TW202126170A - 藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置 - Google Patents

藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置 Download PDF

Info

Publication number
TW202126170A
TW202126170A TW109130022A TW109130022A TW202126170A TW 202126170 A TW202126170 A TW 202126170A TW 109130022 A TW109130022 A TW 109130022A TW 109130022 A TW109130022 A TW 109130022A TW 202126170 A TW202126170 A TW 202126170A
Authority
TW
Taiwan
Prior art keywords
voc
conductivity
target
sensors
voc sensors
Prior art date
Application number
TW109130022A
Other languages
English (en)
Inventor
尼可拉斯約瑟夫 斯麥蘭尼齊
山謬費斯通 瑞切特
法蘭克伯納 陶德倫
Original Assignee
美商傳感器開發公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/558,490 external-priority patent/US11272699B2/en
Application filed by 美商傳感器開發公司 filed Critical 美商傳感器開發公司
Publication of TW202126170A publication Critical patent/TW202126170A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/02Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
    • A01M1/026Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects combined with devices for monitoring insect presence, e.g. termites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • G01N27/123Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M2200/00Kind of animal
    • A01M2200/01Insects
    • A01M2200/012Flying insects

Abstract

一種最低成本、高精確率且可攜式的裝置,其用於藉由感測氣相標記(如揮發性信息素、化學信息素和利他素)來檢測存儲產品中之生命中各個階段(包括卵階段)的昆蟲的存在。本文所揭露的方法、裝置和系統係利用感測器陣列,該感測器陣列係經配置為同步測量複數個目標標記並過濾背景氣體且同時保持緊湊、高精確率和易於操作。

Description

藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置
本申請案是2019年2月1日所申請之題名為「藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置(DEVICE FOR DETECTING INSECT LARVAE AND ADULT INSECTS IN STORED PRODUCTS BY SENSING THEIR VOLATILE PHEROMONES AND SEMIOCHEMICALS)」的美國專利申請案號16 / 265,368的部分延續案,其要求於2018年2月1日所申請的美國臨時專利申請案號62 / 625,000(題名為「一種藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置(A DEVICE FOR DETECTING INSECT LARVAE AND ADULT INSECTS IN STORED PRODUCTS BY SENSING THEIR VOLATILE PHEROMONES AND SEMIOCHEMICALS)」)及2018年12月26日所申請的美國臨時專利案號62 / 784,916(題名為「一種藉由感測來自卵表面的揮發性有機化合物來檢測存儲產品中的害蟲卵的裝置(A DEVICE FOR DETECTING THE EGGS OF DESTRUCTIVE INSECTS IN STORED PRODUCTS BY SENSING VOLATILE ORGANIC COMPOUNDS FROM THE EGG SURFACE)」)的權益,上述申請案的全部揭露內容通過引用而結合到本文中。
下文整體上涉及昆蟲和昆蟲侵擾檢測技術、化學感測技術、氣體檢測技術、揮發性有機化合物分析技術、氣體感測微晶片陣列及與該等技術及陣列相關的方法和裝置。在與高敏感地和選擇性地檢測存儲的食物和其他產品或材料中的昆蟲的相關技術領域中發現具體應用。
存儲產品昆蟲(「SPIs」)最常被發現以成品食物及食物成分為食或侵擾在其上準備、加工、包裝或儲存食物的設備。這些有害生物在加工、運輸和存儲系統中造成的經濟損失可能是每次污染、每次產品召回、每次消費者投訴/訴訟及每次有害生物控制應用數百萬美元的損失(Arthur等,2009)。此外,若不慎食用某些SPI,某些SPI會對健康產生影響,從而導致嬰兒和老年人的胃部壓力(Okamura,1967)。
當前的昆蟲檢測係依賴於手電筒檢查及使用具有多個合成信息素誘餌的誘捕器和誘捕器來捕獲成年SPI。信息素是從單個物種的雄性及/或雌性發出的揮發性有機化合物(「 VOC」)。信息素誘餌和誘捕器依賴於昆蟲的活動,而溫度可能會大大影響昆蟲的活動。信息素的揮發性、數量/質量及人類活動和昆蟲動力學與這些元素相互作用,從而導致誘捕器資料變化很大。誘捕器捕獲的解釋是基於對群體的少量採樣(2-10%或更少)。這使得難以檢測和補救害蟲侵擾。
印度穀蛾(Indianmeal moth,「IMM」)在全美國是最常見的存儲產品昆蟲(Mueller,1998; Resener 1996)。印度穀蛾(「IMM」)在美國是在經儲存的食物和穀物中發現頻率最高的一種昆蟲。幾乎可在世界溫帶地區的任何地方發現成年的IMM。此外,在美國和歐洲,成年的IMM是造成最大損害的一種害蟲。這種昆蟲在我們的環境中存活得如此之好有兩個原因:原因1)這種昆蟲的雌性在她短暫的一生中產下大量的卵; 原因2)這種昆蟲具有遺傳改變或適應以在人類用來保護其食物的殺蟲劑中存活的能力(抗性)。已發現IMM是人類已知的最具抗性的昆蟲。在五十年期間,這種昆蟲的基因組成已發生了變化,以抵抗常用的殺蟲劑馬拉硫磷。在1970年代,IMM開始顯示出對這種常用殺蟲劑產生抗性的跡象。 IMM對這種殺蟲劑產生了60,000倍的抗藥性。
IMM最常被發現以成品食物及食物成分(如存儲的小麥產品及磨碎/加工的小麥及如磨碎的穀物產品、麵粉、麩皮、麵食產品及香料的其他存儲產品)為食或侵擾在其上準備、加工、包裝或儲存食物的設備。 IMM幼蟲是昆蟲的毀滅性生命階段,其食慾十分旺盛。幼蟲活動力強且以不斷尋找新的食物來源。食物的價值因IMM所食用的食物、所累積的排泄物及幼蟲在移動時留下的網道(webbing)而受到損害。
此外,IMM通常是其他存儲產品昆蟲的前體。未經治療的IMM感染可為尚有其他SPI感染的指標,(Mueller,2016)。五個最常見的存儲產品昆蟲(SPI)包括印度穀蛾(Plodia interpunctella)、倉庫甲蟲(Trogoderma variabile)、麵粉甲蟲(Tribolium spp)、穀物甲蟲(Oryzaephilus spp),和菸甲蟲(鋸角毛竊蠹/Lasioderma serricorne) (Mueller,1998; Hagstrum和Subramanyam,2006)。這些有害生物在加工、運輸和存儲中的經濟損失可以是每次污染、產品召回、消費者投訴/訴訟和有害生物控制應用造成數百萬美元的損失(Arthur,2009年)。然而,還沒有有效、低成本的方法來監視和檢測這些存儲產品昆蟲(SPI)。
已鑑定出幾種SPI信息素,但由於保質期短和生產成本低而不能在市場上買到這幾種SPI信息素(Phillips et al。,2000)。這些化合物是獨特的,但可吸引如在儲存的食物蛾類和斑皮蠹屬複合體中的種間競爭者。單一信息素(Z,E)-9,12-乙酸十四碳二烯酯是印度穀蛾的主要信息素,但會吸引其他三種Ephhestia物種的食蛾。信息素化合物R,Z 14-甲基-8-十六碳烯是吸引倉庫甲蟲的主要成分,但還將吸引其他三種常見的斑皮蠹屬(Trogoderma)物種,其包括檢疫性有害生物(Khapra甲蟲;穀斑皮蠹)。幾種麵粉甲蟲(Tribolium種)被化合物4,8-二甲基癸醛吸引,兩種穀物甲蟲(Oryzaephilus種)被(Z,Z)-3,6-十二碳十一烯化物吸引,但用於菸甲蟲(鋸角毛竊蠹)的信息素(4S,6S,7S)-4,6-二甲基-7-羥基壬基-3-酮是該物種獨有的。
此外,關於可能的目標化學信息素及/或利他素,這些化學信息素和利他素是高分子量VOC。因此,這些化學信息素和利他素在被侵擾的存儲產品上方的頂部空間中的蒸氣壓和濃度將是低的,因此更加難以檢測這些化學信息素和利他素。
因此,期望藉由使用可檢測和測量多種信息素濃度的方法、裝置和系統來消除檢測有害生物的存在/不存在、分佈量和位置的可變性和不確定性。另外,希望提供可藉由以類似方式來感測昆蟲幼蟲和昆蟲的卵的化學信息素/利他素以不僅檢測昆蟲幼蟲還可檢測昆蟲的卵這樣的方法、裝置和系統。藉由允許檢測較早的生命階段(例如卵),可限制存儲產品的損失量,因大部分損害是由昆蟲在幼蟲階段(而不是成年期間)造成的。可建立閾值濃度以立即確定在拖車、陸運/海運集裝箱、散裝搬運箱、袋裝配料托盤或儲藏室內是否存在最常見的SPI。亦期望提供檢測VOC濃度梯度的能力,其可幫助在結構、壁空隙、裂縫和縫隙或設備內定位和精確定位SPI侵擾。此外,期望提供一種手持裝置,該手持裝置將從SPI監視模型中消除昆蟲活動性和環境的許多依賴性作為影響活動的因素。 通過引用合併
本文提及以下參考文獻,該等以下參考文獻之公開內容通過引用方式整體併入本文中。
Arthur F.H.、Johnson J.A. 、Neven L.G. 、Hallman G.J. 及Follett P.A.(2009)於《害蟲管理展望》第20期:279–284發表的「美利堅合眾國收穫後生態系統中的害蟲管理(Insect Pest Management in Postharvest Ecosystems in the United States of America)」。
Hagstrum D.W.和Subramanyam B.(2006)於聖保羅:AACC國際發表的「存儲產品昆蟲學的基礎知識(Fundamentals of Stored-Product Entomology)」。
Mueller, David K(1998)於印第安納州印第安納波利斯昆蟲有限公司發表的「存儲產品保護:過渡期(Stored Product Protection: A period of Transition)」。
G.T. Okumura (1967)於加州矢量意見卷14編號3第19至第22頁發表的「由斑皮蠹屬(鞘翅目:皮蠅科)引起的甲蟲病和過敏的報告(A Report of Canthariasis and Allergy Caused by Trogoderma(Coleoptera: Dermestidae))」。
Phillips,T.W. 、Cogan,P.M.和Fadamiro, H.Y. (2000)於馬薩諸塞州波士頓市的克魯維爾學術出版社所出版之「存儲產品IPM中的殺蟲劑替代品(Alternatives to Pesticides in Stored-Product IPM)」的第273-302頁發表的「B.Subramanyam和D.W.Hagstrum(編)中的信息素(Pheromones in B. Subramanyam and D. W. Hagstrum (Eds. ))」。
Resener,A.M(1997)於熏蒸劑和信息素第46期的第3-4頁發表的「全國儲存產品昆蟲調查(National Survey of Stored Product Insects)」。
在本文的各個實施例中揭露了用於識別存儲產品(例如食物)的昆蟲侵擾之低成本和高精確率的方法、裝置和系統,其係基於在從靠近存儲產品的區域採樣的目標流體流(例如,空氣樣本)內對一個或多個目標揮發性有機化合物(「 VOC」)的檢測。所揭露的方法、系統和裝置經設計成提供早期檢測能力,這使得能夠快速回應侵擾的威脅(例如,衛生、冷凍及熏蒸等)。此外,這些系統和裝置具有最小的成本和高精確率,這使得能夠廣泛應用在存儲產品的場所中即時、非侵入地檢測蟲卵、蟲幼蟲及/或成蟲。
根據本申請案的第一實施例,提供了一種藉由檢測目標流體流內的一個或多個目標VOC來識別存儲產品的昆蟲侵擾的方法,該方法包括以下步驟:通過包括複數個VOC感測器的一裝置來加熱複數個VOC感測器中的至少一者達到至少第一工作溫度;使一個或多個VOC感測器與目標流體流接觸;確定與與目標流體流接觸一個或多個VOC感測器中的每一者相對應的一組電導率變化值;根據該組電導率變化值,確定目標流體流中一個或多個目標VOC的氣體成分濃度。此外,每個VOC感測器可包括:具有第一側和第二側的基板;在基板的第一側上形成的電阻式加熱器電路;在基板的第二側上形成的感測電路;在感測電路(其在基板的第二側上)上方形成的化學敏感膜。在特定實施例中,方法可包括以下步驟:在對流體流中的VOC標記進行採樣之後,將VOC感測器的基準電阻校正為較早的基準值,這可藉由在每次採樣目標VOC之後調整一個或多個VOC感測器的工作溫度來實現。
根據本申請案的另一實施例,提供了一種用於檢測目標流體流內的一個或多個目標VOC的裝置,該裝置包括:具有複數個VOC感測器的感測器陣列,其中每個VOC感測器包括:基板;形成在基板的第一側上的電阻式加熱器電路;形成在基板的第二側上的感測電路;及在基板的第二側上的感測電路的上方形成的化學敏感膜,其中複數個VOC感測器中的至少一者經配置為檢測卵特異性VOC的存在。
根據本申請案的又一個實施例,提供了一種用於識別存儲產品的昆蟲侵擾的系統,該系統包括:包圍感測器陣列的測試腔室;空氣傳送單元,其經配置成獲取流體流並將流體流輸送到測試腔室,及控制器,其可操作地連接到空氣傳送單元和感測器陣列。感測器陣列包括複數個VOC感測器,且該控制器經配置為:操作該空氣傳送單元以從目標區域獲取流體流並將流體流輸送至測試腔室;操作感測器陣列以測量複數個VOC感測器中的一者或多者的電導率;確定與一個或多個VOC感測器中的每一者相對應的一組電導率變化值;及基於該組電導率變化值來確定流體流內一個或多個目標VOC的氣體成分濃度。此外,VOC感測器中的至少一者可經配置為檢測卵特異性VOC的存在。
在下文的說明書和隨後的申請專利範圍中,將參考多個術語,這些術語應被定義為具有以下含義。
定義
在下文的說明書和隨後的申請專利範圍中,將參考應經定義成具有以下含義的多個術語。儘管為了清楚起見而在下文敘述中使用特定術語,但這些術語僅旨在指代為在圖示中說明而選擇的實施例的特定結構,而不旨在限定或限制本申請案的範圍。在附圖和以下描述中,應當理解的是,相同的元件符號指代相同功能的組件。此外,應理解,附圖未按比例繪製。
除非上下文另外明確指出,否則單數形式的「一(個)」和「該」包括複數個指示物。
術語「包括」在本文中用於表示需要存在所列舉的組件/步驟並允許存在其他組件/步驟。應將術語「包括」解釋成包括術語「由……組成」,該術語「由……組成」僅允許存在所列舉的組件/步驟。
應將數值理解成包括當減少到相同數量的有效數字時相同的數值及與所述數值相差小於在本申請案中所描述的一種習知測量技術的實驗誤差的數值,以確定數值。
本申請案所揭露的所有範圍包括所述端點且可獨立組合(例如,「從2mm至10mm」的範圍包括端點2mm和10mm及所有中間值)。
術語「約」可用於包括可改變而不改變數值的基本功能的任何數值。當將「約」與範圍一起使用時,「約」亦揭露了由兩個端點的絕對值定義的範圍,例如,「約2至約4」亦公開了範圍「2至4」。更具體來說,術語「約」可指所指示數字的正負10%。
應將術語「 ppm」和「ppb」分別理解為是指「百萬分之一」和「十億分之一」。如本文所用,「ppm」及「ppb」等是指體積分率,而不是質量分率或莫耳分率。例如,值1 ppm可表示為1 µV/V,及值1ppb可表示為1 nV/V。
如本文所用,術語「存儲食物產品」應理解為是指存儲在某種類型的容器(例如,由紙、紙板、塑膠、箔及玻璃紙等製成的容器)中的食物,且應理解為包括但不限於(例如)麵粉、穀物、蛋糕粉、玉米粉、米、意大利麵、鹹餅乾、甜餅乾、種子、乾豆、爆米花、堅果、巧克力、葡萄乾和其他乾果、香料、奶粉、茶、醃製的肉、鳥食、乾式寵物食物和杏仁(例如,帶殼的杏仁)。
可藉由參考下文詳細描述和其中討論的各種附圖來更容易地理解本申請案。
方法
本文揭露了藉由檢測一個或多個目標揮發性有機化合物(「VOC」,如多種存儲產品的昆蟲(「SPI」)的某些化學信息素、利他素及/或信息素)的存在來確定在存儲產品中是否存在昆蟲侵害的方法,該等方法具有高敏感度和高選擇性。
參照 1 ,提供了一種藉由檢測目標流體流內的一個或多個目標揮發性有機化合物來識別存儲產品的昆蟲侵擾的方法100 。方法包括以下步驟:提供一種裝置,該裝置包括具有複數個VOC感測器的感測器陣列(S110 );將複數個VOC感測器中的一者或多者加熱到至少第一工作溫度(S115 );使一個或多個VOC感測器與目標流體流接觸(S120 );確定與與目標流體流接觸的一個或多個VOC感測器中的每一者相對應的一組電導率變化值(S125 );基於該組電導率變化值來確定目標流體流內的一個或多個目標VOC的氣體成分濃度(S130 )。根據方法100 的第一實施例,感測器陣列的每個VOC感測器包括:基板;電阻加熱器電路;感應電路,及在感應電路上方形成的化學敏感膜。在一些實施例中,電阻式加熱器電路可形成在基板的第一側上、感測電路可形成在基板的第二側上,且化學敏感膜可形成在於基板的第二側上的感測電路上方。
在特定實施例中,方法100包括以下步驟:在使一個或多個VOC感測器與目標流體流接觸之後,測量一個或多個VOC感測器的信號電導率。即,可基於與目標流體流接觸的一個或多個VOC感測器中的每一者的信號電導率與每個對應的VOC感測器的基準電導率之間的差來確定一組電導率改變值。在一些實施例中,在一個或多個VOC感測器處於沒有任何目標VOC的大氣中時,測量一個或多個VOC感測器的基準電導率。
在較佳實施例中,目標流體流是從為可能的昆蟲侵害所評估的存儲產品的附近獲取的空氣樣本。即,目標流體流可以是來自在感興趣的存儲產品上方的頂部空間的氣體樣本。
方法100S105 處開始,並在S135 處結束;然而,在特定實施例中,可藉由從與所評估的存儲產品鄰近的複數個鄰近的內部對複數個目標流體流(例如空氣樣本)採樣來重複方法100 (例如重複步驟S110 至步驟S130 )。即,方法100 可藉由在距存儲產品複數個距離處(例如,距存儲產品小於約1英尺的距離處;距存儲產品約1英尺至2英尺的距離;距存儲產品約2英尺至3英尺的距離等)採樣一個或多個目標流體流來識別潛在昆蟲侵擾的梯度。
在進一步的實施例中,一個或多個目標VOC是與一個或多個昆蟲(如SPI)相關的化學信息素、利他素及/或信息素。具體來說,一個或多個目標VOC可以是與紅色麵粉甲蟲、鋸齒狀甲蟲、倉庫甲蟲、印度粉蛾、臍橙蟲、地中海粉蛾、杏仁蛾(又名熱帶倉庫飛蛾)、安古莫斯穀類飛蛾及/或菸甲蟲相關的化學信息素、利他素及/或信息素。在特定的實施例中,流體流內的一個或多個目標VOC中的至少一者可選自由以下組成的組:11,13-十六二烯醛、4,8-二甲基癸醛、(Z,Z)-3,6-(11R)-十二碳烯-11-內醯胺、(Z,Z)-3,6-十二碳烯化物、(Z,Z)-5,8-(11R)-Tetradecadien-13-內醯胺、(Z)-5-Tetradecen-13-內醯胺、(R)-(Z)-14-甲基-8-十六烯醛、(R)-(E)-14-甲基-8-十六烯醛、γ-乙基-γ-丁丁內酯、(Z,E)-9,12-乙酸十四碳二烯基、(Z,E)-9,12-四癸二烯-1-醇、(Z,E)-9,12-四氫葉酸;(Z)-9-乙酸十四碳烯基酯、(Z)-11-己酸癸烯酯;(2S,3R,1'S)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮、(2S,3R,1'R)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮、(4S,6S,7S)-7-羥基-4,6-二甲基壬基-3-酮、(2S,3S)-2,6-二乙基-3,5-二甲基-3,4-二氫-2H-吡喃、2-棕櫚醯-環己烷-1,3-二酮;及2-油醯基-環己烷-1,3-二酮。
參照 2A 2B ,根據本申請案的另一實施例,提供了一種藉由檢測目標流體流內的一個或多個目標揮發性有機化合物來識別存儲產品的昆蟲侵擾的方法200 。方法200 開始於S202
在步驟S204 中,提供一種裝置,該裝置包括具有複數個VOC感測器的感測器陣列。感測器陣列的每個VOC感測器包括:基板;電阻式加熱器電路;感應電路;在感應電路上方形成的化學敏感膜。在一些實施例中,電阻式加熱器電路可形成在基板的第一側上,感測電路可形成在基板的第二側上,且化學敏感膜可形成在基板的第二側上的感測電路的上方。
在特定實施例中,感測器陣列包括複數個差分VOC感測器。即,可通過在化學敏感膜(即,活性層)中包括催化材料來改變複數個VOC感測器中的一者或多者的表面組成。換句話說,一個或多個VOC感測器的化學敏感膜可包括摻雜劑。在一些實施例中,摻雜劑可為(例如)過渡金屬。例如,摻雜劑可選自由以下組成的組:鉑、鈀、鉬、鎢、鎳、釕,及鋨。
在步驟S206 中,將複數個VOC感測器中的一者或多者加熱到至少第一工作溫度。在特定實施例中,操作溫度在約180℃至約400℃之間。在進一步的實施例中,在方法的後續步驟期間維持一個或多個VOC感測器的工作溫度。具體來說,每個VOC感測器的加熱電路可用於在其整個操作過程中測量和控制VOC感測器的溫度。
在方法200 的特定實施例中,方法可包括一個或多個校準步驟208 ,其包括以下步驟:使複數個VOC感測器中的一者或多者與樣本流體流接觸,樣本流體流不存在任何目標VOC(S210 );測量一個或多個VOC感測器的基準電導率(S212 );可選地去除與一個或多個VOC感測器接觸的流體流(S216 );使一個或多個VOC感測器與具有已知的目標VOC濃度的控制流體流接觸(S218 );測量一個或多個VOC感測器中的每一者的控制電導率(S220 );基於VOC感測器所測量到的控制電導率和控制流體流內的目標VOC的已知濃度來計算特定淨電導率值(S222 );及對於複數個控制流體流重複至少步驟S218S222S226 )。校準步驟208可進一步包括以下步驟:去除與一個或多個VOC感測器接觸的流體流(S228 );及在與至少一個目標VOC接觸後,調整一個或多個VOC感測器的基準電導率(S230 )。
在步驟S210 中,複數個VOC感測器中的一者或多者與樣本流體流接觸。在較佳的實施例中,樣品流體流是沒有任何目標VOC(方法200 可對其進行測試)的空氣量。
在步驟S212 中,使用VOC感測器的感測電路來測量與樣本流體流接觸的一個或多個VOC感測器的基準電導率。由於在VOC感測器的感應電路上形成的膜具有化學敏感性(例如,半導體性),故材料中流動的電流歸因於薄膜導帶中的電子,該等電子可能會受到不期望及/或目標化合物(例如目標VOC)的影響。因此,在步驟S206 中達到操作溫度且與不包括標記氣體的氣體樣本(即,樣本流體流)(即,具有至少一個目標VOC的流體流)接觸之後,測量VOC感測器的電阻並記錄為基準電阻或基準電導率。在一些實施例中,確定一組基準電導率(
Figure 02_image001
214 ,且該組基準電導率(
Figure 02_image001
214 包括用於複數個VOC感測器中的每一者的基準電導率(例如,
Figure 02_image003
,
Figure 02_image005
,…
Figure 02_image007
)。
在步驟S216 中,去除與感測器陣列的VOC感測器接觸的流體流。在特定實施例中,這可包括清洗容納感測器陣列及/或一個或多個VOC感測器的腔室或反應器。
在步驟S218 中,一個或多個VOC感測器與具有至少一個目標VOC的已知濃度的控制流體流(例如,標記氣體)接觸。
在步驟S220 中,測量與控制流體流接觸的一個或多個VOC感測器中的每一者的控制電導率。由於與控制流體流的接觸可能會使更多或更少的電子可用於基於化學敏感膜的傳導,故VOC感測器的電阻/電導率會發生變化。
接著,在步驟S222 中,基於所測量的VOC感測器的測試電導率和控制流體流內目標VOC的已知濃度,確定一個或多個VOC感測器中的每一者的特定淨電導率值。如本文所研究和揭露地,電導率變化的量可與氣體濃度成比例,其中本文所使用的特定淨電導率(「SNC」)是指比例係數。在特定實施例中,控制流體流具有約10ppb至約400ppb的第一目標VOC濃度。在較佳的實施例中,控制流體流具有約200ppb的目標VOC濃度。
確定為複數個VOC感測器中的一者或多者所測量的基準電導率和控制電導率之間的結果變化,並將其除以指定的(即,已知)濃度,以得出SNC值(即,晶片對氣體的敏感度的量測),其單位通常表示為「 nano-mhos/十億分之一」或「nmho/ppb」。對於應用中的每種感興趣的目標氣體,每個晶片都將有一個不同的SNC。
為了進一步校準,在步驟S226 中,對於額外的控制流體流,可重複至少步驟S218S222 ,以獲得一個或多個VOC感測器的複數個特定淨電導率(「 SNC」)值,其中每個VOC感測器的特定淨電導率值對應於不同的目標VOC。在一些實施例中,複數個SNC值是一組SNC值(
Figure 02_image009
224 ,且包括與複數個VOC感測器中的每一者的一個或多個目標VOC相對應的SNC值(例如,對於第一VOC感測器,
Figure 02_image011
,
Figure 02_image013
,…
Figure 02_image015
; 對於第二VOC感測器,
Figure 02_image017
,
Figure 02_image019
,…
Figure 02_image021
),其中Xn 代表特定的目標VOC。
方法200 亦可包括一步驟,該步驟包括調整一個或多個VOC感測器的基準電導率/電阻(S230 /S232 )。例如,在與目標VOC接觸之後,VOC感測器可具有後續(即,接觸後)的基準電導率,該後續的基準電導率不同於其在與目標VOC接觸之前的基準電導率。在特定實施例中,可藉由在步驟S230 /S232 中與目標VOC接觸之後調整基準電導率來解決這種基準電導率變化。在校準208 期間,可(例如從感測器陣列腔室中)去除S228 控制流體流,且可在步驟S230 中調整VOC感測器的電導率,其中調整步驟係藉由測量每個VOC感測器的電導率來確定VOC感測器的接觸後電導率、將接觸後電導率與基準電導率214 進行比較,及將一個或多個VOC感測器加熱到至少第二工作溫度使得每個VOC感測器在第二工作溫度下的電導率在接觸之前匹配相應的基準電導率214 來完成。基於測量到的VOC感測器的接觸後電導率,每個VOC感測器的第二工作溫度可高於或低於相應VOC感測器的第一工作溫度。
參照 2B ,在校準步驟208 之後,可在步驟S232 中藉由清除目標VOC的感測器陣列腔室、測量一個或多個VOC感測器的電導率、將測得的電導率與相應的基準電導率進行比較及將一個或多個VOC感測器加熱到至少第二工作溫度以使每個VOC感測器在第二工作溫度下的電導率與相應的基準電導率214 匹配,來調整VOC感測器的基準電導率。
在調整步驟S232 或加熱步驟S206 之後,在步驟S234 中將一個或多個VOC感測器與目標流體流接觸。在特定實施例中,目標流體流是從為可能的昆蟲侵擾而評估的存儲產品附近獲取的空氣樣本。如此一來,目標流體流可包括一個或多個目標VOC,如與一個或多個昆蟲(例如SPI)相關的化學信息素、利他素及/或信息素。例如,對於某些SPI,下文的 1 2 中列出了幾種信息素和化學信息素:
1 . SPIs 及其信息素
害蟲 信息素 化學名稱
紅麵粉甲蟲 (Triboleum castaneum ) tribolure   4,8-二甲基癸醛
鋸齒狀穀物甲蟲 ( Oryzaephilus surinamensis ) cucujolide IV (Z,Z)-3,6-(11R)-十二碳十一烯化物
cucujolide IX (Z,Z)-3,6-十二碳二烯內酯
cucujolide V (Z,Z)-5,8-(11R)-Tetradecadien-13-內醯胺
cucujolide III (Z)-5-Tetradecen-13-內醯胺
倉庫甲蟲 (Trogoderma variabile Ballion ) R,Z-trogodermal (R)-(Z)-14-甲基-8-十六烯醛
R,E-trogodermal (R)-(E)-14-甲基-8-十六烯醛
γ-caprolactone   γ-乙基-γ-丁內酯
印度穀蛾 Plodia interpunctella Z9E12-14Ac (Z,E)-9,12-乙酸十四碳二烯基酯
Z9E12-14OH (Z,E)-9,12-Tetradecadien-1-ol
Z9E12-14Ald (Z,E)-9,12-Tetradecadienal
Z9-14Ac (Z)-9-乙酸十八碳烯酯
Z11-16Ac (Z)-11-乙酸十六烷基
甲蟲 Lasioderma serricorne (F.) α-serricorone (2S,3R,1'S)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮
β-serricorone (2S,3R,1'R)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮
4S6S7S-serricornin (4S,6S,7S)-7-羥基-4,6-二甲基壬基-3-一個
anhydroserricornin (2S,3S)-2,6-二乙基-3,5-二甲基-3,4-二氫-2H-吡喃
2S3R-serricorone (2S,3R)-2,3-二氫-3,5-二甲基-2-乙基-6-(1-甲基-2-氧丁基)-4H-吡喃-4-酮
臍橙蟲 Amyelois transitella   11,13-十六二烯
  2 . IMM 信息素及化學信息素成分
  印度穀蛾 成蟲 Plodia interpunctella 印度穀蛾 幼蟲 Plodia interpunctella
信息素成分 9,12-乙酸二癸二酯 9,12-Tetradecadien-1-ol 9,12-Tetradecadienal (Z)-9-乙酸十八碳烯酯 (Z)-11-乙酸十六烷基    
化學信息素成分   2-棕櫚醯-環己烷-1,3-二酮 2-油醯基-環己烷-1,3-二酮
在步驟S236 處,在使一個或多個VOC感測器與目標流體流接觸之後,測量一個或多個VOC感測器的信號電導率。
接著,在步驟S238 處,為感測器陣列的一個或多個VOC感測器確定一組電導率變化值({ΔK i })。在特定實施例中,對於每個VOC感測器,可用下文所示公式來確定電導率變化值:
Figure 02_image023
其中i是整數,
Figure 02_image025
是VOC感測器i的電導率變化值,
Figure 02_image027
是   在目標流體流量存在下所測量的VOC感測器i的信號電 導率,及
Figure 02_image029
0是VOC感測器i的基準電導率。
在步驟S240 中,基於一組電導率變化值來確定目標流體流內的一個或多個目標VOC的氣體成分濃度([X]n )。在特定實施例中,目標流體流中除了其他背景及/或干擾氣體之外還可能存在不止一個目標VOC,這使得分析變得困難。在特定實施例中,基於一組電導率變化值和每個VOC感測器的一個或多個SNC來確定目標流體流內的一個或多個目標VOC的氣體成分濃度([X]n )。在其他實施例中,藉由求解方程組來確定目標流體流內的一個或多個目標VOC的氣體成分濃度([X]n ),該方程組例如為如下所示:
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
其中∆Ki 是感測器「i」之所測量到的電導率變化,「 i」的範圍是1到6,SNCij 是由氣體(例如,目標VOC)「j」接觸感測器「 i」時感測器「 i」的「特定淨電導率」,「j」是氣體或氣體類別A、B、C或D、E、F,及 [X]是用氣體體積比術語(即,每升總大氣中的氣體公升量)表示的氣體A、B、C或D的濃度。
儘管上面示出了六個目標VOC(即,A、B、C、D、E和F)和六個感測器(即,1、2、3、4、5和6),但分析中所存在的目標VOC的數量和VOC感測器的數量可能因應用程序不同而異或使用不同而異,且不僅限於六個。結果,確定特定流體流內存在的幾種目標VOC及/或背景氣體和干擾氣體的濃度的問題變得可能了。
在一些實施例中,方法200 可進一步包括以下步驟:操作使用者介面以傳達分析結果(S242 )。即,在步驟S204 中提供的裝置可進一步包括使用者介面,該使用者介面經配置為向相關使用者顯示目標流體流的分析結果。例如,使用者介面可經配置為顯示或以其他方式指示昆蟲出沒的存在,該昆蟲出沒的存在包括一個或多個昆蟲(例如SPI)的存在。基於預定閾值濃度來指示出侵擾的存在,該預定閾值濃度可能與存儲設施的類型(例如,在拖車、陸運/海運集裝箱、散裝搬運箱、袋裝配料托盤或儲藏室內)或要測試的存儲產品的類型相關。使用者介面可進一步配置成基於檢測到的目標VOC(例如,侵擾程度)顯示或以其他方式指示昆蟲的存在水平。
在特定實施例中,使用者介面可以是專用螢幕,如TFT LCD螢幕、IPS LCD螢幕、電容觸控螢幕LCD、LED螢幕、OLED螢幕、AMOLED螢幕等。在其他實施例中,使用者介面可包括有線或無線通訊協定,如藍牙、BLE、Wi-Fi、3G、4G、5G及LTE等,且使用者介面可經配置成通過通訊協定來傳達分析的結果到相關使用者的輔助裝置(例如行動電話、平板電腦及電腦等)。
在較佳實施例中,目標流體流是從為可能的昆蟲侵害而評估的存儲產品附近獲取的空氣樣本(或體積)。在步驟S244 中,可藉由從來自複數個鄰近要評估的存儲產品的鄰近內的複數個目標流體流(例如,空氣樣本)採樣來重複步驟S232S242 。也就是說,方法200 亦可包括以下步驟:(例如)藉由檢測目標VOC在兩個或多個目標流體流(例如,第一目標流體流、第二目標流體流及第三目標流體)上的梯度來在距存儲產品的不同距離處識別昆蟲侵擾的來源。
在方法200 的其他實施例中,步驟S204 中提供的裝置亦可包括可操作地連接到感測器陣列和使用者介面的控制器,其中控制器包括經配置成執行上述方法200 的一個或多個步驟的處理器和經配置為存儲上述資料類型中的一者或多者的記憶體。此外,記憶體可經配置成存儲用於執行方法200 的一個或多個步驟的指令。
在步驟S250 處,方法200 可結束。
藉由參考下文討論和其中所討論的各種附圖,可更容易地理解用於實施本文所述的方法100、200的裝置的這些態樣和其他態樣。
裝置和系統
本文揭露了執行上述方法100200 的裝置和系統。具體來說,本文所討論的是用於檢測在目標流體流內的一個或多個目標揮發性有機化合物(「 VOC」)的高敏感度和高選擇性的裝置,該等目標揮發性有機化合物( VOC)如為各種存儲產品昆蟲(「 SPI」)的某些化學信息素、利他素及/或信息素。此外,裝置和系統可為足夠緊湊和輕便以易於攜帶和手持。
參照 3 ,其示出了根據本申請案的一個實施例之經配置成執行本文所揭露的方法的裝置300 和系統302 的方框圖。具體來說,裝置300 包括具有複數個VOC感測器306 的感測器陣列304 。感測器陣列304 的複數個VOC感測器306 可包括約兩個到約十個VOC感測器,其包括三個、四個、五個和六個VOC感測器。在特定實施例中,感測器陣列304 可經封裝在腔室(或反應器)308 中,其中感測器306 暴露於腔室308 內之所期望的大氣(即,與該所期望的大氣接觸)。腔室可具有經配置成從腔室外部接收流體流314 的入口310 及經配置成釋放腔室308 的流體流316 的出口312
4A 4B 所示,其示出了感測器陣列304 的單個VOC感測器306 的第一側( 4A )和第二側( 4B ),VOC感測器306 可包括具有第一側320 和第二側的基板318 。基板318 可例如為陶瓷材料或可為氧化鋁(Al2 O3 )晶圓或矽晶圓。在特定實施例中,基板318 可具有約5mm至約20mm的總寬度、約4.3mm至約20mm的總高度及約0.32mm至約0.65mm的總厚度。VOC感測器306 可包括形成在基板318 的第一側320 上的電阻式加熱器電路、形成在基板318 的第二側322 上的感測電路326 及形成在基板318 的第二側322 上的感測電路326 上方的化學敏感膜328
電阻式加熱器電路324 可使用(例如)光刻法由加熱器電路材料形成在基板318 上。在一些實施例中,加熱器電路材料可包括鉑。在特定實施例中,加熱器電路材料可為包括約70重量%至約95重量%的鉑的鉑墨。
可將加熱器電路材料在基板318 上(例如)光刻成期望的圖案。在特定實施例中,感測器陣列304 的複數個VOC感測器306 中的至少一者的電阻式加熱器電路324 可具有跨越基板318 的一部分的蛇形(即,繞組)圖案。例如,在一些實施例中,電阻式加熱器電路324 可具有約0.288mm至約0.352mm的縱向跡線寬度330 。在另外的實施例中,電阻式加熱器電路324 可具有例如從約0.333mm到約0.407mm的縱向跡線間距332 。在另外的實施例中,電阻式加熱器電路324 的至少一部分可具有約3.80mm至約3.96mm的跡線高度334 、約4.40mm至約4.58mm的外部跡線寬度336 及約0.19mm至約0.24mm(包括約0.21mm)的跡線厚度(即,深度)。
基板318 VOC感測器306 的第一側320 亦可包括一個或多個端子338340 。例如,如 4A 所示,基板318 的第一側320 包括至少兩個端子338340 ,每個端子可操作地連接到電阻式加熱器電路324 的一部分(例如,相對端)342344
現在參照 4B ,感測電路326 可使用例如光刻法由感測電路材料形成在基板318 上。在一些實施例中,感測電路材料可包括鉑。在特定實施例中,感測電路材料可包括具有約70重量%至約95重量%的鉑的鉑墨。
可在基板318 上將感測電路材料(例如)光刻成期望的圖案。在特定實施例中,感測電路326 包括形成一對延伸的叉指狀觸點(即,緊密相鄰的交替的、未連接的觸點)的第一感測元件346 和第二感測元件348 。第一感測元件346 可包括複數個延伸的觸點350 ,其中每個觸點350 具有約0.162mm至約0.198mm的橫向跡線寬度354 、約0.738mm至約0.902mm的橫向跡線間距356 ,及約0.19mm至約0.24mm的跡線厚度(即,深度)。例如,觸點350 可具有約0.18mm的橫向跡線寬度354 、約0.82mm的橫向跡線間距356 和約0.21mm的跡線厚度。
類似地,第二感測元件348 可包括複數個延伸的觸點352 ,其中每個觸點352 具有約0.162mm至約0.198mm的橫向跡線寬度358 、約0.738mm至約0.902mm的橫向跡線間距360 及約0.19mm至約0.24mm的跡線厚度(即,深度)。例如,觸點354 可具有約0.18mm的橫向跡線寬度358 、約0.82mm的橫向跡線間距360 和約0.21mm的跡線厚度。
在一些實施例中,第一感測元件346 和第二感測元件348 中的每一者可包括至少三個觸點350352 ,且具有在第一和第二感測元件346348 的每個觸點350352 之間的橫向跡線間距362 ,橫向跡線間距362 為約0.288mm至約0.352mm,其包括約0.32mm。此外,每個觸點350352 可具有約3.0mm至約4.0mm(其包括約3.8mm)的縱向跡線長度364
基板318 的第二側322 亦可包括一個或多個端子366368 ,其可操作地連接到感測電路326 的一部分370372
另外,感測電路326 的觸點350352 可在其上塗覆有塗料組合物以形成化學敏感膜328 。在一些實施例中,塗料組合物可包括凝膠,且可藉由將塗料組合物施加到基板318 的一部分(例如,覆蓋觸點350352 的一部分)上、接著在高溫(例如約400℃至約900℃,其包括約500℃至約700℃)下乾燥和煅燒塗料組合物來形成膜328
在特定實施例中,膜328 可以是金屬氧化物膜,如氧化錫(SnO2 )半導體膜。在這樣的實施例中,塗料組合物可包括使用水基凝膠產生的氧化錫。在某些實施例中,藉由溶膠-凝膠法來製備凝膠,該溶膠-凝膠法包括SnCl4 以形成經中和以產生SnO2 凝膠的酸性錫溶液。例如藉由將水性SnO2 凝膠旋塗到基板318 的感測器側322 上、在第一溫度下乾燥感測器306 ,及接著在第二溫度下煅燒,在基板318 上接著形成奈米晶SnO2328 。在特定的實施例中,發生乾燥的第一溫度為約100℃至約150℃,且可較佳地為約130℃。在進一步的實施例中,發生煅燒的第二溫度為約400℃至約900℃,且可較佳地為約700℃至約800℃。重要的是,這些溫度範圍會產生在化學敏感膜328 中提供出色的敏感度的孔徑分佈和粒徑分佈。
由於目標VOC的化學結構和每個VOC感測器306 的操作條件,當目標VOC(例如標記氣體)與化學敏感膜328 接觸時,在膜328 的導帶中可利用的電子數量可能受到影響(即,增加或減少)。在特定實施例中,一個或多個目標VOC可以是「還原氣體」,其向膜328 的導帶貢獻額外的電子,從而減小膜328 的電阻,接著可將膜328 的電阻測量為膜328 的電導率的變化。可在 19A 至圖 19G 中看到這種效果。
某些目標信息素、化學信息素和利他素可包括六元碳環和一個或多個羰基(-C = O)。這是分子中過量電子密度所在的區域,其允許與半導體膜328 相互作用,從而將電荷載流子貢獻給膜328 的導帶(即,降低膜328 的電阻)。下 3 列出了兩種化學信息素的化學結構:
3. 化學信息素 / 利他素化學結構
SPI 化學式 化學結構
印度穀蛾 幼蟲 Plodia interpunctella 2-棕櫚醯基-1,3-環己二酮
Figure 02_image043
印度穀蛾 幼蟲 Plodia interpunctella 2-油醯基-1,3-環己二酮
Figure 02_image045
在較佳實施例中,感測器陣列304 包括複數個經差異化的VOC感測器306 。即,針對特定的檢測需求,改變和最佳化了複數個VOC感測器306 中的一者或多者的組成。例如,用於形成膜328 的塗料組合物可包括一個或多個催化劑或摻雜物(例如摻雜劑);可在製備凝膠塗料組合物的同時添加該一個或多個催化劑或摻雜物。在一些實施例中,塗料組合物包括摻雜劑。在一些實施例中,摻雜劑可以是(例如)過渡金屬。例如,摻雜劑可以選自由以下組成的組:鉑、鈀、鉬、鎢、鎳、釕、和鋨)。作為向VOC感測器306 的膜328 添加摻雜劑的結果,可針對給定的氣體或目標VOC來最佳化每個VOC感測器306
在特定實施例中,裝置300 可包括複數個VOC感測器306 ,其中藉由添加催化劑或摻雜物(即,摻雜劑),針對特定氣體或目標VOC來最佳化VOC感測器306 中的至少一者。在進一步的實施例中,藉由添加催化劑或摻雜物(即,摻雜劑),針對特定氣體或目標VOC來最佳化裝置300 中存在的每個VOC感測器306 。例如,在特定實施例中,感測器陣列304 可包括經配置為檢測IMM幼蟲化學信息素的第一VOC感測器306 、經配置為檢測成年IMM信息素的第二VOC感測器306 、經配置為檢測一個或多個卵特異性VOC的第三VOC感測器306 ,及經配置為檢測潛在的干擾及/或背景氣體的一個或多個VOC感測器306 ;然而,可考慮VOC感測器306 的其他組合和數量。在一個這樣的實施例中,感測器陣列304 可包括經配置為檢測IMM幼蟲化學信息的第一和第二VOC感測器306 、經配置為檢測卵特異性VOC的第三VOC感測器306 、經配置為檢測成年IMM信息素的第四VOC感測器306 ,及多達三個的經配置以用於潛在的干擾及/或背景氣體的VOC感測器306 。潛在的干擾及/或背景氣體可包括(例如)烴、醇、酯及/或醛。
可將裝置300 的每個VOC感測器306 定位在腔室308 內,從而使化學敏感膜328 能夠暴露於進入腔室308 的流體流中。參照 5 ,在特定實施例中,每個VOC感測器306 可(例如)使用線鍵合50250450650510512 懸掛在保持器500 中,以支撐感測器306 並連接各種感測器306 端子340342366368 以連接感測器保持器500 的觸點514516518520522524
進一步參考 6 ,示出了根據本申請案的某些態樣的裝置300 的側視圖。具體來說,裝置300 示出了感測器陣列304 ;感測器陣列304 包括通過感測器保持器500 懸掛在腔室308 內的六個VOC感測器306 (不可見)。此外,根據一些實施例,每個感測器保持器500的一部分526 可操作地接合適配器528 ;適配器528 將保持器500 和VOC感測器306 操作地連接到裝置300 的電路板530 ,這允許了(例如)將功率提供給VOC感測器306 並進行測量。
換句話說,感測器陣列304 可以可操作地連接到經配置為執行上述方法的一個或多個步驟的控制器374 。具體來說,控制器374 可經配置為:將複數個VOC感測器306 中的一者或多者加熱到至少第一工作溫度;測量複數個VOC感測器306 中的一者或多者的電導率;確定對應於與流體流接觸的一個或多個VOC感測器306 中的每一者的一組電導率變化值,及根據該組電導率變化值來確定流體流內一個或多個目標VOC的氣體成分濃度。
參考 7 ,示出了根據本申請案的某些態樣的裝置300 的透視圖。如圖所示,裝置300 的外殼708 可具有高度709 、寬度711 和深度713 ,其中每者可小於5英寸。在一些實施例中,裝置300 的外殼708 可具有從約3英寸到約4英寸(包括約3.4英寸)的高度709 、從約4英寸到約5英寸(包括約4.88英寸)的寬度709 、從約4英寸至約5英寸(包括約4.17英寸)深度713 。然而,可考慮其他尺寸。
回到 3 ,根據本申請案的各個態樣描述了侵擾檢測系統302 的附加組件。提供了系統302 以識別存儲產品的昆蟲侵擾;系統302 包括如前所述的感測器陣列304 。此外,在特定實施例中,系統302 包括包圍感測器陣列304 的測試腔室308 、空氣傳送單元376 及控制器374 ;控制器374 可操作地連接到空氣傳送單元376 和感測器陣列304
在各個實施例中,空氣傳送單元376 可包括用於控制通過系統302 的流體流的閥378 、用於從系統302 的外部獲取(或吸入)流體流並輸送(或推出)流體流通過系統302 的泵380 ,及用於測量由空氣傳送單元376 獲取的流體量(例如,體積)的流體流量感測器382 。在特定實施例中,流體流量感測器382 可以是質量流量控制閥或壓差感測器。在其他實施例中,閥378 和泵380 可為使用者致動的。即,系統302 的相關操作員可使用空氣傳送單元376 來引導(例如,物理地觸發)外部流體流的獲取。
空氣傳送單元302 亦可限定流體流384 的流體流動路徑,流體流384 的流體流動路徑從系統302 的外部開始、到流314 而至裝置300 的入口310 中,而至從裝置300 的出口312 流出的流316 。可沿著流體流載體(如聚合物管)傳輸流體流314316384 的部分。
另外,空氣傳送單元376 可以可操作地連接到控制器374 ,使得控制器374 可以操作空氣傳送單元376 以從腔室308 獲取流體流並將流體流輸送到腔室308 ,其中流體流可與VOC感測器306 流體接觸。在特定實施例中,控制器374 可(例如)測量進入系統302 的流體流的量(例如體積),及指示空氣傳送單元376 (例如泵380 及/或閥378 )一旦測量量達到預定閾值就停止吸入流體(例如空氣)。在一些實施例中,預定閾值是足以使裝置300 檢測和測量流體流中一個或多個目標VOC的存在的體積。
系統302 的控制器374 可以可操作地連接到空氣傳送單元376 和感測器陣列304 ,且系統302 的控制器374 可包括處理器和記憶體。控制器374 可以進一步經配置為:操作空氣傳送單元376 以從系統302 外部獲取流體流(例如,流體流378 )並將流體流(例如,流體流314 )輸送到測試腔室308 ,其中複數個VOC感測器306 與流體流314 流體接觸;操作感測器陣列304 以將一個或多個VOC感測器306 加熱到至少第一工作溫度並測量複數個VOC感測器306 中的一者或多者的電導率;確定與一個或多個VOC感測器306 中的每一者相對應的一組電導率變化值;及基於一組電導率變化值來確定流體流314 中一個或多個目標VOC的氣體成分濃度。
在一些實施例中,系統302 進一步包括使用者介面組件380 。使用者介面380 可以可操作地連接到控制器374 及控制器374 可經配置為操作使用者介面380 以顯示及/或將經由系統302 執行的測試結果傳送給相關使用者。使用者介面380 可以是系統302 的使用者或操作者可見的專用顯示器382 ,如包括TFT LCD螢幕、IPS LCD螢幕、電容觸控螢幕LCD、LED螢幕、OLED螢幕、AMOLED螢幕等的顯示器。在進一步的實施例中,使用者介面380 可包括有線或無線通訊協議384 ,如藍牙、BLE、Wi-Fi、3G、4G、5G及LTE等,且使用者介面380 可經配置成通過通訊協定將分析結果傳送給相關使用者的輔助裝置386 (例如行動電話、平板電腦及電腦等)。
系統302 亦可包括電源388 ;電源388 可操作地連接到空氣傳送單元376 、裝置300 、控制器374 和使用者介面380 中的至少一者。電源388 可經配置成在控制器374 可經配置為操作電源388 的同時,將電力輸送到系統302 的一個或多個組件。在特定實施例中,可將電源388 整合到系統302 中。在進一步的實施例中,電源388 可以是可移動的外部附件。在一些實施例中,電源388 可以是可再充電的電源388
現在參考 8 更詳細地討論所描述的系統的各個組件。如所示地, 8 示出了用於藉由(例如)檢測一個或多個目標VOC的存在並測量一個或多個目標VOC的水平來識別存儲產品的昆蟲侵擾的系統700 的方框圖。系統700 包括感測器陣列306 ,其包括控制器374 ,控制器374 具有處理器702 、記憶體704 及一個或多個輸入/輸出(I/O)介面706708 。匯流排710 可以可操作地將處理器702 、記憶體704 ,及I/O介面706708 連接在一起。記憶體704 包括用於執行本文所揭露的方法的一個或多個步驟的指令712 ,且與記憶體704 通訊的處理器702 經配置成執行用於執行一個或多個步驟的指令。
如圖所示,系統700 亦可包括感測器陣列304 ,感測器陣列304 包括複數個VOC感測器306 、空氣傳送單元376 和使用者介面380 。處理器702 亦可控制系統700 的整體操作,該整體操作包括感測器陣列304 、空氣傳送單元376 和使用者介面380 的操作。
記憶體704 可代表任何類型的非暫態電腦可讀取媒體,如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、磁盤或磁帶、光盤、快閃記憶體或全息記憶體。在一個實施例中,記憶體704 包括隨機存取記憶體和唯讀記憶體的組合。在一些實施例中,可將處理器702 和記憶體704 組合在單個晶片中。輸入/輸出(I/O)介面706708 允許控制器374 與系統700 的其他組件通過有線連接或無線連接進行通訊,該等其他組件如感測器陣列304 、流體流感測器382 、空氣傳送單元376 和使用者介面380 。可用各種方式,如藉由單核處理器、雙核處理器(或更一般地,藉由多核處理器)、數位處理器及協作方法協處理器、數位控制器等,來體現數位處理器702
如本文中所使用的術語「軟體」旨在涵蓋可由電腦或其他數位系統執行的任何指令收集或指令集,以配置電腦或其他數位系統執行軟體意圖的任務。術語「軟體」旨在涵蓋存儲在如RAM、硬碟、光碟等存儲媒體中的這些指令,且進一步旨在涵蓋所謂的「韌體」,「韌體」係為經存儲在ROM或諸如此類上的軟體。可用各種方式來組織這樣的軟體,且這樣的軟體可包括經組織為庫的軟體組件、經存儲在遠端伺服器上之基於網際網路的程式等、源代碼、解釋性代碼、目標代碼、直接可執行代碼等。可預期的是,軟體可調用系統級代碼或呼叫駐留在服務器或其他位置上的其他軟體,以執行某些功能。
控制器374 的指令712 在各種實施例中可包括(例如)電導率改變模組714 、特定淨電導率(「 SNC」)資料模組716 、氣流管理模組718 、工作溫度模組720 、VOC濃度模組722 和報告輸出模組724
電導率改變模組714 可經配置為測量感測器陣列304 的一個或多個VOC感測器306 的電導率,且將電導率資料728 記錄在記憶體704 中。也就是說,在特定實施例中,電導率改變模組714 可經配置為指示處理器702 使用相應的感測電路326 來測量一個或多個VOC感測器306 的化學敏感膜328 的體電阻變化。因此,電導率改變模組714 可經配置成通過I/O介面706 測量及接收來自感測器陣列304 的VOC感測器306 的電導率信號,並將電導率作為電導率資料728 存儲在記憶體306 中。電導率改變模組714亦可經配置成(例如)最小化從VOC感測器306 所測量到的電子雜訊和電導率信號的漂移以確保準確和精確的測量。在一些實施例中,電導率改變模組714 可經配置為(例如)應用信號模型及/或演算法來管理或消除感測器電導率的測量中的電導率漂移和電子雜訊的問題。在進一步的實施例中,電導率改變模組714 可經配置為藉由測量VOC感測器的電導率並(經由操作溫度模組720 )升高及/或降低一個或多個VOC感測器的工作溫度來調整一個或多個VOC感測器的電導率值,直到VOC感測器的電導率值與先前確定的基準電導率值匹配。
SNC資料模組716 可經配置成如前所述地確定感測器陣列304 的一個或多個VOC感測器306 的特定淨電導率(「SNC」)。具體來說,SNC資料模組716 和電導率改變模組714 可操作以經由I/O介面706 測量和接收某些電導率信號(例如,與沒有目標VOC的控制流體流及/或樣品流體流接觸的VOC感測器的電導率值)。接著,SNC資料模組可確定VOC感測器306 的一組SNC值,並將該組SNC值作為SNC資料726 存儲在記憶體704 中。
可將氣流管理模組718 配置成操作空氣傳送單元326 以獲取流體流(例如,流體流384 )、將流體流輸送到裝置300 ,及從系統302 清除流體流(例如,流體流316 )。具體來說,氣流管理模組718 可經配置為經由I/O介面706 從空氣傳送單元376 的流體流量感測器382 接收氣流資料730 。例如,氣流資料730 可包括流體進入口閾值(例如,體積)和來自流量感測器382 的量測,其可存儲在記憶體704 中。另外,氣流管理模組718 可經配置為操作空氣傳送單元376 ;空氣傳送單元376 包括閥378 和泵380 與控制通過系統302 的流體流動路徑的入口310 和出口312
工作溫度模組720 可經配置成經由I/O介面706 來操作感測器陣列304 的VOC感測器306 的加熱器電路324 。具體來說,工作溫度模組720 可經配置成藉由指示將功率施加到VOC感測器306 的加熱電路324 來加熱一個或多個VOC感測器306 到至少第一工作溫度及第二工作溫度。工作溫度模組720 可進一步經配置成監視感測器陣列304 的每個VOC感測器306 的溫度及調整所提供以調節VOC感測器306 的工作溫度的功率。溫度模組720 可將VOC感測器306 的設定點工作溫度及所測得的溫度作為溫度732 存儲在記憶體704 中。
VOC濃度模組722 可經配置成如上所述地確定流體流中的一個或多個目標VOC的氣體成分濃度。一個或多個目標VOC可在流體流(例如,空氣流)內呈氣態形式。在特定的實施例中,一個或多個目標VOC是信息素、化學信息素及利他素中的至少一者。在進一步的實施例中,流體流內的一個或多個目標VOC中的至少一者可選自由以下組成的組:11,13-十六碳烯醛、 4,8-二甲基癸醛、(Z,Z)-3,6-(11R)-十二碳烯-11-內醯胺、(Z,Z)-3,6-十二碳二烯內酯、(Z,Z)-5,8-(11R)-Tetradecadien-13-內醯胺、(Z)-5-Tetradecen-13-內醯胺、(R)-(Z)-14-甲基-8-十六烯醛、(R)-(E)-14-甲基-8-十六烯醛、 γ-乙基-γ-丁內酯、(Z,E)-9,12-乙酸十四碳二烯基、(Z,E)-9,12-四癸二烯-1-醇、(Z,E)-9,12-四氫葉酸、(Z)-9-乙酸十四碳烯基酯、(Z)-11-己酸癸烯酯、(2S,3R,1'S)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮、(2S,3R,1'R)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮、(4S,6S,7S)-7-羥基-4,6-二甲基壬基-3-酮、(2S,3S)-2,6-二乙基-3,5-二甲基-3,4-二氫-2H-吡喃、2-棕櫚醯-環己烷-1,3-二酮;及2-油醯基-環己烷-1,3-二酮。然而,亦可考慮其他信息素、化學信息素和利他素。可將這些目標VOC中的一者或多者的確定濃度作為VOC資料734 存儲在記憶體中。
報告輸出模組724 可經配置成開發期望的系統輸出738 及經由I/O介面380 來操作使用者介面380 ,以將輸出738 傳送到系統302 的相關使用者。在具體實施例中,使用者介面380 可以是專用顯示器,或可以是輔助使用者裝置(例如PC,如桌上型電腦、筆記型電腦、掌上電腦、可攜式數字助理(PDA)、伺服器電腦、蜂巢式電話、平板電腦、行動裝置等,或上述組合)。在一些實施例中,使用者介面380 可包括揚聲器或揚聲器系統。因此,在一些實施例中,I/O介面708 可以是有線通訊介面。在其他實施例中,I/O介面708 可包括無線通訊組件,且可經由無線通訊協定(如藍牙、BLE、Wi-Fi、3G、4G、5G、LTE或諸如此類)發生與使用者介面380 的通訊。
在任一情況下,在各種實施例中,可經由使用者介面380 傳送系統輸出738 ,系統輸出738 如(例如)圖示說明確定的VOC資料的圖形、圖表、表格或資料集。在一些實施例中,輸出738 可包括如音頻音調、一組音調或可聽單詞的可聽組件,其可經由使用者介面380 的揚聲器或揚聲器系統來傳送。可聽的輸出組件可以是基於檢測到的一個或多個目標VOC的氣體成分濃度而變化的一頻率(例如,隨著更高的檢測水平而增加頻率)的音調。在特定實施例中,輸出738 包括確定在存儲產品內是否可能存在昆蟲侵擾。在進一步的實施例中,輸出738 可包括對可能的侵擾原因的估計(例如,基於VOC資料識別一個或多個特定的SPI)。在另外的實施例中,輸出738 可包括用於採取補救措施以保護存儲產品的價值的建議,如熏蒸。
示例 :以下具體示例描述了本申請案的新穎態樣及其中所使用的過程。該等態樣及過程僅用於說明性目的,不應解釋為對本發明最廣泛態樣的限制。
示例 1 參照 9A 至圖 9D ,提供了VOC感測器晶片的各種實施例的實驗室基準測試,及VOC感測器晶片對信息素的敏感性的圖表。將成蟲昆蟲信息素在A31壓縮氣瓶中以乾燥氮氣中2 ppm的濃度製成測試氣體。用另外的乾燥氮氣稀釋此測試氣體,以得到信息素濃度在100 ppb和300 ppb之間的氣流。將此氣流注入到前原型裝置中,並確定淨電導率。下圖顯示了五個不同感測器的回應,其中一者不添加催化劑,而四個感測器添加了Pd催化劑、Pt催化劑、Os催化劑和W催化劑。W催化劑對IMM信息素( 9A )、菸甲蟲信息素( 9C )和倉庫甲蟲信息素( 9D )有極好的敏感性。Pd催化劑對紅色麵粉甲蟲信息素顯示出極好的敏感性( 9B )。其他催化劑在對信息素的敏感反應中效果較差。
示例 2 參照 10A 至圖 10C 、圖 11A 至圖 11C 及圖 12A 至圖 12C ,提供了感測器晶片回應具有昆蟲的產品的上方的頂部空間的現場測試的實驗結果。在現場試驗中,將10磅乾淨的白小麥粉樣品上方的頂部空間氣體注入到前原型裝置中,以建立基準電阻值。一旦建立了基準電阻值,就將在10磅乾淨的白小麥粉樣品上方的頂部空間氣體注入至含有不同數量的四種活昆蟲(IMM、紅色麵粉甲蟲、倉庫甲蟲和菸甲蟲)的小瓶中。針對未催化晶片( 10A 至圖 10B )、Pt催化晶片( 11A 至圖 11C )、Os催化晶片( 12A 至圖 12C )及W催化晶片( 13A 至圖 13C ),顯示了頂部空間氣體對內埋有活昆蟲的產品的電阻資料。
如在每種情況下所見,隨著昆蟲種群的增加,電阻的降低是明顯的。其他昆蟲在頂部空間產生其他信息素。較高的信息素濃度會導致感測器晶片電阻降低。因此,感測器晶片能夠產生取決於昆蟲種群的信號。可分析此信號,並可建立昆蟲種群與信號之間的相關性。
參照 14A 至圖 14D ,提供了示出上述資料的分析結果的圖。藉由將晶片電阻值R轉換為晶片電導率值(數學地表示為K)來分析原始資料。淨電導率是藉由以下方式確定:自存在 昆蟲時的晶片電導率(Kg )減去不存在昆蟲時的晶片電導率(Kb )。將淨電導率數學地表示為∆K。ΔK與昆蟲數量的關係圖在 14A 至圖 14D 中示出。結果,這些圖允許針對每種信息素選擇最佳的催化劑;例如,針對IMM的未催化晶片、針對倉庫甲蟲的Os催化晶片,及用於菸甲蟲的未催化晶片。
示例 3 在第三測試中,本申請案的實施例用於檢測由在儲藏食物產品中之活的成年雌性IMM、幼蟲和繭中幼蟲釋放的信息素和化學信息素。將白小麥粉(約25磅)注入至兩個10加侖的鍍鋅桶到一半。一個桶作為控制組、沒有任何昆蟲,而成年雌性IMM、IMM幼蟲和繭中的幼蟲則放在另一個桶中。根據本申請案的一個態樣的裝置經由不銹鋼管和閥系統連接到這些桶,該閥系統防止「參考」桶和含昆蟲的桶之間的污染。將裝有成年昆蟲、幼蟲和繭中幼蟲的廣口瓶放入實驗桶中。
首先,昆蟲檢測裝置藉由從「參考」桶中採樣頂部空間氣體來獲得基準電阻讀數(即,藉由測量VOC感測器處於沒有任何目標VOC的大氣中時的電導率來確定VOC感測器的基準電導率)。記錄基準電導率/電阻讀數約30分鐘或更長時間。
接著,昆蟲檢測裝置從包括昆蟲的桶中取樣頂部空間氣體,並記錄VOC感測器的電阻/電導率測量值約30分鐘或更長時間。參照 15 ,示出了VOC感測器回應的示例。
為對活幼蟲、繭中幼蟲和成年雌蛾進行多次試驗,重複這些步驟。下表總結了進行的測試:
  活幼蟲     成年雌蛾
晶片 已知 預測   已知 預測   已知 預測
未催化 5 10   5 4   5 5
100 52   25 26   25 25
225 308   100 99   100 75
325 431   225 224      
盲測 150 304   150 123   75 51
                 
W 催化 5 11   5 8   5 5
100 172   25 23   25 25
225 198   100 101   100 20
325 321   225 207      
盲測 150 286   150 110   75 11
                 
Pt 催化 3 0   5 5   5 3
100 208   25 25   25 21
225 250   100 100   100 99
325 372   225 166      
盲測 150 324   150 102   75 42
對於幼蟲、繭中的幼蟲和成年IMM中的每一者,將經引入實驗桶中的昆蟲的「已知」數量與存在昆蟲的所計算或「所預測」數量進行比較。根據本申請案的一個實施例,如上所述地處理由裝置測量到的電阻資料。具體來說,所預測的昆蟲數量是從相關曲線得出的,該等相關曲線經創建以用於顯示當樣品流體流從參考桶更改為實驗桶時的電阻變化。為了創建相關曲線,每次出現昆蟲時都必須確定信號(Net R)。信號是沒有昆蟲的晶片電阻(即,基準電導率)與存在昆蟲的晶片電阻之間的差。由於基準電阻隨時間變化,故使用公式來計算期望的基準電阻,該公式係藉由繪製昆蟲在一段時間內不存在時選定的基準電阻值而得出。例如, 16A 至圖 16C 示出了用於三個昆蟲成熟階段的未催化晶片的圖。接著,為每個晶片創建相關曲線。例如,在 17A 至圖 17C 中以二次擬合示出了未催化晶片的曲線。
如上可見,當預期分析物(即,VOC)濃度非常低時,已知數與預測數之間的一致性良好且具有一些變化。據信,感測器裝置對針對成蟲的雌性信息素、針對幼蟲的幼蟲化學信息素2-棕櫚醯-1,3-環己二酮,及針對繭的2-油醯基-1,3,-環己二酮和2-棕櫚醯-1,3-環己二酮作出反應。幼蟲利用其下頜分泌物(即唾液)來構建其繭,這些下頜分泌物具有高濃度的2-油醯基-1,3-環己二酮,而所產生的排泄物中也含有高濃度的2-棕櫚醯基-1,3-環己二酮。對活幼蟲有一些高估,而對成年蛾有一些低估。然而,應注意的是,信息素和化學信息素的產生會隨著一天中的時間而變化;因此,在模擬環境中,信息素和化學信息素的產生並不總是如分析物流量般地一致。
示例 4 在第四測試中,本申請案的實施例用於檢測存儲食物產品中的臍橙蟲(navel orangeworm, NOW)成年雌蟲、幼蟲和繭中幼蟲。根據下表,多個一夸脫玻璃廣口瓶中的每一者裝有少量白小麥粉。
廣口瓶 食物產品 存在昆蟲
控制組 白小麥粉
Ex. 1 白小麥粉 50隻NOW 成年雌蟲
Ex. 2 白小麥粉 50隻NOW 幼蟲,約第五齡 (instar)
Ex. 3 白小麥粉 50隻NOW 繭中成蛹幼蟲
Ex. 4 白小麥粉 100隻NOW成年雌蟲
Ex. 5 白小麥粉 100隻NOW幼蟲,,約第五齡 (instar)
Ex. 6 白小麥粉 100隻NOW 繭中成蛹幼蟲
Ex. 7 白小麥粉 1X 倍數的NOW 卵 (約100 個卵)
Ex. 8 白小麥粉 2X 倍數的 NOW卵 (約 200個卵)
將一個沒有昆蟲、沒有幼蟲,沒有信息素和沒有化學信息素的廣口瓶作為參考瓶或控制廣口瓶,而其它廣口瓶將包括昆蟲。首先,藉由對參考瓶的頂部空間進行採樣來確定基準電導率。然後,測試來自實驗瓶(例如,Ex.1- Ex.8)中的一者的頂部空間的流體流樣本。在 18 中示出了使用在300℃下操作的Pd催化的晶片而獲得的資料。具體來說,垂直箭頭指示來自裝有昆蟲的廣口瓶的頂部空間空氣何時開始流動。如所見,電阻的立即降低表明了感測器晶片對分析物VOC的瞬時回應。從此資料可清楚看出,與50隻成蟲、50隻幼蟲、50個繭和1X個數量的卵上方的頂部空間空氣相比,100隻成蟲、100隻幼蟲、100個繭和2X個數量的卵上方的頂部空間空氣引起的電阻變化更大。也就是說,信號隨著成蟲、幼蟲、繭和卵的總體或數量而改變其大小。
已參考較佳實施例闡述了本說明書。顯然地,其他人在閱讀和理解本說明書後會想到修改和變更。意圖將本發明解釋為包括所有這樣的修改和改變,只要該等所有這樣的修改和改變落入所附申請專利範圍或其等同物的範疇內即可。也就是說,將應當理解的是,上述各種和其他特徵與功能或其替代物可合乎需要地組合到許多其他不同的系統或應用中,且還可預見到各種目前不可預見或未預期的替代物、修改,所屬技術領域中具有通常知識者隨後可對其進行各種變型或改進,這些變型或改進類似地旨在由所附申請專利範圍涵蓋。
100:方法 S105:步驟 S110:步驟 S115:步驟 S120:步驟 S125:步驟 S130:步驟 S135:步驟 200:方法 S202:步驟 S204:步驟 S206:步驟 208:步驟 S210:步驟 S212:步驟 214:步驟 S216:步驟 S218:步驟 S220:步驟 S222:步驟 224:步驟 S226:步驟 S228:步驟 S230:步驟 S232:步驟 S234:步驟 S236:步驟 S238:步驟 S240:步驟 S242:步驟 S244:步驟 S250:步驟 300:裝置 302:系統 304:感測器陣列 306:VOC感測器 308:腔室 310:入口 312:出口 314:流體流 316:流體流 318:基板 320:第一側 322:第二側 324:電阻式加熱器電路 326:感測電路 328:化學敏感膜 330:縱向跡線寬度 332:縱向跡線間距 334:跡線高度 336:外部跡線寬度 338:端子 340:端子 342:電阻式加熱器電路的一部分 344:電阻式加熱器電路的一部分 346:第一感測元件 348:第二感測元件 350:觸點 352:觸點 354:橫向跡線寬度 356:橫向跡線間距 358:橫向跡線寬度 360:橫向跡線間距 362:橫向跡線間距 364:縱向跡線長度 366:端子 368:端子 370:感測電路的一部分 372:感測電路的一部分 374:控制器 376:空氣傳送單元 378:閥 380:泵 382:流體流量感測器 384:流體流 386:輔助裝置 388:電源 500:保持器 502:線鍵合 504:線鍵合 506:線鍵合 50:線鍵合 510:線鍵合 512:線鍵合 514:觸點 516:觸點 518:觸點 520:觸點 522:觸點 524:觸點 526:感測器保持器的一部分 528:適配器 530:電路板 700:系統 702:處理器 704:記憶體 706:輸入/輸出(I/O)介面 708:外殼 709:高度 710:匯流排 711:寬度 712:指令 713:深度 714:電導率改變模組 716:特定淨電導率(SNC)資料模組 718:氣流管理模組 720:工作溫度模組 722:VOC濃度模組 724:報告輸出模組 726:SNC資料 728:電導率資料 730:氣流資料 732:溫度 734:VOC資料 738:輸出
本申請案可採取各種部件和部件佈置與各種步驟和步驟佈置的形式。附加圖式僅出於說明較佳實施例的目的,且不應被解釋為限制本申請案。
1 是示出根據本申請案的一個實施例的識別昆蟲侵擾的方法的流程圖。
2A 至圖 2B 是示出根據本申請案的另一實施方式的識別昆蟲侵擾的另一方法的流程圖。
3 是示出根據本申請案的一個實施例之經配置成執行本文所揭露的方法的系統的方框圖。
4A 至圖 4B 是根據本申請案的某些實施例的單個VOC感測器的第一側( 4A )和第二側( 4B )的圖示。
5 是根據本申請案的一個實施例之懸掛在保持器中的單個VOC感測器的圖示。
6 是根據本申請案的一個實施例的包括複數個VOC感測器的感測器陣列的代表性側視橫截面視圖。
7 是根據本申請案的某些態樣示出的裝置的透視圖。
8 是根據本申請案的一個實施例的侵擾檢測系統的方框圖。
9A 至圖 9D 是示出根據本申請案的一個實施例的VOC感測器陣列對各種目標揮發性有機化合物的敏感度的圖示。
10A 至圖 10C 是示出了根據本申請案的一個實施例的第一VOC感測器對三種目標存儲產品昆蟲(「 SPI」)的存在的回應的圖示。
11A 至圖 11C 是示出了根據本申請案的另一實施例的第二VOC感測器對三種目標存儲產品昆蟲(「 SPI」)的存在的回應的圖示。
12A 至圖 12C 是示出了根據本申請案的一個實施例的第三VOC感測器對三種目標存儲產品昆蟲(「 SPI」)的存在的回應的圖示。
13A 至圖 13C 是示出了根據本申請案的一個實施例的第四VOC感測器對三種目標存儲產品昆蟲(「 SPI」)的存在的回應的圖示。
14A 至圖 14D 是示出了根據本申請案的一個實施例的四個VOC感測器對三種目標存儲昆蟲(SPI)的存在量變化的回應的圖示。
15 是示出在存儲食物產品測試例中感測器對繭數量的回應的圖示。
16A 至圖 16C 是示出特定感測器晶片的基準電阻隨時間變化的圖示。
17A 至圖 17C 是示出感測器晶片的淨電阻與昆蟲、幼蟲和繭中幼蟲數量的關係的圖示。
18 是示出Pd催化的感測器晶片對處於不同生命階段的NOW昆蟲的回應的圖示。
19A 至圖 19G 是示出VOC感測器對處於不同生命階段的某些昆蟲的存在的回應的圖示。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:方法
S105:步驟
S110:步驟
S115:步驟
S120:步驟
S125:步驟
S130:步驟
S135:步驟

Claims (23)

  1. 一種藉由檢測一目標流體流中的一個或多個目標揮發性有機化合物(VOC)來識別一存儲產品的一昆蟲侵擾的方法,該方法包括以下步驟: 經由包括複數個VOC感測器的一裝置來將該複數個VOC感測器中的至少一者加熱到至少一第一工作溫度; 使該一個或多個VOC感測器與該目標流體流接觸; 確定對應於與該目標流體流接觸的該一個或多個VOC感測器中的每一者的一組電導率變化值(ΔKi );及 基於該組電導率變化值來確定該目標流體流內該等目標VOC中的一者或多者的一氣體成分濃度([X]n )。
  2. 如請求項1所述的方法,其中該複數個VOC感測器中的每個VOC感測器包括: 一基板,其具有一第一側和一第二側; 一電阻式加熱器電路,其形成在該基板的該第一側上; 一感測電路,其形成在該基板的該第二側上;及 一化學敏感膜,其於在該基板的該第二側上的該感測電路上方形成。
  3. 如請求項1所述的方法,其中該複數個VOC感測器中的至少一者經配置為檢測一卵特異性VOC的存在。
  4. 如請求項1所述的方法,其中該方法進一步包括以下步驟: 在使該一個或多個VOC感測器與該目標流體流接觸後,測量該一個或多個VOC感測器的一信號電導率; 其中基於與該目標流體流接觸的該一個或多個VOC感測器中的每一者的該信號電導率與該等對應的VOC感測器中的每一者的一基準電導率之間的差來確定該組電導率變化值(ΔKi)。
  5. 如請求項4所述的方法,其中當該一個或多個VOC感測器處於沒有任何目標VOC的一大氣中時,測量該一個或多個VOC感測器的該基準電導率。
  6. 如請求項5所述的方法,其中該方法進一步包括以下步驟: 在與該至少一個目標VOC接觸後,調整該等VOC感測器中的一者或多者的該基準電導率,以在與該至少一個目標VOC接觸前匹配該對應的VOC感測器的該基準電導率,其中藉由加熱該等VOC感測器中的一者或多者達到至少一第二工作溫度來調整該基準電導率。
  7. 如請求項4所述的方法,其中該方法進一步包括以下步驟: 使該複數個VOC感測器中的一者或多者與一樣品流體流接觸,該樣品流體流不存在任何目標VOC;及 測量該一個或多個VOC感測器的基準電導率。
  8. 如請求項1所述的方法,其中該方法進一步包括以下步驟: 確定該等VOC感測器中的一者或多者的一個或多個特定淨電導率值,其中每個特定淨電導率值對應於該等目標VOC中之一者。
  9. 如請求項8所述的方法,其中藉由以下步驟來確定與一目標VOC相對應的每個特定淨電導率值,該等以下步驟為: 使該一個或多個VOC感測器與具有一已知濃度的該目標VOC的一控制流體流接觸; 測量該一個或多個VOC感測器中的每一者的一測試電導率;及 對於該一個或多個VOC感測器中的每一者,基於該VOC感測器的該所測量的測試電導率和該目標VOC在該控制流體流內的該已知濃度,計算一特定淨電導率值。
  10. 如請求項9所述的方法,其中該方法進一步包括以下步驟: 確定該等VOC感測器的一者或多者的複數個特定淨電導率值,其中該等VOC感測器的每一者的特定淨電導率值對應於一個不同的目標VOC。
  11. 如請求項8所述的方法,其中基於該組電導率變化值及該一個或多個VOC感測器的每一者的該一個或多個特定淨電導率值,來確定該目標流體流內的該一個或多個目標VOC的氣體成分濃度([X]n )。
  12. 如請求項1所述的方法,其中該第一操作溫度在約180℃至約400℃之間。
  13. 如請求項1所述的方法,其中該目標流體流是從與所評估的該存儲產品鄰近的一鄰近的內部獲取的一空氣樣本。
  14. 一種用於檢測一目標流體內的一個或多個目標揮發性有機化合物(VOC)的裝置,該裝置包括: 一感測器陣列,其具有複數個VOC感測器,其中每個VOC感測器包括: 一基板; 一電阻式加熱器電路,其形成在該基板的一第一側上; 一感測電路,其形成在該基板的一第二側上;及 一化學敏感膜,其形成在該基板的該第二側上的該感測電路的上方; 其中該複數個VOC感測器中的至少一個VOC感測器經配置為檢測一卵特異性VOC的存在。
  15. 如請求項14所述的裝置,其中該感測器陣列包括約兩個到約十個的VOC感測器。
  16. 如請求項14所述的裝置,其中該複數個VOC感測器中的至少一者的該電阻式加熱器電路是一蛇形圖案,該蛇形圖案具有約0.288mm至約0.352mm的一縱向跡線寬度和約0.333mm至約0.407mm的一縱向跡線間距寬度。
  17. 如請求項14所述的裝置,其中該複數個VOC感測器中的至少一者的該感測器電路包括:一第一感測元件和一第二感測元件,該第一感測元件和該第二感測元件形成一對延伸的叉指狀觸點; 其中該第一感測元件包括複數個延伸觸點,每個觸點具有約0.162mm至約0.198mm的一橫向跡線寬度和約0.738mm至約0.902mm的一橫向跡線間距;及 其中該第二感測元件包括複數個延伸的觸點,每個觸點具有約0.162mm至約0.198mm的一橫向跡線寬度和約0.738mm至約0.902mm的一橫向跡線間距。
  18. 如請求項15所述的設備,其中該第一感測元件和該第二感測元件中的每一者包括至少三個延伸觸點,且其中該感測電路在該第一感測元件和該第二感測元件的每個延伸觸點之間具有為約0.288mm到約0.352mm的一橫向跡線間距。
  19. 如請求項14所述的裝置,其中該電阻式加熱器電路和該感測電路中的至少一者由一包括鉑的組合物形成,且該化學敏感膜是由一水性氧化錫凝膠形成的一奈米晶體氧化錫膜。
  20. 如請求項14所述的裝置,其中該化學敏感膜包括從由鉑、鈀、鉬、鎢、鎳、釕、及鋨組成的一組合所選擇的一摻雜劑。
  21. 如請求項14所述的裝置,其中該感測器陣列可操作地連接至一控制器,該控制器經配置為: 測量該複數個VOC感測器中的一者或多者的一電導率; 確定一組電導率變化值,該組電導率變化值與接觸該目標流體流的該一個或多個VOC感測器中的每一者相對應;及 基於該組電導率變化值,確定該目標流體內的該等目標VOC中的一者或多者的一氣體成分濃度。
  22. 一種用於識別所存儲產品的昆蟲侵擾的系統,該系統包括: 一測試腔室,其包圍一感測器陣列,其中該感測器陣列包括複數個VOC感測器,且該複數個VOC感測器中的至少一個VOC感測器經配置為檢測一卵特異性VOC的存在; 一空氣傳送單元,其經配置成獲取一流體流並將該流體流輸送到該測試腔室;及 一控制器,該控制器可操作地連接到該空氣傳送單元和該感測器陣列,其中該控制器經配置為: 操作該空氣傳送單元以從測試腔室獲取該流體流並將該流體流輸送到該測試腔室,其中該複數個VOC感測器中的一者或多者與該流體流流體接觸; 操作該感測器陣列以測量該複數個VOC感測器中的一者或多者的一電導率; 確定與該一個或多個VOC感測器中的每一者相對應的一組電導率變化值;及 基於該組電導率變化值,確定該流體流內的一個或多個目標VOC的一氣體成分濃度。
  23. 如請求項22所述的系統,其中該流體流內的該一個或多個目標VOC中的至少一者選自由以下組成的組:11,13-十六二烯醛;4,8-二甲基癸醛; (Z,Z)-3,6-(11R)-十二碳烯-11-內醯胺;(Z,Z)-3,6-十二碳二烯內酯;(Z,Z)-5,8-(11R)-Tetradecadien-13-內醯胺;(Z)-5-Tetradecen-13-內醯胺;(R)-(Z)-14-甲基-8-十六烯醛;(R)-(E)-14-甲基-8-十六烯醛; γ-乙基-γ-丁內酯;(Z,E)-9,12-乙酸十四碳二烯基; (Z,E)-9,12-四癸二烯-1-醇;(Z,E)-9,12-四氫葉酸;(Z)-9-乙酸十四碳烯基酯;(Z)-11-乙酸己癸烯酯;(2S,3R,1'S)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮;(2S,3R,1'R)-2,3-二氫-3,5-二甲基-2-乙基-6(1-甲基-2-氧丁基)-4H-吡喃-4-酮; (4S,6S,7S)-7-羥基-4,6-二甲基壬基-3-酮;(2S,3S)-2,6-二乙基-3,5-二甲基-3,4-二氫-2H-吡喃;2-棕櫚醯-環己烷-1,3-二酮;及2-油醯基-環己烷-1,3-二酮。
TW109130022A 2019-09-03 2020-09-02 藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置 TW202126170A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/558,490 US11272699B2 (en) 2018-02-01 2019-09-03 Device for detecting insect larvae and adult insects in stored products by sensing their volatile pheromones and semiochemicals
US16/558,490 2019-09-03

Publications (1)

Publication Number Publication Date
TW202126170A true TW202126170A (zh) 2021-07-16

Family

ID=72381159

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109130022A TW202126170A (zh) 2019-09-03 2020-09-02 藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置

Country Status (8)

Country Link
EP (1) EP4025907A1 (zh)
CN (1) CN114501988B (zh)
AU (1) AU2020341335A1 (zh)
BR (1) BR112022004075A2 (zh)
CA (1) CA3150150A1 (zh)
TW (1) TW202126170A (zh)
WO (1) WO2021045943A1 (zh)
ZA (1) ZA202203764B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014389998B2 (en) * 2014-04-10 2019-10-31 MEP Equine Solutions LLC Method for the quantification of parasite eggs in feces
WO2016145300A1 (en) * 2015-03-11 2016-09-15 Nano Engineered Applications, Inc. Chemical sensor
FR3034672B1 (fr) * 2015-04-10 2018-05-25 Ab7 Innovation Systeme autonome d'emission ciblee et optimisee de substances semiochimiques
BR112020015715A2 (pt) * 2018-02-01 2020-12-08 Sensor Development Corporation Dispositivo para detectar larvas de insetos e insetos adultos em produtos armazenados por sensoreação de seus feromônios voláteis e semioquímicos

Also Published As

Publication number Publication date
BR112022004075A2 (pt) 2022-08-16
WO2021045943A1 (en) 2021-03-11
CA3150150A1 (en) 2021-03-11
AU2020341335A1 (en) 2022-04-21
CN114501988A (zh) 2022-05-13
EP4025907A1 (en) 2022-07-13
CN114501988B (zh) 2023-04-07
ZA202203764B (en) 2022-11-30

Similar Documents

Publication Publication Date Title
JP7177522B2 (ja) 揮発性フェロモンおよび情報化学物質を検知することによって貯蔵産物中の昆虫幼体および昆虫成体を検出するためのデバイス
Konemann et al. Phosphine resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) collected from grain storage facilities in Oklahoma, USA
Rajendran Detection of insect infestation in stored foods
Szczurek et al. Semiconductor gas sensor as a detector of Varroa destructor infestation of honey bee colonies–Statistical evaluation
Gautam et al. Phosphine resistance in adult and immature life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) and Plodia interpunctella (Lepidoptera: Pyralidae) populations in California
Athanassiou et al. Spatial associations of insects and mites in stored wheat
Ren et al. Fumigation trials on the application of ethyl formate to wheat, split faba beans and sorghum in small metal bins
Jayas Sensors for grain storage
Elliott et al. D-vac sampling for predatory arthropods in winter wheat
Şennik et al. Electronic nose system based on a functionalized capacitive micromachined ultrasonic transducer (CMUT) array for selective detection of plant volatiles
TW202126170A (zh) 藉由感測揮發性信息素和化學信息素來偵測存儲產品中的昆蟲幼蟲和成蟲的裝置
US11927579B2 (en) Device for detecting insect larvae and adult insects in stored products by sensing their volatile pheromones and semiochemicals
Wehrenfennig et al. On-site airborne pheromone sensing
Borowik et al. Application of a low-cost electronic nose to detect of forest tree pathogens: fusarium oxysporum and phytophthora plurivora
Thanushree et al. Detection techniques for insect infestation in stored grains
Negri et al. Tracking the sex pheromone of codling moth against a background of host volatiles with an electronic nose
Wu Feasibility of the application of electronic nose technology to monitoring insect infestation in wheat
JP4139763B2 (ja) 忌避性判定方法
Hossain Fabrication and optimization of a sensor array for incipient grain spoilage monitoring
Konemann et al. Establishing discriminating doses of phosphine for adults of three psocid (Psocoptera: Liposcelididae) species
Eliopoulos et al. Capture of hymenopteran parasitoids of stored-grain pests in various trap types.
Latifian et al. Determination the population density of the different development stags of the Indian moth Plodia interpunctella Hbn in Date fruit Sayer cultivar based on spectrophotometer method
Trematerra Capture of stored-grain Coleoptera with WB Probe II Trap: influence of grain type
Laopongsit Investigation of solid phase microextraction (SPME) as an alternative method in detecting insect infestation in stored wheat grain