230027695A1 (en) Electrochemical battery device with improved lifetime, comprising improved sealing and electrical conduction means, and manufacturing method thereof
US20230076672A1 (en) Method for producing lithium-ion batteries, in particular high-power batteries, and battery obtained by this method
US20230198024A1 (en) Method for manufacturing a lithium-ion battery
US20220311055A1 (en) Lithium-ion battery and method for the manufacture thereof
US20230025375A1 (en) Battery having an encapsulation system that is reinforced at the contact members
US20230029225A1 (en) Battery, in particular a thin-film battery, having a novel encapsulation system
IL293902A (en) A battery-type electrochemical device that includes improved sealing means and a method for its production