TW202132234A - Optical glass and optical element - Google Patents

Optical glass and optical element Download PDF

Info

Publication number
TW202132234A
TW202132234A TW110104661A TW110104661A TW202132234A TW 202132234 A TW202132234 A TW 202132234A TW 110104661 A TW110104661 A TW 110104661A TW 110104661 A TW110104661 A TW 110104661A TW 202132234 A TW202132234 A TW 202132234A
Authority
TW
Taiwan
Prior art keywords
glass
content
optical
sio
total content
Prior art date
Application number
TW110104661A
Other languages
Chinese (zh)
Inventor
三上修平
成田和浩
藤原康裕
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Publication of TW202132234A publication Critical patent/TW202132234A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Abstract

To provide optical glass and an optical element, each of which has a high internal transmittance and a high refractive index at a wavelength of 460 nm. Optical glass, wherein: the mass ratio [(BaO+La2O3+Gd2O3+WO3)/(CaO+SrO+Y2O3)] of the total amount of BaO, La2O3, Gd2O3, and WO3 contained to the total amount of CaO, SrO, and Y2O3 contained is 2.0 or less; the mass ratio [(B2O3+P2O5)/(SiO2+Al2O3)] of the total amount of B2O3 and P2O5 contained to the total amount of SiO2 and Al2O3 contained is 0.10 or less; the total amount [Li2O+Na2O+K2O] of Li2O, Na2O, and K2O contained is 10 mass% or less; and the mass ratio [(Al2O3/(SiO2+ZrO2)] of the amount of Al2O3 contained to the total amount of SiO2 and ZrO2 contained is greater than 0.0000.

Description

光學玻璃及光學元件Optical glass and optical components

本發明係關於光學玻璃及光學元件。The present invention relates to optical glass and optical elements.

近幾年,伴隨AR(擴增實境)技術的進展,作為AR裝置,有護目鏡型或眼鏡型等的顯示裝置的開發。例如,在護目鏡型的顯示裝置,使用平面透鏡,而高折射率、高穿透率、且低比重的透鏡,而可適用於如此的透鏡的玻璃的需求升高。在此之穿透率,係指光穿透玻璃內部時的內部穿透率,與包含反射損失的外部穿透率有所區別。In recent years, with the advancement of AR (Amplified Reality) technology, as AR devices, display devices such as goggles and glasses have been developed. For example, in goggles-type display devices, flat lenses are used, but lenses with high refractive index, high transmittance, and low specific gravity, and the demand for glass suitable for such lenses is increasing. The transmittance here refers to the internal transmittance when light penetrates the inside of the glass, which is different from the external transmittance including reflection loss.

一般玻璃的折射率,當穿透玻璃的光與玻璃中的電子雲的相互作用越大越高。因此,為提升玻璃折射率,選擇玻璃成分使更多的電子填充在玻璃中。即,選擇原子序大卻離子半徑小而多含電子的玻璃成分,以增加玻璃的單位體積當量的電子密度(大多為氧數密度)。作為其一例,可舉出硼酸-鑭系的玻璃。但是,硼酸-鑭系的玻璃比重大,使用於護目鏡型的AR顯示裝置時透鏡變重成了問題。Generally, the refractive index of glass, the greater the interaction between the light penetrating the glass and the electron cloud in the glass, the higher. Therefore, in order to increase the refractive index of the glass, the glass composition is selected so that more electrons are filled in the glass. That is, a glass component that has a large atomic order but a small ion radius and contains many electrons is selected to increase the electron density per unit volume equivalent of the glass (mostly the oxygen number density). As an example, a boric acid-lanthanum series glass can be mentioned. However, the boric acid-lanthanum series glass has a high specific gravity, and it is a problem that the lens becomes heavier when used in a goggle-type AR display device.

作為維持低比重而提高折射率的玻璃成分,可舉出在近紫外區域具有吸收的Nb2 O5 或TiO2 等。但是,增加如此的玻璃成分的含量,則光的吸收區域有不只是近紫外區域,而有擴大到可見短波長區域(藍色區域)的問題。此外,增加Nb2 O5 或TiO2 的含量,則由於可對Nb離子或Ti離子供給氧的其他離子的比例會相對降低,而使Nb離子或Ti離子的一部分被還原著色,而有降低玻璃在可見光的內部穿透率的問題。As a glass component that maintains a low specific gravity and increases the refractive index, Nb 2 O 5 or TiO 2 having absorption in the near ultraviolet region can be cited. However, increasing the content of such a glass component has a problem that the light absorption region not only extends to the near ultraviolet region but also extends to the visible short wavelength region (blue region). In addition, if the content of Nb 2 O 5 or TiO 2 is increased, the proportion of other ions that can supply oxygen to Nb ions or Ti ions will be relatively reduced, and part of Nb ions or Ti ions will be reduced and colored, which will reduce the glass The problem of internal transmittance of visible light.

此外,玻璃穿透率下降的主要原因之一,有混入來自於玻璃熔解爐的白金(Pt)入。例如,欲提高玻璃的折射率,而增加Nb2 O5 或TiO2 等的含量,則玻璃的熔解溫度上升,而需要以高溫加熱玻璃原料。此時高溫的熔融玻璃與白金(Pt)接觸,則Pt離子溶入熔融玻璃,而固溶在玻璃。Pt在紫外區域具有吸收,但在玻璃中的Pt量變多,則光的吸收區域不只是紫外區域,亦會擴大到可見光區域。結果會降低玻璃在可見光區域的內部穿透率。In addition, one of the main reasons for the decrease in glass transmittance is the incorporation of platinum (Pt) from the glass melting furnace. For example, in order to increase the refractive index of glass and increase the content of Nb 2 O 5 or TiO 2 , the melting temperature of the glass rises, and it is necessary to heat the glass raw material at a high temperature. At this time, the high-temperature molten glass is in contact with platinum (Pt), and the Pt ions are dissolved in the molten glass and solid-dissolved in the glass. Pt has absorption in the ultraviolet region, but when the amount of Pt in the glass increases, the light absorption region is not only the ultraviolet region, but also extends to the visible light region. As a result, the internal transmittance of the glass in the visible light region will be reduced.

另一方面,可用使用耐火磚的熔解爐熔融玻璃,抑制混入來源於熔解爐的白金(Pt)。作為可以使用耐火磚的熔解爐熔融的玻璃,可舉出例如SiO2 -TiO2 系玻璃。此系的玻璃,已知可將折射率nd提升到1.85左右,且可將比重降到3.5左右,穿透率亦相對較優良(專利文獻1)。On the other hand, it is possible to melt glass in a melting furnace using refractory bricks to suppress the incorporation of platinum (Pt) originating from the melting furnace. Examples of the glass that can be melted in a melting furnace using refractory bricks include SiO 2 -TiO 2 glass. This type of glass is known to increase the refractive index nd to about 1.85, and to lower the specific gravity to about 3.5, and the transmittance is relatively excellent (Patent Document 1).

在此所謂耐火磚,係以ZrO2 或Al2 O3 及/或SiO2 作為主要成分的磚(例如專利文獻2)。各成分的含有比率,例如有ZrO2 :Al2 O3 :SiO2 =4:5:1、或3:6:1程度者,例如https://www.an.shimadzu.co.jp/apl/material/chem0502005.htm所示,亦存在大致不含Al2 O3 與SiO2 的耐火磚。惟如專利文獻2,欲提高熱衝擊耐性不足或耐腐蝕性,則大多含有一定量的Al2 O3Here, the refractory brick is a brick containing ZrO 2 or Al 2 O 3 and/or SiO 2 as a main component (for example, Patent Document 2). The content ratio of each component is, for example, ZrO 2 :Al 2 O 3 :SiO 2 =4:5:1, or 3:6:1, such as https://www.an.shimadzu.co.jp/apl As shown in /material/chem0502005.htm, there are also refractory bricks that do not substantially contain Al 2 O 3 and SiO 2. However, as in Patent Document 2, in order to improve the thermal shock resistance or corrosion resistance, a certain amount of Al 2 O 3 is often contained.

但是,要適用於AR顯示裝置透鏡,需要進一步提升折射率。例如,在專利文獻3,揭示折射率nd在1.86~1.99的範圍,且阿貝數νd在21~29的範圍的SiO2 -TiO2 系的玻璃。但是,該玻璃的熔解溫度高,會侵蝕熔解爐的耐火磚的玻璃質部分,結果有耐火磚的成分容易混入玻璃中的問題。在玻璃,固溶來源於耐火磚的成分,特別是在玻璃中固溶多量ZrO2 成分或SiO2 成分,則玻璃組成會變化,而難以維持玻璃的穩定性或維持高折射率。此外,耐火磚的主要成分的如Al2 O3 或ZrO2 等的結晶成分以異物混入玻璃中會損及玻璃的均質性。因此,如此的玻璃,需以白金製的容器熔融,但以白金製的容器熔融玻璃,則如上所述Pt被導入玻璃,而有降低內部穿透率的問題。However, to be applied to the lens of an AR display device, the refractive index needs to be further increased. For example, Patent Document 3 discloses a SiO 2 -TiO 2 system glass having a refractive index nd in the range of 1.86 to 1.99 and an Abbe number νd in the range of 21 to 29. However, the melting temperature of this glass is high, which corrodes the vitreous part of the refractory brick of the melting furnace, and as a result, there is a problem that the components of the refractory brick are easily mixed into the glass. In glass, components derived from refractory bricks are solid-solved, especially when a large amount of ZrO 2 component or SiO 2 component is solid-solved in glass, the glass composition changes, and it is difficult to maintain the stability of the glass or maintain a high refractive index. In addition, the main components of the refractory bricks, such as Al 2 O 3 or ZrO 2 , are mixed into the glass with foreign substances, which may impair the homogeneity of the glass. Therefore, such glass needs to be melted in a platinum container, but when the glass is melted in a platinum container, Pt is introduced into the glass as described above, and there is a problem that the internal transmittance is lowered.

以含有Nb2 O5 或TiO2 等的SiO2 系的玻璃,而可使用耐火磚的熔解爐熔融的玻璃,則可維持高折射率,以提升穿透率。如此的玻璃,有用於AR顯示裝置的透鏡。 [先前技術文獻] [專利文獻]With SiO 2 glass containing Nb 2 O 5 or TiO 2 , the glass melted in a melting furnace using refractory bricks can maintain a high refractive index to increase the transmittance. Such glass, there are lenses used in AR display devices. [Prior Art Document] [Patent Document]

[專利文獻1]日本專利第2535407號公報 [專利文獻2]日本特表2018-537387號公報 [專利文獻3]日本特開2012-229135號公報[Patent Document 1] Japanese Patent No. 2535407 [Patent Document 2] Japanese Special Form No. 2018-537387 [Patent Document 3] JP 2012-229135 A

[發明所欲解決的課題][Problems to be solved by the invention]

本發明係有鑑於如此實情所完成,以提供在波長460nm的內部穿透率高,折射率高的光學玻璃及光學元件為目標。 [用於解決課題的手段]The present invention has been completed in view of this fact, and aims to provide optical glass and optical elements with high internal transmittance at a wavelength of 460 nm and high refractive index. [Means for solving problems]

本發明的要點係如下所示。 (1)一種光學玻璃,其 BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]為2.0以下, B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.10以下, Li2 O、Na2 O及K2 O的共計含量[Li2 O+Na2 O+K2 O]為10質量%以下, Al2 O3 的含量和SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。The gist of the present invention is as follows. (1) An optical glass, the mass ratio of the total content of BaO, La 2 O 3 , Gd 2 O 3 and WO 3 to the total content of CaO, SrO and Y 2 O 3 [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] is 2.0 or less, the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [ (B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] is 0.10 or less, the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] 10 mass% or less, Al 2 O 3 mass content and the total content of SiO 2 and ZrO 2 ratio [(Al 2 O 3 / ( SiO 2 + ZrO 2)] is greater than 0.0000.

(2)一種光學玻璃,其 TiO2 及Nb2 O5 的共計含量[TiO2 +Nb2 O5 ]為20質量%以上, Al2 O3 的含量與SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。(2) An optical glass in which the total content of TiO 2 and Nb 2 O 5 [TiO 2 +Nb 2 O 5 ] is 20% by mass or more, and the mass of the content of Al 2 O 3 and the total content of SiO 2 and ZrO 2 The ratio [(Al 2 O 3 /(SiO 2 +ZrO 2 )] is greater than 0.0000.

(3)如(2)之光學玻璃,其中B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.15以下。(3) The optical glass as in (2), wherein the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [(B 2 O 3 +P 2 O 5 ) /(SiO 2 +Al 2 O 3 )] is 0.15 or less.

(4)如(2)或(3)之光學玻璃,其中TiO2 、Nb2 O5 及ZrO2 的共計含量與B2 O3 、SiO2 、Al2 O3 及GeO2 的共計含量的質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]為1.8以上, BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )為3.0以下。(4) The optical glass as in (2) or (3), wherein the total content of TiO 2 , Nb 2 O 5 and ZrO 2 and the total content of B 2 O 3 , SiO 2 , Al 2 O 3 and GeO 2 The ratio [(TiO 2 +Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] is 1.8 or more, BaO, La 2 O 3 , Gd 2 O 3 and WO The mass ratio of the total content of 3 to the total content of CaO, SrO and Y 2 O 3 [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 ) is 3.0 or less .

(5)如(2)至(4)之任何一項之光學玻璃,其中TiO2 、Nb2 O5 及ZrO2 的共計含量與B2 O3 、SiO2 、Al2 O3 及GeO2 的共計含量的質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]為1.8以上, B2 O3 、ZnO、La2 O3 、Gd2 O3 及WO3 的共計含量與SiO2 、CaO、TiO2 及Nb2 O5 的共計含量的質量比[(B2 O3 +ZnO+La2 O3 +Gd2 O3 +WO3 )/(SiO2 +CaO+TiO2 +Nb2 O5 )]為0.15以下。(5) The optical glass of any one of (2) to (4), in which the total content of TiO 2 , Nb 2 O 5 and ZrO 2 is equal to that of B 2 O 3 , SiO 2 , Al 2 O 3 and GeO 2 The mass ratio of the total content [(TiO 2 +Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] is 1.8 or more, B 2 O 3 , ZnO, La 2 The mass ratio of the total content of O 3 , Gd 2 O 3 and WO 3 to the total content of SiO 2 , CaO, TiO 2 and Nb 2 O 5 [(B 2 O 3 +ZnO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(SiO 2 +CaO+TiO 2 +Nb 2 O 5 )] is 0.15 or less.

(6)一種光學元件,其係以(1)至(5)之任何一項之光學玻璃所構成。 [發明的效果](6) An optical element composed of the optical glass of any one of (1) to (5). [Effects of Invention]

根據本發明,可提供在波長460nm的內部穿透率高,折射率高的光學玻璃及光學元件。According to the present invention, it is possible to provide an optical glass and an optical element having a high internal transmittance at a wavelength of 460 nm and a high refractive index.

以下,說明關於本發明的一態樣。再者,在本發明及本說明書,玻璃組成,若無特別提及,係以氧化物基準表示。在此所謂「氧化物基準的玻璃組成」,係指玻璃原料在熔融時全部分解而在玻璃中以氧化物存在換算而得之玻璃組成,各玻璃成分的記述仿效慣例,記載為SiO2 、TiO2 等。玻璃成分的含量及共計含量,若無特別提及係質量基準,「%」係指「質量%」。Hereinafter, one aspect of the present invention will be explained. Furthermore, in the present invention and this specification, the glass composition, unless otherwise mentioned, is expressed on an oxide basis. The so-called "oxide-based glass composition" here refers to the glass composition obtained by decomposing the glass raw materials during melting and converting to the presence of oxides in the glass. The description of each glass component follows conventions and is described as SiO 2 , TiO 2 and so on. If the content and total content of the glass components are not specifically mentioned as a quality standard, "%" means "mass%".

玻璃成分的含量,可以習知的方法,例如以感應耦合電漿放射光譜分析法(ICP-AES)、感應耦合電漿質譜分析法(ICP-MS)等方法定量。此外,在本說明書及本發明,構成成分的含量0%係意指實質上不含在構成成分,容許以不可避免的雜質水準包含該成分。The content of the glass component can be quantified by conventional methods, such as inductively coupled plasma emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and other methods. In addition, in this specification and the present invention, the content of a constituent component of 0% means that it is not substantially contained in the constituent component, and it is allowed to contain the component at an unavoidable impurity level.

以下,將本發明的光學玻璃分成第1實施形態及第2實施形態說明。再者,在第2實施形態的各玻璃成分的作用、效果與在第1實施形態的各玻璃成分的作用、效果相同。因此,在第2實施形態,關於與第1實施形態的說明重複的事項將適當省略。Hereinafter, the optical glass of the present invention is divided into a first embodiment and a second embodiment. In addition, the action and effect of each glass component in the second embodiment are the same as the action and effect of each glass component in the first embodiment. Therefore, in the second embodiment, matters overlapping with the description of the first embodiment will be omitted as appropriate.

第1實施形態 關於第1實施形態的光學玻璃,係 BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]為2.0以下, B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.10以下, Li2 O、Na2 O及K2 O的共計含量[Li2 O+Na2 O+K2 O]為10質量%以下, Al2 O3 的含量和SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。Embodiment 1 Regarding the optical glass of Embodiment 1, the mass ratio of the total content of BaO, La 2 O 3 , Gd 2 O 3 and WO 3 to the total content of CaO, SrO, and Y 2 O 3 [(BaO+ La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] is 2.0 or less, the total content of B 2 O 3 and P 2 O 5 is the same as that of SiO 2 and Al 2 O 3 The mass ratio of the total content [(B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] is 0.10 or less, and the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O + Na 2 O + K 2 O ] 10 mass% or less, and the mass content of Al 2 O 3 and SiO 2 and ZrO total content 2 ratio [(Al 2 O 3 / ( SiO 2 + ZrO 2)] is greater than 0.0000 .

在關於第1實施形態的光學玻璃,BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]為2.0以下。該質量比的上限,以1.9為佳,進一步依序以1.8、1.7、1.6為更佳。該質量比的下限,以0.0為佳,進一步依序以0.3、0.5、0.8、1.0、1.2為更佳。In the optical glass of the first embodiment, the mass ratio of the total content of BaO, La 2 O 3 , Gd 2 O 3 and WO 3 to the total content of CaO, SrO, and Y 2 O 3 [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] is 2.0 or less. The upper limit of the mass ratio is preferably 1.9, and more preferably 1.8, 1.7, and 1.6 in order. The lower limit of the mass ratio is preferably 0.0, and further preferably 0.3, 0.5, 0.8, 1.0, 1.2 in order.

藉由使質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]在上述範圍,可抑制原子量過大的高折射率成分,特別是第6週期元素以後的具有相對提高折射率的作用的元素的含量,或者限制促進氧填充的高折射率成分的使用量,可降低玻璃的比重。另一方面,該質量比過大,則因玻璃比重增大而降低熔融玻璃的動態黏度,難以控制玻璃流等而有使生產性惡化之虞。此外,亦有增大耐火磚的侵蝕之虞。By setting the mass ratio [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] within the above range, high refractive index components with excessive atomic weight can be suppressed, especially The content of elements that have the effect of relatively increasing the refractive index after the sixth period element, or restricting the use amount of high refractive index components that promote oxygen filling, can reduce the specific gravity of the glass. On the other hand, if the mass ratio is too large, the dynamic viscosity of the molten glass will decrease due to the increase in the specific gravity of the glass, making it difficult to control the flow of the glass, etc., which may deteriorate productivity. In addition, there is a risk of increasing the corrosion of refractory bricks.

在關於第1實施形態的光學玻璃,B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.10以下。該質量比的上限,以0.09為佳,進一步依序以0.08、0.07、0.06為更佳。此外,該質量比的下限,以0.00為佳,進一步依序以0.01、0.02、0.03、0.04、0.05為更佳。In the optical glass of the first embodiment, the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [(B 2 O 3 +P 2 O 5 )/( SiO 2 +Al 2 O 3 )] is 0.10 or less. The upper limit of the mass ratio is preferably 0.09, and more preferably 0.08, 0.07, and 0.06 in this order. In addition, the lower limit of the mass ratio is preferably 0.00, and more preferably 0.01, 0.02, 0.03, 0.04, and 0.05 in order.

藉由使質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]在上述範圍,可抑制耐火磚的玻璃質在玻璃熔融時的侵蝕。該質量比過大,則有耐火磚的侵蝕會變大,降低熔融玻璃的均質性,降低耐失透性之虞。By setting the mass ratio [(B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] within the above range, it is possible to suppress the corrosion of the glass of the refractory brick during glass melting. If the mass ratio is too large, the corrosion of the refractory bricks will increase, which may reduce the homogeneity of the molten glass and reduce the devitrification resistance.

在關於第1實施形態的光學玻璃,Li2 O、Na2 O,及K2 O的共計含量[Li2 O+Na2 O+K2 O]為10%以下。該共計含量的上限,以8.0%為佳,進一步依序以6.0%、5.0%、4.0%為更佳。此外,該共計含量的下限,以0.01%為佳,進一步依序以0.5%、1.0%、1.5%、2.0%、3.0%為更佳。In the optical glass of the first embodiment, the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] is 10% or less. The upper limit of the total content is preferably 8.0%, and more preferably 6.0%, 5.0%, and 4.0% in this order. In addition, the lower limit of the total content is preferably 0.01%, and more preferably 0.5%, 1.0%, 1.5%, 2.0%, and 3.0% in order.

藉由使共計含量[Li2 O+Na2 O+K2 O]在上述範圍,可適當地維持玻璃黏度而提高玻璃的生產性。此外,抑制來自Ti或Nb所產生的還原成分的光吸收,再者藉由降低熔解溫度或徐冷促進玻璃中電子缺陷的消除,可提升460nm的內部穿透率。此外,可抑制耐火磚在玻璃熔融時的侵蝕。另一方面,該共計含量過小,則玻璃原料的熔融性會惡化,而產生需要將原料的熔解溫度設高。結果會促進耐火磚的惡化等使生產率惡化。相反地,該共計含量過大,則玻璃的黏度下降,及隨此引起熱穩定性的降低,而有使生產率惡化之虞。此外,熔融玻璃的比電阻降低,而降低藉由通電加熱熔融玻璃時的加熱效率,結果降低玻璃的熔融性,而亦有使生產率惡化之虞。By setting the total content [Li 2 O+Na 2 O+K 2 O] within the above range, the viscosity of the glass can be appropriately maintained and the productivity of the glass can be improved. In addition, it suppresses the light absorption from the reducing components produced by Ti or Nb, and furthermore, by reducing the melting temperature or slow cooling to promote the elimination of electronic defects in the glass, the internal transmittance of 460nm can be improved. In addition, the corrosion of refractory bricks when the glass is melted can be suppressed. On the other hand, if the total content is too small, the meltability of the glass raw material will deteriorate, and the melting temperature of the raw material must be set high. As a result, the deterioration of the refractory bricks is promoted, and the productivity is deteriorated. Conversely, if the total content is too large, the viscosity of the glass will decrease, and consequently the thermal stability will decrease, which may deteriorate productivity. In addition, the specific resistance of the molten glass decreases, and the heating efficiency when the molten glass is heated by energization is lowered. As a result, the meltability of the glass is lowered, and there is a possibility that productivity may deteriorate.

在關於第1實施形態的光學玻璃,Al2 O3 的含量與SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。該質量比的下限,以0.0001為佳,進一步依序以0.0003、0.0006、0.0010、0.0020、0.0030、0.0040、0.0050、0.0060為更佳。該質量比的上限,以0.3000為佳,進一步依序以0.2000、0.1500、0.1000、0.0500、0.0300、0.0150為更佳。In the optical glass on a first embodiment, the content of Al 2 O 3 and the mass SiO 2 and ZrO total content 2 ratio [(Al 2 O 3 / ( SiO 2 + ZrO 2)] is greater than 0.0000. The mass ratio of The lower limit is preferably 0.0001, and more preferably 0.0003, 0.0006, 0.0010, 0.0020, 0.0030, 0.0040, 0.0050, 0.0060 in order. The upper limit of the mass ratio is preferably 0.3000, and further 0.2000, 0.1500, 0.1000 in order , 0.0500, 0.0300, 0.0150 are more preferable.

藉由使質量比[(Al2 O3 /(SiO2 +ZrO2 )]在上述範圍,可抑制耐火磚在玻璃熔融時的侵蝕。此外,該比率與上述範圍外的玻璃相比,有提高熱穩定性、加熱時的失透性,或者冷卻熔融玻璃時延遲結晶析出的效果。另一方面,該質量比過大,則不只是會降低折射率nd,亦有降低熱穩定性,而失透之虞。By setting the mass ratio [(Al 2 O 3 /(SiO 2 +ZrO 2 )] in the above range, the corrosion of the refractory bricks during glass melting can be suppressed. In addition, this ratio is improved compared to glass outside the above range Thermal stability, devitrification during heating, or the effect of delaying crystallization when cooling molten glass. On the other hand, if the mass ratio is too large, not only the refractive index nd will be reduced, but the thermal stability will also be reduced, resulting in devitrification The fear.

以下,關於第1實施形態的光學玻璃,說明較佳的態樣。Hereinafter, a preferable aspect of the optical glass of the first embodiment will be described.

在關於第1實施形態的光學玻璃,TiO2 及Nb2 O5 的共計含量[TiO2 +Nb2 O5 ]的下限,以20%為佳,進一步依序以24%、28%、33%、37%、40%、42%為更佳。此外,該共計含量的上限,以70%為佳,進一步依序以60%、55%、50%、46%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the total content of TiO 2 and Nb 2 O 5 [TiO 2 +Nb 2 O 5 ] is preferably 20%, and is further followed by 24%, 28%, 33% , 37%, 40%, 42% are better. In addition, the upper limit of the total content is preferably 70%, and more preferably 60%, 55%, 50%, and 46% in order.

TiO2 及Nb2 O5 ,係不太會提高比重而貢獻於高折射率化的成分。因此,為不過度提高玻璃的比重而得到具有所期望折射率的玻璃,TiO2 及Nb2 O5 的共計含量以上述範圍為佳。TiO 2 and Nb 2 O 5 are components that hardly increase specific gravity and contribute to a higher refractive index. Therefore, in order to obtain glass having a desired refractive index without excessively increasing the specific gravity of the glass, the total content of TiO 2 and Nb 2 O 5 is preferably within the above-mentioned range.

在關於第1實施形態的光學玻璃,TiO2 、Nb2 O5 及ZrO2 的共計含量與B2 O3 、SiO2 、Al2 O3 及GeO2 的共計含量的質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]的下限,以1.8為佳,進一步依序以2.0、2.1、2.2、2.3為更佳。此外,該質量比的上限,以7.0為佳,進一步依序以6.0、5.0、4.0、3.5、3.0為更佳。In the optical glass of the first embodiment, the mass ratio of the total content of TiO 2 , Nb 2 O 5 and ZrO 2 to the total content of B 2 O 3 , SiO 2 , Al 2 O 3 and GeO 2 [(TiO 2 + The lower limit of Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] is preferably 1.8, and further preferably 2.0, 2.1, 2.2, 2.3 in order. In addition, the upper limit of the mass ratio is preferably 7.0, and more preferably 6.0, 5.0, 4.0, 3.5, and 3.0 in this order.

藉由使質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]在上述範圍,可提升折射率,使用於作為AR裝置的顯示裝置透鏡時,可實現寬廣的視野角。此外,可得進一步減低比重的光學玻璃。另一方面,該質量比過小,則由於對比重的折射率會降低,故不適於本發明的用途。此外,該質量比過大,則會降低玻璃的穩定性之外,亦有降低穿透率之虞。By setting the mass ratio [(TiO 2 +Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] in the above range, the refractive index can be increased and used as AR When the display device lens of the device is used, a wide viewing angle can be realized. In addition, optical glass with a further reduced specific gravity can be obtained. On the other hand, if the mass ratio is too small, the refractive index of the contrast will decrease, so it is not suitable for the application of the present invention. In addition, if the mass ratio is too large, in addition to reducing the stability of the glass, it may also reduce the transmittance.

在關於第1實施形態的光學玻璃,B2 O3 、ZnO、La2 O3 、Gd2 O3 及WO3 的共計含量與SiO2 、與CaO、TiO2 及Nb2 O5 的共計含量的質量比[(B2 O3 +ZnO+La2 O3 +Gd2 O3 +WO3 )/(SiO2 +CaO+TiO2 +Nb2 O5 )]的上限以0.15為佳,進一步依序以0.12、0.10、0.08為更佳。此外與該質量比的下限,以0.01為佳,進一步依序以0.02、0.03、0.04、0.05、0.06為更佳。In the optical glass of the first embodiment, the total content of B 2 O 3 , ZnO, La 2 O 3 , Gd 2 O 3 and WO 3 and the total content of SiO 2 , CaO, TiO 2 and Nb 2 O 5 The upper limit of the mass ratio [(B 2 O 3 +ZnO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(SiO 2 +CaO+TiO 2 +Nb 2 O 5 )] is preferably 0.15, and further in order It is more preferably 0.12, 0.10, 0.08. In addition, the lower limit of the mass ratio is preferably 0.01, and more preferably 0.02, 0.03, 0.04, 0.05, and 0.06 in order.

藉由使質量比[(B2 O3 +ZnO+La2 O3 +Gd2 O3 +WO3 )/(SiO2 +CaO+TiO2 +Nb2 O5 )]在上述範圍,可抑制多含在通常以硼酸作為網路形成劑的型式的玻璃的玻璃成分的含有率,結果,可抑制耐火磚在玻璃熔融時的侵蝕。結果可抑制玻璃與白金接觸而提升玻璃的內部穿透率。此外,藉由使該質量比在上述範圍,亦成為限制原子量過大的成分、或者限制促進氧填充等的高折射率成分的使用量,故以同樣的折射率降低比重,並且藉由抑制玻璃的動態黏度降低而可提升生產性。By setting the mass ratio [(B 2 O 3 +ZnO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(SiO 2 +CaO+TiO 2 +Nb 2 O 5 )] in the above range, it is possible to suppress more The content rate of the glass component contained in the glass of the type generally using boric acid as the network forming agent, as a result, can suppress the corrosion of the refractory brick when the glass is melted. As a result, the glass can be prevented from contacting with platinum and the internal transmittance of the glass can be improved. In addition, by making the mass ratio within the above-mentioned range, it also restricts the amount of components with excessive atomic weight, or restricts the use of high-refractive-index components that promote oxygen filling, etc., so the specific gravity is lowered with the same refractive index, and the glass is suppressed by The dynamic viscosity is reduced and the productivity can be improved.

在關於第1實施形態的光學玻璃,Al2 O3 的含量的下限,以0.001%為佳,進一步依序以0.002%、0.003%、0.005%、0.007%、0.010%、0.025%、0.050%、0.075%、0.100%、0.125%、0.150%、0.175%、0.200%為更佳。Al2 O3 的含量的上限,以10.0%為佳,進一步依序以6.0%、3.0%、1.00%、0.50%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the content of Al 2 O 3 is preferably 0.001%, and further, in this order, 0.002%, 0.003%, 0.005%, 0.007%, 0.010%, 0.025%, 0.050%, 0.075%, 0.100%, 0.125%, 0.150%, 0.175%, 0.200% are more preferable. The upper limit of the content of Al 2 O 3 is preferably 10.0%, and more preferably 6.0%, 3.0%, 1.00%, and 0.50% in this order.

使用耐火磚的熔解爐熔解玻璃時,來自耐火磚的Al2 O3 會被導入熔融玻璃。因此,即使在玻璃原料不含Al2 O3 的情形,在以使用耐火磚的熔解爐熔解製造的玻璃,包含微量的Al2 O3 。Al2 O3 的含量在上述範圍時,與Al2 O3 的含量在上述範圍外的情形相比,熱穩定性高,抑制加熱時的失透,且抑制在冷卻熔融玻璃時的結晶析出。但是,從Al2 O3 為減低比重的作用很小,且為具有降低折射率的作用的成分來看,從得到高折射率.低比重的玻璃的觀點,Al2 O3 的含量越少越佳。此外,Al2 O3 的含量過多,則會使玻璃的耐失透性降低,使玻璃轉移溫度Tg上升,且有降低熱穩定性之虞。另一方面,Al2 O3 的含量過少,則有增加耐火磚的侵蝕之虞。When melting glass using a refractory brick melting furnace, Al 2 O 3 from the refractory brick is introduced into the molten glass. Therefore, even when the glass raw material does not contain Al 2 O 3 , the glass produced by melting in a melting furnace using refractory bricks contains a small amount of Al 2 O 3 . Al 2 O 3 content is within the above range, compared with the case of Al 2 O 3 content is outside the above range, a high thermal stability to suppress devitrification during heating, and to suppress crystallization precipitation upon cooling the molten glass. However, from the point of view that Al 2 O 3 has little effect on reducing the specific gravity and is a component that has the effect of lowering the refractive index, it is possible to obtain a high refractive index. From the viewpoint of a glass with a low specific gravity, the smaller the content of Al 2 O 3, the better. In addition, if the content of Al 2 O 3 is too large, the devitrification resistance of the glass will decrease, the glass transition temperature Tg will increase, and the thermal stability may decrease. On the other hand, if the content of Al 2 O 3 is too small, the corrosion of the refractory brick may increase.

關於在關於第1實施形態的光學玻璃的上述以外的玻璃成分的含量及比率,在以下顯示非限制的例子。Regarding the content and ratio of glass components other than the above in the optical glass of the first embodiment, non-limiting examples are shown below.

在關於第1實施形態的光學玻璃,TiO2 、CaO、SrO及Y2 O3 的共計含量與BaO、MgO、Nb2 O5 、Ta2 O5 、WO3 、Bi2 O3 、La2 O3 及Gd2 O3 的共計含量的質量比[(TiO2 +CaO+SrO+Y2 O3 )/(BaO+MgO+Nb2 O5 +Ta2 O5 +WO3 +Bi2 O3 +La2 O3 +Gd2 O3 )]的下限,以0.5為佳,進一步依序以0.6、0.7、0.8、0.9、1.0為更佳。此外,該質量比的上限,以4.0為佳,進一步依序以3.0、2.5、2.0、1.5為更佳。In the optical glass of the first embodiment, the total content of TiO 2 , CaO, SrO, and Y 2 O 3 is the same as BaO, MgO, Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 , La 2 O 3 and the mass ratio of the total content of Gd 2 O 3 [(TiO 2 +CaO+SrO+Y 2 O 3 )/(BaO+MgO+Nb 2 O 5 +Ta 2 O 5 +WO 3 +Bi 2 O 3 + The lower limit of La 2 O 3 +Gd 2 O 3 )] is preferably 0.5, and more preferably 0.6, 0.7, 0.8, 0.9, 1.0 in order. In addition, the upper limit of the mass ratio is preferably 4.0, and more preferably 3.0, 2.5, 2.0, and 1.5 in this order.

藉由使質量比[(TiO2 +CaO+SrO+Y2 O3 )/(BaO+MgO+Nb2 O5 +Ta2 O5 +WO3 +Bi2 O3 +La2 O3 +Gd2 O3 )]在上述範圍,可得折射率nd高,且降低比重的光學玻璃。該質量比過小,則有無法使高折射率與低比重並存之虞。該質量比過大,則有降低玻璃穩定性之虞。By making the mass ratio [(TiO 2 +CaO+SrO+Y 2 O 3 )/(BaO+MgO+Nb 2 O 5 +Ta 2 O 5 +WO 3 +Bi 2 O 3 +La 2 O 3 +Gd 2 O 3 )] In the above range, an optical glass having a high refractive index nd and a low specific gravity can be obtained. If the mass ratio is too small, there is a possibility that high refractive index and low specific gravity cannot coexist. If the mass ratio is too large, the stability of the glass may decrease.

在關於第1實施形態的光學玻璃,TiO2 的含量與Nb2 O5 的含量的質量比[TiO2 /Nb2 O5 ]的下限,以0.5為佳,進一步依序以0.53、0.54、0.55、0.6、0.7、0.8、0.9、1.0為更佳。此外,質量比[TiO2 /Nb2 O5 ]的上限,以4.0為佳,進一步依序以3.0、2.5、2.0、1.5為更佳。Regarding the optical glass of the first embodiment, the lower limit of the mass ratio [TiO 2 /Nb 2 O 5 ] of the content of TiO 2 and the content of Nb 2 O 5 is preferably 0.5, and further, 0.53, 0.54, 0.55 in this order , 0.6, 0.7, 0.8, 0.9, 1.0 are more preferable. In addition, the upper limit of the mass ratio [TiO 2 /Nb 2 O 5 ] is preferably 4.0, and more preferably 3.0, 2.5, 2.0, and 1.5 in this order.

藉由使質量比[TiO2 /Nb2 O5 ]在上述範圍,可邊降低玻璃的比重,邊提升玻璃的穩定性。另一方面,該質量比過小,則有使液相溫度上升,熔解性惡化,而增大耐火磚在玻璃熔融時的侵蝕之虞。此外,亦有增大製造成本之虞。此外,該質量比過大,則有降低玻璃的耐失透性,而降低玻璃穿透率之虞。By setting the mass ratio [TiO 2 /Nb 2 O 5 ] in the above range, the specific gravity of the glass can be reduced while the stability of the glass can be improved. On the other hand, if the mass ratio is too small, the liquidus temperature will rise, the solubility will deteriorate, and the corrosion of the refractory brick when the glass is melted may increase. In addition, there is a risk of increasing manufacturing costs. In addition, if the mass ratio is too large, the devitrification resistance of the glass may be lowered, and the glass transmittance may be lowered.

在關於第1實施形態的光學玻璃,MgO、CaO、SrO,及BaO的共計含量[MgO+CaO+SrO+BaO]的下限,以5.0%,進一步10.0%、15.0%、18.0%、22.0%、25.0%為更佳。此外,該共計含量的上限,以50.0%為佳,進一步依序以45.0%、40.0%、36.0%、33.0%、30.0%為更佳。In the optical glass of the first embodiment, the lower limit of the total content of MgO, CaO, SrO, and BaO [MgO+CaO+SrO+BaO] is 5.0%, further 10.0%, 15.0%, 18.0%, 22.0%, 25.0% is better. In addition, the upper limit of the total content is preferably 50.0%, and more preferably 45.0%, 40.0%, 36.0%, 33.0%, and 30.0% in this order.

藉由使共計含量[MgO+CaO+SrO+BaO]在上述範圍,可改善玻璃的熔解性,且可提升玻璃的熱穩定性。另一方面,該共計含量過小,則有玻璃的熔融性惡化之虞,亦有增大耐火磚在玻璃熔融時的侵蝕之虞。此外,該共計含量過大,則有無法得到所期望的光學特性,而降低穩定性之虞。By making the total content [MgO+CaO+SrO+BaO] within the above range, the melting property of the glass can be improved, and the thermal stability of the glass can be improved. On the other hand, if the total content is too small, the meltability of the glass may deteriorate, and the corrosion of the refractory brick when the glass is melted may increase. In addition, if the total content is too large, the desired optical characteristics may not be obtained, and the stability may be reduced.

在關於第1實施形態的光學玻璃,Li2 O、Na2 O及與K2 O的共計含量與MgO、CaO、SrO,及BaO的共計含量的質量比[(Li2 O+Na2 O+K2 O)/(MgO+CaO+SrO+BaO)]的下限,以0.00020為佳,進一步依序以0.001、0.005、0.010、0.050、0.100為更佳。與該質量比的上限,以2.0為佳,進一步依序以1.5、1.0、0.5、0.3、0.2為更佳。In the optical glass of the first embodiment, the mass ratio of the total content of Li 2 O, Na 2 O, and K 2 O to the total content of MgO, CaO, SrO, and BaO [(Li 2 O+Na 2 O+ The lower limit of K 2 O)/(MgO+CaO+SrO+BaO)] is preferably 0.00020, and more preferably 0.001, 0.005, 0.010, 0.050, 0.100 in order. The upper limit of the mass ratio is preferably 2.0, and more preferably 1.5, 1.0, 0.5, 0.3, and 0.2 in order.

藉由使質量比[(Li2 O+Na2 O+K2 O)/(MgO+CaO+SrO+BaO)]在上述範圍,容易降低玻璃的比重。此外,藉由抑制玻璃的還原,容易提高內部穿透率。另一方面該質量比過小,則有使玻璃熔融性惡化之虞,亦有增大耐火磚在玻璃熔融時的侵蝕之虞。此外,該質量比過大,則有因玻璃成分的揮發或脈理降低玻璃的均質性之虞之外,亦有因黏度的下降而降低穩定性之虞。By setting the mass ratio [(Li 2 O+Na 2 O+K 2 O)/(MgO+CaO+SrO+BaO)] within the above range, the specific gravity of the glass can be easily reduced. In addition, by suppressing the reduction of the glass, it is easy to increase the internal transmittance. On the other hand, if the mass ratio is too small, the glass meltability may deteriorate, and the corrosion of the refractory brick when the glass is melted may increase. In addition, if the mass ratio is too large, the homogeneity of the glass may be reduced due to the volatilization or veining of the glass components, and the stability may also be reduced due to the decrease in viscosity.

在關於第1實施形態的光學玻璃,將Li2 O的含量以29.9相除之值,與將B2 O3 的含量以69.6相除之值、將Li2 O的含量以29.9相除之值、將Na2 O的含量以62.0相除之值、及將K2 O的含量以94.2相除之值的共計值的比率[(Li2 O/29.9)/{(B2 O3 /69.6+Li2 O/29.9+Na2 O/62.0+K2 O/94.2)}]的下限,以0.10為佳,進一步依序以0.20、0.30、0.40、0.45、0.50為更佳。該比率的上限,以1.00為佳,進一步依序以0.90、0.80、0.70、0.60、0.55為更佳。在此,由於各玻璃成分的含量的除數,相當於各氧化物的分子量,故該比率係表示玻璃中的Li離子的離子數,對Li離子、B離子、Na離子、及K離子的共計離子數的比例。In the optical glass of the first embodiment, the value obtained by dividing the content of Li 2 O by 29.9, the value obtained by dividing the content of B 2 O 3 by 69.6, and the value obtained by dividing the content of Li 2 O by 29.9 , The ratio of the total value obtained by dividing the content of Na 2 O by 62.0 and the value of dividing the content of K 2 O by 94.2 [(Li 2 O/29.9)/{(B 2 O 3 /69.6+ The lower limit of Li 2 O/29.9+Na 2 O/62.0+K 2 O/94.2)}] is preferably 0.10, and more preferably 0.20, 0.30, 0.40, 0.45, 0.50 in order. The upper limit of this ratio is preferably 1.00, and more preferably 0.90, 0.80, 0.70, 0.60, and 0.55 in this order. Here, since the divisor of the content of each glass component is equivalent to the molecular weight of each oxide, the ratio represents the number of Li ions in the glass to the total of Li ions, B ions, Na ions, and K ions The ratio of the number of ions.

藉由使比率[(Li2 O/29.9)/(B2 O3 /69.6+Li2 O/29.9+Na2 O/62.0+K2 O/94.2)]在上述範圍,可使玻璃的填充較密,不導入如提升玻璃熔融溫度等的高熔點的高折射率成分,而可得到低比重且高折射的玻璃。再者,Li離子的數量變多的結果,提升藉由通電加熱熔融玻璃時的加熱效率,此外,亦可提升熔融玻璃的流動性。此外,藉由使該比率在上述範圍,有可邊確保玻璃的熔解性,邊抑制在玻璃熔融時可能發生的還原著色而提升內部穿透率的效果。另一方面,該比率過小,則由於會使熔融玻璃的比電阻上升,而在通電熔融需要施加更高的電壓,結果有增大耐火磚在玻璃熔融時的侵蝕之虞。相反地,該比率過大,則有降低玻璃穩定性之虞。By setting the ratio [(Li 2 O/29.9)/(B 2 O 3 /69.6+Li 2 O/29.9+Na 2 O/62.0+K 2 O/94.2)] in the above range, the filling of the glass can be made more It is dense and does not introduce high-melting, high-refractive-index components such as raising the melting temperature of the glass, and can obtain glass with low specific gravity and high refractive index. Furthermore, as the number of Li ions increases, the heating efficiency when the molten glass is heated by energization is improved, and the fluidity of the molten glass can also be improved. In addition, by making the ratio within the above-mentioned range, while ensuring the solubility of the glass, it is possible to suppress the reductive coloration that may occur when the glass is melted, and there is an effect of increasing the internal transmittance. On the other hand, if the ratio is too small, the specific resistance of the molten glass will increase. Therefore, a higher voltage must be applied during energization and melting. As a result, the corrosion of the refractory brick when the glass is molten may increase. Conversely, if the ratio is too large, the stability of the glass may decrease.

在關於第1實施形態的光學玻璃,SiO2 的含量的下限,以5.0%,進一步8.0%、11.0%、13.0%、15.0%為更佳。此外SiO2 的含量的上限,以35.0%為佳,進一步依序以30.0%、27.0%、25.0%、23.0%、21.0%為更佳In the optical glass of the first embodiment, the lower limit of the content of SiO 2 is 5.0%, and more preferably 8.0%, 11.0%, 13.0%, and 15.0%. In addition , the upper limit of the content of SiO 2 is preferably 35.0%, and further preferably 30.0%, 27.0%, 25.0%, 23.0%, and 21.0% in order.

SiO2 ,係玻璃的網路形成成分,具有可改善玻璃的熱穩定性、化學耐久性、耐候性,且提高熔融玻璃的黏度的作用。SiO2 的含量過少,則有降低玻璃的耐失透性的傾向。如果SiO2 的含量過多,則有使折射率nd降低,黏度增加,且增加部分分散比Pg、F之虞。SiO 2 , a network forming component of glass, has the function of improving the thermal stability, chemical durability, and weather resistance of glass, and increasing the viscosity of molten glass. If the content of SiO 2 is too small, the devitrification resistance of the glass tends to decrease. If the content of SiO 2 is too large, the refractive index nd may decrease, the viscosity may increase, and the partial dispersion ratios Pg and F may increase.

在關於第1實施形態的光學玻璃,ZrO2 的含量的下限,以0.0000%為佳,進一步依序以0.0005%、0.0010%、0.0050%、0.0100%、0.0500%、0.1%、0.5%、1.0%、1.5%為更佳。此外,ZrO2 的含量的上限,以15.0%為佳,進一步依序以10.0%,7.0%、5.0%、3.0%、2.0%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the content of ZrO 2 is preferably 0.0000%, and further, in this order, 0.0005%, 0.0010%, 0.0050%, 0.0100%, 0.0500%, 0.1%, 0.5%, 1.0% , 1.5% is better. In addition, the upper limit of the content of ZrO 2 is preferably 15.0%, and further preferably 10.0%, 7.0%, 5.0%, 3.0%, and 2.0% in this order.

使用耐火磚的熔解爐熔解玻璃時,有來自耐火磚的ZrO2 導入熔融玻璃的傾向。因此,在玻璃原料不含ZrO2 的情形,以使用耐火磚的熔解爐熔解製造的玻璃,有包含微量的ZrO2 的情形。此外,亦有因強化白金與玻璃融液的接觸而在玻璃中供給Zr的情形。ZrO2 的含量過少,則有增大耐火磚的侵蝕之虞。ZrO2 的含量過多,則有玻璃熔融性惡化之虞。藉由使ZrO2 的含量在上述範圍,可邊抑制磚的侵蝕,邊得到折射率高的玻璃。此外,可保持玻璃的熔融性及熱穩定性。When melting glass in a melting furnace using refractory bricks, ZrO 2 from the refractory bricks tends to be introduced into the molten glass. Therefore, when the glass raw material does not contain ZrO 2 , the glass produced by melting in a melting furnace using refractory bricks may contain a small amount of ZrO 2 . In addition, there are cases where Zr is supplied to the glass by strengthening the contact of platinum with the molten glass. If the content of ZrO 2 is too small, the corrosion of the refractory brick may increase. If the content of ZrO 2 is too large, the glass meltability may deteriorate. By setting the content of ZrO 2 within the above-mentioned range, it is possible to obtain glass with a high refractive index while suppressing the erosion of bricks. In addition, the meltability and thermal stability of the glass can be maintained.

在關於第1實施形態的光學玻璃,P2 O5 的含量的上限,以5.0%為佳,進一步依序以4.0%、3.0%、2.0%、1.0%、0.6%為更佳。此外,P2 O5 的含量較少為佳,其下限以0.0%為佳,惟為調整玻璃的穩定性及液相溫度,亦可以0.20%以上、或0.40%以上的範圍導入。P2 O5 的含量以0.0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the content of P 2 O 5 is preferably 5.0%, and more preferably 4.0%, 3.0%, 2.0%, 1.0%, and 0.6% in this order. In addition, the content of P 2 O 5 is better, and the lower limit is preferably 0.0%. However, in order to adjust the stability and liquidus temperature of the glass, it can also be introduced in the range of 0.20% or more, or 0.40% or more. The content of P 2 O 5 is preferably 0.0%.

藉由使P2 O5 的含量在上述範圍,可抑制玻璃的失透,且可抑制耐火磚在玻璃熔融時的侵蝕。By setting the content of P 2 O 5 in the above range, the devitrification of the glass can be suppressed, and the corrosion of the refractory brick when the glass is melted can be suppressed.

在關於第1實施形態的光學玻璃,B2 O3 的含量的上限,以15.0%為佳,進一步依序以10.0%、6.0%、3.0%、2.0%、1.0%為更佳。B2 O3 的含量的下限,以0.0%為佳,進一步依序以0.1%、0.2%、0.4%、0.7%為更佳。Regarding the optical glass of the first embodiment, the upper limit of the content of B 2 O 3 is preferably 15.0%, and further preferably 10.0%, 6.0%, 3.0%, 2.0%, and 1.0% in this order. The lower limit of the content of B 2 O 3 is preferably 0.0%, and more preferably 0.1%, 0.2%, 0.4%, and 0.7% in order.

B2 O3 具有改善玻璃的熱穩定性,提高玻璃熔解性的作用。此外,在玻璃的網路形成成分之中,折射率相對較高,且可使比重變小的成分。藉由使B2 O3 的含量在上述範圍,可改善玻璃的熔融性,且可得折射率高,而降低比重的光學玻璃。另一方面,B2 O3 的含量過少,則有損及高折射率性,而有增大比重之虞。此外,B2 O3 的含量過多,則在玻璃熔融時有增加玻璃成分的揮發量之虞。此外,有妨礙高分散化,降低有耐失透性的傾向。B 2 O 3 has the function of improving the thermal stability of the glass and enhancing the melting property of the glass. In addition, among the network forming components of the glass, the refractive index is relatively high and the specific gravity can be reduced. By setting the content of B 2 O 3 within the above-mentioned range, the meltability of the glass can be improved, and an optical glass with a high refractive index and a low specific gravity can be obtained. On the other hand, if the content of B 2 O 3 is too small, the high refractive index may be impaired, and the specific gravity may increase. In addition, if the content of B 2 O 3 is too large, the volatilization amount of the glass component may increase when the glass is melted. In addition, there is a tendency to hinder high dispersion and reduce devitrification resistance.

在關於第1實施形態的光學玻璃,SiO2 及Al2 O3 的共計含量[SiO2 +Al2 O3 ]的下限,以5%為佳,進一步依序以8%、11%、13%為更佳。此外,共計含量[SiO2 +Al2 O3 ]的上限,以40%為佳,進一步依序以35%、30%、25%、23%、21%、15%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the total content of SiO 2 and Al 2 O 3 [SiO 2 +Al 2 O 3 ] is preferably 5%, and further to 8%, 11%, and 13% in this order. For better. In addition, the upper limit of the total content [SiO 2 +Al 2 O 3 ] is preferably 40%, and more preferably 35%, 30%, 25%, 23%, 21%, 15% in order.

藉由使共計含量[SiO2 +Al2 O3 ]在上述範圍,可抑制耐火磚在玻璃熔融時的侵蝕。惟該共計含量過大,則比重不太下降而在另一方面折射率大幅下降,而有無法得到本發明所要求的折射率之虞。By making the total content [SiO 2 +Al 2 O 3 ] within the above-mentioned range, the corrosion of the refractory bricks when the glass is melted can be suppressed. However, if the total content is too large, the specific gravity will not drop too much, and on the other hand, the refractive index will drop significantly, and the refractive index required by the present invention may not be obtained.

在關於第1實施形態的光學玻璃,B2 O3 及P2 O5 的共計含量[B2 O3 +P2 O5 ]的下限,以0.1%為佳,進一步依序以0.2%、0.4%、0.7%、1%為更佳。此外,共計含量[B2 O3 +P2 O5 ]的上限,以10%為佳,進一步依序以6%、3%、2%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the total content of B 2 O 3 and P 2 O 5 [B 2 O 3 +P 2 O 5 ] is preferably 0.1%, and further 0.2%, 0.4 in order %, 0.7%, 1% are better. In addition, the upper limit of the total content [B 2 O 3 +P 2 O 5 ] is preferably 10%, and more preferably 6%, 3%, and 2% in order.

藉由使共計含量[B2 O3 +P2 O5 ]在上述範圍,可維持玻璃的黏度提高穩定性的同時,可抑制耐火磚在玻璃熔融時的侵蝕。By setting the total content of [B 2 O 3 +P 2 O 5 ] in the above range, the viscosity of the glass can be maintained and the stability can be improved, and the corrosion of the refractory bricks when the glass is melted can be suppressed.

在關於第1實施形態的光學玻璃,TiO2 的含量的下限,以5.0%為佳,進一步依序以10.0%、14.0%、14.2%、14.5%、14.8%、15.0%、18.0%、20.0%為更佳。此外TiO2 的含量的上限,以40.0%為佳,進一步依序以35.0%、30.0%、25.0%、22.0%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the TiO 2 content is preferably 5.0%, and further, 10.0%, 14.0%, 14.2%, 14.5%, 14.8%, 15.0%, 18.0%, and 20.0% in this order For better. In addition , the upper limit of the content of TiO 2 is preferably 40.0%, and further preferably 35.0%, 30.0%, 25.0%, and 22.0% in order.

藉由使TiO2 的含量在上述範圍,可得折射率高,降低比重的玻璃。此外,亦有降低紫外線穿透率的效果。另一方面,TiO2 的含量過少,則有降低折射率,比重增加之虞。此外,TiO2 的含量過多,則有降低玻璃的可見區域,特別是短波長區域的內部穿透率,亦降低耐失透性之虞。By setting the content of TiO 2 in the above range, a glass with a high refractive index and a low specific gravity can be obtained. In addition, it also has the effect of reducing the UV transmittance. On the other hand, if the content of TiO 2 is too small, the refractive index may decrease and the specific gravity may increase. In addition, if the content of TiO 2 is too large, the visible region of the glass, especially the internal transmittance of the short wavelength region, may be reduced, and the devitrification resistance may also be reduced.

在關於第1實施形態的光學玻璃,Nb2 O5 的含量的下限,以0.0%為佳,進一步依序以5.0%、10.0%、13.0%、15.0%為更佳。此外,Nb2 O5 的含量的上限,以40.0%為佳,進一步依序以35.0%、30.0%、28.0%、27.0%、26.0%、25.0%、20.0%、17.0%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the Nb 2 O 5 content is preferably 0.0%, and more preferably 5.0%, 10.0%, 13.0%, and 15.0% in this order. In addition, the upper limit of the Nb 2 O 5 content is preferably 40.0%, and more preferably 35.0%, 30.0%, 28.0%, 27.0%, 26.0%, 25.0%, 20.0%, 17.0% in order.

藉由使Nb2 O5 的含量在上述範圍,可得折射率高,而比重相對減低的光學玻璃。另一方面,Nb2 O5 的含量過少,則有折射率下降,比重增加之虞。Nb2 O5 的含量過多,則有降低耐失透性之虞。By setting the content of Nb 2 O 5 in the above range, an optical glass with a high refractive index and a relatively low specific gravity can be obtained. On the other hand, if the content of Nb 2 O 5 is too small, the refractive index may decrease and the specific gravity may increase. If the content of Nb 2 O 5 is too large, the devitrification resistance may decrease.

在關於第1實施形態的光學玻璃,TiO2 、Nb2 O5 及ZrO2 的共計含量[TiO2 +Nb2 O5 +ZrO2 ]的下限,以25%為佳,進一步依序以30%、35%、40%、45%為更佳。此外,該共計含量的上限,以75%為佳,進一步依序以70%、60%、55%、52.5%、50%為更佳。Regarding the optical glass of the first embodiment, the lower limit of the total content of TiO 2 , Nb 2 O 5 and ZrO 2 [TiO 2 +Nb 2 O 5 +ZrO 2 ] is preferably 25%, and further 30% in order , 35%, 40%, 45% are better. In addition, the upper limit of the total content is preferably 75%, and more preferably 70%, 60%, 55%, 52.5%, and 50% in order.

藉由使共計含量[TiO2 +Nb2 O5 +ZrO2 ]在上述範圍,可邊抑制比重的增加,而得到折射率高,且在既定波長的內部穿透率高的光學玻璃。By setting the total content of [TiO 2 +Nb 2 O 5 +ZrO 2 ] in the above range, it is possible to obtain an optical glass with a high refractive index and high internal transmittance at a predetermined wavelength while suppressing an increase in specific gravity.

在關於第1實施形態的光學玻璃,WO3 的含量的上限,以5.0%為佳,進一步依序以3.0%、2.0%、1.0%、0.5%為更佳。WO3 的含量的下限,以0.0%為佳。WO3 的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the WO 3 content is preferably 5.0%, and more preferably 3.0%, 2.0%, 1.0%, and 0.5% in this order. The lower limit of the WO 3 content is preferably 0.0%. The content of WO 3 may also be 0.0%.

藉由使WO3 的含量在上述範圍,可得減低比重,且減低紫外線穿透率的光學玻璃。另一方面,WO3 的含量過多,則有部分色散比Pg、F上升,內部穿透率下降,比重增加之虞。此外,有降低可見區域,特別是短波長區域的穿透率,使玻璃不安定化之虞。By setting the content of WO 3 in the above range, an optical glass with reduced specific gravity and reduced ultraviolet transmittance can be obtained. On the other hand, if the content of WO 3 is too large, the partial dispersion ratios Pg and F may increase, the internal transmittance may decrease, and the specific gravity may increase. In addition, the transmittance of the visible region, especially the short-wavelength region, is lowered, and the glass may become unstable.

在關於第1實施形態的光學玻璃,Bi2 O3 的含量的上限,以5.0%為佳,進一步依序以3.0%、2.0%、1.0%、0.5%為更佳。Bi2 O3 的含量的下限,以0.0%為佳。Bi2 O3 的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the Bi 2 O 3 content is preferably 5.0%, and more preferably 3.0%, 2.0%, 1.0%, and 0.5% in this order. The lower limit of the content of Bi 2 O 3 is preferably 0.0%. The content of Bi 2 O 3 may also be 0.0%.

藉由使Bi2 O3 的含量在上述範圍,可得減低比重,且降低紫外線穿透率的光學玻璃。另一方面,Bi2 O3 的含量過多,則會使部分分散比Pg、F上升,比重增加,且因Bi離子吸收特定波長的光,加上短波長區域的穿透率,亦有降低內部穿透率之虞。此外,亦有增加玻璃對白金的侵蝕量而增加玻璃著色之虞。By setting the content of Bi 2 O 3 within the above range, an optical glass with reduced specific gravity and reduced ultraviolet transmittance can be obtained. On the other hand, if the content of Bi 2 O 3 is too much, the partial dispersion ratio Pg and F will increase, and the specific gravity will increase. Moreover, the Bi ion absorbs light of a specific wavelength, and the transmittance in the short wavelength region also reduces the internal The penetration rate. In addition, there is a risk of increasing the amount of glass erosion of platinum and increasing the coloring of the glass.

在關於第1實施形態的光學玻璃,WO3 及Bi2 O3 的共計含量[WO3 +Bi2 O3 ],以3%以下為佳,進一步依序以2.4%以下、1.9%以下、1.4%以下、0.9%以下,0.4%以下為更佳。以不含WO3 及Bi2 O3 特別為佳。Regarding the optical glass of the first embodiment, the total content of WO 3 and Bi 2 O 3 [WO 3 +Bi 2 O 3 ] is preferably 3% or less, and further, 2.4% or less, 1.9% or less, 1.4 % Or less, 0.9% or less, more preferably 0.4% or less. It is particularly preferred that it does not contain WO 3 and Bi 2 O 3.

藉由使共計含量[WO3 +Bi2 O3 ]在上述範圍,特別是可抑制可見光區域的內部穿透率的下降。By setting the total content of [WO 3 +Bi 2 O 3 ] within the above-mentioned range, it is possible to suppress the decrease in the internal transmittance in the visible light region in particular.

在關於第1實施形態的光學玻璃,Li2 O的含量的上限,以15.0%為佳,進一步依序以10.0%、7.0%、5.0%、3.0%、2.0%為更佳。Li2 O的含量的下限,以0.0%為佳,進一步依序以0.1%、0.5%、1.0%、1.5%為更佳。Regarding the optical glass of the first embodiment, the upper limit of the content of Li 2 O is preferably 15.0%, and further preferably 10.0%, 7.0%, 5.0%, 3.0%, and 2.0% in this order. The lower limit of the content of Li 2 O is preferably 0.0%, and more preferably 0.1%, 0.5%, 1.0%, and 1.5% in order.

藉由使Li2 O的含量在上述範圍,可提升玻璃結構的填充率,而得到折射率高,降低比重的光學玻璃。此外,可提升玻璃的熔融性,而降低熔融玻璃的比電阻。再者,亦有抑制玻璃在熔融時可能發生的還原著色的效果。另一方面,Li2 O的含量過少,則有降低玻璃穿透率之虞。Li2 O的含量過多,則有降低化學耐久性、降低耐候性,降低再加熱時的穩定性之虞。By setting the content of Li 2 O within the above range, the filling rate of the glass structure can be increased, and an optical glass with a high refractive index and a low specific gravity can be obtained. In addition, the meltability of the glass can be improved, and the specific resistance of the molten glass can be reduced. Furthermore, it also has the effect of suppressing the reductive coloration that may occur when the glass is melted. On the other hand, if the content of Li 2 O is too small, the glass transmittance may decrease. If the content of Li 2 O is too large, chemical durability and weather resistance may be reduced, and stability during reheating may be reduced.

在關於第1實施形態的光學玻璃,Na2 O的含量的上限,以15.0%為佳,進一步依序以10.0%、7.0%、5.0%、3.0%、2.0%為更佳。Na2 O的含量的下限,以0.0%為佳,進一步依序以0.1%、0.5%、1.0%、1.5%為更佳。Regarding the optical glass of the first embodiment, the upper limit of the Na 2 O content is preferably 15.0%, and further preferably 10.0%, 7.0%, 5.0%, 3.0%, and 2.0% in this order. The lower limit of the Na 2 O content is preferably 0.0%, and more preferably 0.1%, 0.5%, 1.0%, and 1.5% in order.

藉由使Na2 O的含量在上述範圍,可得降低比重光學玻璃。此外,可提升玻璃的熔融性,而降低熔融玻璃的比電阻。另一方面,Na2 O的含量過少,則有降低玻璃熔解性之虞。Na2 O的含量過多,則有降低折射率之虞。By making the content of Na 2 O within the above-mentioned range, an optical glass with a reduced specific gravity can be obtained. In addition, the meltability of the glass can be improved, and the specific resistance of the molten glass can be reduced. On the other hand, if the content of Na 2 O is too small, the glass meltability may decrease. If the content of Na 2 O is too large, the refractive index may decrease.

在關於第1實施形態的光學玻璃,K2 O的含量的上限,以15.0%為佳,進一步依序以10.0%、5.0%、4.0%、3.0%、2.0%、1.0%為更佳。K2 O的含量較少為佳,其下限,以0.0%為佳,進一步依序以0.1%、0.3%、0.6%、0.9%為更佳。Regarding the optical glass of the first embodiment, the upper limit of the K 2 O content is preferably 15.0%, and more preferably 10.0%, 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. The content of K 2 O is preferably smaller, and the lower limit is preferably 0.0%, and further preferably 0.1%, 0.3%, 0.6%, and 0.9% in order.

藉由使K2 O的含量在上述範圍,有改善含有TiO2 的玻璃的穩定性的效果。此外,可提升玻璃的熔融性。另一方面,K2 O的含量過多,則有顯著地降低折射率之虞。By setting the content of K 2 O within the above range, there is an effect of improving the stability of the glass containing TiO 2. In addition, the meltability of the glass can be improved. On the other hand, if the content of K 2 O is too large, the refractive index may be significantly lowered.

在關於第1實施形態的光學玻璃,Cs2 O的含量的上限,以15.0%為佳,進一步依序以10.0%、5.0%、4.0%、3.0%、2.0%、1.0%為更佳。Cs2 O的含量的下限,以0.0%為佳。Cs2 O的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the Cs 2 O content is preferably 15.0%, and further preferably 10.0%, 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. The lower limit of the content of Cs 2 O is preferably 0.0%. The content of Cs 2 O may also be 0.0%.

Cs2 O有提升玻璃的熔融性,而改善熱穩定性的作用。另一方面Cs2 O的含量過多,則有顯著地降低折射率,使玻璃的化學耐久性惡化之虞。Cs 2 O has the effect of enhancing the meltability of the glass and improving the thermal stability. On the other hand , if the content of Cs 2 O is too large, the refractive index may be significantly reduced, and the chemical durability of the glass may deteriorate.

在關於第1實施形態的光學玻璃,MgO的含量的上限,以10.0%為佳,進一步依序以5.0%、4.0%、3.0%、2.0%、1.0%為更佳。此外,MgO的含量較少為佳,其下限以0.0%為佳。MgO的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the MgO content is preferably 10.0%, and more preferably 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. In addition, the content of MgO is better, and the lower limit is preferably 0.0%. The content of MgO may also be 0.0%.

藉由使MgO的含量在上述範圍,可提升玻璃的穩定性,而降低玻璃的著色。另一方面,MgO的含量過多,則有無法使高折射率與低比重共存之虞。By making the content of MgO in the above range, the stability of the glass can be improved, and the coloring of the glass can be reduced. On the other hand, if the content of MgO is too large, there is a possibility that high refractive index and low specific gravity cannot coexist.

在關於第1實施形態的光學玻璃,CaO的含量的上限,以30.0%為佳,進一步依序以25.0%、20.0%、16.0%、13.0%為更佳。此外CaO的含量的下限,以0.0%為佳,進一步依序以3.0%、6.0%、8.0%、10.0%為更佳。Regarding the optical glass of the first embodiment, the upper limit of the content of CaO is preferably 30.0%, and more preferably 25.0%, 20.0%, 16.0%, and 13.0% in this order. In addition, the lower limit of the content of CaO is preferably 0.0%, and further preferably 3.0%, 6.0%, 8.0%, and 10.0% in order.

藉由使CaO的含量在上述範圍,可得折射率高,降低比重,熔融性提升的光學玻璃。另一方面,CaO的含量過少,則有無法使高折射率與低比重共存之虞。此外,CaO的含量過多,則有增大磚的侵蝕量,無法維持高分散性,玻璃的熱穩定性下降,且耐失透性下降之虞。By setting the content of CaO in the above range, an optical glass with a high refractive index, a lower specific gravity, and an improved melting property can be obtained. On the other hand, if the content of CaO is too small, there is a possibility that high refractive index and low specific gravity cannot coexist. In addition, if the content of CaO is too large, the erosion amount of the brick will increase, high dispersibility cannot be maintained, the thermal stability of the glass will decrease, and the devitrification resistance may decrease.

在關於第1實施形態的光學玻璃,SrO的含量的上限,以10.0%為佳,進一步依序以7.0%、5.0%、3.0%、2.5%、2.0%為更佳。此外,SrO的含量較少為佳,其下限,以0.0%為佳,進一步依序以0.1%、0.5%、1.0%、1.5%越少越佳。Regarding the optical glass of the first embodiment, the upper limit of the SrO content is preferably 10.0%, and more preferably 7.0%, 5.0%, 3.0%, 2.5%, and 2.0% in this order. In addition, the content of SrO is better, the lower limit is preferably 0.0%, and the lower limit is 0.1%, 0.5%, 1.0%, and 1.5%, the better.

藉由使SrO的含量在上述範圍,可提升熔融性。另一方面,SrO的含量過多,則有比重增加,無法維持高分散性,玻璃的熱穩定性下降,此外有耐失透性下降之虞。By making the content of SrO within the above-mentioned range, the meltability can be improved. On the other hand, if the content of SrO is too large, the specific gravity increases, high dispersibility cannot be maintained, the thermal stability of the glass decreases, and the devitrification resistance may decrease.

在關於第1實施形態的光學玻璃,BaO的含量的上限,以30.0%為佳,進一步依序以25.0%、20.0%、16.0%、13.0%為更佳。此外BaO的含量的下限,以0.0%為佳,進一步依序以3.0%、6.0%、8.0%、10.0%為更佳。BaO的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the content of BaO is preferably 30.0%, and more preferably 25.0%, 20.0%, 16.0%, and 13.0% in this order. In addition, the lower limit of the content of BaO is preferably 0.0%, and further preferably 3.0%, 6.0%, 8.0%, and 10.0% in order. The content of BaO may also be 0.0%.

藉由使BaO的含量在上述範圍,可提升熔融性。另一方面,BaO的含量過少,則有降低玻璃穩定性之虞。此外,BaO的含量過多,則有比重大幅增加,無法維持高分散性、玻璃的熱穩定性下降,且耐失透性下降之虞。By making the content of BaO within the above-mentioned range, the meltability can be improved. On the other hand, if the content of BaO is too small, the stability of the glass may decrease. In addition, if the content of BaO is too large, the specific gravity may increase significantly, high dispersibility may not be maintained, the thermal stability of the glass may decrease, and the devitrification resistance may decrease.

在關於第1實施形態的光學玻璃,ZnO的含量的上限,以10.0%為佳,進一步依序以5.0%、4.0%、3.0%、2.0%、1.0%為更佳。此外,ZnO的含量較少為佳,其下限,以0.0%為佳。ZnO的含量亦可為0.0%。Regarding the optical glass of the first embodiment, the upper limit of the ZnO content is preferably 10.0%, and more preferably 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. In addition, the content of ZnO is better, and the lower limit is preferably 0.0%. The content of ZnO can also be 0.0%.

ZnO的含量在上述範圍,可使玻璃轉移溫度Tg下降。另一方面,ZnO的含量過多,則會增加比重之外,亦有損及玻璃穩定性之虞。The content of ZnO in the above range can lower the glass transition temperature Tg. On the other hand, if the content of ZnO is too large, it will increase the specific gravity and may also impair the stability of the glass.

在關於第1實施形態的光學玻璃,La2 O3 的含量的上限,以10.0%為佳,進一步依序以5.0%、4.0%、3.0%、2.0%、1.0%為更佳。此外,La2 O3 的含量的下限,以0.0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the La 2 O 3 content is preferably 10.0%, and more preferably 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. In addition, the lower limit of the content of La 2 O 3 is preferably 0.0%.

藉由使La2 O3 的含量在上述範圍,不會使玻璃的內部穿透率惡化,而可得到高折射率的光學玻璃。另一方面,La2 O3 的含量少,則有使折射率降低的傾向。此外,La2 O3 的含量過多,則有比重增加,使玻璃熱穩定性下降之虞。By setting the content of La 2 O 3 in the above range, the internal transmittance of the glass is not deteriorated, and an optical glass with a high refractive index can be obtained. On the other hand, when the content of La 2 O 3 is small, the refractive index tends to decrease. In addition, if the content of La 2 O 3 is too large, the specific gravity may increase and the thermal stability of the glass may decrease.

在關於第1實施形態的光學玻璃,Gd2 O3 的含量的上限,以10.0%為佳,進一步依序以5.0%、4.0%、3.0%、2.0%、1.0%為更佳。此外Gd2 O3 的含量較少為佳,其下限,以0.0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the content of Gd 2 O 3 is preferably 10.0%, and more preferably 5.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. In addition , the content of Gd 2 O 3 is better, and the lower limit is preferably 0.0%.

藉由使Gd2 O3 的含量在上述範圍,不會使玻璃的內部穿透率惡化而可得高折射率的光學玻璃。另一方面,Gd2 O3 的含量過多,則有玻璃的熱穩定性下降,比重增加之虞。亦有使玻璃的製造成本上升之虞。By setting the content of Gd 2 O 3 in the above range, an optical glass with a high refractive index can be obtained without deteriorating the internal transmittance of the glass. On the other hand, if the content of Gd 2 O 3 is too large, the thermal stability of the glass may decrease and the specific gravity may increase. There is also a risk of increasing the manufacturing cost of glass.

在關於第1實施形態的光學玻璃,Y2 O3 的含量的上限,以10.0%為佳,進一步依序以8.0%、5.0%、3.0%、2.0%、1.5%為更佳。此外Y2 O3 的含量的下限,以0.0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the Y 2 O 3 content is preferably 10.0%, and more preferably 8.0%, 5.0%, 3.0%, 2.0%, and 1.5% in this order. In addition, the lower limit of the content of Y 2 O 3 is preferably 0.0%.

藉由將Y2 O3 ,例如代替ZrO2 或Nb2 O5 在上述範圍內導入,則不會使玻璃的內部穿透率惡化,而可得高折射率,且比重小的光學玻璃。另一方面,Y2 O3 的含量少,有使折射率下降的傾向。此外,Y2 O3 的含量過多,則有使玻璃的熱穩定性下降,使耐失透性下降之虞。By introducing Y 2 O 3 , for example, instead of ZrO 2 or Nb 2 O 5 in the above range, the internal transmittance of the glass is not deteriorated, and an optical glass with high refractive index and low specific gravity can be obtained. On the other hand, the content of Y 2 O 3 is small, which tends to decrease the refractive index. In addition, if the content of Y 2 O 3 is too large, the thermal stability of the glass may decrease, and the devitrification resistance may decrease.

在關於第1實施形態的光學玻璃,GeO2 的含量的上限,以10.0%為佳,進一步依序以6.0%、4.0%、3.0%、2.0%、1.0%為更佳。此外GeO2 的含量較少為佳,其下限,以0.0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the content of GeO 2 is preferably 10.0%, and more preferably 6.0%, 4.0%, 3.0%, 2.0%, and 1.0% in this order. In addition , the content of GeO 2 is better, and the lower limit is preferably 0.0%.

GeO2 係高價的玻璃成分,故GeO2 的含量過多,有增加製造成本之虞。GeO 2 is an expensive glass component, so the content of GeO 2 is too large, which may increase the manufacturing cost.

在關於第1實施形態的光學玻璃,Ta2 O5 的含量的上限,以5%為佳,進一步依序以3%、2%、1%為更佳。此外Ta2 O5 的含量的下限,以0%為佳。Regarding the optical glass of the first embodiment, the upper limit of the content of Ta 2 O 5 is preferably 5%, and more preferably 3%, 2%, and 1% in this order. In addition, the lower limit of the content of Ta 2 O 5 is preferably 0%.

Ta2 O5 係不會使玻璃的內部穿透率惡化而提升折射率的作用的玻璃成分,亦係使部分分散比Pg、F下降的成分。另一方面,Ta2 O5 係高價的玻璃成分,Ta2 O5 的含量變多,有增加製造成本之虞。此外,有使比重上升之虞。因此,Ta2 O5 的含量以上述範圍為佳。Ta 2 O 5 is a glass component that does not deteriorate the internal transmittance of the glass to increase the refractive index, and it is also a component that lowers the partial dispersion ratios of Pg and F. On the other hand, Ta 2 O 5 is an expensive glass component, and the content of Ta 2 O 5 increases, which may increase the manufacturing cost. In addition, there is a risk of increasing the specific gravity. Therefore, the content of Ta 2 O 5 is preferably within the above range.

在關於第1實施形態的光學玻璃,Sc2 O3 的含量,以2%以下為佳。此外,Sc2 O3 的含量的下限,以0%為佳。In the optical glass of the first embodiment, the content of Sc 2 O 3 is preferably 2% or less. In addition, the lower limit of the content of Sc 2 O 3 is preferably 0%.

Sc2 O3 係具有提升玻璃折射率的作用,但為高價的成分。因此,Sc2 O3 的各含量以上述範圍為佳。Sc 2 O 3 has the effect of increasing the refractive index of the glass, but it is an expensive component. Therefore, each content of Sc 2 O 3 is preferably within the above-mentioned range.

在關於第1實施形態的光學玻璃,HfO2 的含量的上限,以2%為佳,進一步為1.5%、1.0%、0.5%、0.3%。此外,HfO2 的含量的下限,以0%為佳,進一步依序以0.005%、0.01%、0.03%、0.05%、0.07%、0.09%為更佳。In the optical glass of the first embodiment, the upper limit of the content of HfO 2 is preferably 2%, and further is 1.5%, 1.0%, 0.5%, and 0.3%. In addition, the lower limit of the content of HfO 2 is preferably 0%, and more preferably 0.005%, 0.01%, 0.03%, 0.05%, 0.07%, and 0.09% in this order.

再者,HfO2 有在ZrO2 的原料包含一定量的情形。因此,含有ZrO2 的玻璃,有時會含有一定量的HfO2 。因此,在關於第1實施形態的光學玻璃,HfO2 的含量對ZrO2 的含量的質量比[HfO2 /ZrO2 ]亦可成為既定範圍。例如,該質量比[HfO2 /ZrO2 ]的下限,可為0.005,進一步依序可為0.010、0.013、或0.015。另一方面,該質量比的上限,可為0.05,進一步依序可為0.040、0.030、0.020、或0.018。從抑制耐火磚的成分在玻璃中熔出的觀點,玻璃含有少量的ZrO2 為佳,為此HfO2 的含量以上述範圍為佳。Furthermore, HfO 2 may be contained in a certain amount in the raw material of ZrO 2. Therefore, glasses containing ZrO 2 sometimes contain a certain amount of HfO 2 . Therefore, in the optical glass of the first embodiment, the mass ratio [HfO 2 /ZrO 2 ] of the content of HfO 2 to the content of ZrO 2 may also become a predetermined range. For example, the lower limit of the mass ratio [HfO 2 /ZrO 2 ] can be 0.005, and further can be 0.010, 0.013, or 0.015 in order. On the other hand, the upper limit of the mass ratio can be 0.05, and further can be 0.040, 0.030, 0.020, or 0.018 in order. From the viewpoint of suppressing the melting of the components of the refractory bricks in the glass, it is preferable that the glass contains a small amount of ZrO 2 , and for this reason , the content of HfO 2 is preferably in the above-mentioned range.

在關於第1實施形態的光學玻璃,Lu2 O3 的含量,以2%以下為佳。此外,Lu2 O3 的含量的下限,以0%為佳。Regarding the optical glass of the first embodiment, the content of Lu 2 O 3 is preferably 2% or less. In addition, the lower limit of the content of Lu 2 O 3 is preferably 0%.

Lu2 O3 ,具有調整玻璃的折射率的作用,但從分子量大來看,係為使玻璃增加比重的玻璃成分。因此,Lu2 O3 的含量以上述範圍為佳。Lu 2 O 3 has the effect of adjusting the refractive index of glass, but from the viewpoint of its high molecular weight, it is a glass component that increases the specific gravity of glass. Therefore, the content of Lu 2 O 3 is preferably within the above-mentioned range.

在關於第1實施形態的光學玻璃,Yb2 O3 的含量,以2%以下為佳,以1%以下為更佳,進一步以0.5%以下為佳。此外,Yb2 O3 的含量的下限,以0%為佳。Regarding the optical glass of the first embodiment, the content of Yb 2 O 3 is preferably 2% or less, more preferably 1% or less, and further preferably 0.5% or less. In addition, the lower limit of the content of Yb 2 O 3 is preferably 0%.

Yb2 O3 ,有調整玻璃的折射率的作用,惟從分子量大來看,會使玻璃的比重增大。玻璃的比重增大,則光學元件的質量就會增大。因此,減低Yb2 O3 的含量,抑制玻璃比重的增大為佳。Yb 2 O 3 has the effect of adjusting the refractive index of the glass, but from the point of view of the large molecular weight, it will increase the specific gravity of the glass. As the specific gravity of the glass increases, the quality of the optical element will increase. Therefore, it is better to reduce the content of Yb 2 O 3 to suppress the increase in the specific gravity of the glass.

此外,Yb2 O3 的含量過多,則玻璃的熱穩定性會下降。再者,會在紅外區域帶來吸收。從防止玻璃的熱穩定性下降,抑制比重增大的觀點,Yb2 O3 的含量以上述範圍為佳。In addition, if the content of Yb 2 O 3 is too large, the thermal stability of the glass will decrease. Furthermore, it will cause absorption in the infrared region. From the viewpoint of preventing the thermal stability of the glass from decreasing and suppressing the increase in specific gravity, the content of Yb 2 O 3 is preferably within the above-mentioned range.

關於第1實施形態的光學玻璃,主要是以上述玻璃成分,即以Al2 O3 、SiO2 、ZrO2 、P2 O5 、B2 O3 、TiO2 、Nb2 O5 、WO3 、Bi2 O3 、Li2 O、Na2 O、K2 O、Cs2 O、MgO、CaO、SrO、BaO、ZnO、La2 O3 、Gd2 O3 、Y2 O3 、GeO2 、Ta2 O5 、Sc2 O3 、HfO2 、Lu2 O3 及Yb2 O3 構成為佳,上述玻璃成分的共計含量,以95%以上為佳,以98%以上為更佳,進一步以99%以上為佳,進一步以99.5%以上為更佳。The optical glass of the first embodiment is mainly composed of the above-mentioned glass components, namely, Al 2 O 3 , SiO 2 , ZrO 2 , P 2 O 5 , B 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , Li 2 O, Na 2 O, K 2 O, Cs 2 O, MgO, CaO, SrO, BaO, ZnO, La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , GeO 2 , Ta The composition of 2 O 5 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 and Yb 2 O 3 is preferred. The total content of the above glass components is preferably 95% or more, more preferably 98% or more, and further 99 % Or more is preferable, and 99.5% or more is more preferable.

再者,關於第1實施形態的光學玻璃,基本上以上述玻璃成分構成為佳,在不妨礙本發明的作用效果的範圍,亦可含有其他的成分。此外,在本發明並非排除含有不可避免雜質。In addition, the optical glass of the first embodiment is basically preferably composed of the above-mentioned glass components, and other components may be contained within a range that does not hinder the effects of the present invention. In addition, the present invention does not exclude the inclusion of unavoidable impurities.

(其他的成分) Pb、As、Cd、Tl、Be、Se均具有毒性。因此,關於本實施形態的光學玻璃,以不含該等元素作為玻璃成分為佳。(Other ingredients) Pb, As, Cd, Tl, Be, and Se are all toxic. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as a glass component.

U、Th、Ra均為放射性元素。因此,關於本實施形態的光學玻璃,以不含該等元素作為玻璃成分為佳。U, Th, and Ra are all radioactive elements. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as a glass component.

V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm,會增大玻璃的著色,可能成為螢光的發生源。因此,關於本實施形態的光學玻璃,以不含該等元素作為玻璃成分為佳。惟關於不會使本發明的目標的460nm附近的穿透率惡化的元素,在可解決本發明的課題的範圍導入。V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm will increase the color of glass and may become a source of fluorescence. Therefore, it is preferable that the optical glass of this embodiment does not contain these elements as a glass component. However, elements that do not deteriorate the transmittance near 460 nm, which is the target of the present invention, are introduced in a range that can solve the problem of the present invention.

Sb(Sb2 O3 )、Ce(CeO2 )係作用作為清澈劑而可任意添加的元素。其中,Sb(Sb2 O3 )係清澈效果很大的清澈劑。Ce(CeO2 )與Sb(Sb2 O3 )相比,清澈效果較小。當Ce(CeO2 ),添加多量則有增強玻璃著色的傾向。Sb(Sb 2 O 3 ) and Ce(CeO 2 ) are elements that function as clearing agents and can be added arbitrarily. Among them, Sb (Sb 2 O 3 ) is a clearing agent with a great clearing effect. Compared with Sb(Sb 2 O 3 ), Ce(CeO 2 ) has a smaller clearing effect. When Ce(CeO 2 ) is added in large amounts, there is a tendency to enhance the coloring of the glass.

Sb2 O3 的含量,係以外部百分比表示。即,以Sb2 O3 及CeO2 以外的全玻璃成分的共計含量作為100質量%時的Sb2 O3 含量,以1.0質量%以下為佳,進一步依序以0.4質量%以下、0.2質量%以下、0.1質量%以下、0.05質量%以下、0.03質量%以下、0.02質量%以下、0.01質量%以下為更佳。Sb2 O3 的含量亦可為0質量%。The content of Sb 2 O 3 is expressed as an external percentage. That is, the total content of the all-glass component 2 other than Sb 2 O 3 and CeO as Sb 2 O 3 content is 100% by mass, preferably 1.0 mass% or less, and further sequentially to 0.4 mass%, 0.2 mass% Or less, 0.1% by mass or less, 0.05% by mass or less, 0.03% by mass or less, 0.02% by mass or less, and 0.01% by mass or less are more preferable. The content of Sb 2 O 3 may also be 0% by mass.

CeO2 的含量,亦係以外部百分比表示。即,以CeO2 、Sb2 O3 以外的全玻璃成分的共計含量作為100質量%時的CeO2 含量,以2質量%以下為佳,以1質量%以下為更佳,進一步以0.5質量%以下為佳,進一步以0.1質量%以下為更佳。CeO2 的含量亦可為0質量%。可藉由使CeO2 的含量在上述範圍,可改善玻璃的清澈性。The content of CeO 2 is also expressed as an external percentage. That is, the CeO 2 content when the total content of all glass components other than CeO 2 and Sb 2 O 3 is taken as 100% by mass is preferably 2% by mass or less, more preferably 1% by mass or less, and further 0.5% by mass The following is preferable, and 0.1 mass% or less is more preferable. The content of CeO 2 may also be 0% by mass. The clarity of the glass can be improved by setting the content of CeO 2 in the above range.

(玻璃的特性) <折射率nd> 在關於第1實施形態的光學玻璃,折射率nd的上限,可為2.50,亦可進一步為2.20、2.10、2.05、2.00或1.98。此外,折射率nd的下限,可為1.85,亦可進一步為1.87、1.89、1.90。折射率,可藉由調整可貢獻於高折射率化的玻璃成分的TiO2 、Nb2 O5 、ZrO2 、Y2 O3 等的含量,或調整SiO2 、Al2 O3 、B2 O3 等低折射率成分的含量,或藉由導入Li2 O或CaO等修飾成分控制。(Characteristics of glass) <Refractive index nd> In the optical glass of the first embodiment, the upper limit of the refractive index nd may be 2.50, and may further be 2.20, 2.10, 2.05, 2.00, or 1.98. In addition, the lower limit of the refractive index nd may be 1.85, and may be further 1.87, 1.89, or 1.90. The refractive index can be adjusted by adjusting the content of TiO 2 , Nb 2 O 5 , ZrO 2 , Y 2 O 3, etc., which can contribute to the high refractive index glass component, or by adjusting SiO 2 , Al 2 O 3 , B 2 O The content of low-refractive index components such as 3 , or by introducing modification components such as Li 2 O or CaO can be controlled.

<阿貝數νd> 在關於第1實施形態的光學玻璃,阿貝數νd的上限,可為30.0,進一步依序可為28.0、26.0、25.0或24.5。此外,阿貝數νd的下限,可為15.0,進一步依序可為18.0、20.0、22.0或23.0。阿貝數νd在上述範圍,可得具有所期望的色散性的玻璃。阿貝數νd,可藉由調整可貢獻於高色散化的玻璃成分的TiO2 、Nb2 O5 、WO3 、ZrO2 及Bi2 O3 的含量等控制。<Abbe number νd> In the optical glass of the first embodiment, the upper limit of the Abbe number νd may be 30.0, and further may be 28.0, 26.0, 25.0, or 24.5 in this order. In addition, the lower limit of the Abbe number νd may be 15.0, and further may be 18.0, 20.0, 22.0, or 23.0 in order. When the Abbe number νd is in the above range, a glass having desired dispersion properties can be obtained. The Abbe number νd can be controlled by adjusting the contents of TiO 2 , Nb 2 O 5 , WO 3 , ZrO 2 and Bi 2 O 3 that can contribute to the high dispersion of the glass component.

<玻璃的比重> 雖然關於第1實施形態的光學玻璃為高折射率玻璃,但比重並不大。只要可減低玻璃的比重,則可減少透鏡的重量。另一方面,比重過小,則會招致熱穩定性的下降。<Specific gravity of glass> Although the optical glass of the first embodiment is a high refractive index glass, the specific gravity is not large. As long as the specific gravity of the glass can be reduced, the weight of the lens can be reduced. On the other hand, if the specific gravity is too small, the thermal stability will decrease.

因此,在關於第1實施形態的光學玻璃,比重的上限以7.0為佳,進一步依序以6.0、5.0、4.5、4.0為更佳。比重的下限以2.5為佳,進一步依序以3.0、3.5為更佳。Therefore, in the optical glass of the first embodiment, the upper limit of the specific gravity is preferably 7.0, and more preferably 6.0, 5.0, 4.5, and 4.0 in this order. The lower limit of the specific gravity is preferably 2.5, and further preferably 3.0 and 3.5 in order.

比重,取決於包含在玻璃中的構成成分的原子量,與該原子的佔有體積。例如導入包含第六週期元素或原子序57以上的原子序很大的元素的氧化物時有增加比重的傾向,該元素的佔有體積亦大時,有時可抑制比重的增加。但元素的佔有體積過大,則折射率會下降。此外,元素的佔有體積並非固有,根據別的玻璃成分的存在亦多少會變化。可藉由調整如此的各成分的共計量與比率調整控制比重值。再者,各元素的佔有體積,根據玻璃的徐冷條件亦多少會變化。The specific gravity depends on the atomic weight of the constituent components contained in the glass and the volume occupied by the atoms. For example, when an oxide containing a sixth period element or an element with a large atomic number of 57 or higher is introduced, the specific gravity tends to increase, and when the occupied volume of the element is also large, the increase in specific gravity may sometimes be suppressed. However, if the occupied volume of the element is too large, the refractive index will decrease. In addition, the occupied volume of the element is not inherent, and varies somewhat depending on the presence of other glass components. The specific gravity value can be controlled by adjusting the total measurement and ratio of each component. Furthermore, the occupied volume of each element varies somewhat according to the slow cooling conditions of the glass.

<玻璃轉移溫度Tg> 在關於第1實施形態的光學玻璃的一例,玻璃轉移溫度Tg的上限並無特別限制,考慮徐冷所需時間等生產率,則以850℃為佳,進一步依序以800℃、750℃、700℃、650℃為更佳。此外,玻璃轉移溫度Tg的下限並無特別限制,從具備適於光學玻璃的耐熱性的觀點,以100℃為佳,進一步依序以200℃、300℃、400℃、500℃為更佳。<Glass transition temperature Tg> Regarding an example of the optical glass of the first embodiment, the upper limit of the glass transition temperature Tg is not particularly limited. In consideration of productivity such as the time required for slow cooling, 850°C is preferred, and 800°C, 750°C, 700 ℃, 650℃ is more preferable. In addition, the lower limit of the glass transition temperature Tg is not particularly limited. From the viewpoint of having heat resistance suitable for optical glass, 100°C is preferred, and 200°C, 300°C, 400°C, and 500°C are more preferred in this order.

玻璃轉移溫度Tg,可藉由在導入玻璃成分中,導入已知可使Tg下降的成分的Li或Zn等成分之外,藉由調整玻璃形成成分的增減、各成分的比率等而控制。The glass transition temperature Tg can be controlled by introducing components such as Li or Zn, which are known to reduce Tg, into the glass components, and by adjusting the increase or decrease of glass forming components, the ratio of each component, and the like.

藉由使玻璃轉移溫度Tg的上限滿足上述,可抑制在將玻璃再加熱壓製時的成型溫度及退火溫度的上升,可減輕對再加熱壓製成形設備及退火設備的熱損傷。When the upper limit of the glass transition temperature Tg satisfies the above, it is possible to suppress the increase in the molding temperature and the annealing temperature when the glass is reheated and pressed, and it is possible to reduce thermal damage to the reheating press forming equipment and the annealing equipment.

藉由使玻璃轉移溫度Tg的下限滿足上述,可容易邊維持所期望的阿貝數、折射率,邊良好地維持再加熱壓製成形性及玻璃的熱穩定性。 <液相溫度LT>When the lower limit of the glass transition temperature Tg satisfies the above, it is easy to maintain the desired Abbe number and refractive index, while maintaining good reheat press formability and thermal stability of the glass. <Liquid temperature LT>

關於第1實施形態的光學玻璃的液相溫度LT的上限,從盡量減少用於玻璃熔融的能量的觀點,以1450℃為佳,進一步依序以1400℃、1350℃、1300℃、1250℃、1200℃為更佳。此外,液相溫度的下限並無特別限制,從得到一定的穩定性的觀點,以800℃為佳,進一步依序以900℃、1000℃、1050℃、1100℃為更佳。藉由使液相溫度在上述範圍,可抑制耐火磚在玻璃熔融時的侵蝕。Regarding the upper limit of the liquidus temperature LT of the optical glass of the first embodiment, from the viewpoint of minimizing the energy used for glass melting, 1450°C is preferred, and 1400°C, 1350°C, 1300°C, 1250°C, 1200°C is more preferable. In addition, the lower limit of the liquidus temperature is not particularly limited. From the viewpoint of obtaining a certain degree of stability, 800°C is preferred, and 900°C, 1000°C, 1050°C, and 1100°C are more preferred in this order. By setting the liquidus temperature in the above range, the corrosion of the refractory bricks when the glass is melted can be suppressed.

再者,液相溫度係如下決定。將10cc(10ml)的玻璃投入白金坩堝中以1250℃~1450℃熔融20~30分鐘之後,冷卻到玻璃轉移溫度Tg以下,將玻璃連帶白金坩堝放入既定溫度的熔解爐保持2小時。保持溫度為800℃以上以5℃或10℃間隔,保持2小時之後,冷卻,以100倍的光學顯微鏡觀察玻璃內部有無結晶。將沒有結晶析出的最低溫度作為液相溫度。In addition, the liquidus temperature is determined as follows. Put 10cc (10ml) of glass into a platinum crucible and melt it at 1250°C to 1450°C for 20-30 minutes, then cool it to below the glass transition temperature Tg, and place the glass with the platinum crucible in a melting furnace at a predetermined temperature for 2 hours. Keep the temperature at 800°C or higher at intervals of 5°C or 10°C. After keeping it for 2 hours, cool it down, and observe whether there are crystals in the glass with a 100 times optical microscope. The lowest temperature at which no crystals precipitate was taken as the liquidus temperature.

<Pt含量> 在關於第1實施形態的光學玻璃,Pt含量的上限,以10.0質量ppm為佳,進一步依序以8.0質量ppm、7.0質量ppm、6.0質量ppm、5.0質量ppm為更佳。Pt的含量較少為佳,其下限,以4.0質量ppm為佳,進一步依序以3.0質量ppm、2.0質量ppm、0.0質量ppm越少越好。<Pt content> Regarding the optical glass of the first embodiment, the upper limit of the Pt content is preferably 10.0 mass ppm, and more preferably 8.0 mass ppm, 7.0 mass ppm, 6.0 mass ppm, and 5.0 mass ppm in this order. The content of Pt is preferably small, and the lower limit is preferably 4.0 mass ppm, and further, 3.0 mass ppm, 2.0 mass ppm, and 0.0 mass ppm are as small as possible.

在熔解爐的一部分,特別是在將批次原料加熱,熔解的部位使用耐火磚的熔解爐所製造的玻璃,比以白金爐製造的玻璃,可減低Pt的含量。藉由使Pt的含量在上述範圍,可得穿透率優良的光學玻璃。In a part of the melting furnace, especially the glass produced in the melting furnace where refractory bricks are used for heating and melting the batch of raw materials, the content of Pt can be reduced compared to the glass produced in the platinum furnace. By setting the Pt content in the above range, an optical glass with excellent transmittance can be obtained.

<τ460、τ440> 在關於第1實施形態的光學玻璃,以厚度10.0mm±0.1mm在波長460nm的內部穿透率τ460的下限,以88.0%為佳,進一步依序以90.0%、91.0%、92.0%、93.0%、94.0%、95.0%為更佳。該內部穿透率越高越好,以100.0%為佳,其上限,依序以99.0%、98.0%、97.0%、96.0%越高越好。再者,使用關於本實施形態的光學玻璃的玻璃產品的厚度(光路長),可按照其用途適當選定,並不限定於10.0mm,可例如為15mm以上、進一步可為20mm以上、30mm以上,亦可根據用途作成8mm以下、6mm以下、4mm以下。<τ460, τ440> Regarding the optical glass of the first embodiment, the lower limit of the internal transmittance τ460 at a wavelength of 460nm with a thickness of 10.0mm±0.1mm is preferably 88.0%, and further, 90.0%, 91.0%, 92.0%, and 93.0% in this order , 94.0%, 95.0% are better. The higher the internal penetration rate is, the better, 100.0% is better, and the upper limit is 99.0%, 98.0%, 97.0%, and 96.0%, the higher the better. In addition, the thickness (optical path length) of the glass product using the optical glass of the present embodiment can be appropriately selected according to the application, and is not limited to 10.0 mm, and may be, for example, 15 mm or more, further 20 mm or more, or 30 mm or more. It can also be made into 8mm or less, 6mm or less, or 4mm or less according to the application.

此外,在關於第1實施形態的光學玻璃,以厚度10.0mm±0.1mm在波長440nm的內部穿透率τ440的下限,以85.0%為佳,進一步依序以88.0%、90.0%、91.0%、92.0%、93.0%、94.0%為更佳。該內部穿透率越高越好,以100.0%為佳,其上限,依序以99.0%、98.0%、97.0%、96.0%、95.0%越高越好。In addition, regarding the optical glass of the first embodiment, the lower limit of the internal transmittance τ440 at a wavelength of 440nm with a thickness of 10.0mm±0.1mm is preferably 85.0%, and further sequentially 88.0%, 90.0%, 91.0%, 92.0%, 93.0%, 94.0% are better. The higher the internal penetration rate is, the better, 100.0% is better, and the upper limit is 99.0%, 98.0%, 97.0%, 96.0%, 95.0%, and the higher the better.

內部穿透率(τ),係去除在入射側及出射側的表面反射損失的穿透率。關於厚度不同的兩個玻璃試料,使用包含分別在波長460nm或440nm的表面反射損失的穿透率的測定值,以下式求得內部穿透率。玻璃試料的厚度d1 、d2 ,分別為2.0mm±0.1mm及10.0mm±0.1mm。 [數1]

Figure 02_image001
在此 τ︰在試料的厚度d2 的玻璃的內部穿透率 Δd︰試料的厚度差[d2 -d1 ] T1:以試料的厚度d1 所得包含表面反射損失的穿透率 T2:以試料的厚度d2 所得包含表面反射損失的穿透率The internal transmittance (τ) is the transmittance that removes the surface reflection loss on the incident side and the exit side. Regarding the two glass samples with different thicknesses, the internal transmittance was obtained by the following equation using the measured value of the transmittance including the surface reflection loss at a wavelength of 460 nm or 440 nm, respectively. The thickness d 1 and d 2 of the glass sample are 2.0 mm ± 0.1 mm and 10.0 mm ± 0.1 mm, respectively. [Number 1]
Figure 02_image001
Here τ: the internal transmittance of the glass at the thickness d 2 of the sample Δd: the thickness difference of the sample [d 2 -d 1 ] T1: the transmittance including the surface reflection loss obtained by the thickness d 1 of the sample T2: The transmittance of the thickness d 2 of the sample including the surface reflection loss

內部穿透率,係不依折射率的素材的穿透率,可藉由調整包含在玻璃的元素所具有的固有光吸收、或來自以Pt為首的雜質的光吸收、甚至是在玻璃骨架中所產生的著色中心的吸收等而控制。 從上述觀點,例如藉由調整WO3 、Bi2 O3 等會使內部穿透率下降的成分的含量,可將內部穿透率控制在上述範圍。此外,調整Sb2 O3及Pt等微量成分的含量亦有效。再者,調製βOH、Li2 O、Na2 O、及K2 O等鹼性成分的含量,容易減低還原著色亦有效。The internal transmittance is the transmittance of the material that does not depend on the refractive index. It can be adjusted by the inherent light absorption of the elements contained in the glass, or the light absorption from impurities such as Pt, and even the glass skeleton. The absorption of the generated coloring center is controlled. From the above point of view, for example, by adjusting the content of components such as WO 3 , Bi 2 O 3, etc., which reduce the internal permeability, the internal permeability can be controlled within the above-mentioned range. In addition, it is also effective to adjust the content of trace components such as Sb 2 O 3 and Pt. Furthermore, it is also effective to adjust the content of basic components such as βOH, Li 2 O, Na 2 O, and K 2 O to easily reduce reduction and coloration.

<λτ90、λτ80、λτ5> 在關於第1實施形態的光學玻璃,光線穿透性亦可藉由λτ90、λτ80、λτ5評價。例如,λτ90,係如圖1所示係內部穿透率成為90%的波長。同樣地,λτ80、λτ5,係分別內部穿透率成為80%、5%的波長。內部穿透率,可以上式求得。<λτ90, λτ80, λτ5> In the optical glass of the first embodiment, the light transmittance can also be evaluated by λτ90, λτ80, and λτ5. For example, λτ90 is the wavelength at which the internal transmittance becomes 90% as shown in Fig. 1. Similarly, λτ80 and λτ5 are wavelengths at which the internal transmittance becomes 80% and 5%, respectively. The internal penetration rate can be obtained by the above formula.

在關於第1實施形態的光學玻璃,λτ90的上限,從提高在所期望波長的穿透率的觀點,以500nm為佳,進一步依序以470nm、450nm、430nm、420nm為更佳。關於λτ90的下限並無特別限制,從減低會對人體造成不良影響的短波長光的穿透率的觀點,以150nm為佳,進一步依序以200nm、250nm、300nm、350nm為更佳。Regarding the optical glass of the first embodiment, the upper limit of λτ90 is preferably 500 nm from the viewpoint of increasing the transmittance at a desired wavelength, and more preferably 470 nm, 450 nm, 430 nm, and 420 nm in this order. The lower limit of λτ90 is not particularly limited. From the viewpoint of reducing the transmittance of short-wavelength light that adversely affects the human body, 150 nm is preferred, and 200 nm, 250 nm, 300 nm, and 350 nm are more preferred.

在關於第1實施形態的光學玻璃,λτ80的上限,從提高在所期望波長的穿透率的觀點,以450nm為佳,進一步依序以440nm、430nm、420nm、410nm為更佳。關於λτ80的下限並無特別限制,從減低會對人體造成不良影響的短波長光的穿透率的觀點,以150nm為佳,進一步依序以200nm、250nm、300nm、350nm為更佳。Regarding the optical glass of the first embodiment, the upper limit of λτ80 is preferably 450 nm from the viewpoint of increasing the transmittance at a desired wavelength, and more preferably 440 nm, 430 nm, 420 nm, and 410 nm in this order. There is no particular limitation on the lower limit of λτ80. From the viewpoint of reducing the transmittance of short-wavelength light that adversely affects the human body, 150 nm is preferred, and 200 nm, 250 nm, 300 nm, and 350 nm are further preferred.

在關於第1實施形態的光學玻璃,λτ5的上限,從提高在所期望波長的穿透率的觀點,以390nm為佳,進一步依序以380nm、370nm、365nm、360nm為更佳。關於λτ5的下限並無特別限制,從減低會對人體造成不良影響的短波長光的穿透率的觀點,以150nm為佳,進一步依序以250nm、300nm、330nm、350nm、355nm為更佳。Regarding the optical glass of the first embodiment, the upper limit of λτ5 is preferably 390 nm from the viewpoint of increasing the transmittance at a desired wavelength, and more preferably 380 nm, 370 nm, 365 nm, and 360 nm in this order. The lower limit of λτ5 is not particularly limited. From the viewpoint of reducing the transmittance of short-wavelength light that adversely affects the human body, 150 nm is preferred, and 250 nm, 300 nm, 330 nm, 350 nm, and 355 nm are further preferred.

<λ70> 在關於第1實施形態的光學玻璃,λ70的上限,從提高在所期望波長的穿透率的觀點,以435nm為佳,進一步依序以430nm、425nm、420nm、415nm、410nm、405nm、400nm為更佳。關於λ70的下限並無特別限制,從謀求與高折射率並存的觀點,以300nm為佳,進一步依序以310nm、320nm、330nm、340nm、350nm為更佳。<λ70> Regarding the optical glass of the first embodiment, the upper limit of λ70 is preferably 435nm from the viewpoint of increasing the transmittance at the desired wavelength, and further 430nm, 425nm, 420nm, 415nm, 410nm, 405nm, and 400nm in order Better. There is no particular limitation on the lower limit of λ70. From the viewpoint of achieving coexistence with a high refractive index, 300 nm is preferred, and 310 nm, 320 nm, 330 nm, 340 nm, and 350 nm are more preferred in this order.

70%的外部穿透率的λ70,由於取決於玻璃的內部穿透率及折射率,故並非表示本發明的玻璃性質的最佳指標。但是,作為標準具有上述範圍的λ70為佳。The 70% external transmittance of λ70 depends on the internal transmittance and refractive index of the glass, so it is not the best indicator of the properties of the glass of the present invention. However, λ70 having the above-mentioned range as a standard is preferable.

(光學玻璃的製造) 關於本發明的實施形態的光學玻璃,將玻璃原料調配成上述既定組成,以調配的玻璃原料遵照習知的玻璃製造方法製作即可。例如,調配複數種化合物,充分混合作成批次原料,將批次原料放入由耐火磚構成的坩堝加熱,作成熔融玻璃,進一步清澈,均質化之後,將熔融玻璃成形,徐冷得到光學玻璃。清澈或均質化的步驟亦可以適當的白金製坩堝進行熔解。以白金製的坩堝進行熔融時,為抑制白金的氧化,亦可在非氧化性氣氛,即氮氣氛或水蒸氣氛等之中熔解。熔融玻璃的成形、徐冷,使用習知的方法即可。再者,在玻璃原料以可使用將以耐火磚及石英坩堝等粗熔解的熔融玻璃急冷而得的碎玻璃作為原料。(Manufacturing of optical glass) Regarding the optical glass of the embodiment of the present invention, the glass raw material may be prepared into the above-mentioned predetermined composition, and the prepared glass raw material may be produced in accordance with a conventional glass manufacturing method. For example, a plurality of compounds are blended and mixed thoroughly to make a batch of raw materials, and the batch of raw materials is heated in a crucible made of refractory bricks to make molten glass, which is further cleared and homogenized, then the molten glass is shaped and slowly cooled to obtain optical glass. The clarification or homogenization step can also be melted in an appropriate platinum crucible. When melting in a crucible made of platinum, in order to suppress the oxidation of platinum, it may be melted in a non-oxidizing atmosphere, that is, a nitrogen atmosphere or a water vapor atmosphere. The shaping and slow cooling of molten glass may be performed by a conventional method. In addition, as a raw material for glass, cullet obtained by quenching a molten glass coarsely melted with a refractory brick, a quartz crucible, etc. can be used as a raw material.

再者,只要可將所期望的玻璃成分以所期望的含量導入玻璃中,調配批次原料時所使用的化合物並無特別限定,惟作為如此的化合物,可舉出氧化物、碳酸鹽、硝酸鹽、氫氧化合物、水和物、氟化物、氯化物等。In addition, as long as the desired glass component can be introduced into the glass at the desired content, the compound used when preparing batch materials is not particularly limited. However, such compounds include oxides, carbonates, and nitric acid. Salt, hydroxide, water, fluoride, chloride, etc.

其他,作為抑制因有時從白金坩堝導入的Pt使玻璃成分氧化的手段之一,亦可控制玻璃中的羥基的量。關於本實施形態的光學玻璃,由於係以矽酸鹽作為主體的玻璃來看,藉由導入過剩的羥基切斷玻璃結構,有時會降低玻璃的熱穩定性。該熱穩定性,會影響到將熔融玻璃徐冷時所產生的結晶析出的程度之外,亦會影響再加熱玻璃時的結晶析出。關於本實施形態的光學玻璃時,從後者的影響較大來看,適當控制該羥基的量為佳。In addition, it is also possible to control the amount of hydroxyl groups in the glass as one of means for suppressing the oxidation of glass components due to Pt introduced from a platinum crucible. Regarding the optical glass of this embodiment, since it is a glass mainly composed of silicate, the introduction of excess hydroxyl groups cuts the glass structure, and the thermal stability of the glass may be lowered. This thermal stability affects the degree of crystal precipitation that occurs when the molten glass is slowly cooled, and also affects the crystal precipitation when the glass is reheated. Regarding the optical glass of the present embodiment, in view of the greater influence of the latter, it is better to appropriately control the amount of the hydroxyl group.

玻璃中的羥基的量,可以βOH之值表示。在關於第1實施形態的光學玻璃,下式(1)所示βOH之值的下限,以0.1mm-1 為佳,進一步依序以0.2mm-1 、0.3mm-1 、0.4mm-1 為更佳。此外βOH之值的上限,以1.5mm-1 為佳,進一步依序以1.2mm-1 、1.0mm-1 、0.9mm-1 、0.8mm-1 、0.7mm-1 、0.6mm-1 為更佳。 βOH=-[ln(B/A)]/t…(1)The amount of hydroxyl groups in the glass can be expressed by the value of βOH. Regarding the optical glass of the first embodiment, the lower limit of the value of βOH shown in the following formula (1) is preferably 0.1 mm -1 , and further 0.2 mm -1 , 0.3 mm -1 , and 0.4 mm -1 in this order Better. In addition, the upper limit of the value of βOH is preferably 1.5mm -1 , and furthermore, 1.2mm -1 , 1.0mm -1 , 0.9mm -1 , 0.8mm -1 , 0.7mm -1 , 0.6mm -1 are more in order. good. βOH=-[ln(B/A)]/t…(1)

在此,式(1)中,t係表示用於測定外部穿透率的上述玻璃的厚度(mm),A係表示使光對上述玻璃以與其厚度方向平行入射時,在波長2500nm的外部穿透率(%),B係表示使光對上述玻璃以與其厚度方向平行入射時,在波長2900nm的外部穿透率(%)。此外ln係自然對數。Here, in formula (1), t represents the thickness (mm) of the glass used to measure the external transmittance, and A represents that when light is incident on the glass parallel to its thickness direction, it penetrates the outside at a wavelength of 2500nm. Transmittance (%), B represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the above-mentioned glass parallel to its thickness direction. In addition, ln is the natural logarithm.

再者,所謂「外部穿透率」,係穿透玻璃的穿透光強度Iout 對入射玻璃的入射光強度Iin 的比(Iout /Iin ),即亦考慮玻璃表面的表面反射的穿透率,穿透率可藉由使用光譜儀,測定穿透光譜而得。Moreover, the so-called "external transmittance" refers to the ratio of the intensity of the light penetrating through the glass I out to the intensity of the incident light I in of the incident glass (I out /I in ), which also considers the surface reflection of the glass surface The transmittance can be obtained by measuring the transmittance spectrum using a spectrometer.

藉由評價βOH,可評價在玻璃的水(及/或氫氧化合物離子,以下僅稱為「水」。)含量。即,βOH高的玻璃,意指在玻璃的水含量高。By evaluating βOH, the content of water (and/or hydroxide ion, hereinafter referred to as "water") in the glass can be evaluated. That is, glass with high βOH means that the water content in the glass is high.

藉由使βOH之值在上述範圍,可抑制失透,而得到穿透率高的光學玻璃。另一方面,在本發明βOH之值過高,則有降低將玻璃再加熱到玻璃轉移點以上時的熱穩定性的傾向。此外,在玻璃的徐冷步驟,即以較應變點附近高溫且在降伏點附近以下的分鐘單位或小時單位的保持,有促進玻璃的白濁.失透之虞。By setting the value of βOH in the above range, devitrification can be suppressed, and an optical glass with high transmittance can be obtained. On the other hand, in the present invention, if the value of βOH is too high, there is a tendency to reduce the thermal stability when the glass is reheated above the glass transition point. In addition, in the slow cooling step of the glass, that is, the maintenance of the high temperature near the strain point and the unit of minutes or hours below the yield point can promote the white turbidity of the glass. The risk of devitrification.

控制βOH值的方法,並無特別限定,可舉出例如使用含水的原料作為玻璃原料,在熔融步驟對熔融氣氛附加水蒸氣等。此外,以使用耐火磚的熔解爐熔解玻璃時,熔融玻璃係以氣體燃燒器間接加熱,此時將氣體燃燒器的燃燒所產生的水導入熔融玻璃。藉此可適當地提升熔融玻璃中的水分量,而使βOH之值在上述範圍。The method of controlling the βOH value is not particularly limited, and examples include using a raw material containing water as a glass raw material, adding water vapor to the melting atmosphere in the melting step, and the like. In addition, when the glass is melted in a melting furnace using refractory bricks, the molten glass is indirectly heated by a gas burner, and at this time, water generated by the combustion of the gas burner is introduced into the molten glass. Thereby, the amount of water in the molten glass can be appropriately increased, so that the value of βOH is within the above range.

(光學元件等的製造) 使用關於本發明的實施形態的光學玻璃製作光學元件,只要使用習知的方法即可。例如,在上述光學玻璃的製造時,將熔融玻璃倒入模具形成板狀,製作由關於本發明的光學玻璃所組成的玻璃材料。將所得玻璃材料適當裁切、研削、研磨,製作成適合壓製成形的大小、形狀的切片。將切片加熱,使之軟化,以習知的方法壓製成形(再加熱壓製),製作形狀近似光學元件的光學元件胚料。將光學元件胚料退火,以習知的方法研削、研磨製作光學元件。(Manufacturing of optical components, etc.) To produce an optical element using the optical glass related to the embodiment of the present invention, a conventional method may be used. For example, in the production of the above-mentioned optical glass, molten glass is poured into a mold to form a plate shape, and a glass material composed of the optical glass of the present invention is produced. The obtained glass material is appropriately cut, ground, and ground to produce slices of a size and shape suitable for press forming. The slice is heated to soften it, and then pressed into a shape (reheated and pressed) by a conventional method to produce an optical element blank with a shape similar to an optical element. The optical element blank is annealed, and the optical element is manufactured by grinding and grinding in a conventional method.

所製作的光學元件的光學功能面,亦可依照使用目的,做抗反射膜、全反射膜等塗層。The optical function surface of the manufactured optical element can also be coated with anti-reflection film, total reflection film, etc. according to the purpose of use.

根據本發明的一態樣,可提供由上述光學玻璃組成的光學元件。光學元件的種類,可例示平面透鏡、球面透鏡、非球面透鏡等的透鏡、三棱鏡、繞射光柵等。透鏡的形狀,可例示雙凸透鏡、平凸透鏡、雙凹透鏡、平凹透鏡、凸彎月形透鏡、凹彎月形透鏡等的諸形狀。光學元件,可藉由包含將由上述光學玻璃組成的玻璃成形體加工的步驟的方法製造。加工,可例示裁切、切削、粗研削、精研削、研磨等。進行如此的加工時,藉由使用上述玻璃,可減輕破損,而可穩定提供高品質的光學元件。According to an aspect of the present invention, an optical element composed of the above-mentioned optical glass can be provided. Examples of the types of optical elements include flat lenses, spherical lenses, aspheric lenses, and other lenses, triangular prisms, diffraction gratings, and the like. Examples of the shape of the lens include various shapes such as a biconvex lens, a plano-convex lens, a biconcave lens, a plano-concave lens, a convex meniscus lens, and a concave meniscus lens. The optical element can be manufactured by a method including a step of processing a glass molded body composed of the above-mentioned optical glass. Processing can exemplify cutting, cutting, rough grinding, fine grinding, and grinding. When such processing is performed, by using the above-mentioned glass, damage can be reduced, and high-quality optical elements can be stably provided.

第2實施形態 關於本發明的第2實施形態的光學玻璃, TiO2 及Nb2 O5 的共計含量[TiO2 +Nb2 O5 ]為20%以上, Al2 O3 的含量與SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。Second Embodiment Regarding the optical glass of the second embodiment of the present invention, the total content of TiO 2 and Nb 2 O 5 [TiO 2 +Nb 2 O 5 ] is 20% or more, and the content of Al 2 O 3 is the same as that of SiO 2 and The mass ratio of the total content of ZrO 2 [(Al 2 O 3 /(SiO 2 +ZrO 2 )] is greater than 0.0000.

在關於第2實施形態的光學玻璃,TiO2 及Nb2 O5 的共計含量[TiO2 +Nb2 O5 ]為20%以上。該共計含量的下限,以22%為佳,進一步依序以24%、26%、28%、33%、37%、40%、42%為更佳。此外,該共計含量的上限,以70%為佳,進一步依序以60%、57%、55%、53%、50%、46%為更佳。In the optical glass of the second embodiment, the total content of TiO 2 and Nb 2 O 5 [TiO 2 +Nb 2 O 5 ] is 20% or more. The lower limit of the total content is preferably 22%, and more preferably 24%, 26%, 28%, 33%, 37%, 40%, and 42% in order. In addition, the upper limit of the total content is preferably 70%, and more preferably 60%, 57%, 55%, 53%, 50%, 46% in order.

TiO2 及Nb2 O5 ,係不太會提高比重而貢獻於高折射率化的成分。因此,為得所期望的比重與折射率特性並存的玻璃,TiO2 及Nb2 O5 的共計含量以上述範圍為佳。TiO 2 and Nb 2 O 5 are components that hardly increase specific gravity and contribute to a higher refractive index. Therefore, in order to obtain a glass in which the desired specific gravity and refractive index characteristics coexist, the total content of TiO 2 and Nb 2 O 5 is preferably within the above-mentioned range.

在關於第2實施形態的光學玻璃,Al2 O3 的含量與SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。該質量比[(Al2 O3 /(SiO2 +ZrO2 )]的下限,以0.0001為佳,進一步依序以0.0003、0.0005、0.0007、0.0010、0.0050、0.0100、0.0200、0.0250、0.0350、0.0450為更佳。與該質量比的上限,以0.3000為佳,進一步依序以0.2500、0.2000、0.1500、0.1000為更佳。In the optical glass on the second embodiment, the quality of the content of Al 2 O 3 and the total content of SiO 2 and ZrO 2 ratio [(Al 2 O 3 / ( SiO 2 + ZrO 2)] is greater than 0.0000. The mass ratio of [ The lower limit of (Al 2 O 3 /(SiO 2 +ZrO 2 )] is preferably 0.0001, and more preferably 0.0003, 0.0005, 0.0007, 0.0010, 0.0050, 0.0100, 0.0200, 0.0250, 0.0350, 0.0450 in this order. The upper limit of the mass ratio is preferably 0.3000, and more preferably 0.2500, 0.2000, 0.1500, 0.1000 in order.

藉由使質量比[(Al2 O3 /(SiO2 +ZrO2 )]在上述範圍,可抑制耐火磚在玻璃熔融時的侵蝕。此外,與該比率在上述範圍外的玻璃相比,有提高熱穩定性、加熱時的失透性,或者冷卻熔融玻璃時延遲結晶析出的效果。另一方面,該質量比過大,則不只是會降低折射率nd,亦有降低熱穩定性,而失透之虞。By setting the mass ratio [(Al 2 O 3 /(SiO 2 +ZrO 2 )] within the above-mentioned range, the corrosion of the refractory bricks during glass melting can be suppressed. In addition, compared with the glass whose ratio is outside the above-mentioned range, there is The effect of improving thermal stability, devitrification during heating, or delaying crystallization when cooling molten glass. On the other hand, if the mass ratio is too large, not only the refractive index nd will be reduced, but also the thermal stability will be reduced. Perplexity.

以下,關於第2實施形態的光學玻璃,說明較佳的態樣。Hereinafter, a preferable aspect of the optical glass of the second embodiment will be described.

在關於第2實施形態的光學玻璃,B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]的上限,以0.30為佳,進一步依序以0.26、0.21、0.18、0.16、0.15、0.14、0.12、0.10、0.90、0.08為更佳。此外與該質量比的下限,以0.00為佳,進一步依序以0.01、0.02、0.03、0.04、0.05為更佳。In the optical glass of the second embodiment, the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [(B 2 O 3 +P 2 O 5 )/( The upper limit of SiO 2 +Al 2 O 3 )] is preferably 0.30, and more preferably 0.26, 0.21, 0.18, 0.16, 0.15, 0.14, 0.12, 0.10, 0.90, 0.08 in order. In addition, the lower limit of the mass ratio is preferably 0.00, and more preferably 0.01, 0.02, 0.03, 0.04, and 0.05 in order.

藉由使質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]在上述範圍,可抑制耐火磚的玻璃質在玻璃熔融時的侵蝕。該質量比過大,則有耐火磚的侵蝕會變大,降低熔融玻璃的均質性,降低耐失透性之虞。By setting the mass ratio [(B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] within the above range, it is possible to suppress the corrosion of the glass of the refractory brick during glass melting. If the mass ratio is too large, the corrosion of the refractory bricks will increase, which may reduce the homogeneity of the molten glass and reduce the devitrification resistance.

在關於第2實施形態的光學玻璃,BaO、La2 O3 、與Gd2 O3 及WO3 的共計含量與CaO、SrO、及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]的上限以3.0為佳,進一步依序以2.7、2.0、1.9、1.8、1.7、1.6為更佳。與該質量比的下限,以0.0為佳,進一步依序以0.5、0.8、1.0、1.2為更佳。In the optical glass on the second embodiment, BaO, La 2 O 3, and the quality of Gd 2 O 3 and WO total content of 3 and the total content of CaO, SrO, and Y 2 O 3 ratio of [(BaO + La 2 The upper limit of O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] is preferably 3.0, and more preferably 2.7, 2.0, 1.9, 1.8, 1.7, 1.6 in order. The lower limit of the mass ratio is preferably 0.0, and more preferably 0.5, 0.8, 1.0, and 1.2 in order.

藉由使質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]在上述範圍,可限制原子量過大的成分、或者促進氧填充的高折射率成分的使用量,可降低玻璃的比重。另一方面,該質量比過大,則因玻璃比重增大而降低熔融玻璃的動態黏度,難以控制玻璃流等而有使生產性惡化之虞。此外,亦有增大耐火磚的侵蝕之虞。By setting the mass ratio [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] in the above range, components with excessive atomic weight can be restricted or oxygen filling can be promoted. The use of high refractive index components can reduce the specific gravity of the glass. On the other hand, if the mass ratio is too large, the dynamic viscosity of the molten glass will decrease due to the increase in the specific gravity of the glass, making it difficult to control the flow of the glass, etc., which may deteriorate productivity. In addition, there is a risk of increasing the corrosion of refractory bricks.

在關於第2實施形態的光學玻璃,Li2 O、Na2 O,及K2 O的共計含量[Li2 O+Na2 O+K2 O]的上限,以13%為佳,進一步依序以11%、10%、8.0%、6.0%、5.0%、4.0%為更佳。此外,該共計含量的下限,以0.00%為佳,進一步依序以0.01%、0.1%、0.5%、1.0%、1.5%、2.0%、3.0%為更佳。Regarding the optical glass of the second embodiment, the upper limit of the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] is preferably 13%, and further in order 11%, 10%, 8.0%, 6.0%, 5.0%, 4.0% are more preferable. In addition, the lower limit of the total content is preferably 0.00%, and more preferably 0.01%, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0% in order.

由使共計含量[Li2 O+Na2 O+K2 O]在上述範圍,可適當地維持玻璃黏度而提高玻璃的生產性。此外,抑制來自Ti或Nb所產生的還原成分的光吸收,再者藉由降低熔解溫度或徐冷促進玻璃中電子缺陷的消除,可提升460nm的內部穿透率。此外,可抑制耐火磚在玻璃熔融時的侵蝕。另一方面,該共計含量過小,則玻璃原料的熔融性會惡化,而產生需要將原料的熔解溫度設高。結果會促進耐火磚的惡化等使生產率惡化。相反地,該共計含量過大,則玻璃的黏度下降,及隨此引起熱穩定性的降低,而有使生產率惡化之虞。此外,熔融玻璃的比電阻降低,而降低藉由通電加熱熔融玻璃時的加熱效率,結果降低玻璃的熔融性,而亦有使生產率惡化之虞。Al2 O3 的含量越大的玻璃,避免上述含量過大地調整為佳。By setting the total content [Li 2 O+Na 2 O+K 2 O] in the above range, the glass viscosity can be appropriately maintained and the productivity of the glass can be improved. In addition, it suppresses the light absorption from the reducing components produced by Ti or Nb, and furthermore, by reducing the melting temperature or slow cooling to promote the elimination of electronic defects in the glass, the internal transmittance of 460nm can be improved. In addition, the corrosion of refractory bricks when the glass is melted can be suppressed. On the other hand, if the total content is too small, the meltability of the glass raw material will deteriorate, and the melting temperature of the raw material must be set high. As a result, the deterioration of the refractory bricks is promoted, and the productivity is deteriorated. Conversely, if the total content is too large, the viscosity of the glass will decrease, and consequently the thermal stability will decrease, which may deteriorate productivity. In addition, the specific resistance of the molten glass decreases, and the heating efficiency when the molten glass is heated by energization is lowered. As a result, the meltability of the glass is lowered, and there is a possibility that productivity may deteriorate. For glass with a larger content of Al 2 O 3 , it is better to avoid excessive adjustment of the aforementioned content.

在關於第2實施形態的光學玻璃,Al2 O3 的含量的下限,以0.01%為佳,進一步依序以0.05%、0.08%、0.10%、0.13%、0.16%、0.20%、0.30%、0.50%、0.70%、1.0%為更佳。Al2 O3 的含量的上限,以10.0%為佳,進一步依序以8.0%、6.0%、4.0%、2.0%為更佳。Regarding the optical glass of the second embodiment, the lower limit of the content of Al 2 O 3 is preferably 0.01%, and further sequentially 0.05%, 0.08%, 0.10%, 0.13%, 0.16%, 0.20%, 0.30%, 0.50%, 0.70%, 1.0% are more preferable. The upper limit of the content of Al 2 O 3 is preferably 10.0%, and more preferably 8.0%, 6.0%, 4.0%, and 2.0% in this order.

使用耐火磚的熔解爐熔解玻璃時,來自耐火磚的Al2 O3 會被導入熔融玻璃。因此,即使在玻璃原料不含Al2 O3 的情形,在以使用耐火磚的熔解爐熔解製造的玻璃,包含微量的Al2 O3 。Al2 O3 的含量在上述範圍時,與Al2 O3 的含量在上述範圍外的情形相比,熱穩定性高,抑制加熱時的失透,且抑制在冷卻熔融玻璃時的結晶析出。但是,從Al2 O3 為減低比重的作用很小,且為具有降低折射率的作用的成分來看,從得到高折射率.低比重的玻璃的觀點,Al2 O3 的含量越少越佳。此外,Al2 O3 的含量過多,則會使玻璃的耐失透性降低,使玻璃轉移溫度Tg上升,且有降低熱穩定性之虞。另一方面,Al2 O3 的含量過少,則有增加耐火磚的侵蝕之虞。When melting glass using a refractory brick melting furnace, Al 2 O 3 from the refractory brick is introduced into the molten glass. Therefore, even when the glass raw material does not contain Al 2 O 3 , the glass produced by melting in a melting furnace using refractory bricks contains a small amount of Al 2 O 3 . Al 2 O 3 content is within the above range, compared with the case of Al 2 O 3 content is outside the above range, a high thermal stability to suppress devitrification during heating, and to suppress crystallization precipitation upon cooling the molten glass. However, from the point of view that Al 2 O 3 has little effect on reducing the specific gravity and is a component that has the effect of lowering the refractive index, it is possible to obtain a high refractive index. From the viewpoint of a glass with a low specific gravity, the smaller the content of Al 2 O 3, the better. In addition, if the content of Al 2 O 3 is too large, the devitrification resistance of the glass will decrease, the glass transition temperature Tg will increase, and the thermal stability may decrease. On the other hand, if the content of Al 2 O 3 is too small, the corrosion of the refractory brick may increase.

在關於第2實施形態的光學玻璃,關於上述以外的玻璃成分的含量及比率,可與第1實施形態相同。此外,關於在第2實施形態的玻璃特性、光學玻璃的製造及光學元件等的製造,亦可與第1實施形態相同。 [實施例]Regarding the optical glass of the second embodiment, the contents and ratios of glass components other than the above can be the same as those of the first embodiment. In addition, the glass characteristics, the manufacture of optical glass, the manufacture of optical elements, etc. in the second embodiment may be the same as those in the first embodiment. [Example]

以下,將本發明藉由實施例更詳細地說明。惟,本發明並非限定於實施例所示態樣。Hereinafter, the present invention will be explained in more detail with examples. However, the present invention is not limited to the aspect shown in the embodiment.

(實施例1) 在如下步驟製作表1、2所示玻璃組成的玻璃樣品,進行各種評價。(Example 1) The glass samples of the glass compositions shown in Tables 1 and 2 were prepared in the following steps, and various evaluations were performed.

[光學玻璃的製作] 首先,準備對應玻璃的構成成分的氧化物、氫氧化合物、碳酸鹽及硝酸鹽作為原材料,將上述原材料,秤量、調配使所得光學玻璃的玻璃組成,成為表1、2所示各組成,充分混合原材料。將如此所得的調配原料(批次原料),投入由耐火氧化物構成的坩堝,以1150℃~1450℃加熱1小時作成熔融玻璃,轉移到白金坩堝之後,攪拌圖謀均質化,清澈之後,將熔融玻璃鑄入預熱為適當溫度的金屬模具。將鑄入的玻璃,以較玻璃轉移溫度Tg低100℃的溫度熱處理30分鐘,藉由在爐內放冷到室溫,得到玻璃樣品。 再者,在實施例,原材料的量係以氧化物基準作成大約150g。[Production of Optical Glass] First, prepare oxides, hydroxides, carbonates, and nitrates corresponding to the constituent components of the glass as raw materials. The above-mentioned raw materials are weighed and blended so that the glass composition of the obtained optical glass becomes the composition shown in Tables 1 and 2, which is sufficient. Mix raw materials. The prepared raw materials (batch raw materials) obtained in this way are put into a crucible made of refractory oxides, heated at 1150°C to 1450°C for 1 hour to make molten glass, transferred to a platinum crucible, stirred for homogenization, and cleared, then melted The glass is cast into a metal mold preheated to an appropriate temperature. The cast glass was heat-treated at a temperature 100°C lower than the glass transition temperature Tg for 30 minutes, and cooled to room temperature in a furnace to obtain a glass sample. In addition, in the examples, the amount of raw materials is about 150 g based on oxides.

[玻璃成分組成的確認] 關於所得玻璃樣品,以感應耦合電漿放射光譜分析法(ICP-AES)測定各玻璃成分的含量,確認如表1、2所示各組成。[Confirmation of glass composition] Regarding the obtained glass sample, the content of each glass component was measured by inductively coupled plasma emission spectroscopy (ICP-AES), and each composition as shown in Tables 1 and 2 was confirmed.

[光學特性的測定] 關於所得玻璃樣品,進一步在玻璃轉移溫度Tg附近退火處理約30分鐘到約2小時之後,在爐內以降溫速度-30℃/小時冷卻到室溫得到退火樣品。關於所得退火樣品,測定折射率nd、ng、nF及nC、阿貝數νd、τ460、τ440、λτ90、λτ80、λτ5、λ70。將結果示於表3。 (i)折射率nd、ng、nF、nC及阿貝數νd 關於上述退火樣品,根據JIS規範JIS B 7071-1的折射率測定法,測定折射率nd、ng、nF、nC,基於下式算出阿貝數νd。 νd=(nd-1)/(nF-nC)[Measurement of Optical Properties] Regarding the obtained glass sample, after further annealing treatment in the vicinity of the glass transition temperature Tg for about 30 minutes to about 2 hours, it is cooled to room temperature at a temperature drop rate of -30° C./hour in a furnace to obtain an annealed sample. Regarding the obtained annealed sample, the refractive indices nd, ng, nF, and nC, Abbe number νd, τ460, τ440, λτ90, λτ80, λτ5, and λ70 were measured. The results are shown in Table 3. (i) Refractive index nd, ng, nF, nC and Abbe number νd Regarding the aforementioned annealed sample, the refractive index nd, ng, nF, and nC were measured in accordance with the refractive index measurement method of JIS B 7071-1, and the Abbe number νd was calculated based on the following formula. νd=(nd-1)/(nF-nC)

(ii)τ460、τ440 測定在波長460nm、440nm的內部穿透率(τ460、τ440)。 關於厚度不同的兩個玻璃試料,使用包含分別在波長460nm或440nm的表面反射損失的穿透率的測定值,以下式求得內部穿透率。玻璃試料的厚度d1 、d2 ,分別為2.0mm±0.1mm及10.0mm±0.1mm。 [數1]

Figure 02_image001
在此 τ︰在試料的厚度d2 的玻璃的內部穿透率 Δd︰試料的厚度差[d2 -d1 ] T1:以試料的厚度d1 所得包含表面反射損失的穿透率 T2:以試料的厚度d2 所得包含表面反射損失的穿透率(ii) τ460, τ440 The internal transmittance (τ460, τ440) at wavelengths of 460nm and 440nm is measured. Regarding the two glass samples with different thicknesses, the internal transmittance was obtained by the following equation using the measured value of the transmittance including the surface reflection loss at a wavelength of 460 nm or 440 nm, respectively. The thickness d 1 and d 2 of the glass sample are 2.0 mm ± 0.1 mm and 10.0 mm ± 0.1 mm, respectively. [Number 1]
Figure 02_image001
Here τ: the internal transmittance of the glass at the thickness d 2 of the sample Δd: the thickness difference of the sample [d 2 -d 1 ] T1: the transmittance including the surface reflection loss obtained by the thickness d 1 of the sample T2: The transmittance of the thickness d 2 of the sample including the surface reflection loss

(iii)λτ90、λτ80、λτ5、λ70 測定內部穿透率呈90%的波長(λτ90),內部穿透率呈80%的波長(λτ80),內部穿透率呈5%的波長(λτ5),外部穿透率呈70%的波長(λ70)。內部穿透率係以上述式計算出。(iii) λτ90, λτ80, λτ5, λ70 The internal transmittance is measured at a wavelength of 90% (λτ90), the internal transmittance is at a wavelength of 80% (λτ80), the internal transmittance is at a wavelength of 5% (λτ5), and the external transmittance is at a wavelength of 70% ( λ70). The internal penetration rate is calculated by the above formula.

[比重] 比重係以阿基米德法測定。將結果示於表3。[proportion] The specific gravity is determined by the Archimedes method. The results are shown in Table 3.

[玻璃轉移溫度Tg] 玻璃轉移溫度Tg,使用NETZSCH JAPAN公司製的示差掃描熱量分析裝置(DSC3300SA),以升溫速度10℃/分測定。將結果示於表3。[Glass transition temperature Tg] The glass transition temperature Tg was measured using a differential scanning calorimeter (DSC3300SA) manufactured by NETZSCH JAPAN at a temperature increase rate of 10°C/min. The results are shown in Table 3.

[液相溫度LT] 液相溫度LT係如下地決定。將10cc(10ml)的玻璃投入白金坩堝中以1250℃~1450℃熔融20~30分鐘之後,冷卻到玻璃轉移溫度Tg以下,將玻璃連帶白金坩堝放入既定溫度的熔解爐保持2小時。保持溫度為800℃以上以5℃或10℃間隔,保持2小時之後,冷卻,以100倍的光學顯微鏡觀察玻璃內部有無結晶。將沒有結晶析出的最低溫度作為液相溫度。將結果示於表3。[Liquid temperature LT] The liquidus temperature LT is determined as follows. Put 10cc (10ml) of glass into a platinum crucible and melt it at 1250°C to 1450°C for 20-30 minutes, then cool it to below the glass transition temperature Tg, and place the glass with the platinum crucible in a melting furnace at a predetermined temperature for 2 hours. Keep the temperature at 800°C or higher at intervals of 5°C or 10°C. After keeping it for 2 hours, cool it down, and observe whether there are crystals in the glass with a 100 times optical microscope. The lowest temperature at which no crystals precipitate was taken as the liquidus temperature. The results are shown in Table 3.

[Pt含量] 測定Pt含量。測定係以感應耦合電漿放射光譜分析法(ICP-AES)進行。將結果示於表3。[Pt content] Determine Pt content. The measurement was performed by inductively coupled plasma emission spectroscopy (ICP-AES). The results are shown in Table 3.

[表1] Sb2 O3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.04 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.005 0.005 0.02 合計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 WO3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Bi2 O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb2 O5 19.64 19.48 28.91 17.04 19.81 17.09 17.91 19.20 22.52 21.89 22.04 21.93 21.26 20.39 20.39 20.68 20.80 22.61 24.20 23.22 11.69 11.29 11.45 23.52 23.31 21.23 21.08 20.68 20.27 27.26 26.46 21.26 TiO2 17.45 20.16 18.89 17.63 23.97 17.69 27.76 22.58 26.48 25.75 25.92 25.79 23.98 23.98 23.98 23.32 23.45 25.50 27.29 21.76 29.74 28.72 33.34 22.04 21.84 23.94 23.77 23.31 22.86 14.35 14.69 23.98 ZrO2 8.65 8.57 8.05 7.52 3.45 7.52 1.72 1.52 1.79 1.74 1.75 0.00 1.60 1.60 1.60 1.56 1.56 1.71 1.82 7.28 1.64 1.58 1.61 7.37 7.30 1.60 1.59 1.55 1.52 2.33 2.33 1.60 HfO2 0.15 0.14 0.14 0.13 0.06 0.13 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.12 0.03 0.03 0.03 0.12 0.12 0.03 0.03 0.03 0.03 0.00 0.00 0.03 Y2 O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Gd2 O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 La2 O3 2.93 2.90 2.72 2.54 2.95 2.55 2.31 2.05 2.40 2.33 0.00 2.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.21 2.13 2.16 0.00 0.00 0.00 0.00 0.00 0.00 11.73 11.76 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 19.12 0.00 19.18 13.05 19.26 9.04 12.08 14.37 14.30 17.74 18.76 18.75 17.25 17.35 18.86 20.19 18.54 20.76 20.04 20.32 18.78 20.47 17.71 17.59 17.25 16.91 3.34 3.35 17.74 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.91 0.00 0.00 0.00 0.00 2.40 2.40 2.40 2.33 2.35 2.55 2.73 3.13 0.00 0.00 0.00 0.00 0.00 2.39 2.38 2.33 2.29 1.68 1.68 2.40 CaO 25.89 21.68 18.07 11.97 22.05 12.01 9.15 8.10 9.50 7.63 8.49 8.45 8.53 8.53 8.53 8.29 8.34 9.07 9.71 9.91 8.73 8.43 8.55 11.68 10.89 8.51 8.46 8.29 8.13 14.68 14.71 8.53 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 3.00 2.90 2.94 0.00 0.00 0.00 0.00 0.00 4.76 0.00 0.00 0.00 Cs2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K2 O 0.00 0.00 0.00 0.00 0.00 0.00 3.67 0.59 0.69 2.02 0.68 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 2.05 2.00 2.01 2.00 2.25 2.25 2.25 2.19 2.21 2.40 2.57 0.00 0.00 0.00 0.00 0.00 0.00 2.25 2.24 2.19 2.15 0.00 0.00 2.25 Li2 O 1.46 1.45 1.36 1.27 1.48 1.28 2.54 1.50 3.08 2.68 2.69 2.68 1.68 1.68 1.68 1.63 1.64 1.79 1.91 1.78 1.62 1.56 1.58 1.80 1.78 1.68 1.67 1.63 1.60 1.65 1.75 1.68 B2 O3 2.35 2.33 2.18 2.04 2.37 2.04 1.98 1.75 2.05 2.00 2.01 2.00 0.92 0.92 0.92 0.90 0.90 0.98 1.05 0.84 1.89 0.91 0.92 1.07 1.48 0.92 0.91 0.90 0.88 2.87 3.00 0.92 GeO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.69 5.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al2 O3 0.20 0.01 0.30 0.40 0.20 0.10 0.30 0.40 0.03 0.06 0.08 0.01 0.10 0.01 0.01 0.20 0.02 0.20 0.03 0.19 0.10 0.01 0.20 0.01 0.06 0.30 1.00 2.91 0.04 0.28 0.12 0.00 SiO2 21.31 23.28 19.41 20.36 23.68 20.43 19.60 17.36 20.33 19.80 19.93 19.83 19.51 19.47 19.47 18.93 15.93 14.32 8.48 11.94 18.61 16.49 16.92 13.62 12.76 19.43 19.30 18.93 18.56 19.85 20.15 19.61 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 比較例A [Table 1] Sb 2 O 3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.04 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.005 0.005 0.02 total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 WO 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Bi 2 O 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb 2 O 5 19.64 19.48 28.91 17.04 19.81 17.09 17.91 19.20 22.52 21.89 22.04 21.93 21.26 20.39 20.39 20.68 20.80 22.61 24.20 23.22 11.69 11.29 11.45 23.52 23.31 21.23 21.08 20.68 20.27 27.26 26.46 21.26 TiO 2 17.45 20.16 18.89 17.63 23.97 17.69 27.76 22.58 26.48 25.75 25.92 25.79 23.98 23.98 23.98 23.32 23.45 25.50 27.29 21.76 29.74 28.72 33.34 22.04 21.84 23.94 23.77 23.31 22.86 14.35 14.69 23.98 ZrO 2 8.65 8.57 8.05 7.52 3.45 7.52 1.72 1.52 1.79 1.74 1.75 0.00 1.60 1.60 1.60 1.56 1.56 1.71 1.82 7.28 1.64 1.58 1.61 7.37 7.30 1.60 1.59 1.55 1.52 2.33 2.33 1.60 HfO 2 0.15 0.14 0.14 0.13 0.06 0.13 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.12 0.03 0.03 0.03 0.12 0.12 0.03 0.03 0.03 0.03 0.00 0.00 0.03 Y 2 O 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Gd 2 O 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 La 2 O 3 2.93 2.90 2.72 2.54 2.95 2.55 2.31 2.05 2.40 2.33 0.00 2.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.21 2.13 2.16 0.00 0.00 0.00 0.00 0.00 0.00 11.73 11.76 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 19.12 0.00 19.18 13.05 19.26 9.04 12.08 14.37 14.30 17.74 18.76 18.75 17.25 17.35 18.86 20.19 18.54 20.76 20.04 20.32 18.78 20.47 17.71 17.59 17.25 16.91 3.34 3.35 17.74 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.91 0.00 0.00 0.00 0.00 2.40 2.40 2.40 2.33 2.35 2.55 2.73 3.13 0.00 0.00 0.00 0.00 0.00 2.39 2.38 2.33 2.29 1.68 1.68 2.40 CaO 25.89 21.68 18.07 11.97 22.05 12.01 9.15 8.10 9.50 7.63 8.49 8.45 8.53 8.53 8.53 8.29 8.34 9.07 9.71 9.91 8.73 8.43 8.55 11.68 10.89 8.51 8.46 8.29 8.13 14.68 14.71 8.53 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 3.00 2.90 2.94 0.00 0.00 0.00 0.00 0.00 4.76 0.00 0.00 0.00 Cs2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K 2 O 0.00 0.00 0.00 0.00 0.00 0.00 3.67 0.59 0.69 2.02 0.68 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 2 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 2.05 2.00 2.01 2.00 2.25 2.25 2.25 2.19 2.21 2.40 2.57 0.00 0.00 0.00 0.00 0.00 0.00 2.25 2.24 2.19 2.15 0.00 0.00 2.25 Li 2 O 1.46 1.45 1.36 1.27 1.48 1.28 2.54 1.50 3.08 2.68 2.69 2.68 1.68 1.68 1.68 1.63 1.64 1.79 1.91 1.78 1.62 1.56 1.58 1.80 1.78 1.68 1.67 1.63 1.60 1.65 1.75 1.68 B 2 O 3 2.35 2.33 2.18 2.04 2.37 2.04 1.98 1.75 2.05 2.00 2.01 2.00 0.92 0.92 0.92 0.90 0.90 0.98 1.05 0.84 1.89 0.91 0.92 1.07 1.48 0.92 0.91 0.90 0.88 2.87 3.00 0.92 GeO 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.69 5.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 2 O 3 0.20 0.01 0.30 0.40 0.20 0.10 0.30 0.40 0.03 0.06 0.08 0.01 0.10 0.01 0.01 0.20 0.02 0.20 0.03 0.19 0.10 0.01 0.20 0.01 0.06 0.30 1.00 2.91 0.04 0.28 0.12 0.00 SiO 2 21.31 23.28 19.41 20.36 23.68 20.43 19.60 17.36 20.33 19.80 19.93 19.83 19.51 19.47 19.47 18.93 15.93 14.32 8.48 11.94 18.61 16.49 16.92 13.62 12.76 19.43 19.30 18.93 18.56 19.85 20.15 19.61 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 twenty one twenty two twenty three twenty four 25 26 27 28 29 30 31 Comparative example A

[表2] (Li2 O/29.9)/(B2 O3 /69.6+Li2 O/29.9 +Na2 O/62.0+K2 O/94.2) 0.59 0.59 0.59 0.59 0.59 0.59 0.56 0.46 0.60 0.52 0.57 0.57 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.83 0.67 0.80 0.80 0.80 0.74 0.53 0.53 0.53 0.53 0.57 0.58 0.53 (Li2 O+Na2 O+K2 O)/ (MgO+CaO+SrO+BaO) 0.06 0.07 0.08 0.04 0.07 0.04 0.28 0.12 0.31 0.34 0.24 0.24 0.14 0.13 0.13 0.14 0.14 0.14 0.14 0.05 0.05 0.05 0.05 0.06 0.06 0.14 0.14 0.14 0.12 0.08 0.09 0.14 (MgO+CaO+ SrO+BaO) 25.89 21.68 18.07 31.09 22.05 31.19 22.20 31.27 18.54 19.71 22.86 22.75 28.67 29.69 29.68 27.87 28.04 30.48 32.63 32.90 32.49 31.37 31.81 30.46 31.36 28.61 28.43 27.87 32.09 19.69 19.74 28.67 TiO2 /Nb2 O5 0.89 1.03 0.65 1.03 1.21 1.04 1.55 1.18 1.18 1.18 1.18 1.18 1.13 1.18 1.18 1.13 1.13 1.13 1.13 0.94 2.54 2.54 2.91 0.94 0.94 1.13 1.13 1.13 1.13 0.53 0.56 1.13 (TiO2 +CaO+SrO+Y2 O3 )/(BaO+MgO+Nb2 O5 +Ta2 O5 +WO3 +Bi2 O3 +La2 O3 +Gd2 O3 ) 1.92 1.87 1.17 0.76 2.02 0.77 1.11 0.85 1.06 0.92 0.95 0.89 0.90 0.89 0.89 0.89 0.89 0.90 0.90 0.81 1.02 1.18 1.14 0.80 0.75 0.89 0.90 0.89 0.79 0.73 0.75 0.90 (B2 O3 +ZnO+La2 O3 +Gd2 O3 +WO3 ) /(SiO2 +CaO+TiO2 +Nb2 O5 ) 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.03 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.19 0.19 0.01 (TiO2 +Nb2 O5 +ZrO2 )/ (B2 O3 +SiO2 +Al2 O3 +GeO2 ) 1.92 1.88 2.55 1.85 1.80 1.87 2.17 2.22 2.27 2.26 2.26 2.18 2.28 2.25 2.25 2.01 2.06 3.21 5.58 4.03 2.09 2.39 2.57 3.60 3.67 2.26 2.19 2.00 2.29 1.91 1.87 2.28 Al2 O3 /(SiO2 +ZrO2 ) 0.0067 0.0003 0.011 0.014 0.0074 0.0036 0.014 0.021 0.0014 0.0028 0.0037 0.0005 0.0047 0.0005 0.0005 0.010 0.0011 0.012 0.0029 0.010 0.0049 0.0006 0.011 0.0005 0.0030 0.014 0.048 0.14 0.0020 0.01 0.0053 0.0000 (BaO+La2 O3+Gd2 O3 +WO3 ) /(CaO+SrO+Y2 O3 ) 0.11 0.13 0.15 1.81 0.13 1.81 1.68 1.77 1.20 1.89 1.69 1.97 1.62 1.72 1.72 1.62 1.62 1.62 1.62 1.42 2.63 1.55 2.63 1.61 1.88 1.62 1.62 1.62 1.62 0.92 0.92 1.62 (B2 O3 +P2 O5 )/ (SiO2 +Al2 O3 ) 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.06 0.07 0.12 0.07 0.10 0.06 0.05 0.08 0.12 0.05 0.04 0.04 0.05 0.14 0.15 0.05 Li2 O+Na2 O+K2 O 1.46 1.45 1.36 1.27 1.48 1.28 6.21 3.84 5.82 6.70 5.38 5.36 3.93 3.93 3.93 3.82 3.85 4.19 4.48 1.78 1.62 1.56 1.58 1.80 1.78 3.93 3.91 3.82 3.75 1.65 1.75 3.93 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 A [Table 2] (Li 2 O/29.9)/(B 2 O 3 /69.6+Li 2 O/29.9 +Na 2 O/62.0+K 2 O/94.2) 0.59 0.59 0.59 0.59 0.59 0.59 0.56 0.46 0.60 0.52 0.57 0.57 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.83 0.67 0.80 0.80 0.80 0.74 0.53 0.53 0.53 0.53 0.57 0.58 0.53 (Li 2 O+Na 2 O+K 2 O)/ (MgO+CaO+SrO+BaO) 0.06 0.07 0.08 0.04 0.07 0.04 0.28 0.12 0.31 0.34 0.24 0.24 0.14 0.13 0.13 0.14 0.14 0.14 0.14 0.05 0.05 0.05 0.05 0.06 0.06 0.14 0.14 0.14 0.12 0.08 0.09 0.14 (MgO+CaO+ SrO+BaO) 25.89 21.68 18.07 31.09 22.05 31.19 22.20 31.27 18.54 19.71 22.86 22.75 28.67 29.69 29.68 27.87 28.04 30.48 32.63 32.90 32.49 31.37 31.81 30.46 31.36 28.61 28.43 27.87 32.09 19.69 19.74 28.67 TiO 2 /Nb 2 O 5 0.89 1.03 0.65 1.03 1.21 1.04 1.55 1.18 1.18 1.18 1.18 1.18 1.13 1.18 1.18 1.13 1.13 1.13 1.13 0.94 2.54 2.54 2.91 0.94 0.94 1.13 1.13 1.13 1.13 0.53 0.56 1.13 (TiO 2 +CaO+SrO+Y 2 O 3 )/(BaO+MgO+Nb 2 O 5 +Ta 2 O 5 +WO 3 +Bi 2 O 3 +La 2 O 3 +Gd 2 O 3 ) 1.92 1.87 1.17 0.76 2.02 0.77 1.11 0.85 1.06 0.92 0.95 0.89 0.90 0.89 0.89 0.89 0.89 0.90 0.90 0.81 1.02 1.18 1.14 0.80 0.75 0.89 0.90 0.89 0.79 0.73 0.75 0.90 (B 2 O 3 +ZnO+La 2 O 3 +Gd 2 O 3 +WO 3 ) /(SiO 2 +CaO+TiO 2 +Nb 2 O 5 ) 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.03 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.19 0.19 0.01 (TiO 2 +Nb 2 O 5 +ZrO 2 )/ (B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 ) 1.92 1.88 2.55 1.85 1.80 1.87 2.17 2.22 2.27 2.26 2.26 2.18 2.28 2.25 2.25 2.01 2.06 3.21 5.58 4.03 2.09 2.39 2.57 3.60 3.67 2.26 2.19 2.00 2.29 1.91 1.87 2.28 Al 2 O 3 /(SiO 2 +ZrO 2 ) 0.0067 0.0003 0.011 0.014 0.0074 0.0036 0.014 0.021 0.0014 0.0028 0.0037 0.0005 0.0047 0.0005 0.0005 0.010 0.0011 0.012 0.0029 0.010 0.0049 0.0006 0.011 0.0005 0.0030 0.014 0.048 0.14 0.0020 0.01 0.0053 0.0000 (BaO+La 2 O3+Gd 2 O 3 +WO 3 ) /(CaO+SrO+Y 2 O 3 ) 0.11 0.13 0.15 1.81 0.13 1.81 1.68 1.77 1.20 1.89 1.69 1.97 1.62 1.72 1.72 1.62 1.62 1.62 1.62 1.42 2.63 1.55 2.63 1.61 1.88 1.62 1.62 1.62 1.62 0.92 0.92 1.62 (B 2 O 3 +P 2 O 5 )/ (SiO 2 +Al 2 O 3 ) 0.11 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.06 0.07 0.12 0.07 0.10 0.06 0.05 0.08 0.12 0.05 0.04 0.04 0.05 0.14 0.15 0.05 Li 2 O+Na 2 O+K 2 O 1.46 1.45 1.36 1.27 1.48 1.28 6.21 3.84 5.82 6.70 5.38 5.36 3.93 3.93 3.93 3.82 3.85 4.19 4.48 1.78 1.62 1.56 1.58 1.80 1.78 3.93 3.91 3.82 3.75 1.65 1.75 3.93 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 twenty one twenty two twenty three twenty four 25 26 27 28 29 30 31 A

[表3] No. 比重 nd vd 玻璃轉移溫度Tg (℃) 液相溫度LT (℃) Pt含量 (質量ppm) λτ90 (nm) λτ80 (nm) λτ5 (nm) τ460 (%) τ440 (%) βOH (mm-1 ) λ70 (nm) 1 3.59 1.87939 28.31 696.9 1300 3.9 435 405 365 93.4 90.9 416 2 3.58 1.88972 26.84 672.2 1260 4.8 445 406 365 92.5 89.0 425 3 3.71 1.93950 24.48 1400 5.2 438 407 366 93.0 90.3 425 4 3.90 1.89198 27.09 673.5 1260 4.8 438 413 366 94.0 90.2 427 5 3.52 1.89786 25.67 661.3 1260 5.8 438 411 365 93.8 90.3 424 6 3.90 1.88879 27.28 669.6 1190 2.1 416 398 365 95.6 94.1 0.38 401 7 3.91 1.91305 23.64 615.6 1235 4.6 431 407 366 94.6 91.9 418 8 3.91 1.91307 24.90 615.6 1230 4.4 430 407 366 94.8 92.2 415 9 3.64 1.92548 23.24 589.5 1140 3.7 433 408 366 94.4 91.5 0.54 421 10 3.68 1.91707 23.36 588.5 1130 3.7 428 405 366 95.3 92.7 0.49 415 11 3.70 1.92808 23.40 592.4 1145 4.4 437 411 366 94.0 90.7 0.55 425 12 3.72 1.92222 23.42 597.0 1130 2.1 425 403 366 95.4 93.1 0.42 410 13 3.83 1.92043 23.99 628.9 1165 2.1 423 402 366 95.5 93.5 0.47 409 14 3.84 1.91655 24.18 619.1 1165 4.4 431 409 366 94.8 92.1 0.63 418 15 3.84 1.91671 24.20 620.2 1165 4.4 434 414 367 94.9 91.6 0.67 424 16 3.84 1.91551 24.16 1170 3.0 424 402 366 95.4 93.2 0.51 410 17 3.91 1.92860 23.85 625.4 1170 3.7 424 403 366 95.9 93.6 0.61 410 18 3.78 1.90296 24.97 1200 1.4 406 395 365 98.0 97.1 0.5 397 19 3.83 1.91842 24.04 1230 3.4 414 399 366 97.1 95.5 403 20 4.12 1.97733 23.91 651.4 1260 3.5 427 405 365 96.1 93.1 422 21 3.84 1.93099 23.95 643.8 1180 4.2 434 408 366 95.0 91.6 0.47 422 22 3.97 1.94583 24.40 665.8 1130 4.5 431 407 366 95.1 92.1 0.43 421 23 3.90 1.96698 22.63 657.7 1180 2.7 431 403 365 94.7 92.2 0.44 412 24 4.05 1.97588 23.63 654.7 1260 5.2 434 411 366 95.0 91.5 429 25 4.09 1.97725 23.63 649.7 1260 5.2 430 407 365 95.7 92.6 423 26 3.82 1.91860 24.05 629.7 1170 4.5 433 407 366 94.6 91.6 0.45 420 27 3.81 1.91433 24.03 629.5 1190 4.0 432 406 366 94.8 91.8 0.46 418 28 3.77 1.90213 24.02 629.2 1210 5.0 437 405 365 92.9 90.4 0.43 420 29 3.80 1.90143 25.27 623.4 1220 4.2 427 404 365 94.7 92.5 0.37 412 30 3.84 1.9036 27.0 653 1210 2 417 395 356 96.1 94.3 0.5 407 31 3.83 1.9008 27.1 640 1200 2 410 391 362 96.3 95.1 0.5 400 比較例A 3.832 1.92274 23.88 629.7 1165 11 471 434 370 87.9 82.2 449 [table 3] No. proportion nd vd Glass transition temperature Tg (℃) Liquidus temperature LT (℃) Pt content (mass ppm) λτ90 (nm) λτ80 (nm) λτ5 (nm) τ460 (%) τ440 (%) βOH (mm -1 ) λ70 (nm) 1 3.59 1.87939 28.31 696.9 1300 3.9 435 405 365 93.4 90.9 416 2 3.58 1.88972 26.84 672.2 1260 4.8 445 406 365 92.5 89.0 425 3 3.71 1.93950 24.48 1400 5.2 438 407 366 93.0 90.3 425 4 3.90 1.89198 27.09 673.5 1260 4.8 438 413 366 94.0 90.2 427 5 3.52 1.89786 25.67 661.3 1260 5.8 438 411 365 93.8 90.3 424 6 3.90 1.88879 27.28 669.6 1190 2.1 416 398 365 95.6 94.1 0.38 401 7 3.91 1.91305 23.64 615.6 1235 4.6 431 407 366 94.6 91.9 418 8 3.91 1.91307 24.90 615.6 1230 4.4 430 407 366 94.8 92.2 415 9 3.64 1.92548 23.24 589.5 1140 3.7 433 408 366 94.4 91.5 0.54 421 10 3.68 1.91707 23.36 588.5 1130 3.7 428 405 366 95.3 92.7 0.49 415 11 3.70 1.92808 23.40 592.4 1145 4.4 437 411 366 94.0 90.7 0.55 425 12 3.72 1.92222 23.42 597.0 1130 2.1 425 403 366 95.4 93.1 0.42 410 13 3.83 1.92043 23.99 628.9 1165 2.1 423 402 366 95.5 93.5 0.47 409 14 3.84 1.91655 24.18 619.1 1165 4.4 431 409 366 94.8 92.1 0.63 418 15 3.84 1.91671 24.20 620.2 1165 4.4 434 414 367 94.9 91.6 0.67 424 16 3.84 1.91551 24.16 1170 3.0 424 402 366 95.4 93.2 0.51 410 17 3.91 1.92860 23.85 625.4 1170 3.7 424 403 366 95.9 93.6 0.61 410 18 3.78 1.90296 24.97 1200 1.4 406 395 365 98.0 97.1 0.5 397 19 3.83 1.91842 24.04 1230 3.4 414 399 366 97.1 95.5 403 20 4.12 1.97733 23.91 651.4 1260 3.5 427 405 365 96.1 93.1 422 twenty one 3.84 1.93099 23.95 643.8 1180 4.2 434 408 366 95.0 91.6 0.47 422 twenty two 3.97 1.94583 24.40 665.8 1130 4.5 431 407 366 95.1 92.1 0.43 421 twenty three 3.90 1.96698 22.63 657.7 1180 2.7 431 403 365 94.7 92.2 0.44 412 twenty four 4.05 1.97588 23.63 654.7 1260 5.2 434 411 366 95.0 91.5 429 25 4.09 1.97725 23.63 649.7 1260 5.2 430 407 365 95.7 92.6 423 26 3.82 1.91860 24.05 629.7 1170 4.5 433 407 366 94.6 91.6 0.45 420 27 3.81 1.91433 24.03 629.5 1190 4.0 432 406 366 94.8 91.8 0.46 418 28 3.77 1.90213 24.02 629.2 1210 5.0 437 405 365 92.9 90.4 0.43 420 29 3.80 1.90143 25.27 623.4 1220 4.2 427 404 365 94.7 92.5 0.37 412 30 3.84 1.9036 27.0 653 1210 2 417 395 356 96.1 94.3 0.5 407 31 3.83 1.9008 27.1 640 1200 2 410 391 362 96.3 95.1 0.5 400 Comparative example A 3.832 1.92274 23.88 629.7 1165 11 471 434 370 87.9 82.2 449

(實施例2) [耐火磚的侵蝕試驗] 將表1的No.13、26、27、28及比較例A的玻璃組成的玻璃樣品,以與實施例1同樣的步驟製作,以如下程序進行關於耐火磚侵蝕的評價。(Example 2) [Corrosion test of refractory bricks] The glass samples of No. 13, 26, 27, 28 and the glass composition of Comparative Example A in Table 1 were produced in the same procedure as in Example 1, and the evaluation of the corrosion of the refractory bricks was performed in the following procedure.

將40cc玻璃樣品,以白金坩堝以1280℃加熱30分鐘熔解之。將圓柱形的磚試料(AGC陶瓷製ZB-1711VF,SiO2 :ZrO2 :Al2 O3 的比率約1:4:5,直徑20mm,長度100mm),浸漬在熔解在白金坩堝中的玻璃樣品,以1280℃加熱72小時。加熱後,取出磚試料。A 40cc glass sample was melted by heating it in a platinum crucible at 1280°C for 30 minutes. A cylindrical brick sample (ZB-1711VF made by AGC ceramics, SiO 2 :ZrO 2 :Al 2 O 3 ratio of about 1:4:5, diameter 20mm, length 100mm) was immersed in a glass sample melted in a platinum crucible , Heated at 1280°C for 72 hours. After heating, take out the brick sample.

將取出的磚試料,以通過試料中心縱剖成一半。在剖面,試料的寬度相當於直徑。將剖面的照片示於圖1。如圖1所示,在比較例,浸漬時在熔解的玻璃樣品的液面部分有如頸縮的損傷。此外,浸漬在熔解的玻璃樣品的部分,整體被侵蝕而直徑變小。另一方面,在實施例,磚試料並沒有如頸縮的明顯損傷,浸漬在熔解的玻璃樣品的部分侵蝕亦較小。The taken out brick sample was longitudinally cut into half through the center of the sample. In the cross section, the width of the sample corresponds to the diameter. The photograph of the cross section is shown in Fig. 1. As shown in Fig. 1, in the comparative example, the liquid surface portion of the molten glass sample was damaged such as necking during immersion. In addition, the part immersed in the molten glass sample was corroded as a whole to reduce the diameter. On the other hand, in the examples, the brick samples did not have obvious damage such as necking, and the partial erosion of the glass samples immersed in the molten glass was also small.

將取出的磚試料如下評價。首先,在剖面,如圖2所示,測定侵蝕試驗之前的直徑、侵蝕試驗之後在玻璃液面的接觸部附近所發生的直徑的極小值(頸縮位置的直徑),從該頸縮位置的25mm下方的直徑。基於下式,評價侵蝕試驗之後的直徑的增減率(%)、平均增減率ΔD。再者,在直徑,並不包含附著在磚試料表面的玻璃或玻璃變質部。The taken-out brick samples were evaluated as follows. First, in the cross section, as shown in Fig. 2, the diameter before the corrosion test and the minimum value of the diameter (diameter of the necked position) occurring near the contact part of the glass surface after the corrosion test are measured. Diameter below 25mm. Based on the following formula, the diameter increase/decrease rate (%) and the average increase/decrease rate ΔD after the erosion test were evaluated. In addition, the diameter does not include the glass or glass deterioration part adhering to the surface of the brick sample.

增減率DN (%)=([直徑的極小值(頸縮位置的直徑)]-[侵蝕試驗之前的直徑])/[侵蝕試驗之前的直徑]×100Increase/decrease rate D N (%)=([Minimum value of diameter (diameter of necking position)]-[Diameter before erosion test])/[Diameter before erosion test]×100

增減率D25 (%)=([侵蝕試驗後的頸縮位置的25mm下方的直徑]-[侵蝕試驗之前的直徑])/[侵蝕試驗之前的直徑]×100Increase/decrease rate D 25 (%)=([Diameter under 25mm of the necking position after erosion test]-[Diameter before erosion test])/[Diameter before erosion test]×100

平均增減率ΔD=(增減率DN +增減率D25 )/2Average increase/decrease rate ΔD=(Increase/decrease rate D N + Increase/decrease rate D 25 )/2

在上述式,磚試料的直徑,係以可顯示到0.01mm的數位游標卡尺測量3次,將其平均值(單位︰mm)的小數點以下第2位四捨五入求到小數點以下第一位之值。基於平均增減率ΔD的絕對值(|ΔD|)之值,以如表4之分類,判定侵蝕的程度。將結果示於表5。In the above formula, the diameter of the brick sample is measured 3 times with a digital vernier caliper that can display to 0.01mm, and the average value (unit: mm) is rounded to the first decimal place. . Based on the absolute value (|ΔD|) of the average increase/decrease rate ΔD, the degree of erosion is judged by the classification as shown in Table 4. The results are shown in Table 5.

[表4] 根據|ΔD|的判定區分 判定結果 記號 4%以內 磚的侵蝕少 I 10%以內 磚的侵蝕稍少 II 30%以內 磚的侵蝕稍多 III 超過30% 磚的侵蝕多 IV [Table 4] According to the judgment of |ΔD| judgement result mark Within 4% Less erosion of bricks I Within 10% Brick erosion is slightly less II Within 30% Brick erosion is slightly more III More than 30% Brick erosion is much IV

[表5] 根據|ΔD|的判定 III II II I I 平均增減率ΔD -17.9% -5.2% -4.7% -3.47% +2.21% 頸縮位置的25mm下方增減率D25 -18.1% -2.5% -2.9% -1.0% +2.5% 頸縮位置的增減率DN -17.6% -7.9% -6.4% -5.9% +2.0% 磚試料的直徑(mm) 侵蝕試驗後 頸縮位置的25mm下方的直徑 16.7 19.8 19.8 20.0 20.9 頸縮位置的直徑 16.8 18.7 19.1 19.0 20.8 侵蝕試驗前 20.4 20.3 20.4 20.2 20.4 No. 比較例A 13 26 27 28 [table 5] According to the judgment of |ΔD| III II II I I Average increase and decrease rate ΔD -17.9% -5.2% -4.7% -3.47% +2.21% The rate of increase/decrease below 25mm of the necking position D 25 -18.1% -2.5% -2.9% -1.0% +2.5% Increase and decrease rate of necking position D N -17.6% -7.9% -6.4% -5.9% +2.0% Diameter of brick sample (mm) After erosion test Diameter 25mm below the necking position 16.7 19.8 19.8 20.0 20.9 Diameter of necking position 16.8 18.7 19.1 19.0 20.8 Before erosion test 20.4 20.3 20.4 20.2 20.4 No. Comparative example A 13 26 27 28

(實施例3) 使用在實施例1所製作的各光學玻璃,以習知的方法製作透鏡胚料,藉由研磨等習知方法將透鏡胚料加工,製作各種透鏡。 製作的光學透鏡,係平面透鏡、雙凸透鏡、兩面凹鏡、平凸透鏡、平凹鏡、凹彎月形透鏡、凸彎月形透鏡等的各種透鏡。在此亦可將光學玻璃不加熱軟化而切斷所得的構件作為透鏡胚料。 各種透鏡,藉由與別種光學玻璃組成的透鏡搭配,可良好地修正二次色差。(Example 3) Using each optical glass produced in Example 1, a lens blank was produced by a conventional method, and the lens blank was processed by a conventional method such as grinding to produce various lenses. The optical lenses produced are various lenses such as flat lenses, double-convex lenses, double-sided concave lenses, plano-convex lenses, plano-concave lenses, concave meniscus lenses, and convex meniscus lenses. Here, a member obtained by cutting the optical glass without being softened by heating may be used as a lens blank. Various lenses, by matching with lenses composed of other kinds of optical glass, can well correct the secondary chromatic aberration.

此外,由於玻璃為低比重,故各透鏡均較具有同等光學特性、尺寸的透鏡重量小,適於護目鏡型或眼鏡型的AR顯示裝置用。同樣地,使用以實施例1製作的各種光學玻璃製作三棱鏡。In addition, since the glass has a low specific gravity, each lens has a smaller weight than a lens with the same optical characteristics and size, and is suitable for use in goggles or glasses-type AR display devices. Similarly, various optical glasses produced in Example 1 were used to produce triangular prisms.

本次揭示的實施形態在所有的點僅為例示應該認為並非限制。本發明的範圍並非上述說明而係專利申請範圍所示,意指包含與專利申請範圍均等的意思及範圍內的所有變更。The embodiment disclosed this time is merely an illustration in all points and should be regarded as not limiting. The scope of the present invention is shown not by the above description but by the scope of the patent application, and it is intended to include all changes within the meaning and scope equivalent to the scope of the patent application.

例如,對上述例示的玻璃組成,進行說明書所記載的組成調整,可製作關於本發明的一態樣的光學玻璃。 此外,當然可將說明書所例示或作為較佳的範圍所記載的事項組合兩個以上。For example, by performing the composition adjustment described in the specification on the glass composition exemplified above, it is possible to produce an optical glass according to an aspect of the present invention. In addition, it is of course possible to combine two or more items illustrated in the specification or described as a preferable range.

無。without.

[圖1]係關於本實施形態的光學玻璃的一例,表示內部穿透率的圖表,表示作為內部穿透率呈90%的波長λτ90。 [圖2]係表示在實施例2,磚試料的侵蝕試驗結果的照片。 [圖3]係表示在實施例2的侵蝕試驗,測定磚試料直徑的位置之圖。[FIG. 1] is an example of the optical glass of this embodiment, a graph showing the internal transmittance, and shows the wavelength λτ90 at which the internal transmittance is 90%. [Figure 2] is a photograph showing the results of the erosion test of the brick sample in Example 2. [Fig. 3] is a diagram showing the position where the diameter of the brick sample was measured in the erosion test of Example 2.

Claims (6)

一種光學玻璃,其 BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )]為2.0以下, B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.10以下, Li2 O、Na2 O及K2 O的共計含量[Li2 O+Na2 O+K2 O]為10質量%以下, Al2 O3 的含量和SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。An optical glass, the mass ratio of the total content of BaO, La 2 O 3 , Gd 2 O 3 and WO 3 to the total content of CaO, SrO and Y 2 O 3 [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 )] is 2.0 or less, the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [(B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] is 0.10 or less, the total content of Li 2 O, Na 2 O, and K 2 O [Li 2 O+Na 2 O+K 2 O] 10 mass% or less, Al 2 O 3 mass content and the total content of SiO 2 and ZrO 2 ratio [(Al 2 O 3 / ( SiO 2 + ZrO 2)] is greater than 0.0000. 一種光學玻璃,其 TiO2 及Nb2 O5 的共計含量[TiO2 +Nb2 O5 ]為20質量%以上, Al2 O3 的含量與SiO2 及ZrO2 的共計含量的質量比[(Al2 O3 /(SiO2 +ZrO2 )]大於0.0000。An optical glass in which the total content of TiO 2 and Nb 2 O 5 [TiO 2 +Nb 2 O 5 ] is 20% by mass or more, and the mass ratio of the content of Al 2 O 3 to the total content of SiO 2 and ZrO 2 [( Al 2 O 3 /(SiO 2 +ZrO 2 )] is greater than 0.0000. 如請求項2之光學玻璃,其中B2 O3 及P2 O5 的共計含量與SiO2 及Al2 O3 的共計含量的質量比[(B2 O3 +P2 O5 )/(SiO2 +Al2 O3 )]為0.15以下。Such as the optical glass of claim 2, wherein the mass ratio of the total content of B 2 O 3 and P 2 O 5 to the total content of SiO 2 and Al 2 O 3 [(B 2 O 3 +P 2 O 5 )/(SiO 2 +Al 2 O 3 )] is 0.15 or less. 如請求項2或3之光學玻璃,其中TiO2 、Nb2 O5 及ZrO2 的共計含量與B2 O3 、SiO2 、Al2 O3 及GeO2 的共計含量的質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]為1.8以上, BaO、La2 O3 、Gd2 O3 及WO3 的共計含量與CaO、SrO及Y2 O3 的共計含量的質量比[(BaO+La2 O3 +Gd2 O3 +WO3 )/(CaO+SrO+Y2 O3 )為3.0以下。For the optical glass of claim 2 or 3, the mass ratio of the total content of TiO 2 , Nb 2 O 5 and ZrO 2 to the total content of B 2 O 3 , SiO 2 , Al 2 O 3 and GeO 2 [(TiO 2 +Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] is 1.8 or more, the total content of BaO, La 2 O 3 , Gd 2 O 3 and WO 3 is equal to The mass ratio of the total content of CaO, SrO, and Y 2 O 3 [(BaO+La 2 O 3 +Gd 2 O 3 +WO 3 )/(CaO+SrO+Y 2 O 3 ) is 3.0 or less. 如請求項2至4之任何一項之光學玻璃,其中TiO2 、Nb2 O5 及ZrO2 的共計含量與B2 O3 、SiO2 、Al2 O3 及GeO2 的共計含量的質量比[(TiO2 +Nb2 O5 +ZrO2 )/(B2 O3 +SiO2 +Al2 O3 +GeO2 )]為1.8以上, B2 O3 、ZnO、La2 O3 、Gd2 O3 及WO3 的共計含量與SiO2 、CaO、TiO2 及Nb2 O5 的共計含量的質量比[(B2 O3 +ZnO+La2 O3 +Gd2 O3 +WO3 )/(SiO2 +CaO+TiO2 +Nb2 O5 )]為0.15以下。For the optical glass of any one of claims 2 to 4, the mass ratio of the total content of TiO 2 , Nb 2 O 5 and ZrO 2 to the total content of B 2 O 3 , SiO 2 , Al 2 O 3 and GeO 2 [(TiO 2 +Nb 2 O 5 +ZrO 2 )/(B 2 O 3 +SiO 2 +Al 2 O 3 +GeO 2 )] is 1.8 or more, B 2 O 3 , ZnO, La 2 O 3 , Gd 2 The mass ratio of the total content of O 3 and WO 3 to the total content of SiO 2 , CaO, TiO 2 and Nb 2 O 5 [(B 2 O 3 +ZnO+La 2 O 3 +Gd 2 O 3 +WO 3 )/ (SiO 2 +CaO+TiO 2 +Nb 2 O 5 )] is 0.15 or less. 一種光學元件,其係以請求項1至5項之任何一項之光學玻璃所構成。An optical element composed of the optical glass of any one of claims 1 to 5.
TW110104661A 2020-02-28 2021-02-08 Optical glass and optical element TW202132234A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-034272 2020-02-28
JP2020-034271 2020-02-28
JP2020-034273 2020-02-28
JP2020034273 2020-02-28
JP2020034272 2020-02-28
JP2020034271 2020-02-28
JP2020-038425 2020-03-06
JP2020038425 2020-03-06

Publications (1)

Publication Number Publication Date
TW202132234A true TW202132234A (en) 2021-09-01

Family

ID=77490146

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110104661A TW202132234A (en) 2020-02-28 2021-02-08 Optical glass and optical element

Country Status (4)

Country Link
JP (1) JPWO2021171950A1 (en)
CN (1) CN115175882B (en)
TW (1) TW202132234A (en)
WO (1) WO2021171950A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183140A1 (en) 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2031590B1 (en) 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021828A (en) * 1983-07-14 1985-02-04 Hoya Corp Glass for spectacle lens
JPS6036348A (en) * 1983-08-05 1985-02-25 Nippon Kogaku Kk <Nikon> Glass for eye glass lenses
BR8605356A (en) * 1985-11-29 1987-08-04 Corning Glass Works GLASS FOR OPTICAL AND / OR OPHTHALMIC APPLICATIONS
JPS63230536A (en) * 1987-03-18 1988-09-27 Nippon Sheet Glass Co Ltd Thallium-containing optical glass
DE4210011C1 (en) * 1992-03-27 1993-07-15 Schott Glaswerke, 6500 Mainz, De
JPH08217484A (en) * 1995-02-13 1996-08-27 Ohara Inc Optical glass
JP2001180969A (en) * 1999-12-28 2001-07-03 Central Glass Co Ltd Manufacturing method of lithium-containing glass with high young's modulus and its glass product
JP6577284B2 (en) * 2015-08-11 2019-09-18 光ガラス株式会社 Optical glass, optical element using optical glass, optical device
JP2017190280A (en) * 2016-04-15 2017-10-19 株式会社オハラ Optical glass
KR20190038484A (en) * 2016-07-28 2019-04-08 에이지씨 가부시키가이샤 Optical glass and optical parts
JP7157522B2 (en) * 2017-03-29 2022-10-20 Hoya株式会社 Optical glasses and optical elements
JP7171241B2 (en) * 2018-05-31 2022-11-15 Hoya株式会社 Optical glasses and optical elements

Also Published As

Publication number Publication date
WO2021171950A1 (en) 2021-09-02
JPWO2021171950A1 (en) 2021-09-02
CN115175882B (en) 2024-04-12
CN115175882A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP6989559B2 (en) Optical glass and optical elements
TWI671269B (en) Optical glass and optical components
JP2023017903A (en) Optical glass and optical element
TW202132234A (en) Optical glass and optical element
TWI773862B (en) Optical Glass and Optical Components
JP6812147B2 (en) Optical glass, optics blank, and optics
JP7401236B2 (en) Optical glass and optical elements
TWI735451B (en) Glass, optical glass, glass materials for polishing, glass materials for press molding, and optical components
JP7383375B2 (en) Optical glass and optical elements
JP2018002521A (en) Optical glass, optical element blank and optical element
JP2019182716A (en) Optical glass and optical element
JP7320110B2 (en) Optical glasses and optical elements
WO2018221678A1 (en) Glass, optical glass, and optical element
TWI836089B (en) Optical glass and optical components
JP7142118B2 (en) Optical glasses and optical elements
TWI836510B (en) Optical glass and optical components
JP7272757B2 (en) Optical glasses and optical elements
JP7089933B2 (en) Optical glass and optical elements
JP7339781B2 (en) Optical glasses and optical elements
JP7086726B2 (en) Optical glass and optical elements
TW202012329A (en) Optical glass, optical element blank and optical element having a refractive index nd being 1.70 to 1.85
JP2022021586A (en) Optical glass, and optical element
TW202241824A (en) Optical glass and optical element having a small Abbe number vd and a high relative partial dispersion PC, t in the infrared wavelength region
JP2022108395A (en) Optical glass, and optical element