TW202133597A - 用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法 - Google Patents

用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法 Download PDF

Info

Publication number
TW202133597A
TW202133597A TW109142420A TW109142420A TW202133597A TW 202133597 A TW202133597 A TW 202133597A TW 109142420 A TW109142420 A TW 109142420A TW 109142420 A TW109142420 A TW 109142420A TW 202133597 A TW202133597 A TW 202133597A
Authority
TW
Taiwan
Prior art keywords
frame
bit
control device
header
communication control
Prior art date
Application number
TW109142420A
Other languages
English (en)
Inventor
克里斯提安 森杰
阿塞 穆特
克立斯第安 霍斯特
佛羅里安 哈德維區
Original Assignee
德商羅伯特 博世有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特 博世有限公司 filed Critical 德商羅伯特 博世有限公司
Publication of TW202133597A publication Critical patent/TW202133597A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40013Details regarding a bus controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • H03M13/095Error detection codes other than CRC and single parity bit codes
    • H03M13/096Checksums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40071Packet processing; Packet format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40084Bus arbitration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/4013Management of data rate on the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/34Bits, or blocks of bits, of the telegraphic message being interchanged in time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0094Bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

本發明提供一種用於一串列匯流排系統(1)之節點站(10;30)及一種用於一串列匯流排系統(1)中通信之方法。該節點站(10;30)具有:一通信控制裝置(11;31),其用以控制該節點站(10;30)與該匯流排系統(1)之至少一個其他節點站(10;20;30)之間的通信,及一收發器裝置(12;32),其經設計以將由該通信控制裝置(11;31)產生之一傳輸信號(TXD)串列地傳輸至該匯流排系統(1)之一匯流排(40)上,且自該匯流排系統(1)之該匯流排(40)串列地接收信號,其中該通信控制裝置(11;31)經設計以根據一訊框(450)產生該傳輸信號(TXD)且將一標頭總和檢查碼(HCRC)插入至該訊框(450)中,該標頭總和檢查碼之計算僅包括配置於為該訊框(450)中提供酬載資料的一資料欄位(455)前方的一訊框標頭之位元,其中該通信控制裝置(11;31)經設計以使用一預定義初始值(R_S)及一預定義總和檢查碼多項式(CRC_P)來計算該標頭總和檢查碼(HCRC),其中對於使用動態填塞位元之該訊框標頭的彼部分,該標頭總和檢查碼(HCRC)之該計算的中間結果不等於一零向量。

Description

用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法
本發明係關於一種用於串列匯流排系統之節點站以及一種用於串列匯流排系統中通信之方法,該串列匯流排系統以高資料速率以及大靈活性及高容錯性操作。
用於例如載具中之感測器與控制單元之間的通信之匯流排系統意欲使得能夠取決於技術設備或載具之功能的數目而傳輸大量資料。常常要求比先前更快速地將資料自傳輸器傳輸至接收器,且亦要求可按需傳輸大的資料封包。
在載具之狀況下,當前引入匯流排系統,其中根據作為具有CAN FD之CAN協議規格的ISO11898-1:2015標準將資料作為訊息傳輸。該些訊息係在匯流排系統之匯流排節點(諸如,感測器、控制單元、傳輸器等)之間傳輸。CAN FD由大多數製造商在第一步驟中使用,其中載具中之資料位元速率為2百萬位元/秒且仲裁位元速率為500千位元/秒。
為了使得資料速率甚至能夠更高,當前正在為CAN FD開發後續匯流排系統,其在下文將被稱作CAN XL。連同純資料輸送,CAN XL亦意欲經由CAN匯流排支援其他功能,諸如功能安全性、資料安全性及服務品質(quality of service;QoS)。此等功能為自主駕駛載具中所需之基本特性。
CAN XL及CAN FD以及經典CAN相容為極有利的。在此狀況下,藉助於CAN FD訊框中之res位元來區分CAN FD訊框與CAN XL訊框。由於相容性,用於CAN FD仲裁欄位之動態填塞位元的規則亦應用於CAN XL中,直至此res位元。
為達成系統之功能安全性,殘餘錯誤機率儘可能低為高度有利且重要的。可藉助於總和檢查碼(CRC=循環冗餘檢查)以足夠的機率偵測到1類錯誤,亦即,錯誤地反轉的取樣位元(位元翻轉),及/或2類錯誤,亦即,局部累積的位元錯誤(叢發錯誤)。應注意,接收節點站亦進行訊框之格式檢查。特定而言,此亦有助於偵測叢發錯誤。可依據殘餘錯誤機率表達錯誤偵測之品質。殘餘錯誤機率指示儘管在匯流排系統之並非訊框之傳輸器的接收節點站(接收節點)中存在錯誤,訊框仍將被接受為正確的可能性。
在經典CAN中,CRC計算具有以下缺點。在經典CAN中,動態填塞位元不包括於CRC計算中。出於此原因,在經典CAN中存在無法藉由總和檢查碼(CRC)可靠地偵測的3類錯誤。此錯誤(3類)由僅翻轉兩個位元引起,此僅翻亦被稱作位元翻轉。在此狀況下,一個位元翻轉產生動態填塞條件,且另一位元翻轉取消動態填塞條件。在此狀況下,串列傳輸位元(位元串流)中之位元翻轉的序列為不相關的。因此,在經典CAN中,即使CRC計算實際上可能可靠地偵測到五個位元翻轉(1類錯誤),CRC計算亦將無法以高機率偵測到此錯誤。因此,3類錯誤為尤其成問題的狀況或嚴重錯誤。
為了相對於CAN FD中之3類錯誤具有強固性,將動態填塞位元包括於CAN FD中之CRC計算中。然而,隨後已發現,此處存在無法由CAN FD CRC偵測到之4類錯誤。在動態填塞條件之狀況下,此4類錯誤為一個別位元漏失或至接收節點站之資料串流中的一位元插入。亦即,由於不正確的再同步,接收節點站看到的比傳輸節點站(傳輸節點)實際所傳輸的多一個位元或少一個位元。然而,此情形並非顯而易見的,此係因為在CAN中僅在具有相同值之5個相同位元之後插入動態填塞位元。
將動態填塞位元包括於CAN FD中之CRC計算中使CRC欄位中之「填塞位元計數器」成為必要。此「填塞位元計數器」減小未發現4類錯誤之機率,但未完全解決問題。此「填塞位元計數器」亦導致複雜度及資料超載,此減小可傳輸之酬載資料速率。
此外,CAN FD中不存在標頭總和檢查碼(標頭CRC)。結果,無法偵測到資料長度欄位之碼(DLC=資料長度碼)中的錯誤。
因此,資料長度欄位之碼中的位元錯誤可導致匯流排系統之並非CAN FD訊框之傳輸器的接收節點站(接收節點)解碼CAN FD訊框中之不正確訊框長度。因此,接收節點站(接收節點)檢查不正確位置處之總和檢查碼(CRC)。
若在CAN XL中以與CAN FD中相同的方式進行CRC計算,則CAN XL將具有與CAN FD相同的缺點。
因此,本發明之目標為提供解決前述問題的一種用於串列匯流排系統之節點站及一種用於串列匯流排系統中通信之方法。特定而言,意欲提供一種用於串列匯流排系統之節點站及一種串列匯流排系統中通信之方法,其中結合動態填塞位元以高可靠性偵測位元串流中之錯誤,以便即使在高資料速率及每訊框之酬載的量增加的情況下亦實施對通信中之錯誤的高容許度。
該目標係藉由一種具有如請求項1之特徵的用於串列匯流排系統之節點站來達成。該節點站具有:通信控制裝置,其用以控制該節點站與該匯流排系統之至少一個其他節點站之間的通信;及收發器裝置,其經設計以將由通信控制裝置產生之傳輸信號串列地傳輸至匯流排系統之匯流排上,且自匯流排系統之匯流排串列地接收信號,其中該通信控制裝置經設計以根據訊框產生傳輸信號且插入標頭總和檢查碼,該標頭總和檢查碼僅包括配置於為訊框中提供酬載資料的資料欄位之前的訊框標頭之位元, 其中該通信控制裝置經設計以將動態填塞位元插入至訊框標頭中,其方式為使得在連續5個相同位元之後將反轉填塞位元插入至訊框之位元串流中,且其中該通信控制裝置經設計以使用預定義初始值及預定義總和檢查碼多項式來計算標頭總和檢查碼,其中對於使用動態填塞位元之訊框標頭的彼部分,標頭總和檢查碼之計算的中間結果不等於零向量。
在CAN XL中,由於節點站之設計,標頭總和檢查碼之計算中的高錯誤偵測機率為可能的。結果,可最小化結合動態填塞位元之標頭總和檢查碼HCRC中的錯誤。結果,可快速且可靠地識別匯流排系統中之通信中的錯誤。
總之,所描述之節點站藉助於其設計可結合填塞位元極有效地避免CAN FD之兩個所提及的缺點。亦即,節點站可在以足夠可靠的方式對資料長度碼進行取樣時偵測到錯誤。然而,節點站另外藉助於其設計可視情況省去訊框中之額外欄位,以便增加可傳輸的酬載資料速率。因此,在上文所描述之節點站中未必需要如在CAN FD中的「填塞計數」。
因此,即使每訊框之酬載資料的量增加,亦可藉由節點站保證訊框之傳輸及接收,相對於匯流排系統之操作中的當前事件具有高功能安全性及大靈活性且具有低錯誤率。
特定而言,此處,匯流排系統中之節點站有可能在第一通信階段中保留自CAN已知之仲裁且相較於CAN或CAN FD仍實質上再次增加傳輸速率。
若根據CAN協定及/或CAN FD協定傳輸訊息之至少一個CAN節點站及/或至少一個CAN FD節點站亦存在於匯流排系統中,則亦可使用由該節點站進行之方法。
節點站之有利的其他設計指示於附屬請求項中。
預定義初始值可等於(1,0,0,0,0,0,0,0,0,0,0,0,0)。
替代地,預定義初始值等於(0,0,1,1,0,0,0,0,0,0,0,0,0)。
可設想到,該通信控制裝置經設計以使用電路之至少一個開關元件來計算標頭總和檢查碼,該開關元件可設定為預定義初始值,且電路之該開關元件實施預定義總和檢查碼多項式。
預定義總和檢查碼多項式(CRC_P)可能等於x13 + x12 + x11 + x8 + x7 + x6 + x5 + x2 + x1 + 1。
為大成與CAN FD之可選相容性,該通信控制裝置經設計以僅將動態填塞位元插入至訊框之第一部分中。
根據一個選項,該通信控制裝置經設計以將欄位插入至訊框中,動態填塞位元之數目經寫碼於該欄位中,其中該通信控制裝置經設計以在資料欄位前方插入至少一個欄位,訊框之酬載資料經插入於該資料欄位中。
用於將由通信控制裝置產生之傳輸信號串列地傳輸至匯流排系統之匯流排上的收發器裝置視情況經設計,其方式為使得對於在匯流排系統之節點站之間交換的訊息,在第一通信階段中傳輸至匯流排上之信號的位元時間可能不同於在第二通信階段中傳輸之信號的位元時間。
針對訊息所形成之訊框有可能經設計以與CAN FD相容,其中在第一通信階段中進行協商以便判定匯流排系統之節點站中的哪一者在後續第二通信階段中被授與對匯流排之至少臨時的排他性無衝突存取。
該目標亦藉由一種具有如請求項10之特徵的用於串列匯流排系統之節點站來達成。該節點站具有:通信控制裝置,其用以控制該節點站與該匯流排系統之至少一個其他節點站之間的通信;及收發器裝置,其經設計以將由通信控制裝置產生之傳輸信號串列地傳輸至匯流排系統之匯流排上,且自匯流排系統之匯流排串列地接收信號,其中該通信控制裝置經設計以根據訊框產生傳輸信號且將標頭總和檢查碼插入至訊框中,該標頭總和檢查碼之計算僅包括配置於為訊框中提供酬載資料的資料欄位前方的訊框標頭之位元, 其中該通信控制裝置經設計以將動態填塞位元插入至訊框標頭中,其方式為使得在連續5個相同位元之後將反轉填塞位元插入至訊框之位元串流中,且其中該通信控制裝置經設計以使用電路之至少一個開關元件來計算標頭總和檢查碼,該開關元件可設定為預定義初始值,且該開關元件或該電路實施預定義總和檢查碼多項式,其中該預定義總和檢查碼多項式等於x13 + x12 + x11 + x8 + x7 + x6 + x5 + x2 + x1 + 1。
預定義初始值與預定義總和檢查碼多項式之組合可能使得對於待藉由通信控制裝置插入動態填塞位元之訊框標頭的彼部分,標頭總和檢查碼之計算的中間結果不等於零向量。
先前所描述之節點站可為匯流排系統之部分,該匯流排系統進一步包含匯流排及經由匯流排互連之至少兩個節點站,互連方式為使得該些節點站可彼此串列地通信。此處,至少兩個節點站中之至少一者為先前所描述之節點站。
前述目標進一步藉由如請求項13的用於串列匯流排系統中通信之方法來達成。該方法藉由匯流排系統之節點站進行,該節點站具有通信控制裝置及收發器裝置,其中該方法包含以下步驟:藉由通信控制裝置控制該節點站與該匯流排系統之至少一個其他節點站之間的通信;及藉由收發器裝置將由通信控制裝置產生之傳輸信號傳輸至匯流排系統之匯流排上,其中該收發器裝置亦經設計以自系統之匯流排串列地接收信號;藉由該通信控制裝置根據訊框產生傳輸信號,其中該通信控制裝置將標頭總和檢查碼插入至訊框中,該標頭總和檢查碼之計算僅包括配置於為訊框中提供酬載資料的資料欄位前方的訊框標頭之位元,其中該通信控制裝置將動態填塞位元插入至訊框標頭中,其方式為使得在連續5個相同位元之後將反轉填塞位元插入至訊框之位元串流中,且其中該通信控制裝置使用預定義初始值及預定義總和檢查碼多項式來計算標頭總和檢查碼,其中對於使用動態填塞位元之訊框標頭的彼部分,標頭總和檢查碼之計算的中間結果不等於零向量。
該方法提供與先前關於節點站所指示之彼等優點相同的優點。
本發明之其他可能的實施方案亦包含上文或下文關於例示性具體實例所描述之特徵或具體實例的未明確指定之組合。所屬技術領域中具有通常知識者亦將個別態樣作為改善或補充添加至本發明之各別基本形式。
作為實例,圖1展示匯流排系統1,該匯流排系統特定地經設計以基本上用於CAN匯流排系統、CAN FD匯流排系統、CAN XL匯流排系統及/或其變體,如下文所描述。匯流排系統1可用於載具(特定而言,機動載具、飛行器等)中,或可用於醫院中等等。
在圖1中,匯流排系統1具有大量節點站10、20、30,該些節點站在每一狀況下藉由第一匯流排線路41及第二匯流排線路42連接至匯流排40。匯流排線路41、42亦可被稱作CAN_H及CAN_L或CAN-XL_H及CAN-XL_L,且在為傳輸狀態下之信號注入顯性位準或產生隱性位準或其他位準之後用於電信號傳輸。訊息45、46可經由匯流排40以信號之形式在個別節點站10、20、30之間串列地傳輸。若在匯流排40上之通信中出現錯誤,如在圖1中由鋸齒狀黑框箭頭所指示,則可視情況傳輸錯誤訊框47(錯誤旗標)。舉例而言,節點站10、20、30為機動載具之控制單元、感測器、顯示裝置等。
如圖1中所展示,節點站10具有通信控制裝置11、收發器裝置12及訊框檢查模組15。節點站20具有通信控制裝置21及收發器裝置22。節點站30具有通信控制裝置31、收發器裝置32及訊框檢查模組35。在每一狀況下,節點站10、20、30之收發器裝置12、22、32直接連接至匯流排40,即使此情形並未在圖1中說明亦如此。
在每一狀況下,通信控制裝置11、21、31用以控制各別節點站10、20、30經由匯流排40與連接至匯流排40之節點站10、20 30中的至少一個其他節點站之間的通信。
通信控制裝置11、31建立及讀取第一訊息45,該些訊息為例如修改的CAN訊息45。此處,基於參看圖2更詳細地描述且使用各別訊框檢查模組15、35之CAN XL格式而結構化修改的CAN訊息45。通信控制裝置11、31可進一步經設計以提供如收發器裝置32所需的CAN XL訊息45或CAN FD訊息46,或自收發器裝置32接收CAN XL訊息45或CAN FD訊息46。此處,亦使用各別訊框檢查模組15、35。因此,通信控制裝置11、31建立及讀取第一訊息45或第二訊息46,其中第一訊息45及第二訊息46就其資料傳輸標準(亦即,在此狀況下為CAN XL或CAN FD)而言為不同的。
通信控制裝置21可類似於根據ISO 11898-1:2015之習知CAN控制器而進行設計,亦即,類似於CAN FD容錯經典CAN控制器或CAN FD控制器。通信控制裝置21建立及讀取第二訊息46,例如CAN FD訊息46。CAN FD訊息46可包含數目0至64個資料位元組,該些資料位元組亦以顯著快於用於此目的之經典CAN訊息之狀況下的資料速率進行傳輸。特定而言,通信控制裝置21類似於習知CAN FD控制器而進行設計。
收發器裝置22可類似於根據ISO 11898-1:2015之習知CAN收發器或類似於CAN FD收發器而進行設計。收發器裝置12、32可經設計以提供如相關聯之通信控制裝置11、31所需的根據CAN XL格式之訊息45或根據當前CAN FD格式之訊息46,或自通信控制裝置11、31接收根據CAN XL格式之訊息45或根據當前CAN FD格式之訊息46。
可藉由兩個節點站10、30實施具有CAN XL格式之訊息45的形成及接著的傳輸以及此等訊息45之接收。
圖2展示如由通信控制裝置11為收發器裝置12提供以供傳輸至匯流排40上的訊息45之CAN XL訊框450。此處,在本例示性具體實例中,通信控制裝置11建立訊框450以便與CAN FD相容,亦如圖2中所展示。此情形相應地適用於節點站30之通信控制裝置31及收發器裝置32。
根據圖2,對於匯流排40上之CAN通信,將CAN XL訊框450劃分成不同通信階段451、452,亦即,仲裁階段451及資料階段452。訊框450具有仲裁欄位453、控制欄位454、資料欄位455、用於總和檢查碼FCRC及切換序列ADS之總和檢查碼欄位456以及應答欄位457。
在仲裁階段451中,使用仲裁欄位453中之識別符(ID)在節點站10、20、30之間逐位元進行協商,以判定哪一節點站10、20、30希望以最高優先順序傳輸訊息45、46,且因此被授與對匯流排系統1之匯流排40的排他性存取持續用於後續資料階段452中之傳輸的時間。在仲裁階段451中,使用實體層,如在CAN及CAN FD中。實體層對應於已知開放系統互連(Open Systems Interconnection;OSI)模型之層1。
在階段451期間的重點為使用已知CSMA/CR方法,其允許節點站10、20、30同時存取匯流排40而不會損毀壞較高優先順序訊息45、46。藉此,可相對容易地將其他匯流排節點站10、20、30添加至匯流排系統1,此為高度有利的。
由於CSMA/CR方法,可由其他節點站10、20、30用匯流排40上之顯性狀態覆寫的所謂的隱性狀態必須存在於匯流排40上。在隱性狀態下,高阻抗關係在個別節點站10、20、30處佔優勢,因此結合匯流排佈線之寄生而導致較長時間常數。此導致在實際載具使用中將當前CAN FD實體層之最大位元速率目前限制為大約2百萬位元/秒。
在資料階段452中,CAN XL訊框之酬載資料或來自資料欄位455之訊息45,連同控制欄位454之一部分及總和檢查碼欄位456是被一起傳輸,該總和檢查碼欄位456是用於總和檢查碼FCRC及另外是用於自資料階段452切換回至仲裁階段451之欄位DAS。
訊息45之傳輸器僅在作為傳輸器之節點站10已贏得仲裁、且因此作為傳輸器之節點站10可排他性地存取匯流排系統1之匯流排40以供傳輸時,開始將資料階段452之位元傳輸至匯流排40上。
一般而言,相較於CAN或CAN FD,在CAN XL之情況下,可在匯流排系統中實施以下不同特性: a)採用且必要時調適負責CAN及CAN FD之穩固性及使用者友好性的經論證特性,特定而言為根據CSMA/CR方法具有識別符及仲裁之訊框結構, b)資料傳輸速率之增加,特定而言,增加至大約10百萬位元/秒, c)每訊框之酬載資料的量之增加,特定而言,增加至大約4千位元組或任何其他值。
如圖2中所展示,節點站10在作為第一通信階段之仲裁階段451中部分地(特定而言,直至(且包括)FDF位元)使用自根據ISO11898-1:2015之CAN/CAN FD已知的格式。相反,節點站10在第一通信階段及第二通信階段(資料階段452)中使用下文所描述之如自FDF位元的CAN XL格式。
在本例示性具體實例中,CAN XL與CAN FD為相容的。此處,使用自CAN FD已知之下文被稱作XLF位元的res位元,以用於自CAN FD格式切換至CAN XL格式。因此,直至res位元,CAN FD及CAN XL之訊框格式均相同。接收器辨識僅自res位元傳輸訊框之格式。CAN XL節點站,亦即,此處為節點站10、30,亦支援CAN FD。
作為圖2中所展示之使用具有11個位元之識別符的訊框450之替代例,CAN XL擴展訊框格式視情況為可能的,其中使用具有29個位元之識別符。直至FDF位元,此格式均與來自ISO11898-1:2015之CAN FD擴展訊框格式相同。
根據圖2,自SOF位元直至且包括FDF位元,訊框450均與根據ISO11898-1:2015之CAN FD基本訊框格式相同。因此,此處不進一步解釋已知結構。在圖2中,底線上以粗條展示之位元在訊框450中以顯性位元或「0」傳輸。在圖2中,頂線上以粗條展示之位元在訊框450中以隱性位元或「1」傳輸。在CAN XL資料階段452中,使用對稱的「1」及「0」位準而非隱性及顯性位準。
一般而言,在產生訊框450期間應用兩個不同的填塞規則。應用來自CAN FD之動態位元填塞規則,直至控制欄位454中之XLF位元,使得在連續5個相同位元之後插入反轉填塞位元。此等填塞位元亦被稱作動態填塞位元。在控制欄位454中之resXL位元之後應用固定填塞規則,使得在固定數目個位元之後插入固定填塞位元。替代地,可插入數目2個或多於2個位元作為固定填塞位元而非僅插入一個填塞位元,如稍後亦將更詳細地描述。
在訊框450中,FDF位元之後緊接著XLF位元,就位置而言,其對應於如早先所提及之CAN FD基本訊框格式中之「res位元」。若XLF位元以1(亦即,以隱性位元)傳輸,則其因此將訊框450識別為CAN XL訊框。對於CAN FD訊框,通信控制裝置11將XLF位元設定為0,亦即,設定為顯性位元。
在訊框450中,XLF位元之後接著resXL位元,其為顯性位元以供未來使用。對於訊框450,resXL必須以0傳輸,亦即,以顯性位元。然而,若節點站10將resXL位元以1接收,亦即,以隱性位元接收,則接收節點站10切換至例如協定例外狀態,如在CAN FD訊息46之狀況下針對res=1所執行的。替代地,resXL位元可定義為準確的反轉位元,亦即,其必須以1傳輸,亦即,以隱性位元傳輸。在此狀況下,若resXL位元為顯性位元,則接收節點站切換至協定例外狀態。
在訊框450中,resXL位元之後接著序列仲裁資料交換(Arbitration Data Switch;ADS),預定義位元序列寫碼於其中。此位元序列允許自仲裁階段451之位元速率(仲裁位元速率)至資料階段452之位元速率(資料位元速率)的簡單且可靠的切換。舉例而言,ADS序列之位元序列尤其例如包括AL1位元,該位元以顯性位元(亦即,以0)傳輸。AL1位元為仲裁階段451之最後位元。換言之,AL1位元為在切換至具有短位元之資料階段452之前的最後位元。在AL1位元內,在收發器裝置12、22、32中切換實體層。AL1位元亦可具有值1,此取決於哪一值(0或1)較佳適合於收發器裝置12、32中之實體層的切換。以下兩個位元DH1及DL1已以資料位元速率進行傳輸。位元DH1及DL1因此為CAN XL中之資料階段452的短期位元。
在訊框450中,序列ADS之後接著PT欄位,其界定資料欄位455之內容的特徵。該內容指示含於資料欄位455中之資訊的類型。舉例而言,PT欄位指示網際網路協定(Internet protocol;IP)訊框或穿隧乙太網路訊框或其類似者是否存在於資料欄位455中。
PT欄位之後接著DLC欄位,其中插入指示訊框450之資料欄位455中的位元組之數目的資料長度碼(data length code;DLC)。資料長度碼(DLC)可假定自0直至資料欄位455之最大長度或資料欄位長度的任何值。特定而言,若最大資料欄位長度為2048個位元,則資料長度碼(DLC)需要數目11個位元,假定DLC=0意謂具有數目1個位元組之資料欄位長度,且DLC=2047意謂具有數目2048個位元組之資料欄位長度。替代地,如在例如CAN之狀況下,可允許具有長度0之資料欄位455。此處,DLC=0將例如寫碼具有數目0個位元組之資料欄位長度。接著,具有例如11個位元之最大可編碼資料欄位長度為(2^11)-1=2047。
在圖2中所展示之實例中,在訊框450中,DLC欄位之後接著SBC欄位。縮寫SBC代表「填塞位元計數(stuff bit count)」。SBC欄位將動態填塞位元之數目寫碼於訊框450之標頭中。原則上,SBC欄位可置放於訊框450之標頭中介於ADS欄位與訊框450之標頭的末尾之間的任何位置處。將SDC欄位置放於標頭總和檢查碼HCRC前方使得標頭總和檢查碼HCRC可保護SBC欄位為有利的。
在來自圖2之訊框450中,SBC欄位之後接著標頭總和檢查碼HCRC。標頭總和檢查碼HCRC為保護訊框450之標頭的總和檢查碼,亦即,自具有SOF位元之訊框450的開頭直至標頭總和檢查碼HCRC之開頭的所有相關位元,包括直至標頭總和檢查碼HCRC之開頭的所有動態填塞位元且視情況包括固定填塞位元。相關位元僅包含訊框標頭之具有可修改值的位元。換言之,相關位元不包含訊框450中始終具有固定值之任何位元。因此,具有不可修改之值的此等位元不受保護,此係因為此等位元具有固定值。根據所要漢明距離,選擇標頭總和檢查碼HCRC之長度,且因此選擇根據循環冗餘檢查(cyclic redundancy check;CRC)之總和檢查碼多項式的長度,該漢明距離為字元串之多樣性的量度。該量度或漢明距離指示具有相等長度之兩個字元串或兩個位元串流中的不同位置之數目多高。在11個位元之資料長度碼(DLC)的狀況下,待由標頭總和檢查碼HCRC保護之資料字長於27個位元。因此,標頭總和檢查碼HCRC之多項式的長度必須至少為13個位元,以便達成漢明距離6。參看圖3另外更詳細地描述標頭總和檢查碼HCRC之計算。
在訊框450中,標頭總和檢查碼HCRC之後接著資料欄位455。資料欄位455由1至n個資料位元組組成,其中n為例如2048個位元組或4096個位元組或任何其他值。替代地,可設想到資料欄位長度0。資料欄位455之長度經寫碼於DLC欄位中,如上文所描述。
在訊框450中,資料欄位455之後接著訊框總和檢查碼FCRC。訊框總和檢查碼FCRC由訊框總和檢查碼FCRC之位元組成。根據所要漢明距離選擇訊框總和檢查碼FCRC之長度且因此選擇CRC多項式之長度。訊框總和檢查碼FCRC保護整個訊框450。替代地,訊框總和檢查碼FCRC視情況僅保護資料欄位455。
在訊框450中,訊框總和檢查碼FCRC之後接著序列資料仲裁切換(Data Arbitration Switch;DAS),預定義位元序列經寫碼於該序列DAS中。此位元序列允許自資料階段452之資料位元速率至仲裁階段451之仲裁位元速率的簡單且可靠的切換。舉例而言,位元序列開始於以1傳輸之資料位元DH2、DH3及以0傳輸之資料位元DL2、DL3,如圖2中所展示。此等位元為資料階段452之最後4個位元。因此,DL3位元為最後的短位元,亦即,在切換至具有長位元之仲裁階段451之前的最後位元。該些位元之後接著仲裁階段452之具有值1的AH1位元。在AH1位元內,在收發器裝置12、32中切換實體層。AH1位元可替代地具有值0,此取決於哪一值(0或1)較佳適合於收發器裝置12、13中之實體層的切換。RX節點站10、30不僅將位元序列DH2、DH3、DL2、DL3用於同步,而且用作格式檢查型樣,該RX節點站10、30僅為訊框450之接收器,亦即,尚未傳輸所接收訊框450。RX節點站10、30可使用此位元序列以識別其是否正以例如1或2個位元等之偏移對自匯流排40接收到之位元串流進行取樣。根據另一實例,DAS欄位具有三個位元,亦即,DH2位元、DL2位元及AH1位元。在該些位元中,第一位元及最後位元以1傳輸,且中間位元以0傳輸。
在以上實例中,在自資料階段452切換至仲裁階段451之前,可在接收節點站中在DH3位元與DL2位元之間或DH2位元與DL2位元之間的邊緣處進行最後同步。
因此,本例示性具體實例中,序列DAS含有格式檢查型樣(format check pattern;FCP),藉由該格式檢查型樣,節點站10、30,特定而言為其訊框檢查模組15、35,能夠偵測所接收訊框450中之位元串流的偏移,即使相關聯之節點站10、30並非訊框450之傳輸器而是僅為接收器亦如此。在此狀況下,FCP欄位之位元型樣愈長,則可在接收節點站10、30中偵測到之移位愈大或愈顯著。用於移位偵測之最有利的位元型樣含有偶數M個位元,其中前M/2個位元含有1且後M/2個位元含有0。在FCP欄位具有4個位元之圖2中所展示之實例中,前兩個位元以隱性位元傳輸,亦即,以1傳輸。FCP欄位之最後兩個位元以顯性位元傳輸,亦即,以0傳輸。由於額外位元DH3、DL3,根據圖2之具有四個位元的FCP欄位因此不同於FCP欄位之開頭處之正常的兩個位元。然而,圖2中所展示之FCP欄位中自隱性至顯性的邊緣可執行與不具有位元DH3、DL3之DAS欄位中相同的功能。
一般而言,有可能FCP欄位中之前M/2個位元含有0,且後M/2個位元含有1。可藉由欄位FCP偵測偏移M-1。下文參看圖3另外更詳細地描述此情形。
在訊框450中,序列DAS之後接著以RP欄位開始的應答欄位457。RP欄位保存同步型樣,該同步型樣允許接收節點站10、30偵測在資料階段452之後的仲裁階段451之開頭。同步型樣允許例如由於不正確的標頭總和檢查碼HCRC而不知曉資料欄位455之正確長度的接收節點站10、30彼此同步。此等節點站可接著傳輸「否定應答」以便報告不正確的接收。此為極其重要的,尤其在CAN XL不允許資料欄位455中有錯誤訊框47(錯誤旗標)的情況下。
在應答欄位(ACK欄位)457中,RP欄位之後接著用於訊框450之正確接收之應答或否定應答的複數個位元。在圖2中所展示之實例中,提供ACK位元、ACK-dlm位元、NACK位元及NACK-dlm位元。NACK位元及NACK-dlm位元為可選位元。接收節點站10、30在其已正確地接收訊框450之情況下以顯性位元傳輸ACK位元。傳輸節點站以隱性位元傳輸ACK位元。因此,接收節點站10、30可覆寫最初在訊框450中傳輸至匯流排40上的位元。ACK-dlm位元以隱性位元傳輸,其用於與其他欄位分開。NACK位元及NACK-dlm位元使得接收節點站能夠發信匯流排40上之訊框450的不正確接收。該些位元之功能與ACK位元及ACK-dlm位元之功能相同。
在訊框450中,應答欄位(ACK欄位)457之後接著末尾欄位(EOF=訊框末尾)。末尾欄位(EOF)之位元序列用以識別訊框450之末尾。末尾欄位(EOF)確保在訊框450之末尾傳輸數目8個隱性位元。此為在訊框450內無法發生的位元序列。結果,訊框450之末尾可由節點站10、20、30可靠地偵測。
末尾欄位(EOF)之長度取決於已在NACK位元中看到顯性位元抑或隱性位元而不同。若傳輸節點站已以顯性位元接收到NACK位元,則末尾欄位(EOF)具有數目7個隱性位元。否則,末尾欄位(EOF)之長度僅為5個隱性位元。
在訊框450中,末尾欄位(EOF)之後接著訊框間空間(inter-frame space;IFS),其未展示於圖2中。根據ISO11898-1:2015設計此訊框間空間(IFS),如在CAN FD之狀況下。
圖3展示節點站10之基本設計,該節點站具有通信控制裝置11、收發器裝置12及訊框檢查模組15,該訊框檢查模組15為通信控制裝置11之部分。如圖3中所展示,以類似方式設計節點站30,但根據圖1之訊框檢查模組35與通信控制裝置31及收發器裝置32分開地配置。因此,未分開地描述節點站30。
根據圖3,除通信控制裝置11及收發器裝置12以外,節點站10亦具有被指派通信控制裝置11之微控制器13以及可替代地為系統基礎晶片(system basis chip;SBC)之系統ASIC 16(ASIC=特殊應用積體電路),節點站10之電子模組所必需的複數個功能在該系統基礎晶片上組合。除收發器裝置12以外,向收發器裝置12供應電能之能量供應裝置17亦安裝於系統ASIC 16中。能量供應裝置17通常供應5 V的電壓CAN_Supply。然而,取決於要求,能量供應裝置17可供應具有不同值的不同電壓。另外或替代地,能量供應裝置17可設計為電源。
訊框檢查模組15具有插入區塊151及評估區塊152。評估區塊152使用預定義電路1521來實施預定義CRC多項式CRC_P,以計算標頭總和檢查碼HCRC。評估區塊152用初始值R_S初始化每一訊框450之標頭總和檢查碼HCRC的計算。因此,訊框檢查模組15,特定而言為其評估區塊152,用以形成及檢查標頭總和檢查碼及訊框總和檢查碼,且檢查動態填塞位元之數目。下文另外更詳細地描述訊框檢查模組15。
收發器裝置12進一步具有傳輸模組121及接收模組122。儘管下文始終論述收發器裝置12,但替代地有可能在傳輸模組121外部之分開裝置中提供接收模組122。可如在習知收發器裝置22之狀況下設計傳輸模組121及接收模組122。特定而言,傳輸模組121可具有至少一個運算放大器及/或電晶體。特定而言,接收模組122可具有至少一個運算放大器及/或電晶體。
收發器裝置12連接至匯流排40,或更精確而言,連接至其用於CAN_H或CAN-XL_H之第一匯流排線路41及其用於CAN_L或CAN-XL_L之第二匯流排線路42。經由至少一個連接件43提供用以向第一匯流排線路41及第二匯流排線路42供應電能(特定而言,供應電壓CAN_Supply)之能量供應裝置17的電壓供應。經由連接件44實施至接地或CAN_GND之連接。藉由端接電阻49端接第一匯流排線路41及第二匯流排線路42。
即使出於簡化目的而在圖3中未展示連接件,第一匯流排線路41及第二匯流排線路42亦在收發器裝置12中不僅連接至亦被稱作傳輸器之傳輸模組121,而且連接至亦被稱作接收器之接收模組122。
在匯流排系統1之操作期間,傳輸模組121將通信控制裝置11之傳輸信號TXD或TxD轉換成用於匯流排線路41、42之對應信號CAN-XL_H及CAN-XL_L,且在用於CAN_H及CAN_L之連接件處將此等信號CAN-XL_H及CAN-XL_L傳輸至匯流排40上。
接收模組122自根據圖4之接收自匯流排40的信號CAN-XL_H及CAN-XL_L形成接收信號RXD或RxD,且將該接收信號RXD或RxD轉遞至通信控制裝置11,如圖3中所展示。除閒置狀態或待用狀態之外,具體而言,無關於收發器裝置12是否為訊息45之傳輸器,具有接收模組122之收發器裝置12在正常操作中始終偵聽匯流排40上資料或訊息45、46之傳輸。
根據圖4中所展示之實例,至少在仲裁階段451中,信號CAN-XL_H及CAN-XL_L具有顯性匯流排位準401及隱性匯流排位準402,如自CAN已知的。圖5中所展示之差動信號VDIFF=CAN-XL_H-CAN-XL_L形成於匯流排40上。可在接收臨限值為0.7 V的情況下偵測具有位元時間t_bt之信號VDIFF的個別位元。在資料階段452中,相比在仲裁階段451中,更快速地傳輸信號CAN-XL_H及CAN-XL_L之位元,亦即,以較短位元時間t_bt。因此,在資料階段452中,信號CAN-XL_H及CAN-XL_L至少就其較快位元速率而言不同於習知信號CAN_H及CAN_L。
圖4中之信號CAN-XL_H、CAN-XL_L之狀態401、402的序列及圖5中之電壓VDIFF的所得特性僅用以說明節點站10之功能。可根據要求選擇用於匯流排狀態401、402之資料狀態的序列。
換言之,在根據圖4之第一操作模式中,傳輸模組121產生第一資料狀態作為針對匯流排線之兩個匯流排線路41、42具有不同匯流排位準的匯流排狀態402,且產生第二資料狀態作為針對匯流排40之匯流排線之兩個匯流排線路41、42具有相同匯流排位準的匯流排狀態401。
在包含資料階段452之第二操作模式中,傳輸模組121進一步針對信號CAN-XL_H、CAN-XL_L之時間特性而以較高位元速率將位元傳輸至匯流排40上。相較於CAN FD,CAN-XL_H及CAN-XL_L信號可進一步在具有不同實體層之資料階段452中產生。結果,相比在CAN FD中,甚至可進一步增加資料階段452中之位元速率。
若節點站10充當訊框450之傳輸器,則圖3中所展示之訊框檢查模組15,特定而言為它的插入區塊151,用以將SBC欄位及FCP欄位插入至訊框450中。此外,若節點站10充當訊框450之傳輸器或接收器,則圖3中所展示之訊框檢查模組15,特定而言為它的評估區塊152,經設計以使用預定義初始值R_S來計算標頭總和檢查碼HCRC。預定義初始值R_S亦被稱作初始化值(init值)。評估區塊152經設計以自此初始值R_S開始計算標頭總和檢查碼HCRC,且在處理中使用預定義CRC多項式CRC_P,如上文所提及。
在本例示性具體實例中,設計圖3中所展示之訊框檢查模組15,其方式為使得SBC欄位具有三個位元,亦即,Bit0、Bit1及Bit2。結果,SBC欄位產生最少資料超載。在SBC欄位中,訊框檢查模組15將動態填塞位元之數目鍵入位元Bit0及Bit1中,且將前兩個位元之同位(parity)鍵入Bit2中。
在本例示性具體實例中,插入區塊151將SBC欄位插入訊框450中之標頭總和檢查碼HCRC前方。當形成標頭總和檢查碼HCRC以及訊框標頭之所有動態填塞位元時,訊框檢查模組15,特定而言為評估區塊152,亦使用SBC欄位。結果,可偵測到3類及4類錯誤。
接收節點站中之評估區塊152可比較訊框標頭中之所接收動態填塞位元的數目與SBC欄位中之值,且可因此偵測相較於訊框標頭中之實際數目的偏差,亦即,誤差。
相比之下,當形成訊框總和檢查碼FCRC時,評估區塊152省略動態填塞位元。然而,評估區塊152在訊框總和檢查碼FCRC之計算中伴隨地包括訊框標頭之其他位元,諸如ID位元、RRS位元等。因此,此等位元受雙重保護。結果,可藉由訊框檢查模組15,特定而言藉由其評估區塊152,以極高機率偵測結合動態填塞位元出現的3類及4類錯誤。
為了計算標頭總和檢查碼HCRC,評估區塊152自預定義初始值R_S開始。預定義初始值R_S為R_S=(1,0,0,0,0,0,0,0,0,0,0,0,0)。特定而言,評估區塊152具有對應於CRC多項式CRC_P之特性(係數)的反饋移位暫存器作為電路1521之電路元件。移位暫存器中之值在下文被稱作向量R。此反饋移位暫存器可用以進行標頭總和檢查碼之逐位元計算。評估區塊152在每一訊框之開頭用初始值R_S初始化移位暫存器R。向量中之個別「1」在亦被稱作LSB位置之最低有效位置處。
預定義初始值R_S防止錯誤狀況B。在錯誤狀況B中,接收節點站(接收節點)之資料串流中的一位元漏失或一位元插入在動態填塞條件之狀況下發生,在該狀況下,標頭總和檢查碼HCRC之CRC計算的臨時值同時為零向量R=「0...0」。錯誤狀況B可能係由於不正確的再同步而發生,其中接收節點看到的比傳輸節點實際所傳輸的多一個位元或少一個位元。
位元漏失之實例為:100000i變成100001
位元插入之實例為:100001變成100000i
在此等實例中,i表示具有值1之動態填塞位元。
若在所提及之實例中,中間結果揭露標頭總和檢查碼HCRC之計算中的向量R=「0…0」,在此期間將動態填塞位元伴隨地包括於計算中,則保持向量R=「0…0」,只要僅將0的位元饋送至用於評估區塊152中之CRC計算的反饋移位暫存器。換言之,若將多一個0或少一個0饋送至CRC計算中,則標頭總和檢查碼HCRC之計算的結果保持相同。因此,對於與動態填塞位元有關之此狀況(錯誤狀況B),評估區塊152在無預定義初始值R_S之狀況下進行的CRC計算為盲目的。此類型之單個錯誤已導致CRC檢查無法偵測到錯誤。
考慮到錯誤狀況B可能僅在串列傳輸訊框450之前17個位元中發生的事實,預定義初始值R_S=(1,0,0,0,0,0,0,0,0,0,0,0,0)。此情形的原因為僅在訊框450之標頭的此部分中使用動態填塞位元。訊框450之標頭的此第一部分由14個位元(SOF、ID、RRS、IDE)加上最多3個動態填塞位元組成,亦即,總計最多17個位元。因此,訊框450之標頭的此部分極短。
由於預定義初始值R_S=(1,0,0,0,0,0,0,0,0,0,0,0,0)由評估區塊152用以計算標頭總和檢查碼HCRC,因此錯誤狀況B可能不會發生。此預定義初始值R_S意謂向量R在前14至17個位元中無法採用值R=「0...0」。在此狀況下,若不存在動態填塞位元,則施加14個位元的約束。若存在動態填塞位元,則施加17個位元的約束。對於CAN訊框450之每一有效位元序列,達成向量R之值的此結果,亦即,無關於例如訊框450中之傳輸識別符(ID)的值。在此狀況下,利用以下事實:評估區塊152考慮之訊框標頭的彼部分理論上可具有2之17次冪個可能位元序列,但由於插入動態填塞位元,此等理論上可能的位元序列中之幾個位元序列可能不會出現。
若訊框450之標頭的後續位元包括於標頭總和檢查碼HCRC之計算中,具體而言,識別符(ID)之位元、RRS位元及動態填塞位元,則所提及之預定義初始值R_S達成所要效應,具體而言,防止錯誤狀況B之效應。
替代地,具有恆定值之兩個位元(SOF、IDE)亦可包括於標頭總和檢查碼HCRC之計算中。亦在此狀況下,保持防止錯誤狀況B之效應。此等位元為以SOF位元開始直至IDE位元之後的動態填塞位元的所有位元,包括動態填塞位元。
結果,作為在標頭之前17個位元期間計算標頭總和檢查碼HCRC的結果,預定義初始值R_S防止向量R能夠採用值「0...0」。
當計算標頭總和檢查碼HCRC時,評估區塊152另外使用預定義CRC多項式CRC_P,其具有高的錯誤偵測機率。下文指定具有CRC長度13之標頭總和檢查碼HCRC的CRC多項式。所得標頭總和檢查碼HCRC之長度為13個位元。
根據不同慣例,可用十六進位記法表示CRC生成多項式CRC_P。舉例而言,可如下表示多項式CRC_P 1.   表示為多項式 x13 + x12 + x11 + x8 + x7 + x6 + x5 + x2 + x1 + 1 = (x + 1) • (x12 + x10 + x9 + x8 + x6 + x4 + x3 + x2 + 1) 2.   其中所有係數(十六進位):0x39E7 (自最高有效x13 至最低有效x0 ) 3.   正常表示(十六進位):0x19E7 (省略最高有效係數x13 ) 4.   庫普曼(Koopman)表示(十六進位):0x1CF3 (省略最低有效係數x0 ) 特定而言,前述預定義CRC多項式CRC_P具有良好特性,具體而言: a)漢明距離:HD 6 b)可受保護之酬載位元的最大數目:52 c)特定而言,相較於具有HD6之其他CRC多項式,可達成低的殘餘錯誤機率
因此,接收節點站(接收節點)10,特定而言為它的訊框檢查模組15且更具體而言為它的評估區塊152,可以高機率偵測到1類至4類錯誤及錯誤狀況B。此等錯誤可藉助於選定CRC多項式及它的初始值R_S以尤其高的機率偵測,如上文所描述。
評估區塊152將對應通知輸出至通信控制裝置11。因此,在錯誤之情況下,可捨棄所接收之訊框450。因此,通信控制裝置11可將錯誤訊框47傳輸至匯流排40。
然而,若使用「填塞計數」欄位,諸如SBC欄位,則進一步減小殘餘錯誤機率。因此,不正確訊框450甚至更不太可能被接受為有效的。
將動態填塞位元之數目寫碼於所傳輸訊框中的SBC欄位(「填塞計數」欄位)之使用因此為可選的。
若不需要與CAN FD的相容性,則例如可在訊框中使用所謂的固定填塞位元(始終存在的填塞位元)而非動態填塞位元。在無動態填塞位元的情況下,可能不會出現3類及4類錯誤。此外,可省略諸如SBC欄位的「填塞計數」欄位。此導致傳輸較少量位元且甚至複雜度較低。
根據第一例示性具體實例之第一修改,當形成標頭總和檢查碼HCRC時,訊框檢查模組15,特定而言為評估區塊152,經設計以省略動態填塞位元。相比之下,當形成訊框總和檢查碼FCRC時,訊框檢查模組15,特定而言為評估區塊152,使用動態填塞位元。在此狀況下,訊框檢查模組15,特定而言為評估區塊152,在訊框總和檢查碼FCRC之計算中再次伴隨地包括訊框標頭之其他位元,諸如ID位元、RRS位元等。亦以此方式,可足夠可靠地偵測特殊的3類及4類錯誤。當使用錯誤訊框47時,可藉由錯誤訊框47報告偵測。
根據第一例示性具體實例之第二修改,訊框檢查模組15,特定而言為評估區塊152,經設計以在總和檢查碼HCRC、FCRC中之任一者的計算中未伴隨地包括動態填塞位元。亦以此方式,可足夠可靠地偵測3類及4類錯誤。此情形的原因在於動態填塞位元可僅出現為自SOF位元至FDF位元之前。最多三個動態填塞位元可含於此小的區域中。因此,叢發錯誤之長度受到限制,該叢發錯誤為位元串流中之逐區塊干擾且可由3類錯誤產生。因此,標頭CRC能夠偵測到此叢發錯誤之機率為高的。當使用錯誤訊框47時,可藉由錯誤訊框47報告偵測。
根據第一例示性具體實例之第三修改,插入區塊151經設計以使用值R_S=(0,0,1,1,0,0,0,0,0,0,0,0,0)作為預定義初始值R_S來計算標頭總和檢查碼HCRC。評估區塊152在每一訊框450之開頭用初始值R_S初始化電路1521,特定而言為移位暫存器R等。在此狀況下,當藉助於反饋移位暫存器計算標頭總和檢查碼HCRC時,在預定義初始值R_S左側之「0」在例如LSB位置處,亦即,在最低有效位置處。
若訊框450之標頭的後續位元包括於標頭總和檢查碼HCRC之計算中,具體而言,識別符(ID)之位元、RRS位元及動態填塞位元,則本修改的所提及之預定義初始值R_S達成所要效應,具體而言,防止錯誤狀況B。
預定義初始值R_S=(0,0,1,1,0,0,0,0,0,0,0,0,0)之優點為如下事實:甚至對於在最後可能動態填塞位元之後且包括於標頭總和檢查碼HCRC之計算中的兩個位元,亦保證標頭總和檢查碼HCRC之向量R無法採用值R=「0...0」。舉例而言,此等兩個後續位元為酬載類型之位元7及位元6。
根據第一例示性具體實例之第四修改,CRC生成多項式CRC_P不必僅與前述預定義開始值R_S中之一者一起使用。替代地,有可能使用另一初始值R_S,對於該初始值,標頭總和檢查碼HCRC之向量R採用值R=「0...0」作為中間結果。在此修改之狀況下,相比在第一例示性具體實例中,可以稍微較低的機率防止錯誤狀況B。在此狀況下,有可能經由SBC欄位偵測錯誤狀況B。
圖6展示根據第二例示性具體實例的圖3中所展示之電路1521之設計的另一實例。對於兩個例示性具體實例,以相同方式另外設計節點站10。
圖6中所展示之電路1521經設計為邏輯電路,該邏輯電路具有閘U1、U2、「互斥或」(XOR)閘X0 至X12 ,以及具有輸出Q及反相輸出
Figure 02_image001
之正反器F0至F12。即使圖6中之正反器F0至F6相較於圖6中之正反器F7至F12具有鏡像輸出,圖6中之正反器F0至F12亦皆具有相同設計,以便簡化至閘U2之連接的說明。在圖6之頂部處的正反器F展示輸入D及時脈輸入以及圖6中之正反器F0至F6之輸出Q、
Figure 02_image003
的連接。在圖6之底部處的正反器F展示輸入D及時脈輸入以及圖6中之正反器F7至F12之輸出Q、
Figure 02_image003
的連接。
在電路1521中,首先用信號CRC_INIT設定或重設個別正反器F0至F12,其方式為使得包含正反器F0至F12之移位暫存器含有初始值R_S。將串列資料串流作為信號CRC_I饋送至電路1521中。此外,將時脈信號S_CLK及計算信號S_CC饋送至電路1521中。計算信號S_CC指示電路是否意欲進行計算步驟。若電路1521由節點站10用作訊框450之傳輸器,則在輸出端處輸出信號CRC_A,將該信號鍵入用於標頭總和檢查碼HCRC之欄位HCRC中。若在電路1521用於自節點站10接收到之訊框450的情況下計算標頭總和檢查碼HCRC時發生錯誤,則輸出信號S_E,如上文關於第一例示性具體實例所描述。
為了計算標頭總和檢查碼HCRC,將正反器F0至F12改變至其開始位置,更精確而言,藉助於信號CRC_INIT設定為初始值R_S。舉例而言,對於初始值R_S=(1,0,0,0,0,0,0,0,0,0,0,0,0),僅將用於最低有效位元(LSB)之正反器F0設定為「1」。相比之下,所有其他正反器F1至F12設定為值「0」。
電路1521之工作步驟由時脈信號S_CLK與信號S_CC之「及」(AND)邏輯組合觸發。使用AND閘U1進行AND邏輯組合。對於並不意欲包括於CRC計算中之位元,不進行工作步驟。對於標頭總和檢查碼HCRC,此等位元為具有固定值的位元,如上文關於第一例示性具體實例所描述。
若節點站10為訊框450之傳輸器,則自標頭總和檢查碼欄位HCRC開始,收發器裝置12將信號CRC_A傳輸至匯流排40上。若節點站10僅為訊框450之接收器,亦即,並非傳輸器,則不傳輸信號CRC_A,而是使用信號S_E以判定在訊框450之欄位HCRC中的總和檢查碼中是否存在錯誤。
在圖6中所展示之電路中,藉由13個輸入反及(NAND)閘U2產生信號CRC_E,該閘在邏輯上組合反相正反器輸出(
Figure 02_image003
)。在已完全接收HCRC之後,在接收節點站10中評估信號CRC_E。
若不存在錯誤,則在標頭總和檢查碼欄位HCRC之末尾,CRC FF之所有Q輸出處於值「0」。在此狀況下,信號CRC_E之輸出具有值「0」。
若反相輸出
Figure 02_image005
具有值「0」,則信號CRC_E指示值「1」,以便向通信控制裝置11通知錯誤。
圖7展示根據CAN XL與CAN FD不相容的第三例示性具體實例之訊框4500。在此例示性具體實例中,訊框4500且因此CAN XL訊框格式不同於圖2中所展示之訊框450,如下文所描述。此處僅描述相較於圖2中所展示之訊框450的差異。在其他方面,兩個例示性具體實例之訊框450、4500相同。
一般而言,根據本例示性具體實例,僅在訊框4500之產生中使用固定填塞規則,使得在固定數目個位元之後插入一固定填塞位元。替代地,亦可插入兩個或多於兩個位元作為固定填塞位元而非僅插入一個填塞位元。若已知資料長度碼(DLC)之值,則此插入導致恆定訊框長度或訊框4500之恆定長度。此情形防止由動態填塞位元引起的各種問題。因此,在訊框4500之標頭中亦不需要SBC欄位。
在根據本例示性具體實例之訊框4500中,識別符(ID)不再限於如在CAN FD中之數目11個位元或29個位元。可自由選擇識別符(ID)之數目k個位元。然而,替代地可將數目k定義為固定值。具有k=8個位元的ID適合於高的淨資料速率。此足以向匯流排系統1之每一節點站10、20、30給予足夠數目個匯流排存取優先順序。然而,取決於要求及匯流排系統1中之不同優先順序的數目,顯然可選擇不同k值。
圖2中所展示之訊框450的位元RRS、IDE、FDF、XLF在訊框4500中不再為必要的且被省略。此節省4個位元,使得訊框超載減少。藉此增加匯流排系統1中之淨資料速率。
若NACK位元為顯性位元,則末尾欄位(EOF)在訊框4500中僅具有數目五個位元。相反,若NACK位元為隱性位元,則末尾欄位(EOF)具有數目三個位元。此情形確保在訊框4500之末尾傳輸數目六個隱性位元。若在仲裁階段451中,在五個相同位元之後插入一固定填塞位元,則此數目個隱性位元可能不會出現在有效訊框4500中之任何其他位置處。替代地,可存在多於六個位元。特定而言,EOF位元之數目必須適於之後插入有一固定填塞位元的位元之數目。
訊框間空間(IFS)在訊框4500中不需要最小長度。特定而言,訊框間空間(IFS)可具有長度0。在此狀況下,連續無縫地傳輸兩個訊框4500。然而,相較於前述狀況,具有例如數目1個位元之訊框間空間(IFS)亦適合於增加匯流排系統1之穩固性。由於兩個訊框4500之間現存在七個隱性位元,因此匯流排40上之新節點站可更可靠地同步。
可個別地或以所有可能組合使用匯流排系統1之節點站10、20、30及其中進行之方法的所有先前所描述之設計。特定而言,可以任何方式組合先前所描述之例示性具體實例及/或其修改的所有特徵。另外或替代地,尤其可設想到以下修改。
儘管上文經由CAN匯流排系統之實例描述了本發明,但可在任何通信網路及/或通信方法中使用本發明,其中使用兩個不同的通信階段,其中針對不同通信階段而產生的匯流排狀態彼此不同。特定而言,可在開發諸如乙太網路及/或100 Base-T1乙太網路、現場匯流排系統等之其他串列通信網路中使用本發明。
特定而言,根據例示性具體實例之匯流排系統1可為可以兩個不同位元速率串列地傳輸資料的通信網路。在匯流排系統1中至少在特定時間段內保證節點站10、20、30對公用通道之排他性無衝突存取為有利的,但並非必需的要求。
例示性具體實例之匯流排系統1中的節點站10、20、30之數目及配置為隨機的。特定而言,在匯流排系統1中可省略節點站20。節點站10或30中之一或多者有可能存在於匯流排系統1中。可設想到匯流排系統1中之所有節點站具有相同設計,亦即,僅存在節點站10或僅存在節點站30。
1:匯流排系統 10:接收節點站 11:通信控制裝置 12:收發器裝置 13:微控制器 15:訊框檢查模組 16:系統ASIC 17:能量供應裝置 20:節點站 21:通信控制裝置 22:收發器裝置 30:接收節點站 31:通信控制裝置 32:收發器裝置 35:訊框檢查模組 40:匯流排 41:第一匯流排線路 42:第二匯流排線路 43:連接件 44:連接件 45:第一訊息/修改的CAN訊息/CAN XL訊息 46:CAN FD訊息/第二訊息 47:錯誤訊框 49:端接電阻 121:傳輸模組 122:接收模組 151:插入區塊 152:評估區塊 401:顯性匯流排位準/匯流排狀態 402:隱性匯流排位準/匯流排狀態 450:CAN XL訊框 451:通信階段/仲裁階段 452:通信階段/資料階段 453:仲裁欄位 454:控制欄位 455:資料欄位 456:總和檢查碼欄位 457:應答欄位 4500:訊框 1521:電路 CAN_H:信號 CAN_L:信號 CAN-XL_H:信號 CAN-XL_L:信號 CRC_A:信號 CRC_I:信號 CRC_INIT:信號 CRC_P:預定義總和檢查碼多項式 F:正反器 F0:正反器 F1:正反器 F10:正反器 F11:正反器 F12:正反器 F2:正反器 F3:正反器 F4:正反器 F5:正反器 F6:正反器 F7:正反器 F8:正反器 F9:正反器 R_S:預定義初始值 RXD:接收信號 S_CC:計算信號 S_CLK:時脈信號 S_E:信號 t_bt:位元時間 TXD:傳輸信號 U1:AND閘 U2:閘 VDIFF:差動信號 X0 :XOR閘 X1 :XOR閘 X2 :XOR閘 X3 :XOR閘 X4 :XOR閘 X5 :XOR閘 X6 :XOR閘 X7 :XOR閘 X8 :XOR閘 X9 :XOR閘 X10 :XOR閘 X11 :XOR閘 X12 :XOR閘
下文參看隨附圖式且基於例示性具體實例更詳細地描述本發明。在圖式中: [圖1]展示根據第一例示性具體實例之匯流排系統的簡化方塊圖; [圖2]展示說明根據第一例示性具體實例之訊息之結構的圖,該訊息可自匯流排系統之節點站傳輸; [圖3]展示根據第一例示性具體實例之匯流排系統之節點站的簡化示意性方塊圖; [圖4]展示根據第一例示性具體實例之節點站中之匯流排信號CAN-XL_H及CAN-XL_L的時間特性; [圖5]展示根據第一例示性具體實例之節點站中之匯流排信號CAN-XL_H及CAN-XL_L的差分電壓VDIFF之時間特性; [圖6]展示根據第二例示性具體實例之用於計算標頭總和檢查碼的電路之電路圖;及 [圖7]展示說明根據第三例示性具體實例之訊息之結構的圖,該訊息可自匯流排系統之節點站傳輸;
在諸圖中,除非另外指示,否則相同或功能相同的元件由相同參考符號表示。
10:接收節點站
11:通信控制裝置
12:收發器裝置
13:微控制器
15:訊框檢查模組
16:系統ASIC
17:能量供應裝置
40:匯流排
41:第一匯流排線路
42:第二匯流排線路
43:連接件
44:連接件
49:端接電阻
121:傳輸模組
122:接收模組
151:插入區塊
152:評估區塊
1521:電路
CAN_H:信號
CAN_L:信號
CRC_P:預定義總和檢查碼多項式
R_S:預定義初始值
RXD:接收信號
TXD:傳輸信號

Claims (13)

  1. 一種用於一串列匯流排系統(1)之節點站(10;30),其具有 一通信控制裝置(11;31),其用以控制該節點站(10;30)與該匯流排系統(1)之至少一個其他節點站(10;20;30)之間的通信,及 一收發器裝置(12;32),其經設計以將由該通信控制裝置(11;31)產生之一傳輸信號(TXD),串列地傳輸至該匯流排系統(1)之一匯流排(40)上,且自該匯流排系統(1)之該匯流排(40)串列地接收信號, 其中該通信控制裝置(11;31)經設計以根據一訊框(450)產生該傳輸信號(TXD),且將一標頭總和檢查碼(HCRC)插入至該訊框(450)中,該標頭總和檢查碼之計算僅包括配置於為該訊框(450)中提供酬載資料的一資料欄位(455)前方的一訊框標頭之位元, 其中該通信控制裝置(11;31)經設計以將動態填塞位元插入至該訊框標頭中,該插入之一方式為使得在連續5個相同位元之後將一反轉填塞位元插入至該訊框(450)之位元串流中,且 其中該通信控制裝置(11;31)經設計以使用一預定義初始值(R_S)及一預定義總和檢查碼多項式(CRC_P)來計算該標頭總和檢查碼(HCRC),其中對於使用動態填塞位元之該訊框標頭的彼部分,該標頭總和檢查碼(HCRC)之該計算的中間結果不等於一零向量。
  2. 如請求項1之節點站(10;30),其中該預定義初始值(R_S)等於(1,0,0,0,0,0,0,0,0,0,0,0,0)。
  3. 如請求項1之節點站(10;30),其中該預定義初始值(R_S)等於(0,0,1,1,0,0,0,0,0,0,0,0,0)。
  4. 如請求項1至3中任一項之節點站(10;30),其中該通信控制裝置(11;31)經設計以使用一電路(1521)之至少一個開關元件(F0至F12)來計算該標頭總和檢查碼(HCRC),該開關元件可設定為該預定義初始值(R_S)且該開關元件或該電路實施一預定義總和檢查碼多項式(CRC_P)。
  5. 如請求項1至3中任一項之節點站(10;30),其中該預定義總和檢查碼多項式(CRC_P)等於x13 + x12 + x11 + x8 + x7 + x6 + x5 + x2 + x1 + 1。
  6. 如請求項1至3中任一項之節點站(10;30),其中該通信控制裝置(11;31)經設計以僅將動態填塞位元插入至該訊框標頭之一第一部分中。
  7. 如請求項1至3中任一項之節點站(10;30), 其中該通信控制裝置(11;31)經設計以將一欄位(SBC)插入至該訊框(450)中,動態填塞位元之數目經寫碼於該欄位中,且 其中該通信控制裝置(11;31)經設計以將該至少一個欄位(SBC)插入該資料欄位(455)前方,該訊框(450)之該酬載資料插入該資料欄位(455)中。
  8. 如請求項1至3中任一項之節點站(10;30),其中該收發器裝置(12;32)經設計以將由該通信控制裝置(11;31)產生之一傳輸信號(TXD)串列地傳輸至該匯流排系統(1)之一匯流排(40)上,該傳輸之一方式為使得對於在該匯流排系統(1)之節點站(10、20、30)之間交換的一訊息(45),在一第一通信階段(451)中傳輸至該匯流排(40)上之一信號的位元時間(t_bt)不同於在一第二通信階段(452)中傳輸之一信號的一位元時間(t_bt)。
  9. 如請求項1至3中任一項之節點站(10;30), 其中針對該訊息(45)而形成的該訊框(450)經設計為與CAN FD相容,且 其中在一第一通信階段(451)中進行協商,以便判定在一後續第二通信階段(452)中,該匯流排系統(1)之該些節點站(10、20、30)中之哪一者被授與對該匯流排(40)之至少臨時排他性的無衝突存取。
  10. 一種用於一串列匯流排系統(1)之節點站(10;30),其具有 一通信控制裝置(11;31),其用以控制該節點站(10;30)與該匯流排系統(1)之至少一個其他節點站(10;20;30)之間的通信,及 一收發器裝置(12;32),其經設計以將由該通信控制裝置(11;31)產生之一傳輸信號(TXD)串列地傳輸至該匯流排系統(1)之一匯流排(40)上,且自該匯流排系統(1)之該匯流排(40)串列地接收信號, 其中該通信控制裝置(11;31)經設計以根據一訊框(450)產生該傳輸信號(TXD)且將一標頭總和檢查碼(HCRC)插入至該訊框(450)中,該標頭總和檢查碼之計算僅包括配置於為該訊框(450)中提供酬載資料的一資料欄位(455)前方的一訊框標頭之位元, 其中該通信控制裝置(11;31)經設計以將動態填塞位元插入至該訊框標頭中,該插入之一方式為使得在連續5個相同位元之後將一反轉填塞位元插入至該訊框(450)之位元串流中,且 其中該通信控制裝置(11;31)經設計以使用一電路(1521)之至少一個開關元件(F0至F12)來計算該標頭總和檢查碼(HCRC),該開關元件可設定為一預定義初始值(R_C)且該開關元件或該電路實施一預定義總和檢查碼多項式(CRC_P), 其中該預定義總和檢查碼多項式(CRC_P)等於x13 + x12 + x11 + x8 + x7 + x6 + x5 + x2 + x1 + 1。
  11. 如請求項10之節點站(10;30),其中該預定義初始值(R_S)與該預定義總和檢查碼多項式(CRC_P)之組合經設計,該設計之一方式為使得對於待藉由該通信控制裝置(11;31)插入動態填塞位元之該訊框標頭的彼部分,該標頭總和檢查碼(HCRC)之該計算的中間結果不等於一零向量。
  12. 一種匯流排系統(1),其具有 一匯流排(40),及 至少兩個節點站(10;20;30),其經由該匯流排(40)互連,該互連之一方式為使得該些節點站彼此可串列地通信,且該些節點站中之至少一個節點站(10;30)為如請求項1至11中任一項之一節點站(10;30)。
  13. 一種用於一串列匯流排系統(1)中通信之方法,其中該方法係藉由該匯流排系統(1)之一節點站(10;30)進行,該節點站(10;30)具有一通信控制裝置(11;31)及一收發器裝置(12;32),其中該方法具有以下步驟: 藉由該通信控制裝置(11;31)控制該節點站(10;30)與該匯流排系統(1)之至少一個其他節點站(10;20;30)之間的通信,及 藉由該收發器裝置(12;32)將由該通信控制裝置(11;31)產生之一傳輸信號(TXD)傳輸至該匯流排系統(1)之一匯流排(40)上,其中該收發器裝置(12;32)亦經設計以自該匯流排系統(1)之該匯流排(40)串列地接收信號, 藉由該通信控制裝置(11;31)根據一訊框(450)產生該傳輸信號(TXD), 其中該通信控制裝置(11;31)將一標頭總和檢查碼(HCRC)插入至該訊框(450)中,該標頭總和檢查碼之計算僅包括配置於為該訊框(450)中提供酬載資料的一資料欄位(455)前方的一訊框標頭之位元, 其中該通信控制裝置(11;31)將動態填塞位元動態填塞位元插入至該訊框標頭中,該插入之一方式為使得在連續5個相同位元之後將一反轉填塞位元插入至該訊框(450)之位元串流中,且 其中該通信控制裝置(11;31)使用一預定義初始值(R_S)及一預定義總和檢查碼多項式(CRC_P)來計算該標頭總和檢查碼(HCRC),其中對於使用動態填塞位元之該訊框標頭的彼部分,該標頭總和檢查碼(HCRC)之該計算的中間結果不等於一零向量。
TW109142420A 2019-12-02 2020-12-02 用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法 TW202133597A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019218715.3 2019-12-02
DE102019218715.3A DE102019218715A1 (de) 2019-12-02 2019-12-02 Teilnehmerstation für ein serielles Bussystem und Verfahren zur Kommunikation in einem seriellen Bussystem

Publications (1)

Publication Number Publication Date
TW202133597A true TW202133597A (zh) 2021-09-01

Family

ID=73695024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142420A TW202133597A (zh) 2019-12-02 2020-12-02 用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法

Country Status (8)

Country Link
US (1) US11962410B2 (zh)
EP (1) EP4070511B1 (zh)
JP (1) JP7462044B2 (zh)
KR (1) KR20220101741A (zh)
CN (1) CN114731308B (zh)
DE (1) DE102019218715A1 (zh)
TW (1) TW202133597A (zh)
WO (1) WO2021110675A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218714A1 (de) * 2019-12-02 2021-06-02 Robert Bosch Gmbh Teilnehmerstation für ein serielles Bussystem und Verfahren zur Kommunikation in einem seriellen Bussystem

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923170B1 (ko) 2004-11-24 2009-10-22 콸콤 인코포레이티드 디지털 데이터 인터페이스 장치
US20140016654A1 (en) * 2011-03-31 2014-01-16 Renesas Electronics Corporation Can communication system, can transmission apparatus, can reception apparatus, and can communication method
BR112013033658B1 (pt) * 2011-06-29 2021-07-13 Robert Bosch Gmbh Processo e dispositivo para a transmissão serial de dados em um sistema de barramento
CN103890747B (zh) 2011-06-29 2016-11-16 罗伯特·博世有限公司 用于具有灵活的消息大小和可变的位长的串行数据传输的方法和装置
CN202194654U (zh) * 2011-07-11 2012-04-18 中国石油集团长城钻探工程有限公司 基于FlexRay总线的测井总线系统
DE102012224024A1 (de) * 2012-12-20 2014-06-26 Robert Bosch Gmbh Datenübertragung unter Nutzung eines Protokollausnahmezustands
KR101578065B1 (ko) * 2013-11-01 2015-12-16 (주)티에이치엔 Can 패킷을 패키징하는 방법과 이를 이용하는 장치들
DE102013020522A1 (de) 2013-12-11 2015-06-11 Lukusa Didier Kabulepa Kommunikationssystem, Testeinrichtung und Vorrichtung zur Prüfung von fehlererkennenden Sicherheitsmechanismen eines Kommunikationsteilnehmers
JP6267596B2 (ja) * 2014-07-14 2018-01-24 国立大学法人名古屋大学 通信システム、通信制御装置及び不正情報送信防止方法
DE102015209201A1 (de) 2014-09-03 2016-03-03 Robert Bosch Gmbh Verfahren zur seriellen Übertragung eines Rahmens über ein Bussystem von einem Sender zu mindestens einem Empfänger und Teilnehmerstation für ein Bussystem
DE102015209196A1 (de) 2014-09-08 2016-03-10 Robert Bosch Gmbh Verfahren zur seriellen Übertragung eines Rahmens über ein Bussystem von einem Sender zu mindestens einem Empfänger und Teilnehmern eines Bussystems
US10673565B2 (en) * 2014-09-30 2020-06-02 Concio Holdings LLC Confirming data accuracy in a distributed control system
DE102017211860B3 (de) * 2017-07-11 2018-09-20 Volkswagen Aktiengesellschaft Verfahren zur Übertragung von Daten über einen seriellen Kommunikationsbus, entsprechend ausgelegte Busschnittstelle sowie entsprechend ausgelegtes Computerprogramm
CN110999226B (zh) 2017-08-08 2022-05-10 大众汽车有限公司 用于经由串行通信总线来传输数据的方法、对应设计的总线接口和对应设计的计算机程序
JP7030742B2 (ja) * 2019-05-27 2022-03-07 本田技研工業株式会社 通信システム、および通信制御方法

Also Published As

Publication number Publication date
US20220407619A1 (en) 2022-12-22
CN114731308A (zh) 2022-07-08
JP7462044B2 (ja) 2024-04-04
EP4070511B1 (de) 2024-04-17
WO2021110675A1 (de) 2021-06-10
KR20220101741A (ko) 2022-07-19
DE102019218715A1 (de) 2021-06-02
JP2023503377A (ja) 2023-01-27
US11962410B2 (en) 2024-04-16
CN114731308B (zh) 2024-02-13
EP4070511C0 (de) 2024-04-17
EP4070511A1 (de) 2022-10-12

Similar Documents

Publication Publication Date Title
TWI699983B (zh) 用於經由一匯流排系統將一框從一發射器傳輸到至少一接收器及一匯流排系統的用戶的方法
EP1738533B1 (en) Transceiver with automatic configuration based on auto-negociation
CN114144997B (zh) 用于串行总线系统的用户站的错误识别测试装置和用于对在串行总线系统中的通信中用于错误识别的机制进行测试的方法
US11962409B2 (en) User station for a serial bus system, and method for communicating in a serial bus system
CN113330719B (zh) 用于串行总线系统的用户站和在串行总线系统中通信的方法
US11700143B2 (en) User station for a serial bus system, and method for communicating in a serial bus system
CN113841362A (zh) 用于串行总线系统的用户站和用于在串行总线系统中进行通信的方法
CN114342325B (zh) 用于串行总线系统的用户站和用于在串行总线系统中进行通信的方法
TW202133597A (zh) 用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法
Umehara et al. Controller area network and its reduced wiring technology
TW202129511A (zh) 用於串列匯流排系統之節點站以及用於串列匯流排系統中通信之方法
CN114726669A (zh) 用于串行的总线系统的用户站的通信控制装置和用于在串行的总线系统中通信的方法
TWI838577B (zh) 用於串列匯流排系統的節點站以及用於在串列匯流排系統中通訊的方法
Umehara et al. Ringing mitigation schemes for controller area network
US20230148180A1 (en) Subscriber station for a serial bus system and method for communication in a serial bus system
KR20230045069A (ko) 직렬 버스 시스템용 가입자국 및 직렬 버스 시스템에서의 통신 방법
Di Natale et al. The CAN 2.0 b standard
KR20230045061A (ko) 직렬 버스 시스템용 가입자국 및 직렬 버스 시스템에서의 통신 방법
Buchanan Some Studies on CAN Specification
CN115280726A (zh) 串行总线系统的用户站的发送/接收装置和通信控制装置以及在串行总线系统中通信的方法