TW202127010A - Shift detection method of absorption spectrum by the light intensity differential signals of the rising and falling edges of the absorption spectrum - Google Patents
Shift detection method of absorption spectrum by the light intensity differential signals of the rising and falling edges of the absorption spectrum Download PDFInfo
- Publication number
- TW202127010A TW202127010A TW108148651A TW108148651A TW202127010A TW 202127010 A TW202127010 A TW 202127010A TW 108148651 A TW108148651 A TW 108148651A TW 108148651 A TW108148651 A TW 108148651A TW 202127010 A TW202127010 A TW 202127010A
- Authority
- TW
- Taiwan
- Prior art keywords
- detection
- absorption spectrum
- differential signal
- shift
- light
- Prior art date
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本發明與光學感測方法有關,特別是指一種吸收光譜偏移偵測方法。The present invention is related to optical sensing methods, in particular to a method for detecting shifts in absorption spectra.
表面電漿共振(Surface Plasmon Resonance,SPR)是自由電子在金屬層與介電層產生縱向震盪的現象。當激發時,反射光能量會完全轉換成表面電漿波,此時特定波長的反射光強度趨近於零,此即為吸收光譜,反射光強度最低的波長稱為共振波長。當金屬厚度改變或介電層折射率有微小變化時,易造成共振波長的偏移,常被廣泛運用在物理、化學、生醫與生物感測器上。Surface Plasmon Resonance (SPR) is a phenomenon in which free electrons oscillate longitudinally between the metal layer and the dielectric layer. When excited, the reflected light energy will be completely converted into surface plasma waves. At this time, the reflected light intensity of a specific wavelength approaches zero, which is the absorption spectrum, and the wavelength with the lowest reflected light intensity is called the resonance wavelength. When the thickness of the metal changes or the refractive index of the dielectric layer changes slightly, it is easy to cause the shift of the resonance wavelength, which is often widely used in physics, chemistry, biomedical and biological sensors.
因為改變表面電漿共振元件的表面介質的折射率改變時會讓吸收光譜的共振波長發生偏移的現象,目前對於透過表面電漿共振系統或其他類似的感測系統輸出的吸收光譜需要透過光譜分析儀才能準確地量測,且需要耗費大量地量測時間,不利於商品化。Because changing the refractive index of the surface medium of the surface plasmon resonance element will shift the resonance wavelength of the absorption spectrum, the current absorption spectrum output through the surface plasmon resonance system or other similar sensing systems needs to be transmitted through the spectrum. The analyzer can measure accurately, and it takes a lot of measurement time, which is not conducive to commercialization.
有鑑於上述缺失,本發明的目的在於提供一種吸收光譜偏移偵測方法,其可透過偵測吸收光譜的上升緣及下降緣的光強度差動信號來偵測吸收光譜的偏移,且不需使用光譜儀,以達到簡易、低成本及快速檢測的目的。In view of the above-mentioned deficiencies, the purpose of the present invention is to provide a method for detecting absorption spectrum shift, which can detect the shift of absorption spectrum by detecting the light intensity differential signal of the rising edge and falling edge of the absorption spectrum without Need to use a spectrometer to achieve the purpose of simple, low-cost and fast detection.
為了達成上述目的,本發明的吸收光譜偏移偵測方法包括接收輸出光束的吸收光譜,吸收光譜包括上升緣及下降緣;定義對應吸收光譜的上升緣及下降緣的兩偵測波長;取得兩偵測波長的光強度,兩偵測波長對應吸收光譜的上升緣及下降緣;計算兩偵測波長的光強度以得到一差動信號;及比較初始的差動信號及新的差動信號,在新的差動信號不等於初始的差動信號時判斷新的差動信號對應的吸收光譜發生偏移。In order to achieve the above objective, the absorption spectrum shift detection method of the present invention includes receiving the absorption spectrum of the output beam, the absorption spectrum includes a rising edge and a falling edge; defining two detection wavelengths corresponding to the rising edge and the falling edge of the absorption spectrum; and obtaining two Detect the light intensity of the wavelength, the two detection wavelengths correspond to the rising edge and the falling edge of the absorption spectrum; calculate the light intensity of the two detection wavelengths to obtain a differential signal; and compare the initial differential signal and the new differential signal, When the new differential signal is not equal to the initial differential signal, it is determined that the absorption spectrum corresponding to the new differential signal has shifted.
如此,本發明的吸收光譜偏移偵測方法可以透過兩偵測波長的光強度的差動信號變化得知吸收光譜的偏移。In this way, the absorption spectrum shift detection method of the present invention can learn the shift of the absorption spectrum through the differential signal changes of the light intensity of the two detection wavelengths.
有關本發明所提供之吸收光譜偏移偵測方法的詳細環境、裝置、系統、使用或運作方式,將於後續的實施方式詳細說明中予以描述。然而,在本發明領域中具有通常知識者應能瞭解,該等詳細說明以及實施本發明所列舉的特定實施例,僅係用於說明本發明,並非用以限制本發明之專利申請範圍。The detailed environment, device, system, use, or operation method of the absorption spectrum shift detection method provided by the present invention will be described in the detailed description of the subsequent embodiments. However, those with ordinary knowledge in the field of the present invention should be able to understand that the detailed description and the specific embodiments listed for implementing the present invention are only used to illustrate the present invention, and are not intended to limit the scope of the patent application of the present invention.
以下,茲配合各圖式列舉對應之較佳實施例來對本發明的吸收光譜偏移偵測方法的技術及達成功效來作說明。然各圖式中系統的構件、組成及對應流程僅用來說明本發明的技術特徵,而非對本發明構成限制。Hereinafter, the corresponding preferred embodiments are listed in conjunction with the drawings to illustrate the technology and the achieved effects of the absorption spectrum shift detection method of the present invention. However, the components, composition, and corresponding processes of the system in the various diagrams are only used to illustrate the technical features of the present invention, but not to limit the present invention.
如圖1所示,本發明的光譜偏移偵測方法的程序10包括五個步驟,分別是接收11、定義13、取得15、計算17及比較19。接收11的步驟是接收表面電漿共振(surface plasmon resonance, SPR)感測系統輸出的輸出光束的吸收光譜,吸收光譜包括上升緣及下降緣。定義13的步驟是定義對應吸收光譜的上升緣及下降緣的兩偵測波長。取得15的步驟是取得兩偵測波長的光強度,兩偵測波長對應吸收光譜的上升緣及下降緣。計算17的步驟是計算兩偵測波長的光強度以得到差動信號。比較19的步驟是比較初始的差動信號及新的差動信號,在新的差動信號不等於初始的差動信號時判斷新的差動信號對應的吸收光譜發生偏移。As shown in FIG. 1, the
應用中,當表面電漿共振感測系統的被測物有變化(例如成分改變或濃度改變等)後,輸出光束的吸收光譜特性也會有對應偏移,本發明的光譜偏移偵測方法可透過動態觀察差動信號來監視吸收光譜是否發生改變。In application, when the measured object of the surface plasma resonance sensing system changes (for example, composition change or concentration change, etc.), the absorption spectrum characteristics of the output beam will also shift accordingly. The spectral shift detection method of the present invention You can monitor whether the absorption spectrum changes by dynamically observing the differential signal.
如圖2所示,接收11的步驟中,表面電漿共振感測系統30簡稱SPR感測系統,其包括光源31、第一凸透鏡32、偏振片33、第一光圈34、表面電漿共振裝置(簡稱SPR裝置)35、旋轉台36、第二光圈37及第二凸透鏡38。As shown in FIG. 2, in the step of receiving 11, the surface plasmon
光源31用以產生光線,本實施例中,光源31以鹵素燈為例,但其他實施例中,光源31也可以使用LED、燈泡或其他發光元件。光線可以是單頻譜光或多頻譜光,單頻譜光例如雷射光或單色光,多頻譜光例如全頻譜光。光線依序通過第一凸透鏡32、偏振片33、第一光圈34、SPR裝置35、第二光圈37及第二凸透鏡38。光線在SPR裝置35上激發表面電漿共振。The
旋轉台37承載SPR裝置35,且可透過轉動改變SPR裝置35的角度。The rotating table 37 carries the
如圖2所示,分離13的步驟是透過分光系統50,分光系統50是為了正確地定義兩偵測波長,以使兩偵測波長對應吸收光譜的上升緣及下降緣。本實施例中,分光系統50包括分光器(Beam Splitter)51、反射鏡53及帶通濾光器55。As shown in FIG. 2, the step of separating 13 is to pass through the
分光器51接收第二凸透鏡38射出的輸出光束,且將輸出光束分離成第一偵測光束及第二偵測光束。第一偵測光束是以第一入射角通過帶通濾光器55。第二偵測光束是透過反射鏡53改變入射角度後,以第二入射角通過帶通濾光器55。第一偵測光束及第二偵測光束是對應兩偵測波長(如圖4的λ1
及λ2
)的位置,因此,本實施例可透過調整帶通濾光器55的角度來調整兩偵測波長,以使兩偵測波長大致位在輸出光束的吸收光譜的上升緣及下降緣的中間,且兩者是對齊的。The
如此,中間位置可以獲得較靈敏的檢測,在輸出光束的光譜發生位移時,監視光譜的上升緣及下降緣的中間具有較佳地檢測靈敏度。In this way, the middle position can be detected more sensitively, and when the spectrum of the output beam is shifted, the middle of the rising edge and the falling edge of the monitoring spectrum has better detection sensitivity.
帶通濾光器55的濾波範圍是可以被調整的,本實施例的帶通濾光器53的濾波範圍是620 nm-700 nm,帶通寬度是13nm,其他實施例的可以選用其他能力的帶通濾光器53來調整濾波範圍及帶通寬度。The filtering range of the band-
其他實施例中,如圖3所示,分光系統60包括第一反射式濾光器61及第二反射式濾光器63。第一反射式濾光器61接收第二凸透鏡38射出的輸出光束,以產生第一偵測光束及一穿透光束,第一偵測光束被反射至差動處理系統70,穿透光束通過第一反射式濾光器61。第二反射式濾光器63接收穿透光束,以反射第二偵測光束至差動處理系統70。第一偵測光束及第二偵測光束分別對應兩偵測波長(如圖4的λ1
及λ2
)。如此,分光系統60也能透過第一反射式濾光器61及第二反射式濾光器63來偵測兩偵測波長的光強度。In other embodiments, as shown in FIG. 3, the
如圖2所示,取得15、計算17及比較19的步驟是透過差動處理系統70,其接收帶通濾光器55輸出的對應第一偵測光束及第二偵測光束的兩帶通光束,並將光轉換成電信號,所以差動處理系統70也稱為光電轉換系統。透過上述說明可知,兩偵測波長大致位在吸收光譜的上升緣及下降緣的中間,且兩者是對齊的,因此,初始時兩偵測波長的光強度應是一致,透過差動處理系統70計算後初始的兩偵測波長的光強度的差動信號應為零。其他實施例中,初始的差動信號也可以不為零。As shown in FIG. 2, the steps of obtaining 15, calculating 17 and comparing 19 are through the
差動處理系統70包括第一光偵測裝置71、第二光偵測裝置72、低雜訊放大裝置(或稱差動訊號放大裝置)73、資料擷取卡74及電腦75。第一光偵測裝置71及第二光偵測裝置72分別接收兩帶通光束,並調整光強度,以平衡兩帶通光束的光強度。The
本實施例中,第一光偵測裝置71包括透鏡711、光圈713及光偵測元件715,第二光偵測裝置72包括透鏡721及光偵測元件723,其中,光圈713用以管制入射光的光強度,以平衡第一光偵測裝置71及第二光偵測裝置72的入射光的光強度,光偵測元件713、725是用以將光信號轉換為電信號。In this embodiment, the first
低雜訊放大裝置73是接收光偵測元件713、725輸出的電信號。資料擷取卡74依序處理電信號,並將處理後的電信號匯入電腦75中。低雜訊放大裝置73是使用Stanford Research SR560,以提供處理後的電信號給資料擷取卡74及電腦75。The low-noise amplifying
如圖4所示,初始的輸出光束(實線)的兩偵測波長λ1 及λ2 的光強度的差動信號應為零,圖上可明顯得到新的輸出光束(雙點鏈線)相較於輸出光束(實線)發生偏移,因此,發生偏移現象時新的輸出光束在兩偵測波長λ1 及λ2 的位置所獲得的光強度是不同的,經計算及比較後可得新的輸出光束在兩偵測波長λ1 及λ2 的差動信號與初始的差動信號不相等,偵測波長λ1 的光強度大於偵測波長λ2 的光強度,初始與新的兩偵測波長λ1 及λ2 的存在光強度差ΔR。此外,從圖上可看出光強度差ΔR的變化程度較波長變化程度Δλ更為明顯。 As shown in Figure 4, the differential signal of the light intensity of the two detection wavelengths λ 1 and λ 2 of the initial output beam (solid line) should be zero, and the new output beam (double-dot chain line) can be clearly obtained on the figure. Compared with the output beam (solid line), the light intensity obtained by the new output beam at the two detection wavelengths λ 1 and λ 2 is different when the offset occurs. After calculation and comparison, It can be obtained that the differential signal of the new output beam at the two detection wavelengths λ 1 and λ 2 is not equal to the initial differential signal. The light intensity of the detection wavelength λ 1 is greater than the light intensity of the detection wavelength λ 2 . The two detection wavelengths λ 1 and λ 2 have a light intensity difference ΔR. In addition, it can be seen from the figure that the degree of change of the light intensity difference ΔR is more obvious than the degree of wavelength change Δλ.
如圖5所示,第一偵測光束及第二偵測光束分別對準入射角30度及48度,而得到48度的吸收光譜(實線)及30度得吸收光譜(單點鏈線),並透過輸出光束的吸收光譜(粗虛線)可看出兩偵測波長大致是位在上升緣及下降緣的中間。As shown in Figure 5, the first detection beam and the second detection beam are aligned with the incident angles of 30 degrees and 48 degrees, respectively, and the absorption spectrum of 48 degrees (solid line) and the absorption spectrum of 30 degrees (single-point chain line) are obtained. ), and through the absorption spectrum (thick dashed line) of the output beam, it can be seen that the two detection wavelengths are roughly in the middle of the rising edge and the falling edge.
本發明的吸收光譜偏移偵測方法只需要偵測波長的光強度差動變化即可獲得吸收光譜偏移狀態,因此,本發明可以達成快速檢測的目的。The absorption spectrum shift detection method of the present invention only needs to detect the light intensity differential change of the wavelength to obtain the absorption spectrum shift state. Therefore, the present invention can achieve the purpose of rapid detection.
再者,透過差動處理系統來消除兩帶通光譜的共通雜訊(common noise)來獲得更好的檢測能力,共通雜訊例如光源浮動與背景光的雜訊等,使本發明對環境雜訊有更好的免疫性,因為光學檢測的過程中環境雜訊容易影響實驗結果,因此,本發明可以達到即時監控數據並消除雜訊,使靈敏度與解析度得到良好的提升。Furthermore, the common noise of the two bandpass spectra is eliminated through the differential processing system to obtain better detection capabilities. Because the environmental noise in the optical detection process easily affects the experimental results, the present invention can achieve real-time monitoring of data and eliminate noise, so that the sensitivity and resolution are improved.
實驗中,依次在SPR裝置內增加水的蔗糖濃度,以在三個不同的時間點將液體的折射率從0%更改為0.179%,0.304%和0.396%。圖6是差分處理系統的電壓相對時間的信號圖,圖7是差分處理系統中電壓相對折射率的信號圖。圖中顯示,對於折射率小於1.3336可獲得良好的線性度,系統的靈敏度為1429 V / RIU。 從圖6中的局部放大5000倍圖可以發現本發明能將雜訊限制(壓低)在0.01 V(0.865V-0.875V)的雜訊峰值。In the experiment, the sucrose concentration of water was sequentially increased in the SPR device to change the refractive index of the liquid from 0% to 0.179%, 0.304%, and 0.396% at three different time points. FIG. 6 is a signal diagram of voltage versus time in a differential processing system, and FIG. 7 is a signal diagram of voltage versus refractive index in a differential processing system. The figure shows that good linearity can be obtained for a refractive index less than 1.3336, and the sensitivity of the system is 1429 V / RIU. It can be found from the partially enlarged 5000 times map in FIG. 6 that the present invention can limit (slow down) the noise to a noise peak of 0.01 V (0.865V-0.875V).
最後,再次強調,本發明於前揭實施例中所揭露的構成元件,僅為舉例說明,並非用來限制本案之範圍,其他等效元件的替代或變化,亦應為本案之申請專利範圍所涵蓋。Finally, it is emphasized again that the constituent elements disclosed in the previously disclosed embodiments of the present invention are only examples and are not used to limit the scope of the case. The substitution or changes of other equivalent elements shall also be subject to the scope of the patent application of this case. Covered.
10:程序
11:接收
13:定義
15:取得
17:計算
19:比較
30:表面電漿共振感測系統
31:光源
32:第一凸透鏡
33:偏振片
34:第一光圈
35:表面電漿共振裝置
36:旋轉台
37:第二光圈
38:第二凸透鏡
50:分光系統
51:分光器
53:反射鏡
55:帶通濾光器
60:分光系統
61:第一反射式濾光器
63:第二反射式濾光器
70:差動處理系統
71:第一光偵測裝置
711:透鏡
713光圈
715:光偵測元件
72:第二光偵測裝置
721:透鏡
723:光偵測元件
73:低雜訊放大裝置
74:資料擷取卡
75:電腦
λ1
、λ2
:偵測波長10: Program 11: Receive 13: Definition 15: Acquire 17: Calculation 19: Comparison 30: Surface Plasma Resonance Sensing System 31: Light Source 32: First Convex Lens 33: Polarizer 34: First Aperture 35: Surface Plasma Resonance Device 36: rotating table 37: second aperture 38: second convex lens 50: spectroscopic system 51: spectroscope 53: reflector 55: band-pass filter 60: spectroscopic system 61: first reflective filter 63: first Second reflection filter 70: differential processing system 71: first light detecting device 711:
圖1是本發明的吸收光譜偏移偵測方法的步驟流程圖。 圖2是應用本發明吸收光譜偏移偵測方法的實施例的環境的示意圖。 圖3是應用本發明吸收光譜偏移偵測方法的實施例的另一環境的示意圖。 圖4是初始的輸出光束及新的輸出光束的光譜圖。 圖5是初始的輸出光束、第一偵測光束及第二偵測光束的吸收光譜的光譜圖。 圖6是圖2中差分處理系統產生的電壓-時間信號圖。 圖7是圖2中差分處理系統產生的電壓-折射率的信號圖。FIG. 1 is a flow chart of the steps of the method for detecting the shift of the absorption spectrum of the present invention. FIG. 2 is a schematic diagram of an environment in which an embodiment of the absorption spectrum shift detection method of the present invention is applied. FIG. 3 is a schematic diagram of another environment in which an embodiment of the absorption spectrum shift detection method of the present invention is applied. Figure 4 is a spectrum diagram of the original output beam and the new output beam. FIG. 5 is a spectrum diagram of the absorption spectra of the initial output beam, the first detection beam, and the second detection beam. Fig. 6 is a voltage-time signal diagram generated by the differential processing system in Fig. 2. FIG. 7 is a signal diagram of the voltage-refractive index generated by the differential processing system in FIG. 2.
10:程序10: Procedure
11:接收11: receive
13:定義13: Definition
15:取得15: Obtain
17:計算17: calculation
19:比較19: Comparison
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108148651A TWI716247B (en) | 2019-12-31 | 2019-12-31 | Absorption spectrum shift detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108148651A TWI716247B (en) | 2019-12-31 | 2019-12-31 | Absorption spectrum shift detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI716247B TWI716247B (en) | 2021-01-11 |
TW202127010A true TW202127010A (en) | 2021-07-16 |
Family
ID=75237667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108148651A TWI716247B (en) | 2019-12-31 | 2019-12-31 | Absorption spectrum shift detection method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI716247B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6970239B2 (en) * | 2002-06-12 | 2005-11-29 | Intel Corporation | Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate |
US9640449B2 (en) * | 2014-04-21 | 2017-05-02 | Kla-Tencor Corporation | Automated inline inspection of wafer edge strain profiles using rapid photoreflectance spectroscopy |
KR102658587B1 (en) * | 2018-03-19 | 2024-04-17 | 케이엘에이 코포레이션 | Overlay measurements using multiple wavelengths |
-
2019
- 2019-12-31 TW TW108148651A patent/TWI716247B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI716247B (en) | 2021-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107941710B (en) | Surface plasma resonance sensor based on quantum weak measurement and method for measuring refractive index of metal surface medium | |
CN110927121B (en) | Phase type SPR detection device and method based on white light interference spectrum | |
CN110927122B (en) | Phase type SPR detection device and method based on interference spectrum | |
JP2010538266A (en) | Noise cancellation in Fourier transform spectrophotometry | |
JP3337734B2 (en) | Infrared ellipsometer | |
KR101987402B1 (en) | Optical measuring system for thicknesses of thin and thick films and 3D surface profile using a polarized pixel array | |
CN109297934B (en) | Device and method for measuring detection limit of Fano resonance sensor | |
CN207515999U (en) | The device that a kind of large-area metal dielectric gratings diffraction efficiency measures | |
CN104677299A (en) | Film detection device and method | |
KR20170031642A (en) | Apparatus and method for snapshot interferometric spectro-polarimetry | |
WO2020232306A1 (en) | Optical metrology device using numerical aperture reduction | |
EP1593955A2 (en) | Wavelength-tuned intensity measurement with a surface plasmon resonance sensor | |
JPH06317408A (en) | Determination of characteristic value of transparent layer using polarization analysis method | |
CN109342368B (en) | Dual-path contrast measurement spectrometer based on reference light signals and measurement method | |
CN115003981A (en) | Method and system for combining OCD and light reflection | |
TWI716247B (en) | Absorption spectrum shift detection method | |
CN112362592A (en) | Polarization reflection measurement system and detection method thereof | |
CN210071661U (en) | Laser gas analyzer | |
CN105203504B (en) | A kind of method for improving surface plasma resonance sensor sensitivity | |
CN106404695B (en) | Spectrophotometer | |
US6411388B1 (en) | System and method for frequency domain interferometric second harmonic spectroscopy | |
JP2004020539A (en) | Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method | |
CN109489939B (en) | S, P polarized reflectivity and phase difference high-precision simultaneous measurement method of high-reflectivity optical element | |
US9322778B2 (en) | Optical sensing apparatus and a method for detecting characteristics of a sample | |
CN112098371A (en) | Strength type SPRi sensing system and method based on dual-wavelength difference |