TW202136844A - Optical lens and manufacturing method thereof - Google Patents

Optical lens and manufacturing method thereof Download PDF

Info

Publication number
TW202136844A
TW202136844A TW109108541A TW109108541A TW202136844A TW 202136844 A TW202136844 A TW 202136844A TW 109108541 A TW109108541 A TW 109108541A TW 109108541 A TW109108541 A TW 109108541A TW 202136844 A TW202136844 A TW 202136844A
Authority
TW
Taiwan
Prior art keywords
lens
refractive power
lens group
optical axis
along
Prior art date
Application number
TW109108541A
Other languages
Chinese (zh)
Other versions
TWI828879B (en
Inventor
邱偉庭
曾建雄
Original Assignee
揚明光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Priority to TW109108541A priority Critical patent/TWI828879B/en
Priority to CN202010507093.2A priority patent/CN113406776B/en
Publication of TW202136844A publication Critical patent/TW202136844A/en
Application granted granted Critical
Publication of TWI828879B publication Critical patent/TWI828879B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical lens including a first lens group, an aperture and a second lens group sequence arranged from a magnified side to a minified side along an optical axis is provided. The first lens group has a negative refractive power and includes three lenses having refractive power. The first lens group includes a lens having positive refractive power and an aspheric lens. The second lens group has a positive refractive power and includes three lenses having refractive power. The second lens group includes a lens having a negative refractive power, the lens closest to the minified side is a combination lens, and includes an aspheric lens. The total number of lenses having refractive power is between 6 and 8.

Description

鏡頭及其製造方法Lens and its manufacturing method

本發明是有關於一種鏡頭及其製造方法,且特別是有關於一種取像鏡頭及其製造方法。The present invention relates to a lens and a manufacturing method thereof, and more particularly to an imaging lens and a manufacturing method thereof.

傳統廣角鏡頭因鏡片形狀、鏡片材質的限制,使鏡頭體積不易縮小,也難以兼具廣視角與大光圈下的成像品質。因此,如何能同時滿足廣視角、高成像品質、耐環境變異、小型化及小熱漂移的需求,是本領域需努力研究的。The traditional wide-angle lens is not easy to shrink the size of the lens due to the lens shape and lens material, and it is also difficult to have both the wide viewing angle and the imaging quality under a large aperture. Therefore, how to meet the requirements of wide viewing angle, high imaging quality, resistance to environmental variation, miniaturization and small thermal drift at the same time is something that needs to be studied in this field.

本發明提供一種鏡頭及其製造方法,可兼具有效的減少透鏡的數量、改善像差、有效減低成本,並具有良好的光學效果。The invention provides a lens and a manufacturing method thereof, which can effectively reduce the number of lenses, improve aberrations, effectively reduce costs, and have good optical effects.

本發明提供一種鏡頭,包含由放大側往縮小側沿光軸依序排列的第一透鏡組、光圈以及第二透鏡組。第一透鏡組為負屈光度,且包含三片具有屈光度的透鏡。第一透鏡組包括一片屈光度為正的透鏡,且包括一片非球面透鏡。第二透鏡組為正屈光度,包含三片具有屈光度的透鏡。第二透鏡組包括一片屈光度為負的透鏡,最靠近縮小側的透鏡為組合透鏡,且包括一片非球面透鏡。鏡頭中包含具屈光度的透鏡總數介於6到8片。鏡頭滿足9>LT/EFL>15以及LT/D1>12,其中LT為第一透鏡組最靠近放大側的透鏡表面到第二透鏡組最遠離第一透鏡組的透鏡表面沿光軸上的距離,EFL為鏡頭的有效焦距,且D1為第一透鏡組中最靠近放大側的透鏡沿光軸上的厚度。The present invention provides a lens comprising a first lens group, an aperture, and a second lens group arranged in sequence along the optical axis from the magnification side to the reduction side. The first lens group has negative refractive power and includes three lenses with refractive power. The first lens group includes one lens with positive refractive power and one aspheric lens. The second lens group has a positive refractive power and includes three lenses with refractive power. The second lens group includes a lens with a negative refractive power, and the lens closest to the reduction side is a combined lens, and includes an aspheric lens. The total number of lenses with diopter included in the lens ranges from 6 to 8. The lens satisfies 9>LT/EFL>15 and LT/D1>12, where LT is the distance along the optical axis from the lens surface of the first lens group closest to the magnification side to the lens surface of the second lens group farthest from the first lens group , EFL is the effective focal length of the lens, and D1 is the thickness along the optical axis of the lens closest to the magnification side in the first lens group.

本發明另提供一種鏡頭,包含由放大側往縮小側沿光軸依序排列的第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡、第五透鏡以及第六透鏡。其中,第五透鏡及第六透鏡為膠合透鏡。鏡頭滿足9>LT/EFL>15、4>D6/D5>10、180>FOV>230以及80>A2>50,其中LT為第一透鏡組最靠近放大側的透鏡表面到第二透鏡組最遠離第一透鏡組的透鏡表面沿光軸上的距離,EFL為鏡頭的有效焦距,D5為第五透鏡沿光軸上的厚度,D6為第六透鏡沿光軸上的厚度,FOV為鏡頭的視場角,且A2為第二透鏡的凹面邊緣的延伸線和光軸之間的夾角。The present invention also provides a lens including a first lens, a second lens, a third lens, an aperture, a fourth lens, a fifth lens, and a sixth lens that are sequentially arranged along the optical axis from the magnification side to the reduction side. Among them, the fifth lens and the sixth lens are cemented lenses. The lens satisfies 9>LT/EFL>15, 4>D6/D5>10, 180>FOV>230 and 80>A2>50, where LT is the lens surface closest to the magnification side of the first lens group to the second lens group. The distance along the optical axis away from the lens surface of the first lens group, EFL is the effective focal length of the lens, D5 is the thickness of the fifth lens along the optical axis, D6 is the thickness of the sixth lens along the optical axis, and FOV is the lens's thickness The field angle, and A2 is the angle between the extension line of the concave edge of the second lens and the optical axis.

本發明另提供一種鏡頭製造方法,包含提供一鏡筒以及將一第一透鏡組、一第二透鏡組和一光圈,置入並固定於鏡筒內。其中,第一透鏡組為負屈光度,且包含三片具有屈光度的透鏡。第一透鏡組包括一片屈光度為正的透鏡,且包括一片非球面透鏡。第二透鏡組為正屈光度,包含三片具有屈光度的透鏡。第二透鏡組包括一片屈光度為負的透鏡,最靠近縮小側的透鏡為組合透鏡,且包括一片非球面透鏡。鏡頭中包含具屈光度的透鏡總數介於6到8片。鏡頭滿足9>LT/EFL>15以及LT/D1>12,其中LT為第一透鏡組最靠近放大側的透鏡表面到第二透鏡組最遠離第一透鏡組的透鏡表面沿光軸上的距離,EFL為鏡頭的有效焦距,且D1為第一透鏡組中最靠近放大側的透鏡沿光軸上的厚度。The present invention also provides a lens manufacturing method, including providing a lens barrel, and placing and fixing a first lens group, a second lens group, and an aperture in the lens barrel. Wherein, the first lens group has a negative refractive power and includes three lenses with refractive power. The first lens group includes one lens with positive refractive power and one aspheric lens. The second lens group has a positive refractive power and includes three lenses with refractive power. The second lens group includes a lens with a negative refractive power, and the lens closest to the reduction side is a combined lens, and includes an aspheric lens. The total number of lenses with diopter included in the lens ranges from 6 to 8. The lens satisfies 9>LT/EFL>15 and LT/D1>12, where LT is the distance along the optical axis from the lens surface of the first lens group closest to the magnification side to the lens surface of the second lens group farthest from the first lens group , EFL is the effective focal length of the lens, and D1 is the thickness along the optical axis of the lens closest to the magnification side in the first lens group.

基於上述,在本發明的鏡頭及其製造方法中,使用多個非球面鏡片提升解析性能,且以負屈光度透鏡達到廣角收光能力,進而可兼具有效的減少透鏡的數量、改善像差、有效減低成本,並具有良好的光學效果。Based on the above, in the lens and manufacturing method of the present invention, multiple aspherical lenses are used to improve the resolution performance, and the negative diopter lens is used to achieve wide-angle light collection ability, which can effectively reduce the number of lenses, improve aberrations, and Effectively reduce costs and have good optical effects.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1為本發明一實施例的鏡頭的示意圖。請參考圖1。本實施例提供一種鏡頭100,為取像鏡頭,可適用於安全監控、車載或行動攝影等領域使用,本發明並不限於此。具體而言,鏡頭100例如為魚眼鏡頭,使用多個非球面鏡片提升解析性能,且以負屈光度透鏡達到廣角收光能力。FIG. 1 is a schematic diagram of a lens according to an embodiment of the invention. Please refer to Figure 1. This embodiment provides a lens 100, which is an imaging lens, and can be used in security surveillance, vehicle-mounted, or action photography, etc. The invention is not limited to this. Specifically, the lens 100 is, for example, a fisheye lens, which uses a plurality of aspherical lenses to improve resolution performance, and uses a negative diopter lens to achieve wide-angle light collection capability.

鏡頭100具有一光軸A,包括由一放大側110往一縮小側120依序排列的包括一第一透鏡組130、一光圈140以及一第二透鏡組150,其中放大側110是光線輸入鏡頭100的一側,而縮小側120是光線輸出鏡頭100的一側。在本實施例中,鏡頭100還包括紅外濾光片160以及透光保護蓋170,並且進入鏡頭100的光線可由放大側110朝縮小側120傳遞並成像至成像面180。The lens 100 has an optical axis A, and includes a first lens group 130, an aperture 140, and a second lens group 150 arranged in sequence from a magnification side 110 to a reduction side 120, wherein the magnification side 110 is a light input lens 100 side, and the reduced side 120 is the side of the light output lens 100. In this embodiment, the lens 100 further includes an infrared filter 160 and a light-transmitting protective cover 170, and the light entering the lens 100 can be transmitted from the magnification side 110 to the reduction side 120 and be imaged to the imaging surface 180.

第一透鏡組130的屈光度為負,且包括至少一片非球面透鏡。第一透鏡組130包括由放大側110往縮小側120依序排列的一第一透鏡L1、一第二透鏡L2以及一第三透鏡L3。The first lens group 130 has a negative refractive power and includes at least one aspheric lens. The first lens group 130 includes a first lens L1, a second lens L2, and a third lens L3 arranged in sequence from the magnification side 110 to the reduction side 120.

第二透鏡組150的屈光度為正,且包括至少一片非球面透鏡。在本實施例中,第二透鏡組150包括由放大側110往縮小側120依序排列的一第四透鏡L4、一第五透鏡L5以及一第六透鏡L6。其中第五透鏡L5與第六透鏡L6的其中一者的屈光度為正,而其中另一者為負。於本實施例中,第五透鏡L5的屈光度為負,且第六透鏡L6的屈光度為正。然而,在一實施例中,第五透鏡L5的屈光度可為正,且第六透鏡L6的屈光度可為負,本發明並不限於此。在本實施例中,第二透鏡組150中最靠近縮小側120的至少兩透鏡(即第五透鏡L5與第六透鏡L6)為膠合透鏡。The second lens group 150 has a positive refractive power and includes at least one aspheric lens. In this embodiment, the second lens group 150 includes a fourth lens L4, a fifth lens L5, and a sixth lens L6 that are sequentially arranged from the magnification side 110 to the reduction side 120. The refractive power of one of the fifth lens L5 and the sixth lens L6 is positive, and the other of them is negative. In this embodiment, the refractive power of the fifth lens element L5 is negative, and the refractive power of the sixth lens element L6 is positive. However, in an embodiment, the refractive power of the fifth lens element L5 may be positive, and the refractive power of the sixth lens element L6 may be negative, and the present invention is not limited thereto. In this embodiment, at least two lenses (that is, the fifth lens L5 and the sixth lens L6) closest to the reduction side 120 in the second lens group 150 are cemented lenses.

具體而言,在本實施例中,鏡頭100的透鏡總片數為6,且非球面透鏡的數量為4,膠合透鏡的數量為1,故可有效的減少透鏡的數量並改善像差。此外,在本實施例中,鏡頭100中6片透鏡的屈光度由放大側110往縮小側120依序為負、負、正、正、負、正,且材質分別為玻璃、塑膠、塑膠、玻璃、塑膠、塑膠。換句話說,即第二透鏡L2、第三透鏡L3、第五透鏡L5以及第六透鏡L6的材質為塑膠。因此,可有效減低成本,但本發明並不限於此。Specifically, in this embodiment, the total number of lenses of the lens 100 is 6, the number of aspheric lenses is 4, and the number of cemented lenses is 1, so the number of lenses can be effectively reduced and aberrations can be improved. In addition, in this embodiment, the refractive powers of the 6 lenses in the lens 100 are negative, negative, positive, positive, negative, and positive from the magnification side 110 to the reduction side 120, and the materials are glass, plastic, plastic, and glass, respectively. , Plastic, plastic. In other words, the material of the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 is plastic. Therefore, the cost can be effectively reduced, but the present invention is not limited to this.

本實施例的鏡頭100中具有屈光度的透鏡數量為介於6到8片,其有最佳及較佳的成本效益。並且,本實施例的鏡頭100符合9>LT/EFL>15,其中LT為鏡頭100中最靠近放大側110的透鏡表面(即第一透鏡L1的表面S1)至鏡頭100中最靠近縮小側120的透鏡表面(即第六透鏡L6的表面S13)沿光軸A上的距離,且EFL為鏡頭100的有效焦距。在本實施例中,鏡頭100符合LT/D1>12,其中D1為鏡頭100中最靠近放大側110的透鏡(即第一透鏡L1)沿光軸A上的厚度。值得一提的是,第三透鏡L3的一像側面(即表面S6)的屈光度為正。The number of diopter lenses in the lens 100 of this embodiment is between 6 and 8, which has the best and better cost-effectiveness. In addition, the lens 100 of this embodiment meets 9>LT/EFL>15, where LT is the lens surface of the lens 100 closest to the magnification side 110 (that is, the surface S1 of the first lens L1) to the lens 100 closest to the reduction side 120 The distance along the optical axis A of the lens surface of the lens surface (that is, the surface S13 of the sixth lens L6), and EFL is the effective focal length of the lens 100. In this embodiment, the lens 100 conforms to LT/D1>12, where D1 is the thickness along the optical axis A of the lens closest to the magnification side 110 in the lens 100 (ie, the first lens L1). It is worth mentioning that the diopter of the image side surface (that is, the surface S6) of the third lens L3 is positive.

另一方面,在本實施例中,鏡頭100符合4>Z1/Z2>10,其中Z1為第五透鏡L5或第六透鏡L6沿光軸A上的厚度較大者,Z2為第五透鏡L5或第六透鏡L6沿光軸A上的厚度較小者。On the other hand, in this embodiment, the lens 100 conforms to 4>Z1/Z2>10, where Z1 is the greater thickness of the fifth lens L5 or the sixth lens L6 along the optical axis A, and Z2 is the fifth lens L5 Or the sixth lens L6 has a smaller thickness along the optical axis A.

除此之外,本實施例的鏡頭100符合180度>FOV>230度,其中FOV為鏡頭100的最大視場角。在較佳的實施例中,鏡頭100符合FOV>210度。本實施例最靠近放大側110的透鏡(即第一透鏡L1)沿光軸A上的厚度大於1毫米。本實施例的鏡頭100符合0.7>R1/LT>2,其中R1為鏡頭100中最靠近放大側110的透鏡(即第一透鏡L1)的有效半徑r1。本實施例的鏡頭100符合0.2>RL/LT>0.38,其中RL為鏡頭100中最靠近縮小側120的透鏡(即第六透鏡L6)的有效半徑r6。本實施例的鏡頭100符合D6/D5>2,其中T6為第六透鏡L6沿光軸A上的厚度,且D5為第五透鏡L5沿光軸A上的厚度。本實施例的鏡頭100符合50>A2>80,其中A2為第二透鏡L2的凹面邊緣切線與垂直光軸A一方向的夾角B(或稱開口角),如圖1所繪示。In addition, the lens 100 of this embodiment conforms to 180 degrees>FOV>230 degrees, where FOV is the maximum angle of view of the lens 100. In a preferred embodiment, the lens 100 conforms to FOV>210 degrees. In this embodiment, the thickness of the lens closest to the magnification side 110 (ie, the first lens L1) along the optical axis A is greater than 1 millimeter. The lens 100 of this embodiment conforms to 0.7>R1/LT>2, where R1 is the effective radius r1 of the lens closest to the magnification side 110 (ie, the first lens L1) in the lens 100. The lens 100 of this embodiment satisfies 0.2>RL/LT>0.38, where RL is the effective radius r6 of the lens closest to the reduction side 120 (that is, the sixth lens L6) in the lens 100. The lens 100 of this embodiment conforms to D6/D5>2, where T6 is the thickness of the sixth lens L6 along the optical axis A, and D5 is the thickness of the fifth lens L5 along the optical axis A. The lens 100 of this embodiment satisfies 50>A2>80, where A2 is the angle B (or aperture angle) between the concave edge tangent of the second lens L2 and the direction perpendicular to the optical axis A, as shown in FIG. 1.

因此,於本實施例中,鏡頭100為定焦取像鏡頭,且鏡頭100的光圈可達F/2.0,總長可介於12.5mm以內,半視角可達105度以上。更具體而言,本實施例的鏡頭100為魚眼鏡頭,可兼具有效的減少透鏡的數量、改善像差、有效減低成本,並具有良好的光學效果。Therefore, in this embodiment, the lens 100 is a fixed-focus imaging lens, and the aperture of the lens 100 can reach F/2.0, the total length can be within 12.5 mm, and the half angle of view can reach 105 degrees or more. More specifically, the lens 100 of this embodiment is a fisheye lens, which can effectively reduce the number of lenses, improve aberrations, effectively reduce costs, and have good optical effects.

在本實施例中,前述的各元件的實際設計可見於下列表一。In this embodiment, the actual design of the aforementioned components can be seen in Table 1 below.

表一 EFL (mm) =0.9011;F/#=2;FOV (˚)=218;TTL (mm)=12.33; IMH (mm)=4.01;RL (mm)=3.283;LT (mm)=10.736; RL/LT= 0.306;EFL/LT= 0.0839; 元件 表面 曲率半徑 (mm) 間距 (mm) 折射率(Nd) 阿貝數(Vd) 第一透鏡L1 S1 10.465 1.000 1.804 46.5   S2 2.931 1.778     第二透鏡L2 S3* 6.101 0.666 1.536 56.0   S4* 0.844 1.268     第三透鏡L3 S5* 2.478 1.309 1.640 23.5   S6* 12.703 0.200     光圈140 S7 無限大 0.100     第四透鏡L4 S8 -113.600 1.151 1.804 46.5   S9 -2.332 0.183     第五透鏡L5 S10* 4.881 0.528 1.640 23.5   S11* 0.802 0.008     第六透鏡L6 S12* 0.802 2.540 1.536 56.0   S13* -1.913 0.100     紅外濾光片160 S14 無限大 0.300 1.517 64.2   S15 無限大 0.749     保護蓋170 S16 無限大 0.400 1.517 64.2   S17 無限大 0.045     成像面180 S18 無限大 0.000     Table I EFL (mm) =0.9011; F/#=2; FOV (˚)=218; TTL (mm)=12.33; IMH (mm)=4.01; RL (mm)=3.283; LT (mm)=10.736; RL/ LT= 0.306; EFL/LT= 0.0839; element surface Radius of curvature (mm) Spacing (mm) Refractive index (Nd) Abbe number (Vd) The first lens L1 S1 10.465 1.000 1.804 46.5 S2 2.931 1.778 Second lens L2 S3* 6.101 0.666 1.536 56.0 S4* 0.844 1.268 The third lens L3 S5* 2.478 1.309 1.640 23.5 S6* 12.703 0.200 Aperture 140 S7 Unlimited 0.100 Fourth lens L4 S8 -113.600 1.151 1.804 46.5 S9 -2.332 0.183 Fifth lens L5 S10* 4.881 0.528 1.640 23.5 S11* 0.802 0.008 Sixth lens L6 S12* 0.802 2.540 1.536 56.0 S13* -1.913 0.100 Infrared filter 160 S14 Unlimited 0.300 1.517 64.2 S15 Unlimited 0.749 Protective cover 170 S16 Unlimited 0.400 1.517 64.2 S17 Unlimited 0.045 Imaging surface 180 S18 Unlimited 0.000

請同時參照圖1、表一。具體來說,在本實施例的鏡頭100中,第一透鏡L1由放大側110至縮小側120依序具有表面S1與表面S2,而第一透鏡L2由放大側110至縮小側120依序具有表面S3與表面S4,且表面S3與表面S4為非球面表面,即以符號*表示為非球面表面,依此類推,各元件所對應的表面則不再重複贅述。此外,TTL為鏡頭總長,即鏡頭100中最靠近放大側110的透鏡表面(即第一透鏡L1的表面S1)至鏡頭100中的成像面180沿光軸A上的距離,且IMH為像面直徑。Please refer to Figure 1 and Table 1 at the same time. Specifically, in the lens 100 of this embodiment, the first lens L1 has a surface S1 and a surface S2 sequentially from the magnification side 110 to the reduction side 120, and the first lens L2 has a surface S1 and a surface S2 from the magnification side 110 to the reduction side 120 in sequence. The surface S3 and the surface S4, and the surface S3 and the surface S4 are aspherical surfaces, which are represented by the symbol * as aspherical surfaces, and so on, and the surface corresponding to each element will not be repeated. In addition, TTL is the total length of the lens, that is, the distance from the lens surface closest to the magnification side 110 in the lens 100 (that is, the surface S1 of the first lens L1) to the imaging surface 180 in the lens 100 along the optical axis A, and IMH is the image plane diameter.

此外,表一中的間隔為該表面由放大側110至縮小側120的下一個表面之間的距離。換句話說,第一透鏡L1的厚度為10.465毫米,第二透鏡L2的厚度為6.101毫米,且第一透鏡L1與第二透鏡L2的相鄰表面之間的距離為2.931毫米,依此類推,故不再重複贅述。In addition, the interval in Table 1 is the distance between the next surface of the surface from the enlarged side 110 to the reduced side 120. In other words, the thickness of the first lens L1 is 10.465 mm, the thickness of the second lens L2 is 6.101 mm, and the distance between the adjacent surfaces of the first lens L1 and the second lens L2 is 2.931 mm, and so on, Therefore, I will not repeat them again.

此外,表一中的曲率半徑即為該表面的曲率半徑,其正負值代表了彎曲的方向,例如第一透鏡L1的表面S1的曲率半徑為正,且第一透鏡L1的表面S2的曲率半徑為正。因此,第一透鏡L1為凸凹透鏡。又例如第六透鏡L6的表面S12的曲率半徑為正,且第六透鏡L6的表面S13的曲率半徑為負。因此,第一透鏡L1為雙凸透鏡,依此類推,故不再重複贅述。In addition, the radius of curvature in Table 1 is the radius of curvature of the surface, and its positive and negative values represent the direction of curvature. For example, the radius of curvature of the surface S1 of the first lens L1 is positive, and the radius of curvature of the surface S2 of the first lens L1 Is positive. Therefore, the first lens L1 is a convex-concave lens. For another example, the radius of curvature of the surface S12 of the sixth lens L6 is positive, and the radius of curvature of the surface S13 of the sixth lens L6 is negative. Therefore, the first lens L1 is a biconvex lens, and so on, so it will not be repeated.

下方表二列出各非球面的二次曲面係數值K與各階非球面係數A-H。非球面多項式可用下列公式(1)表示:

Figure 02_image001
(1)Table 2 below lists the quadric coefficient value K and the aspheric coefficient AH of each aspheric surface. The aspheric polynomial can be expressed by the following formula (1):
Figure 02_image001
(1)

其中,x為光軸A方向之偏移量(sag),c’是密切球面(Osculating Sphere)的半徑之倒數,也就是接近光軸處的曲率半徑的倒數,K是二次曲面係數,y是非球面高度,即為從透鏡中心往透鏡邊緣的高度。A-H分別代表非球面多項式的各階非球面係數。Where x is the offset in the direction of the optical axis A (sag), c'is the reciprocal of the radius of the Osculating Sphere, that is, the reciprocal of the radius of curvature close to the optical axis, K is the quadric coefficient, y It is the height of the aspheric surface, that is, the height from the center of the lens to the edge of the lens. A-H respectively represent the aspheric coefficients of the aspheric polynomials.

表二 S3 S4 S5 S6 K -1.924 -0.988 -4.477 -6.852 A 0 0 0 0 B 9.14E-04 4.92E-02 6.20E-02 7.08E-02 C -7.76E-03 4.06E-02 4.89E-03 -6.29E-03 D 2.47E-03 -4.61E-02 -4.27E-03 -1.63E-01 E -3.72E-04 2.00E-02 5.05E-03 5.67E-01 F 2.84E-05 1.77E-03 -1.72E-03 -1.01E-02 G -8.25E-07 1.71E-03 5.58E-04 -1.26E+00 H -1.14E-08 -1.43E-03 -3.01E-04 8.52E-01   S10 S11 S12 S13 K 1.14 -1.693 -1.693 -6.985 A 0 0 0 0 B -3.74E-02 2.48E-02 2.48E-02 -4.59E-02 C 2.49E-02 3.62E-02 3.62E-02 3.02E-02 D -8.76E-03 -1.23E-02 -1.23E-02 -1.16E-02 E -7.24E-06 -3.13E-05 -3.13E-05 2.08E-03 F 8.48E-06 1.17E-05 1.17E-05 3.62E-05 G 1.35E-04 5.21E-05 5.21E-05 -5.48E-05 H 1.50E-04 1.06E-04 1.06E-04 4.16E-06 Table II S3 S4 S5 S6 K -1.924 -0.988 -4.477 -6.852 A 0 0 0 0 B 9.14E-04 4.92E-02 6.20E-02 7.08E-02 C -7.76E-03 4.06E-02 4.89E-03 -6.29E-03 D 2.47E-03 -4.61E-02 -4.27E-03 -1.63E-01 E -3.72E-04 2.00E-02 5.05E-03 5.67E-01 F 2.84E-05 1.77E-03 -1.72E-03 -1.01E-02 G -8.25E-07 1.71E-03 5.58E-04 -1.26E+00 H -1.14E-08 -1.43E-03 -3.01E-04 8.52E-01 S10 S11 S12 S13 K 1.14 -1.693 -1.693 -6.985 A 0 0 0 0 B -3.74E-02 2.48E-02 2.48E-02 -4.59E-02 C 2.49E-02 3.62E-02 3.62E-02 3.02E-02 D -8.76E-03 -1.23E-02 -1.23E-02 -1.16E-02 E -7.24E-06 -3.13E-05 -3.13E-05 2.08E-03 F 8.48E-06 1.17E-05 1.17E-05 3.62E-05 G 1.35E-04 5.21E-05 5.21E-05 -5.48E-05 H 1.50E-04 1.06E-04 1.06E-04 4.16E-06

圖3為本發明另一實施例的鏡頭的示意圖。請參考圖3。本實施例所繪示的鏡頭100A類似於圖1所顯示的鏡頭100。兩者主要差異在於,在本實施例中,第五透鏡L5的表面S11為球面。FIG. 3 is a schematic diagram of a lens according to another embodiment of the invention. Please refer to Figure 3. The lens 100A depicted in this embodiment is similar to the lens 100 shown in FIG. 1. The main difference between the two is that in this embodiment, the surface S11 of the fifth lens L5 is a spherical surface.

在本實施例中,前述的各元件的實際設計可見於下列表三。表三的解讀方式同表一,故不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 3 below. The interpretation of Table 3 is the same as that of Table 1, so I won’t repeat it.

表三 EFL (mm) =0.896;F/#=2;FOV (˚)=218;TTL (mm)=12.34; IMH (mm)=4.01;RL (mm)=3.3;LT (mm)=10.762; RL/LT= 0.307;EFL/LT= 0.0833; 元件 表面 曲率半徑 (mm) 間距 (mm) 折射率(Nd) 阿貝數(Vd) 第一透鏡L1 S1 10.481 1 1.804 46.5   S2 3.013 1.792     第二透鏡L2 S3* 5.007 0.761 1.536 56.0   S4* 0.76 1.356     第三透鏡L3 S5* 2.35 1.145 1.640 23.5   S6* 18.131 0.2     光圈140 S7 無限大 0.1     第四透鏡L4 S8 20.332 1.216 1.804 46.5   S9 -3 0.202     第五透鏡L5 S10* 4.349 0.481 1.640 23.5   S11 0.854 0.008     第六透鏡L6 S12* 0.854 2.511 1.536 56.0   S13* -1.903 0.1     紅外濾光片160 S14 無限大 0.3 1.517 64.2   S15 無限大 0.733     保護蓋170 S16 無限大 0.4 1.517 64.2   S17 無限大 0.045     成像面180 S18 無限大 0     Table Three EFL (mm) =0.896; F/#=2; FOV (˚)=218; TTL (mm)=12.34; IMH (mm)=4.01; RL (mm)=3.3; LT (mm)=10.762; RL/ LT= 0.307; EFL/LT= 0.0833; element surface Radius of curvature (mm) Spacing (mm) Refractive index (Nd) Abbe number (Vd) The first lens L1 S1 10.481 1 1.804 46.5 S2 3.013 1.792 Second lens L2 S3* 5.007 0.761 1.536 56.0 S4* 0.76 1.356 The third lens L3 S5* 2.35 1.145 1.640 23.5 S6* 18.131 0.2 Aperture 140 S7 Unlimited 0.1 Fourth lens L4 S8 20.332 1.216 1.804 46.5 S9 -3 0.202 Fifth lens L5 S10* 4.349 0.481 1.640 23.5 S11 0.854 0.008 Sixth lens L6 S12* 0.854 2.511 1.536 56.0 S13* -1.903 0.1 Infrared filter 160 S14 Unlimited 0.3 1.517 64.2 S15 Unlimited 0.733 Protective cover 170 S16 Unlimited 0.4 1.517 64.2 S17 Unlimited 0.045 Imaging surface 180 S18 Unlimited 0

下方表四列出各非球面的二次曲面係數值K與各階非球面係數A-H。Table 4 below lists the quadric coefficient value K of each aspheric surface and the coefficients A-H of each order aspheric surface.

表四 S3 S4 S5 S6 K -3.09E+00 -9.40E-01 -3.40E+00 -4.98E+02 A 0 0 0 0 B 4.38E-04 5.81E-02 6.41E-02 5.39E-02 C -7.81E-03 3.95E-02 5.90E-03 3.56E-02 D 2.47E-03 -4.25E-02 3.00E-03 -1.57E-01 E -3.71E-04 2.11E-02 6.12E-03 4.58E-01 F 2.86E-05 1.57E-03 -2.15E-03 -1.20E-01 G -7.69E-07 2.96E-03 2.27E-03 -9.99E-01 H -1.99E-08 1.41E-03 -1.02E-03 9.58E-01   S10 S12 S13   K 1.52E+00 -1.53E+00 -6.88E+00   A 0 0 0   B -3.65E-02 3.34E-02 -4.64E-02   C 2.14E-02 3.49E-02 2.98E-02   D -1.23E-02 -1.63E-02 -1.18E-02   E -4.96E-04 -3.63E-03 2.00E-03   F 4.97E-04 -1.53E-03 2.71E-05   G 2.50E-04 1.78E-05 -4.75E-05   H 2.64E-04 6.50E-04 1.13E-05   Table Four S3 S4 S5 S6 K -3.09E+00 -9.40E-01 -3.40E+00 -4.98E+02 A 0 0 0 0 B 4.38E-04 5.81E-02 6.41E-02 5.39E-02 C -7.81E-03 3.95E-02 5.90E-03 3.56E-02 D 2.47E-03 -4.25E-02 3.00E-03 -1.57E-01 E -3.71E-04 2.11E-02 6.12E-03 4.58E-01 F 2.86E-05 1.57E-03 -2.15E-03 -1.20E-01 G -7.69E-07 2.96E-03 2.27E-03 -9.99E-01 H -1.99E-08 1.41E-03 -1.02E-03 9.58E-01 S10 S12 S13 K 1.52E+00 -1.53E+00 -6.88E+00 A 0 0 0 B -3.65E-02 3.34E-02 -4.64E-02 C 2.14E-02 3.49E-02 2.98E-02 D -1.23E-02 -1.63E-02 -1.18E-02 E -4.96E-04 -3.63E-03 2.00E-03 F 4.97E-04 -1.53E-03 2.71E-05 G 2.50E-04 1.78E-05 -4.75E-05 H 2.64E-04 6.50E-04 1.13E-05

圖5為本發明另一實施例的鏡頭的示意圖。請參考圖5。本實施例所繪示的鏡頭100B類似於圖1所顯示的鏡頭100。兩者主要差異在於,在本實施例中第五透鏡L5的表面S11為球面。FIG. 5 is a schematic diagram of a lens according to another embodiment of the invention. Please refer to Figure 5. The lens 100B depicted in this embodiment is similar to the lens 100 shown in FIG. 1. The main difference between the two is that in this embodiment, the surface S11 of the fifth lens L5 is a spherical surface.

在本實施例中,前述的各元件的實際設計可見於下列表五。表五的解讀方式同表一,故不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 5 below. The interpretation of Table 5 is the same as that of Table 1, so I won’t repeat it.

表五 EFL (mm) =0.9;F/#=2;FOV (˚)=218;TTL (mm)=12.3; IMH (mm)=4.01;RL (mm)=3.435;LT (mm)=11.007; RL/LT= 0.312;EFL/LT= 0.0818; 元件 表面 曲率半徑 (mm) 間距 (mm) 折射率(Nd) 阿貝數(Vd) 第一透鏡L1 S1 12.319 1 1.804 46.5   S2 3.105 1.543     第二透鏡L2 S3* 4.378 0.484 1.536 56.0   S4* 0.872 1.651     第三透鏡L3 S5* 3.171 1.301 1.640 23.5   S6* -41 0.358     光圈140 S7 無限大 0.09     第四透鏡L4 S8 26.147 1.278 1.804 39.6   S9 -2.96 0.181     第五透鏡L5 S10* 3.357 0.364 1.640 23.5   S11 0.678 0     第六透鏡L6 S12* 0.678 2.757 1.536 56.0   S13* -2.164 0.11     紅外濾光片160 S14 無限大 0.33 1.517 64.2   S15 無限大 0.364     保護蓋170 S16 無限大 0.44 1.517 64.2   S17 無限大 0.05     成像面180 S18 無限大 0     Table 5 EFL (mm) =0.9; F/#=2; FOV (˚)=218; TTL (mm)=12.3; IMH (mm)=4.01; RL (mm)=3.435; LT (mm)=11.007; RL/ LT= 0.312; EFL/LT= 0.0818; element surface Radius of curvature (mm) Spacing (mm) Refractive index (Nd) Abbe number (Vd) The first lens L1 S1 12.319 1 1.804 46.5 S2 3.105 1.543 Second lens L2 S3* 4.378 0.484 1.536 56.0 S4* 0.872 1.651 The third lens L3 S5* 3.171 1.301 1.640 23.5 S6* -41 0.358 Aperture 140 S7 Unlimited 0.09 Fourth lens L4 S8 26.147 1.278 1.804 39.6 S9 -2.96 0.181 Fifth lens L5 S10* 3.357 0.364 1.640 23.5 S11 0.678 0 Sixth lens L6 S12* 0.678 2.757 1.536 56.0 S13* -2.164 0.11 Infrared filter 160 S14 Unlimited 0.33 1.517 64.2 S15 Unlimited 0.364 Protective cover 170 S16 Unlimited 0.44 1.517 64.2 S17 Unlimited 0.05 Imaging surface 180 S18 Unlimited 0

下方表六列出各非球面的二次曲面係數值K與各階非球面係數A-H。Table 6 below lists the quadric coefficient value K of each aspheric surface and the aspheric coefficients A-H of each order.

表六 S3 S4 S5 S6 K -1.07E+01 -8.96E-01 -4.39E+00 0 A 0 0 0 0 B 8.85E-03 2.26E-02 3.78E-02 3.55E-02 C -5.05E-03 2.51E-02 4.87E-03 2.06E-02 D 1.28E-03 -1.10E-02 1.92E-03 -5.22E-02 E -1.60E-04 3.66E-03 4.79E-04 1.54E-01 F 9.84E-06 4.51E-04 -6.80E-04 -2.24E-01 G -2.69E-07 1.29E-03 5.21E-04 1.26E-01 H 0 0 0 0   S10 S12 S13   K 4.30E-02 -1.25E+00 -6.38E+00   A 0 0 0   B -3.40E-02 2.50E-02 1.75E-03   C 9.06E-03 5.51E-02 1.13E-03   D 1.52E-03 -5.04E-05 -2.17E-03   E 3.43E-03 2.86E-03 3.70E-04   F -1.16E-03 2.04E-04 -3.77E-06   G -4.71E-03 -5.22E-03 -3.92E-05   H 0 0 0   Table 6 S3 S4 S5 S6 K -1.07E+01 -8.96E-01 -4.39E+00 0 A 0 0 0 0 B 8.85E-03 2.26E-02 3.78E-02 3.55E-02 C -5.05E-03 2.51E-02 4.87E-03 2.06E-02 D 1.28E-03 -1.10E-02 1.92E-03 -5.22E-02 E -1.60E-04 3.66E-03 4.79E-04 1.54E-01 F 9.84E-06 4.51E-04 -6.80E-04 -2.24E-01 G -2.69E-07 1.29E-03 5.21E-04 1.26E-01 H 0 0 0 0 S10 S12 S13 K 4.30E-02 -1.25E+00 -6.38E+00 A 0 0 0 B -3.40E-02 2.50E-02 1.75E-03 C 9.06E-03 5.51E-02 1.13E-03 D 1.52E-03 -5.04E-05 -2.17E-03 E 3.43E-03 2.86E-03 3.70E-04 F -1.16E-03 2.04E-04 -3.77E-06 G -4.71E-03 -5.22E-03 -3.92E-05 H 0 0 0

圖2A及圖2B、圖4A及圖4B、圖6A及圖6B分別為實施例鏡頭100、100A、100B的像散場曲圖及畸變圖。圖2A、4A、6A為鏡頭100、100A、100B的像散場曲(astigmatic field curvature)圖,其橫軸表示為焦點位移量(mm),縱軸表示為像高,T代表在子午方向的曲線,S代表在弧矢方向的曲線,而不同線段樣式代表不同波長下的測量情形。圖2B、4B、6B為鏡頭100、100A、100B的畸變(distortion)圖,其橫軸表示為畸變百分比(%),縱軸表示為像高,而不同線段樣式代表不同波長下的測量情形。由此可驗證,本實施例的鏡頭100、100A、100B所顯示出的像散場曲及畸變在波長為450奈米至650奈米之間位於標準範圍內,故具有良好的光學成像品質,如圖2A及圖2B、圖4A及圖4B、圖6A及圖6B所顯示。2A and FIG. 2B, FIG. 4A and FIG. 4B, and FIG. 6A and FIG. 6B are respectively astigmatic field curve diagrams and distortion diagrams of the embodiment lenses 100, 100A, and 100B. Figures 2A, 4A, and 6A are the astigmatic field curvature diagrams of the lenses 100, 100A, and 100B. The horizontal axis is the focus displacement (mm), the vertical axis is the image height, and T is the curve in the meridian direction. , S represents the curve in the sagittal direction, and different line styles represent the measurement conditions at different wavelengths. 2B, 4B, and 6B are distortion diagrams of the lenses 100, 100A, and 100B. The horizontal axis is the distortion percentage (%), the vertical axis is the image height, and different line styles represent the measurement conditions at different wavelengths. It can be verified that the astigmatic field curvature and distortion displayed by the lenses 100, 100A, and 100B of this embodiment are within the standard range between wavelengths of 450 nm and 650 nm, so they have good optical imaging quality, such as Figures 2A and 2B, Figure 4A and Figure 4B, Figure 6A and Figure 6B are shown.

綜上所述,在本發明的鏡頭及其製造方法中,使用多個非球面鏡片提升解析性能,且以負屈光度透鏡達到廣角收光能力,進而可兼具有效的減少透鏡的數量、改善像差、有效減低成本,並具有良好的光學效果。In summary, in the lens and its manufacturing method of the present invention, multiple aspherical lenses are used to improve resolution performance, and a negative diopter lens is used to achieve wide-angle light collection capability, which can effectively reduce the number of lenses and improve the image. Poor, effectively reduce costs, and have good optical effects.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

100,100A,100B:鏡頭 110:放大側 120:縮小側 130:第一透鏡組 140:光圈 150:第二透鏡組 160:紅外濾光片 170:透光保護蓋 180:成像面 A:光軸 B:夾角 L1~L6:透鏡 r1,r6:有效半徑 S1~S18:表面100, 100A, 100B: lens 110: Magnified side 120: Reduced side 130: The first lens group 140: Aperture 150: second lens group 160: Infrared filter 170: Translucent protective cover 180: imaging surface A: Optical axis B: included angle L1~L6: lens r1, r6: effective radius S1~S18: surface

圖1為本發明一實施例的鏡頭的示意圖。 圖2A及圖2B分別為圖1實施例的鏡頭的像散場曲圖及畸變圖。 圖3為本發明另一實施例的鏡頭的示意圖。 圖4A及圖4B分別為圖3實施例的鏡頭的像散場曲圖及畸變圖。 圖5為本發明另一實施例的鏡頭的示意圖。 圖6A及圖6B分別為圖5實施例的鏡頭的像散場曲圖及畸變圖。FIG. 1 is a schematic diagram of a lens according to an embodiment of the invention. 2A and 2B are respectively an astigmatic field curve diagram and a distortion diagram of the lens of the embodiment in FIG. 1. FIG. 3 is a schematic diagram of a lens according to another embodiment of the invention. 4A and 4B are respectively an astigmatic field curve diagram and a distortion diagram of the lens of the embodiment in FIG. 3. FIG. 5 is a schematic diagram of a lens according to another embodiment of the invention. 6A and 6B are respectively an astigmatic field curve diagram and a distortion diagram of the lens of the embodiment in FIG. 5.

100:鏡頭100: lens

110:放大側110: Magnified side

120:縮小側120: Reduced side

130:第一透鏡組130: The first lens group

140:光圈140: Aperture

150:第二透鏡組150: second lens group

160:紅外濾光片160: Infrared filter

170:透光保護蓋170: Translucent protective cover

180:成像面180: imaging surface

A:光軸A: Optical axis

B:夾角B: included angle

L1~L6:透鏡L1~L6: lens

r1,r6:有效半徑r1, r6: effective radius

S1~S18:表面S1~S18: surface

Claims (10)

一種鏡頭,包含: 由一放大側往一縮小側沿一光軸依序排列的一第一透鏡組、一光圈以及一第二透鏡組; 其中, 該第一透鏡組為負屈光度,該第一透鏡組包含三片具有屈光度的透鏡,該第一透鏡組包括一片屈光度為正的透鏡,該第一透鏡組包括一片非球面透鏡; 該第二透鏡組為正屈光度,該第二透鏡組包含三片具有屈光度的透鏡,該第二透鏡組包括一片屈光度為負的透鏡,該第二透鏡組最靠近該縮小側的透鏡為一組合透鏡,該第二透鏡組包括一片非球面透鏡; 該鏡頭中包含具屈光度的透鏡總數為介於6到8片;以及 該鏡頭滿足下列條件: (1)  9>LT/EFL>15,其中LT為該第一透鏡組最靠近該放大側的透鏡表面到該第二透鏡組最遠離該第一透鏡組的透鏡表面沿該光軸上的距離,且EFL為該鏡頭的有效焦距;以及 (2)  LT/D1>12,其中D1為該第一透鏡組中最靠近該放大側的透鏡沿該光軸上的厚度。A lens that contains: A first lens group, an aperture, and a second lens group arranged in sequence along an optical axis from one magnification side to a reduction side; in, The first lens group has a negative refractive power, the first lens group includes three lenses with refractive power, the first lens group includes a lens with a positive refractive power, and the first lens group includes an aspheric lens; The second lens group has positive refractive power, the second lens group includes three lenses with refractive power, the second lens group includes a lens with negative refractive power, and the lens of the second lens group closest to the reduction side is a combination Lens, the second lens group includes an aspheric lens; The total number of lenses with diopter included in the lens is between 6 and 8; and The lens meets the following conditions: (1) 9>LT/EFL>15, where LT is the distance along the optical axis from the lens surface of the first lens group closest to the magnification side to the lens surface of the second lens group farthest from the first lens group , And EFL is the effective focal length of the lens; and (2) LT/D1>12, where D1 is the thickness along the optical axis of the lens closest to the magnification side in the first lens group. 如請求項1所述的鏡頭,其中該第一透鏡組包括由該放大側往該縮小側沿該光軸依序排列的一第一透鏡、一第二透鏡以及一第三透鏡,該第二透鏡組包括由該放大側往該縮小側沿該光軸依序排列的一第四透鏡、一第五透鏡以及一第六透鏡。The lens of claim 1, wherein the first lens group includes a first lens, a second lens, and a third lens that are sequentially arranged along the optical axis from the magnification side to the reduction side, the second lens The lens group includes a fourth lens, a fifth lens, and a sixth lens that are sequentially arranged along the optical axis from the magnification side to the reduction side. 一種鏡頭,包含: 由一放大側往一縮小側沿一光軸依序排列的一第一透鏡、一第二透鏡、一第三透鏡、一光圈以及一第四透鏡、一第五透鏡、一第六透鏡; 其中, 該第五透鏡及該第六透鏡為一膠合透鏡;以及 該鏡頭滿足下列條件: (1) 9>LT/EFL>15,其中LT為該第一透鏡組最靠近該放大側的透鏡表面到該第二透鏡組最遠離該第一透鏡組的透鏡表面沿該光軸上的距離,且EFL為該鏡頭的有效焦距; (2) 4>D6/D5>10,其中D5為該第五透鏡沿該光軸上的厚度,且D6為該第六透鏡沿該光軸上的厚度; (3)  180>FOV>230,其中FOV為該鏡頭的視場角;以及 (4)  80>A2>50,其中A2為該第二透鏡的凹面邊緣的延伸線和該光軸之間的夾角。A lens that contains: A first lens, a second lens, a third lens, an aperture, a fourth lens, a fifth lens, and a sixth lens arranged in order along an optical axis from one magnification side to a reduction side; in, The fifth lens and the sixth lens are a cemented lens; and The lens meets the following conditions: (1) 9>LT/EFL>15, where LT is the distance along the optical axis from the lens surface of the first lens group closest to the magnification side to the lens surface of the second lens group farthest from the first lens group , And EFL is the effective focal length of the lens; (2) 4>D6/D5>10, where D5 is the thickness of the fifth lens along the optical axis, and D6 is the thickness of the sixth lens along the optical axis; (3) 180>FOV>230, where FOV is the angle of view of the lens; and (4) 80>A2>50, where A2 is the angle between the extension line of the concave edge of the second lens and the optical axis. 如請求項1或3所述的鏡頭,其中該鏡頭符合FOV>210,其中FOV為該鏡頭的視場角。The lens according to claim 1 or 3, wherein the lens meets FOV>210, where FOV is the angle of view of the lens. 如請求項1或3所述的鏡頭,其中最靠近該放大側的透鏡沿該光軸上的厚度大於1毫米。The lens according to claim 1 or 3, wherein the thickness of the lens closest to the magnification side along the optical axis is greater than 1 mm. 如請求項2或3所述的鏡頭,其中該第一透鏡至該第四透鏡的屈光度依序為負、負、正、正。The lens according to claim 2 or 3, wherein the refractive power of the first lens to the fourth lens is negative, negative, positive, and positive in order. 如請求項2或3所述的鏡頭,其中該第五透鏡與該第六透鏡的其中一者的屈光度為正,而其中另一者為負。The lens according to claim 2 or 3, wherein the refractive power of one of the fifth lens and the sixth lens is positive, and the other is negative. 如請求項2或3所述的鏡頭,其中該第一透鏡以及該第四透鏡的材質為玻璃,該第二透鏡、該第三透鏡、該第五透鏡以及該第六透鏡的材質為塑膠。The lens according to claim 2 or 3, wherein the material of the first lens and the fourth lens is glass, and the material of the second lens, the third lens, the fifth lens, and the sixth lens is plastic. 如請求項2或3所述的鏡頭,其中該鏡頭符合4>Z1/Z2>10,其中Z1為該第五透鏡或該第六透鏡沿該光軸上的厚度較大者,Z2為該第五透鏡或該第六透鏡沿該光軸上的厚度較小者。The lens according to claim 2 or 3, wherein the lens conforms to 4>Z1/Z2>10, where Z1 is the greater thickness of the fifth lens or the sixth lens along the optical axis, and Z2 is the first lens. The fifth lens or the sixth lens has a smaller thickness along the optical axis. 一種鏡頭製造方法,包含: 提供一鏡筒;以及 將一第一透鏡組、一第二透鏡組和一光圈,置入並固定於該鏡筒內, 其中,該第一透鏡組為負屈光度,該第一透鏡組包含三片具有屈光度的透鏡,該第一透鏡組包括一片屈光度為正的透鏡,該第一透鏡組包括一片非球面透鏡,該第二透鏡組為正屈光度,該第二透鏡組包含三片具有屈光度的透鏡,該第二透鏡組包括一片屈光度為負的透鏡,該第二透鏡組最靠近該縮小側的透鏡為一組合透鏡,該第二透鏡組包括一片非球面透鏡,該鏡頭中包含具屈光度的透鏡總數為介於6到8片, 該鏡頭滿足下列條件: (1)  9>LT/EFL>15,其中LT為該第一透鏡組最靠近該放大側的透鏡表面到該第二透鏡組最遠離該第一透鏡組的透鏡表面沿該光軸上的距離,且EFL為該鏡頭的有效焦距;以及 (2)  LT/D1>12,其中D1為該第一透鏡組中最靠近該放大側的透鏡沿該光軸上的厚度。A lens manufacturing method, including: Provide a lens barrel; and Put a first lens group, a second lens group and an aperture into and fixed in the lens barrel, Wherein, the first lens group has a negative refractive power, the first lens group includes three lenses with refractive power, the first lens group includes a lens with a positive refractive power, the first lens group includes an aspheric lens, and the first lens group includes a lens with a positive refractive power. The two lens groups have positive refractive power, the second lens group includes three lenses with refractive power, the second lens group includes a lens with negative refractive power, and the lens of the second lens group closest to the reduction side is a combined lens, The second lens group includes an aspheric lens, and the total number of lenses with refractive power in the lens is between 6 and 8, The lens meets the following conditions: (1) 9>LT/EFL>15, where LT is the distance along the optical axis from the lens surface of the first lens group closest to the magnification side to the lens surface of the second lens group farthest from the first lens group , And EFL is the effective focal length of the lens; and (2) LT/D1>12, where D1 is the thickness along the optical axis of the lens closest to the magnification side in the first lens group.
TW109108541A 2020-03-16 2020-03-16 Optical lens and manufacturing method thereof TWI828879B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109108541A TWI828879B (en) 2020-03-16 2020-03-16 Optical lens and manufacturing method thereof
CN202010507093.2A CN113406776B (en) 2020-03-16 2020-06-05 Lens and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109108541A TWI828879B (en) 2020-03-16 2020-03-16 Optical lens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202136844A true TW202136844A (en) 2021-10-01
TWI828879B TWI828879B (en) 2024-01-11

Family

ID=77677318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108541A TWI828879B (en) 2020-03-16 2020-03-16 Optical lens and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN113406776B (en)
TW (1) TWI828879B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160306B2 (en) * 2002-01-25 2008-10-01 株式会社シグマ Viewfinder optical system
TWI222532B (en) * 2003-03-11 2004-10-21 Ind Tech Res Inst Tenfold zooming wide-angle camera lens
JP4949871B2 (en) * 2007-01-22 2012-06-13 富士フイルム株式会社 Image pickup lens and image pickup apparatus including the image pickup lens
TWI427352B (en) * 2010-09-30 2014-02-21 Young Optics Inc Fixed-focus lens
TWI491915B (en) * 2014-04-01 2015-07-11 Sintai Optical Shenzhen Co Ltd Wide-angle lens
TWI594009B (en) * 2015-11-05 2017-08-01 Wide-angle lens
US10185129B2 (en) * 2017-03-22 2019-01-22 Young Optics Inc. Optical lens
TWI781947B (en) * 2017-07-19 2022-11-01 揚明光學股份有限公司 Optical lens
TW201819978A (en) * 2017-11-07 2018-06-01 玉晶光電股份有限公司 Optical imaging lens
CN110320637B (en) * 2018-03-30 2023-05-30 光芒光学股份有限公司 Lens and method for manufacturing the same
CN110687658A (en) * 2018-07-05 2020-01-14 光芒光学股份有限公司 Lens and manufacturing method thereof
TWI676819B (en) * 2019-01-29 2019-11-11 大陸商信泰光學(深圳)有限公司 Camera device

Also Published As

Publication number Publication date
CN113406776A (en) 2021-09-17
TWI828879B (en) 2024-01-11
CN113406776B (en) 2024-08-23

Similar Documents

Publication Publication Date Title
US10180563B2 (en) Optical lens
CN206946078U (en) Optical imaging system
US10146030B2 (en) Zoom lens
TWI660193B (en) Optical lens
CN105974561A (en) Wide-angle image photographing lens
TW201802517A (en) Optical lens
TW201626036A (en) Fixed-focus lens
CN108318995B (en) Lens system and lens
US20220128799A1 (en) Optical lens
CN111856708A (en) Image capturing lens and manufacturing method thereof
TW201441661A (en) Wide-angle lens
TW201930950A (en) Lens and fabrication method thereof
CN114019652A (en) Wide-angle large-target-surface small-distortion optical fixed-focus lens
CN110687658A (en) Lens and manufacturing method thereof
CN214623165U (en) Optical imaging lens
TWI664441B (en) Wide-angle lens
TWI689747B (en) Four-piece dual waveband optical lens system
CN106959499A (en) Optical lens
CN111679414B (en) Super-wide-angle athermal day and night lens and working method thereof
TW202136844A (en) Optical lens and manufacturing method thereof
CN113514932A (en) Optical imaging lens
TWI784986B (en) Lens and manufacturing method thereof
TWI407139B (en) Compact imaging lens assembly
CN111323893A (en) Lens and manufacturing method thereof
CN218158529U (en) Fixed focus lens