TW202138205A - Method and system for measuring a parameter - Google Patents

Method and system for measuring a parameter Download PDF

Info

Publication number
TW202138205A
TW202138205A TW110125362A TW110125362A TW202138205A TW 202138205 A TW202138205 A TW 202138205A TW 110125362 A TW110125362 A TW 110125362A TW 110125362 A TW110125362 A TW 110125362A TW 202138205 A TW202138205 A TW 202138205A
Authority
TW
Taiwan
Prior art keywords
droplet
droplets
nozzle
film
nozzles
Prior art date
Application number
TW110125362A
Other languages
Chinese (zh)
Other versions
TWI775523B (en
Inventor
克里斯多夫 浩夫
伊莉亞 沃斯凱
Original Assignee
美商凱特伊夫公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2015/047687 external-priority patent/WO2016036646A1/en
Priority claimed from US14/840,343 external-priority patent/US9832428B2/en
Application filed by 美商凱特伊夫公司 filed Critical 美商凱特伊夫公司
Publication of TW202138205A publication Critical patent/TW202138205A/en
Application granted granted Critical
Publication of TWI775523B publication Critical patent/TWI775523B/en

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Ink Jet (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A droplet measurement system (DMS) is used in concern with an industrial printer used to fabricate a thin film layer of a flat panel electronic device. A clear tape serves as a printing substrate to receive droplets from hundreds of nozzles simultaneously, while an optics system photographs the deposited droplets through the tape (i.e., through a side opposite the printhead). This permits immediate image analysis of deposited droplets, for parameters such as per-nozzle volume, landing position and other characteristics, without having to substantially reposition the DMS or printhead. The tape can then be advanced and used for a new measurement. By providing such a high degree of concurrency, the described system permits rapid measurement and update of droplet parameters for printers that use hundreds or thousands of nozzles, to provide a real-time understanding of per-nozzle expected droplet parameters, in a manner that can be factored into print planning.

Description

用於測量參數的系統和方法System and method for measuring parameters

本發明關於在工業印刷系統中的液滴參數的快速測量。The invention relates to the rapid measurement of droplet parameters in an industrial printing system.

愈來愈多的工業製程正轉而尋求用以製造產品疊層的印刷系統。此等印刷系統沉積一流體,該流體接著被固化或硬化以形成一特定產品之一永久性疊層。該等製程對於微電子產品或具有準電子結構陣列的產品特別有用。例如,此等印刷流程日益增加地被用來製造應用種類繁多的薄膜電子顯示器以及太陽能面板。除了所使用流體("油墨")的種類之外,前述印刷系統的典型特徵在於一或多個印刷頭上的成千上萬個印刷噴嘴之使用,該等噴嘴被設計成具備佈放接近微米解析度的個別的、大致均勻大小之液滴的能力。此對於沉積液滴體積與位置二者的精確控制有助於促成終端產品的高品質以及高解析度、小尺寸產品和縮減的製造成本。舉例而言,在一應用之中,意即有機發光二極體(organic light emitting diode;OLED)顯示器的製造,精確沉積油墨的能力有助於以較低的成本生產出更小的、更薄的、和解析度更佳的顯示器。注意當"油墨"一詞被用來表示沉積流體之時,該沉積流體基本上是無色的,且被沉積成一種將會"建造"一裝置之一永久性疊層之一厚度的結構,意即,就使用於傳統繪圖印刷應用中的油墨的意義而言,該流體本身的顏色通常並不重要。More and more industrial processes are turning to seeking printing systems for manufacturing product laminates. These printing systems deposit a fluid, which is then cured or hardened to form a permanent laminate of a particular product. These processes are particularly useful for microelectronic products or products with quasi-electronic structure arrays. For example, these printing processes are increasingly being used to manufacture thin-film electronic displays and solar panels with a wide variety of applications. In addition to the type of fluid ("ink") used, the typical feature of the aforementioned printing system is the use of thousands of printing nozzles on one or more print heads, which are designed to have a placement close to micrometer resolution. The capacity of individual droplets of approximately uniform size. This precise control of both the volume and position of the deposited droplets contributes to the high-quality and high-resolution, small-size products and reduced manufacturing costs of the end product. For example, in one application, which means the manufacture of organic light emitting diode (OLED) displays, the ability to accurately deposit ink helps to produce smaller and thinner at a lower cost. , And a better-resolution display. Note that when the term "ink" is used to denote a deposition fluid, the deposition fluid is essentially colorless and is deposited into a structure that will "build" a permanent stack of a device to a thickness, meaning That is, in terms of the meaning of the ink used in traditional graphic printing applications, the color of the fluid itself is usually not important.

不出意外地,在此等應用之中,品質控制乃取決於沉積油墨液滴的均勻度,在尺寸(液滴體積)與精確位置上,或者至少理解到,針對能夠產生始終如一地滿足疊層對齊準確度及/或疊層均質性(homogeneity)上的品質標準的永久性疊層,此等特徵的變異係重要的。請注意在一工業印刷系統之中,任何特定噴嘴的液滴均勻度亦有隨時間變化的潛在性,無論是由於統計變異、噴嘴年齡上的變化、堵塞、油墨黏性或成分變異、溫度、或者其他因素,皆有可能發生。Not surprisingly, in these applications, quality control depends on the uniformity of the deposited ink droplets, in terms of size (droplet volume) and precise position, or at least understood, for the ability to produce consistently satisfactory stacks Variations in these characteristics are important for the permanent stacking of quality standards on layer alignment accuracy and/or stacking homogeneity (homogeneity). Please note that in an industrial printing system, the droplet uniformity of any particular nozzle has the potential to change over time, whether it is due to statistical variation, nozzle age changes, clogging, ink viscosity or composition variation, temperature, Or other factors may happen.

所需要的是一種液滴測量系統,被調構成配合一工業印刷製程使用,理想情況下,現場性地配合一工業產製設備所使用的一個印刷系統之使用。在理想情況下,此一液滴測量系統將提供堪稱快速的一或多個液滴參數測量、容易維護、且提供可用以調整印刷的輸入,從而促成精確的品質控制以使用於工業產品製程之中。本發明解決此等需求並提供其他的相關優點。What is needed is a droplet measurement system that is adjusted to be used with an industrial printing process. Ideally, it can be used on-site with a printing system used by an industrial production equipment. Ideally, this droplet measurement system will provide fast measurement of one or more droplet parameters, easy maintenance, and provide input that can be used to adjust printing, thereby facilitating precise quality control for use in industrial product manufacturing processes. Among. The present invention addresses these needs and provides other related advantages.

根據本發明之一個態樣,揭示一種用於測量關聯由一印刷頭之複數噴嘴所噴出之液滴的參數測量之系統。該系統包含:一薄膜,具有一第一面與一第二面,該第一面將被定位於該印刷頭附近,以提供一基板自該複數噴嘴接收油墨液滴;一影像拍攝子系統,被定位以透過該薄膜之該第二面拍攝一影像,該影像代表接收自位於噴嘴各別位置處之噴嘴的油墨液滴,該影像拍攝子系統用以產生一輸出信號以將該拍攝影像輸送至一影像處理系統;以及一機構,用以推進該薄膜以針對一後續影像拍攝程序定位該薄膜之一全新部分,其中來自該印刷頭之複數噴嘴的液滴被接收於該薄膜的該第一面之上,該薄膜之推進不需要該印刷頭或該影像拍攝子系統的重新定位。According to one aspect of the present invention, a system for measuring parameters related to droplets ejected from a plurality of nozzles of a printing head is disclosed. The system includes: a film with a first surface and a second surface, the first surface will be positioned near the print head to provide a substrate to receive ink droplets from the plurality of nozzles; an image capturing subsystem, Positioned to shoot an image through the second side of the film, the image represents ink droplets received from nozzles located at respective positions of the nozzles, and the image capturing subsystem is used to generate an output signal to deliver the captured image To an image processing system; and a mechanism for advancing the film to position a brand new part of the film for a subsequent image capturing process, wherein the droplets from the plurality of nozzles of the printing head are received in the first part of the film Above the surface, the advancement of the film does not require repositioning of the print head or the imaging subsystem.

根據本發明之一個態樣,一種液滴參數測量方法係測量一參數,該參數關聯由一印刷頭之複數噴嘴所噴出之液滴。該方法包含:提供具有一第一面與一第二面之一薄膜,並將該第一面定位於該印刷頭附近,以提供一基板自該複數噴嘴接收油墨液滴;使用一影像拍攝裝置透過該薄膜之該第二面拍攝一影像,該影像代表接收自位於噴嘴各別位置處之噴嘴的油墨液滴,並相應地產生一輸出信號以將該拍攝影像輸送至一影像處理系統;以及推進該薄膜以針對一後續影像拍攝程序定位該薄膜之一全新部分,其中來自該印刷頭之複數噴嘴的液滴被接收於該薄膜的該第一面之上,以一種不需要該印刷頭或該影像拍攝裝置重新定位的方式進行。According to one aspect of the present invention, a method for measuring droplet parameters is to measure a parameter related to droplets ejected from a plurality of nozzles of a printing head. The method includes: providing a film having a first surface and a second surface, and positioning the first surface near the printing head to provide a substrate to receive ink droplets from the plurality of nozzles; using an image capturing device Shooting an image through the second side of the film, the image representing ink droplets received from nozzles located at respective positions of the nozzles, and correspondingly generating an output signal to send the shooting image to an image processing system; and The film is advanced to position a brand new part of the film for a subsequent image capturing process, in which droplets from a plurality of nozzles of the print head are received on the first side of the film, in a way that does not require the print head or The image capturing device is repositioned.

根據本發明之一個態樣,一種設備係包含:一印刷機,用以接收一第一基板,該印刷機具有一印刷頭,該印刷頭內含複數噴嘴,該複數噴嘴用以噴出一油墨於該第一基板之上,該油墨包含一液體,該液體將被硬化於該第一基板之上以在其上形成一電子裝置之一永久性疊層,該電子裝置之該永久性疊層具有一厚度;以及一系統,使用於測量一參數,該參數關聯由該印刷頭之該複數噴嘴所噴出之液滴。該系統包含:一薄膜,具有一第一面與一第二面,該第一面將被定位於該印刷頭附近,以提供一第二基板自該複數噴嘴接收油墨液滴;一影像拍攝子系統,被定位以透過該薄膜之該第二面拍攝一影像,該影像代表接收自位於噴嘴各別位置處之噴嘴的油墨液滴,該影像拍攝子系統用以產生一輸出信號以將該拍攝影像輸送至一影像處理系統;以及一機構,用以推進該薄膜以針對一後續影像拍攝程序定位該薄膜之一全新部分,其中來自該印刷頭之複數噴嘴的液滴被接收於該薄膜的該第一面之上,該薄膜之推進不需要該印刷頭或該影像拍攝子系統的重新定位。According to one aspect of the present invention, an apparatus includes: a printer for receiving a first substrate, the printer having a print head, the print head contains a plurality of nozzles, the plurality of nozzles are used to eject an ink on On the first substrate, the ink contains a liquid that will be hardened on the first substrate to form a permanent laminate of an electronic device thereon, the permanent laminate of the electronic device having A thickness; and a system for measuring a parameter related to the droplets ejected by the plurality of nozzles of the print head. The system includes: a film having a first surface and a second surface, the first surface will be positioned near the print head to provide a second substrate to receive ink droplets from the plurality of nozzles; an image capturing sub The system is positioned to shoot an image through the second surface of the film. The image represents ink droplets received from nozzles located at respective positions of the nozzles. The image capturing subsystem is used to generate an output signal to capture the image. The image is sent to an image processing system; and a mechanism for advancing the film to position a brand new part of the film for a subsequent image capturing process, wherein the droplets from the plurality of nozzles of the print head are received in the film Above the first surface, the advancement of the film does not require the repositioning of the print head or the imaging subsystem.

在一實施例之中,一液滴測量系統從一或多個印刷頭的各種噴嘴接收油墨液滴,而後使用光學分析以測量關聯各種液滴及/或產生該等液滴的各種印刷頭噴嘴之一參數之一數值。更具體言之,如同將於下文說明者,一些實施例使用位於印刷機檢修托架之中的沉積膜帶(deposition tape),以供同時來自各種噴嘴的油墨進行測試印刷。此帶在有利的實施方式之中可以是能夠接收油墨液滴的任何介質,而在說明於下文的值得注意的實施例之中,其包含一經過特殊處理以固定潮濕油墨液滴之透明薄膜,很像感光相紙。並且,在一實施例之中,此系統被套用於一工業製造設備之中,其中待沉積的液滴本身係透明或半透明(例如,代表一種材料,其將被沉積並固化以形成一面板裝置(諸如一顯示器或太陽能面板)之一囊封層,或者此一裝置之發光元件)。此透明性使其能夠針對一組多個噴嘴進行一或多個液滴的分群的影像拍攝;在選擇性實施例之中,液滴沉積可以與薄膜及成像噴嘴位置(位於薄膜後方)二者彼此區隔以提供關聯液滴沉積的液滴位置偏移(相對於理想的液滴位置)及/或體積及/或時序誤差的極快速量測。In one embodiment, a droplet measurement system receives ink droplets from various nozzles of one or more print heads, and then uses optical analysis to measure the various droplets associated with and/or the various printhead nozzles that produced the droplets A value of one of the parameters. More specifically, as will be described below, some embodiments use a deposition tape in the service tray of the printer for test printing with inks from various nozzles at the same time. In an advantageous embodiment, this belt can be any medium that can receive ink droplets, and in the noteworthy embodiments described below, it includes a transparent film that has been specially treated to hold wet ink droplets. Much like photographic paper. And, in one embodiment, the system is applied to an industrial manufacturing facility, where the droplets to be deposited are transparent or translucent (for example, representing a material that will be deposited and cured to form a panel An encapsulation layer of a device (such as a display or solar panel, or the light-emitting element of this device). This transparency makes it possible to perform grouped image capture of one or more droplets for a group of multiple nozzles; in an alternative embodiment, droplet deposition can be combined with the film and the imaging nozzle position (located behind the film) The separation from each other provides an extremely fast measurement of droplet position offset (relative to the ideal droplet position) and/or volume and/or timing error associated with droplet deposition.

在一實施例之中,為了進行測量,一或多個印刷頭被停駐於一檢修站,舉例而言,當一基板被載入或卸入印刷機之時(故而是在印刷機/製造設備另作他用之時)。當印刷頭被停駐,其以一種相對於一或多個印刷頭對齊於一特定位置處之方式納入液滴測量系統,以將沉積介質(例如,上述的透明薄膜)帶入該一或多個印刷頭的鄰近處。接著其致使來自一或多個印刷頭的噴嘴(例如,包含所有噴嘴之一子集的一個窗口或子陣列)噴發一液滴或一連串液滴(例如,2、5、10,等等),使得該等液滴降落於介質之上靠近特定噴嘴之一預期位置。在此期間,或者此期間之後,薄膜被從該薄膜與印刷頭相反的一面成像,有效地通過該透明薄膜;換言之,該薄膜被精確地定位於相對於被量測的噴嘴一正常沉積距離處(例如,< 1.0毫米),且藉由同時擊發多個噴嘴而同時(或者稍後不久)對該等噴嘴進行量測,接著藉由透過薄膜另一面拍攝一影像,使產生的拍攝影像接著進行影像處理而得到液滴參數值。In one embodiment, for measurement, one or more print heads are parked in an inspection station, for example, when a substrate is loaded or unloaded into the printer (so it is in the printer/manufacturing When the equipment is used for other purposes). When the print head is parked, it is incorporated into the droplet measurement system in a manner that is aligned at a specific position with respect to one or more print heads to bring the deposition medium (for example, the above-mentioned transparent film) into the one or more print heads. Near the print head. It then causes nozzles from one or more print heads (e.g., a window or sub-array containing a subset of all nozzles) to eject a drop or a series of droplets (e.g., 2, 5, 10, etc.), Make the droplets fall on the medium close to a desired position of the specific nozzle. During or after this period, the film is imaged from the side of the film opposite to the print head, effectively passing through the transparent film; in other words, the film is accurately positioned at a normal deposition distance relative to the nozzle being measured (For example, <1.0 mm), and by firing multiple nozzles at the same time (or shortly thereafter) to measure the nozzles, and then by shooting an image through the other side of the film, the resulting shooting image is then performed Image processing to obtain droplet parameter values.

以下針對到目前為止所述各種實施例之特徵的一些優點加以註釋。第一,所述的透過透明薄膜的沉積液滴之光學處理特別適用於具有數百到成千上萬個噴嘴的極大型印刷頭,意即,光學處理可以立即進行,無須額外性地移動印刷頭、液滴測量系統或者其他構件。第二,液滴測量系統可以被組構成同時量測來自多個噴嘴的液滴;舉例而言,其有可能從數百個噴嘴噴射液滴,並同時進行量測。當相較於對飛行中的個別液滴進行光學成像(例如,一次一滴)的系統之時,此類同時性可以大幅地促進成千上萬個印刷頭噴嘴(例如,如同使用於一些工業製造應用之中者)間的液滴量測。對於依賴液滴參數動態更新測量的系統而言,為了以減輕變異或者彌補產生精確目標體積的變異的方式結合液滴,此種同時性可能有其重要性,因為其不需要對印刷時間或製造產出量上有顯著的中斷。對於一個連結位於一維修站中的一或多個停駐印刷頭的液滴測量系統而言,此提供對於能夠使用於一些工業製程中的成千上萬個印刷噴嘴中的任一者之容易且精確的取用。並且,沉積膜帶或其處理可被特別調構以配合一特定待測油墨之化學性質(意即,使其性質能夠藉由光學機制被更方便且更精確地確定)。其應顯然可見,所述技術對於產品的製造提供增強之準確度及較低之成本,例如,特別是對於諸如平板高畫質電視("HDTV")的價格敏感消費性產品而言。The following is an annotation of some of the advantages of the features of the various embodiments described so far. First, the optical processing of the deposited droplets penetrating the transparent film is particularly suitable for extremely large print heads with hundreds to thousands of nozzles, which means that the optical processing can be performed immediately without additional mobile printing. Head, droplet measurement system, or other components. Second, the droplet measurement system can be configured to measure droplets from multiple nozzles at the same time; for example, it is possible to eject droplets from hundreds of nozzles and measure them at the same time. When compared to systems that optically image individual droplets in flight (e.g., one drop at a time), such simultaneity can greatly facilitate thousands of print head nozzles (e.g., as used in some industrial manufacturing (Applicable) droplet measurement between. For systems that rely on droplet parameters to dynamically update measurements, in order to combine droplets in a way that reduces variation or compensates for variations that produce accurate target volumes, this simultaneity may be important because it does not require any impact on printing time or manufacturing. There is a significant interruption in output. For a droplet measurement system that connects one or more parked print heads in a repair station, this provides easy access to any of the thousands of print nozzles that can be used in some industrial processes And accurate access. Moreover, the deposited film strip or its treatment can be specially adjusted to match the chemical properties of a specific ink to be tested (that is, its properties can be more conveniently and accurately determined by optical mechanisms). It should be obvious that the technology provides enhanced accuracy and lower cost for the manufacture of products, for example, especially for price-sensitive consumer products such as flat-panel high-definition televisions ("HDTV").

在說明於下文的至少一項設計之中,上述之液滴測量系統利用一捲對捲機構裝載一透明薄膜,其容許該薄膜如同一捲膜帶般地在一成像區域上推進,容許用於量測的膜帶捲的間歇性更換。此外,該液滴測量系統亦可以有利地使用一真空系統,該真空系統緊密地黏附該膜帶正被沉積的部分,彼此形成一平整而精確的位置關係,模擬一個在線使用的沉積表面。該液滴測量系統亦可以選擇性地包含一固化站以固化/風乾油墨,使得在量測之後,額外的油墨被禁止擴散到系統的任何其他部分;請注意,這在一些實施例之中是非必要的,例如,薄膜亦可以被選擇成或者被處理成擁有使得油墨液滴一旦沉積之後即立刻固定之性質。此外,如前所述,該液滴測量系統可以選擇性地被裝載於一三維可移動承載架之上,換言之,以沿著一垂直(V)軸從下方接合一停駐之印刷頭,並且依需要沿著x(以及選擇性地y)軸移動,以抵達不同的噴嘴和不同的印刷頭。此讓一"大型"印刷頭組件(例如,具有成千上萬個噴嘴者)能夠在前述的液滴測量系統連結於一印刷平面(例如,在一檢修托架之中)的下方並被用以測量不同群組之噴嘴的參數時維持固定。一設想之沉積流程推進一捲膜帶,使得一未使用膜帶之窗口毗鄰選定之印刷頭,此等印刷頭接著被控制以使其所有噴嘴噴出一特定量的油墨,其接著被固定於該膜帶之上;同時,一來自下方(例如,位於液滴測量系統的一外殼或機箱之內)的同軸攝像機與影像感測器並行地成像所有沉積的液滴(同樣地,藉由透過該膜帶一相反側之影像拍攝,使得薄膜及液滴測量系統基本上均不必為了分析而被移動或重新定位)。若有需要,該攝像機(或影像拍攝光學器件)可以被設置成能夠相對於該液滴測量系統移動,例如,提供在一定範圍的噴嘴之間的掃描活動、聚焦調整、或者其他需要之助益。In at least one of the designs described below, the above-mentioned droplet measurement system utilizes a roll-to-roll mechanism to load a transparent film, which allows the film to advance on an imaging area like a roll of film, allowing it to be used Intermittent replacement of the measured film roll. In addition, the droplet measurement system can also advantageously use a vacuum system that tightly adheres to the portion of the film tape being deposited to form a flat and precise positional relationship with each other, simulating an online deposition surface. The droplet measurement system can also optionally include a curing station to cure/air-dry the ink, so that after the measurement, additional ink is prohibited from spreading to any other part of the system; please note that this is wrong in some embodiments It is necessary, for example, that the thin film can also be selected or processed to have properties such that the ink droplets are immediately fixed once they are deposited. In addition, as mentioned above, the droplet measurement system can be selectively loaded on a three-dimensional movable carrier, in other words, to engage a parked print head from below along a vertical (V) axis, and Move along the x (and optionally y) axis as needed to reach different nozzles and different print heads. This allows a "large" print head assembly (for example, one with thousands of nozzles) to be connected to a printing plane (for example, in an overhaul carriage) under the aforementioned droplet measurement system and used When measuring the parameters of the nozzles of different groups, the parameters remain fixed. A hypothetical deposition process advances a roll of film tape so that a window of unused film tape is adjacent to the selected print head. These print heads are then controlled so that all nozzles eject a specific amount of ink, which are then fixed to the Above the film tape; at the same time, a coaxial camera from below (for example, located in a housing or cabinet of the droplet measurement system) and the image sensor parallel to image all deposited droplets (similarly, by passing through the The image shooting of the opposite side of the film strip makes the film and the droplet measurement system basically do not need to be moved or repositioned for analysis). If necessary, the camera (or image capturing optics) can be set to be able to move relative to the droplet measurement system, for example, to provide scanning activities between nozzles in a certain range, focus adjustment, or other assistance as needed .

一影像處理系統之輸出接著提供適用於驗證噴嘴或以其他方式規畫印刷的液滴參數資料。緊接任何特定的量測迭代步驟之後,膜帶及液滴測量系統各自被推進到位,使用之膜帶被固化及/或捲起,接著流程依據需要被立即重複,或者在一稍後的時間點重複。在膜帶一旦被印刷之後即無法重複使用的設計之中,一個用過的膜帶捲(或者一膜帶卡匣,具有供新的和用過的膜帶所用的捲軸以及絞盤)可以以模組為基礎被週期性地回收或更換。注意在一設想的應用之中,其中一製造機構被連續地使用(例如,用以印刷OLED電視螢幕之疊層,或者以其他方式製造一或多個平板裝置之一疊層),當一先前基板被卸下,印刷頭被停駐而接受前述之液滴測量,且只要一新的後續基板就緒,則測量進度被儲存,印刷頭返回作用中的印刷作業、等等;當此後續基板完成,則印刷頭同樣地再次返回檢修站(當一新基板被載入時)以在系統先前停止處開始測量。以此方式,可以針對噴嘴收集重複的量測且以一捲動的基礎使用,以透過許多測量對每一印刷噴嘴或噴嘴波形組合建立一統計分佈(例如,如同優先權聲明中的專利申請案所述,該等專利申請案透過引用納入本文),使用一移動測量窗口,其循環式地前進,通過所有的印刷噴嘴套組,以持續地更新量測數據。The output of an image processing system then provides droplet parameter data suitable for verifying nozzles or otherwise planning printing. Immediately after any specific measurement iteration step, the film tape and the droplet measurement system are each pushed into place, the used film tape is cured and/or rolled up, and then the process is repeated immediately or at a later time as needed Click repeat. In a design where the film tape cannot be reused once it is printed, a used film tape roll (or a film tape cassette with a reel and a capstan for new and used film tape) can be molded The group is periodically recycled or replaced on a group basis. Note that in an envisaged application, one of the manufacturing mechanisms is used continuously (for example, to print a stack of OLED TV screens, or to manufacture one of one or more flat-panel devices in other ways), when a previous The substrate is unloaded, the print head is parked to accept the aforementioned droplet measurement, and as long as a new subsequent substrate is ready, the measurement progress is stored, the print head returns to the active printing job, etc.; when the subsequent substrate is completed , The print head returns to the inspection station again (when a new substrate is loaded) to start the measurement where the system previously stopped. In this way, repeated measurements can be collected for nozzles and used on a scrolling basis to establish a statistical distribution for each printing nozzle or nozzle waveform combination through many measurements (e.g., as in the patent application in the priority statement). As mentioned, these patent applications are incorporated herein by reference), using a moving measurement window, which advances cyclically through all the printing nozzle sets to continuously update the measurement data.

注意列舉於上文(以及下文)的所有流程步驟均可以以多種方式實施。例如,在一實施例之中,藉由特殊用途硬體或者藉由被組構以運作為一特殊用途機器的一般用途硬體,此等步驟由一或多台電腦或其他類型之機器(諸如一印刷機或者一或多具製造裝置)執行。舉例而言,在一設想的設計之中,一或多個作業可以由一或多台此等機器加以執行,該等機器在儲存於非暫態性機器可讀取媒體上的例如韌體或軟體的指令控制下動作。編寫或設計此等指令的方式使其具有特定結構(構造上的特徵),使得當該等指令最終被執行時,導致一或多個一般用途機器(例如,處理器、電腦或其他機器)表現得如同一特殊用途機器,具有執行位於輸入運算元上之描述任務所必需的結構,以採取動作或以其他方式產生輸出。"非暫態性機器可讀取媒體"表示任何有形的(意即,實體的)儲存媒體,無論資料如何儲存於其上,包含但不限於,隨機存取記憶體、硬碟記憶體、光學記憶體、軟碟或CD、伺服器儲存裝置、揮發性記憶體以及其他有形的機制,其中指令可以在之後由一機器擷取。該機器可讀取媒體可以是呈獨立形式(例如,一程式碟片)或者被實施成一較大機制的一部分,例如,膝上型電腦、可攜式裝置、伺服器、網路、印刷機、或者由一或多個裝置構成的其他裝置套組。該等指令可以被實施成不同格式,例如,實施成當被呼叫時有效召用一特定動作的元資料(metadata)、實施成Java程式碼或腳本、實施成以一特定程式語言寫成的程式碼(例如,實施成C++程式碼)、實施成一特定處理器指令集、或者實施成一些其他形式;該等指令亦可以由相同處理器或不同處理器執行,取決於實施例。在本揭示的整個內容中,將描述各種流程,其中的任一種基本上均可以被實施成儲存於非暫態性機器可讀取媒體上的指令,且其中的任一種均可以使用一"3D列印"或其他印刷程序製造產品。取決於產品設計,此等產品可以被製造成可販售的形式,或者做為其他印刷、固化、製造或其他處理步驟的一個預備步驟,其最終將產出成品以供販售、分銷、出口或進口。取決於實施方式,位於非暫態性機器可讀取媒體上的指令可以由單一電腦執行,而在其他情況之中,可以基於一分散式的基礎加以儲存及/或執行,例如,使用一或多個伺服器、網路用戶端裝置、或者特定應用裝置。所述的每一功能均可以被實施成一合併程式的一部分或者實施成一獨立模組,一起儲存於單一媒體形式(例如,單一軟碟)之上,或者儲存於多個彼此分離的儲存裝置之上。Note that all the process steps listed above (and below) can be implemented in a variety of ways. For example, in one embodiment, with special-purpose hardware or general-purpose hardware configured to operate as a special-purpose machine, these steps are performed by one or more computers or other types of machines (such as A printer or one or more manufacturing devices) execute. For example, in a contemplated design, one or more operations can be performed by one or more of these machines, which are stored on non-transitory machine-readable media such as firmware or Actions under software command control. The way these instructions are written or designed to have a specific structure (structural characteristics), so that when the instructions are finally executed, they will cause one or more general-purpose machines (for example, processors, computers, or other machines) to behave It can be like a special-purpose machine with the necessary structure to perform the descriptive tasks on the input operands to take actions or produce output in other ways. "Non-transitory machine-readable medium" means any tangible (meaning physical) storage medium, no matter how data is stored on it, including but not limited to random access memory, hard disk memory, optical Memory, floppy disks or CDs, server storage devices, volatile memory, and other tangible mechanisms in which commands can be later retrieved by a machine. The machine-readable medium can be in stand-alone form (e.g., a program disc) or implemented as part of a larger mechanism, e.g., laptop, portable device, server, network, printer, Or other device sets consisting of one or more devices. These instructions can be implemented in different formats, for example, implemented as metadata that effectively invokes a specific action when called, implemented as Java code or script, implemented as a code written in a specific programming language (For example, implemented as C++ program code), implemented as a specific processor instruction set, or implemented in some other form; these instructions can also be executed by the same processor or different processors, depending on the embodiment. In the entire content of this disclosure, various processes will be described, any of which can basically be implemented as instructions stored on a non-transitory machine-readable medium, and any of them can use a "3D" "Print" or other printing procedures to manufacture products. Depending on the product design, these products can be manufactured in a form that can be sold, or as a preliminary step for other printing, curing, manufacturing or other processing steps, which will eventually produce finished products for sale, distribution, and export Or import. Depending on the implementation, the instructions on the non-transitory machine-readable medium can be executed by a single computer, while in other cases, they can be stored and/or executed on a distributed basis, for example, using one or Multiple servers, network client devices, or specific application devices. Each function described can be implemented as part of a combined program or implemented as an independent module, stored together on a single media (for example, a single floppy disk), or stored on multiple separate storage devices .

此外其應注意,"透明"一詞,當配合薄膜或膜帶使用之時係一相對性用語,意即,其表示透過膜帶之一第二面拍攝沉積於該膜帶之一第一面之上的液滴之影像。嚴格說來,此並非表示該膜帶必須是無色的,或者就這個問題而言,能讓可見光穿透。在一實施例之中,該膜帶係無色的且可見光穿透率極高,並且可見光被用以拍攝來自各別噴嘴的液滴之影像,其中該等液滴沉積的方式使得各別噴嘴的液滴陣列式地排列於膜帶的第一面之上(意即,位於與各別噴嘴相關的各別位置處)。在另一實施例之中,該膜帶具有某種程度的顏色,舉例而言,被優化成一特定油墨,以增強該油墨之影像拍攝性質。在又另一實施例中,其使用輻射而非可見光,以拍攝液滴性質。In addition, it should be noted that the term "transparent" is a relative term when used in conjunction with a film or film tape, meaning that it means that it is photographed through a second side of the film tape and deposited on one of the first side of the film tape. The image of the droplet above. Strictly speaking, this does not mean that the film tape must be colorless, or that, for this issue, it can be transparent to visible light. In one embodiment, the film strip is colorless and has a high visible light transmittance, and the visible light is used to capture the image of the droplets from the respective nozzles, wherein the droplets are deposited in such a way that the respective nozzles The droplets are arranged in an array on the first side of the film strip (that is, located at respective positions related to respective nozzles). In another embodiment, the film strip has a certain degree of color, for example, it is optimized to a specific ink to enhance the image capturing properties of the ink. In yet another embodiment, it uses radiation instead of visible light to capture the droplet properties.

從本文的說明,各種其他特徵對於熟習相關技術者而言將是顯而易見的。已然簡介了一些實施例的特徵之後,以下本揭示將轉而提供關於所選實施例的進一步細節。From the description of this article, various other features will be obvious to those familiar with the relevant technology. Having introduced the features of some embodiments, the following disclosure will turn to provide further details on selected embodiments.

圖1顯示一流程圖101,其例示一些本文所述之技術。如前所示,其須要同時測量眾多噴嘴所產生的液滴的液滴參數之數值。為了盡可能迅速地執行此動作,本文揭示的實施例依賴於接收此等液滴之一沉積表面之影像拍攝(意即,共同代表該眾多噴嘴之液滴的快速拍攝),以及從這個影像拍攝計算分別相對於該眾多噴嘴的一或多個所需參數之影像處理。如參考編號103所標示,接受分析的一或多個印刷頭致使一定範圍的噴嘴或一噴嘴陣列噴發,從而各自沉積一或多個液滴。舉例而言,情況可能是一假想印刷頭具有兩千個噴嘴,且此等噴嘴預定以一百個噴嘴之分群同時被量測。對於每一次的測量迭代步驟而言,印刷頭及/或液滴測量系統被對準,而待測量的一百個噴嘴之窗口或分群被識別並導致其大致同時地噴發一受控的油墨量;在一實施例之中,上述的沉積可以是每噴嘴單一液滴,而在其他的實施例之中,每一噴嘴能夠被控制以噴射出較大數目的液滴,例如,2、5、10、12、20或者其他數目的液滴。注意在一些設想的設計(例如,OLED應用)之中,液滴尺寸通常相當微小,包含皮升(picoliter;pL)尺寸液滴,其直徑係數十微米或更小,以接近微米的精密度沉積。Figure 1 shows a flowchart 101 that illustrates some of the techniques described herein. As shown above, it is necessary to measure the values of the droplet parameters of the droplets produced by many nozzles at the same time. In order to perform this action as quickly as possible, the embodiments disclosed herein rely on receiving an image capture of the deposition surface of one of these droplets (that is, a rapid capture of the droplets that collectively represent the many nozzles), and capture from this image Image processing for calculating one or more required parameters relative to the plurality of nozzles. As indicated by reference number 103, one or more print heads under analysis cause a range of nozzles or an array of nozzles to eject, thereby depositing one or more droplets each. For example, it may be that a hypothetical print head has two thousand nozzles, and these nozzles are scheduled to be measured in groups of one hundred nozzles at the same time. For each measurement iteration step, the print head and/or the droplet measurement system are aligned, and the window or group of one hundred nozzles to be measured is identified and causes them to eject a controlled amount of ink approximately simultaneously In one embodiment, the above-mentioned deposition may be a single droplet per nozzle, while in other embodiments, each nozzle can be controlled to eject a larger number of droplets, for example, 2, 5, 10, 12, 20, or other number of droplets. Note that in some conceived designs (for example, OLED applications), the droplet size is usually quite small, including picoliter (pL) size droplets with a diameter coefficient of ten microns or less, which is close to micron precision. Deposition.

如同優先權聲明中透過引用納入本文的專利申請案之中所述,取決於應用,其可能需要測量沉積液滴的位置、液滴速度、液滴體積、噴嘴翹曲、或者每一噴嘴的一或多個其他參數。簡而言之,在一實施例之中,對於每一沉積液滴而言,能夠預期每一噴嘴的液滴品質是有其重要性的;也就是說,若一噴嘴相對於其他者而言是處於停止位置(噴嘴翹曲)或者產生偏離常軌的液滴軌跡或者一不準確的液滴體積,則此可能在一沉積薄膜上產生不均勻。此不均勻可能導致例如顯示裝置等的精密產品上的品質瑕疵。對於噴嘴逐一了解此種缺陷使得其能夠達成:As described in the patent application incorporated herein by reference in the priority statement, depending on the application, it may be necessary to measure the position of the deposited droplet, the droplet velocity, the droplet volume, the nozzle warpage, or the amount of each nozzle. Or multiple other parameters. In short, in one embodiment, for each deposited droplet, the droplet quality of each nozzle can be expected to be of importance; that is, if one nozzle is relative to the others If it is at a stop position (nozzle warpage) or a droplet trajectory that deviates from the normal track or an inaccurate droplet volume, this may cause unevenness on a deposited film. This unevenness may cause quality defects on precision products such as display devices. Understanding such defects one by one for nozzles makes it possible to achieve:

噴嘴合格/不合格:其可以辨識出無法工作或者具有其他不良特性的噴嘴並將其屏除於印刷作業之外,其中軟體規畫的印刷方式可以使用一不同噴嘴沉積一液滴於預定區域;Nozzle qualified/failed: It can identify nozzles that are not working or have other bad characteristics and exclude their screens from the printing operation. The printing method of software planning can use a different nozzle to deposit a drop on a predetermined area;

噴發時間緩解:掃描方向上的位置瑕疵可以藉由改變有關時序或電壓的噴嘴驅動脈衝而可能加以修正,舉例而言,使得噴嘴早一點或晚一點噴發,或者以一個較大或較小的速度噴射;此外,其亦可能使用交替式的驅動脈衝形狀,如同優先權聲明中透過引用納入本文的專利申請案之中所揭示。Eruption time mitigation: Positional defects in the scanning direction can be corrected by changing the nozzle drive pulses related to timing or voltage, for example, to make the nozzles erupt earlier or later, or at a larger or smaller speed In addition, it is also possible to use alternating drive pulse shapes, as disclosed in the patent application incorporated herein by reference in the priority statement.

規畫式的液滴組合:偵測到的噴嘴間之差異可以被接受並根據各別期望數值刻意地使用於計算液滴組合以達成一精確的結果,例如,落入一特定公差之內;舉例而言,若一噴嘴被量測且被判定產生預期的9.89皮升(pL)之液滴,一第二噴嘴被量測且被判定產生預期的10.11 pL之液滴,且其希望產生總體積20.00 pL之油墨於一特定目標位置,則該二噴嘴可以被特別指定並且被規劃列印以沉積此特別的液滴組合;請注意,能夠獲得的結果不同於一個單純將差異平均而不考慮特定填充量或填充公差(例如,目標體積±0.50%)的系統;以及Planar droplet combination: The difference between the detected nozzles can be accepted and deliberately used to calculate the droplet combination according to the respective expected values to achieve an accurate result, for example, within a specific tolerance; For example, if a nozzle is measured and judged to produce the expected 9.89 picoliters (pL) droplets, a second nozzle is measured and judged to produce the expected 10.11 pL droplets, and it is expected to produce the total When the ink volume of 20.00 pL is at a specific target position, the two nozzles can be specially designated and planned to print to deposit this special droplet combination; please note that the result obtained is different from a simple averaging of the difference without considering Systems with specific filling levels or filling tolerances (for example, target volume ±0.50%); and

驅動波形的預先篩選:如同優先權聲明中透過引用納入本文的專利申請案所示,其有可能預先篩選每一噴嘴的可編程驅動波形(例如,從十六個預先選定之驅動波形中之選擇)以供印刷期間的庫存使用,其選擇每一波形以達成一特定的沉積特性、精確度、和預期結果。Pre-screening of drive waveforms: As shown in the patent application incorporated by reference in the priority statement, it is possible to pre-screen the programmable drive waveforms of each nozzle (for example, select from sixteen pre-selected drive waveforms) ) For inventory use during printing, which selects each waveform to achieve a specific deposition characteristic, accuracy, and expected result.

請注意液滴參數也許會逐日變動,甚至每一次沉積均不同,例如,取決於油墨品質、溫度、噴嘴年齡(例如,堵塞)、及其他因素。為了確保印刷精確度,因此,在一些實施方式之中,其可能需要不定期地重新測量此等數值。其亦應注意,每一沉積液滴均可能略微不同,即使來自單一噴嘴亦然;因此,在一實施例之中,每一噴嘴(或者噴嘴波形組合或配對)均被測量不止一次,而是多次,以累積量測的總數,且可以自其計算一平均值或其他統計參數(例如,一離度量值(spread measure))以針對液滴參數的相關期望數值提供一高可信度。例如,其可以量測來自每一噴嘴-波形配對的"24"個液滴以求取體積、速度、翹曲(與掃描方向正交的位置)等等之平均值(以及因此取得該等項目之一期望數值),其中量測的數目n (n=24)有助於降低源於量測誤差或統計變異的不確定性。其可以基於一捲動的基礎(例如,所有量測儲存,而每兩小時每一噴嘴的6個最新量測取代6個最舊的量測)或者基於一個一次性的基礎(例如,開機期間一次重新量測所有噴嘴)更新特定的量測總數。熟習相關技術者會設想到許多變異,例如,一噴嘴可以被量測以決定一期望數值,而若此量測(期望)數值位於一理想數值的±5%區帶之外,則該噴嘴喪失使用的資格;許多排列及變異顯然可能存在。Please note that the droplet parameters may vary from day to day, or even different for each deposition, for example, depending on ink quality, temperature, nozzle age (for example, clogging), and other factors. In order to ensure printing accuracy, therefore, in some embodiments, it may be necessary to re-measure these values from time to time. It should also be noted that each deposited droplet may be slightly different, even from a single nozzle; therefore, in one embodiment, each nozzle (or nozzle waveform combination or pairing) is measured more than once, but Multiple times, the total number of measurements is accumulated, and an average value or other statistical parameter (for example, a spread measure) can be calculated from it to provide a high degree of confidence in relation to the expected value of the droplet parameter. For example, it can measure "24" droplets from each nozzle-waveform pair to obtain the average value of volume, velocity, warpage (position orthogonal to the scanning direction), etc. (and thus obtain these items An expected value), in which the number of measurements n (n=24) helps to reduce the uncertainty due to measurement errors or statistical variations. It can be based on a scrolling basis (for example, all measurements are stored, and the 6 latest measurements for each nozzle every two hours replace the 6 oldest measurements) or on a one-time basis (for example, during startup Re-measure all nozzles at once) update the total number of specific measurements. Those familiar with the relevant technology will envision many variations. For example, a nozzle can be measured to determine a desired value, and if the measured (expected) value lies outside the ±5% zone of an ideal value, the nozzle will be lost Qualifications for use; many permutations and variations are clearly possible.

然而,其應顯然可見,在使用成千上萬個噴嘴(例如,數萬個或更多噴嘴,也許各自均具有多個可用之"預先篩選的"驅動波形)的一個印刷系統之中,每一噴嘴的預期液滴參數之量測可能耗費大量時間;在一工業製造環境之中,此通常無法接受,換言之,若想要在商業上可行,則產品生產所需要的製造產出量和成本必須位於一可接受的消費者價格點上,而此通常意味印刷程序盡可能地產生更多產品,盡可能具有較高的準確度(以及較少的產品浪費),以及盡可能具有較小的停工時間。本文揭示之技術讓遠為迅速的量測,從而讓更可行的量測,成為可能。However, it should be clearly visible that in a printing system that uses thousands of nozzles (for example, tens of thousands or more nozzles, each with multiple available "pre-screened" drive waveforms), each The measurement of the expected droplet parameters of a nozzle can take a lot of time; in an industrial manufacturing environment, this is usually unacceptable. In other words, if it is to be commercially viable, the manufacturing output and cost required for the production of the product Must be located at an acceptable consumer price point, and this usually means that the printing process produces as many products as possible, has as much accuracy as possible (and less product waste), and has as little as possible Downtime. The technology disclosed in this article enables far more rapid measurement, and thus more feasible measurement becomes possible.

回到圖1,為了達到這種效果,本揭示所提出的液滴測量技術亦一次從許多噴嘴拍攝液滴,參照標號105。換言之,對比於"一次一個"對飛行中的液滴進行成像的系統,本揭示提出的實施例依賴同時性以同時測量盡可能多的噴嘴。因此,影像拍攝可被用以有效地從一大型噴嘴陣列取得一個包含許多液滴之圖像,例如,沉積於多行與多列中的液滴,由一影像處理系統以軟體迅速地處理。在一實施例之中,一拍攝影像可以代表來自數十個噴嘴,以及也許數百個噴嘴(或更多)的液滴,全部被同時量測。圖1在虛線方塊中表明可以促進此一目標的各種選項,舉例而言,(a) 透過印刷頭對側的沉積表面拍攝影像(107),此有助於速度量測,(b) 在一拍攝影像之中同時拍攝液滴與噴嘴二者(109),此輔助來自各別噴嘴的液滴的位置偏移、翹曲、或速度之量測,(c) 同時對來自各別(多個)噴嘴的液滴進行拍攝(111),例如,實際上一次量測四十或更多個噴嘴,以及(d) 並非每一噴嘴拍攝一液滴,而是同時量測一個包含多個(例如,5或更多個)液滴的匯集體。請注意,在後者的情況,影像處理軟體可以偵測一匯集沉積的體積(例如,容量),或者一預期位置附近的液滴位置之範圍,且可以自單一拍攝影像一次識別出個別液滴、平均值、或者諸如分佈(離度)之其他統計參數。請注意,取決於實施例,此可能需要預先量測一標準並儲存於系統之中;舉例而言,當油墨液滴固定在沉積介質(意即,膜帶)之中,其可能即難以偵測液滴體積;此一判定可以針對液滴直徑、一沉積液滴的顏色(或灰階)數值之處理、或使用其方式加以斷定,並利用此等數值與一校正標準進行比較以產生準確的數值估算。Returning to FIG. 1, in order to achieve this effect, the droplet measurement technique proposed in the present disclosure also captures droplets from many nozzles at a time, refer to 105. In other words, in contrast to systems that "one at a time" imaging droplets in flight, the embodiments proposed in this disclosure rely on simultaneity to measure as many nozzles as possible at the same time. Therefore, image capture can be used to effectively obtain an image containing many droplets from a large nozzle array, for example, droplets deposited in multiple rows and rows, which can be quickly processed by an image processing system with software. In one embodiment, a shot image may represent droplets from dozens of nozzles, and perhaps hundreds of nozzles (or more), all of which are measured at the same time. Figure 1 shows the various options that can promote this goal in the dashed box. For example, (a) shoot an image through the deposition surface on the opposite side of the print head (107), which helps speed measurement, (b) In the shooting image, both the droplet and the nozzle are shot at the same time (109). This assists the measurement of the position offset, warpage, or velocity of the droplets from each nozzle. (c) Simultaneously ) Nozzle droplets are photographed (111), for example, forty or more nozzles are actually measured at a time, and (d) instead of taking one droplet for each nozzle, it measures one droplet at the same time, including multiple (e.g. , 5 or more) a collection of droplets. Please note that in the latter case, the image processing software can detect the volume of a pooled deposition (for example, the volume), or the range of the droplet position near the expected position, and can identify individual droplets at a time from a single shot image. Average value, or other statistical parameters such as distribution (distance). Please note that depending on the embodiment, it may be necessary to measure a standard in advance and store it in the system; for example, when ink droplets are fixed in the deposition medium (that is, the film tape), it may be difficult to detect Measure the volume of the droplet; this judgment can be based on the treatment of the droplet diameter, the color (or gray scale) value of a deposited droplet, or the way to make a judgment, and use these values to compare with a calibration standard to produce an accurate Numerical estimation of.

如同標號115與117所標示,該系統(例如,使用運行適當軟體之一影像處理器)接著計算測量之數值並將其儲存於記憶體之中(例如,諸如位於一可取得硬碟機之中的隨機存取記憶體)。在一實施例之中,此等數值被個別地儲存(意即,每一噴嘴每一待量測參數的每一次量測均儲存一次),而在另一實施例之中,其可以以一種代表一混合分佈(例如,做為一特定噴嘴之一特定參數之一平均值、量測總數、標準差、等等)的方式加以儲存。參照標號119、121及123,如同先前所述,量測過的數值可以選擇性地被用來計算一統計分佈、用來執行噴嘴合格性/驗證、以及用來執行"智慧組合",其中列印掃描被規畫而以某種想要的方式匹配具有預期特性的液滴。As indicated by reference numerals 115 and 117, the system (for example, using an image processor running appropriate software) then calculates the measured value and stores it in memory (for example, such as in an available hard drive Random access memory). In one embodiment, these values are stored individually (that is, each measurement of each parameter to be measured for each nozzle is stored once), while in another embodiment, they can be stored as a Represents a mixture distribution (for example, as an average value of a specific parameter of a specific nozzle, total number of measurements, standard deviation, etc.) to be stored. With reference to numbers 119, 121, and 123, as previously mentioned, the measured values can be optionally used to calculate a statistical distribution, to perform nozzle qualification/verification, and to perform "smart combinations", among which are The print scan is planned to match droplets with expected characteristics in a certain desired way.

圖2至圖4B被用以描繪一模組化液滴測量系統之一實施例。Figures 2 to 4B are used to depict an embodiment of a modularized droplet measurement system.

圖2顯示一第一此種系統201之一特寫視圖。此視圖描繪一測量窗口203 (例如,一玻璃覆頂察視窗口),透過其沿著一個由標號205標示的向量拍攝影像。一光學偵測器,例如一攝像機,位於系統201之內,並沿著箭頭205的方向透過此窗口203拍攝照片。運作期間,來自捲筒207之一透明薄膜膜帶在此窗口上方被推進,且藉由一組真空端口209緊貼該窗口。緊接每一次測量之後,此膜帶可以被往絞盤211的方向推進,並積累於保持於液滴測量系統之一機箱213內的一廢棄捲筒(圖中未顯示)之中。請注意,所描繪的系統係模組化的,且以一單元的形式移動,例如,以將測量窗口203(以及此窗口所界定的相關測量區域)定位於緊鄰待測量的任何印刷頭噴嘴處,相對於印刷頭之一噴嘴板呈一"標準沉積深度"。在選擇性實施例之中,液滴測量系統201可以以三維形式連結,使得此系統可以被設置於毗鄰其他組噴嘴處,且得以依據需要變動沉積高度。Figure 2 shows a close-up view of a first such system 201. This view depicts a measurement window 203 (for example, a glass-covered viewing window) through which images are taken along a vector denoted by reference numeral 205. An optical detector, such as a camera, is located in the system 201 and takes pictures through the window 203 in the direction of the arrow 205. During operation, a transparent film tape from the reel 207 is pushed above the window, and a set of vacuum ports 209 are closely attached to the window. Immediately after each measurement, the film tape can be pushed in the direction of the winch 211 and accumulated in a waste reel (not shown in the figure) held in a chassis 213 of the droplet measurement system. Please note that the depicted system is modular and moves in the form of a unit, for example, to position the measurement window 203 (and the related measurement area defined by this window) in close proximity to any print head nozzles to be measured , It is a "standard deposition depth" relative to a nozzle plate of the printing head. In an alternative embodiment, the droplet measuring system 201 can be connected in a three-dimensional form, so that the system can be arranged adjacent to other sets of nozzles, and the deposition height can be changed according to needs.

圖3顯示液滴測量系統301之一內部剖面視圖。此系統類似地包含一察視窗口303,透過其拍攝影像,以及一光學系統,包含一光學組件305、一攝像機307以及一光源309。一步進馬達311選擇性地相對於察視窗口303線性地推進光學組件305,意即,在由箭頭313所指示的方向上來回。請注意,在本說明書之中,"攝像機"可以選擇性地表示任何類型之光感測器,意即,其有可能使用包含個別光學感測器之一簡單線條感測器,且舉例而言,來回"掃動"此一線條感測器以利用此步進馬達311對整個察視窗口303進行成像。在其他實施例之中,攝像機透過任何傳統機制,例如,使用一商業感光攝像機、電荷耦合元件陣列(charge couple device array)、紫外線或其他不可見光輻射拍攝裝置、或者利用其他方式,拍攝代表察視區域之一像素陣列的一影像。請注意,攝像機移動(意即,掃描移動)並非對於所有實施例均屬必要。在所描繪的實施例之中,光學組件305亦在內部包含一射束分離器,其讓來自光源的光通過(例如,向上通往察視窗口303),但在攝像機307的方向上使用一反射鏡使返回的(反射)光轉向。其應顯然可見,來自光源的光通過察視窗口,通過透明膜帶,從印刷頭(圖3中未顯示)反射,回返再次通過透明膜帶,並接受任何聚焦或其他光學動作,被拍攝及處理以供分析。一拍攝影像因此提供每一受量測噴嘴之位置之可見指示(例如,此影像係拍攝自噴嘴板的反射)並且亦顯示任何沉積液滴(其係透明的,但可與薄膜區分)之疊覆。換言之,在設想的製程(特別是針對OLED顯示器製造,例如,針對一囊封層)之中,沉積材料係半透明的,因此並未阻擋噴嘴板的影像拍攝。圖3亦顯示一絞盤315,供透明膜帶之運送,以及一UV固化桿317,用以固化任何沉積油墨,以防止沉積油墨轉移至任何其他系統構件。圖3亦顯示一介面與控制板319,用於對各種系統構件的控制,以及用於影像拍攝之控制;此介面與控制板319亦控制薄膜膜帶之運送,舉例而言,藉由控制分別使用於薄膜收納及供應捲筒(此在圖中並未被分別指出)的薄膜捲動馬達321及323。取決於實施例,影像處理可以是於本地端在介面與控制板319上執行,或者,選替性地,在製造設備中或位於一遠端電腦上的一處理器中執行。FIG. 3 shows an internal cross-sectional view of one of the droplet measurement system 301. This system similarly includes a viewing window 303 through which images are taken, and an optical system including an optical component 305, a camera 307, and a light source 309. A stepping motor 311 selectively advances the optical assembly 305 linearly with respect to the viewing window 303, that is, back and forth in the direction indicated by the arrow 313. Please note that in this specification, "camera" can optionally refer to any type of light sensor, which means that it is possible to use a simple line sensor including individual optical sensors, and for example , "Sweep" the line sensor back and forth to use the stepping motor 311 to image the entire inspection window 303. In other embodiments, the camera uses any conventional mechanism, for example, a commercial photosensitive camera, a charge couple device array, an ultraviolet or other invisible light radiation imaging device, or other methods to photograph the representative inspection An image of a pixel array of a region. Please note that camera movement (ie, scanning movement) is not necessary for all embodiments. In the depicted embodiment, the optical component 305 also includes a beam splitter inside, which allows light from the light source to pass (for example, upwards to the inspection window 303), but uses a beam splitter in the direction of the camera 307 The mirror deflects the returning (reflected) light. It should be clearly visible that the light from the light source passes through the inspection window, passes through the transparent film tape, reflects from the print head (not shown in Figure 3), and returns to pass through the transparent film tape again, and accepts any focusing or other optical actions, and is photographed and taken. Process for analysis. A captured image thus provides a visible indication of the position of each measured nozzle (for example, this image is taken from the reflection of the nozzle plate) and also shows the stack of any deposited droplets (which are transparent but distinguishable from the film) cover. In other words, in the envisaged manufacturing process (especially for OLED display manufacturing, for example, for an encapsulation layer), the deposition material is semi-transparent, so it does not block the image capture of the nozzle plate. FIG. 3 also shows a winch 315 for transporting the transparent film tape, and a UV curing rod 317 for curing any deposited ink to prevent the deposited ink from being transferred to any other system components. Figure 3 also shows an interface and control board 319 for the control of various system components and control for image capture; this interface and control board 319 also control the transport of the film tape, for example, by controlling the respective Film rolling motors 321 and 323 used for film storage and supply rolls (this is not separately indicated in the figure). Depending on the embodiment, the image processing may be performed locally on the interface and control board 319, or, alternatively, performed in a processor located in a manufacturing facility or on a remote computer.

圖4A及4B顯示圖3的液滴測量系統301之立體圖。圖4B代表相對於圖4A之單元背側之一立體圖,意即,從圖4A的箭頭B-B所提供的制高點看過去的視圖。更具體言之,此等圖式顯示出察視窗口303、真空端口403、UV固化桿317、一膜帶供應捲筒405及收納捲筒407、以及一框架與光學腔室409 (此裝納介面與控制板319,如先前所述)。運作期間,其在箭頭411所指示的方向上供應尚未使用的膜帶,且緊緊黏附察視窗口303,如先前所提及。從此點開始,薄膜在絞盤315上沿著箭頭412朝UV固化桿317向下推進,用於先前所述的用途。前述之UV固化桿之運作係由介面與控制板319控制,使用儲存於非暫態性機器可讀取媒體中的板上韌體或軟體。最後,固化之後,薄膜基本上如箭頭415所示地被推進到收納捲筒407。其應顯然可見,整個單元係模組化的,提供移除及維修的容易性,舉例而言,移除透明沉積膜帶之一完成的收納捲筒407,以及更換供應捲筒405以具有全新的進料。4A and 4B show a perspective view of the droplet measurement system 301 of FIG. 3. Fig. 4B represents a perspective view of the back side of the unit relative to Fig. 4A, that is, a view from the commanding height provided by the arrow B-B in Fig. 4A. More specifically, these drawings show the inspection window 303, the vacuum port 403, the UV curing rod 317, a film tape supply reel 405 and a receiving reel 407, and a frame and optical chamber 409 (which contains Interface and control board 319, as previously described). During operation, it supplies the unused film tape in the direction indicated by the arrow 411, and adheres tightly to the inspection window 303, as mentioned previously. From this point on, the film is pushed down on the winch 315 along the arrow 412 toward the UV curing rod 317 for the purpose previously described. The operation of the aforementioned UV curing rod is controlled by the interface and control board 319, using on-board firmware or software stored in a non-transitory machine-readable medium. Finally, after curing, the film is pushed onto the storage reel 407 substantially as indicated by the arrow 415. It should be obvious that the entire unit is modularized, providing ease of removal and maintenance. For example, the storage roll 407 completed by removing one of the transparent deposition film tapes, and the replacement of the supply roll 405 to have a brand new Of feed.

圖5A提出一流程圖,關聯一種執行液滴測量之方法的一實施例501。如先前所述,其可能需要執行現場測量,意即,直接在一製造設備之內進行測量,以針對製程、年齡、溫度、或其他因素動態地更新一或多個液滴參數之數值。針對此目的,其在一印刷機之一維修站內有利地執行測量,舉例而言,當一新基板正在載入、卸下、沉積後之固化、或者其他相對於實際印刷的閒置期間。參照標號503,一或多個印刷頭(例如,裝載至一共同印刷頭組件)被推進到該維修站並被"停駐"以進行檢修動作。此檢修動作可以包含各種校準、印刷頭更換、噴嘴清洗或其他品質處理、如本揭示所構想的液滴測量、或者其他用途。如同將更完整地說明於下文者,針對OLED顯示器製造應用(以及某些其他裝置的製造,諸如太陽能面板),其可能想要在一受控制的環境之中執行印刷;因此,在許多應用之中,該"停駐"位置將位於一第二受控環境腔室之中,例如,在一個可以由外部操作(例如,用於印刷頭更換)而無須使整個製造設備或印刷機通連一未受控環境的位置之中。也就是說,此一第二腔室在較佳的實施方式之中被製造成相對於任何印刷封閉空間均具有一微小尺寸,例如,佔用整體印刷腔室體積的百分之二或更小的空間,以使漏洩最小化(如果有的話)。一旦印刷頭被停駐,其即被密封於此第二受控環境,且前述之液滴測量系統("DMU",代表droplet measurement unit(液滴測量單元))被選擇性地接合以執行測量(505)。如同選擇性的流程區塊507所標註,若印刷係針對噴嘴之一移動窗口(例如,其中不同的噴嘴套組在印刷回合之間如先前所提及的當基板被載入或卸下時被測量或重新測量)基於一個間歇性的基礎上執行,則系統擷取一開始位址以定位DMU而拍攝所選定的噴嘴子集。請注意,此流程可以運用一對齊程序以辨識每一印刷頭之角落噴嘴(例如,當一印刷頭被更換時更新,使得系統被校準成"知悉"每一噴嘴的大概位置)。此一對齊程序可以藉由連結上述之DMU (以及其攝像機)以進行成像,且從而找到每一陣列的角落噴嘴,並使用一大概位置定址及搜尋程序(例如,螺旋搜尋演算法(spiral search algorithm))加以執行,舉例而言,如先前引用的編號14/340403的美國專利申請案中所述。所述系統對於位置的投擲定位的控制十分精確,例如,到達大約一微米的精密度,且通常印刷頭對液滴測量系統定位的再次校準並無必要,除非一系統構件被手動地更換(例如,DMU或一印刷頭被移除或維修)。當一透明膜帶(意即,供測試的液滴沉積表面)就定位,參照標號509,系統控制檢視下的印刷頭噴嘴使其各自沉積一受控數目之液滴(快速而連續,若每個噴嘴均預定測量多個液滴的話)。同時,DMU內的影像拍攝系統對沉積油墨以及噴嘴位置進行成像(例如,透過透明膜帶及油墨,拍攝印刷頭反射的光)。請注意,如標號511所示,在一實施例之中,影像拍攝係以彩色方式進行,以能夠辨識任何沉積油墨液滴中的油墨濃度(例如,當半透明時,其將依據材料或厚度賦予微妙的色彩性質)。如標號511所示,一拍攝影像可以被進行濾波(例如,針對顏色、強度、伽瑪值(gamma)、或者一或多個任何其他需要的參數),以產生一經過濾波的影像;緊接此濾波動作之後(或者做為此濾波動作的一部分),該拍攝影像被轉換成灰階,參照標號513。請注意,多個影像亦可以依據各別濾波器自此流程產生,舉例而言,代表噴嘴之一第一影像與代表沉積液滴之一第二影像;明顯地,其存在許多種變換。影像處理軟體接著使用(一或多個)輸出灰階影像以辨識噴嘴、油墨液滴、噴嘴與油墨液滴之間的位置差異、液滴體積、液滴直徑、液滴形狀、及/或任何其他需要的參數(515/517)。其應顯然可見,測量上述所有項目並非在所有實施例之中均屬必要。舉例而言,在一個計算液滴體積的系統之中,其可能不需要對噴嘴本身成像,或者分析液滴形狀或位置。反之,在此一實施例之中(若正在分析多個液滴之擴散範圍),決定液滴位置的偏離量值或者執行顏色分析以正確地計算體積則有其重要性。測量的參數基本上將取決於實施方式以及需要的結果。如標號517所示,無論測量甚麼參數,系統均計算一或多個量測數值,或者一參數之偏移量,舉例而言,使用一選擇性的標準519,如先前所述。一參數的此一偏移量或數值可以針對液滴或噴嘴位置、液滴時序、或液滴體積、或者該等項目的任何組合加以計算,如標號521所標註。系統接著更新位於DMU本地端或遠端之一儲存資訊貯藏庫(523),且其接著儲存用於下一個測量迭代步驟的位置並推進膜帶,參照選擇性流程525。流程從而完成,準備好進行另一個測量迭代步驟(其可以被立即執行,或者在一稍後的時間點執行,例如,跟隨於一後續的基板運作回合之後)。FIG. 5A presents a flowchart associated with an embodiment 501 of a method for performing droplet measurement. As mentioned earlier, it may be necessary to perform on-site measurements, which means that measurements are performed directly in a manufacturing facility to dynamically update the value of one or more droplet parameters for process, age, temperature, or other factors. For this purpose, it is advantageous to perform measurements in a maintenance station of a printing press, for example, when a new substrate is being loaded, unloaded, cured after deposition, or other idle periods relative to actual printing. With reference to reference numeral 503, one or more print heads (eg, loaded into a common print head assembly) are advanced to the repair station and "parked" for maintenance operations. This maintenance action may include various calibrations, print head replacement, nozzle cleaning, or other quality processing, droplet measurement as conceived in the present disclosure, or other uses. As will be explained more fully below, for OLED display manufacturing applications (and the manufacturing of certain other devices, such as solar panels), it may want to perform printing in a controlled environment; therefore, in many applications In this case, the "parking" position will be located in a second controlled environment chamber, for example, in a chamber that can be operated externally (for example, for print head replacement) without the need to connect the entire manufacturing facility or printing machine to one In the location of an uncontrolled environment. That is to say, this second chamber is manufactured in a preferred embodiment to have a small size relative to any closed space for printing, for example, occupying 2% or less of the volume of the entire printing chamber Space to minimize leakage (if any). Once the print head is parked, it is sealed in this second controlled environment, and the aforementioned droplet measurement system ("DMU", stands for droplet measurement unit) is selectively engaged to perform the measurement (505). As noted in the optional process block 507, if the printing is moving the window for one of the nozzles (for example, where different nozzle sets are used between printing rounds as mentioned previously when the substrate is loaded or unloaded) Measurement or re-measurement) is performed on an intermittent basis, and the system captures the initial address to locate the DMU and shoot the selected subset of nozzles. Please note that this process can use an alignment procedure to identify the corner nozzles of each print head (for example, update when a print head is replaced, so that the system is calibrated to "know" the approximate position of each nozzle). This alignment procedure can be imaged by connecting the aforementioned DMU (and its camera) to find the corner nozzles of each array, and use an approximate location addressing and searching procedure (for example, spiral search algorithm) )) is executed, for example, as described in the previously cited U.S. Patent Application No. 14/340403. The system is very precise in controlling the position of the throwing position, for example, to a precision of about one micron, and usually the recalibration of the positioning of the droplet measurement system by the print head is not necessary unless a system component is manually replaced (for example, , DMU or a print head is removed or repaired). When a transparent film strip (that is, the droplet deposition surface for testing) is positioned, refer to reference number 509, the system controls the print head nozzles under inspection to deposit a controlled number of droplets (rapidly and continuously, if every If each nozzle is scheduled to measure multiple droplets). At the same time, the image capture system in the DMU images the deposited ink and the nozzle position (for example, through the transparent film tape and ink to capture the light reflected by the print head). Please note that, as indicated by reference numeral 511, in one embodiment, the image capturing is performed in color to be able to identify the ink concentration in any deposited ink droplet (for example, when it is translucent, it will depend on the material or thickness Give subtle color properties). As indicated by reference number 511, a captured image can be filtered (for example, for color, intensity, gamma, or one or more other required parameters) to produce a filtered image; next After this filtering action (or as part of this filtering action), the captured image is converted to grayscale, refer to 513. Please note that multiple images can also be generated from this process according to individual filters. For example, a first image representing a nozzle and a second image representing a deposited droplet; obviously, there are many transformations. The image processing software then uses the output grayscale image(s) to identify nozzles, ink droplets, position differences between nozzles and ink droplets, droplet volume, droplet diameter, droplet shape, and/or any Other required parameters (515/517). It should be obvious that measuring all the above items is not necessary in all embodiments. For example, in a system that calculates the volume of a droplet, it may not need to image the nozzle itself, or analyze the shape or position of the droplet. On the contrary, in this embodiment (if the spread range of multiple droplets is being analyzed), it is important to determine the deviation value of the droplet position or perform color analysis to calculate the volume correctly. The parameters measured will basically depend on the implementation and the desired result. As indicated by reference number 517, no matter what parameter is measured, the system calculates one or more measured values, or the offset of a parameter, for example, using an optional standard 519, as previously described. The offset or value of a parameter can be calculated for the position of the droplet or nozzle, the timing of the droplet, or the volume of the droplet, or any combination of these items, as indicated by the reference number 521. The system then updates the storage information repository (523) located at the local or remote end of the DMU, and it then stores the position for the next measurement iteration step and advances the membrane tape, referring to the optional process 525. The process is thus completed and ready for another measurement iteration step (which can be executed immediately or at a later point in time, for example, following a subsequent round of substrate operations).

請注意,如同標號529至533所標註,參數及/或任何位置偏移的計算可以選擇性地由運行適當軟體(儲存於處理器可讀取媒體上的指令)的一或多個處理器加以執行,且此等處理器通常儲存影像資料於處理器可存取記憶體之中、隔離每一噴嘴各別的影像資料、從各別的影像資料計算參數、且亦儲存每一噴嘴參數於處理器可存取記憶體之中。Please note that, as marked with reference numbers 529 to 533, the calculation of parameters and/or any positional offset can optionally be performed by one or more processors running appropriate software (instructions stored on a processor-readable medium) These processors usually store image data in the processor’s accessible memory, isolate the individual image data of each nozzle, calculate the parameters from the individual image data, and also store the parameters of each nozzle for processing The device can access the memory.

圖5B及5C分別顯示樣本影像551與571。其中的第一者,影像551,代表從一印刷頭的一個由大約40個噴嘴構成的子集拍攝的照片。注意其中的噴嘴如何地在列與列之間略微交錯,以在一個交越的掃描軸線之中提供緊密的間距變異之選擇(例如,一個預定噴向一特定基板位置之液滴可以從任一噴嘴列進行列印,在一些實施例之中提供優於,意即小於,二十微米的沉積準確度)。圖5B代表一彩色影像,其之後可以視情況被濾波及/或轉換成灰階格式,亦是一個經過此濾波或轉換動作之後的灰階影像(因為專利申請之中通常不使用或者不允許彩色圖式)。請注意,在此實施例之中,噴嘴並未被分別成像或描繪,雖然在其他實施例之中可以如此。第二影像571 (圖5C)代表圖5B的影像進行濾波與梯度處理後的情形,以辨識液滴直徑。換言之,圖5C顯示對應至液滴直徑的白色圓圈,具有清晰可辨的液滴邊界。影像處理計算一重心(例如,藉由計算此等"圓圈"的水平最大直徑與垂直最大直徑以及藉由沿著每一直徑取中間直角座標點(medial Cartesian coordinate point),以讓每一液滴聯繫一特定之xy直角座標位置)。此位置接著可以與噴嘴位置相比較,以決定偏移量,系統識別出噴嘴間的偏移量變異,以供印刷規畫之用。此等照片亦可以代表液滴體積處理;例如,影像處理軟體可以計算每一液滴之直徑及/或面積及/或關聯的顏色,並將此與一工廠定義的標準或一現場定義的標準比較,以計算尺寸及密度,並且由此計算體積。幾乎任何需要的液滴參數均能夠以此種方式加以測量。Figures 5B and 5C show sample images 551 and 571, respectively. The first of these, image 551, represents a photograph taken from a subset of approximately 40 nozzles of a printing head. Note how the nozzles are slightly staggered from row to row to provide a choice of tight pitch variation in an intersecting scan axis (for example, a droplet scheduled to be sprayed to a specific substrate position can be selected from any The nozzle row printing, in some embodiments, provides better than, that is, less than twenty microns of deposition accuracy). Figure 5B represents a color image, which can then be filtered and/or converted into a grayscale format as appropriate. It is also a grayscale image after this filtering or conversion action (because color is usually not used or not allowed in patent applications). figure). Please note that in this embodiment, the nozzles are not separately imaged or depicted, although this may be the case in other embodiments. The second image 571 (FIG. 5C) represents the image of FIG. 5B after filtering and gradient processing to identify the droplet diameter. In other words, FIG. 5C shows a white circle corresponding to the diameter of the droplet, with a clearly distinguishable droplet boundary. Image processing calculates a center of gravity (for example, by calculating the horizontal maximum diameter and vertical maximum diameter of these "circles" and by taking the medial Cartesian coordinate point along each diameter, so that each droplet Contact a specific xy right-angle coordinate position). This position can then be compared with the nozzle position to determine the offset. The system recognizes the offset variation between nozzles for printing planning. These photos can also represent droplet volume processing; for example, image processing software can calculate the diameter and/or area and/or associated color of each droplet, and compare this with a factory-defined standard or a field-defined standard Compare to calculate the size and density, and thus calculate the volume. Almost any required droplet parameter can be measured in this way.

以上描述一特定的液滴測量系統,以下將描述對於生產製造以及對於一工業製造設備/印刷機之應用。在以下的說明之中,將描述一種用於執行此印刷的示範性系統,更具體言之,套用於能夠使用於電子裝置中的太陽能面板及/或顯示裝置的生產製造(例如,智慧型手機、智慧型手錶、平板電腦、電腦、電視、監視器、或者其他形式的顯示器)。本揭示所提供的製造技術並未受限於此特定範圍,舉例而言,其可以被運用於任何3D印刷應用以及運用於範圍廣泛的其他形式之產品。The above describes a specific droplet measurement system, and the following will describe its application to manufacturing and to an industrial manufacturing equipment/printing machine. In the following description, an exemplary system for performing this printing will be described, more specifically, applied to the production of solar panels and/or display devices that can be used in electronic devices (for example, smart phones). , Smart watches, tablets, computers, TVs, monitors, or other forms of displays). The manufacturing technology provided by the present disclosure is not limited to this specific scope. For example, it can be applied to any 3D printing application and to a wide range of other forms of products.

圖6A描繪一些不同的實施階層,共同標示為參考編號601;此等階層中的每一者均代表本文所介紹的技術的一個可能的獨立實施方式。首先,如同本揭示之中所介紹的技術可以採取儲存於非暫態性機器可讀取媒體中的指令之形式,如圖形603所代表(例如,用以控制一電腦或一印刷機的可執行指令或軟體)。舉例而言,所揭示之技術可以被實施成軟體,該等軟體被調構成使一製造設備(或者內含的印刷機)利用本文揭示的光學測量技術測量一或多個液滴參數。第二,依據電腦圖符605,此等技術亦可以選擇性地被實施成一電腦或網路的一部分,舉例而言,在一個設計或製造構件以販售或使用於其他產品的公司內部。第三,如同使用一儲存媒體圖形607之例示,先前介紹的技術可以採取一儲存印刷機控制指令的形式,例如,當啟用之時,將致使一印刷機以一種依靠液滴測量及相關規畫(例如,掃描路徑規畫或者噴嘴合格性驗證,如同本文所述)的方式製造一構件中的一或多個疊層。請注意,印刷機指令可以被直接傳送給一印刷機,舉例而言,透過一LAN或WAN;在此背景下,所描繪的儲存媒體圖形可以代表(但不限於)內部的RAM,或者一伺服器、可攜式裝置、膝上型電腦、其他形式之電腦或一印刷機可存取的RAM、或者諸如隨身碟之可攜式媒體。第四,如同一製造裝置圖符609所示,以上介紹的技術可以實施成一製造設備或機器的一部分,或者呈此一設備或機器(例如,做為依據本文揭示之技術的一液滴測量系統、做為一種製造的方法、做為用於控制一液滴測量系統之軟體,等等)內部之一印刷機的形式。其應注意,製造裝置609之特別描繪代表將於下文配合圖6B、7A及7B說明之一示範性印刷機裝置。以上介紹的技術亦可以被實施成一完整或局部完整的製造構件或者製造構件中的一組件(例如,依據一專利流程製造的);舉例而言,在圖6A之中,一些這樣的構件被描繪成半成品平板裝置之一陣列611之形式,其將被分離並銷售以納入終端消費性產品之中。所描繪的裝置可以具有,舉例而言,依靠以上介紹的方法製造的一或多個囊封疊層或者其他疊層。以上介紹的技術亦可以被實施成如同上述的終端消費性產品之形式,例如,呈可攜式數位裝置613 (例如,諸如電子平板裝置或智慧型手機)、電視顯示螢幕615 (例如,OLED TV)、太陽能面板617、或者其他類型裝置之形式。Figure 6A depicts a number of different implementation levels, collectively labeled with reference number 601; each of these levels represents a possible independent implementation of the technology described herein. First of all, the technology as introduced in this disclosure can take the form of instructions stored in a non-transitory machine-readable medium, as represented by the graphic 603 (for example, the executable used to control a computer or a printer). Instructions or software). For example, the disclosed technology can be implemented as software that is adjusted to enable a manufacturing device (or an included printer) to measure one or more droplet parameters using the optical measurement technology disclosed herein. Second, according to the computer icon 605, these technologies can also be selectively implemented as part of a computer or network, for example, in a company that designs or manufactures components for sale or use in other products. Third, as the example of using a storage media graphic 607, the previously introduced technology can take the form of a stored printer control command. For example, when enabled, it will cause a printer to perform a method that relies on droplet measurement and related planning. (For example, scanning path planning or nozzle qualification verification, as described herein), one or more laminates in a component are manufactured. Please note that the printer command can be sent directly to a printer, for example, via a LAN or WAN; in this context, the depicted storage media graphics can represent (but not limited to) internal RAM, or a servo RAM, portable devices, laptops, other forms of computers or RAM that can be accessed by a printer, or portable media such as pen drives. Fourth, as shown by the same manufacturing device icon 609, the technology introduced above can be implemented as a part of a manufacturing facility or machine, or presented as such a facility or machine (for example, as a droplet measurement system based on the technology disclosed herein). , As a manufacturing method, as a software used to control a droplet measurement system, etc.) In the form of a printing press. It should be noted that the special depiction of the manufacturing device 609 represents an exemplary printer device described below in conjunction with FIGS. 6B, 7A, and 7B. The technology introduced above can also be implemented as a complete or partially complete manufacturing component or a component in a manufacturing component (for example, manufactured according to a patent process); for example, in FIG. 6A, some of these components are depicted In the form of an array 611 of semi-finished tablet devices, it will be separated and sold to be included in the terminal consumer products. The depicted device may have, for example, one or more encapsulation laminates or other laminates manufactured by the method described above. The technology introduced above can also be implemented in the form of the above-mentioned terminal consumer products, for example, in the form of a portable digital device 613 (for example, such as an electronic tablet device or a smart phone), a TV display screen 615 (for example, an OLED TV ), solar panels 617, or other types of devices.

圖6B顯示一構想出的多腔室製造設備621,可被用來套用本文揭示的技術。概括而言,所描繪的設備621包含一些一般性的模組或子系統,包含一輸送模組623、一印刷模組625以及一處理模組627。每一模組均維持一受控環境,舉例而言,使得印刷可以在一第一受控環境中由印刷模組625執行,而其他處理,例如,諸如一無機囊封層沉積之其他沉積程序或者一固化程序(例如,針對印刷材料),可以執行於一第二受控環境之中。設備621使用一或多個機械式裝卸器以將一基板移動於模組之間,無須將基板暴露至一未受控制的環境。在任何特定模組之內,其有可能使用其他基板裝卸系統及/或特定裝置與控制系統,針對該模組預定被執行的處理加以調適。FIG. 6B shows a conceived multi-chamber manufacturing equipment 621 that can be used to apply the technology disclosed herein. In summary, the depicted device 621 includes some general modules or subsystems, including a conveying module 623, a printing module 625, and a processing module 627. Each module maintains a controlled environment, for example, so that printing can be performed by the printing module 625 in a first controlled environment, and other processes, such as other deposition procedures such as the deposition of an inorganic encapsulation layer Or a curing process (for example, for printed materials) can be executed in a second controlled environment. The device 621 uses one or more mechanical loaders to move a substrate between modules without exposing the substrate to an uncontrolled environment. Within any specific module, it is possible to use other substrate handling systems and/or specific devices and control systems to adjust for the processing scheduled to be executed by the module.

輸送模組623的各種實施例可以包含一輸入裝載閉鎖(loadlock)629 (意即,一個在不同環境之間提供緩衝並同時維持一受控環境的腔室)、一輸送腔室631 (亦具有一裝卸器以運送一基板)、以及一環境緩衝腔室633。在印刷模組625之內,其有可能使用其他基板裝卸機制,諸如一浮動檯(flotation table)以供一基板在一印刷程序期間的穩定支承。此外,一xyz搬移系統,諸如一分離軸或者高架搬移系統,可被用於至少一印刷頭相對於基板的精確定位,並且提供一y軸傳遞系統以供基板之運送通過印刷模組625。其亦可能在印刷腔室之內使用多種油墨以供印刷,例如,使用各別印刷頭組件使得,舉例而言,二不同類型之沉積程序能夠在位於一受控環境中的印刷模組內執行。印刷模組625可以包含裝納一噴墨印刷系統之一氣罩635,具備用以引入一惰性氣體環境(例如,氮氣)的裝置,並且以其他方式控制供環境調控(例如,溫度與壓力)的氣體環境、氣體組成及塵粒含量。Various embodiments of the delivery module 623 may include an input load lock (loadlock) 629 (that is, a chamber that provides buffering between different environments while maintaining a controlled environment), and a delivery chamber 631 (which also has A loader to transport a substrate), and an environmental buffer chamber 633. Within the printing module 625, it is possible to use other substrate loading and unloading mechanisms, such as a floating table (flotation table) for stable support of a substrate during a printing process. In addition, an xyz transfer system, such as a split shaft or overhead transfer system, can be used for precise positioning of at least one print head relative to the substrate, and a y-axis transfer system is provided for the substrate to be transported through the printing module 625. It is also possible to use multiple inks for printing in the printing chamber. For example, using separate print head assemblies enables, for example, two different types of deposition processes to be executed in a printing module located in a controlled environment . The printing module 625 may include a gas hood 635 that houses an inkjet printing system, is equipped with a device for introducing an inert gas environment (for example, nitrogen), and is controlled in other ways for environmental regulation (for example, temperature and pressure). Gas environment, gas composition and dust content.

一處理模組627的各種實施例可以包含,舉例而言,一輸送腔室636;此輸送腔室亦包含一裝卸器以供運送一基板。此外,該處理模組亦可以包含一輸出裝載閉鎖637、一氮氣堆集緩衝器639、以及一固化腔室641。在一些應用之中,固化腔室可被用以將一單體薄膜固化、烘烤或者乾燥成一均勻聚合物薄膜;舉例而言,二個特別構想之程序包含一加熱程序及一UV輻射固化程序。Various embodiments of a processing module 627 may include, for example, a conveying chamber 636; the conveying chamber also includes a loader for conveying a substrate. In addition, the processing module may also include an output load lock 637, a nitrogen accumulation buffer 639, and a curing chamber 641. In some applications, the curing chamber can be used to cure, bake or dry a monomer film into a uniform polymer film; for example, two specially conceived procedures include a heating procedure and a UV radiation curing procedure .

在一應用之中,設備621被調構成用於液晶顯示螢幕或OLED顯示螢幕的批量生產,舉例而言,在單一大型基板上,一次製造一個包含(例如)八個螢幕的陣列。此等螢幕可被用於電視以及做為其他形式電子裝置的顯示螢幕。在一第二應用之中,該設備可以以幾乎相同的方式被使用於太陽能面板的批量生產。In one application, the device 621 is configured for mass production of liquid crystal display screens or OLED display screens. For example, on a single large substrate, an array containing, for example, eight screens is manufactured at a time. These screens can be used in televisions and as display screens for other forms of electronic devices. In a second application, the device can be used in mass production of solar panels in almost the same way.

印刷模組625可以有利地被使用於該等沉積有機囊封疊層的應用之中,而此等有機囊封疊層有助於保護OLED顯示裝置的敏感元件。舉例而言,所描繪的設備621可以被載入一基板,且能夠被控制成以一種不被囊封製程期間暴露至一未受控環境打斷的方式,來回移動基板於各個腔室之間。基板可以經由輸入裝載閉鎖629載入。位於輸送模組623中之一裝卸器可以將基板從輸入裝載閉鎖629移動至印刷模組625,並且,緊接著一印刷程序完成之後,可以將基板移動至處理模組627以進行固化。藉由後續疊層的反複沉積,控制下的厚度、匯集的囊封、或其他疊層厚度中的每一者各自均可以被建立以適配任何所需的應用。同樣地請注意,上述的技術並不限於囊封製程或OLED製造,並且其可以使用許多不同類型的工具。例如,設備621的組態可以被變更以將各個模組623、625及627置放於不同的並列位置;此外,其亦可以使用更多、較少或不同的模組。The printing module 625 can be advantageously used in such applications where the organic encapsulation laminate is deposited, and these organic encapsulation laminates help protect the sensitive components of the OLED display device. For example, the depicted device 621 can be loaded into a substrate and can be controlled to move the substrate back and forth between the chambers in a manner that is not interrupted by exposure to an uncontrolled environment during the encapsulation process . The substrate can be loaded via the input loading lock 629. A loading and unloading device located in the conveying module 623 can move the substrate from the input loading lock 629 to the printing module 625, and immediately after a printing process is completed, the substrate can be moved to the processing module 627 for curing. Through repeated deposition of subsequent laminates, each of the controlled thickness, the pooled encapsulation, or other laminate thickness can be established to suit any desired application. Please also note that the aforementioned technology is not limited to the encapsulation process or OLED manufacturing, and it can use many different types of tools. For example, the configuration of the device 621 can be changed to place the modules 623, 625, and 627 in different parallel positions; in addition, it can also use more, fewer, or different modules.

雖然圖6B提供一組連結腔室或製造構件的一個實例,但許多其他可能性顯然存在。以上介紹的技術可以配合圖6B之中所描繪的裝置使用,或者甚至用以控制由任何其他類型的沉積設備所執行的一個製程。Although Figure 6B provides an example of a set of joined chambers or manufacturing components, many other possibilities clearly exist. The technique described above can be used with the device depicted in FIG. 6B, or even used to control a process performed by any other type of deposition equipment.

圖7A至7C被用以概括地引介使用於逐噴嘴液滴測量及驗證的技術和結構。Figures 7A to 7C are used to generally introduce the techniques and structures used for nozzle-by-nozzle droplet measurement and verification.

更具體言之,圖7A提供描繪一液滴測量系統701及一相對大型印刷頭組件703之一例示性視圖;該印刷頭組件具有多個印刷頭(705A/705B),各自具有眾多個別噴嘴(例如,707),其中存在成千上百個噴嘴。一油墨供應(圖中未顯示)流體式地通連每一噴嘴(例如,噴嘴707),且一壓電式傳感器(圖中亦未顯示)被用以在一逐噴嘴電動控制信號的控制下噴射油墨液滴。噴嘴的設計在每一個噴嘴處(例如,噴嘴707)均維持略微偏負的油墨壓力以避免噴嘴板的淹覆,其中一特定噴嘴的電信號被用以啟動對應的壓電式傳感器、對該特定噴嘴加壓、並從而從該特定噴嘴噴出液滴。在一實施例之中,每一噴嘴的控制信號正常情況下均係位於零伏特,而以使用於一特定噴嘴的一個位於特定電壓處的正值脈衝或信號位準噴出該噴嘴的液滴(每脈衝一滴);在另一實施例之中,經過裁修的不同脈衝(或者其他更複雜的波形)可以各個噴嘴之間使用。然而,配合圖7A所提供的實例,其應假定其需要測量一特定噴嘴或特定的噴嘴套組(例如,噴嘴707)所產生之一液滴體積,其中一液滴從印刷頭朝承載一沉積薄膜之一機箱709向下噴出(意即,在代表相對於一三維座標系統708的z軸高度的方向"h"上)。如早先所述,對於使用來自許多噴嘴的現有液滴沉積的實施例而言,一目標表面被有利地固定於一相對於印刷頭的已知位置(例如,使得其知道哪些沉積液滴隸屬於哪個噴嘴)。上述"h"的大小通常位於一毫米或更小的量級,且在一運作中的印刷機之內存在其各別液滴以此方式被個別測量的成千上萬個噴嘴(例如,10,000個噴嘴),其中之沉積表面被遞增地改變或推進至許多液滴(例如,數十個到數百個)將被同時成像及測量的多個窗口。因此,為了精確地從每一噴嘴光學式地測量液滴,其在揭示實施例之中使用特定技術以適當地相對於彼此定位液滴測量系統701、印刷頭組件703、或二者中的定位元件以供光學測量。More specifically, FIG. 7A provides an exemplary view depicting a droplet measurement system 701 and a relatively large print head assembly 703; the print head assembly has multiple print heads (705A/705B), each with a large number of individual nozzles ( For example, 707), where there are hundreds of nozzles. An ink supply (not shown in the figure) fluidly communicates with each nozzle (for example, nozzle 707), and a piezoelectric sensor (also not shown in the figure) is used under the control of a nozzle-by-nozzle electric control signal Jet ink droplets. The nozzle design maintains a slightly negative ink pressure at each nozzle (for example, nozzle 707) to avoid flooding of the nozzle plate. The electrical signal of a specific nozzle is used to activate the corresponding piezoelectric sensor to The specific nozzle is pressurized, and thereby droplets are ejected from the specific nozzle. In one embodiment, the control signal of each nozzle is normally at zero volts, and a positive pulse or signal level at a specific voltage for a specific nozzle is used to eject the droplets of the nozzle ( One drop per pulse); in another embodiment, different trimmed pulses (or other more complex waveforms) can be used between each nozzle. However, with the example provided in FIG. 7A, it should be assumed that it needs to measure the volume of a droplet produced by a specific nozzle or a specific nozzle set (for example, nozzle 707), in which a droplet is deposited from the printing head toward the carrier. A box 709 of the film is ejected downward (that is, in the direction "h" representing the height of the z-axis relative to a three-dimensional coordinate system 708). As mentioned earlier, for embodiments using existing droplet deposition from many nozzles, a target surface is advantageously fixed to a known position relative to the print head (for example, so that it knows which deposited droplets belong to Which nozzle). The size of the aforementioned "h" is usually on the order of one millimeter or less, and there are thousands of nozzles (e.g., 10,000 Nozzles) in which the deposition surface is incrementally changed or advanced to multiple windows where many droplets (for example, tens to hundreds) will be simultaneously imaged and measured. Therefore, in order to accurately measure the droplets optically from each nozzle, it uses specific techniques in the disclosed embodiments to appropriately position the droplet measurement system 701, the print head assembly 703, or both relative to each other. Components for optical measurement.

在一實施例之中,此等技術使用下列項目之組合:(a) 至少部分光學系統之x-y移動系統(711A)(例如,在維度平面713之內)以精確地定位一測量區域715,此測量區域715由緊緊相鄰產生液滴以供光學校準/測量的任一噴嘴或噴嘴套組之系統所提供,以及(b) 平面下光學回復(711B)(例如,從而允許緊鄰任何噴嘴的測量區域的容易佈放,即使在一大型印刷頭表面區域下亦然)。因此,在一個具有大約10,000個或更多印刷噴嘴的示範性環境之中,此移動系統能夠在印刷頭組件中的每一各別噴嘴的放電路徑附近的(例如)10,000個左右的離散位置之中,定位至少部分的光學系統。光學器件通常被調整於定位,使得精確的聚焦維持於測量區域之上,以拍攝一透明薄膜或其他沉積介質上的沉積液滴,如前所述。請注意,一典型液滴的直徑可以是位於微米之量級,故光學佈放通常相當精密,並且就印刷頭組件與測量光學器件/測量區域的相對定位而言,具有挑戰性。在一些實施例之中,為了協助此定位,光學器件(反射鏡、稜鏡、等等)被用以調整在源自測量區域715的維度平面713下方進行感測之一光捕取路徑之方位,使得測量光學器件可以被置放成靠近該測量區域且不會干擾光學系統與印刷頭之間的相對定位。此使得其能夠以一種不受限於沉積及成像每一液滴的毫米量級沉積高度h或者一受檢視印刷頭佔用的大尺寸x和y寬度的方式,進行有效的位置控制。選擇性地,從不同角度入射的不同光束可被用以從下方成像一薄膜或沉積表面,或者其亦可以使用具有一射束分離器之一同軸影像拍攝系統。其亦可以使用其他光學測量技術。在此等系統之一選擇性特色之中,移動系統711A選擇性地且有利地被製造成一xyz搬移系統,其讓液滴測量系統於液滴測量期間能夠在未移動印刷頭組件下選擇性地接合及分離。簡扼言之,其構想在具有一或多個大型印刷頭組件的一個工業製造裝置之中,為了最大化生產的正常運作時間,每一印刷頭組件會不時地被"停駐"於一維修站以執行一或多個檢修功能;慮及印刷頭與噴嘴數目的龐大規模,其可能期望在印刷頭的不同部件上,一次執行多種檢修功能。為達此目的,在此一實施例之中,其可以有利地在印刷頭周圍移動測量/校準裝置,而不是在該等裝置周圍移動印刷頭。[此從而亦允許其他非光學檢修程序的加入,例如,若有必要的話,針對其他噴嘴進行。]為了促成此等動作,印刷頭組件可以被選擇性地"停駐",如前所述地配合系統指定一特定群組或範圍之噴嘴,預定做為光學校準的主角。一旦印刷頭組件或者一特定印刷頭靜止,則移動系統711A被加入,以相對於該"停駐"印刷頭組件,移動至少部分之光學系統,並精確地將測量區域715定位於一個適合偵測從一群各別噴嘴噴出的液滴之位置;使用一z軸移動使得其能夠從印刷頭平面的頗為下方處選擇性地接合光回復光學器件,取代性地或額外性地促成光學校準以外的其他檢修動作。或許換句話說,使用一xyz移動系統使得液滴測量系統的選擇性地接合獨立於一維修站環境中所使用的其他測試或者測試裝置之外。舉例而言,在此一系統之中,一印刷頭組件中的一或多個印刷頭亦可以在印刷頭被停駐之時被選擇性地更換。請注意,此結構並非對於所有實施例均屬必要;其他選替方式亦有可能,諸如其中僅印刷頭組件移動(或者其中一印刷頭移動)而測量組件靜止,或者其中不需要停駐印刷頭組件者。In one embodiment, these techniques use a combination of the following items: (a) At least part of the xy movement system (711A) of the optical system (for example, within the dimensional plane 713) to accurately locate a measurement area 715, this The measurement area 715 is provided by any nozzle or nozzle set system that generates droplets for optical calibration/measurement in close proximity, and (b) under-plane optical recovery (711B) (for example, allowing the next to any nozzle The measurement area is easy to deploy, even under the surface area of a large print head). Therefore, in an exemplary environment with approximately 10,000 or more printing nozzles, this movement system can be located at, for example, approximately 10,000 discrete positions near the discharge path of each individual nozzle in the print head assembly. In, at least part of the optical system is positioned. The optical device is usually adjusted to position so that the precise focus is maintained on the measurement area to capture the deposited droplets on a transparent film or other deposition medium, as described above. Please note that the diameter of a typical droplet can be on the order of micrometers, so the optical placement is usually quite precise, and it is challenging in terms of the relative positioning of the print head assembly and the measurement optics/measurement area. In some embodiments, in order to assist this positioning, optical devices (mirrors, horns, etc.) are used to adjust the orientation of a light capture path for sensing under the dimensional plane 713 originating from the measurement area 715 , So that the measuring optics can be placed close to the measuring area without disturbing the relative positioning between the optical system and the printing head. This enables it to perform effective position control in a way that is not limited to the millimeter-level deposition height h of each droplet for deposition and imaging, or a large x and y width occupied by the inspected print head. Alternatively, different light beams incident from different angles can be used to image a thin film or deposition surface from below, or it can also use a coaxial imaging system with a beam splitter. It can also use other optical measurement techniques. Among the optional features of these systems, the mobile system 711A is selectively and advantageously manufactured as an xyz transport system, which allows the droplet measurement system to selectively and without moving the print head assembly during droplet measurement. Joining and separation. In short, the idea is that in an industrial manufacturing facility with one or more large print head assemblies, in order to maximize the normal operation time of production, each print head assembly will be "parked" from time to time. The maintenance station can perform one or more maintenance functions; considering the huge scale of the number of print heads and nozzles, it may be desirable to perform multiple maintenance functions on different parts of the print head at one time. For this purpose, in this embodiment, it is advantageous to move the measuring/calibration device around the printing head instead of moving the printing head around the devices. [This thus also allows the addition of other non-optical maintenance procedures, for example, for other nozzles if necessary. ] In order to facilitate these actions, the print head assembly can be selectively "parked", as described above, in conjunction with the system to designate a specific group or range of nozzles, which are intended to be the protagonists of optical calibration. Once the print head assembly or a specific print head is stationary, the movement system 711A is added to move at least part of the optical system relative to the "parked" print head assembly, and accurately position the measurement area 715 to a suitable detection The position of the droplets ejected from a group of individual nozzles; using a z-axis movement allows them to selectively engage light recovery optics from quite below the plane of the print head, which alternatively or additionally contributes to optical alignment other than Other maintenance actions. Or in other words, the use of an xyz mobile system allows the selective engagement of the droplet measurement system independent of other testing or testing devices used in a maintenance station environment. For example, in this system, one or more print heads in a print head assembly can also be selectively replaced while the print heads are parked. Please note that this structure is not necessary for all embodiments; other alternatives are also possible, such as where only the print head assembly moves (or one of the print heads moves) and the measurement assembly is stationary, or there is no need to park the print head. Component.

概括而言,使用於液滴測量的光學器件將包含一光源717、一光投送光學器件719之選擇性套組 (此依據需要將光從光源717導向測量區域715)、一或多個光感測器721、以及將用以測量(一或多個)液滴的光從測量區域715導向該一或多個光感測器721的一組回復光學器件723。移動系統711A以一種讓後液滴測量之光能夠從測量區域715導向一平面下方位置的方式,選擇性地一起移動任意的一或多個此等元件與機箱709 (例如,與成像區域一起移動)。在一實施例之中,光投送光學器件719及/或光回復光學器件723使用反射鏡,該等反射鏡沿著一平行於液滴行進方向的垂直維度在測量區域715之間來回導控光,與移動每一元件709、717、719、721和723之移動系統在液滴測量期間成為一整合系統;此種設置方式具備聚焦不需要相對於測量區域715重新校準的優點。如標號711C所標註,光投送光學器件亦選擇性地被用以從一個位於測量區域之維度平面713下方的位置供應來源光,例如,以光源717與(一或多個)光感測器721二者從測量區域下方導送/收集光,概括如圖所例示。如標號725與727所標註,此光學系統可以選擇性地包含用於聚焦用途之透鏡,以及光偵測器(例如,用於不依賴處理一多像素"圖像"之非成像技術)。同樣請注意,在印刷頭組件被"停駐"期間內的任一時點,針對機箱選擇性使用z移動控制讓光學系統能夠選擇性地接合及分離,並促成任何群組之噴嘴附近的測量區域715的精確定位。此種印刷頭組件703之停駐以及光學系統701的xyz移動並非對於所有實施例均屬必要。其他種排列組合亦有可能。In summary, the optical device used for droplet measurement will include a light source 717, a selective set of light projection optics 719 (which directs light from the light source 717 to the measurement area 715 as required), one or more light sources. The sensor 721 and a set of return optics 723 that direct the light used to measure the droplet(s) from the measurement area 715 to the one or more light sensors 721. The moving system 711A selectively moves any one or more of these components and the chassis 709 together in a way that allows the light of the post-droplet measurement to be guided from the measurement area 715 to a position below the plane (for example, moves together with the imaging area). ). In one embodiment, the light projection optics 719 and/or the light recovery optics 723 use mirrors, which guide and control back and forth between the measurement areas 715 along a vertical dimension parallel to the direction of droplet travel. The light and the moving system that moves each element 709, 717, 719, 721, and 723 becomes an integrated system during the droplet measurement; this setting method has the advantage that the focus does not need to be recalibrated relative to the measurement area 715. As marked by the reference number 711C, the light projection optics are also selectively used to supply source light from a position below the dimensional plane 713 of the measurement area, for example, with the light source 717 and the light sensor(s) Both 721 guide/collect light from below the measurement area, as outlined in the figure. As indicated by reference numerals 725 and 727, the optical system may optionally include a lens for focusing purposes and a photodetector (for example, for non-imaging technology that does not rely on processing a multi-pixel "image"). Please also note that at any point during the "parking" of the print head assembly, the selective use of z-motion control for the chassis allows the optical system to be selectively joined and separated, and facilitates the measurement area near the nozzles of any group The precise positioning of the 715. The parking of the print head assembly 703 and the xyz movement of the optical system 701 are not necessary for all embodiments. Other permutations and combinations are also possible.

圖7B提供關聯一些實施例之液滴測量之一程序的流程。此程序流程被概括地標示為圖7B中的標號731。更具體言之,如參考編號733所示,在此特別的程序之中,印刷頭組件先被停駐,舉例而言,於一印刷機或沉積設備的一維修站(圖中未顯示)之中。一液滴測量裝置接著接合(735)印刷頭組件,舉例而言,藉由一液滴測量系統之部分或整體的選擇性接合,透過從一沉積平面下方移動進入一個該液滴測量系統中之一光學系統能夠同時測量來自從許多噴嘴的液滴的位置。參照標號737,此關於一或多個光學系統構件相對於一停駐印刷頭的移動可以選擇性地於x、y及z維度上執行。Figure 7B provides a flow of a procedure associated with some embodiments of droplet measurement. This program flow is generally labeled as 731 in FIG. 7B. More specifically, as indicated by reference number 733, in this special procedure, the print head assembly is first parked, for example, at a maintenance station (not shown in the figure) of a printing press or deposition equipment middle. A droplet measuring device then engages (735) the print head assembly, for example, by selectively engaging part or all of a droplet measuring system, by moving from below a deposition plane into one of the droplet measuring system An optical system can simultaneously measure the position of droplets from many nozzles. With reference to 737, the movement of one or more optical system components relative to a parked print head can be selectively performed in the x, y, and z dimensions.

如同優先權聲明中透過引用納入本文的專利申請案之中所述,即使是單一噴嘴及相關噴嘴噴發驅動波形(意即,用以噴出一液滴的(一或多個)脈衝或信號位準)亦能夠產生各液滴之間略有差異的液滴體積、軌跡、及速度。依據本文的教示,在一實施例之中,前述之液滴測量系統,如標號739所示,選擇性地取得一所需參數每液滴的n個測量,以推得關於該參數預期性質的統計可信度。在一實施方式之中,所測量的參數可以是體積,但對於其他實施方式,所測量的參數可以是飛行速度、飛行軌跡、噴嘴位置誤差(例如,噴嘴翹曲)或其他參數、或者多個此等參數之一組合。在一實施方式之中,"n"可以隨每一噴嘴變動,但在另一實施方式之中,"n"可以是每一噴嘴預定執行之一固定數目之測量(例如,"24");在又另一實施方式之中,"n"表示一最小數目之測量,使得更多測量可以被執行以動態地調整參數的測量統計性質或者使可信度更提高。明顯地,有可能存在許多變異。配合先前所述的系統,一測量總數可被立即建立(意即,藉由在單一測量迭代步驟期間對一特定噴嘴陣列進行多次液滴測量,換言之,並未將液滴測量系統移動至一不同噴嘴套組),或者藉由進行單一測量並透過稍後的測量建立一測量總數(例如,當測量隨著時間連續地通過一圓形範圍之噴嘴進行)。As stated in the patent application incorporated herein by reference in the priority statement, even a single nozzle and related nozzles emit driving waveforms (that is, the pulse or signal level(s) used to eject a droplet) ) Can also produce a slightly different droplet volume, trajectory, and velocity between each droplet. According to the teachings herein, in one embodiment, the aforementioned droplet measurement system, as indicated by reference number 739, selectively obtains n measurements per droplet of a required parameter to derive the expected properties of the parameter Statistical credibility. In one embodiment, the measured parameter may be volume, but for other embodiments, the measured parameter may be flight speed, flight trajectory, nozzle position error (for example, nozzle warpage) or other parameters, or more A combination of one of these parameters. In one embodiment, "n" can vary with each nozzle, but in another embodiment, "n" can be a fixed number of measurements (for example, "24") that each nozzle is scheduled to perform; In yet another embodiment, "n" represents a minimum number of measurements, so that more measurements can be performed to dynamically adjust the measurement statistical properties of the parameter or increase the reliability. Obviously, there may be many variations. In conjunction with the previously described system, a measurement total can be established immediately (that is, by performing multiple droplet measurements on a particular nozzle array during a single measurement iteration step, in other words, without moving the droplet measurement system to one Different nozzle sets), or by taking a single measurement and establishing a total number of measurements through later measurements (for example, when the measurement is performed continuously through a circular range of nozzles over time).

就圖7B所提供的實例而言,其應假定正在測量液滴體積,以自一特定噴嘴及一緊湊的可信度區間獲得代表預期液滴體積之一準確的平均值。此促成液滴組合的選擇性規畫(利用多個噴嘴及/或驅動波形),同時在一預期目標附近之一目標區域可靠地維持混合油墨填充之分佈(意即,相對於液滴平均值之混合)。如選擇性流程方塊741及743所標註,構想的光學測量流程理想地促成許多噴嘴之體積(或其他所需參數)的一次性即時或接近即時的測量與計算,舉例而言,利用一透明薄膜以及沉積平面下方之拍攝(意即,從薄膜用以沉積的相反面);利用此快速測量,其變成可能頻繁而動態地更新體積測量,例如,以彌補油墨性質(包含黏性及組成材料)、溫度、噴嘴堵塞或老化以及其他因素上隨時間之變化。基於此點,舉例而言,以一個包含10,000個噴嘴的印刷頭組件而言,其預期該成千上萬個噴嘴各自的巨大測量總數能夠在數分鐘內取得,致使其能夠頻繁而動態地執行液滴測量。如早先所述,在一選擇性實施例之中,液滴測量(或者諸如軌跡及/或速度等其他參數之測量)可以被執行成一個週期性的間歇式程序,依據排程或者介於基板之間(例如,當基板正被載入或卸下之時)置入液滴測量系統,或者在其他組件及/或其他印刷頭檢修程序下堆集,以在許多測量區間上有效地收集許多資料點(並從而建立代表每一噴嘴之一統計分佈)。請注意,對於允許以一種特定於每一噴嘴的方式使用交替的噴嘴驅動波形的實施例而言,此一迅速測量系統促進了掃描路徑調整、噴嘴合格/失格驗證、以及各種噴嘴波形配對所產生的液滴之規畫性液滴組合,如同本文先前內容及優先權聲明中透過引用納入本文的專利申請案之中所略為提及者。參照標號745及747,藉由測量預期液滴體積至一優於0.01 pL之精確度,其變得可能規畫非常精確的液滴使用方式,其中液滴之使用亦可以被規畫(在理想情況下)至0.01 pL解析度,且其中在一實施例之中的測量誤差有效地被縮減,以相對於可容許的液滴體積提供 (或者其他統計量值,諸如 、等等)的可信度。對於液滴位置及/或速度及/或噴嘴翹曲亦同樣成立。舉例而言,藉由測量預期位置至一個優於一微米(或者另一距離量值)的精確度,其變得可能提供非常精確的沉積;預期位置可以被測量至一特定直角座標點及標準差的一定範圍之內(或者,例如,此點附近的 離度)。一旦針對各種液滴進行充分的測量,涉及該等液滴之組合的填充可以被評估並被使用以藉由可能的最有效率方式規畫印刷(748)。如分隔線749所示,液滴測量之執行可以在現行的"線上"印刷程序與"離線"測量與校準程序之間間歇性地來回切換;請注意,為了最小化製造系統停工時間,此等測量通常在例如基板載入及卸載期間的印刷機被派任其他程序時執行。參照標號751,在一實施例之中,透明薄膜或膜帶可被特別選擇(或處理),以最佳化接受分析的特別油墨的液滴性質(意即,該油墨的特定化學或流體性質)之捕集,以供輔助影像拍攝及/或分析之用。舉例而言,在一些應用之中,油墨係將在稍後藉由一紫外線光固化程序加以固化以轉變成一聚合物的一種單體(monomer);為了輔助液滴性質的捕集,該透明薄膜可以被選擇成具有物理、顏色、吸收、固定、固化、或其他性質,以增強利用影像拍攝系統分析此一材料的預知條件。最後,參照標號753,薄膜(膜帶)或者液滴測量系統整體(或二者)可以針對模組化置換加以設計,以最小化測量系統與印刷系統停工時間。For the example provided in FIG. 7B, it should be assumed that the droplet volume is being measured to obtain an accurate average value representing the expected droplet volume from a specific nozzle and a tight confidence interval. This facilitates selective planning of droplet combinations (using multiple nozzles and/or drive waveforms), while reliably maintaining the distribution of mixed ink filling in a target area near a desired target (that is, relative to the droplet average的mix). As marked in optional process blocks 741 and 743, the conceived optical measurement process ideally facilitates the one-time real-time or near real-time measurement and calculation of the volume (or other required parameters) of many nozzles, for example, using a transparent film And shooting below the deposition plane (that is, from the opposite side of the film used for deposition); with this rapid measurement, it becomes possible to update the volume measurement frequently and dynamically, for example, to compensate for the ink properties (including viscosity and composition materials) , Temperature, nozzle clogging or aging, and other factors change over time. Based on this, for example, for a print head assembly containing 10,000 nozzles, it is expected that the huge total number of measurements for each of the thousands of nozzles can be obtained within a few minutes, so that it can be executed frequently and dynamically. Droplet measurement. As mentioned earlier, in an alternative embodiment, droplet measurement (or measurement of other parameters such as trajectory and/or velocity) can be performed as a periodic intermittent procedure, based on a schedule or between the substrate In between (for example, when the substrate is being loaded or unloaded) into the droplet measurement system, or stacked under other components and/or other print head maintenance procedures, to effectively collect a lot of data in many measurement intervals Points (and thus establish a statistical distribution representing one of each nozzle). Please note that for embodiments that allow alternate nozzle drive waveforms to be used in a manner specific to each nozzle, this rapid measurement system facilitates scan path adjustment, nozzle pass/fail verification, and various nozzle waveform pairings. The programmatic droplet combinations of the droplets are the same as those mentioned in the patent application incorporated by reference in the previous content and priority statement in this article. With reference to numbers 745 and 747, by measuring the expected droplet volume to an accuracy better than 0.01 pL, it becomes possible to plan very precise droplet usage, in which the droplet usage can also be planned (in ideal Case) to 0.01 pL resolution, and the measurement error in one embodiment is effectively reduced to provide (or other statistical values, such as , , , Etc.) credibility. The same holds for the position and/or velocity of the droplet and/or the warpage of the nozzle. For example, by measuring the expected position to an accuracy better than one micron (or another distance value), it becomes possible to provide very accurate deposition; the expected position can be measured to a specific rectangular coordinate point and standard Within a certain range of the difference (or, for example, the , , and deviations near this point). Once adequate measurements have been taken for the various droplets, the fill involving the combination of these droplets can be evaluated and used to plan printing in the most efficient way possible (748). As indicated by the dividing line 749, the execution of droplet measurement can be intermittently switched back and forth between the current "online" printing procedure and the "offline" measurement and calibration procedure; please note that in order to minimize the downtime of the manufacturing system, these Measurements are usually performed when, for example, the printing press during substrate loading and unloading is assigned to other programs. With reference to reference numeral 751, in one embodiment, the transparent film or film tape can be specially selected (or treated) to optimize the droplet properties of the particular ink under analysis (that is, the specific chemical or fluid properties of the ink). ) For the purpose of auxiliary image shooting and/or analysis. For example, in some applications, the ink will be cured later by an ultraviolet light curing process to be converted into a monomer of a polymer; in order to assist the trapping of droplets, the transparent film It can be selected to have physical, color, absorption, fixation, curing, or other properties to enhance the predictive conditions for analyzing this material by the image capturing system. Finally, referring to reference numeral 753, the film (film tape) or the droplet measurement system as a whole (or both) can be designed for modular replacement to minimize the downtime of the measurement system and the printing system.

印刷期間,噴嘴(以及噴嘴波形)測量可以基於一捲動的基礎進行,推進而通過一定範圍的噴嘴,且每一中斷在基板印刷動作之間發生。無論是否接合以重新測量所有噴嘴,或者基於此一捲動的基礎,圖7B的同一基本程序均可被用來進行測量。為達此目的,當針對一個新的測量(緊接著先前測量之後或者緊接著一基板印刷動作之後)加入液滴測量裝置之時,系統軟體載入一指標,指出預定對其進行測量的下一個噴嘴組(例如,對於一第二印刷頭,"左上角位於噴嘴2,312處的噴嘴窗口")。在初始測量的情形中(例如,因應一新印刷頭之安裝、或者一最近的開機、或者諸如一每日測量程序之一週期性程序),上述的指標將指向一印刷頭之一第一噴嘴,例如,"噴嘴2,001"。此噴嘴關聯一特定成像網格存取或者從記憶體查找。系統使用所提供的位址將液滴測量系統(例如,先前所述的測量區域)推進至一個對應至預期噴嘴位置的位置。請注意在一典型系統之中,關聯此移動的機械性投擲定位相當精確,換言之,到達大約微米的解析度。此時系統選擇性地搜尋預期微米解析度位置附近的噴嘴位置,並在距估計網格位置的一微小微米距離之內,根據印刷頭的影像分析,找出噴嘴及其位置上的中心。例如,一鋸齒形、螺旋或其他搜尋模式可被用以針對相對於所需集合具有一特定位置關係之一噴嘴或基準點搜尋預期的位置。介於噴嘴之間的一個典型間距距離可以是位於250微米的量級,而噴嘴直徑則可能是位於10至20微米的量級。During printing, the nozzle (and nozzle waveform) measurement can be performed on a scroll basis, advancing through a certain range of nozzles, and each interruption occurs between substrate printing actions. Regardless of whether it is engaged to re-measure all nozzles, or based on this scrolling basis, the same basic procedure of Fig. 7B can be used to perform the measurement. To achieve this goal, when adding a droplet measuring device for a new measurement (immediately after the previous measurement or immediately after a substrate printing action), the system software loads an indicator that indicates the next one scheduled to be measured. Nozzle group (for example, for a second print head, "the nozzle window at nozzle 2,312 in the upper left corner"). In the case of initial measurement (for example, in response to the installation of a new print head, or a recent start-up, or a periodic program such as a daily measurement program), the above indicators will point to a first nozzle of a print head , For example, "Nozzle 2,001". This nozzle is associated with a specific imaging grid to access or search from memory. The system uses the provided address to advance the droplet measurement system (for example, the measurement area previously described) to a position corresponding to the expected nozzle position. Please note that in a typical system, the mechanical throw positioning associated with this movement is quite accurate, in other words, to a resolution of approximately micrometers. At this time, the system selectively searches for the nozzle position near the expected micron resolution position, and finds the nozzle and its position center within a tiny micron distance from the estimated grid position based on the image analysis of the print head. For example, a zigzag, spiral, or other search pattern can be used to search for an expected position for a nozzle or reference point that has a specific positional relationship relative to the desired set. A typical spacing distance between nozzles can be on the order of 250 microns, while the nozzle diameter can be on the order of 10 to 20 microns.

圖7C提供一關於噴嘴資格驗證之流程圖。在一實施例之中,液滴測量被執行以針對液滴體積、速度和軌跡中的任一者及/或每一者對每一噴嘴與套用於任一特定噴嘴的每一波形產生統計模型(例如,分佈概況與平均值)。因此,舉例而言,若對於十二個噴嘴均有兩種波形之選擇,則其存在高達24種波形-噴嘴組合或配對;在一實施例之中,對於每一噴嘴或波形-噴嘴配對所進行的每一參數(例如,體積)的測量次數足以發展出一穩健的統計模型。請注意,儘管有所規畫,但一特定噴嘴或噴嘴-波形配對在概念上仍有可能產生一異常的寬廣分佈,或者過於偏離正軌而應被特別處理的一個平均值。此套用的特別處理在一實施例之中由圖7C概念性地描繪。Figure 7C provides a flow chart for nozzle qualification verification. In one embodiment, droplet measurement is performed to generate a statistical model for any one and/or each of droplet volume, velocity, and trajectory for each nozzle and each waveform applied to any particular nozzle (For example, distribution profile and average). Therefore, for example, if there are two choices of waveforms for twelve nozzles, there are up to 24 waveform-nozzle combinations or pairs; in one embodiment, for each nozzle or waveform-nozzle pairing The number of measurements performed for each parameter (for example, volume) is sufficient to develop a robust statistical model. Please note that despite the planning, a specific nozzle or nozzle-waveform pairing may conceptually produce an abnormally broad distribution, or an average value that is too off-track and should be specially processed. This applied special processing is conceptually depicted in FIG. 7C in an embodiment.

更具體言之,其使用參考編號781概括地表示一方法。液滴測量裝置所產生的資料被儲存於記憶體785之中以供稍後使用。施用方法781期間,此資料被從記憶體召用,而每一噴嘴或噴嘴-波形配對的資料被抽取並被個別處理(783)。在一實施例之中,其針對每一個接受合格驗證的變數建立一常態隨機分佈,由一平均值、標準差、以及測量液滴之數目(n)所界定,或者使用等效的量值。請注意其可以使用其他的分佈格式(例如,學生氏T分佈(Student's-T)、帕松(Poisson)、等等)。量測參數被與一或多個範圍進行比較(787)以決定相關的液滴是否能夠被實際使用。在一實施例之中,至少一範圍被套用以取消液滴被使用的資格(例如,若液滴相對於所需目標具有一過大或過小的體積,則該噴嘴或噴嘴-波形配對可以被排除短期使用)。茲提供一個實例,若需要10.00 pL的液滴,則連結至超過此目標例如1.5%(例如,< 9.85 pL或者> 10.15 pL)的液滴平均值之噴嘴或噴嘴-波形配對可以被排除使用。其亦可以使用或者替代地使用範圍、標準差、變異數(variance)、或者其他離度量值。舉例而言,若想要具有一狹窄方佈的液滴統計模型(例如,3σ< 1.005%的平均值),則測量值不符合此標準的液滴可以被排除。其亦有可能使用考慮到多重因素的一套精密/複雜的標準。例如,一異常平均值結合一非常狹窄的離度可能可以接收,例如,若離度(例如,3 σ)偏離測定的(例如,異常的)平均值µ係位於1.005%之內,則可以使用一相關的液滴。舉例而言,若想要使用3 σ體積位於10.00pL ± 0.1pL之內的液滴,則可以排除產生具有一±0.8pL3 σ值之一9.96 pL平均值之一噴嘴-波形配對,但產生具有一±0.3pL3 σ值之一9.93 pL平均值之一噴嘴-波形配對則可能是可接受的。明顯地,依據任一所需要的拒絕/異常標準(789),其存在許多可能。請注意,此相同類型之處理可以套用於每液滴之飛行角度與速度,意即,其預計每個噴嘴-波形配對的飛行角度與速度均會顯現統計分佈,並且取決於推導自液滴測量裝置的測量及統計模型,一些液滴可以被排除。例如,一個其平均速度或飛行軌跡偏離正常值5%之外的液滴,或者速度的變異數在一特定目標之外者,均可以假設被排除使用。不同的範圍及/或評估標準可套用於藉由儲存器所測量及提供的每一液滴參數785。More specifically, it uses the reference number 781 to generally indicate a method. The data generated by the droplet measuring device is stored in the memory 785 for later use. During the application of method 781, this data is recalled from memory, and the data for each nozzle or nozzle-waveform pair is extracted and processed individually (783). In one embodiment, it establishes a normal random distribution for each variable subject to qualification verification, which is defined by an average value, standard deviation, and the number of measured droplets (n), or uses an equivalent value. Please note that it can use other distribution formats (for example, Student's-T, Poisson, etc.). The measured parameter is compared with one or more ranges (787) to determine whether the relevant drop can be actually used. In one embodiment, at least one range is applied to disqualify the droplet from being used (for example, if the droplet has a volume that is too large or too small relative to the desired target, the nozzle or nozzle-wave pair can be excluded Short-term use). To provide an example, if 10.00 pL droplets are required, then nozzles or nozzle-waveform pairings connected to the average droplet average value exceeding this target, for example 1.5% (for example, <9.85 pL or> 10.15 pL), can be excluded. It can also use or alternatively use range, standard deviation, variance, or other deviation measures. For example, if a droplet statistical model with a narrow square cloth is desired (for example, an average value of 3σ<1.005%), droplets whose measured values do not meet this criterion can be excluded. It is also possible to use a sophisticated/complex standard that takes into account multiple factors. For example, an abnormal average combined with a very narrow deviation may be acceptable, for example, if the deviation (e.g., 3 σ) deviates from the measured (e.g., abnormal) average µ is within 1.005%, then it can be used A related droplet. For example, if you want to use a droplet with a 3 sigma volume within 10.00pL ± 0.1pL, you can exclude generating a nozzle-wave pair with an average value of 9.96 pL with a ±0.8pL 3 σ value, but produces A nozzle-waveform pair with a mean value of ±0.3 pL 3 σ of 9.93 pL may be acceptable. Obviously, there are many possibilities based on any required rejection/exception criterion (789). Please note that this same type of processing can be applied to the flight angle and velocity of each droplet, which means that it is expected that the flight angle and velocity of each nozzle-waveform pair will show a statistical distribution, and depends on the derivation from the droplet measurement According to the measurement and statistical model of the device, some droplets can be eliminated. For example, a droplet whose average velocity or flight trajectory deviates from the normal value by 5%, or the variation of velocity outside a specific target, can be assumed to be excluded from use. Different ranges and/or evaluation criteria can be applied to each droplet parameter 785 measured and provided by the storage.

請注意,取決於拒絕/異常標準789,液滴(以及噴嘴-波形組合)可被以不同的方式處理和對待。例如,其可以拒絕一個不符合一所需標準的特別液滴(791),如前所述。或者,其有可能針對特別的噴嘴-波形配對的下一次測量迭代步驟選擇性地執行更多的測量;舉例而言,若一統計分佈太寬,則其有可能專門針對該特別噴嘴-波形配對執行更多測量,以透過更多測量改善此統計分佈之緊密度(例如,變異數及標準差係取決於測量的資料點之數目)。參照標號793,其亦有可能調整一噴嘴驅動波形,例如,使用一較高或較低之電壓位準(例如,從而提供較大或較小的速度或者更一致的飛行角度),或者重新塑造一波形以產生符合指定標準之一調整噴嘴-波形配對。參照標號794,波形之時序亦可以被調整(例如,對關聯一特定噴嘴-波形配對的異常均值速度進行補償)。舉例而言(先前有略為提及),一緩慢液滴可以在相對於其他噴嘴的一較早時點被噴發,而一快速液滴則可以在時間上較慢被噴發以補償較快的飛行時間。許多此等選替方式均有可能。最後,參照標號795,任何被調整的參數(例如,噴發時間、波形電壓位準或形狀)均可以被儲存,並且,選擇性地,如果想要的話,被調整的參數可被套用以重新測量一或多個關聯液滴。在每一噴嘴-波形配對(經過修改或以其他方式處理而)被驗證資格(通過或失敗)之後,該方法接著繼續進行至下一個噴嘴-波形配對,參照標號797。Note that depending on the rejection/abnormality criterion 789, the droplet (and nozzle-waveform combination) can be handled and treated in different ways. For example, it can reject a particular droplet (791) that does not meet a required standard, as described above. Or, it may selectively perform more measurements for the next measurement iteration step of a particular nozzle-waveform pair; for example, if a statistical distribution is too wide, it may be specifically for that particular nozzle-waveform pair Perform more measurements to improve the tightness of this statistical distribution through more measurements (for example, the variance and standard deviation depend on the number of data points measured). With reference to 793, it is also possible to adjust a nozzle drive waveform, for example, to use a higher or lower voltage level (for example, to provide a larger or smaller speed or a more consistent flight angle), or to reshape A waveform is generated to adjust the nozzle-wave pair in accordance with one of the specified standards. With reference to numeral 794, the timing of the waveform can also be adjusted (for example, to compensate for an abnormal average velocity associated with a particular nozzle-waveform pair). For example (as mentioned earlier), a slow drop can be ejected at an earlier point relative to other nozzles, while a fast drop can be ejected slower in time to compensate for the faster flight time . Many such alternatives are possible. Finally, referring to reference number 795, any adjusted parameter (for example, eruption time, waveform voltage level or shape) can be stored, and, optionally, if desired, the adjusted parameter can be applied to re-measurement One or more associated droplets. After each nozzle-waveform pair (modified or otherwise processed) is qualified (passed or failed), the method then proceeds to the next nozzle-waveform pair, reference numeral 797.

前述之機制亦可被用以測量噴嘴翹曲(並且理所當然地以此為基礎對噴嘴的合格性進行驗證)。換言之,舉例而言,若其假定一群沉積液滴源自單一共同的精確噴嘴位置,但偏離中心地群聚於與印刷頭基板掃描移動正交的方向上,則所涉噴嘴可能相對於位於同一列或同一行上的噴嘴有所偏移。此種異常偏移可能導致理想化的液滴噴發偏離,此可以在規畫液滴的精確組合時納入考量,換言之,任何此種"翹曲"或個別噴嘴偏移均被儲存並被用以驗證噴嘴的合格/不合格或者做為印刷掃描規畫的一部分,如先前所述,讓印刷系統以一種規劃的方式利用每一個別噴嘴之差異而非試圖利用求取平均而彌平該等差異。在一選擇性的變異之中,相同的技術可被用以決定沿著印刷頭掃描方向(意即,快速印刷軸線)的不規則噴嘴間隔,雖然對於所描繪的實施例而言,任何此種誤差均被歸入針對液滴速度偏離的修正(例如,任何此種間隔誤差均可以藉由對噴嘴速度的修正加以調整,例如,因為對一用於該特定噴嘴的驅動波形的微小改變所招致者)。為了決定產生一簇液滴之一噴嘴的跨掃描軸線翹曲,各別軌道實際上相對於同一噴嘴的其他測量軌道被反向繪製(或者以其他方式施加數學轉換)並被用以辨識檢視下的特定噴嘴之一平均跨掃描軸線位置。此位置可以偏離此一噴嘴之一預期位置,其可能是噴嘴翹曲之佐證。The aforementioned mechanism can also be used to measure nozzle warpage (and of course to verify the qualification of the nozzle based on this). In other words, for example, if it is assumed that a group of deposited droplets originate from a single common precise nozzle position, but are clustered off-center in a direction orthogonal to the scanning movement of the print head substrate, the nozzles involved may be located at the same position. The nozzles on the column or the same row are offset. Such abnormal deviations may lead to deviations from the idealized droplet ejection, which can be taken into consideration when planning the precise combination of droplets. In other words, any such "warping" or individual nozzle deviations are stored and used To verify the pass/fail of the nozzles or as part of the printing scan plan, as mentioned earlier, let the printing system use the differences of each individual nozzle in a planned way instead of trying to average out the differences . In an optional variation, the same technique can be used to determine the irregular nozzle spacing along the print head scan direction (ie, the fast printing axis), although for the depicted embodiment, any such Errors are classified as corrections for droplet velocity deviations (for example, any such spacing errors can be adjusted by corrections to nozzle velocity, for example, due to a small change in the drive waveform for that particular nozzle. By). In order to determine the warping across the scan axis of a nozzle that produces a cluster of droplets, the individual orbits are actually drawn (or mathematically transformed in other ways) relative to the other measurement orbits of the same nozzle and used for identification. One of the specific nozzles averages the position across the scan axis. This position can deviate from an expected position of the nozzle, which may be evidence of nozzle warpage.

如前所述且如同此說明所蘊涵之意義,一實施例針對每一個被測量的參數建立每一噴嘴之一統計分佈,例如,針對體積、速度、軌跡、噴嘴翹曲、以及可能的其他參數。做為此等統計程序的一部分,個別的量測可以被拋棄或者被用以識別錯誤。茲舉出一些例子,若一液滴測量被發現其具有之數值到目前為止被從同一噴嘴的其他測量移除,則該測量可以代表一噴發或測量錯誤;在一實施方式之中,若偏離至一個超過一統計誤差參數之點,則系統捨棄此測量。若完全未看見任何液滴,則此可能是液滴測量系統位於錯誤噴嘴(錯誤位置)之證據,或者具有一噴發波形錯誤或者一檢視下的噴嘴失效。其可以使用一錯誤處置程序以做出適當之調整,包含依據需要採取任何新的或者進一步的測量。As mentioned above and as the meaning implies in this description, one embodiment establishes a statistical distribution of each nozzle for each measured parameter, for example, for volume, velocity, trajectory, nozzle warpage, and possibly other parameters . As part of such statistical procedures, individual measurements can be discarded or used to identify errors. To cite some examples, if a droplet measurement is found to have a value that has been removed from other measurements of the same nozzle so far, then the measurement can represent an eruption or measurement error; in one embodiment, if it deviates To a point exceeding a statistical error parameter, the system discards this measurement. If no droplets are seen at all, this may be evidence that the droplet measurement system is at the wrong nozzle (wrong position), or has an error in the ejection waveform or a nozzle failure under inspection. It can use an error handling procedure to make appropriate adjustments, including taking any new or further measurements as needed.

請注意,雖然圖7A至7C並未個別召用,但其基本上會針對配合每一個噴嘴使用的每一個可用備選波形執行所描繪的測量程序。舉例而言,若每一噴嘴均具有四個不同的壓電式驅動波形可供選擇,則測量程序一般而言可能針對每一群組之噴嘴重複4次;若一特定實施方式要求根據每一波形的24個液滴建立一統計分佈,則一噴嘴可以有96次此種測量(四個波形每一個24次),其中毎一次測量均用以求取液滴速度、軌跡和體積中的毎一者、以及估計噴嘴位置(例如,用於評估噴嘴翹曲)之統計平均值與離度量值。在一構想實施例之中,任何數目之波形均可以被塑形或以其他方式產生,且系統測量關聯一或多個預選波形之液滴參數並從而儲存此等參數以供後續使用於印刷及/或印刷規畫。此等參數亦可以被用以決定是否維持(及儲存)波形以供使用於印刷(例如,做為一組預選的容許波形的一部分),或者用以選擇一不同波形並測量該波形的多個參數。Please note that although Figures 7A to 7C are not individually called, they basically perform the depicted measurement procedure for each available candidate waveform used with each nozzle. For example, if each nozzle has four different piezoelectric drive waveforms to choose from, the measurement procedure may generally be repeated 4 times for each group of nozzles; The 24 droplets of the waveform establish a statistical distribution, then a nozzle can have 96 such measurements (24 for each of the four waveforms), and each measurement is used to obtain each droplet velocity, trajectory, and volume. One is the statistical average value and the deviation value of the estimated nozzle position (for example, for evaluating nozzle warpage). In a contemplated embodiment, any number of waveforms can be shaped or otherwise generated, and the system measures the droplet parameters associated with one or more preselected waveforms and stores these parameters for subsequent use in printing and / Or printing planning. These parameters can also be used to determine whether to maintain (and store) the waveform for printing (for example, as part of a set of pre-selected allowable waveforms), or to select a different waveform and measure multiple of the waveform parameter.

透過精確機械系統與液滴測量技術的使用,所揭示的方法容許個別噴嘴特性的極高準確度測量,包含每一前述參數(例如,體積、速度、軌跡、噴嘴位置、以及其他參數)的平均液滴量度。其當能領略,所述之技術促進製程的高度一致性,特別是OLED裝置製程,並因此增強可靠度。藉由提供控制效率,特別是有關液滴測量之速度以及以一種經過計算以縮減整體系統停工時間的方式將此等測量堆疊於其他系統程序之中,以上所呈現的教示有助於提供一個更快速而較不昂貴的製程,設計以提供產製流程中的彈性與精確性。Through the use of precise mechanical systems and droplet measurement technology, the disclosed method allows extremely high accuracy measurement of individual nozzle characteristics, including the average of each of the aforementioned parameters (for example, volume, velocity, trajectory, nozzle position, and other parameters) Droplet measurement. It should be appreciated that the described technology promotes a high degree of consistency in the manufacturing process, especially the manufacturing process of OLED devices, and thus enhances reliability. By providing control efficiency, especially with regard to the speed of droplet measurement, and stacking these measurements in other system programs in a way that is calculated to reduce overall system downtime, the teachings presented above help to provide a better Fast and less expensive manufacturing process, designed to provide flexibility and accuracy in the production process.

圖8A顯示一工業製造設備內之一典型配置之一剖面視圖(例如,關聯此一設備中之一印刷機) 801。更具體言之,其可看出印刷被執行於一印刷封閉腔室803之內,使得一周遭環境能夠被控制("受控環境");此控制通常被執行以排除無法接受的塵粒,或者以其他方式在一特定氣體組成成分(例如,氮氣、惰性氣體、等等)的存在下執行印刷。概括而言,一基板813大體上利用一環境緩衝腔室(圖中未顯示)被引入印刷機並使用一機械裝卸器被輸送至一浮動支承檯815,其亦透過基板上的一或多個基準點(用以偵測精確基板位置的此等基準點與一攝像機或其他光學偵測器並未顯示於圖8A之中)的偵測適切地對準基板以供印刷。印刷係利用一印刷頭組件807執行,其在一"慢速印刷軸"的方向上沿著一滑動桿(traveler) 811來回移動(如箭頭809所繪)。印刷頭組件807被描繪成單一物件,但其可以是承載多個印刷頭(例如,6、10或其他數目)之一複雜組件,各自均具有數百到成千上萬個印刷噴嘴(例如,各有兩千個噴嘴)。印刷頭組件807於基板813上的精確位置點沉積一液體油墨至精確的厚度,此處油墨包含一材料,該材料將形成一或多個預定在基板813上製造的產品的一永久性疊層。舉例而言,此一材料可以是一有機或無機材料、一導體或絕緣體、一塑膠、一金屬、或者一些其他類型之材料。在一典型應用之中,基板813係超過一米寬且數米長,且被用以同時製造基板上呈陣列形式排列的多個OLED顯示器;每一疊層均被沉積成跨所有此種"子面板"(意即,跨多個製造中的此種顯示器)之一整合式印刷程序的一部分,其中個別的顯示器最後透過其他程序從基板切割出來。每一印刷程序均可以將一不同油墨沉積至一特定厚度,舉例而言,導體、絕緣體、發光元件、半導體材料、囊封等等,使用特定於特殊疊層之印刷指令。在一裝配生產線製程之中,其可以存在多個印刷機,配置於不同位置或者使用於連續的不同沉積製程之中。對於OLED材料而言,針對一特別疊層沉積一油墨,且沉積之後,基板被自腔室移除並被推進至一固化腔室(圖中未顯示),沉積油墨可以於此處固化、乾燥、被加熱或者被以其他方式處理以將耐久性加諸於沉積材料。請注意,所描繪的配置方式代表一"分離軸"印刷機,意即,浮動檯815和相關的裝卸器(圖中未顯示)沿著圖中右下角附近之一維度參考823處所見之一Y軸825的方向上,將基板推入及推出圖式頁面。FIG. 8A shows a cross-sectional view of a typical configuration in an industrial manufacturing facility (for example, associated with a printer in the facility) 801. More specifically, it can be seen that printing is performed in a printing closed chamber 803, so that the surrounding environment can be controlled ("controlled environment"); this control is usually performed to eliminate unacceptable dust particles, Or, printing is performed in other ways in the presence of a specific gas composition (for example, nitrogen, inert gas, etc.). In summary, a substrate 813 is generally introduced into the printer using an environmental buffer chamber (not shown in the figure) and transported to a floating support table 815 using a mechanical loader, which also passes through one or more of the substrates The detection of fiducial points (the fiducial points used to detect the precise substrate position and a camera or other optical detector are not shown in FIG. 8A) are appropriately aligned with the substrate for printing. Printing is performed using a print head assembly 807, which moves back and forth along a traveler 811 in the direction of a "slow printing axis" (as depicted by arrow 809). The print head assembly 807 is depicted as a single object, but it can be a complex assembly that carries multiple print heads (e.g., 6, 10, or other numbers), each with hundreds to thousands of print nozzles (e.g., Each has two thousand nozzles). The print head assembly 807 deposits a liquid ink to a precise thickness at a precise point on the substrate 813, where the ink contains a material that will form a permanent laminate of one or more products scheduled to be manufactured on the substrate 813 . For example, the material can be an organic or inorganic material, a conductor or insulator, a plastic, a metal, or some other types of materials. In a typical application, the substrate 813 is more than one meter wide and several meters long, and is used to manufacture multiple OLED displays arranged in an array on the substrate at the same time; each stack is deposited across all such "substrates" "Panel" (meaning across multiple such displays in manufacturing) is part of an integrated printing process in which individual displays are finally cut from the substrate through other processes. Each printing process can deposit a different ink to a specific thickness, for example, conductors, insulators, light-emitting elements, semiconductor materials, encapsulation, etc., using printing instructions specific to a particular laminate. In an assembly line process, there may be multiple printers, which are arranged at different positions or used in continuous different deposition processes. For OLED materials, an ink is deposited for a particular layer, and after deposition, the substrate is removed from the chamber and pushed into a curing chamber (not shown in the figure), where the deposited ink can be cured and dried , Be heated or otherwise treated to add durability to the deposited material. Please note that the depicted configuration represents a "separation axis" printing machine, which means that the floating table 815 and the associated loader (not shown in the figure) are along a dimension near the lower right corner of the figure, as seen at 823. In the direction of Y-axis 825, push the substrate into and out of the graphic page.

為了執行液滴測量,印刷頭組件807選擇性地被推進到一正常印刷區域之外部而抵達一個點上,其可以在該點被停駐於一維修站之中,概括而言關聯一第二封閉環境805。此第二環境係選擇性的,但有利於容許檢測、印刷頭更換以及其他檢修形式,無須給印刷封閉腔室803加入通風孔。為了停駐印刷頭組件807,該組件被移動至一個看起來大體位於該圖左側處的位置,且接著被垂直地推進以將印刷頭組件807密封於一個做為該第二封閉環境的腔室,如同虛線位置819所描繪。在此"停駐"位置之中,液滴測量系統817可以被控制(例如,在三個維度上)以選擇性地搬移一測量區域,模擬一基板沉積高度鄰接於任何需要的噴嘴區域。In order to perform droplet measurement, the print head assembly 807 is selectively advanced outside a normal printing area to reach a point where it can be parked in a repair station, in general, associated with a second Closed environment 805. This second environment is optional, but it is conducive to allow detection, print head replacement, and other types of maintenance, without adding vents to the closed printing chamber 803. In order to park the print head assembly 807, the assembly is moved to a position that appears to be roughly on the left side of the figure, and then pushed vertically to seal the print head assembly 807 in a chamber that serves as the second enclosed environment , As depicted by dotted line position 819. In this "parked" position, the droplet measurement system 817 can be controlled (for example, in three dimensions) to selectively move a measurement area, simulating a substrate deposition height adjacent to any desired nozzle area.

請注意,如前所述,在一典型應用之中,其想要盡可能地使製造設備801維持"在線"及使用之中。為達此目的,其並非在設備801可被用於印刷(而用於產品製造)時執行液滴測量,在一實施例之中,測量及印刷被"乒乓式地交替",意即,毎次一基板(例如,813)被載入或卸下,介於印刷動作的一時間區間內,印刷頭組件807被推進至維修站並且被局部地校準(例如,針對印刷噴嘴及/或印刷噴嘴波形之一滾動子集),從而以一種積累統計測量總數的方式針對毎一噴嘴建立一組穩健的測量、更新至最新狀態、並進行檢修,如同先前所述。請注意此等特徵中的任一項軍可以被視為選擇性的,且並非對於揭示技術之付諸實行均屬必要。Please note that, as mentioned above, in a typical application, it is intended to keep the manufacturing equipment 801 "online" and in use as much as possible. For this purpose, it is not to perform droplet measurement when the device 801 can be used for printing (but for product manufacturing). In one embodiment, measurement and printing are alternated "ping-pong", that is, every time The next time a substrate (e.g., 813) is loaded or unloaded, the print head assembly 807 is advanced to the repair station and calibrated locally (e.g., for printing nozzles and/or printing nozzles) during a time interval of the printing operation. One of the waveforms is a rolling subset), so as to build a set of robust measurements for each nozzle in a way of accumulating the total number of statistical measurements, update to the latest state, and perform maintenance, as previously described. Please note that any of these features can be considered selective and not all necessary for the implementation of the revealing technique.

圖8B提供沿著圖8A的線條B-B所取之基板與印刷機在沉積程序期間所可能呈現之一平面圖。印刷封閉腔室同樣地由參考編號803概括標示,而用於液滴測量的第二封閉環境則概括地標示為參考編號805。在印刷封閉腔室之內,其上將被印刷的基板同樣地由標號813概括標示,而用以運送基板的支承檯則概括地標示為標號815。概括而言,基板的任何xy座標係藉由移動之組合抵達,包含基板藉由支承檯的x及y維度上的移動(例如,利用浮動支承,如標號857所表示),並利用沿著一滑動桿811的一或多個印刷頭807的"慢速軸"x維度上的移動,如同箭頭809所概括表示。如前所述,浮動檯及基板裝卸基礎設施係用以依據需要在印刷期間沿著一或多個"快速軸"移動基板。其可看出印刷頭具有複數噴嘴865,每一噴嘴均分別由導自一印刷影像之一噴發型樣所控制(例如,當印刷頭沿著"慢速軸"從左到右與從右到左移動時,招致對應於印刷機網格點的行的印刷);請注意,雖然圖中僅描繪出一些印刷噴嘴,但實際上其包含數百到成千上萬個此種噴嘴,配置成許多行和列。利用提供於快速軸(意即,y軸)方向的一或多個印刷頭與基板之間的相對移動,印刷基本上呈現出循著印刷機網格點的多個個別列之一帶幅區域。其亦可以選擇性地旋轉或者以其他方式調整印刷頭組件,以變更有效的噴嘴間隔,參照標號867。請注意,多個此種印刷頭可以一起使用,並按照需要調整相對於彼此的x維度、y維度、及/或z維度之偏移(參見圖8B中的軸線圖例)。印刷動作繼續進行,直到整個目標區域(以及任何邊界區域)均已按照需要以油墨印刷為止,其中所描繪的移送方向857之垂直成分代表相對的印刷頭組件/基板移動。在必要的油墨量的沉積之後,基板完成,諸如透過使用從液體油墨形成一永久性疊層之一紫外線(UV)或其他固化或硬化程序。如同早先所述,當基板被載入或卸下以供印刷,印刷頭被推進至一檢修站並被密封至一第二封閉環境805。實務上,此第二封閉環境如前所述被設置成印刷封閉腔室803之一子集,使得其可以在完全不必針對印刷封閉腔室加入通風孔下更換一印刷頭。在第二封閉環境805之內,液滴測量系統817 (可見於位於滑動桿811下的虛線之中)被選擇性地接合(同樣地,有利地利用例如其中一機箱之液滴測量系統的整體性三維連結),以供如早先所述之測量。FIG. 8B provides a plan view of the substrate and printer taken along the line B-B of FIG. 8A during the deposition process. The printed closed chamber is also generally designated by reference number 803, and the second closed environment for droplet measurement is generally designated by reference number 805. In the printing enclosed chamber, the substrate to be printed thereon is also generally indicated by the reference number 813, and the support table used to transport the substrate is generally indicated as the reference number 815. In summary, any xy coordinate of the substrate is reached by a combination of movement, including the movement of the substrate in the x and y dimensions of the support table (for example, using a floating support, as indicated by reference numeral 857), and using a movement along a The movement of the “slow axis” of the one or more printing heads 807 of the sliding rod 811 in the x-dimension is generally indicated by the arrow 809. As mentioned earlier, the floating table and substrate handling infrastructure are used to move the substrate along one or more "fast axes" during printing as needed. It can be seen that the print head has a plurality of nozzles 865, and each nozzle is controlled by a spray pattern derived from a printed image (for example, when the print head moves from left to right and from right to right along the "slow axis" When moving to the left, printing of rows corresponding to the grid points of the printer is caused; please note that although only some printing nozzles are depicted in the figure, they actually contain hundreds to thousands of such nozzles, configured as Many rows and columns. With the relative movement between one or more print heads and the substrate provided in the fast axis (ie, y axis) direction, printing basically presents a web area of one of a plurality of individual columns following the grid points of the printer. It can also selectively rotate or adjust the print head assembly in other ways to change the effective nozzle interval, refer to number 867. Please note that multiple such print heads can be used together, and the x-dimension, y-dimension, and/or z-dimension offset relative to each other can be adjusted as needed (see the axis legend in FIG. 8B). The printing operation continues until the entire target area (and any boundary areas) has been printed with ink as required, where the vertical component of the depicted transfer direction 857 represents the relative print head assembly/substrate movement. After the deposition of the necessary amount of ink, the substrate is completed, such as by using ultraviolet (UV) or other curing or hardening procedures to form a permanent laminate from liquid ink. As mentioned earlier, when the substrate is loaded or unloaded for printing, the print head is advanced to an inspection station and sealed to a second enclosed environment 805. In practice, this second closed environment is set as a subset of the printing closed chamber 803 as described above, so that it can replace a printing head without adding ventilation holes for the printing closed chamber at all. Within the second enclosed environment 805, the droplet measurement system 817 (visible in the dashed line under the sliding rod 811) is selectively engaged (similarly, it is advantageous to use the entire droplet measurement system of one of the enclosures Sexual three-dimensional connection) for the measurement as described earlier.

圖9提供例示許多噴嘴中每一者之相對於液滴預期位置之測量液滴位置之一圖表。更具體言之,該圖表由標號901概括地標示,並且顯示一群大約40個的噴嘴。其應假設圖表901代表影像資料,舉例而言,經過如前文參照圖6A至6C所描述之處理,以取得相對於一對應預期位置(意即,諸如位置904)之一測量液滴位置(意即,諸如位置903)。相對於圖9,其應注意一些特徵。第一,噴嘴看起來被配置成位置上略微交錯的噴嘴列,如圖標905所示;此特徵允許極為精確的液滴間隔,例如,當製造公差使得噴嘴被定位於相隔數百微米的一跨掃描方向上,列與列之間的略微交錯允許使用交替的噴嘴(例如,相對於對應至位置907之噴嘴的對應至位置906之噴嘴),此允許極為緊密的液滴佈放,例如,在一基板上任何預定位置的20微米或更小的範圍之內。第二,圖表901間接地強調液滴測量系統相對於一印刷頭之位置校準所提供的助益,例如,系統確切地知悉哪個噴嘴對應至位置903以及預期位置904示有其重要性的,以能夠將任何測量資料(以及任何噴嘴合格驗證或調整)匹配到正確的噴嘴。透過影像處理,其可以決定每一噴嘴的精確位置偏移量,並被計入噴嘴合格驗證與印刷規畫之影響因素。最後,再次請注意,一透明薄膜之使用不僅允許沉積液滴之影像拍攝,亦允許噴嘴之影像拍攝(例如,穿透該透明薄膜之拍攝),此有助於由軟體進行距離分析之效能。此並非對於所有實施例均屬必要,例如,透過薄膜之拍攝影像如何對應至噴嘴板位置之理解,軟體亦可以輕易地推知相對於拍攝影像的噴嘴位置,並以此為基礎計算位置偏移量。在圖9的背景之下,標號904在一實施例之中代表影像噴嘴位置,其中介於測量位置903與位置904之間的任何偏離代表液滴速度及/或翹曲。並且,雖然圖9代表相對於期望液滴位置的液滴位置偏移量,但類似的分析亦可以被使用以測量液滴體積,舉例而言,藉由將液滴顏色(例如,灰階數值)、液滴直徑、或者拍攝影像的其他特徵與一標準進行比較,而後自其計算液滴體積。透過每一噴嘴或噴嘴-波形配對的反複額外測量之運用,系統能夠基於每噴嘴或每噴嘴波形之基礎,輕易地建立任何需要的液滴參數之分佈。Figure 9 provides a graph illustrating the measured droplet position relative to the expected position of the droplet for each of the many nozzles. More specifically, the chart is generally indicated by reference numeral 901, and shows a group of approximately 40 nozzles. It should be assumed that the chart 901 represents image data. For example, after the processing described above with reference to FIGS. 6A to 6C, the droplet position (meaning, such as position 904) is measured relative to a corresponding expected position (ie, position 904). That is, such as location 903). Compared with Figure 9, some features should be noted. First, the nozzles appear to be arranged in slightly staggered rows of nozzles, as shown in icon 905; this feature allows extremely precise droplet spacing, for example, when manufacturing tolerances allow the nozzles to be positioned at a span of hundreds of microns apart In the scanning direction, the slight staggering between the rows allows alternate nozzles to be used (for example, the nozzles corresponding to the position 907 corresponding to the nozzles corresponding to the position 906), which allows extremely tight droplet placement, for example, in Within 20 microns or less of any predetermined position on a substrate. Second, the chart 901 indirectly emphasizes the benefits provided by the position calibration of the droplet measurement system relative to a print head. For example, it is important for the system to know exactly which nozzle corresponds to the position 903 and the expected position 904. Able to match any measurement data (and any nozzle qualification verification or adjustment) to the correct nozzle. Through image processing, it can determine the precise position offset of each nozzle, which is included in the influence factors of nozzle qualification verification and printing planning. Finally, please note again that the use of a transparent film not only allows image capture of deposited droplets, but also allows image capture of nozzles (for example, shooting through the transparent film), which helps the performance of distance analysis by software. This is not necessary for all embodiments. For example, the software can easily infer the nozzle position relative to the shot image and calculate the position offset based on the understanding of how the image shot through the film corresponds to the position of the nozzle plate. . In the background of FIG. 9, the reference numeral 904 represents the image nozzle position in one embodiment, where any deviation between the measurement position 903 and the position 904 represents droplet velocity and/or warpage. And, although Figure 9 represents the droplet position offset relative to the expected droplet position, a similar analysis can also be used to measure the droplet volume, for example, by changing the droplet color (e.g., grayscale value) ), droplet diameter, or other characteristics of the captured image are compared with a standard, and then the droplet volume is calculated from it. Through the use of repeated additional measurements for each nozzle or nozzle-waveform pairing, the system can easily establish the distribution of any required droplet parameters based on the basis of each nozzle or each nozzle waveform.

圖10顯示一流程圖1001,關聯從一拍攝影像決定液滴體積。參照標號1003,代表由一噴嘴陣列產生之液滴之一拍攝影像首先從記憶體被擷取出來。此影像接著視情況被濾波以恰好分割出感興趣的液滴(例如,依據沉積介質上的油墨厚度或濃度而帶有不同色彩強度),參照標號1005。請注意,此等濾波影像可以是所執行濾波動作之一第一、第二、第三或其他樣例,以自單一影像測量一特定參數(例如,其他樣例可被用以針對液滴速度、位置、噴嘴位置等等計算距離、位置、偏移量、等等)。參照標號1007,任何顏色色調接著被處理以將該色調關聯油墨厚度或密度;例如,若沉積油墨具有一略微偏紅的色彩,則影像中一"較紅的"部分通常將代表較大的厚度。請注意,對於從每一噴嘴一次沉積多個液滴的實施例而言,其可能有多個可見的液滴交疊,而厚度處理1007在較佳的實施方式之中將此納入考量,分割出任何個別液滴;但此並非對於所有實施例均屬必要,舉例而言,若其知道已經沉積例如五個液滴,則計算整體體積再除以五可能即已足矣。參照標號1009,液滴半徑接著如早先所述地被計算(或者匯集油墨覆蓋率)並配合導出的厚度量值使用以計算總沉積油墨。重要的是,做為一沉積表面使用的透明薄膜在理想情況下固定住沉積油墨並因此可能異於使用於實際印刷中之一實際沉積表面(例如,一玻璃基板);因此,如同標號1008所描繪,特定於沉積材料之一儲存標準被擷取並配合厚度處理、體積計算1011、或二者使用以求取正確的液滴體積估計值。最後,測量資料被儲存,參照標號1013,且任何計算出來的每噴嘴或每噴嘴波形之分佈(例如,平均值及離度)均被更新以供使用於印刷或掃描規畫。請注意,對於一標準及原始數值(或偏移量)計算的類似比較可以套用於體積之外的許多其他參數,視對於特別應用的適合性而定。Figure 10 shows a flow chart 1001 for determining the droplet volume from a captured image. Reference numeral 1003 represents that one of the shot images of the droplets generated by a nozzle array is first captured from the memory. This image is then optionally filtered to exactly segment the droplets of interest (for example, with different color intensities depending on the thickness or concentration of the ink on the deposition medium), refer to 1005. Please note that these filtered images can be one of the first, second, third, or other examples of filtering actions performed to measure a specific parameter from a single image (for example, other examples can be used to target the droplet velocity , Position, nozzle position, etc. to calculate distance, position, offset, etc.). With reference to 1007, any color hue is then processed to correlate the hue with the ink thickness or density; for example, if the deposited ink has a slightly reddish hue, a "redder" part of the image will usually represent a greater thickness . Please note that for an embodiment in which multiple droplets are deposited from each nozzle at a time, there may be multiple visible droplets overlapping, and the thickness processing 1007 takes this into consideration in a preferred embodiment, dividing It is not necessary for all embodiments. For example, if it knows that five droplets have been deposited, for example, it is sufficient to calculate the overall volume and divide by five. With reference to reference numeral 1009, the droplet radius is then calculated (or pooled ink coverage) as described earlier and used in conjunction with the derived thickness value to calculate the total deposited ink. It is important that the transparent film used as a deposition surface holds the deposited ink under ideal conditions and may therefore be different from an actual deposition surface used in actual printing (for example, a glass substrate); therefore, as indicated by the reference number 1008 Depicted, a storage standard specific to the deposition material is captured and used in conjunction with thickness processing, volume calculation 1011, or both to obtain the correct droplet volume estimate. Finally, the measurement data is stored, refer to the number 1013, and any calculated per-nozzle or per-nozzle waveform distribution (for example, average value and deviation) are updated for use in printing or scanning planning. Please note that similar comparisons calculated for a standard and original value (or offset) can be applied to many other parameters besides volume, depending on suitability for a particular application.

體悟自前述的各種技術及考量,一製程可被執行以迅速地大量生產產品,並具備低廉的系統成本。藉由提供快速的可重複印刷技術,相信印刷可以被實質地改進,舉例而言,將逐層印刷時間縮減至未採用前述技術前的所需時間的一小部分。再次回到大型HD電視顯示器的例子,咸信對於大型基板(例如,8.5代基板,大約220cm x 250cm)的每一彩色構件疊層均能夠被精確及可靠地印刷,在一百八十秒或更短的時間之內,或者甚至九十秒或更短的時間之內,代表實質的製程改善。改善印刷的效率及品質為生產大型HD電視顯示器的巨幅成本縮減鋪平了道路,從而達到更低的終端消費者成本。如先前所述,顯示器製造(特別是OLED製造)係本文所述之技術的一項應用,該等技術可套用於為數眾多之製程、電腦、印刷機、軟體、製造設備以及終端裝置,並未局限於顯示面板。Realizing from the aforementioned various technologies and considerations, a process can be executed to quickly mass produce products with low system costs. By providing fast and repeatable printing technology, it is believed that printing can be substantially improved, for example, by reducing the printing time of each layer to a fraction of the time required before the aforementioned technology was used. Going back to the example of a large HD TV monitor again, it is believed that for a large substrate (for example, the 8.5 generation substrate, approximately 220cm x 250cm), each color component stack can be printed accurately and reliably, in one hundred and eighty seconds or Within a shorter time, or even within ninety seconds or less, represents a substantial process improvement. Improving the efficiency and quality of printing has paved the way for huge cost reductions in the production of large HD TV displays, thereby achieving lower end-consumer costs. As mentioned earlier, display manufacturing (especially OLED manufacturing) is an application of the technologies described in this article. These technologies can be applied to numerous processes, computers, printers, software, manufacturing equipment, and terminal devices. Limited to the display panel.

在前述說明和所附圖式之中,使用特定之術語及圖式符號以提供對揭示實施例之一全盤了解。在一些樣例之中,該等術語及符號可能蘊涵將該等實施例付諸實行時非屬必要之特定細節。"示範性"及"實施例"之用語被用以表示一示例,並非一偏好或必需項目。In the foregoing description and the accompanying drawings, specific terms and schematic symbols are used to provide a comprehensive understanding of one of the disclosed embodiments. In some examples, the terms and symbols may imply specific details that are not necessary when implementing these embodiments. The terms "exemplary" and "embodiment" are used to indicate an example, not a preference or a necessary item.

如前所示,其可以針對本文提出的實施例做出各種修改和變更,此並未脫離本揭示之較寬廣精神及範疇。舉例而言,任一實施例之特徵或特色均可以結合任一其他實施例加以套用,至少在實際可行處是如此,或者取代其對等的特徵或特色。因此,舉例而言,並非所有特徵均顯示於每一圖式之中,例如,依據一圖式之實施例所顯示之一特徵或技術應被假定能夠被選擇性地採用做為任一其他圖式或實施例中之一元件,或者與其結合,即使說明書之中並未具體指出亦然。因此,說明書與圖式應被解讀為具有例示性而非限定性之涵義。As shown above, various modifications and changes can be made to the embodiments proposed herein, which do not deviate from the broader spirit and scope of the present disclosure. For example, the features or features of any embodiment can be applied in combination with any other embodiment, at least where it is practical, or replace its equivalent features or features. Therefore, for example, not all features are shown in each figure. For example, a feature or technique shown in an embodiment according to a figure should be assumed to be selectively adopted as any other figure. An element in a formula or embodiment, or a combination thereof, even if it is not specifically pointed out in the specification. Therefore, the description and drawings should be interpreted as having an illustrative rather than a restrictive meaning.

101:流程圖 103-123:步驟 201:液滴測量系統 203:測量窗口 205:箭頭 207:捲筒 209:真空端口 211:絞盤 213:機箱 301:液滴測量系統 303:察視窗口 305:光學組件 307:攝像機 309:光源 311:步進馬達 313:方向指示箭頭 315:絞盤 317:UV固化桿 319:介面與控制板 321:薄膜捲動馬達 323:薄膜捲動馬達 403:真空端口 405:膜帶供應捲筒 407:膜帶收納捲筒 409:框架與光學腔室 411:方向指示箭頭 412:方向指示箭頭 415:方向指示箭頭 501:執行液滴測量之方法 503-533:步驟及相關項目 551:樣本影像 571:樣本影像 601:不同的實施階層 603:非暫態性機器可讀取媒體 605:電腦 607:儲存媒體 609:製造裝置 611:半成品平板裝置陣列 613:可攜式數位裝置 615:電視顯示螢幕 617:太陽能面板 621:多腔室製造設備 623:輸送模組 625:印刷模組 627:處理模組 629:輸入裝載閉鎖 631:輸送腔室 633:環境緩衝腔室 635:氣罩 636:輸送腔室 637:輸出裝載閉鎖 639:氮氣堆集緩衝器 641:固化腔室 701:液滴測量系統 703:印刷頭組件 705A:印刷頭 705B:印刷頭 707:噴嘴 708:三維座標系統 709:機箱 711A:移動系統 711B:平面下光學回復 711C:平面下光源供應 713:維度平面 715:測量區域 717:光源 719:光投送光學器件 721:光感測器 723:回復光學器件 725:聚焦透鏡 727:非成像裝置 731:液滴測量流程 733-753:步驟及相關項目 781:方法 783-797:步驟及相關項目 801:工業製造設備內之典型配置 803:印刷封閉腔室 805:第二封閉環境 807:印刷頭組件 809:箭頭 811:滑動桿 813:基板 815:浮動檯 817:液滴測量系統 819:停駐位置 821:箭頭 823:維度參考 825:Y軸 857;移送方向 865:噴嘴 867:噴嘴間隔 901:圖表 1001:流程圖 1003-1013:步驟與相關項目101: Flow Chart 103-123: Steps 201: Droplet measurement system 203: Measurement window 205: Arrow 207: Reel 209: Vacuum port 211: winch 213: Chassis 301: Droplet measurement system 303: Inspection Window 305: Optical components 307: Camera 309: Light Source 311: stepping motor 313: Direction indicator arrow 315: winch 317: UV curing rod 319: Interface and Control Panel 321: Film Rolling Motor 323: Film winding motor 403: Vacuum port 405: Film tape supply reel 407: Film tape storage reel 409: Frame and Optical Chamber 411: Direction indicator arrow 412: Direction indicator arrow 415: Direction indicator arrow 501: Method of performing droplet measurement 503-533: Steps and related items 551: sample image 571: sample image 601: Different implementation levels 603: Non-transitory machine readable media 605: Computer 607: storage media 609: Manufacturing Device 611: Semi-finished flat panel device array 613: Portable Digital Device 615: TV display screen 617: Solar Panel 621: Multi-chamber manufacturing equipment 623: Conveying Module 625: printing module 627: Processing Module 629: Input load lock 631: delivery chamber 633: Environmental Buffer Chamber 635: Gas Hood 636: delivery chamber 637: output load lock 639: Nitrogen accumulation buffer 641: curing chamber 701: droplet measurement system 703: Print head assembly 705A: Print head 705B: print head 707: Nozzle 708: Three-dimensional coordinate system 709: Chassis 711A: mobile system 711B: Optical recovery under the plane 711C: Under-plane light source supply 713: Dimensional Plane 715: measurement area 717: light source 719: Optical delivery optics 721: Light Sensor 723: Reply Optics 725: Focusing lens 727: Non-imaging device 731: Droplet measurement process 733-753: Steps and related items 781: method 783-797: Steps and related items 801: Typical configuration in industrial manufacturing equipment 803: Printed closed chamber 805: Second Closed Environment 807: print head assembly 809: Arrow 811: Sliding Rod 813: substrate 815: Floating Platform 817: Droplet measurement system 819: park position 821: Arrow 823: Dimension Reference 825: Y axis 857; transfer direction 865: nozzle 867: Nozzle interval 901: Chart 1001: Flow chart 1003-1013: Steps and related items

[圖1]係一流程圖,例示用於測量一液滴參數之技術。 [圖2]係一液滴測量系統之一特寫立體圖。 [圖3]係一液滴測量系統之一剖面視圖。 [圖4A]係一液滴測量系統之另一立體圖。 [圖4B]係從圖4A的箭頭B-B之制高點所取之4A液滴測量系統之一立體圖。 [圖5A]係一流程圖,關聯一實施例之中所使用之影像處理技術。 [圖5B]係代表沉積於一介質上的液滴之一樣本拍攝影像,隨之其後進行灰階之轉換。 [圖5C]係圖5B之拍攝影像進行濾波(例如,梯度處理)。 [圖6A]係一例示性示意圖,顯示關聯產品製造的產製階層;本文所揭示之技術可以,但不限於,被實施於所繪階層中的任一層級。 [圖6B]顯示呈平面圖之一製造設備。 [圖7A]係關於一液滴測量系統之使用之一例示性描繪。 [圖7B]係一關於液滴測量之流程圖。 [圖7C]係一有關於液滴驗證之流程圖。 [圖8A]係位於一印刷室內部之一工業印刷機中之元件之一剖面描繪。 [圖8B]係沿著圖8A中的線條B-B所取之圖8A的工業印刷機之一剖面描繪。 [圖9]係一示意圖,顯示所測液滴位置相對於各別預期位置之一比較。 [圖10]係一關於液滴體積計算之流程圖。 列舉的申請專利範圍請求項所界定的標的可以透過參見以下的詳細說明得到較佳之理解,該等說明之審閱應配合所附圖式進行。此等一或多個特定實施例之說明,列載於下以讓人能夠構建與使用申請專利範圍請求項所列出的技術之各種實施方式,但並非用以限制所列舉的申請專利範圍,而是闡述其應用。未受限於前述內容,本揭示提供一液滴測量系統的一些不同示例,該液滴測量系統光學式地測量或成像複數液滴於一介質之上,並且使用影像處理以識別工業製造中所用之一印刷頭的各種噴嘴之參數數值。此等各種技術均可以被實施成一液滴測量系統、一印刷機或製造設備、或者供執行所述技術之軟體,呈運行該軟體之一電腦、印刷機或其他裝置之形式,或者呈藉由此等技術所製造出之一電子或其他裝置(例如,一平板裝置或其他消費性終端裝置)之形式。雖然其提出特定之示例,但本文所述之原理亦可以套用於其他方法、裝置及系統。[Figure 1] is a flowchart illustrating the technique used to measure a droplet parameter. [Figure 2] is a close-up three-dimensional view of a droplet measurement system. [Figure 3] is a cross-sectional view of a droplet measurement system. [Figure 4A] is another perspective view of a droplet measurement system. [Figure 4B] is a perspective view of the 4A droplet measurement system taken from the commanding height of the arrow B-B in Figure 4A. [Fig. 5A] is a flowchart relating to the image processing technology used in an embodiment. [Fig. 5B] A sample image taken of a sample of droplets deposited on a medium, followed by gray-scale conversion. [FIG. 5C] The captured image of FIG. 5B is filtered (for example, gradient processing). [FIG. 6A] is an exemplary schematic diagram showing the production level of related product manufacturing; the technology disclosed herein can, but is not limited to, be implemented at any level of the depicted level. [Fig. 6B] Shows one of the manufacturing equipment in plan view. [Figure 7A] is an illustrative depiction of the use of a droplet measurement system. [Figure 7B] is a flow chart about droplet measurement. [Figure 7C] is a flow chart about droplet verification. [Figure 8A] is a cross-sectional depiction of a component in an industrial printing press located inside a printing room. [Fig. 8B] is a cross-sectional depiction of the industrial printer of Fig. 8A taken along the line B-B in Fig. 8A. [Figure 9] is a schematic diagram showing a comparison of the measured droplet position with respect to one of the respective expected positions. [Figure 10] is a flow chart about the calculation of droplet volume. The subject matter defined by the listed claims can be better understood by referring to the following detailed descriptions. The review of these descriptions should be carried out in accordance with the attached drawings. The descriptions of these one or more specific embodiments are listed below to allow people to construct and use various implementations of the technologies listed in the claims, but they are not intended to limit the scope of the listed patents. Rather, it explains its application. Without being limited to the foregoing, the present disclosure provides some different examples of a droplet measurement system that optically measures or images a plurality of droplets on a medium, and uses image processing to identify those used in industrial manufacturing One of the parameter values of the various nozzles of the print head. These various technologies can be implemented as a droplet measurement system, a printing press or manufacturing equipment, or software for executing the technology, in the form of a computer, printing press, or other device that runs the software, or by These technologies are manufactured in the form of an electronic or other device (for example, a tablet device or other consumer terminal device). Although it provides specific examples, the principles described herein can also be applied to other methods, devices, and systems.

101:流程圖 101: Flow Chart

103-123:步驟 103-123: Steps

Claims (22)

一種液滴測量單元,其包含: 一機箱,該機箱包含為了和一膜進行接合之一測量構材、一影像拍攝系統、及一膜馬達,其中該影像拍攝系統包含一光學組件,該光學組件是可相對於該測量構材移動,而用於拍攝沉積在該膜上之液滴的影像;以及 一機構,其用於在藉由在該液滴測量單元中之該影像拍攝系統拍攝液滴的影像之後而凝固該些液滴。A droplet measuring unit, which includes: A case that includes a measuring member for joining with a film, an image capturing system, and a film motor, wherein the image capturing system includes an optical component that can move relative to the measurement member , And used to shoot the image of the droplets deposited on the film; and A mechanism for solidifying the droplets after the image capturing system in the droplet measuring unit captures the images of the droplets. 如請求項1之液滴測量單元,其中該測量構材是被耦合至一真空系統,以便緊牢一基板至該測量構材。Such as the droplet measuring unit of claim 1, wherein the measuring member is coupled to a vacuum system so as to secure a substrate to the measuring member. 如請求項2之液滴測量單元,其中該真空系統是被定位,以便在該測量構材的一表面處施加一真空。Such as the droplet measuring unit of claim 2, wherein the vacuum system is positioned so as to apply a vacuum on a surface of the measuring member. 如請求項1之液滴測量單元,其中該影像拍攝系統包含一高解析度、高速數位攝像機以及一電子致動聚焦機構。Such as the droplet measuring unit of claim 1, wherein the image capturing system includes a high-resolution, high-speed digital camera and an electronically actuated focusing mechanism. 如請求項1之液滴測量單元,其進一步包含一影像處理系統,該影像處理系統被組態成用每一液滴的一對應源和該液滴影像進行關聯、計算針對每一液滴的一參數、以及用該對應源和該參數進行關聯。For example, the droplet measurement unit of claim 1, which further includes an image processing system configured to use a corresponding source of each droplet and the droplet image to correlate and calculate the value for each droplet. A parameter, and use the corresponding source to associate with the parameter. 如請求項1之液滴測量單元,其中為了凝固該些液滴的該機構包含一紫外線光源。The droplet measuring unit of claim 1, wherein the mechanism for solidifying the droplets includes an ultraviolet light source. 如請求項6之液滴測量單元,其進一步包含一絞盤,以便運送該膜至為了凝固該些液滴的該機構。Such as the droplet measuring unit of claim 6, which further includes a winch to transport the film to the mechanism for solidifying the droplets. 如請求項2之液滴測量單元,其中該測量構材界定一平面,並且該光學組件是在平行於該平面的一方向中可相對於該測量構材移動。Such as the droplet measuring unit of claim 2, wherein the measuring member defines a plane, and the optical component is movable relative to the measuring member in a direction parallel to the plane. 如請求項3之液滴測量單元,其中該測量構材具有在該表面中的複數個端口,其用於施加該真空。The droplet measuring unit of claim 3, wherein the measuring member has a plurality of ports in the surface for applying the vacuum. 如請求項5之液滴測量單元,其中該參數是有關於每一液滴的一體積或一軌跡。Such as the droplet measurement unit of claim 5, wherein the parameter is a volume or a trajectory related to each droplet. 一種液滴測量單元,其包含: 一機箱,其具有 一測量構材,其為了和一膜進行接合; 一馬達,其為了沿著該測量構材的一表面對該膜進行定位,其中該表面界定一平面; 一機構,其為了在藉由一影像系統拍攝沉積在該膜上之液滴的影像之後而凝固液滴;以及 該影像系統在相對於該測量構材之平行於該平面的一方向中是可移動的。A droplet measuring unit, which includes: A case with A measuring member for bonding with a film; A motor for positioning the film along a surface of the measuring member, wherein the surface defines a plane; A mechanism for solidifying the droplets after taking an image of the droplets deposited on the film by an imaging system; and The imaging system is movable in a direction parallel to the plane relative to the measuring member. 如請求項11之液滴測量單元,其中該測量構材是被耦合至一真空系統,以便緊牢一基板至該測量構材。Such as the droplet measuring unit of claim 11, wherein the measuring member is coupled to a vacuum system so as to secure a substrate to the measuring member. 如請求項4之液滴測量單元,其中該機箱進一步包含一第一絞盤和一第二絞盤,其中該第一絞盤是相鄰於該測量構材,並且該第二絞盤是相鄰於為了凝固該些液滴的該機構。Such as the droplet measurement unit of claim 4, wherein the chassis further includes a first winch and a second winch, wherein the first winch is adjacent to the measuring member, and the second winch is adjacent to the The mechanism of the droplets. 如請求項4之液滴測量單元,其中該機箱進一步包含一第一絞盤和一第二絞盤,其中該第一絞盤是相鄰於該測量構材,並且該第二絞盤是相鄰於該機箱的一底部且相鄰於為了凝固該些液滴的該機構。Such as the droplet measurement unit of claim 4, wherein the chassis further includes a first winch and a second winch, wherein the first winch is adjacent to the measuring member, and the second winch is adjacent to the chassis And adjacent to the mechanism for solidifying the droplets. 如請求項11之液滴測量單元,其中為了凝固該些液滴的該機構包含一紫外線光源。Such as the droplet measuring unit of claim 11, wherein the mechanism for solidifying the droplets includes an ultraviolet light source. 如請求項11之液滴測量單元,其進一步包含一影像處理系統,該影像處理系統被組態成用每一液滴的一對應源和該液滴影像進行關聯、計算針對每一液滴的一參數、以及用該對應源和該參數進行關聯。For example, the droplet measurement unit of claim 11, which further includes an image processing system configured to use a corresponding source of each droplet and the droplet image to correlate and calculate the value for each droplet. A parameter, and use the corresponding source to associate with the parameter. 如請求項16之液滴測量單元,其進一步包含一絞盤,該絞盤自該測量構材運送該膜至為了凝固該些液滴的該機構。For example, the droplet measuring unit of claim 16, further comprising a winch, which transports the film from the measuring member to the mechanism for solidifying the droplets. 一種噴墨印刷機,其包含: 一印刷頭,其為了分發液體液滴;以及 如請求項1之該液滴測量單元,其中該印刷頭可定位成和該液滴測量單元進行接合,以便測量藉由該印刷頭所分發的液滴。An inkjet printer comprising: A printing head for distributing liquid droplets; and The droplet measurement unit of claim 1, wherein the print head can be positioned to be coupled with the droplet measurement unit so as to measure the droplets distributed by the print head. 一種噴墨印刷機,其包含: 一印刷頭,其為了分發液體液滴;以及 如請求項10之該液滴測量單元,其中該印刷頭可定位成和該液滴測量單元進行接合,以便測量藉由該印刷頭所分發的液滴。An inkjet printer comprising: A printing head for distributing liquid droplets; and The droplet measurement unit of claim 10, wherein the print head can be positioned to be coupled with the droplet measurement unit so as to measure the droplets distributed by the print head. 一種噴墨印刷機,其包含: 一印刷頭,其為了分發液體液滴;以及 一液滴測量單元,該液滴測量單元包含: 一機箱,該機箱包含為了接收在一膜上的一液體的液滴而和該膜進行接合之一測量構材、為了成像在該膜上的該些液滴之一影像拍攝系統、為了在成像之後凝固該些液滴之一機構、和一膜馬達,其中該影像拍攝系統包含一光學組件,該光學組件是可相對於該測量構材移動,並且其中該液滴測量單元是可在二維中相對於該印刷頭移動。An inkjet printer comprising: A printing head for distributing liquid droplets; and A droplet measurement unit, the droplet measurement unit includes: A case containing a measuring member to be joined to the film in order to receive a liquid droplet on a film, an imaging system for imaging the droplets on the film, and an imaging system for imaging the droplets on the film. Afterwards, a mechanism for solidifying the droplets and a film motor, wherein the image capturing system includes an optical component, the optical component is movable relative to the measuring member, and wherein the droplet measuring unit is two-dimensional Moves relative to the print head. 請求項20之噴墨印刷機,其中該液滴測量單元是可在三維中相對於該印刷頭移動。The inkjet printer of claim 20, wherein the droplet measuring unit is movable relative to the print head in three dimensions. 請求項20之噴墨印刷機,其進一步包含一影像處理系統,該影像處理系統被組態成用每一液滴的一對應源和該液滴影像進行關聯、計算針對每一液滴的一參數、以及用該對應源和該參數進行關聯。The inkjet printer of claim 20, further comprising an image processing system configured to associate a corresponding source of each droplet with the droplet image, and calculate a corresponding source for each droplet. Parameter, and use the corresponding source to associate with the parameter.
TW110125362A 2014-09-02 2015-09-02 Method and system for measuring a parameter TWI775523B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462044958P 2014-09-02 2014-09-02
US62/044,958 2014-09-02
US14/840,343 2015-08-31
WOPCT/US15/47687 2015-08-31
PCT/US2015/047687 WO2016036646A1 (en) 2014-09-02 2015-08-31 Fast measurement of droplet parameters in industrial printing system
US14/840,343 US9832428B2 (en) 2012-12-27 2015-08-31 Fast measurement of droplet parameters in industrial printing system

Publications (2)

Publication Number Publication Date
TW202138205A true TW202138205A (en) 2021-10-16
TWI775523B TWI775523B (en) 2022-08-21

Family

ID=56085003

Family Applications (4)

Application Number Title Priority Date Filing Date
TW104128982A TWI648171B (en) 2014-09-02 2015-09-02 Apparatus for industrial printing, and system and method for measuring a droplet parameter
TW110125362A TWI775523B (en) 2014-09-02 2015-09-02 Method and system for measuring a parameter
TW109101918A TWI736111B (en) 2014-09-02 2015-09-02 Method and system for measuring a parameter
TW107144110A TWI686312B (en) 2014-09-02 2015-09-02 Method of fabricating thin-film layers of electronic products

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104128982A TWI648171B (en) 2014-09-02 2015-09-02 Apparatus for industrial printing, and system and method for measuring a droplet parameter

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW109101918A TWI736111B (en) 2014-09-02 2015-09-02 Method and system for measuring a parameter
TW107144110A TWI686312B (en) 2014-09-02 2015-09-02 Method of fabricating thin-film layers of electronic products

Country Status (1)

Country Link
TW (4) TWI648171B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004044B (en) * 2016-05-11 2017-12-22 京东方科技集团股份有限公司 Ink measuring system and printing device
US20180229497A1 (en) * 2017-02-15 2018-08-16 Kateeva, Inc. Precision position alignment, calibration and measurement in printing and manufacturing systems
DE102019207185A1 (en) * 2019-05-16 2020-11-19 Siemens Aktiengesellschaft Printing device and method for printing an object
JP7428541B2 (en) * 2020-03-02 2024-02-06 住友重機械工業株式会社 Ink coating device, ink coating device control device, and ink coating method
TWI785844B (en) * 2020-10-28 2022-12-01 德商博斯特比勒費爾德有限公司 Printing system
KR102602833B1 (en) * 2021-09-30 2023-11-16 엔젯 주식회사 Printing apparatus with a plurality of nozzle heads and method for aligning a plurality of nozzle tips
CN114670547B (en) * 2022-03-04 2023-02-10 华中科技大学 Method for controlling patterning film thickness of inkjet printing TFE

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116714A (en) * 1994-03-04 2000-09-12 Canon Kabushiki Kaisha Printing head, printing method and apparatus using same, and apparatus and method for correcting said printing head
TW334359B (en) * 1995-12-04 1998-06-21 Dai Nippon Scolin Seizo Kk Apparatus and method for treating substrates
JP4065476B2 (en) * 1998-11-27 2008-03-26 キヤノン株式会社 Color filter manufacturing method and display device manufacturing method
US6347857B1 (en) * 1999-09-23 2002-02-19 Encad, Inc. Ink droplet analysis apparatus
TW505942B (en) * 2000-06-29 2002-10-11 Matsushita Electric Ind Co Ltd Method and apparatus for forming pattern onto panel substrate
US7075677B1 (en) * 2000-06-30 2006-07-11 Silverbrook Research Pty Ltd Ink jet fault tolerance using oversize drops
JP3552669B2 (en) * 2001-01-11 2004-08-11 セイコーエプソン株式会社 Image printing method, image printing apparatus, image printing system, label creation method, and label creation system
JP4036023B2 (en) * 2002-04-23 2008-01-23 ブラザー工業株式会社 Inkjet device, organic EL display panel manufacturing method, parameter determination method, and parameter determination program
JP4008387B2 (en) * 2002-08-02 2007-11-14 セイコーエプソン株式会社 Droplet ejection device, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP4437272B2 (en) * 2002-08-30 2010-03-24 ノードソン株式会社 How to spray liquid
JP4311050B2 (en) * 2003-03-18 2009-08-12 セイコーエプソン株式会社 Functional droplet ejection head drive control method and functional droplet ejection apparatus
JP4161964B2 (en) * 2004-03-09 2008-10-08 セイコーエプソン株式会社 PATTERN FORMING METHOD, PATTERN FORMING SYSTEM, AND ELECTRONIC DEVICE
US20060132529A1 (en) * 2004-12-22 2006-06-22 Bart Verhoest Positioning system
US20070076040A1 (en) * 2005-09-29 2007-04-05 Applied Materials, Inc. Methods and apparatus for inkjet nozzle calibration
JP4723387B2 (en) * 2006-01-18 2011-07-13 富士フイルム株式会社 Inkjet drawing method and apparatus
US20080024532A1 (en) * 2006-07-26 2008-01-31 Si-Kyoung Kim Methods and apparatus for inkjet printing system maintenance
JP2008104916A (en) * 2006-10-24 2008-05-08 Seiko Epson Corp Liquid droplet discharge device, weight measuring method, discharge method of liquid like material and manufacturing method of color filter
US8079656B2 (en) * 2006-12-22 2011-12-20 Palo Alto Research Center Incorporated Method for decimation of images
JP5135432B2 (en) * 2007-06-14 2013-02-06 マサチューセッツ インスティテュート オブ テクノロジー Method and apparatus for thin film lamination
FI121061B (en) * 2007-07-04 2010-06-30 Reate Oy Method and apparatus for manufacturing an optical object
EP2033791B1 (en) * 2007-09-04 2011-06-15 Ricoh Company, Ltd. Liquid ejection head unit and image forming apparatus
JP2012061789A (en) * 2010-09-17 2012-03-29 Seiko Epson Corp Recording apparatus
US8608272B2 (en) * 2010-12-03 2013-12-17 Xerox Corporation System and method for inkjet printing with a differential halftoned protective overcoat with gloss compensation
JP2012218233A (en) * 2011-04-06 2012-11-12 Seiko Epson Corp Liquid ejection device and control method therefor
US8579408B2 (en) * 2011-04-29 2013-11-12 Xerox Corporation System and method for measuring fluid drop mass with reference to test pattern image data
CN103718660B (en) * 2011-07-27 2016-10-05 住友重机械工业株式会社 Apparatus for manufacturing substrate
CN105073434B (en) * 2012-12-27 2017-12-26 科迪华公司 For pad-ink fixing fabric structure with the method and system of the deposits fluid in precision tolerance
US9139024B2 (en) * 2013-01-31 2015-09-22 Hewlett-Packard Development Company, L.P. Sensor positioning system

Also Published As

Publication number Publication date
TWI648171B (en) 2019-01-21
TWI736111B (en) 2021-08-11
TW201609440A (en) 2016-03-16
TW202017759A (en) 2020-05-16
TWI775523B (en) 2022-08-21
TW201919917A (en) 2019-06-01
TW202243919A (en) 2022-11-16
TWI686312B (en) 2020-03-01

Similar Documents

Publication Publication Date Title
JP7160388B2 (en) Fast measurement of droplet parameters in industrial printing systems
US9832428B2 (en) Fast measurement of droplet parameters in industrial printing system
US11489146B2 (en) Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
TWI736111B (en) Method and system for measuring a parameter
US9802403B2 (en) Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
JP2018120874A (en) Technique for print ink droplet measurement and control to deposit fluid within precise tolerance
KR102617723B1 (en) Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
TWI835210B (en) Method and system for measuring a parameter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent