TW202141421A - Method and system of artificial intelligence automatic optical inspection - Google Patents

Method and system of artificial intelligence automatic optical inspection Download PDF

Info

Publication number
TW202141421A
TW202141421A TW109114163A TW109114163A TW202141421A TW 202141421 A TW202141421 A TW 202141421A TW 109114163 A TW109114163 A TW 109114163A TW 109114163 A TW109114163 A TW 109114163A TW 202141421 A TW202141421 A TW 202141421A
Authority
TW
Taiwan
Prior art keywords
image
images
tested
artificial intelligence
optical inspection
Prior art date
Application number
TW109114163A
Other languages
Chinese (zh)
Other versions
TWI759733B (en
Inventor
陳彥合
廖至欽
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW109114163A priority Critical patent/TWI759733B/en
Publication of TW202141421A publication Critical patent/TW202141421A/en
Application granted granted Critical
Publication of TWI759733B publication Critical patent/TWI759733B/en

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A method and a system of an artificial intelligence automatic optic inspection are disclosed. The method includes the following steps: capturing a plurality of display panels through an optical imaging device and generating a plurality of training images; conducting an automatic encoding calculation to the plurality of training images and obtaining a panel standard image; capturing a test panel through an optical imaging device and generating a test image; conducting the automatic encoding calculation to the test image and obtaining a panel comparison image; comparing the difference value between the panel standard image and the panel comparison image. When the difference value exceeds the preset standard value, the test image is judged as an abnormal image. When the difference value does not exceed the preset standard value, the test image is judged as a normal image.

Description

人工智慧自動光學檢測方法及系統Artificial intelligence automatic optical detection method and system

本發明是關於一種人工智慧自動光學檢測方法及系統,特別是關於一種利用基準面影像比對及缺陷分類比對的演算法來執行的人工智慧自動光學檢測方法及系統。The present invention relates to an artificial intelligence automatic optical inspection method and system, and particularly relates to an artificial intelligence automatic optical inspection method and system executed by an algorithm of reference plane image comparison and defect classification and comparison.

在針對各種面板、電路、工件等製造程序當中或產品製作完成時,可通過自動化光學檢測(Automated Optical Inspection, AOI)的技術對其進行檢測,通過攝影機取得待測物的數位影像,再透過軟體自動化計算出缺陷,藉此達到品質檢驗、製程驗證等效果。通過裝置自動化檢測的方式,能取代傳統利用人工進行視覺檢測的方式,提高檢測效率也同時節省人力成本。In the manufacturing process of various panels, circuits, workpieces, etc. or when the product is completed, it can be inspected through Automated Optical Inspection (AOI) technology, and the digital image of the object to be measured is obtained through the camera, and then through the software Automatically calculate defects to achieve quality inspection, process verification and other effects. The automatic detection method of the device can replace the traditional manual visual detection method, which improves the detection efficiency and saves labor costs at the same time.

然而,自動化光學檢測的技術通常是利用拍攝影像與標準影像比較,在實際操作上,容易受到各種檢測環境、檢測裝置、產品類別、產品規格標準等因素來影響,舉例來說,檢測時的光源、材料面積層數設計、人為操作誤差等,都會影響拍攝的影像結果。因此,後續比較的判斷也會因此有所偏差,無法正確辨識異常狀況。However, the technology of automated optical inspection usually uses the comparison between the captured image and the standard image. In actual operation, it is susceptible to various factors such as the testing environment, testing equipment, product category, product specification standards, etc., for example, the light source during testing. , Material area layer design, human operation error, etc., will affect the result of shooting images. Therefore, the judgment of the subsequent comparison will also be biased, and the abnormal situation cannot be correctly identified.

有鑑於此,雖然目前通過自動化光學檢測的方式能對待測物進行自動的檢測與辨識,但在實際操作上仍有誤判的可能,無法正確辨別異常。因此,本發明之發明人思索並設計一種人工智慧自動光學檢測方法及系統,針對現有技術之缺失加以改善,進而增進產業上之實施利用。In view of this, although the current automatic optical inspection method can be used to automatically detect and identify the object to be tested, there is still the possibility of misjudgment in actual operation, and it is impossible to correctly identify the abnormality. Therefore, the inventor of the present invention considers and designs an artificial intelligence automatic optical inspection method and system to improve on the deficiencies of the existing technology, thereby enhancing the industrial application and utilization.

有鑑於上述習知技術之問題,本發明之目的在於提供一種人工智慧自動光學檢測方法及系統,其具有提高檢測正確率及檢測效率,避免檢測結果產生誤判的問題。In view of the above-mentioned problems of the conventional technology, the purpose of the present invention is to provide an artificial intelligence automatic optical detection method and system, which can improve the detection accuracy and detection efficiency, and avoid the problem of misjudgment in the detection result.

根據上述目的,本發明之實施例提出一種人工智慧自動光學檢測方法,其包含以下步驟:通過光學取像裝置拍攝複數個顯示面板,產生複數個訓練影像,將複數個訓練影像儲存於儲存裝置;藉由處理器存取儲存裝置,並進行複數個訓練影像之自動編碼運算,取得複數個訓練影像之基準面標準影像;通過光學取像裝置拍攝待測面板,產生待測影像,將待測影像儲存於儲存裝置;藉由處理器存取儲存裝置,對待測影像進行自動編碼運算,產生待測影像之基準面比對影像;藉由處理器比較基準面比對影像與基準面標準影像之差異值,若差異值超過預設標準值,判斷待測影像為異常影像,若差異值未達預設標準值,判斷待測影像為正常影像。According to the above objective, an embodiment of the present invention provides an artificial intelligence automatic optical inspection method, which includes the following steps: photographing a plurality of display panels through an optical imaging device, generating a plurality of training images, and storing the plurality of training images in a storage device; The processor accesses the storage device and performs automatic encoding operations of multiple training images to obtain the reference plane standard images of the multiple training images; the panel to be tested is captured by the optical imaging device to generate the image to be tested, and the image to be tested Stored in the storage device; through the processor accesses the storage device, the image to be tested is automatically encoded to generate the reference level comparison image of the test image; the difference between the reference level comparison image and the reference level standard image is compared by the processor If the difference value exceeds the preset standard value, the image to be tested is determined to be an abnormal image, and if the difference value does not reach the preset standard value, the image to be tested is determined to be a normal image.

在本發明的實施例中,自動編碼運算可包含將複數個訓練影像進行複數層卷積網路運算,產生隱藏層影像,再將隱藏層影像經由複數層反卷積網路運算,取得基準面標準影像。In an embodiment of the present invention, the automatic encoding operation may include performing a complex-layer convolution network operation on a plurality of training images to generate a hidden layer image, and then pass the hidden layer image through a complex-layer deconvolution network operation to obtain a reference plane Standard image.

在本發明的實施例中,複數層反卷積網路運算之層數可小於或等於複數層卷積網路運算之層數。In the embodiment of the present invention, the number of layers of the complex-layer deconvolution network operation may be less than or equal to the number of layers of the complex-layer convolution network operation.

在本發明的實施例中,人工智慧自動光學檢測方法可進一步包含以下步驟:藉由處理器將正常影像分割成複數個影像檢測區域,形成複數個檢測影像;藉由處理器將複數個檢測影像分別進行影像特徵運算,取得複數個檢測影像之影像特徵值;藉由處理器將該複數個影像之影像特徵值進行分類,形成影像分類模型。影像分類模型可包含複數個表面缺陷分類。In the embodiment of the present invention, the artificial intelligence automatic optical inspection method may further include the following steps: the processor divides the normal image into a plurality of image detection areas to form a plurality of detection images; and the processor divides the plurality of detection images Perform image feature calculations to obtain image feature values of a plurality of detected images; the processor classifies the image feature values of the plurality of images to form an image classification model. The image classification model may include a plurality of surface defect classifications.

本發明之另一實施例提出一種人工智慧自動光學檢測系統,其包含光學取像裝置、儲存裝置以及處理器。其中光學取像裝置拍攝複數個顯示面板以產生複數個訓練影像,並拍攝待測面板以產生待測影像。儲存裝置連接光學取像裝置,儲存複數個訓練影像及待測影像。處理器連接於儲存裝置,執行複數個指令以施行下列處理程序:進行複數個訓練影像之自動編碼運算,取得複數個訓練影像之基準面標準影像;對待測影像進行自動編碼運算,產生待測影像之基準面比對影像;進行判斷程序,比較基準面比對影像與基準面標準影像之差異值,若差異值超過預設標準值,判斷待測影像為異常影像,若差異值未達預設標準值,判斷待測影像為正常影像。Another embodiment of the present invention provides an artificial intelligence automatic optical inspection system, which includes an optical imaging device, a storage device, and a processor. The optical imaging device shoots a plurality of display panels to generate a plurality of training images, and shoots the panel to be tested to generate the image to be tested. The storage device is connected to the optical imaging device to store a plurality of training images and images to be tested. The processor is connected to the storage device and executes a plurality of instructions to perform the following processing procedures: perform automatic coding operations of a plurality of training images to obtain reference plane standard images of a plurality of training images; perform automatic coding operations on the images to be tested to generate the images to be tested The reference plane comparison image; the judgment procedure is performed to compare the difference value between the reference plane comparison image and the reference plane standard image. If the difference value exceeds the preset standard value, the image to be tested is judged to be an abnormal image, if the difference value does not reach the preset value Standard value, judge the image to be tested as a normal image.

在本發明的實施例中,處理器可進一步施行下列處理程序:進行切割程序,將正常影像分割成複數個影像檢測區域,形成複數個檢測影像;將複數個檢測影像分別進行影像特徵運算,取得複數個檢測影像之影像特徵值;將複數個影像之影像特徵值進行分類,形成影像分類模型。影像分類模型可包含複數個表面缺陷分類。In the embodiment of the present invention, the processor may further execute the following processing procedures: perform a cutting procedure, divide the normal image into a plurality of image detection areas to form a plurality of detection images; perform image feature calculations on the plurality of detection images respectively to obtain The image feature values of a plurality of detected images; the image feature values of the plurality of images are classified to form an image classification model. The image classification model may include a plurality of surface defect classifications.

承上所述,依本發明實施例所揭露的人工智慧自動光學檢測方法及系統,可對面板的整體影像進行自動光學檢測,利用自動編碼演算取得基準面標準影像,再依據與基準面標準影像的比較篩選出異常影像,避免異常影像繼續進行缺陷分析而耗費檢測成本。對於正常影像則可進一步經由分割檢測區域,進行特徵值運算,自動判斷檢測影像是否存在缺陷以及缺陷的種類,有效率的達到產品檢驗的成效。Continuing from the above, according to the artificial intelligence automatic optical inspection method and system disclosed in the embodiments of the present invention, the overall image of the panel can be automatically optically inspected, and the standard image of the reference plane can be obtained by the automatic coding algorithm, and then based on the standard image of the reference plane. Screening out abnormal images by comparison, avoiding the cost of inspection by continuing defect analysis of abnormal images. For normal images, it can further divide the detection area to perform feature value calculations to automatically determine whether there are defects in the detected images and the types of defects, so as to efficiently achieve the results of product inspection.

為利瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。In order to understand the technical features, content and advantages of the present invention as well as the effects that can be achieved, the present invention is described in detail with the accompanying drawings and in the form of embodiment expressions as follows, and the figures used therein are only For the purpose of illustrating and supplementing the description, it may not be the true scale and precise configuration after the implementation of the present invention. Therefore, the scale and configuration relationship of the attached drawings should not be interpreted, and the scope of rights of the present invention in actual implementation should not be interpreted. Narrate.

在附圖中,為了淸楚起見,放大了層、膜、面板、區域、導光件等的厚度或寬度。在整個說明書中,相同的附圖標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反地,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的「連接」,其可以指物理及/或電性的連接。再者,「電性連接」或「耦合」係可為二元件間存在其它元件。此外,應當理解,儘管術語「第一」、「第二」、「第三」在本文中可以用於描述各種元件、部件、區域、層及/或部分,其係用於將一個元件、部件、區域、層及/或部分與另一個元件、部件、區域、層及/或部分區分開。因此,僅用於描述目的,而不能將其理解為指示或暗示相對重要性或者其順序關係。In the drawings, the thickness or width of layers, films, panels, regions, light guides, etc. are exaggerated for clarity. Throughout the specification, the same reference numerals denote the same elements. It should be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. Conversely, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements. As used herein, "connection" can refer to a physical and/or electrical connection. Furthermore, "electrical connection" or "coupling" can mean that there are other elements between the two elements. In addition, it should be understood that although the terms “first”, “second”, and “third” may be used herein to describe various elements, components, regions, layers and/or parts, they are used to refer to an element, component , Region, layer and/or part are distinguished from another element, component, region, layer and/or part. Therefore, it is only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or its sequence relationship.

除非另有定義,本文所使用的所有術語(包括技術和科學術語)具有與本發明所屬技術領域的通常知識者通常理解的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地如此定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have meanings commonly understood by those skilled in the art to which the present invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meaning in the context of related technologies and the present invention, and will not be interpreted as idealized or excessive The formal meaning, unless explicitly defined as such in this article.

請參閱第1圖,其係為本發明實施例之人工智慧自動光學檢測方法之流程圖。如圖所示,人工智慧自動光學檢測方法包含以下步驟(S1~S5):Please refer to Figure 1, which is a flowchart of an artificial intelligence automatic optical inspection method according to an embodiment of the present invention. As shown in the figure, the artificial intelligence automatic optical inspection method includes the following steps (S1~S5):

步驟S1:通過光學取像裝置拍攝複數個顯示面板,產生複數個訓練影像,將複數個訓練影像儲存於儲存裝置。首先,對於需要進行檢測的顯示面板,不論是製程當中的顯示單元、基板及電路板等半成品,或是已完成製程步驟的顯示裝置等,都可事先利用光學取像裝置拍攝複數個顯示面板,取得對應的訓練影像。這裡所述的光學取像裝置包含各種照相機、攝影機等拍攝裝置,設置在產線的製程動線上或是檢驗位置上,對於顯示面板拍攝後取得顯示面板的影像,以此作為人工智慧異常判斷的訓練影像,並且將這些訓練影像儲存在儲存裝置當中。儲存裝置可為光學取像裝置的記憶體或者執行演算步驟的電腦中的記憶體。Step S1: Take a plurality of display panels with an optical image capturing device, generate a plurality of training images, and store the plurality of training images in a storage device. First of all, for display panels that need to be inspected, whether they are semi-finished products such as display units, substrates, and circuit boards in the process, or display devices that have completed the process steps, multiple display panels can be photographed with an optical imaging device in advance. Obtain the corresponding training image. The optical image capturing device described here includes various cameras, video cameras and other shooting devices, which are set on the production line of the production line or at the inspection position. After shooting the display panel, the image of the display panel is obtained as an artificial intelligence abnormal judgment. Training images, and store these training images in the storage device. The storage device may be the memory of the optical image capturing device or the memory of the computer that executes the calculation steps.

步驟S2:藉由處理器存取儲存裝置,並進行複數個訓練影像之自動編碼運算,取得複數個訓練影像之基準面標準影像。當取得多個訓練影像後,電腦裝置中的處理器可執行使用者的指令,存取這些訓練影像,對這些影像進行自動編碼運算,來取得這些訓練影像的基準面標準影像,亦即對應於顯示面板的基準面標準影像。這裡所執行的自動編碼演算是包含對訓練影像進行複數層的卷積網路運算,產生顯示面板的隱藏層影像,再對隱藏層影像進行複數層的反卷積網路運算,產生基準面標準影像。Step S2: Access the storage device by the processor, and perform an automatic encoding operation of a plurality of training images to obtain a reference plane standard image of the plurality of training images. After obtaining multiple training images, the processor in the computer device can execute the user's instructions to access these training images and perform automatic encoding operations on these images to obtain the reference plane standard images of these training images, which corresponds to The standard image of the reference plane of the display panel. The automatic encoding algorithm performed here involves performing a complex-layer convolutional network operation on the training image to generate a hidden layer image of the display panel, and then performing a complex-layer deconvolution network operation on the hidden layer image to generate a reference plane standard image.

以下將進一步說明自動編碼運算,請參閱第2圖,其為本發明實施例之自動編碼運算之示意圖。如圖所示,訓練影像21為光學取像裝置擷取的顯示面板的表面影像,包含顯示區域、非顯示區域等整體表面影像。在另一實施例當中,訓練影像21也可為顯示面板半成品的基板表面影像,包含發光元件、電路線路等表面影像。自動編碼運算首先將訓練影像21通過設定的卷積核進行卷積網路運算,取得訓練影像的特徵資料影像,在本實施例中,訓練影像21通過四層卷積網路運算(W1~W4),得到隱藏層影像22。圖中所示的數量為影像的畫素大小,但本揭露不侷限於此,訓練影像也可以其他的層數,例如5層卷積網路運算或更多層數的卷積網路運算,來取得隱藏層影像22,也可依據訓練影像21的畫素大小,決定卷積核的設定,以取得對應的隱藏層影像22。The automatic encoding operation will be further described below. Please refer to Figure 2, which is a schematic diagram of the automatic encoding operation according to an embodiment of the present invention. As shown in the figure, the training image 21 is the surface image of the display panel captured by the optical image capturing device, including overall surface images such as display area and non-display area. In another embodiment, the training image 21 may also be a substrate surface image of a semi-finished display panel, including surface images such as light-emitting elements and circuit lines. The automatic encoding operation first performs the convolution network operation on the training image 21 through the set convolution kernel to obtain the characteristic data image of the training image. In this embodiment, the training image 21 is operated by a four-layer convolution network (W1~W4). ), the hidden layer image 22 is obtained. The number shown in the figure is the pixel size of the image, but the present disclosure is not limited to this. The training image can also have other layers, such as 5-layer convolutional network operations or more layers of convolutional network operations. To obtain the hidden layer image 22, the setting of the convolution kernel can also be determined according to the pixel size of the training image 21 to obtain the corresponding hidden layer image 22.

接著,自動編碼運算包含對於隱藏層影像22進行反卷積網路運算,在本實施例當中,隱藏層影像22通過四層反卷積網路運算(WT4~WT1),得到原圖影像23,以此作為基準面標準影像25。由於訓練影像21示示先挑選出來的正常影像,當經過同樣層數的卷積網路運算(W1~W4)及反卷積網路運算(WT1~WT4)後,應能得到原圖影像23。另外,當進行層數較少小於卷積網路運算(W1~W4)的三層反卷積網路運算(WT4~WT2)後,可得到特徵層影像24,特徵層影像也可作為基準面標準影像25。在本實施例中,基準面標準影像25可同時包含原圖影像23及特徵層影像24,在另一實施例當中,可由原圖影像23及特徵層影像24當中擇一作為基準面標準影像25。這些基準面標準影像25以及自動編碼運算的相關參數可儲存於儲存裝置20當中。Next, the automatic encoding operation includes performing a deconvolution network operation on the hidden layer image 22. In this embodiment, the hidden layer image 22 passes through a four-layer deconvolution network operation (WT4~WT1) to obtain the original image 23. Use this as the reference plane standard image 25. Since the training image 21 shows the normal image selected first, the original image 23 should be obtained after the convolution network operation (W1~W4) and the deconvolution network operation (WT1~WT4) of the same number of layers. In addition, when the three-layer deconvolution network operation (WT4~WT2) with fewer layers than the convolution network operation (W1~W4) is performed, the feature layer image 24 can be obtained, and the feature layer image can also be used as a reference surface Standard image 25. In this embodiment, the reference level standard image 25 may include the original image 23 and the feature layer image 24 at the same time. In another embodiment, one of the original image 23 and the feature layer image 24 can be selected as the reference level standard image 25 . These reference plane standard images 25 and related parameters of the automatic encoding operation can be stored in the storage device 20.

步驟S3:通過光學取像裝置拍攝待測面板,產生待測影像,將待測影像儲存於儲存裝置。依據前述步驟,各種型號、尺寸對應的基準面標準影像25儲存於儲存裝置20當中,當有同樣型號、尺寸的待測面板欲進行檢驗時,則通過光學取向裝置拍攝待測面板的表面影像,產生待測影像,這些待測影像可儲存在儲存裝置當中。Step S3: The panel to be tested is photographed by the optical image capturing device, an image to be tested is generated, and the image to be tested is stored in the storage device. According to the foregoing steps, the reference surface standard images 25 corresponding to various models and sizes are stored in the storage device 20. When there are panels to be tested of the same model and size to be tested, the surface image of the panel to be tested is captured by the optical orientation device. Generate images to be tested, which can be stored in a storage device.

步驟S4:藉由處理器存取儲存裝置,對待測影像進行自動編碼運算,產生待測影像之基準面比對影像。針對待測影像,電腦裝置中的處理器可執行使用者的指令,存取這些訓練影像,對這些影像進行自動編碼運算。這裡的自動編碼運算,其使用的卷積核大小、卷積層層數等網路運算的參數與儲存裝置當中儲存的參數相同。待測影像經由自動編碼演算後,可同樣產生原圖或特徵圖來作為基準面比對影像25’, 這些基準面標準影像25’儲存於儲存裝置20當中。Step S4: The processor accesses the storage device, and performs an automatic encoding operation on the image to be measured to generate a reference plane comparison image of the image to be measured. For the images to be tested, the processor in the computer device can execute user instructions, access these training images, and perform automatic encoding operations on these images. The automatic encoding operation here uses the same parameters as the parameters stored in the storage device, such as the size of the convolution kernel and the number of layers of the convolutional layer. After the image to be tested is automatically coded and calculated, the original image or feature map can be generated as the reference surface comparison image 25', and these reference surface standard images 25' are stored in the storage device 20.

步驟S5:藉由處理器比較基準面比對影像與基準面標準影像之差異值,判斷差異值是否超過預設標準值。若差異值超過預設標準值,判斷待測影像為異常影像NG,若差異值未達預設標準值,判斷待測影像為正常影像G。當儲存裝置20當中儲存基準面標準影像25及基準面比對影像25’時,處理器能執行比對程序,比較基準面標準影像25及基準面比對影像25’之間的差異值,判斷待測影像是否為正常影像G。在本實施例當中,差異值的計算可以依據基準面標準影像25類型有所不同,當基準面標準影像25為原圖影像23時,可依據基準面標準影像25及基準面比對影像25’當中各個畫素的灰階值相減來取得差異值。在另一實施例當中,當基準面標準影像25為特徵層影像24時,可依據基準面標準影像25及基準面比對影像25’的各個畫素的向量內積來計算差異值。進一步比較差異值是否超過預設標準值,若是,則判斷待測影像為異常影像NG,需重新檢視製造或檢驗過程是否有缺失;若否,則判斷待測影像為正常影像G,其可通過檢驗或者進一步進行細部的缺陷分類檢驗。Step S5: The processor compares the difference value between the reference plane comparison image and the reference plane standard image to determine whether the difference value exceeds a preset standard value. If the difference value exceeds the preset standard value, the image to be tested is judged to be an abnormal image NG; if the difference value does not reach the preset standard value, the image to be tested is judged to be a normal image G. When the storage device 20 stores the reference surface standard image 25 and the reference surface comparison image 25', the processor can execute the comparison procedure to compare the difference between the reference surface standard image 25 and the reference surface comparison image 25', and determine Whether the image to be tested is a normal image G. In this embodiment, the calculation of the difference value can be based on the type of the reference plane standard image 25. When the reference plane standard image 25 is the original image 23, the reference plane standard image 25 and the reference plane comparison image 25' can be used. Among them, the grayscale value of each pixel is subtracted to obtain the difference value. In another embodiment, when the reference level standard image 25 is the feature layer image 24, the difference value can be calculated based on the vector inner product of each pixel of the reference level standard image 25 and the reference level comparison image 25'. Further compare whether the difference value exceeds the preset standard value. If it is, it is determined that the image to be tested is abnormal image NG, and the manufacturing or inspection process needs to be re-examined for defects; if not, it is determined that the image to be tested is a normal image G, which can pass Inspection or further detailed defect classification inspection.

上述的人工智慧自動光學檢測方法主要是針對顯示面板的整體影像進行檢測,也就是在進行各個元件位置的細部檢測前,先對整體影像進行自動檢測,避免以異常影像進行後續檢測而耗費部必要的檢測成本。舉例來說,當檢測機台設置偏差或是照明設備有所改變時,對於光學取像裝置擷取的影像可能並非所要檢測的對象,或者影像亮度有明顯的差異而無法正確識別異常。因此,通過人工智慧自動光學檢測方法,可自動將異常影像挑出,將待測物重新進行檢測或者檢視檢測流程或裝置是否產生異常。The above-mentioned artificial intelligence automatic optical inspection method mainly detects the overall image of the display panel, that is, before performing the detailed detection of each component position, the overall image is automatically detected to avoid the need for subsequent detection of abnormal images. The cost of testing. For example, when the detection machine is set to deviate or the lighting equipment is changed, the image captured by the optical image capturing device may not be the object to be detected, or the image brightness may be significantly different and the abnormality cannot be correctly identified. Therefore, through the artificial intelligence automatic optical detection method, abnormal images can be automatically picked out, the object to be tested can be re-detected or the detection process or device can be checked for abnormalities.

請參閱第3圖,其係為本發明另一實施例之人工智慧自動光學檢測方法之流程圖。如圖所示,人工智慧自動光學檢測方法包含以下步驟(S1~S8):Please refer to FIG. 3, which is a flowchart of an artificial intelligence automatic optical inspection method according to another embodiment of the present invention. As shown in the figure, the artificial intelligence automatic optical inspection method includes the following steps (S1~S8):

步驟S1~步驟S5:這裡的步驟S1至步驟S5與前述實施例所述的流程相同,因此,相同技術特徵不再重複描述。待測面板可通過步驟S1至步驟S5,判斷光學取像裝置所擷取的影像是否為正常影像G,若是,則繼續後續的檢測流程。Step S1 to step S5: The steps S1 to S5 here are the same as the processes described in the foregoing embodiment, and therefore, the same technical features will not be described repeatedly. The panel to be tested can determine whether the image captured by the optical imaging device is a normal image G through steps S1 to S5, and if so, continue the subsequent inspection process.

步驟S6:藉由處理器將正常影像分割成複數個影像檢測區域,形成複數個檢測影像。針對正常影像G,可以依據影像的畫素大小,切割成複數個影像檢測區域,即將完整的面板影像,切割成多個較小的檢測影像,藉由每一個檢測影像的判斷,來檢測完整面板影像是否具有缺陷。Step S6: The processor divides the normal image into a plurality of image detection areas to form a plurality of detection images. For the normal image G, it can be cut into multiple image detection areas according to the pixel size of the image, that is, the complete panel image is cut into multiple smaller inspection images, and the complete panel is inspected by the judgment of each inspection image Whether the image is defective.

步驟S7:藉由處理器將複數個檢測影像分別進行影像特徵運算,取得複數個檢測影像之影像特徵值。針對每個檢測影像,處理器執行影像特徵運算的程式,分別對每個檢測影像進行影像特徵運算,通過影像特徵運算來取得檢測影像的影像特徵值。Step S7: Perform image feature calculations on the plurality of detected images by the processor to obtain the image feature values of the plurality of detected images. For each detected image, the processor executes an image feature calculation program, respectively performs image feature calculation on each detected image, and obtains the image feature value of the detected image through the image feature calculation.

步驟S8:藉由處理器將該複數個影像之影像特徵值進行分類,形成影像分類模型。影像分類模型可包含正常影像分類及缺陷影像分類,正常影像分類表示面板線路、元件等製作符合規範,缺陷影像分類則包含複數個表面缺陷分類,例如波紋、缺角、裂痕等問題,當特徵值歸屬至特定的缺陷影像分類時,則判斷檢測影像有所缺陷,產生異常通知。Step S8: The processor classifies the image feature values of the plurality of images to form an image classification model. The image classification model can include normal image classification and defect image classification. Normal image classification means that the production of panel circuits and components meets specifications. Defect image classification includes multiple surface defect classifications, such as ripples, missing corners, and cracks. When the feature value is When belonging to a specific defect image classification, it is judged that the detected image is defective, and an abnormal notification is generated.

在本實施例中,將正常影像區分為複數個影像檢測區域除了細分各個區域來分別進行缺陷檢測外,也可避免整體影像上缺陷所佔比例過低,無法於特徵值中顯現出來的狀況。除此之外,對於不同檢測區域,也可依據產品類別設計區域的檢測特徵運算方式,依照元件類型或表面圖案類型進行檢測,進一步提升檢測的正確率。In this embodiment, dividing the normal image into a plurality of image detection regions can not only subdivide each region to perform defect detection separately, but also avoid the situation that the defect ratio on the overall image is too low and cannot be revealed in the feature value. In addition, for different detection areas, the detection feature calculation method of the area can also be designed according to the product category, and the detection is performed according to the component type or the surface pattern type to further improve the accuracy of the detection.

在上述的影像特徵運算方式當中,影像特徵運算可包含複數個卷積層運算、池化層運算及激活層運算,請參閱第4圖,其為本發明實施例之影像分類運算之示意圖。如圖所示,每個檢測影像31可通過多層的卷積層運算,將檢測影像31轉換成不同階層的特徵影像,再配合池化層運算及激活層運算將影像隱藏的特徵輸出,取得特徵影像32,特徵影像32可計算對應的影像特徵值,再藉由分類器將各個特徵影像32依據不同級距進行分類。舉例來說,當影像特徵值小於預設標準值則為檢測正常無缺陷,超過預設標準值則為缺陷A,若達到更高標準值則為缺陷B。針對不同缺陷,操作者可依據流程對待測面板進行重工,若超過檢驗標準且無法重工,則可能須進行報廢處理。Among the above-mentioned image feature calculation methods, the image feature calculation may include a plurality of convolutional layer calculations, pooling layer calculations, and activation layer calculations. Please refer to FIG. 4, which is a schematic diagram of image classification calculations according to an embodiment of the present invention. As shown in the figure, each detection image 31 can be converted into feature images of different levels through multi-layer convolutional layer operations, and then combined with pooling layer operations and activation layer operations to output the hidden features of the images to obtain feature images 32. The feature image 32 can calculate the corresponding image feature value, and then use the classifier to classify each feature image 32 according to different levels. For example, when the image feature value is less than the preset standard value, it is detected as normal and no defect, if it exceeds the preset standard value, it is defect A, and if it reaches a higher standard value, it is defect B. For different defects, the operator can rework the panel to be tested according to the process. If it exceeds the inspection standard and cannot be reworked, it may be scrapped.

在整個流程當中,由於已針對整體影像進行自動檢測,能初步篩選異常狀態的影像,避免在進行缺陷分類判別時,對於無效影像進行相關運算程序而浪費運算資源。對於符合標準的影像,則進一步依各個檢測區域來辨識是否具備缺陷特徵,對待測物進行有效率的檢測以排除各種不良品,提高製程生產效率及品質。In the entire process, because the overall image has been automatically detected, images with abnormal states can be initially screened, avoiding the waste of computing resources by performing related computing procedures on invalid images when performing defect classification and judging. For the images that meet the standards, the detection area is further used to identify whether it has defect characteristics, and the object to be tested is efficiently tested to eliminate various defective products and improve the production efficiency and quality of the process.

請參閱第5圖,其為本發明實施例之人工智慧自動光學檢測系統之示意圖。如圖所示,人工智慧自動光學檢測系統1包含光學取像裝置41、儲存裝置42以及處理器43。在本實施例中,光學取像裝置41可為照相機、攝影機,在訓練階段可拍攝面板影像來產生訓練影像,在檢驗階段可拍攝待測面板40來取得待測影像。上述影像資料可透過無線網路傳輸、無線通訊傳輸或一般有線網際網路上傳到儲存裝置42當中的記憶體儲存,記憶體可包含唯讀記憶體、快閃記憶體、磁碟或是雲端資料庫等。Please refer to FIG. 5, which is a schematic diagram of an artificial intelligence automatic optical inspection system according to an embodiment of the present invention. As shown in the figure, the artificial intelligence automatic optical inspection system 1 includes an optical image capturing device 41, a storage device 42 and a processor 43. In this embodiment, the optical image capturing device 41 can be a camera or a video camera. During the training phase, the panel image can be captured to generate training images, and during the inspection phase, the panel to be tested 40 can be captured to obtain the image to be tested. The above-mentioned image data can be uploaded to the memory storage in the storage device 42 through wireless network transmission, wireless communication transmission or general wired Internet. The memory can include read-only memory, flash memory, floppy disk or cloud data Library etc.

接著,人工智慧自動光學檢測系統1的處理器43可連接於儲存裝置42,存取儲存裝置42當中的資料,在本實施例中,處理器43可包含電腦或伺服器當中的中央處理器、圖像處理器、微處理器等,其可包含多核心的處理單元或者是多個處理單元的組合。處理器43執行複數個指令以施行人工智慧自動光學檢測程序44,詳細來說,人工智慧自動光學檢測程序44包含進行訓練影像之自動編碼運算,取得訓練影像之基準面標準影像;進行待測影像進行自動編碼運算,產生待測影像之基準面比對影像;進行判斷程序,比較基準面比對影像與基準面標準影像之差異值,若差異值超過預設標準值,判斷待測影像為異常影像,若差異值未達預設標準值,判斷待測影像為正常影像。上述檢測程序請參閱前述實施例說明,相同技術特徵不再重複描述。Then, the processor 43 of the artificial intelligence automatic optical inspection system 1 can be connected to the storage device 42 to access data in the storage device 42. In this embodiment, the processor 43 can include a central processing unit in a computer or a server, Image processors, microprocessors, etc., which may include multi-core processing units or a combination of multiple processing units. The processor 43 executes a plurality of instructions to execute the artificial intelligence automatic optical inspection program 44. In detail, the artificial intelligence automatic optical inspection program 44 includes automatic coding operation of training images, obtaining the reference plane standard image of the training image; performing the image to be tested Carry out automatic encoding operation to generate the reference plane comparison image of the image to be tested; perform the judgment procedure to compare the difference value between the reference plane comparison image and the reference plane standard image. If the difference value exceeds the preset standard value, the test image is judged to be abnormal For images, if the difference value does not reach the preset standard value, the image to be tested is judged to be a normal image. For the above detection procedure, please refer to the description of the foregoing embodiment, and the same technical features will not be described repeatedly.

在自動編碼運算的程序當中,處理器43可進行複數個卷積網路運算來產生隱藏層影像,再經由複數個反卷積網路運算來取得基準面標準影像。當卷積網路運算的層數與反卷積網路運算的層數相同時,基準面標準影像可為訓練影像的原圖影像,當卷積網路運算的層數大於反卷積網路運算的層數時,基準面標準影像可為特徵層影像。In the process of automatic encoding operation, the processor 43 may perform a plurality of convolutional network operations to generate a hidden layer image, and then obtain a reference plane standard image through a plurality of deconvolutional network operations. When the number of layers of the convolutional network is the same as the number of layers of the deconvolutional network, the base-level standard image can be the original image of the training image. When the number of layers of the convolutional network is greater than that of the deconvolutional network When calculating the number of layers, the base-level standard image can be the feature layer image.

在另一實施例當中,上述的之人工智慧自動光學檢測程序44在判斷待測影像為正常影像或異常影像後,處理器43可進一步將異常影像排除,而將正常影像進行人工智慧自動分類程序45。詳細來說,人工智慧自動分類程序45包含切割程序,將正常影像分割成複數個影像檢測區域,形成複數個檢測影像;對各個檢測影像分別進行影像特徵運算,取得複數個檢測影像之影像特徵值;將各個影像特徵值進行分類,形成影像分類模型。影像分類包含正常表面影像及缺陷表面影像,通過人工智慧自動光學檢測程序44的待測影像,可經由自動分類方式檢驗是否具有缺陷,並藉由不同分類模型判斷缺陷種類。In another embodiment, after the aforementioned artificial intelligence automatic optical detection program 44 determines that the image to be tested is a normal image or an abnormal image, the processor 43 may further exclude the abnormal image, and perform the artificial intelligence automatic classification process on the normal image. 45. In detail, the artificial intelligence automatic classification program 45 includes a cutting process, which divides the normal image into a plurality of image detection areas to form a plurality of detection images; performs image feature calculations on each detection image to obtain the image feature value of the plurality of detection images ; Classify each image feature value to form an image classification model. The image classification includes normal surface images and defective surface images. The images to be tested by the artificial intelligence automatic optical inspection program 44 can be inspected for defects through automatic classification methods, and the types of defects can be determined by different classification models.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above description is only illustrative, and not restrictive. Any equivalent modifications or alterations that do not depart from the spirit and scope of the present invention shall be included in the scope of the appended patent application.

1:人工智慧自動光學檢測系統 20:儲存裝置 21:訓練影像 22:隱藏層影像 23:原圖影像 24:特徵層影像 25:基準面標準影像 25’:基準面比對影像 31:檢測影像 32:特徵影像 40:待測面板 41:光學取像裝置 42:儲存裝置 43:處理器 44:人工智慧自動光學檢測程序 45:人工智慧自動分類程序 A,B:缺陷 G:正常影像 NG:異常影像 S1~S5,S6~S8:步驟 W1~W4:卷積網路運算 WT1~WT4:反卷積網路運算1: Artificial intelligence automatic optical inspection system 20: storage device 21: Training images 22: Hidden layer image 23: Original image 24: Feature layer image 25: Datum standard image 25’: Datum comparison image 31: Detect image 32: Feature image 40: Panel to be tested 41: Optical imaging device 42: storage device 43: processor 44: Artificial intelligence automatic optical inspection program 45: Artificial intelligence automatic classification program A, B: Defects G: Normal image NG: abnormal image S1~S5, S6~S8: steps W1~W4: Convolutional network operation WT1~WT4: Deconvolution network operation

為使本發明之技術特徵、內容與優點及其所能達成之功效更為顯而易見,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下: 第1圖為本發明實施例之人工智慧自動光學檢測方法之流程圖。 第2圖為本發明實施例之自動編碼運算之示意圖。 第3圖為本發明另一實施例之人工智慧自動光學檢測方法之流程圖。 第4圖為本發明實施例之影像分類運算之示意圖。 第5圖為本發明實施例之人工智慧自動光學檢測系統之示意圖。In order to make the technical features, content and advantages of the present invention and the effects that can be achieved more obvious, the present invention is described in detail in the form of embodiments with the accompanying drawings as follows: Figure 1 is a flowchart of an artificial intelligence automatic optical inspection method according to an embodiment of the present invention. Figure 2 is a schematic diagram of an automatic encoding operation according to an embodiment of the present invention. FIG. 3 is a flowchart of an artificial intelligence automatic optical inspection method according to another embodiment of the present invention. Figure 4 is a schematic diagram of an image classification operation according to an embodiment of the present invention. Figure 5 is a schematic diagram of an artificial intelligence automatic optical inspection system according to an embodiment of the present invention.

S1~S5:步驟S1~S5: steps

Claims (10)

一種人工智慧自動光學檢測方法,其包含以下步驟: 通過一光學取像裝置拍攝複數個顯示面板,產生複數個訓練影像,將該複數個訓練影像儲存於一儲存裝置; 藉由一處理器存取該儲存裝置,並進行該複數個訓練影像之一自動編碼運算,取得該複數個訓練影像之一基準面標準影像; 通過該光學取像裝置拍攝一待測面板,產生一待測影像,將該待測影像儲存於該儲存裝置; 藉由該處理器存取該儲存裝置,對該待測影像進行該自動編碼運算,產生該待測影像之一基準面比對影像; 藉由該處理器比較該基準面比對影像與該基準面標準影像之一差異值,若該差異值超過一預設標準值,判斷該待測影像為一異常影像,若該差異值未達該預設標準值,判斷該待測影像為一正常影像。An artificial intelligence automatic optical detection method, which includes the following steps: Take a plurality of display panels through an optical imaging device to generate a plurality of training images, and store the plurality of training images in a storage device; A processor accesses the storage device and performs an automatic encoding operation of the plurality of training images to obtain a reference plane standard image of the plurality of training images; Shooting a panel to be tested by the optical imaging device, generating an image to be tested, and storing the image to be tested in the storage device; Accessing the storage device by the processor, performing the automatic encoding operation on the image to be measured, and generating a reference plane comparison image of the image to be measured; The processor compares a difference value between the reference level comparison image and the reference level standard image. If the difference value exceeds a preset standard value, it is determined that the image to be tested is an abnormal image. If the difference value does not reach The preset standard value determines that the image to be tested is a normal image. 如申請專利範圍第1項所述之人工智慧自動光學檢測方法,其中該自動編碼運算包含將該複數個訓練影像進行複數層卷積網路運算,產生一隱藏層影像,再將該隱藏層影像經由複數層反卷積網路運算,取得該基準面標準影像。According to the artificial intelligence automatic optical inspection method described in item 1 of the scope of patent application, the automatic encoding operation includes performing complex layer convolutional network operations on the plurality of training images to generate a hidden layer image, and then the hidden layer image Obtain the standard image of the reference plane through a complex layer deconvolution network operation. 如申請專利範圍第2項所述之人工智慧自動光學檢測方法,其中該複數層反卷積網路運算之層數小於或等於該複數層卷積網路運算之層數。The artificial intelligence automatic optical inspection method described in item 2 of the scope of patent application, wherein the number of layers of the complex-layer deconvolution network operation is less than or equal to the number of layers of the complex-layer convolution network operation. 如申請專利範圍第1項所述之人工智慧自動光學檢測方法,進一步包含以下步驟: 藉由該處理器將該正常影像分割成複數個影像檢測區域,形成複數個檢測影像; 藉由該處理器將該複數個檢測影像分別進行一影像特徵運算,取得該複數個檢測影像之一影像特徵值; 藉由該處理器將該複數個影像之該影像特徵值進行分類,形成一影像分類模型。The artificial intelligence automatic optical inspection method described in item 1 of the scope of patent application further includes the following steps: Dividing the normal image into a plurality of image detection areas by the processor to form a plurality of detection images; Performing an image feature operation on the plurality of detection images by the processor to obtain an image feature value of the plurality of detection images; The image feature values of the plurality of images are classified by the processor to form an image classification model. 如申請專利範圍第4項所述之人工智慧自動光學檢測方法,其中該影像分類模型包含複數個表面缺陷分類。The artificial intelligence automatic optical inspection method described in item 4 of the scope of patent application, wherein the image classification model includes a plurality of surface defect classifications. 一種人工智慧自動光學檢測系統,其包含: 一光學取像裝置,拍攝複數個顯示面板以產生複數個訓練影像,並拍攝一待測面板以產生一待測影像; 一儲存裝置,連接該光學取像裝置,儲存該複數個訓練影像及該待測影像;以及 一處理器,連接於該儲存裝置,執行複數個指令以施行下列處理程序: 進行該複數個訓練影像之一自動編碼運算,取得該複數個訓練影像之一基準面標準影像; 對該待測影像進行該自動編碼運算,產生該待測影像之一基準面比對影像; 進行一判斷程序,比較該基準面比對影像與該基準面標準影像之一差異值,若該差異值超過一預設標準值,判斷該待測影像為一異常影像,若該差異值未達該預設標準值,判斷該待測影像為一正常影像。An artificial intelligence automatic optical inspection system, which includes: An optical image capturing device that shoots a plurality of display panels to generate a plurality of training images, and shoots a panel to be tested to generate an image to be tested; A storage device connected to the optical image capturing device to store the plurality of training images and the image to be tested; and A processor, connected to the storage device, executes a plurality of instructions to perform the following processing procedures: Performing an automatic encoding operation of one of the plurality of training images to obtain one of the reference plane standard images of the plurality of training images; Performing the automatic encoding operation on the image to be measured to generate a reference plane comparison image of the image to be measured; A judgment process is performed to compare the difference between the reference level comparison image and the reference level standard image. If the difference value exceeds a preset standard value, the image to be tested is judged to be an abnormal image, and if the difference value does not reach The preset standard value determines that the image to be tested is a normal image. 如申請專利範圍第1項所述之人工智慧自動光學檢測系統,其中該自動編碼運算包含將該複數個訓練影像進行複數層卷積網路運算,產生一隱藏層影像,再將該影藏層影像經由複數層反卷積網路運算,取得該基準面標準影像。The artificial intelligence automatic optical inspection system described in item 1 of the scope of patent application, wherein the automatic encoding operation includes performing complex layer convolutional network operations on the plurality of training images to generate a hidden layer image, and then storing the image layer The image is calculated by a multiple-layer deconvolution network to obtain the standard image of the reference plane. 如申請專利範圍第7項所述之人工智慧自動光學檢測系統,其中該複數層反卷積網路運算之層數小於或等於該複數層卷積網路運算之層數。Such as the artificial intelligence automatic optical inspection system described in item 7 of the scope of patent application, wherein the number of layers of the complex-layer deconvolution network operation is less than or equal to the number of layers of the complex-layer convolution network operation. 如申請專利範圍第1項所述之人工智慧自動光學檢測系統,該處理器進一步施行下列處理程序: 進行一切割程序,將該正常影像分割成複數個影像檢測區域,形成複數個檢測影像; 將該複數個檢測影像分別進行一影像特徵運算,取得該複數個檢測影像之一影像特徵值; 將該複數個影像之該影像特徵值進行分類,形成一影像分類模型。Such as the artificial intelligence automatic optical inspection system described in item 1 of the scope of patent application, the processor further implements the following processing procedures: Perform a cutting procedure to divide the normal image into a plurality of image detection areas to form a plurality of detection images; Performing an image feature operation on the plurality of detected images respectively to obtain an image feature value of the plurality of detected images; The image feature values of the plurality of images are classified to form an image classification model. 如申請專利範圍第9項所述之人工智慧自動光學檢測系統,其中該影像分類模型包含複數個表面缺陷分類。For the artificial intelligence automatic optical inspection system described in item 9 of the scope of patent application, the image classification model includes a plurality of surface defect classifications.
TW109114163A 2020-04-28 2020-04-28 Method and system of artificial intelligence automatic optical inspection TWI759733B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109114163A TWI759733B (en) 2020-04-28 2020-04-28 Method and system of artificial intelligence automatic optical inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109114163A TWI759733B (en) 2020-04-28 2020-04-28 Method and system of artificial intelligence automatic optical inspection

Publications (2)

Publication Number Publication Date
TW202141421A true TW202141421A (en) 2021-11-01
TWI759733B TWI759733B (en) 2022-04-01

Family

ID=80783224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114163A TWI759733B (en) 2020-04-28 2020-04-28 Method and system of artificial intelligence automatic optical inspection

Country Status (1)

Country Link
TW (1) TWI759733B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822279B (en) * 2022-08-26 2023-11-11 神鐳光電股份有限公司 Detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9965901B2 (en) * 2015-11-19 2018-05-08 KLA—Tencor Corp. Generating simulated images from design information
CN107977953A (en) * 2016-10-20 2018-05-01 英业达科技有限公司 Workpiece conductive features inspection method and workpiece conductive features check system
TWI653605B (en) * 2017-12-25 2019-03-11 由田新技股份有限公司 Automatic optical detection method, device, computer program, computer readable recording medium and deep learning system using deep learning
TWI669519B (en) * 2018-01-05 2019-08-21 財團法人工業技術研究院 Board defect filtering method and device thereof and computer-readabel recording medium

Also Published As

Publication number Publication date
TWI759733B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US11017259B2 (en) Defect inspection method, defect inspection device and defect inspection system
TWI689875B (en) Defect inspection and classification apparatus and training apparatus using deep learning system
KR102171491B1 (en) Method for sorting products using deep learning
TWI653605B (en) Automatic optical detection method, device, computer program, computer readable recording medium and deep learning system using deep learning
US11132786B2 (en) Board defect filtering method based on defect list and circuit layout image and device thereof and computer-readable recording medium
US11341626B2 (en) Method and apparatus for outputting information
TWI703514B (en) Artificial intelligence recheck system and method thereof
TWI715051B (en) Machine learning method and automatic optical inspection device using the method thereof
TWI833010B (en) Image recognition apparatus, image recognition method, and computer program product thereof
US11423531B2 (en) Image-recognition apparatus, image-recognition method, and non-transitory computer-readable storage medium thereof
TWI759733B (en) Method and system of artificial intelligence automatic optical inspection
CN117372424B (en) Defect detection method, device, equipment and storage medium
CN116559170A (en) Product quality detection method and related system
CN112308816B (en) Image recognition device, image recognition method and storage medium thereof
CN113781419A (en) Defect detection method, visual system, device and medium for flexible PCB
JP7410402B2 (en) Visual inspection system
JP6708695B2 (en) Inspection equipment
TWI802873B (en) Defect detection method and system for transparent substrate film
US20200045862A1 (en) Board inspecting apparatus and method of compensating board distortion using the same
TWI745946B (en) A golf ball computer inspection system and automatic optic inspection apparatus
TWI722861B (en) Classification method and a classification system
TWM606206U (en) Intelligent device for optimizing parameters automatically
WO2023243253A1 (en) Wafer assessing method, assessing program, assessing device, wafer manufacturing method, and wafer
TWI807536B (en) Inspection system and parameter setting method thereof
CN117455865A (en) Material defect review display method, device, equipment and storage medium