TW202134854A - Data processing device, data driving device, and system for driving display device - Google Patents

Data processing device, data driving device, and system for driving display device Download PDF

Info

Publication number
TW202134854A
TW202134854A TW109129687A TW109129687A TW202134854A TW 202134854 A TW202134854 A TW 202134854A TW 109129687 A TW109129687 A TW 109129687A TW 109129687 A TW109129687 A TW 109129687A TW 202134854 A TW202134854 A TW 202134854A
Authority
TW
Taiwan
Prior art keywords
signal
speed communication
voltage level
clock
data
Prior art date
Application number
TW109129687A
Other languages
Chinese (zh)
Inventor
金道錫
文龍煥
金洺猷
曹賢杓
Original Assignee
南韓商矽工廠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商矽工廠股份有限公司 filed Critical 南韓商矽工廠股份有限公司
Publication of TW202134854A publication Critical patent/TW202134854A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/001Arbitration of resources in a display system, e.g. control of access to frame buffer by video controller and/or main processor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0272Details of drivers for data electrodes, the drivers communicating data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication

Abstract

The present disclosure relates to a data processing device, a data driving device, and a system for driving a display device, and more particularly, to a data processing device, a data driving device, and a system for speeding up data communication in a display device.

Description

用於驅動顯示裝置的資料處理裝置、資料驅動裝置和系統Data processing device, data driving device and system for driving display device

本發明係有關於用於驅動顯示裝置的技術。The present invention relates to a technology for driving a display device.

在顯示面板上,佈置有以矩陣的形式配置的多個像素,並且各像素包括紅色(R)子像素、綠色(G)子像素和藍色(B)子像素。各子像素根據從圖像資料獲得的灰度值來進行發光,以在顯示面板上顯示圖像。On the display panel, a plurality of pixels arranged in a matrix form are arranged, and each pixel includes a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel. Each sub-pixel emits light according to the gray value obtained from the image data to display the image on the display panel.

將圖像資料從被稱為定時控制器的資料處理裝置發送至被稱為源極驅動器的資料驅動裝置。圖像資料是以數位信號的形式發送的,並且資料驅動裝置將以數位信號的形式接收到的圖像資料轉換成類比電壓以驅動各像素。The image data is sent from a data processing device called a timing controller to a data driving device called a source driver. The image data is sent in the form of a digital signal, and the data driving device converts the image data received in the form of the digital signal into an analog voltage to drive each pixel.

由於各圖像資料表示各像素的灰度值,因此隨著顯示面板上所佈置的像素的數量的增加,圖像資料的量增加。另外,隨著畫面播放速率的增加,在單位時間內要發送的圖像資料的量增加。Since each image data represents the gray value of each pixel, as the number of pixels arranged on the display panel increases, the amount of image data increases. In addition, as the screen playback rate increases, the amount of image data to be sent per unit time increases.

近來,存在如下的趨勢:隨著顯示面板的解析度變高,顯示面板上所佈置的像素的數量和畫面播放速率都增加。為了處理增加了的圖像資料的量,需要對顯示裝置中的資料通信進行加速。Recently, there is a trend that as the resolution of the display panel becomes higher, the number of pixels arranged on the display panel and the screen playback rate both increase. In order to handle the increased amount of image data, data communication in the display device needs to be accelerated.

在該背景下,本發明的一方面是提供用於對顯示裝置中的資料通信進行加速的技術。In this context, an aspect of the present invention is to provide a technology for accelerating data communication in a display device.

為此,在一方面,本發明提供一種資料驅動裝置,包括:低速通信電路,用於在低速通信模式中使用從資料處理裝置接收到的低速通信時脈信號來進行低速時脈訓練,並且在完成所述低速時脈訓練之後輸出第一電壓準位的低速通信狀況信號;高速通信電路,用於在高速通信模式中在時脈訓練區段中使用從所述資料處理裝置接收到的高速通信時脈信號來進行高速時脈訓練,並且在根據所述高速時脈訓練的結果調整高速通信狀況信號的電壓準位之後輸出所述高速通信狀況信號;以及鎖定控制電路,用於根據所述低速通信狀況信號和所述高速通信狀況信號來產生鎖定信號以將所述鎖定信號發送至所述資料處理裝置,並且從所述低速通信模式結束起直到所述高速通信模式中的所述時脈訓練區段為止維持所述鎖定信號的電壓準位。To this end, in one aspect, the present invention provides a data driving device including: a low-speed communication circuit for performing low-speed clock training using a low-speed communication clock signal received from a data processing device in a low-speed communication mode, and After completing the low-speed clock training, output a low-speed communication status signal at the first voltage level; a high-speed communication circuit for using the high-speed communication received from the data processing device in the clock training section in the high-speed communication mode High-speed clock signal to perform high-speed clock training, and output the high-speed communication status signal after adjusting the voltage level of the high-speed communication status signal according to the result of the high-speed clock training; The communication status signal and the high-speed communication status signal generate a lock signal to transmit the lock signal to the data processing device, and from the end of the low-speed communication mode until the clock training in the high-speed communication mode The voltage level of the lock signal is maintained until the section.

所述鎖定控制電路可以在所述低速通信電路完成所述低速時脈訓練之前發送第二電壓準位的所述鎖定信號,在從所述低速通信電路接收到的所述低速通信狀況信號處於第一電壓準位時,將所述鎖定信號的電壓準位改變為第一電壓準位以將所述鎖定信號發送至所述資料處理裝置,並且發送從所述低速通信模式結束起直到所述時脈訓練區段為止固定在第一電壓準位的所述鎖定信號。The lock control circuit may send the lock signal of the second voltage level before the low-speed communication circuit completes the low-speed clock training, and the low-speed communication status signal received from the low-speed communication circuit is in the first At a voltage level, the voltage level of the lock signal is changed to a first voltage level to send the lock signal to the data processing device, and the signal is sent from the end of the low-speed communication mode until the time The lock signal is fixed at the first voltage level up to the pulse training section.

所述鎖定控制電路可以在所述低速通信模式中根據所述低速通信狀況信號、並且在所述高速通信模式中在所述時脈訓練區段之後根據所述高速通信狀況信號,來產生所述鎖定信號。The lock control circuit may generate the high-speed communication status signal according to the low-speed communication status signal in the low-speed communication mode and after the clock training section in the high-speed communication mode Lock the signal.

所述高速通信電路可以包括時脈恢復電路和等化器。所述高速通信電路可以在所述時脈恢復電路中進行高速時脈訓練,將所述高速通信狀況信號輸出至所述鎖定控制電路。The high-speed communication circuit may include a clock recovery circuit and an equalizer. The high-speed communication circuit may perform high-speed clock training in the clock recovery circuit, and output the high-speed communication status signal to the lock control circuit.

在所述時脈訓練區段之前的等化器調諧區段中,所述時脈恢復電路可以多次重複進行時脈初始化和高速時脈訓練以進行等化器調諧。這裡,所述時脈恢復電路可以在所述時脈初始化期間輸出第二電壓準位的所述高速通信狀況信號,並且在所述高速時脈訓練完成時輸出第一電壓準位的所述高速通信狀況信號。In the equalizer tuning section before the clock training section, the clock recovery circuit may repeatedly perform clock initialization and high-speed clock training to perform equalizer tuning. Here, the clock recovery circuit may output the high-speed communication status signal at the second voltage level during the clock initialization period, and output the high-speed communication status signal at the first voltage level when the high-speed clock training is completed. Communication status signal.

在所述等化器調諧區段中,所述鎖定控制電路可以將不管從所述時脈恢復電路接收到的所述高速通信狀況信號的電壓準位的變化如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。In the equalizer tuning section, the lock control circuit may fix the first voltage level regardless of changes in the voltage level of the high-speed communication status signal received from the clock recovery circuit The lock signal of is sent to the data processing device.

所述時脈恢復電路可以包括振盪器。在所述時脈訓練區段之前的時脈恢復電路調諧區段中,所述時脈恢復電路可以在進行高速時脈訓練期間按每預定時間改變所述振盪器的設置值,在所述高速時脈訓練完成時輸出第一電壓準位的所述高速通信狀況信號,並且在所述高速時脈訓練未完成時輸出第二電壓準位的所述高速通信狀況信號。The clock recovery circuit may include an oscillator. In the tuning section of the clock recovery circuit before the clock training section, the clock recovery circuit may change the setting value of the oscillator every predetermined time during the high-speed clock training, and the setting value of the oscillator is changed at the high-speed When the clock training is completed, the high-speed communication status signal at the first voltage level is output, and when the high-speed clock training is not completed, the high-speed communication status signal at the second voltage level is output.

所述鎖定控制電路可以將不管從所述時脈恢復電路接收到的所述高速通信狀況信號的電壓準位的變化如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The lock control circuit may send the lock signal fixed at the first voltage level to the data processing regardless of changes in the voltage level of the high-speed communication status signal received from the clock recovery circuit Device.

所述振盪器可以是電流控制振盪器和電壓控制振盪器其中之一,並且所述設置值可以包括輸入至所述電流控制振盪器的參考電流的電流值或者輸入至所述電壓控制振盪器的參考電壓的電壓值。The oscillator may be one of a current-controlled oscillator and a voltage-controlled oscillator, and the setting value may include a current value of a reference current input to the current-controlled oscillator or a reference current input to the voltage-controlled oscillator The voltage value of the reference voltage.

在所述低速通信模式中,在所述低速通信電路輸出了第一電壓準位的所述低速通信狀況信號之後、在與所述資料處理裝置的低速通信中存在任何異常的情況下,所述低速通信電路可以將所述低速通信狀況信號從第一電壓準位改變為第二電壓準位並輸出該信號,並且所述鎖定控制電路可以將所述鎖定信號的電壓準位改變為第二電壓準位並將所述鎖定信號發送至所述資料處理裝置。In the low-speed communication mode, after the low-speed communication circuit outputs the low-speed communication status signal at the first voltage level, if there is any abnormality in the low-speed communication with the data processing device, the The low-speed communication circuit may change the low-speed communication status signal from the first voltage level to the second voltage level and output the signal, and the lock control circuit may change the voltage level of the lock signal to the second voltage And send the lock signal to the data processing device.

在緊接在所述時脈訓練區段之後輸入到所述鎖定控制電路中的所述高速通信狀況信號處於第一電壓準位的情況下,所述鎖定控制電路可以將所述鎖定信號維持在第一電壓準位,以及在緊接在所述時脈訓練區段之後輸入到所述鎖定控制電路中的所述高速通信狀況信號處於第二電壓準位的情況下,所述鎖定控制電路可以將所述鎖定信號改變為第二電壓準位並將所述鎖定信號發送至所述資料處理裝置。In the case where the high-speed communication status signal input to the lock control circuit immediately after the clock training section is at the first voltage level, the lock control circuit may maintain the lock signal at The first voltage level, and when the high-speed communication status signal input to the lock control circuit immediately after the clock training section is at the second voltage level, the lock control circuit may The lock signal is changed to a second voltage level and the lock signal is sent to the data processing device.

在另一方面,本發明提供一種資料處理裝置,包括:鎖定監視電路,用於從資料驅動裝置接收鎖定信號並且檢查所述鎖定信號的電壓準位;發送電路,用於在低速通信模式中將低速通信時脈信號和設置資料信號發送至所述資料驅動裝置,然後在將模式改變為高速通信模式之後將高速通信時脈信號發送至所述資料驅動裝置,其中所述設置資料信號包括用於設置所述資料驅動裝置中的高速通信環境的資料;以及控制電路,用於在供給電力時啟用所述低速通信模式以使用所述發送電路發送所述低速通信時脈信號,在所述鎖定監視電路確認為在所述發送電路發送所述低速通信時脈信號時所述鎖定信號的電壓準位從第二電壓準位改變為第一電壓準位之後使用所述發送電路發送所述設置資料信號,並且在所述鎖定監視電路確認為所述鎖定信號的電壓準位維持在第一電壓準位時啟用所述高速通信模式以使用所述發送電路發送所述高速通信時脈信號。In another aspect, the present invention provides a data processing device, including: a lock monitoring circuit for receiving a lock signal from a data driving device and checking the voltage level of the lock signal; and a sending circuit for connecting in a low-speed communication mode The low-speed communication clock signal and the setting data signal are sent to the data driving device, and then after the mode is changed to the high-speed communication mode, the high-speed communication clock signal is sent to the data driving device, wherein the setting data signal includes Setting the data of the high-speed communication environment in the data driving device; and a control circuit for enabling the low-speed communication mode when power is supplied to use the transmitting circuit to transmit the low-speed communication clock signal, and monitoring in the lock The circuit is confirmed to use the sending circuit to send the setting data signal after the voltage level of the lock signal is changed from the second voltage level to the first voltage level when the sending circuit sends the low-speed communication clock signal And when the lock monitoring circuit confirms that the voltage level of the lock signal is maintained at the first voltage level, the high-speed communication mode is activated to transmit the high-speed communication clock signal using the transmitting circuit.

在所述高速通信模式下,所述控制電路可以在使用所述發送電路發送所述高速通信時脈信號之前,使用所述發送電路將用以使得在所述資料驅動裝置中重複高速時脈訓練的一個或多個信號發送至所述資料驅動裝置。In the high-speed communication mode, the control circuit may use the transmission circuit to make the high-speed clock training repeated in the data drive device before the high-speed communication clock signal is transmitted by the transmission circuit. One or more signals of is sent to the data driving device.

在所述鎖定監視電路確認為從所述一個或多個信號的發送的開始起直到結束為止所述鎖定信號的電壓準位維持在第一電壓準位的情況下,所述控制電路可以使用所述發送電路來發送所述高速通信時脈信號。In the case where the lock monitoring circuit confirms that the voltage level of the lock signal is maintained at the first voltage level from the start to the end of the transmission of the one or more signals, the control circuit may use all The transmitting circuit transmits the high-speed communication clock signal.

在所述鎖定監視電路確認為從所述鎖定信號的電壓準位改變為第一電壓準位的時間點起直到所述發送電路完成所述設置資料信號的發送的時間點為止所述鎖定信號的電壓準位維持在第一電壓準位的情況下,所述控制電路可以啟用所述高速通信模式,並且在所述鎖定監視電路確認為所述鎖定信號的電壓準位維持在第一電壓準位直到從啟用所述高速通信模式的時間點起經過了預定時間量為止的情況下,所述控制電路可以使用所述發送電路來發送所述高速通信時脈信號。When the lock monitoring circuit confirms that the lock signal is changed from the time point when the voltage level of the lock signal is changed to the first voltage level until the time point when the transmission circuit completes the transmission of the setting data signal When the voltage level is maintained at the first voltage level, the control circuit may enable the high-speed communication mode, and the lock monitoring circuit confirms that the voltage level of the lock signal is maintained at the first voltage level The control circuit may use the transmission circuit to transmit the high-speed communication clock signal until a predetermined amount of time has elapsed from the point in time when the high-speed communication mode is activated.

在又一方面,本發明提供一種系統,包括:資料處理裝置,用於在供給電力時,啟用低速通信模式,以發送低速通信時脈信號,然後發送設置資料信號,並且在連續接收到第一電壓準位的鎖定信號的情況下啟用高速通信模式以發送高速通信時脈信號,其中,所述資料處理裝置在發送所述低速通信時脈信號期間接收到第一電壓準位的所述鎖定信號的情況下發送所述設置資料信號;以及資料驅動裝置,用於接收所述低速通信時脈信號以進行低速時脈訓練,在所述低速時脈訓練完成時將第一電壓準位的所述鎖定信號發送至所述資料處理裝置,並且接收所述高速通信時脈信號以進行高速時脈訓練,其中,所述資料驅動裝置從在所述低速通信模式中接收到所述設置資料信號起直到進行所述高速時脈訓練為止,將第一電壓準位的所述鎖定信號連續發送至所述資料處理裝置。In yet another aspect, the present invention provides a system including: a data processing device for enabling a low-speed communication mode when power is supplied to send a low-speed communication clock signal, and then send a setting data signal, and continuously receive the first In the case of the voltage level lock signal, the high-speed communication mode is activated to send a high-speed communication clock signal, wherein the data processing device receives the lock signal at the first voltage level during the sending of the low-speed communication clock signal In the case of sending the setting data signal; and a data driving device for receiving the low-speed communication clock signal for low-speed clock training, and when the low-speed clock training is completed, the first voltage level of the The lock signal is sent to the data processing device, and the high-speed communication clock signal is received to perform high-speed clock training, wherein the data driving device starts from receiving the setting data signal in the low-speed communication mode until Until the high-speed clock training is performed, the lock signal of the first voltage level is continuously sent to the data processing device.

所述資料驅動裝置可以包括時脈恢復電路和等化器,並且所述資料處理裝置可以在所述高速通信模式中發送所述高速通信時脈信號之前,將時脈恢復電路調諧信號和等化器調諧信號中的一個或多個發送至所述資料驅動裝置。The data driving device may include a clock recovery circuit and an equalizer, and the data processing device may tune and equalize the clock recovery circuit before transmitting the high-speed communication clock signal in the high-speed communication mode. One or more of the tuning signals are sent to the data driving device.

所述時脈恢復電路調諧信號可以包括高速通信時脈,並且所述資料驅動裝置可以在使用所述時脈恢復電路調諧信號對所述時脈恢復電路進行調諧時多次進行高速時脈訓練。這裡,所述資料驅動裝置可以將不管多次高速時脈訓練如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The clock recovery circuit tuning signal may include a high-speed communication clock, and the data driving device may perform high-speed clock training multiple times when the clock recovery circuit tuning signal is used to tune the clock recovery circuit. Here, the data driving device may send the lock signal that is fixed at the first voltage level regardless of multiple high-speed clock trainings to the data processing device.

所述等化器調諧信號可以包括高速通信時脈,並且所述資料驅動裝置可以在使用所述等化器調諧信號對所述等化器進行調諧時多次進行高速時脈訓練。這裡,所述資料驅動裝置可以將不管多次高速時脈訓練如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The equalizer tuning signal may include a high-speed communication clock, and the data driving device may perform high-speed clock training multiple times when the equalizer tuning signal is used to tune the equalizer. Here, the data driving device may send the lock signal that is fixed at the first voltage level regardless of multiple high-speed clock trainings to the data processing device.

如上所述,本發明允許對顯示裝置中的資料通信進行加速。另外,本發明藉由簡化低速通信的回饋來提高回饋的準確性。As described above, the present invention allows acceleration of data communication in the display device. In addition, the present invention improves the accuracy of feedback by simplifying the feedback of low-speed communication.

圖1是根據實施例的顯示裝置的結構圖。Fig. 1 is a structural diagram of a display device according to an embodiment.

參考圖1,顯示裝置100可以包括顯示面板110、資料驅動裝置120、閘極驅動裝置130和資料處理裝置140。1, the display device 100 may include a display panel 110, a data driving device 120, a gate driving device 130, and a data processing device 140.

在顯示面板110上,可以佈置有多個資料線DL和多個閘極線GL,並且還可以佈置有多個像素。各像素可以包括多個子像素SP。子像素SP可以是紅色(R)子像素、綠色(G)子像素、藍色(B)子像素和白色(W)子像素。像素可以包括RGB子像素SP、RGBG子像素SP或RGBW子像素SP。為了便於說明,以下將說明像素包括RGB子像素SP的情況。On the display panel 110, a plurality of data lines DL and a plurality of gate lines GL may be arranged, and a plurality of pixels may also be arranged. Each pixel may include a plurality of sub-pixels SP. The sub-pixel SP may be a red (R) sub-pixel, a green (G) sub-pixel, a blue (B) sub-pixel, and a white (W) sub-pixel. The pixels may include RGB sub-pixels SP, RGBG sub-pixels SP, or RGBW sub-pixels SP. For the convenience of description, a case where the pixel includes the RGB sub-pixel SP will be described below.

資料驅動裝置120、閘極驅動裝置130和資料處理裝置140用於產生用於在顯示面板110上顯示圖像的信號。The data driving device 120, the gate driving device 130, and the data processing device 140 are used to generate signals for displaying images on the display panel 110.

閘極驅動裝置130可以經由閘極線GL供給作為閘極驅動信號的接通電壓或斷開電壓。在將作為閘極驅動信號的接通電壓供給至子像素SP時,子像素SP與資料線DL連接。在將作為閘極驅動信號的斷開電壓供給至子像素SP時,子像素SP從資料線DL斷開。閘極驅動裝置130可被稱為閘極驅動器。The gate driving device 130 may supply an on voltage or an off voltage as a gate driving signal via the gate line GL. When the on-voltage as a gate drive signal is supplied to the sub-pixel SP, the sub-pixel SP is connected to the data line DL. When an off voltage as a gate drive signal is supplied to the sub-pixel SP, the sub-pixel SP is disconnected from the data line DL. The gate driving device 130 may be referred to as a gate driver.

資料驅動裝置120可以將資料電壓Vp經由資料線DL供給至子像素SP。可以根據閘極驅動信號將經由資料線DL供給的資料電壓Vp供給至子像素SP。資料驅動裝置120可被稱為源極驅動器。The data driving device 120 can supply the data voltage Vp to the sub-pixel SP via the data line DL. The data voltage Vp supplied via the data line DL can be supplied to the sub-pixel SP according to the gate driving signal. The data driving device 120 may be referred to as a source driver.

資料驅動裝置120可以包括至少一個積體電路,並且該至少一個積體電路可以以帶式自動接合(TAB)型或玻璃覆晶(COG)型連接至顯示面板110的接合墊(bonding pad),其中該至少一個積體電路可以根據情況,直接形成在顯示面板110上,或者整合在顯示面板110上。另外,資料驅動裝置120可以以薄膜覆晶(COF)型形成。The data driving device 120 may include at least one integrated circuit, and the at least one integrated circuit may be connected to a bonding pad of the display panel 110 in a tape automated bonding (TAB) type or a chip on glass (COG) type, The at least one integrated circuit can be directly formed on the display panel 110 or integrated on the display panel 110 according to the situation. In addition, the data driving device 120 may be formed in a chip-on-film (COF) type.

資料處理裝置140可以將控制信號供給至閘極驅動裝置130和資料驅動裝置120。例如,資料處理裝置140可以將用以發起掃描的閘極控制信號GCS發送至閘極驅動裝置130,將圖像資料輸出至資料驅動裝置120,並且發送資料控制信號以控制資料驅動裝置120將資料電壓Vp供給至各子像素SP。資料處理裝置140可被稱為定時控制器。The data processing device 140 may supply control signals to the gate driving device 130 and the data driving device 120. For example, the data processing device 140 may send a gate control signal GCS for initiating scanning to the gate driving device 130, output image data to the data driving device 120, and send a data control signal to control the data driving device 120 to transfer the data The voltage Vp is supplied to each sub-pixel SP. The data processing device 140 may be referred to as a timing controller.

資料處理裝置140可以使用嵌入有時脈的第一協定信號PS1來發送圖像資料和資料控制信號。The data processing device 140 may use the first protocol signal PS1 embedded with the time pulse to transmit the image data and the data control signal.

資料驅動裝置120可以使用輔助通信信號ALP來將第一協定信號PS1中所嵌入的時脈的訓練狀態發送至資料處理裝置140。The data driving device 120 may use the auxiliary communication signal ALP to send the training state of the clock embedded in the first protocol signal PS1 to the data processing device 140.

資料處理裝置140和資料驅動裝置120可以使用第一協定信號PS1來執行高速資料通信。高速資料通信與低速資料通信相比,可能具有相對較高的資料損失率。由於該原因,資料處理裝置140可以使用低速資料通信來將高速資料通信所需的資料驅動裝置120的各種設置的資料傳送至資料驅動裝置120。The data processing device 140 and the data driving device 120 can use the first protocol signal PS1 to perform high-speed data communication. Compared with low-speed data communication, high-speed data communication may have a relatively high data loss rate. For this reason, the data processing device 140 can use low-speed data communication to transmit data of various settings of the data drive device 120 required for high-speed data communication to the data drive device 120.

換句話說,資料處理裝置140使用資料損失率低的低速資料通信來將資料驅動裝置120的設置資料發送至資料驅動裝置120,使得資料驅動裝置120可以精確地接收設置資料。In other words, the data processing device 140 uses low-speed data communication with a low data loss rate to send the setting data of the data driving device 120 to the data driving device 120 so that the data driving device 120 can accurately receive the setting data.

資料驅動裝置120的設置資料可以包括資料驅動裝置120中所包括的等化器的基本增益電壓準位、加擾資訊或線極性(line polarity)資訊等。加擾資訊可以是與資料處理裝置140是否原樣發送資料有關的資訊、或者在向資料驅動裝置120發送資料時的加擾資料,並且線極性資訊可以是表示像素的第一線的極性的資訊。The setting data of the data driving device 120 may include the basic gain voltage level, scrambling information, or line polarity information of the equalizer included in the data driving device 120. The scrambling information may be information about whether the data processing device 140 sends the data as it is, or the scrambled data when sending the data to the data driving device 120, and the line polarity information may be information indicating the polarity of the first line of the pixel.

資料處理裝置140可以使用第二協定信號PS2來執行低速資料通信。資料處理裝置140可以將第一協定信號PS1和第二協定信號PS2經由第一通信線LN1發送至資料驅動裝置120。The data processing device 140 can use the second protocol signal PS2 to perform low-speed data communication. The data processing device 140 may send the first agreement signal PS1 and the second agreement signal PS2 to the data driving device 120 via the first communication line LN1.

資料處理裝置140可以將用於最佳化高速資料通信的信號經由第一通信線LN1發送至資料驅動裝置120。例如,資料處理裝置140可以發送用於資料驅動裝置120的等化器的調諧信號,並且資料驅動裝置120可以使用這樣的調諧信號來對要最佳化的等化器的增益進行調諧。The data processing device 140 may transmit a signal for optimizing high-speed data communication to the data driving device 120 via the first communication line LN1. For example, the data processing device 140 may send a tuning signal for the equalizer of the data driving device 120, and the data driving device 120 may use such a tuning signal to tune the gain of the equalizer to be optimized.

資料驅動裝置120可以使用輔助通信信號ALP來將資料驅動裝置120的狀態回饋到資料處理裝置140。資料驅動裝置120可以使用輔助通信信號ALP來將用於低速資料通信的時脈訓練狀態和用於高速資料通信的時脈訓練狀態回饋到資料處理裝置140。與用於低速資料通信的時脈訓練狀態和用於高速資料通信的時脈訓練狀態有關的輔助通信信號ALP可被稱為鎖定信號LOCK。資料驅動裝置120可以將鎖定信號經由第二通信線LN2發送至資料處理裝置140。The data driving device 120 can use the auxiliary communication signal ALP to feed back the state of the data driving device 120 to the data processing device 140. The data driving device 120 can use the auxiliary communication signal ALP to feed back the clock training state for low-speed data communication and the clock training state for high-speed data communication to the data processing device 140. The auxiliary communication signal ALP related to the clock training state for low-speed data communication and the clock training state for high-speed data communication may be referred to as the lock signal LOCK. The data driving device 120 may send the lock signal to the data processing device 140 via the second communication line LN2.

資料驅動裝置120可以使用輔助通信信號ALP來將信號的接收狀態經由第一通信線LN1回饋到資料處理裝置140。資料驅動裝置120可以使用輔助通信信號ALP來發送由第一協定信號PS1和/或第二協定信號PS2傳送的特定資訊的接收狀態的回饋。資料驅動裝置120可以產生與接收狀態有關的狀況資料,並且將該狀況資料包括在輔助通信信號ALP中以將該狀況資料發送(回饋)至資料處理裝置140。The data driving device 120 can use the auxiliary communication signal ALP to feed back the reception status of the signal to the data processing device 140 via the first communication line LN1. The data driving device 120 may use the auxiliary communication signal ALP to send feedback on the reception status of the specific information transmitted by the first protocol signal PS1 and/or the second protocol signal PS2. The data driving device 120 can generate status data related to the receiving state, and include the status data in the auxiliary communication signal ALP to send (feed back) the status data to the data processing device 140.

根據實施例,可以經由第一通信線LN1來發送或接收第一協定信號PS1和第二協定信號PS2,並且可以經由第二通信線LN2來發送或接收輔助通信信號ALP。第一通信線LN1可以是AC差分信號線,並且第二通信線LN2可以是電晶體-電晶體線(TTL)或包括開汲極電路的單個通信線。According to an embodiment, the first agreement signal PS1 and the second agreement signal PS2 may be transmitted or received via the first communication line LN1, and the auxiliary communication signal ALP may be transmitted or received via the second communication line LN2. The first communication line LN1 may be an AC differential signal line, and the second communication line LN2 may be a transistor-transistor line (TTL) or a single communication line including an open drain circuit.

資料處理裝置140和資料驅動裝置120可以經由第一通信線LN1進行1:1通信,或者經由第二通信線LN2以鏈的形式進行串接通信。The data processing device 140 and the data driving device 120 may perform 1:1 communication via the first communication line LN1, or perform serial communication in the form of a chain via the second communication line LN2.

例如,在存在多個資料驅動裝置120的情況下,多個資料驅動裝置120可以藉由經由第二通信線LN2連接相鄰的資料驅動裝置120來以串接的形式彼此連接,並且多個資料驅動裝置120至少之一可以經由第二通信線LN2與資料處理裝置140連接。For example, in the case where there are multiple data drive devices 120, the multiple data drive devices 120 can be connected to each other in a serial form by connecting adjacent data drive devices 120 through the second communication line LN2, and the multiple data drive devices 120 At least one of the driving devices 120 may be connected to the data processing device 140 via the second communication line LN2.

以下將詳細說明第一通信線LN1和第二通信線LN2的結構。The structure of the first communication line LN1 and the second communication line LN2 will be described in detail below.

圖2是根據實施例的系統的結構圖。Fig. 2 is a structural diagram of a system according to an embodiment.

參考圖2,系統可以包括至少一個資料處理裝置140以及多個資料驅動裝置120a、120b、120c、120d。Referring to FIG. 2, the system may include at least one data processing device 140 and a plurality of data driving devices 120a, 120b, 120c, and 120d.

資料處理裝置140可以佈置在第一印刷電路板PCB1上。資料處理裝置140可以經由第一通信線LN1和第二通信線LN2與多個資料驅動裝置120a、120b、120c、120d連接。The data processing device 140 may be arranged on the first printed circuit board PCB1. The data processing device 140 may be connected to a plurality of data driving devices 120a, 120b, 120c, and 120d via the first communication line LN1 and the second communication line LN2.

第一通信線LN1和第二通信線LN2可以經由第一印刷電路板PCB1和第二印刷電路板PCB2到達多個資料驅動裝置120a、120b、120c、120d。第一印刷電路板PCB1和第二印刷電路板PCB2可以藉由由柔性材料製成的第一膜FL1彼此連接,並且第一通信線LN1和第二通信線LN2可以從第一印刷電路板PCB1經由第一膜FL1延伸到第二印刷電路板PCB2。The first communication line LN1 and the second communication line LN2 may reach the plurality of data driving devices 120a, 120b, 120c, 120d via the first printed circuit board PCB1 and the second printed circuit board PCB2. The first printed circuit board PCB1 and the second printed circuit board PCB2 may be connected to each other by a first film FL1 made of a flexible material, and the first communication line LN1 and the second communication line LN2 may pass from the first printed circuit board PCB1 The first film FL1 extends to the second printed circuit board PCB2.

資料驅動裝置120a、120b、120c、120d各自可以以薄膜覆晶(COF)型佈置在第二膜FL2上。第二膜FL2可以是連接第二印刷電路板PCB2和面板110的由柔性材料製成的支撐基板。第一通信線LN1和第二通信線LN2可以從第二印刷電路板PCB2經由第二膜FL2延伸到各個資料驅動裝置120a、120b、120c、120d。Each of the data driving devices 120a, 120b, 120c, and 120d may be arranged on the second film FL2 in a chip-on-film (COF) type. The second film FL2 may be a support substrate made of a flexible material that connects the second printed circuit board PCB2 and the panel 110. The first communication line LN1 and the second communication line LN2 may extend from the second printed circuit board PCB2 to the respective data driving devices 120a, 120b, 120c, 120d via the second film FL2.

第一通信線LN1各自可以以1:1的方式連接資料處理裝置140與資料驅動裝置120a、120b、120c、120d中的各資料驅動裝置。Each of the first communication lines LN1 can connect the data processing device 140 and each of the data driving devices 120a, 120b, 120c, and 120d in a 1:1 manner.

第二通信線LN2各自在不與第一通信線LN1重疊的狀態下,可以連接相鄰的資料驅動裝置120a、120b、120c、120d或者資料驅動裝置120d與資料處理裝置140。例如,第一資料驅動裝置120a可以經由第二通信線LN2與第二資料驅動裝置120b連接,並且第二資料驅動裝置120b可以經由第二通信線LN2與第三資料驅動裝置120c連接。這裡,第二資料驅動裝置120b和第三資料驅動裝置120c可以分別與不同的第二印刷電路板PCB2連接。因此,佈置在第二資料驅動裝置120b和第三資料驅動裝置120c之間的第二通信線LN2可以經由第二印刷電路板PCB2、第一膜FL1、第一印刷電路板PCB1、第一膜FL1和第二印刷電路板PCB2連接這兩者。第三資料驅動裝置120c可以經由第二通信線LN2與第四資料驅動裝置120d連接,並且第四資料驅動裝置120d可以經由第二通信線LN2與資料處理裝置140連接。Each of the second communication lines LN2 can connect adjacent data driving devices 120a, 120b, 120c, 120d or the data driving device 120d and the data processing device 140 without overlapping with the first communication line LN1. For example, the first data driving device 120a can be connected to the second data driving device 120b via the second communication line LN2, and the second data driving device 120b can be connected to the third data driving device 120c via the second communication line LN2. Here, the second data driving device 120b and the third data driving device 120c may be connected to different second printed circuit boards PCB2, respectively. Therefore, the second communication line LN2 arranged between the second data driving device 120b and the third data driving device 120c may pass through the second printed circuit board PCB2, the first film FL1, the first printed circuit board PCB1, and the first film FL1. The two are connected to the second printed circuit board PCB2. The third data driving device 120c can be connected to the fourth data driving device 120d via the second communication line LN2, and the fourth data driving device 120d can be connected to the data processing device 140 via the second communication line LN2.

圖3是示出根據實施例的資料處理裝置和資料驅動裝置中的第一協定信號的處理的圖。FIG. 3 is a diagram showing the processing of the first protocol signal in the data processing device and the data driving device according to the embodiment.

參考圖3,資料處理裝置140可以包括加擾器312、編碼器314、第一發送電路318和第二發送電路319,並且資料驅動裝置120可以包括第一接收電路328、位元組排列電路325、解碼器324、解擾器322、像素排列電路321和第二接收電路329。3, the data processing device 140 may include a scrambler 312, an encoder 314, a first transmitting circuit 318, and a second transmitting circuit 319, and the data driving device 120 may include a first receiving circuit 328, a byte array circuit 325 , A decoder 324, a descrambler 322, a pixel arrangement circuit 321, and a second receiving circuit 329.

資料(例如,圖像資料)由加擾器312加擾。加擾是使要發送的資料的位元混亂的處理。這使得能夠防止將相同的至少K個(K是2或更大的自然數)位元(例如,1或0)連續佈置在資料的傳輸流中。根據先前規定的協定來執行加擾。資料驅動裝置120的解擾器322可以將流中的位元被加擾的資料還原成處於其原始狀態。The data (for example, image data) is scrambled by the scrambler 312. Scrambling is the process of messing up the bits of the data to be sent. This makes it possible to prevent the same at least K (K is a natural number of 2 or more) bits (for example, 1 or 0) from being continuously arranged in the transport stream of the data. The scrambling is performed in accordance with the previously stipulated agreement. The descrambler 322 of the data driving device 120 can restore the scrambled data in the stream to its original state.

加擾器312可以選擇性地對第一協定信號PS1的資料的一部分進行加擾。例如,加擾器312可以僅對用於等化器的調諧信號(以下稱為“等化器調諧信號”)的零資料部分進行加擾,並且發送該零資料部分。The scrambler 312 can selectively scramble a part of the data of the first agreement signal PS1. For example, the scrambler 312 may scramble only the zero data part of the tuning signal for the equalizer (hereinafter referred to as "equalizer tuning signal"), and transmit the zero data part.

編碼器314可以將資料的傳輸流中的P個位元編碼為Q個位元。例如,P可以是8,並且Q可以是10。將8位元的資料編碼為10位元的資料可被稱為8B10B編碼。8B10B編碼是向DC平衡碼的形式的一種編碼方法。The encoder 314 can encode P bits in the transport stream of data into Q bits. For example, P can be 8, and Q can be 10. Encoding 8-bit data into 10-bit data can be called 8B10B encoding. 8B10B coding is a coding method in the form of a DC balance code.

編碼器314可以對資料進行編碼,使得該資料的傳輸流包括增加的位數。編碼後的資料可以由解碼器324解碼為DC平衡碼(例如,8B10B)。在另一方面,編碼後的資料可以由解碼器324還原為具有原始位數。The encoder 314 can encode the data so that the transport stream of the data includes an increased number of bits. The encoded data can be decoded by the decoder 324 into a DC balance code (for example, 8B10B). On the other hand, the encoded data can be restored by the decoder 324 to have the original number of bits.

編碼器314可以在對資料進行編碼時使用行程長度受限編碼(LRLC)方法。“行程長度”意味著連續佈置相同的位元,並且根據LRLC方法,按一定間隔控制資料的特定位元,使得“行程長度”的大小不大於預定大小。The encoder 314 may use a run length limited coding (LRLC) method when encoding data. The "run length" means that the same bits are arranged consecutively, and according to the LRLC method, specific bits of the data are controlled at certain intervals so that the size of the "run length" is not greater than a predetermined size.

在編碼器314使用LRLC方法對資料進行編碼的情況下,解碼器314可以使用編碼器314所使用的LRLC方法來對資料進行解碼。In the case where the encoder 314 uses the LRLC method to encode data, the decoder 314 may use the LRLC method used by the encoder 314 to decode the data.

在資料處理裝置140中並行發送的資料可被串列轉換,以在資料處理裝置140和資料驅動裝置120之間發送。在資料處理裝置140中,資料的串列-平行轉換可以由序列化電路(圖5中的620)進行。資料驅動裝置120的並行化電路526可以將串列接收到的資料轉換成並行形式的資料。The data sent in parallel in the data processing device 140 can be serially converted to be sent between the data processing device 140 and the data driving device 120. In the data processing device 140, the serial-parallel conversion of data can be performed by a serialization circuit (620 in FIG. 5). The parallel circuit 526 of the data driving device 120 can convert the serially received data into parallel data.

串列轉換後的資料可以由資料處理裝置140的第一發送電路318發送至資料驅動裝置120。在這種情況下,該資料可以以第一協定信號PS1的形式經由第一通信線LN1來發送。The serially converted data can be sent to the data driving device 120 by the first sending circuit 318 of the data processing device 140. In this case, the data can be sent via the first communication line LN1 in the form of the first protocol signal PS1.

資料驅動裝置120所接收到的資料可被發送至第一接收電路328、位元組排列電路325、解碼器324、解擾器322和像素排列電路321。The data received by the data driving device 120 can be sent to the first receiving circuit 328, the byte array circuit 325, the decoder 324, the descrambler 322, and the pixel array circuit 321.

第一發送電路318可以經由至少一個第一通信線LN1發送資料。各第一通信線LN1可以包括兩個信號線以採用差分方法發送信號。在使用多個第一通信線LN1的情況下,第一發送電路318可以分散資料以經由多個第一通信線LN1發送資料。第一接收電路328可以收集經由多個第一通信線LN1以分散狀態接收到的信號以形成資料。The first transmission circuit 318 may transmit data via at least one first communication line LN1. Each first communication line LN1 may include two signal lines to transmit signals in a differential method. In the case of using a plurality of first communication lines LN1, the first transmission circuit 318 may disperse materials to transmit the materials via the plurality of first communication lines LN1. The first receiving circuit 328 may collect signals received in a distributed state via the plurality of first communication lines LN1 to form data.

資料驅動裝置120可以根據第一協定信號PS1中所包括的鏈路資料來訓練鏈路時脈(例如,符號時脈或像素時脈)。位元組排列電路325和像素排列電路321可以根據訓練後的資料連結按位元組(例如,按符號)和按像素排列資料。The data driving device 120 may train the link clock (for example, the symbol clock or the pixel clock) according to the link data included in the first protocol signal PS1. The byte array circuit 325 and the pixel array circuit 321 can connect the data by byte (for example, by symbol) and by pixel according to the data after training.

位元組排列電路325可以按位元組排列資料。作為用以形成資料中所包括的資訊的基本單位的位元組例如可以是8位元或10位。位元組排列電路325可以排列串列發送的資料,使得可以按位元組讀取資料。The byte array circuit 325 can arrange data in bytes. The byte as a basic unit for forming the information included in the data may be, for example, 8 bits or 10 bits. The byte array circuit 325 can arrange the serially transmitted data so that the data can be read in bytes.

像素排列電路321可以按像素排列資料。資料可以包括與RGB子像素等相對應的順序排列的資訊。像素排列電路321可以排列串列發送的資料,使得可以按像素讀取資料。The pixel arrangement circuit 321 can arrange data by pixels. The data may include information arranged in order corresponding to RGB sub-pixels and the like. The pixel arrangement circuit 321 can arrange the data sent in tandem so that the data can be read by pixel.

在像素排列電路321按像素排列圖像資料的情況下,可以產生針對各子像素的灰度資料(圖像資料)。In the case where the pixel arrangement circuit 321 arranges image data by pixels, it can generate grayscale data (image data) for each sub-pixel.

資料處理裝置140的第二發送電路319可以使用第二協定信號PS2將設置資料等發送至資料驅動裝置120。資料驅動裝置120可以藉由第二接收電路329接收第二協定信號PS2,並且檢查第二協定信號PS2中所包括的設置資料等。The second sending circuit 319 of the data processing device 140 can use the second protocol signal PS2 to send the setting data and the like to the data driving device 120. The data driving device 120 can receive the second protocol signal PS2 through the second receiving circuit 329, and check the setting data and the like included in the second protocol signal PS2.

第一協定信號PS1和第二協定信號PS2可以藉由一個相同的通信線(圖3中的LN1)來發送和接收。然而,第一協定信號PS1和第二協定信號PS2可以在不同的時間分別發送。The first protocol signal PS1 and the second protocol signal PS2 can be transmitted and received through the same communication line (LN1 in FIG. 3). However, the first agreement signal PS1 and the second agreement signal PS2 may be sent separately at different times.

圖4是示出根據實施例的資料處理裝置和資料驅動裝置之間的一般信號序列的圖。4 is a diagram showing a general signal sequence between the data processing device and the data driving device according to the embodiment.

在將驅動電壓VCC供給至資料處理裝置140時,資料處理裝置140可以啟用低速通信模式(LS模式)。然後,在預定時間內,資料處理裝置140可以將第二協定信號PS2發送至資料驅動裝置120。When the driving voltage VCC is supplied to the data processing device 140, the data processing device 140 may activate the low-speed communication mode (LS mode). Then, within a predetermined time, the data processing device 140 may send the second agreement signal PS2 to the data driving device 120.

換句話說,資料處理裝置140和資料驅動裝置120可以經由第一通信線LN1進行低速資料通信。In other words, the data processing device 140 and the data driving device 120 can perform low-speed data communication via the first communication line LN1.

在經過了預定時間量之後(例如,在圖4中的CFG完成(CFG Done)區段之後),資料處理裝置140可以啟用高速通信模式(HS模式)並將第一協定信號PS1發送至資料驅動裝置120。After a predetermined amount of time has elapsed (for example, after the CFG Done section in FIG. 4), the data processing device 140 may enable the high-speed communication mode (HS mode) and send the first protocol signal PS1 to the data driver装置120.

換句話說,資料處理裝置140和資料驅動裝置120可以經由第一通信線LN1進行高速資料通信。In other words, the data processing device 140 and the data driving device 120 can perform high-speed data communication via the first communication line LN1.

這裡,作為基於在資料處理裝置140和資料驅動裝置120之間規定的第二協定的信號的第二協定信號PS2是根據低速資料通信協定的信號,而作為基於資料處理裝置140和資料驅動裝置120之間規定的第一協定的信號的第一協定信號PS1是根據高速資料通信協定的信號。Here, the second protocol signal PS2, which is a signal based on the second protocol defined between the data processing device 140 and the data drive device 120, is a signal based on the low-speed data communication protocol, and is based on the data processing device 140 and the data drive device 120. The first protocol signal PS1 of the first protocol signal defined therebetween is a signal based on the high-speed data communication protocol.

第一協定信號PS1的通信頻率可以比第二協定信號PS2的通信頻率高10倍。根據這樣的特點,第一協定信號PS1可被分類在高速資料通信協定中,並且第二協定信號PS2可被分類在低速資料協定中。The communication frequency of the first agreement signal PS1 may be 10 times higher than the communication frequency of the second agreement signal PS2. According to this feature, the first protocol signal PS1 can be classified in a high-speed data communication protocol, and the second protocol signal PS2 can be classified in a low-speed data protocol.

另一方面,在高速資料通信中,根據作為接收部的資料驅動裝置120的設置,資料損失率可能會極大地改變,或者通信可能無法順利地進行。On the other hand, in high-speed data communication, depending on the setting of the data drive device 120 as the receiving section, the data loss rate may be greatly changed, or the communication may not proceed smoothly.

根據實施例,在執行資料處理裝置140和資料驅動裝置120之間的高速資料通信之前,可以使用與低速資料通信相對應的第二協定信號PS2將用於執行順利的高速資料通信的設置資料發送至資料驅動裝置120。其原因在於,根據低速資料通信中的資料驅動裝置120的設置,在資料損失率方面不存在大的差異,因而可以將設置資料相對準確地發送至資料驅動裝置120。According to the embodiment, before performing the high-speed data communication between the data processing device 140 and the data driving device 120, the second protocol signal PS2 corresponding to the low-speed data communication may be used to transmit the setting data for performing smooth high-speed data communication. To the data drive device 120. The reason is that, according to the setting of the data driving device 120 in low-speed data communication, there is no big difference in the data loss rate, so the setting data can be sent to the data driving device 120 relatively accurately.

根據實施例,資料處理裝置140和資料驅動裝置120發送和接收第二協定信號PS2的區段,即與資料處理裝置140和資料驅動裝置120的低速通信模式相對應的區段可以是前導碼(Preamble)區段、CFG資料(CFG Data)區段和CFG完成(CFG Done)區段。According to an embodiment, the section in which the data processing device 140 and the data driving device 120 transmit and receive the second protocol signal PS2, that is, the section corresponding to the low-speed communication mode of the data processing device 140 and the data driving device 120 may be the preamble ( Preamble section, CFG Data section and CFG Done section.

在前導碼區段中,資料處理裝置140可以將作為第二協定信號PS2的低速通信時脈信號發送至資料驅動裝置120。這裡,在將AC耦合電容器添加到第一通信線LN1的情況下,資料處理裝置140可以將低速通信時脈信號編碼為諸如曼徹斯特碼或8B10B碼等的DC平衡碼的形式。In the preamble section, the data processing device 140 may send the low-speed communication clock signal as the second protocol signal PS2 to the data driving device 120. Here, in the case where an AC coupling capacitor is added to the first communication line LN1, the data processing device 140 may encode the low-speed communication clock signal into the form of a DC balance code such as Manchester code or 8B10B code.

資料驅動裝置120可以使用低速通信時脈信號來進行低速時脈訓練,並且使用訓練後的低速通信時脈來接收低速資料。The data driving device 120 may use a low-speed communication clock signal to perform low-speed clock training, and use the trained low-speed communication clock to receive low-speed data.

在CFG資料區段中,資料處理裝置140可以將作為第二協定信號PS2的設置資料信號發送至資料驅動裝置120。在CFG資料區段中,資料驅動裝置120可以使用上述低速通信時脈來接收設置資料信號,並且使用設置資料信號中所包括的設置資料來設置用於高速資料通信的電路部。這裡,設置資料可以包括資料驅動裝置120中所包括的等化器的基本增益電壓準位、加擾資訊和線極性資訊。另外,設置資料還可以包括在以下所述的等化器調諧區段中使用的多個等化器(EQ)設置資訊。In the CFG data section, the data processing device 140 may send the setting data signal as the second protocol signal PS2 to the data driving device 120. In the CFG data section, the data driving device 120 may use the aforementioned low-speed communication clock to receive the setting data signal, and use the setting data included in the setting data signal to set the circuit part for high-speed data communication. Here, the setting data may include the basic gain voltage level, scrambling information, and line polarity information of the equalizer included in the data driving device 120. In addition, the setting data may also include multiple equalizer (EQ) setting information used in the equalizer tuning section described below.

在CFG完成區段中,第二協定信號PS2可以包括表示低速通信模式的結束的消息。資料驅動裝置120可以檢查這樣的消息,並且結束使用第二協定信號PS2的通信,即結束低速通信模式。這裡,表示低速通信模式的結束的消息可以包括電壓的電壓準位維持高並持續預定時間量的信號。In the CFG completion section, the second agreement signal PS2 may include a message indicating the end of the low-speed communication mode. The data driving device 120 can check such a message, and end the communication using the second protocol signal PS2, that is, end the low-speed communication mode. Here, the message indicating the end of the low-speed communication mode may include a signal that the voltage level of the voltage remains high for a predetermined amount of time.

另一方面,作為由資料驅動裝置120經由第二通信線LN2發送至資料處理裝置140發送的輔助通信信號ALP的鎖定信號可以在資料驅動裝置120開始工作之後維持在第二電壓準位,然後在用於低速通信時脈信號的低速時脈訓練完成時改變為第一電壓準位。On the other hand, the lock signal, which is the auxiliary communication signal ALP sent by the data driving device 120 via the second communication line LN2 to the data processing device 140, may be maintained at the second voltage level after the data driving device 120 starts working, and then The low-speed clock signal used for the low-speed communication clock signal is changed to the first voltage level when the low-speed clock training is completed.

換句話說,資料驅動裝置120可以在被供給驅動電壓VCC時,將鎖定信號維持在第二電壓準位,並且在前導碼區段中完成用於低速通信時脈信號的低速時脈訓練時,將鎖定信號的電壓準位改變為第一電壓準位。在鎖定信號的電壓準位已改變為第一電壓準位之後,資料處理裝置140可以將包括設置資料的設置資料信號發送至資料驅動裝置120。這裡,第二電壓準位可以是低電壓準位(低電壓電壓準位),並且第一電壓準位可以是高電壓準位(高電壓電壓準位)。In other words, when the data driving device 120 is supplied with the driving voltage VCC, the lock signal is maintained at the second voltage level, and when the low-speed clock training for the low-speed communication clock signal is completed in the preamble section, The voltage level of the lock signal is changed to the first voltage level. After the voltage level of the lock signal has been changed to the first voltage level, the data processing device 140 may send the setting data signal including the setting data to the data driving device 120. Here, the second voltage level may be a low voltage level (low voltage voltage level), and the first voltage level may be a high voltage level (high voltage voltage level).

在資料驅動裝置120中在將鎖定信號的電壓準位改變為第一電壓準位之後存在任何異常情形或任何意外通信錯誤的情況下,資料驅動裝置120可以將鎖定信號的電壓準位改變為第二電壓準位。例如,在CFG資料區段或CFG完成區段中沒有接收到設置資料信號或時脈處於異常狀態的情況下,資料驅動裝置120可以將鎖定信號的電壓準位改變為低(參見圖4中的FT1)。In the case of any abnormal situation or any unexpected communication error after the voltage level of the lock signal is changed to the first voltage level in the data driving device 120, the data driving device 120 may change the voltage level of the lock signal to the first voltage level. Two voltage level. For example, in the case that the setting data signal is not received in the CFG data section or the CFG completed section or the clock is in an abnormal state, the data driving device 120 may change the voltage level of the lock signal to low (see Fig. 4 in Fig. 4). FT1).

另一方面,資料處理裝置140和資料驅動裝置120可以在CFG完成區段中結束低速通信模式,然後啟用高速通信模式,並使用第一協定信號PS1進行高速通信。On the other hand, the data processing device 140 and the data driving device 120 may end the low-speed communication mode in the CFG completion section, then enable the high-speed communication mode, and use the first protocol signal PS1 to perform high-speed communication.

這裡,與高速通信模式相對應的區段可以是時脈訓練(clock training)區段、鏈路訓練(link training)區段和顯示區段DP。還可以添加時脈恢復電路調諧區段和等化器調諧區段其中之一。Here, the section corresponding to the high-speed communication mode may be a clock training (clock training) section, a link training (link training) section, and a display section DP. You can also add one of the clock recovery circuit tuning section and the equalizer tuning section.

在時脈訓練區段中,第一協定信號PS1可以包括高速通信時脈信號。In the clock training section, the first protocol signal PS1 may include a high-speed communication clock signal.

換句話說,資料驅動裝置120可以在時脈訓練區段中從資料處理裝置140接收高速通信時脈信號。In other words, the data driving device 120 can receive the high-speed communication clock signal from the data processing device 140 in the clock training section.

另外,資料驅動裝置120可以使用高速通信時脈信號進行高速時脈訓練,並且使用訓練後的高速通信時脈接收高速資料。In addition, the data driving device 120 may use the high-speed communication clock signal to perform high-speed clock training, and use the trained high-speed communication clock to receive high-speed data.

在鏈路訓練區段中,第一協定信號PS1可以包括鏈路資料。資料驅動裝置120可以根據鏈路資料訓練諸如符號時脈或像素時脈等的鏈路時脈。In the link training section, the first agreement signal PS1 may include link data. The data driving device 120 can train a link clock such as a symbol clock or a pixel clock according to the link data.

在顯示區段DP中,第一協定信號PS1可以包括圖像資料和控制資料。資料驅動裝置120可以根據控制資料設置驅動顯示器所需的參數,並且根據圖像資料檢查各像素的灰度值以驅動像素。In the display section DP, the first protocol signal PS1 may include image data and control data. The data driving device 120 can set parameters required for driving the display according to the control data, and check the gray value of each pixel according to the image data to drive the pixels.

在資料驅動裝置120中在高速通信模式中存在任何異常情形或任何意外通信錯誤的情況下,資料驅動裝置120可以將鎖定信號的電壓準位改變為第二電壓準位。例如,在時脈訓練區段中未完成(失敗)針對時脈(高速通信時脈)的高速時脈訓練的情況下,資料驅動裝置120可以將鎖定信號的電壓準位改變為第二電壓準位(參見圖4中的FT2)。又例如,在鏈路訓練區段中針對鏈路時脈的訓練失敗的情況下,資料驅動裝置120可以將輔助通信信號ALP的電壓準位改變為低(參見圖4中的FT3)。再例如,在由於例如靜電放電(ESD)因而高速通信時脈處於異常狀況、或者在資料驅動裝置120中存在任何異常情形的情況下,資料驅動裝置120可以將鎖定信號的電壓準位改變為第二電壓準位(參見圖4中的FT4)。In the case of any abnormal situation or any unexpected communication error in the high-speed communication mode in the data driving device 120, the data driving device 120 can change the voltage level of the lock signal to the second voltage level. For example, in the case where the high-speed clock training for the clock (high-speed communication clock) is not completed (failed) in the clock training section, the data driving device 120 may change the voltage level of the lock signal to the second voltage level. Bit (see FT2 in Figure 4). For another example, in the case where the training for the link clock fails in the link training section, the data driving device 120 may change the voltage level of the auxiliary communication signal ALP to low (see FT3 in FIG. 4). For another example, when the high-speed communication clock is in an abnormal condition due to, for example, electrostatic discharge (ESD), or there is any abnormal situation in the data driving device 120, the data driving device 120 may change the voltage level of the lock signal to the first Two voltage levels (see FT4 in Figure 4).

如上所述,根據實施例,僅當在資料驅動裝置中(而不是在每個區段中)存在任何異常情形或任何意外通信錯誤時,資料驅動裝置120才可以使用作為輔助通信信號ALP的鎖定信號將其狀況回饋到資料處理裝置140。相反,根據傳統技術,資料驅動裝置在各區段中使用輔助通信信號將其狀況回饋到資料處理裝置。根據這樣的方式,回饋信號不能很好地傳送至資料處理裝置,因而存在正常狀況被認為是異常狀況的問題。特別地,在發送輔助通信信號ALP所經由的第二通信線LN2以串接的形式連接的情況下,更有可能發生這樣的問題。然而,根據本發明的實施例,簡化了使用輔助通信信號ALP的回饋,並且這降低了發生這樣的問題的可能性。以下將詳細說明這一點。As described above, according to the embodiment, the data drive device 120 can use the lock as the auxiliary communication signal ALP only when there is any abnormal situation or any unexpected communication error in the data drive device (not in each section). The signal feeds its status back to the data processing device 140. On the contrary, according to the conventional technology, the data driving device uses auxiliary communication signals in each section to feed back its status to the data processing device. According to this method, the feedback signal cannot be transmitted to the data processing device well, so there is a problem that a normal condition is regarded as an abnormal condition. In particular, when the second communication line LN2 through which the auxiliary communication signal ALP is transmitted is connected in a series connection, such a problem is more likely to occur. However, according to the embodiment of the present invention, the feedback using the auxiliary communication signal ALP is simplified, and this reduces the possibility of such a problem occurring. This point will be explained in detail below.

圖5是示出根據實施例的資料處理裝置和資料驅動裝置中的第二協定信號的處理的圖。FIG. 5 is a diagram showing processing of a second agreement signal in the data processing device and the data driving device according to the embodiment.

參考圖5,資料驅動裝置120可以包括低速通信電路510、高速通信電路520、接收控制電路530和鎖定控制電路540。5, the data driving device 120 may include a low-speed communication circuit 510, a high-speed communication circuit 520, a reception control circuit 530, and a lock control circuit 540.

低速通信電路510可以經由第一通信線LN1與資料處理裝置140進行低速資料通信。The low-speed communication circuit 510 can perform low-speed data communication with the data processing device 140 via the first communication line LN1.

換句話說,低速通信電路510可以在低速通信模式中使用從資料處理裝置140接收到的低速通信時脈信號來進行低速時脈訓練,並且可以在完成低速時脈訓練之後將第一電壓準位的低速通信狀況信號CMD_L輸出至鎖定控制電路540。In other words, the low-speed communication circuit 510 can use the low-speed communication clock signal received from the data processing device 140 to perform low-speed clock training in the low-speed communication mode, and can set the first voltage level after the low-speed clock training is completed. The low-speed communication status signal CMD_L is output to the lock control circuit 540.

在低速時脈訓練未完成(失敗)的情況下,低速通信電路510可以將第二電壓準位的低速通信狀況信號輸出至鎖定控制電路540。低速通信電路510可以在圖4所示的前導碼區段中接收低速通信時脈信號。In the case that the low-speed clock training is not completed (failed), the low-speed communication circuit 510 may output the low-speed communication status signal of the second voltage level to the lock control circuit 540. The low-speed communication circuit 510 may receive the low-speed communication clock signal in the preamble section shown in FIG. 4.

在完成低速時脈訓練之後,低速通信電路510可以從資料處理裝置140接收與高速通信環境有關的設置資料信號。After completing the low-speed clock training, the low-speed communication circuit 510 may receive the setting data signal related to the high-speed communication environment from the data processing device 140.

低速通信電路510可以將設置資料信號處理(例如,信號解碼或資料排列等)為設置資料,並且將該設置資料發送至接收控制電路530。低速通信電路510可以在圖4所示的CFG資料區段中接收設置資料信號。The low-speed communication circuit 510 may process the setting data signal (for example, signal decoding or data arrangement, etc.) into the setting data, and send the setting data to the receiving control circuit 530. The low-speed communication circuit 510 can receive the setting data signal in the CFG data section shown in FIG. 4.

在低速通信電路510完成低速時脈訓練之後在與資料處理裝置的低速通信中存在任何異常的情況下,低速通信電路510可以將低速通信狀況信號從第一電壓準位改變為第二電壓準位並輸出。After the low-speed communication circuit 510 completes the low-speed clock training, if there is any abnormality in the low-speed communication with the data processing device, the low-speed communication circuit 510 can change the low-speed communication status signal from the first voltage level to the second voltage level. And output.

然後,低速通信電路510可以從資料處理裝置140重新接收低速通信時脈信號。Then, the low-speed communication circuit 510 may re-receive the low-speed communication clock signal from the data processing device 140.

在向資料驅動裝置120供給電力時,可以藉由接收控制電路530的控制來啟用低速通信電路510。在圖4所示的CFG完成區段中低速通信模式結束時,可以藉由接收控制電路530的控制來停用低速通信電路510。When power is supplied to the data driving device 120, the low-speed communication circuit 510 can be activated under the control of the receiving control circuit 530. When the low-speed communication mode in the CFG completion section shown in FIG. 4 ends, the low-speed communication circuit 510 can be disabled under the control of the receiving control circuit 530.

在低速通信模式結束並且高速通信模式(HS模式)開始時,可以藉由接收控制電路530的控制來啟用高速通信電路520。When the low-speed communication mode ends and the high-speed communication mode (HS mode) starts, the high-speed communication circuit 520 can be activated by the control of the receiving control circuit 530.

然後,高速通信電路520可以經由第一通信線LN1與資料處理裝置140進行高速通信。這樣,高速通信電路520可以從資料處理裝置140接收圖像資料信號。例如,高速通信電路530可以在圖4所示的顯示區段DP中接收圖像資料信號。Then, the high-speed communication circuit 520 can perform high-speed communication with the data processing device 140 via the first communication line LN1. In this way, the high-speed communication circuit 520 can receive the image data signal from the data processing device 140. For example, the high-speed communication circuit 530 may receive image data signals in the display section DP shown in FIG. 4.

高速通信電路520可以將圖像資料信號處理為圖像資料。The high-speed communication circuit 520 can process image data signals into image data.

高速通信電路520可以包括等化器522、時脈恢復電路524和並行化電路526。The high-speed communication circuit 520 may include an equalizer 522, a clock recovery circuit 524, and a parallelization circuit 526.

高速通信電路520可以在高速通信模式中接收圖像資料信號之前,從資料處理裝置140接收高速通信時脈信號。高速通信電路510可以在圖4所示的時脈訓練區段中接收高速通信時脈信號。The high-speed communication circuit 520 may receive the high-speed communication clock signal from the data processing device 140 before receiving the image data signal in the high-speed communication mode. The high-speed communication circuit 510 can receive the high-speed communication clock signal in the clock training section shown in FIG. 4.

高速通信電路520可以使用高速通信時脈信號進行高速時脈訓練,並且根據高速時脈訓練的結果來調整高速通信狀況信號CDR_L的電壓準位,以將該電壓準位輸出至鎖定控制電路540。The high-speed communication circuit 520 can use the high-speed communication clock signal to perform high-speed clock training, and adjust the voltage level of the high-speed communication status signal CDR_L according to the result of the high-speed clock training to output the voltage level to the lock control circuit 540.

例如,在高速通信電路520完成高速時脈訓練時,高速通信電路520可以輸出第一電壓準位的高速通信狀況信號。在高速通信電路520未完成(失敗)高速時脈訓練時,高速通信電路520可以輸出第二電壓準位的高速通信狀況信號。這裡,可以從時脈恢復電路524輸出高速通信狀況信號。For example, when the high-speed communication circuit 520 completes high-speed clock training, the high-speed communication circuit 520 may output a high-speed communication status signal at the first voltage level. When the high-speed communication circuit 520 has not completed (failed) the high-speed clock training, the high-speed communication circuit 520 may output the high-speed communication status signal of the second voltage level. Here, a high-speed communication status signal may be output from the clock recovery circuit 524.

在實施例中,高速通信模式中的區段可以是時脈訓練區段之前的時脈恢復電路調諧區段(CDR調諧(CDR Tuning))和等化器調諧區段(EQ調諧(EQ Tuning))中的一個或多個。In an embodiment, the section in the high-speed communication mode may be a clock recovery circuit tuning section (CDR tuning (CDR Tuning)) and an equalizer tuning section (EQ tuning (EQ Tuning) before the clock training section. ) One or more.

高速通信電路520可以在時脈訓練區段之前的時脈恢復電路調諧區段中從資料處理裝置140接收時脈恢復電路調諧信號。The high-speed communication circuit 520 may receive the clock recovery circuit tuning signal from the data processing device 140 in the clock recovery circuit tuning section before the clock training section.

時脈恢復電路調諧信號可以包括如圖6所示的高速通信時脈。高速通信電路520中所包括的時脈恢復電路524可以在進行高速時脈訓練時,按每預定時間Ts改變振盪器的設置值。The clock recovery circuit tuning signal may include the high-speed communication clock as shown in FIG. 6. The clock recovery circuit 524 included in the high-speed communication circuit 520 can change the setting value of the oscillator every predetermined time Ts during high-speed clock training.

在時脈恢復電路524按每預定時間Ts改變振盪器的設置值時,如圖7所示的用於高速時脈訓練的回饋時脈FEB_CLK的週期可以按每預定時間Ts改變。這裡,可以藉由將從振盪器輸出的振盪時脈的週期與預定比率相乘來獲得回饋時脈。When the clock recovery circuit 524 changes the setting value of the oscillator every predetermined time Ts, the cycle of the feedback clock FEB_CLK used for high-speed clock training as shown in FIG. 7 can be changed every predetermined time Ts. Here, the feedback clock can be obtained by multiplying the period of the oscillation clock output from the oscillator by a predetermined ratio.

時脈恢復電路524可以將高速通信時脈處理為輸入時脈IN_CLK,按每預定時間Ts檢測輸入時脈和回饋時脈之間的相位差,根據該相位差確定高速時脈訓練的結果,並且根據高速時脈訓練的結果來將高速通信狀況信號的電壓準位調整為第一電壓準位或第二電壓準位。這裡,輸入時脈IN_CLK可以具有藉由將高速通信時脈的週期與預定比率相乘所獲得的週期。The clock recovery circuit 524 can process the high-speed communication clock as the input clock IN_CLK, detect the phase difference between the input clock and the feedback clock every predetermined time Ts, and determine the result of the high-speed clock training according to the phase difference, and The voltage level of the high-speed communication status signal is adjusted to the first voltage level or the second voltage level according to the result of the high-speed clock training. Here, the input clock IN_CLK may have a period obtained by multiplying the period of the high-speed communication clock by a predetermined ratio.

根據實施例,時脈恢復電路524中所包括的振盪器可以是電流控制振盪器和電壓控制振盪器中的任一個,並且振盪器的設置值可以包括輸入到電流控制振盪器中的參考電流的電流值或輸入到電壓控制振盪器中的參考電壓的電壓值。According to an embodiment, the oscillator included in the clock recovery circuit 524 may be any one of a current controlled oscillator and a voltage controlled oscillator, and the setting value of the oscillator may include a reference current input to the current controlled oscillator. The current value or the voltage value of the reference voltage input to the voltage controlled oscillator.

高速通信電路520可以在時脈訓練區段之前的等化器調諧區段中從資料處理裝置140接收等化器調諧信號。The high-speed communication circuit 520 may receive the equalizer tuning signal from the data processing device 140 in the equalizer tuning section before the clock training section.

這裡,等化器調諧信號可以包括如圖8所示的按每時間段Tp重複的調諧序列。調諧序列可以包括用於表示時間段的分割的標誌信號Flag (標誌)、佈置在標誌信號的末尾的EQ時脈訓練信號EQCP和佈置在EQ時脈訓練信號的末尾的EQ測試信號EQTP。這裡,EQ時脈訓練信號的通信頻率可以與高速通信時脈信號的通信頻率相同。Here, the equalizer tuning signal may include a tuning sequence repeated every time period Tp as shown in FIG. 8. The tuning sequence may include a flag signal Flag (flag) for representing the division of a time period, an EQ clock training signal EQCP arranged at the end of the flag signal, and an EQ test signal EQTP arranged at the end of the EQ clock training signal. Here, the communication frequency of the EQ clock training signal may be the same as the communication frequency of the high-speed communication clock signal.

在圖5中將AC耦合電容器(未示出)添加到第一通信線LN1的情況下,標誌信號可以是如下的信號,該信號的頻率低於EQ時脈訓練信號的通信頻率,並且在該信號中,如圖9A所示,第一電壓準位(例如,高電壓準位)和第二電壓準位(例如,低電壓準位)彼此交替。In the case where an AC coupling capacitor (not shown) is added to the first communication line LN1 in FIG. 5, the flag signal may be a signal whose frequency is lower than the communication frequency of the EQ clock training signal, and In the signal, as shown in FIG. 9A, the first voltage level (for example, the high voltage level) and the second voltage level (for example, the low voltage level) alternate with each other.

在圖5中沒有將AC耦合電容器(未示出)添加到第一通信線LN1的情況下,標誌信號可以是如圖9B所示的具有均勻電壓準位(例如,高電壓準位)的信號。In the case where an AC coupling capacitor (not shown) is not added to the first communication line LN1 in FIG. 5, the flag signal may be a signal having a uniform voltage level (for example, a high voltage level) as shown in FIG. 9B .

EQ測試信號EQTP可以包括偽隨機二進位序列(PRBS)模式。PRBS模式可被實現為PRBS7模式、PRBS9模式或PRBS10模式等。The EQ test signal EQTP may include a pseudo-random binary sequence (PRBS) pattern. The PRBS mode can be implemented as PRBS7 mode, PRBS9 mode or PRBS10 mode, etc.

或者,EQ測試信號EQTP可以包括以DC平衡碼方法編碼的測試資料。以DC平衡碼方法編碼的測試資料可以包括多個碼組,其中在各個碼組中,“0”和“1”的數量是相同的。Alternatively, the EQ test signal EQTP may include test data encoded in a DC balance code method. The test data encoded by the DC balance code method may include multiple code groups, where the number of "0" and "1" is the same in each code group.

高速通信電路520可以在接收到等化器調諧信號的多個時間段期間,根據多個EQ設置資訊,在每個時間段中改變等化器522的設置。這裡,高速通信電路520的時脈恢復電路524可以在每個時間段中重複地進行如下的操作,該操作用於在接收到標誌信號時,初始化已訓練的時脈,然後使用EQ時脈訓練信號進行高速時脈訓練。The high-speed communication circuit 520 may change the setting of the equalizer 522 in each time period according to a plurality of EQ setting information during a plurality of time periods when the equalizer tuning signal is received. Here, the clock recovery circuit 524 of the high-speed communication circuit 520 may repeatedly perform the following operation in each time period. The operation is used to initialize the trained clock when the flag signal is received, and then use the EQ clock to train Signal for high-speed clock training.

多個EQ設置資訊中的各EQ設置資訊可以包括等化器522的增益電壓準位,並且還可以包括等化器522的標籤的數量。這樣的多個EQ設置資訊可以包括在設置資料中,並且接收控制電路530可以從所儲存的設置資料提取多個EQ設置資訊。Each of the multiple EQ setting information may include the gain voltage level of the equalizer 522, and may also include the number of tags of the equalizer 522. Such multiple EQ setting information may be included in the setting data, and the receiving control circuit 530 may extract multiple EQ setting information from the stored setting data.

根據實施例,高速通信電路520的時脈恢復電路524可以在時脈恢復電路調諧區段和等化器調諧區段中重複地進行高速時脈訓練。According to an embodiment, the clock recovery circuit 524 of the high-speed communication circuit 520 may repeatedly perform high-speed clock training in the clock recovery circuit tuning section and the equalizer tuning section.

因此,時脈恢復電路524可以在時脈恢復電路調諧區段和等化器調諧區段中交替地輸出第一電壓準位和第二電壓準位的高速通信狀況信號。Therefore, the clock recovery circuit 524 can alternately output the high-speed communication status signals of the first voltage level and the second voltage level in the clock recovery circuit tuning section and the equalizer tuning section.

接收控制電路530可以控制低速通信電路510和高速通信電路520的操作。The reception control circuit 530 can control the operations of the low-speed communication circuit 510 and the high-speed communication circuit 520.

換句話說,在向資料驅動裝置120施加電力時,接收控制電路530可以藉由將致能信息LS_E傳送至低速通信電路510來啟用低速通信電路510。In other words, when power is applied to the data driving device 120, the receiving control circuit 530 can activate the low-speed communication circuit 510 by transmitting the enabling information LS_E to the low-speed communication circuit 510.

這樣,可以執行經由第一通信線LN1的低速資料通信。In this way, low-speed data communication via the first communication line LN1 can be performed.

接收控制電路530可以根據從低速通信電路510傳送來的設置資料來建立高速通信環境。這裡,接收控制電路530可以根據設置資料中所包括的等化器522的基本增益電壓準位來建立等化器522。The receiving control circuit 530 can establish a high-speed communication environment based on the setting data transmitted from the low-speed communication circuit 510. Here, the receiving control circuit 530 may establish the equalizer 522 according to the basic gain voltage level of the equalizer 522 included in the setting data.

然後,接收控制電路530可以藉由將致能資訊HS_E傳送至高速通信電路520來啟用等化器522、時脈恢復電路524和並行化電路526。Then, the receiving control circuit 530 can activate the equalizer 522, the clock recovery circuit 524, and the parallelization circuit 526 by transmitting the enabling information HS_E to the high-speed communication circuit 520.

這樣,可以執行經由第一通信線LN1的高速資料通信。In this way, high-speed data communication via the first communication line LN1 can be performed.

這裡,接收控制電路530可以藉由時脈恢復電路調諧區段中的時脈恢復電路524的調諧處理來最佳化時脈恢復電路524的設置。Here, the receiving control circuit 530 can optimize the setting of the clock recovery circuit 524 through the tuning process of the clock recovery circuit 524 in the tuning section of the clock recovery circuit.

換句話說,接收控制電路530可以在每個時間段中檢查時脈恢復電路524的高速時脈訓練的結果。假定如圖7所示存在多個時間段(例如,Ts1~Ts4),並且在存在時脈恢復電路524完成了高速時脈訓練的一個時間段的情況下,接收控制電路530可以按與該時間段相對應的設置值來對振盪器進行調諧。In other words, the reception control circuit 530 can check the result of the high-speed clock training of the clock recovery circuit 524 in each time period. Assuming that there are multiple time periods (for example, Ts1~Ts4) as shown in FIG. 7, and when there is a time period in which the clock recovery circuit 524 completes the high-speed clock training, the receiving control circuit 530 can be adjusted according to the time period. The setting value corresponding to the segment is used to tune the oscillator.

在存在時脈恢復電路524完成了高速時脈訓練的兩個或更多個時間段的情況下,接收控制電路530可以按與這兩個或更多個時間段相對應的兩個或更多個設置值的中值來對振盪器進行調諧。In the case where there are two or more time periods in which the clock recovery circuit 524 has completed the high-speed clock training, the reception control circuit 530 may press two or more time periods corresponding to the two or more time periods. The median of a set value is used to tune the oscillator.

接收控制電路530可以藉由等化器調諧區段中的等化器522的這樣的調諧處理來最佳化等化器522的設置。The receiving control circuit 530 can optimize the setting of the equalizer 522 through such a tuning process of the equalizer 522 in the equalizer tuning section.

換句話說,接收控制電路530可以在每個時間段中評價用於在多個時間段中接收等化器調諧信號的高速通信電路520的接收性能,然後使用與高速通信電路520具有最佳接收性能的時間段相對應的EQ設置資訊來對等化器522進行調諧。In other words, the reception control circuit 530 can evaluate the reception performance of the high-speed communication circuit 520 for receiving the equalizer tuning signal in multiple time periods in each time period, and then use the high-speed communication circuit 520 to have the best reception performance. The EQ setting information corresponding to the performance time period is used to tune the equalizer 522.

這裡,接收控制電路530可以在每個時間段中計算與PRBS模式有關的EQ測試信號的誤碼率,並且使用與誤碼率最低的時間段相對應的EQ設置資訊來對等化器522進行調諧。Here, the receiving control circuit 530 may calculate the bit error rate of the EQ test signal related to the PRBS mode in each time period, and use the EQ setting information corresponding to the time period with the lowest bit error rate to perform the equalizer 522 Tuning.

接收控制電路530可以在每個時間段中檢查EQ測試信號中所包括的測試資料中的誤差,並且使用與發生最小誤差的時間段相對應的EQ設置資訊來對等化器522進行調諧。The receiving control circuit 530 can check the error in the test data included in the EQ test signal in each time period, and use the EQ setting information corresponding to the time period in which the smallest error occurs to tune the equalizer 522.

根據實施例,接收控制電路530在將致能資訊HS_E傳送至高速通信電路520時,可以藉由將禁用資訊傳送至低速通信電路510來停用低速通信電路510。According to an embodiment, when the receiving control circuit 530 transmits the enabling information HS_E to the high-speed communication circuit 520, the low-speed communication circuit 510 can be disabled by transmitting the disabling information to the low-speed communication circuit 510.

在低速通信電路510完成低速時脈訓練之前,即在鎖定控制電路540從低速通信電路510接收到第一電壓準位的低速通信狀況信號之前,鎖定控制電路540可以產生第二電壓準位的鎖定信號,並將其發送至資料處理裝置140中的鎖定監視電路640。Before the low-speed communication circuit 510 completes the low-speed clock training, that is, before the lock control circuit 540 receives the low-speed communication status signal of the first voltage level from the low-speed communication circuit 510, the lock control circuit 540 can generate the lock of the second voltage level. Signal and send it to the lock monitoring circuit 640 in the data processing device 140.

在從低速通信電路510接收到第一電壓準位的低速通信狀況信號時,鎖定控制電路540可以將鎖定信號的電壓準位改變為第一電壓準位並將其發送至資料處理裝置140。這裡,電壓準位可以意味著電壓的電壓準位。When receiving the low-speed communication status signal of the first voltage level from the low-speed communication circuit 510, the lock control circuit 540 can change the voltage level of the lock signal to the first voltage level and send it to the data processing device 140. Here, the voltage level may mean the voltage level of the voltage.

在低速通信模式中將鎖定信號的電壓準位改變為第一電壓準位之後,在低速通信電路510和資料處理裝置140之間的低速資料通信中存在異常的情況下,鎖定控制電路540可以從低速通信電路510接收第二電壓準位的低速通信狀況信號。在這種情況下,鎖定控制電路540可以將鎖定信號的電壓準位改變為第二電壓準位,並且將其發送至資料處理裝置140。After the voltage level of the lock signal is changed to the first voltage level in the low-speed communication mode, if there is an abnormality in the low-speed data communication between the low-speed communication circuit 510 and the data processing device 140, the lock control circuit 540 can change from The low-speed communication circuit 510 receives the low-speed communication status signal at the second voltage level. In this case, the lock control circuit 540 can change the voltage level of the lock signal to the second voltage level and send it to the data processing device 140.

如上所述,在低速通信模式中,鎖定控制電路540可以將鎖定信號的電壓準位改變為與低速通信狀況信號的電壓準位相同的電壓準位。As described above, in the low-speed communication mode, the lock control circuit 540 can change the voltage level of the lock signal to the same voltage level as the voltage level of the low-speed communication status signal.

另一方面,鎖定控制電路540可以從低速通信模式結束起直到時脈訓練區段為止維持鎖定信號的電壓準位。On the other hand, the lock control circuit 540 can maintain the voltage level of the lock signal from the end of the low-speed communication mode until the clock training section.

其原因在於,在高速通信模式中,鎖定控制電路540可以在時脈訓練區段之前的時脈恢復電路調諧區段或等化器調諧區段中從高速通信電路520的時脈恢復電路524接收電壓準位交替地改變為第一電壓準位或第二電壓準位的高速通信狀況信號,並且如果鎖定控制電路540根據高速通信狀況信號的電壓準位頻繁地改變鎖定信號的電壓準位,則鎖定信號發送誤差的可能性增加。The reason is that in the high-speed communication mode, the lock control circuit 540 can receive from the clock recovery circuit 524 of the high-speed communication circuit 520 in the clock recovery circuit tuning section or the equalizer tuning section before the clock training section. The voltage level alternately changes to the high-speed communication status signal of the first voltage level or the second voltage level, and if the lock control circuit 540 frequently changes the voltage level of the lock signal according to the voltage level of the high-speed communication status signal, then The possibility of locking signal transmission errors increases.

例如,時脈恢復電路524可以在時脈訓練區段之前的時脈恢復調諧區段中進行高速時脈訓練時,按每預定時間改變振盪器的設置值。時脈恢復電路524在高速時脈訓練完成時輸出第一電壓準位的高速通信狀況信號,並且在高速時脈訓練未完成時輸出第二電壓準位的高速通信狀況信號。然而,不論從時脈恢復電路524輸入的高速通信狀況信號的電壓準位如何,鎖定控制電路540都可以將鎖定信號的電壓準位維持在第一電壓準位。For example, the clock recovery circuit 524 can change the setting value of the oscillator every predetermined time when performing high-speed clock training in the clock recovery tuning section before the clock training section. The clock recovery circuit 524 outputs the high-speed communication status signal of the first voltage level when the high-speed clock training is completed, and outputs the high-speed communication status signal of the second voltage level when the high-speed clock training is not completed. However, regardless of the voltage level of the high-speed communication status signal input from the clock recovery circuit 524, the lock control circuit 540 can maintain the voltage level of the lock signal at the first voltage level.

又例如,時脈恢復電路524可以在時脈訓練區段之前的等化器調諧區段中多次重複地進行時脈初始化和高速時脈訓練以進行等化器調諧。時脈恢復電路524在時脈初始化期間輸出第二電壓準位的高速通信狀況信號,並且在高速時脈訓練完成時輸出第一電壓準位的高速通信狀況信號。然而,不論從時脈恢復電路524輸入的高速通信狀況信號的電壓準位如何,鎖定控制電路540都可以將鎖定信號的電壓準位維持在第一電壓準位。For another example, the clock recovery circuit 524 may repeatedly perform clock initialization and high-speed clock training in the equalizer tuning section before the clock training section to perform equalizer tuning. The clock recovery circuit 524 outputs the high-speed communication status signal of the second voltage level during the clock initialization period, and outputs the high-speed communication status signal of the first voltage level when the high-speed clock training is completed. However, regardless of the voltage level of the high-speed communication status signal input from the clock recovery circuit 524, the lock control circuit 540 can maintain the voltage level of the lock signal at the first voltage level.

鎖定控制電路540可以維持鎖定信號的電壓準位直到時脈訓練區段為止,並且在時脈訓練區段之後將鎖定信號的電壓準位改變為與高速通信狀況信號的電壓準位相同。The lock control circuit 540 can maintain the voltage level of the lock signal until the clock training section, and change the voltage level of the lock signal to be the same as the voltage level of the high-speed communication status signal after the clock training section.

具體地,如果緊接在時脈訓練區段之後輸入到鎖定控制電路540中的高速通信狀況信號的電壓準位為第一電壓準位,則鎖定控制電路540可以將鎖定信號維持在第一電壓準位。如果緊接在時脈訓練區段之後輸入到鎖定控制電路540中的高速通信狀況信號的電壓準位為第二電壓準位,則鎖定控制電路540可以將鎖定信號的電壓準位改變為第二電壓準位,並將該鎖定信號發送至資料處理裝置140。Specifically, if the voltage level of the high-speed communication status signal input to the lock control circuit 540 immediately after the clock training section is the first voltage level, the lock control circuit 540 may maintain the lock signal at the first voltage level. Level. If the voltage level of the high-speed communication status signal input to the lock control circuit 540 immediately after the clock training section is the second voltage level, the lock control circuit 540 may change the voltage level of the lock signal to the second voltage level. Voltage level, and send the lock signal to the data processing device 140.

參考圖5,資料處理裝置140可以包括鎖定監視電路610、發送控制電路620、序列化電路630和發送電路640。5, the data processing device 140 may include a lock monitoring circuit 610, a transmission control circuit 620, a serialization circuit 630, and a transmission circuit 640.

鎖定監視電路610可以從資料驅動裝置120接收鎖定信號並檢查鎖定信號的電壓準位。這裡,鎖定監視電路610可以經由第二通信線LN2接收鎖定信號。The lock monitoring circuit 610 can receive the lock signal from the data driving device 120 and check the voltage level of the lock signal. Here, the lock monitoring circuit 610 may receive the lock signal via the second communication line LN2.

根據實施例,在顯示裝置100包括多個資料驅動裝置並且第二通信線LN2以串接方法連接的情況下,要與鎖定監視電路610連接的資料驅動裝置的數量可以是一個。According to an embodiment, in a case where the display device 100 includes a plurality of data driving devices and the second communication line LN2 is connected in a serial connection method, the number of data driving devices to be connected with the lock monitoring circuit 610 may be one.

在向資料處理裝置140供給電力時,發送控制電路620可以啟用低速通信模式。When power is supplied to the data processing device 140, the transmission control circuit 620 may enable the low-speed communication mode.

然後,發送控制電路620可以使用發送電路640來將低速通信時脈信號發送至資料驅動裝置120。Then, the transmission control circuit 620 can use the transmission circuit 640 to transmit the low-speed communication clock signal to the data driving device 120.

在鎖定監視電路610確認為在低速通信時脈信號的發送期間鎖定信號的電壓準位從第二電壓準位改變為第一電壓準位時,發送控制電路620可以使用發送電路640將包括設置資料的設置資料信號發送至資料驅動裝置120。這裡,低速通信時脈信號和設置資料信號可以是第二協定信號PS2。在將AC耦合電容器添加到第一通信線LN1的情況下,發送控制電路620可以使用DC平衡碼來對低速通信時脈信號和設置資料信號進行編碼,該DC平衡碼可以是曼徹斯特碼和8B10B碼中的任一個。When the lock monitoring circuit 610 determines that the voltage level of the lock signal is changed from the second voltage level to the first voltage level during the transmission of the low-speed communication clock signal, the transmission control circuit 620 may use the transmission circuit 640 to include the setting data The setting data signal of is sent to the data driving device 120. Here, the low-speed communication clock signal and the setting data signal may be the second protocol signal PS2. In the case of adding an AC coupling capacitor to the first communication line LN1, the transmission control circuit 620 may use a DC balance code to encode the low-speed communication clock signal and the setting data signal, and the DC balance code may be Manchester code and 8B10B code. Any of them.

在發送電路640發送了設置資料信號之後,發送控制電路620可以產生包括表示低速通信模式的結束的消息的第二協定信號PS2,並且使用發送電路640將第二協定信號PS2發送至資料驅動裝置120。這樣,發送控制電路620可以結束低速通信模式。After the transmission circuit 640 transmits the setting data signal, the transmission control circuit 620 may generate a second agreement signal PS2 including a message indicating the end of the low-speed communication mode, and use the transmission circuit 640 to transmit the second agreement signal PS2 to the data driving device 120 . In this way, the transmission control circuit 620 can end the low-speed communication mode.

在鎖定監視電路610確認為鎖定信號的電壓準位維持在第一電壓準位時,發送控制電路620可以啟用高速通信模式,並且使用發送電路640將作為第一協定信號PS1的高速通信時脈信號發送至資料驅動裝置120。When the lock monitoring circuit 610 confirms that the voltage level of the lock signal is maintained at the first voltage level, the transmission control circuit 620 can enable the high-speed communication mode, and use the transmission circuit 640 to transmit the high-speed communication clock signal as the first protocol signal PS1 Send to the data driving device 120.

具體地,在鎖定監視電路610確認為從鎖定信號的電壓準位改變為第一電壓準位的時間點起直到發送電路640完成了設置資料信號的發送為止、鎖定信號的電壓準位維持在第一電壓準位的情況下,發送控制電路620可以確定為資料驅動裝置120處於正常情形。Specifically, after the lock monitoring circuit 610 confirms that the voltage level of the lock signal is maintained at the first voltage level from the time point when the voltage level of the lock signal is changed to the first voltage level until the transmission circuit 640 completes the transmission of the setting data signal In the case of a voltage level, the transmission control circuit 620 can determine that the data driving device 120 is in a normal state.

在這種情況下,發送控制電路620可以啟用高速通信模式。In this case, the transmission control circuit 620 may enable the high-speed communication mode.

另外,在鎖定監視電路610確認為鎖定信號的電壓準位維持在第一電壓準位直到從高速通信模式啟用的時間點起經過了預定時間為止的情況下,發送控制電路620可以確定為資料驅動裝置120處於正常情形。In addition, when the lock monitoring circuit 610 confirms that the voltage level of the lock signal is maintained at the first voltage level until a predetermined time has elapsed from the time when the high-speed communication mode is activated, the transmission control circuit 620 may determine that the data is driven The device 120 is in a normal situation.

在這種情況下,發送控制電路620可以產生高速通信時脈信號,並且使用發送電路640將高速通信時脈信號發送至資料驅動裝置120。In this case, the transmission control circuit 620 may generate a high-speed communication clock signal, and use the transmission circuit 640 to transmit the high-speed communication clock signal to the data driving device 120.

在發送了高速通信時脈信號之後、由鎖定監視電路610接收到並檢查的鎖定信號具有第一電壓準位的情況下,發送控制電路620可以使用發送電路640將包括圖像資料和控制資料的第一協定信號發送至資料驅動裝置120。After the high-speed communication clock signal is transmitted, and the lock signal received and checked by the lock monitor circuit 610 has the first voltage level, the transmission control circuit 620 can use the transmission circuit 640 to convert the image data and control data. The first protocol signal is sent to the data driving device 120.

另一方面,根據實施例,發送控制電路620可以在高速通信模式中發送高速通信時脈信號之前,產生用以使得在資料驅動裝置120中重複高速時脈訓練的一個或多個信號,並且使用發送電路640將該一個或多個信號發送至資料驅動裝置120。這裡,該一個或多個信號可以包括時脈恢復電路調諧信號和等化器調諧信號,並且發送控制電路620可以緊接在高速通信模式已啟用之後使用發送電路640開始發送信號,並且在從該開始起經過了預定時間量時結束發送信號。On the other hand, according to the embodiment, the transmission control circuit 620 may generate one or more signals for repeating the high-speed clock training in the data driving device 120 before transmitting the high-speed communication clock signal in the high-speed communication mode, and use The sending circuit 640 sends the one or more signals to the data driving device 120. Here, the one or more signals may include a clock recovery circuit tuning signal and an equalizer tuning signal, and the transmission control circuit 620 may use the transmission circuit 640 to start transmitting signals immediately after the high-speed communication mode has been activated, and then The signal transmission ends when a predetermined amount of time has passed from the beginning.

在發送電路640將一個或多個信號發送至資料驅動電路120並持續了預定時間量的情況下,資料驅動裝置120可以將固定在第一電壓準位的鎖定信號發送至鎖定監視電路610。When the sending circuit 640 sends one or more signals to the data driving circuit 120 for a predetermined amount of time, the data driving device 120 may send the lock signal fixed at the first voltage level to the lock monitoring circuit 610.

因此,在鎖定監視電路610確認為鎖定信號的電壓準位維持在第一電壓準位直到從高速通信模式已啟用的時間點起經過了預定時間量為止的情況下,發送控制電路620可以確定為資料驅動裝置120處於正常情形。Therefore, in a case where the lock monitoring circuit 610 confirms that the voltage level of the lock signal is maintained at the first voltage level until a predetermined amount of time has elapsed from the point in time when the high-speed communication mode has been activated, the transmission control circuit 620 may determine that The data driving device 120 is in a normal situation.

換言之,在從開始發送一個或多個信號起直到其結束為止、鎖定信號的電壓準位維持在第一電壓準位的情況下,發送控制電路620可以確定為資料驅動裝置120處於正常情形。In other words, when the voltage level of the lock signal is maintained at the first voltage level from the beginning of sending one or more signals to the end, the sending control circuit 620 can determine that the data driving device 120 is in a normal situation.

相反,在鎖定監視電路610沒有接收到任何鎖定信號或者所接收到的鎖定信號不具有第一電壓準位、直到從高速通信模式已啟用的時間點起經過了預定時間量為止的情況下,發送控制電路620可以確定為資料驅動裝置120處於異常情形。Conversely, when the lock monitor circuit 610 does not receive any lock signal or the received lock signal does not have the first voltage level until a predetermined amount of time has elapsed from the point in time when the high-speed communication mode has been activated, the transmission The control circuit 620 can determine that the data driving device 120 is in an abnormal situation.

在這種情況下,發送控制電路620可以重新啟用低速通信模式,並且使用發送電路640將低速通信時脈信號和設置資料信號發送至資料驅動裝置120。In this case, the transmission control circuit 620 may re-enable the low-speed communication mode, and use the transmission circuit 640 to transmit the low-speed communication clock signal and the setting data signal to the data driving device 120.

序列化電路630可以將發送控制電路620所產生的第二協定信號PS2和第一協定信號PS1中的採用並行資料的形式的信號轉換成採用串列資料的形式的信號,並將該信號發送至發送電路640。The serialization circuit 630 can convert the second protocol signal PS2 and the first protocol signal PS1 generated by the transmission control circuit 620 in the form of parallel data into a signal in the form of serial data, and send the signal to Sending circuit 640.

發送電路640可以經由第一通信線LN1與資料驅動裝置120連接。經由該線,發送電路640可以在低速通信模式中將低速通信時脈信號和設置資料信號發送至資料驅動裝置120。The sending circuit 640 may be connected to the data driving device 120 via the first communication line LN1. Via this line, the transmitting circuit 640 can transmit the low-speed communication clock signal and the setting data signal to the data driving device 120 in the low-speed communication mode.

發送電路640可以將其模式轉換成高速通信模式(低速資料通信→高速資料通信),並將高速通信時脈信號發送至資料驅動裝置120。The sending circuit 640 can convert its mode into a high-speed communication mode (low-speed data communication→high-speed data communication), and send the high-speed communication clock signal to the data driving device 120.

在發送高速通信時脈信號之後,發送電路640可以將包括圖像資料和控制資料的第一協定信號發送至資料驅動裝置120。After sending the high-speed communication clock signal, the sending circuit 640 may send the first protocol signal including the image data and the control data to the data driving device 120.

另一方面,在發送高速通信時脈信號之前,發送電路640可以將用以使得在資料驅動裝置120中重複高速時脈訓練的一個或多個信號發送至資料驅動裝置120。On the other hand, before sending the high-speed communication clock signal, the sending circuit 640 may send one or more signals for repeating the high-speed clock training in the data driving device 120 to the data driving device 120.

發送電路640可以包括如圖3所示的第一發送電路和第二發送電路。The transmission circuit 640 may include a first transmission circuit and a second transmission circuit as shown in FIG. 3.

如上所述,根據實施例,資料處理裝置140可以在將高速通信時脈信號發送至資料驅動裝置120之前,將用以使得在資料驅動裝置120中重複高速時脈訓練的一個或多個信號發送至資料驅動裝置120。這裡,一個或多個信號可以是時脈恢復電路調諧信號和等化器調諧信號中的一個或多個,以最佳化資料驅動裝置120的高速通信環境。As described above, according to the embodiment, the data processing device 140 may send one or more signals for repeating the high-speed clock training in the data driving device 120 before sending the high-speed communication clock signal to the data driving device 120. To the data drive device 120. Here, the one or more signals may be one or more of the clock recovery circuit tuning signal and the equalizer tuning signal to optimize the high-speed communication environment of the data driving device 120.

資料驅動裝置120可以使用時脈恢復電路調諧信號來多次進行高速時脈訓練,並且將與多次高速時脈訓練無關地固定在第一電壓準位的鎖定信號發送至資料處理裝置140。The data driving device 120 can use the clock recovery circuit tuning signal to perform high-speed clock training multiple times, and send a lock signal fixed at the first voltage level regardless of the multiple high-speed clock training to the data processing device 140.

另外,資料驅動裝置120可以使用等化器調諧信號來多次進行高速時脈訓練,並且將與多次高速時脈訓練無關地固定在第一電壓準位的鎖定信號發送至資料處理裝置140。In addition, the data driving device 120 may use the equalizer tuning signal to perform high-speed clock training multiple times, and send a lock signal fixed at the first voltage level regardless of the multiple high-speed clock training to the data processing device 140.

在資料驅動裝置120連續發送第一電壓準位的鎖定信號的情況下,資料處理裝置140可以根據預定協定確定為資料驅動裝置120處於正常情形。因此,即使當資料驅動裝置120重複高速時脈訓練以最佳化高速通信環境時,資料處理裝置140也可以精確地確定資料驅動裝置120的狀況,並且這允許在資料處理裝置140和資料驅動裝置120之間進行順利的高速資料通信。In the case that the data driving device 120 continuously sends the lock signal of the first voltage level, the data processing device 140 may determine that the data driving device 120 is in a normal state according to a predetermined protocol. Therefore, even when the data drive device 120 repeats high-speed clock training to optimize the high-speed communication environment, the data processing device 140 can accurately determine the condition of the data drive device 120, and this allows the data processing device 140 and the data drive device Smooth high-speed data communication between 120.

相關申請的交叉引用Cross-references to related applications

本申請要求2020年3月3日提交的韓國專利申請10-2020-0026473和2020年7月13日提交的韓國專利申請10-2020-0086030的優先權,這兩個申請的全部內容藉由引用而被包含於此。This application claims the priority of Korean patent application 10-2020-0026473 filed on March 3, 2020 and Korean patent application 10-2020-0086030 filed on July 13, 2020. The entire contents of these two applications are incorporated by reference. And be included here.

100:顯示裝置100: display device

110:顯示面板,面板110: display panel, panel

120:資料驅動裝置120: data drive device

120a:資料驅動裝置,第一資料驅動裝置120a: data drive device, first data drive device

120b:資料驅動裝置,第二資料驅動裝置120b: data drive device, second data drive device

120c:資料驅動裝置,第三資料驅動裝置120c: data drive device, third data drive device

120d:資料驅動裝置,第四資料驅動裝置120d: data drive device, fourth data drive device

130:閘極驅動裝置130: Gate drive device

140:資料處理裝置140: data processing device

312:加擾器312: Scrambler

314:編碼器314: Encoder

318:第一發送電路318: first sending circuit

319:第二發送電路319: second sending circuit

321:像素排列電路321: Pixel Arrangement Circuit

322:解擾器322: Descrambler

324:解碼器324: Decoder

325:位元組排列電路325: Byte array circuit

328:第一接收電路328: first receiving circuit

329:第二接收電路329: second receiving circuit

510:低速通信電路510: Low-speed communication circuit

520:高速通信電路520: High-speed communication circuit

522:等化器522: Equalizer

524:時脈恢復電路524: Clock Recovery Circuit

526:並行化電路526: Parallel Circuit

530:接收控制電路530: receiving control circuit

540:鎖定控制電路540: Lock control circuit

610:鎖定監視電路610: lock monitoring circuit

620:發送控制電路620: send control circuit

630:序列化電路630: serialization circuit

640:發送電路640: sending circuit

ALP:輔助通信信號ALP: auxiliary communication signal

CDR_L:高速通信狀況信號CDR_L: High-speed communication status signal

CMD_L:低速通信狀況信號CMD_L: Low-speed communication status signal

DL:資料線DL: Data line

DP:顯示區段DP: display segment

FEB_CLK:回饋時脈FEB_CLK: feedback clock

FL1:第一膜FL1: First film

FL2:第二膜FL2: second film

EQCP:EQ時脈訓練信號EQCP: EQ clock training signal

EQTP:EQ測試信號EQTP: EQ test signal

GCS:閘極控制信號GCS: Gate control signal

GL:閘極線GL: Gate line

HS_E:致能資訊HS_E: Enabling Information

IN_CLK:輸入時脈IN_CLK: Input clock

LN1:第一通信線LN1: The first communication line

LN2:第二通信線LN2: second communication line

LS_E:致能信息LS_E: enabling information

PCB1:第一印刷電路板PCB1: The first printed circuit board

PCB2:第二印刷電路板PCB2: The second printed circuit board

PRBS:偽隨機二進位序列PRBS: Pseudo-random binary sequence

PS1:第一協定信號PS1: The first protocol signal

PS2:第二協定信號PS2: The second protocol signal

SP:子像素SP: sub pixel

Tp:時間段Tp: Time period

Ts:預定時間Ts: scheduled time

Ts1:時間段Ts1: Time period

Ts2:時間段Ts2: Time period

Ts3:時間段Ts3: Time period

Ts4:時間段Ts4: Time period

VCC:驅動電壓VCC: drive voltage

Vp:資料電壓Vp: data voltage

圖1是根據實施例的顯示裝置的結構圖;Fig. 1 is a structural diagram of a display device according to an embodiment;

圖2是根據實施例的系統的結構圖;Figure 2 is a structural diagram of a system according to an embodiment;

圖3是示出根據實施例的資料處理裝置和資料驅動裝置中的第一協定信號的處理的圖;3 is a diagram showing the processing of the first protocol signal in the data processing device and the data driving device according to the embodiment;

圖4是示出根據實施例的資料處理裝置和資料驅動裝置之間的一般信號序列的圖;4 is a diagram showing a general signal sequence between the data processing device and the data driving device according to the embodiment;

圖5是示出根據實施例的資料處理裝置和資料驅動裝置中的第二協定信號的處理的圖;5 is a diagram showing the processing of a second protocol signal in the data processing device and the data driving device according to the embodiment;

圖6和圖7是示出根據實施例的時脈恢復電路調諧區段的圖,該時脈恢復電路調諧區段進一步包括在時脈訓練區段之前的信號序列中;6 and 7 are diagrams showing a tuning section of a clock recovery circuit according to an embodiment, the tuning section of the clock recovery circuit is further included in the signal sequence before the clock training section;

圖8是示出根據實施例的等化器調諧區段的圖,該等化器調諧區段進一步包括在時脈訓練區段之前的信號序列中;以及FIG. 8 is a diagram showing an equalizer tuning section according to an embodiment, the equalizer tuning section is further included in the signal sequence before the clock training section; and

圖9A和圖9B是示出時脈恢復電路調諧區段和等化器調諧區段中的信號序列的圖。9A and 9B are diagrams showing signal sequences in the tuning section of the clock recovery circuit and the equalizer tuning section.

100:顯示裝置100: display device

110:顯示面板110: display panel

120:資料驅動裝置120: data drive device

130:閘極驅動裝置130: Gate drive device

140:資料處理裝置140: data processing device

ALP:輔助通信信號ALP: auxiliary communication signal

DL:資料線DL: Data line

GCS:閘極控制信號GCS: Gate control signal

GL:閘極線GL: Gate line

LN1:第一通信線LN1: The first communication line

LN2:第二通信線LN2: second communication line

PS1:第一協定信號PS1: The first protocol signal

PS2:第二協定信號PS2: The second protocol signal

SP:子像素SP: sub pixel

Vp:資料電壓Vp: data voltage

Claims (19)

一種資料驅動裝置,包括: 低速通信電路,用於在低速通信模式中使用從資料處理裝置接收到的低速通信時脈信號來進行低速時脈訓練,並且在完成所述低速時脈訓練之後輸出第一電壓準位的低速通信狀況信號; 高速通信電路,用於在高速通信模式中在時脈訓練區段中使用從所述資料處理裝置接收到的高速通信時脈信號來進行高速時脈訓練,並且在根據所述高速時脈訓練的結果調整高速通信狀況信號的電壓準位之後輸出所述高速通信狀況信號;以及 鎖定控制電路,用於根據所述低速通信狀況信號和所述高速通信狀況信號來產生鎖定信號以將所述鎖定信號發送至所述資料處理裝置,並且從所述低速通信模式結束起直到所述高速通信模式中的所述時脈訓練區段為止維持所述鎖定信號的電壓準位。A data driving device includes: A low-speed communication circuit for performing low-speed clock training using the low-speed communication clock signal received from the data processing device in the low-speed communication mode, and outputting the low-speed communication at the first voltage level after completing the low-speed clock training Status signal A high-speed communication circuit for performing high-speed clock training using the high-speed communication clock signal received from the data processing device in the clock training section in the high-speed communication mode, and performing high-speed clock training according to the high-speed clock training. As a result, after adjusting the voltage level of the high-speed communication status signal, the high-speed communication status signal is output; and A lock control circuit for generating a lock signal based on the low-speed communication status signal and the high-speed communication status signal to send the lock signal to the data processing device, and from the end of the low-speed communication mode until the The voltage level of the lock signal is maintained until the clock training section in the high-speed communication mode. 根據請求項1所述的資料驅動裝置,其中,所述鎖定控制電路在所述低速通信電路完成所述低速時脈訓練之前發送第二電壓準位的所述鎖定信號,在從所述低速通信電路接收到的所述低速通信狀況信號處於第一電壓準位時,將所述鎖定信號的電壓準位改變為第一電壓準位以將所述鎖定信號發送至所述資料處理裝置,並且發送從所述低速通信模式結束起直到所述時脈訓練區段為止固定在第一電壓準位的所述鎖定信號。The data drive device according to claim 1, wherein the lock control circuit sends the lock signal of the second voltage level before the low-speed communication circuit completes the low-speed clock training, and then the lock signal is transmitted from the low-speed communication circuit. When the low-speed communication status signal received by the circuit is at the first voltage level, the voltage level of the lock signal is changed to the first voltage level to send the lock signal to the data processing device, and send The lock signal is fixed at the first voltage level from the end of the low-speed communication mode until the clock training section. 根據請求項1所述的資料驅動裝置,其中,所述鎖定控制電路在所述低速通信模式中根據所述低速通信狀況信號、並且在所述高速通信模式中在所述時脈訓練區段之後根據所述高速通信狀況信號,來產生所述鎖定信號。The data drive device according to claim 1, wherein the lock control circuit is based on the low-speed communication status signal in the low-speed communication mode and after the clock training section in the high-speed communication mode The lock signal is generated based on the high-speed communication status signal. 根據請求項1所述的資料驅動裝置,其中,所述高速通信電路包括時脈恢復電路和等化器,所述時脈恢復電路進行高速時脈訓練,然後所述高速通信狀況信號被輸出至所述鎖定控制電路。The data drive device according to claim 1, wherein the high-speed communication circuit includes a clock recovery circuit and an equalizer, the clock recovery circuit performs high-speed clock training, and then the high-speed communication status signal is output to The lock control circuit. 根據請求項4所述的資料驅動裝置,其中,在所述時脈訓練區段之前的等化器調諧區段中,所述時脈恢復電路多次重複進行時脈初始化和高速時脈訓練以進行等化器調諧,其中,所述時脈恢復電路在所述時脈初始化期間輸出第二電壓準位的所述高速通信狀況信號,並且在所述高速時脈訓練完成時輸出第一電壓準位的所述高速通信狀況信號。The data drive device according to claim 4, wherein, in the equalizer tuning section before the clock training section, the clock recovery circuit repeats clock initialization and high-speed clock training multiple times Perform equalizer tuning, wherein the clock recovery circuit outputs the high-speed communication status signal at the second voltage level during the clock initialization period, and outputs the first voltage level when the high-speed clock training is completed. Bit of the high-speed communication status signal. 根據請求項5所述的資料驅動裝置,其中,在所述等化器調諧區段中,所述鎖定控制電路將不管從所述時脈恢復電路接收到的所述高速通信狀況信號的電壓準位的變化如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The data drive device according to claim 5, wherein, in the equalizer tuning section, the lock control circuit will ignore the voltage level of the high-speed communication status signal received from the clock recovery circuit. The lock signal that is fixed at the first voltage level regardless of the position change is sent to the data processing device. 根據請求項4所述的資料驅動裝置,其中,所述時脈恢復電路包括振盪器,並且在所述時脈訓練區段之前的時脈恢復電路調諧區段中,所述時脈恢復電路在進行高速時脈訓練期間按每預定時間改變所述振盪器的設置值,在所述高速時脈訓練完成時輸出第一電壓準位的所述高速通信狀況信號,並且在所述高速時脈訓練未完成時輸出第二電壓準位的所述高速通信狀況信號。The data drive device according to claim 4, wherein the clock recovery circuit includes an oscillator, and in the clock recovery circuit tuning section before the clock training section, the clock recovery circuit is During the high-speed clock training, the setting value of the oscillator is changed every predetermined time, the high-speed communication status signal at the first voltage level is output when the high-speed clock training is completed, and the high-speed clock training is performed The high-speed communication status signal of the second voltage level is output when it is not completed. 根據請求項7所述的資料驅動裝置,其中,所述鎖定控制電路將不管從所述時脈恢復電路接收到的所述高速通信狀況信號的電壓準位的變化如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The data driving device according to claim 7, wherein the lock control circuit fixes the first voltage level regardless of changes in the voltage level of the high-speed communication status signal received from the clock recovery circuit The lock signal of the bit is sent to the data processing device. 根據請求項7所述的資料驅動裝置,其中,所述振盪器是電流控制振盪器和電壓控制振盪器其中之一,並且所述設置值包括輸入至所述電流控制振盪器的參考電流的電流值或者輸入至所述電壓控制振盪器的參考電壓的電壓值。The data driving device according to claim 7, wherein the oscillator is one of a current controlled oscillator and a voltage controlled oscillator, and the set value includes a current of a reference current input to the current controlled oscillator Value or the voltage value of the reference voltage input to the voltage controlled oscillator. 根據請求項1所述的資料驅動裝置,其中,在所述低速通信模式中,在所述低速通信電路輸出了第一電壓準位的所述低速通信狀況信號之後、在與所述資料處理裝置的低速通信中存在任何異常的情況下,所述低速通信電路將所述低速通信狀況信號的電壓準位從第一電壓準位改變為第二電壓準位並輸出該信號,並且所述鎖定控制電路將所述鎖定信號的電壓準位改變為第二電壓準位並將所述鎖定信號發送至所述資料處理裝置。The data drive device according to claim 1, wherein, in the low-speed communication mode, after the low-speed communication circuit outputs the low-speed communication status signal at the first voltage level, the communication with the data processing device In the case of any abnormality in the low-speed communication of, the low-speed communication circuit changes the voltage level of the low-speed communication status signal from the first voltage level to the second voltage level and outputs the signal, and the lock control The circuit changes the voltage level of the lock signal to a second voltage level and sends the lock signal to the data processing device. 根據請求項1所述的資料驅動裝置,其中,在緊接在所述時脈訓練區段之後輸入到所述鎖定控制電路中的所述高速通信狀況信號具有第一電壓準位的情況下,所述鎖定控制電路將所述鎖定信號的電壓準位維持在第一電壓準位,以及在緊接在所述時脈訓練區段之後輸入到所述鎖定控制電路中的所述高速通信狀況信號具有第二電壓準位的情況下,所述鎖定控制電路將所述鎖定信號的電壓準位改變為第二電壓準位並將所述鎖定信號發送至所述資料處理裝置。The data driving device according to claim 1, wherein, in a case where the high-speed communication status signal input to the lock control circuit immediately after the clock training section has a first voltage level, The lock control circuit maintains the voltage level of the lock signal at a first voltage level, and the high-speed communication status signal input to the lock control circuit immediately after the clock training section In the case of a second voltage level, the lock control circuit changes the voltage level of the lock signal to a second voltage level and sends the lock signal to the data processing device. 一種資料處理裝置,包括: 鎖定監視電路,用於從資料驅動裝置接收鎖定信號並且檢查所述鎖定信號的電壓準位; 發送電路,用於在低速通信模式中將低速通信時脈信號和設置資料信號發送至所述資料驅動裝置,然後在將模式改變為高速通信模式之後將高速通信時脈信號發送至所述資料驅動裝置,其中所述設置資料信號包括用於設置所述資料驅動裝置中的高速通信環境的資料;以及 控制電路,用於在供給電力時啟用所述低速通信模式以使用所述發送電路發送所述低速通信時脈信號,在所述鎖定監視電路確認為在所述發送電路發送所述低速通信時脈信號時所述鎖定信號的電壓準位從第二電壓準位改變為第一電壓準位之後使用所述發送電路發送所述設置資料信號,並且在所述鎖定監視電路確認為所述鎖定信號的電壓準位維持在第一電壓準位時啟用所述高速通信模式以使用所述發送電路發送所述高速通信時脈信號。A data processing device includes: The lock monitoring circuit is used to receive the lock signal from the data driving device and check the voltage level of the lock signal; A sending circuit for sending the low-speed communication clock signal and the setting data signal to the data drive device in the low-speed communication mode, and then sending the high-speed communication clock signal to the data drive after changing the mode to the high-speed communication mode A device, wherein the setting data signal includes data for setting a high-speed communication environment in the data driving device; and A control circuit for enabling the low-speed communication mode when power is supplied to use the transmitting circuit to transmit the low-speed communication clock signal, when the lock monitoring circuit confirms that the low-speed communication clock is transmitted by the transmitting circuit Signal, after the voltage level of the lock signal is changed from the second voltage level to the first voltage level, the sending circuit is used to send the setting data signal, and the lock monitoring circuit confirms that it is the lock signal When the voltage level is maintained at the first voltage level, the high-speed communication mode is activated to use the transmitting circuit to transmit the high-speed communication clock signal. 根據請求項12所述的資料處理裝置,其中,在所述高速通信模式下,所述控制電路在使用所述發送電路發送所述高速通信時脈信號之前,使用所述發送電路將用以使得在所述資料驅動裝置中重複高速時脈訓練的一個或多個信號發送至所述資料驅動裝置。The data processing device according to claim 12, wherein, in the high-speed communication mode, before the control circuit uses the transmission circuit to transmit the high-speed communication clock signal, the transmission circuit is used to make One or more signals that repeat high-speed clock training in the data driving device are sent to the data driving device. 根據請求項13所述的資料處理裝置,其中,在所述鎖定監視電路確認為從所述一個或多個信號的發送的開始起直到結束為止所述鎖定信號的電壓準位維持在第一電壓準位的情況下,所述控制電路使用所述發送電路來發送所述高速通信時脈信號。The data processing device according to claim 13, wherein the lock monitoring circuit confirms that the voltage level of the lock signal is maintained at the first voltage from the start to the end of the transmission of the one or more signals In the case of the level, the control circuit uses the transmission circuit to transmit the high-speed communication clock signal. 根據請求項12所述的資料處理裝置,其中,在所述鎖定監視電路確認為從所述鎖定信號的電壓準位改變為第一電壓準位的時間點起直到所述發送電路完成所述設置資料信號的發送的時間點為止所述鎖定信號的電壓準位維持在第一電壓準位的情況下,所述控制電路啟用所述高速通信模式,並且在所述鎖定監視電路確認為所述鎖定信號的電壓準位維持在第一電壓準位直到從啟用所述高速通信模式的時間點起經過了預定時間量為止的情況下,所述控制電路使用所述發送電路來發送所述高速通信時脈信號。The data processing device according to claim 12, wherein the lock monitoring circuit confirms that the voltage level of the lock signal is changed to the first voltage level from the time point until the sending circuit completes the setting If the voltage level of the lock signal is maintained at the first voltage level up to the time point of the data signal transmission, the control circuit activates the high-speed communication mode, and the lock monitor circuit confirms that the lock In the case where the voltage level of the signal is maintained at the first voltage level until a predetermined amount of time has elapsed from the point in time when the high-speed communication mode is activated, the control circuit uses the transmission circuit to transmit the high-speed communication. Pulse signal. 一種控制系統,包括: 資料處理裝置,用於在供給電力時,啟用低速通信模式,以發送低速通信時脈信號,然後發送設置資料信號,並且在連續接收到第一電壓準位的鎖定信號的情況下啟用高速通信模式以發送高速通信時脈信號,其中,所述資料處理裝置在發送所述低速通信時脈信號期間接收到第一電壓準位的所述鎖定信號的情況下發送所述設置資料信號;以及 資料驅動裝置,用於接收所述低速通信時脈信號以進行低速時脈訓練,在所述低速時脈訓練完成時將第一電壓準位的所述鎖定信號發送至所述資料處理裝置,並且接收所述高速通信時脈信號以進行高速時脈訓練,其中,所述資料驅動裝置從在所述低速通信模式中接收到所述設置資料信號起直到進行所述高速時脈訓練為止,將第一電壓準位的所述鎖定信號連續發送至所述資料處理裝置。A control system including: A data processing device used to enable low-speed communication mode when power is supplied to send a low-speed communication clock signal, then send a setting data signal, and enable the high-speed communication mode when the lock signal of the first voltage level is continuously received To send a high-speed communication clock signal, wherein the data processing device sends the setting data signal when the lock signal of the first voltage level is received during the sending of the low-speed communication clock signal; and A data driving device for receiving the low-speed communication clock signal for low-speed clock training, and sending the lock signal of the first voltage level to the data processing device when the low-speed clock training is completed, and The high-speed communication clock signal is received to perform high-speed clock training, wherein the data driving device starts from receiving the setting data signal in the low-speed communication mode until the high-speed clock training is performed. The lock signal of a voltage level is continuously sent to the data processing device. 根據請求項16所述的系統,其中,所述資料驅動裝置包括時脈恢復電路和等化器,並且所述資料處理裝置在所述高速通信模式中發送所述高速通信時脈信號之前,將時脈恢復電路調諧信號和等化器調諧信號中的一個或多個發送至所述資料驅動裝置。The system according to claim 16, wherein the data driving device includes a clock recovery circuit and an equalizer, and before the data processing device transmits the high-speed communication clock signal in the high-speed communication mode, One or more of the clock recovery circuit tuning signal and the equalizer tuning signal are sent to the data driving device. 根據請求項17所述的系統,其中,所述時脈恢復電路調諧信號包括高速通信時脈,並且所述資料驅動裝置在使用所述時脈恢復電路調諧信號對所述時脈恢復電路進行調諧時多次進行高速時脈訓練,其中所述資料驅動裝置將不管多次高速時脈訓練如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The system according to claim 17, wherein the clock recovery circuit tuning signal includes a high-speed communication clock, and the data driving device uses the clock recovery circuit tuning signal to tune the clock recovery circuit High-speed clock training is performed multiple times at a time, wherein the data driving device sends the lock signal fixed at the first voltage level regardless of the multiple high-speed clock trainings to the data processing device. 根據請求項17所述的系統,其中,所述等化器調諧信號包括高速通信時脈,並且所述資料驅動裝置在使用所述等化器調諧信號對所述等化器進行調諧時多次進行高速時脈訓練,其中所述資料驅動裝置將不管多次高速時脈訓練如何都固定在第一電壓準位的所述鎖定信號發送至所述資料處理裝置。The system according to claim 17, wherein the equalizer tuning signal includes a high-speed communication clock, and the data driving device uses the equalizer tuning signal to tune the equalizer multiple times High-speed clock training is performed, wherein the data driving device sends the lock signal fixed at the first voltage level regardless of multiple high-speed clock trainings to the data processing device.
TW109129687A 2020-03-03 2020-08-31 Data processing device, data driving device, and system for driving display device TW202134854A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200026473 2020-03-03
KR10-2020-0026473 2020-03-03
KR1020200086030A KR20210111664A (en) 2020-03-03 2020-07-13 Data processing device, data driving device and system for driving display device
KR10-2020-0086030 2020-07-13

Publications (1)

Publication Number Publication Date
TW202134854A true TW202134854A (en) 2021-09-16

Family

ID=77796851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129687A TW202134854A (en) 2020-03-03 2020-08-31 Data processing device, data driving device, and system for driving display device

Country Status (2)

Country Link
KR (1) KR20210111664A (en)
TW (1) TW202134854A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230083852A (en) * 2021-12-03 2023-06-12 주식회사 엘엑스세미콘 A data processing device, a data driving device, and a display driving device
KR20230083853A (en) * 2021-12-03 2023-06-12 주식회사 엘엑스세미콘 A data processing device, a data driving device, and a data driving method for driving a display panel
CN114822419A (en) * 2022-04-15 2022-07-29 南京英科迪微电子科技有限公司 Backlight control method and device based on liquid crystal display panel AM mode

Also Published As

Publication number Publication date
KR20210111664A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US11043155B2 (en) Data processing device, data driving device and system for driving display device
TW202134854A (en) Data processing device, data driving device, and system for driving display device
US11817027B2 (en) Data processing device, data driving device and system for driving display device
US10490158B2 (en) Data driving apparatus, data processing apparatus and driving system for display panel
US11893921B2 (en) Data processing device and data driving device for driving display panel, and display device
US11164493B2 (en) Data processing device, data driving device, and system for driving display device
US11183145B2 (en) Data processing device, data driving device, and system for driving display device using two communication lines
TW202213320A (en) Data driving device, method, and system for driving display device
TW202213303A (en) Data driving device and data driving system
TW202312135A (en) Data processing device, data driving device, and display panel driving device
CN109872672B (en) Data driving device, data processing device and display driving system
CN111508407B (en) Data processing device, data driving device and system for driving display device
US11521532B2 (en) Data processing device, data driving device, and system for driving display device