TW202123438A - Light sensor and sensing method thereof - Google Patents

Light sensor and sensing method thereof Download PDF

Info

Publication number
TW202123438A
TW202123438A TW109124383A TW109124383A TW202123438A TW 202123438 A TW202123438 A TW 202123438A TW 109124383 A TW109124383 A TW 109124383A TW 109124383 A TW109124383 A TW 109124383A TW 202123438 A TW202123438 A TW 202123438A
Authority
TW
Taiwan
Prior art keywords
integrator
signal
light
coupled
generate
Prior art date
Application number
TW109124383A
Other languages
Chinese (zh)
Other versions
TWI746067B (en
Inventor
吳高彬
Original Assignee
義明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義明科技股份有限公司 filed Critical 義明科技股份有限公司
Priority to CN202010771845.6A priority Critical patent/CN112097902B/en
Priority to US17/033,291 priority patent/US11237048B2/en
Publication of TW202123438A publication Critical patent/TW202123438A/en
Application granted granted Critical
Publication of TWI746067B publication Critical patent/TWI746067B/en

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A light sensor with a high sensitivity includes a light sensing element, a first integrator and a sigma-delta (ΣΔ) analog-to-digital converter. The light sensing element senses a light during a measurement period and generates a first current. The first integrator coupled to the light sensing element receives the first current and generates a first integration signal. The sigma-delta analog-to-digital converter coupled to the first integrator is used to transfer the first integration signal to a sense value.

Description

光感測器及其感測方法Light sensor and its sensing method

本發明是有關一種感測器,特別是一種光感測器及其感測方法。The present invention relates to a sensor, especially a light sensor and its sensing method.

為了根據周遭的光強度變化而改變螢幕的亮度,手機需要一光感測器來感測環境光(ambient light)。光感測器通常使用一光感測元件來偵測光並轉換為光電流(photo current),再根據該光電流的值來判斷光的強度。近來,為了提高手機的屏佔比(screen-to-body ratio),光感測器被設置在有機發光二極體(organic light-emitting diode; OLED)面板的背面。由於光穿過OLED面板時,光的強度會減弱,因此在OLED面板背面的光感測器所獲得的光電流變得非常小,無法準確的判斷光的強度。延長光感測器的曝光(exposure)時間(或稱量測時間)可以獲得較大的光電流。然而,隨著OLED面板的幀率(frame rate)越來越高,可以供光感測器進行感測的時間越來越短。在這樣的限制下,如何準確的偵測到環境光的強度,成為需要克服的難題。In order to change the brightness of the screen according to changes in the surrounding light intensity, the mobile phone needs a light sensor to sense ambient light. The light sensor usually uses a light sensor element to detect light and convert it into a photo current, and then determine the intensity of the light according to the value of the photo current. Recently, in order to increase the screen-to-body ratio of mobile phones, a light sensor is installed on the back of an organic light-emitting diode (OLED) panel. As the light passes through the OLED panel, the intensity of the light will be weakened, so the photocurrent obtained by the photo sensor on the back of the OLED panel becomes very small, and it is impossible to accurately determine the intensity of the light. Extending the exposure time (or weighing time) of the light sensor can obtain a larger photocurrent. However, as the frame rate of the OLED panel becomes higher and higher, the time available for the light sensor to sense becomes shorter and shorter. Under such restrictions, how to accurately detect the intensity of the ambient light has become a problem that needs to be overcome.

本發明的目的之一,在於提出一種光感測器及其感測方法。One of the objectives of the present invention is to provide a light sensor and its sensing method.

本發明的目的之一,在於提出一種具有較佳訊號雜訊比的光感測器。One of the objectives of the present invention is to provide a light sensor with a better signal-to-noise ratio.

根據本發明,一種高感度的光感測器包括一光感測元件、一第一積分器及一三角積分類比數位轉換器。該光感測元件用以在一量測時間感測光而產生一第一電流。該第一積分器耦接該光感測元件,用以接收該第一電流並產生一第一積分信號。該三角積分類比數位轉換器耦接該第一積分器,用以將該第一積分信號轉換為一感測值。According to the present invention, a high-sensitivity light sensor includes a light sensor element, a first integrator and a delta-sigma analog-to-digital converter. The light sensing element is used for sensing light at a measuring time to generate a first current. The first integrator is coupled to the light sensing element for receiving the first current and generating a first integrated signal. The delta-sigma analog-to-digital converter is coupled to the first integrator for converting the first integrated signal into a sensing value.

根據本發明,一種光感測方法包括下列步驟:在一量測時間感測光以產生一第一電流;對該第一電流進行積分以產生一第一積分信號;以及藉由一三角積分類比數位轉換器將該第一積分信號轉換為一感測值。According to the present invention, a light sensing method includes the following steps: sensing light at a measurement time to generate a first current; integrating the first current to generate a first integrated signal; The converter converts the first integrated signal into a sensing value.

本發明的光感測器及其感測方法可以在短暫的量測時間(例如1ms)準確的判斷光強度。此外,三角積分類比數位轉換器能夠降低第一積分信號中的雜訊,使得本發明的光感測器具有較佳訊號雜訊比。The light sensor and the sensing method of the present invention can accurately determine the light intensity in a short measurement time (for example, 1 ms). In addition, the delta-sigma analog-to-digital converter can reduce the noise in the first integrated signal, so that the optical sensor of the present invention has a better signal-to-noise ratio.

圖1顯示本發明光感測器的實施例。圖1的光感測器10包括一光感測元件12、一第一積分器14及一三角積分類比數位轉換器(sigma-delta analog-to-digital converter; ΣΔ ADC)16。光感測元件12用於在一量測時間(或稱曝光時間)T感測環境光,以產生一第一電流Iph。第一積分器14耦接光感測元件12,用於對光感測元件12產生的第一電流Iph進行積分以產生一第一積分信號V1。三角積分類比數位轉換器16耦接第一積分器14,用以將第一積分器14提供的第一積分信號V1轉換成一數位的感測值So。光感測器10可以是設置在可攜式電子裝置中,例如手機或平板電腦。連接光感測器10的電路可根據感測值So來判斷光強度的大小進而執行某些操作,例如調整螢幕的亮度。Figure 1 shows an embodiment of the light sensor of the present invention. The light sensor 10 of FIG. 1 includes a light sensor element 12, a first integrator 14 and a sigma-delta analog-to-digital converter (ΣΔ ADC) 16. The light sensing element 12 is used for sensing ambient light at a measurement time (or exposure time) T to generate a first current Iph. The first integrator 14 is coupled to the light sensing element 12 for integrating the first current Iph generated by the light sensing element 12 to generate a first integrated signal V1. The delta-sigma analog-to-digital converter 16 is coupled to the first integrator 14 for converting the first integrated signal V1 provided by the first integrator 14 into a digital sensing value So. The light sensor 10 may be provided in a portable electronic device, such as a mobile phone or a tablet computer. The circuit connected to the light sensor 10 can determine the light intensity according to the sensed value So and then perform certain operations, such as adjusting the brightness of the screen.

圖2顯示圖1中光感測元件12及第一積分器14的實施例。在圖2中,光感測元件12為一光二極體(photo diode),但本發明並不限於此。光二極體接收光線L1而產生電流Iph。圖2的第一積分器14為一電容轉導放大器(capacitive trans-impedance amplifier; CTIA),其包括一運算放大器142、一電容C1及一開關SW1。運算放大器142具有一非反相輸入端(non-inverting input)、一反相輸入端(inverting input)及一輸出端,其中該非反相輸入端接地,該反相輸入端連接光感測元件12。電容C1連接在運算放大器142的反相輸入端及輸出端之間。電容C1與運算放大器142的組合在量測時間T對第一電流Iph進行積分以產生第一積分信號 V1

Figure 02_image001
Figure 02_image003
Figure 02_image005
開關SW1連接在運算放大器142的輸出端及三角積分類比數位轉換器16之間。在光感測器10感測環境光的量測時間T的期間,開關SW1被導通(turn on)以使第一積分器14提供第一積分信號V1給三角積分類比數位轉換器16。在量測時間T結束時,開關SW1被關閉(turn off)。在圖2的實施例中,開關SW1是設置在第一積分器14中,但本發明並不限此,開關SW1也可以設置在第一積分器14以外的位置。例如開關SW1可以設置在光感測元件12的輸出端及第一積分器14之間、在第一積分器14與三角積分類比數位轉換器16之間或者在三角積分類比數位轉換器16中。FIG. 2 shows an embodiment of the light sensing element 12 and the first integrator 14 in FIG. 1. In FIG. 2, the light sensing element 12 is a photo diode, but the invention is not limited to this. The photodiode receives the light L1 and generates a current Iph. The first integrator 14 in FIG. 2 is a capacitive trans-impedance amplifier (CTIA), which includes an operational amplifier 142, a capacitor C1, and a switch SW1. The operational amplifier 142 has a non-inverting input, an inverting input, and an output. The non-inverting input is grounded, and the inverting input is connected to the light sensing element 12 . The capacitor C1 is connected between the inverting input terminal and the output terminal of the operational amplifier 142. The combination of the capacitor C1 and the operational amplifier 142 integrates the first current Iph at the measurement time T to generate the first integrated signal V1
Figure 02_image001
Figure 02_image003
Figure 02_image005
The switch SW1 is connected between the output terminal of the operational amplifier 142 and the delta-sigma analog-to-digital converter 16. During the measurement time T during which the light sensor 10 senses the ambient light, the switch SW1 is turned on so that the first integrator 14 provides the first integration signal V1 to the delta-sigma analog-to-digital converter 16. At the end of the measurement time T, the switch SW1 is turned off. In the embodiment of FIG. 2, the switch SW1 is provided in the first integrator 14, but the present invention is not limited to this, and the switch SW1 can also be provided in a position other than the first integrator 14. For example, the switch SW1 may be arranged between the output terminal of the light sensing element 12 and the first integrator 14, between the first integrator 14 and the delta-sigma analog-to-digital converter 16, or in the delta-sigma analog-to-digital converter 16.

圖3顯示圖1中三角積分類比數位轉換器16的實施例,其是以一階的三角積分類比數位轉換器為例來說明,但本發明並不限於此。圖3的三角積分類比數位轉換器16包括一第二積分器162、一量化器164及一重置電路166。第二積分器162耦接第一積分器14,並對第一積分信號V1進行積分以產生一第二積分信號V2。第二積分器162包括電阻R1、電容C2及運算放大器1622。電阻R1連接在第一積分器14及運算放大器1622的反相輸入端之間,用以將第一積分信號V1轉換為電流I1。電容C2連接在運算放大器1622的反相輸入端及輸出端之間,而運算放大器1622的非反相輸入端接地。電容C2及運算放大器1622的組合在量測時間T對電流I1進行積分以產生第二積分信號 V2

Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
在量測時間T為1ms的情況下,適當的選擇電容C1、電阻R1及電容C2,可以使第二積分信號V2為第一電流Iph的五百倍以上。因此,即使在第一電流Iph非常小且量測時間T很短暫的情況下,本發明仍可透過第一電流Iph準確的判斷環境光的強度,進而產生感測值So。FIG. 3 shows an embodiment of the sigma-delta-analog-to-digital converter 16 in FIG. 1, which is illustrated by taking a first-order sigma-delta-analog-to-digital converter as an example, but the invention is not limited to this. The delta-sigma analog-to-digital converter 16 of FIG. 3 includes a second integrator 162, a quantizer 164, and a reset circuit 166. The second integrator 162 is coupled to the first integrator 14 and integrates the first integrated signal V1 to generate a second integrated signal V2. The second integrator 162 includes a resistor R1, a capacitor C2, and an operational amplifier 1622. The resistor R1 is connected between the first integrator 14 and the inverting input terminal of the operational amplifier 1622 for converting the first integrated signal V1 into a current I1. The capacitor C2 is connected between the inverting input terminal and the output terminal of the operational amplifier 1622, and the non-inverting input terminal of the operational amplifier 1622 is grounded. The combination of the capacitor C2 and the operational amplifier 1622 integrates the current I1 at the measurement time T to generate the second integrated signal V2
Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
When the measurement time T is 1 ms, the capacitor C1, the resistor R1, and the capacitor C2 are appropriately selected to make the second integral signal V2 more than five hundred times the first current Iph. Therefore, even when the first current Iph is very small and the measurement time T is short, the present invention can still accurately determine the intensity of the ambient light through the first current Iph, thereby generating the sensing value So.

重置電路166耦接第二積分器162及量化器164。重置電路166用於重置第二積分器162以使第二積分信號V2歸零。在重置之後,第二積分器162重新對第一積分信號V1進行積分以再次產生第二積分信號V2。重置電路166包括一電阻R2及一開關SW2。電阻R2與開關SW2串聯在接地端及運算放大器1622的反相輸入端之間。開關SW2是由一重置信號Sr控制導通或關閉。當開關SW2導通時,運算放大器1622的反相輸入端接地,使得第二積分信號V2下降至零。The reset circuit 166 is coupled to the second integrator 162 and the quantizer 164. The reset circuit 166 is used to reset the second integrator 162 so as to return the second integrated signal V2 to zero. After the reset, the second integrator 162 re-integrates the first integrated signal V1 to generate the second integrated signal V2 again. The reset circuit 166 includes a resistor R2 and a switch SW2. The resistor R2 and the switch SW2 are connected in series between the ground terminal and the inverting input terminal of the operational amplifier 1622. The switch SW2 is turned on or off by a reset signal Sr. When the switch SW2 is turned on, the inverting input terminal of the operational amplifier 1622 is grounded, so that the second integrated signal V2 drops to zero.

量化器164耦接第二積分器162與重置電路166。量化器164是用以在第二積分信號V2大於一預設值VT時,使重置電路166重置第二積分器162,以及計數該第二積分信號V2在量測時間T內大於預設值VT的次數以產生該感測值So。在圖3的實施例中,量化器164包括一比較器1642、一正反器1644及一計數器1646,但本發明不限於此。比較器1642耦接第二積分器162,用以比較第二積分信號V2及一預設值VT以產生一比較信號Sc。在第二積分信號V2大於預設值VT時,比較信號Sc為1。正反器1644耦接比較器1642,其根據該比較信號Sc產生一重置信號Sr以控制重置電路166。在本實施例中,正反器1644在輸出端Q的輸出被用來作為重置信號。在比較信號Sc為1時,輸出端Q的輸出為1使得重置電路166的開關SW2導通。計數器1646耦接正反器1644,其根據正反器1644在輸出端Q的輸出(也就是重置信號Sr)產生感測器So。計數器1646在量測時間T內計數正反器1644輸出為1的次數而產生感測值So。換言之,計數器1646可以被理解為是在量測時間T內,計數第二積分信號V2大於預設值VT的次數以產生感測值So。The quantizer 164 is coupled to the second integrator 162 and the reset circuit 166. The quantizer 164 is used to make the reset circuit 166 reset the second integrator 162 when the second integrated signal V2 is greater than a preset value VT, and to count that the second integrated signal V2 is greater than the preset value VT within the measurement time T The number of times the value VT is used to generate the sensed value So. In the embodiment of FIG. 3, the quantizer 164 includes a comparator 1642, a flip-flop 1644, and a counter 1646, but the invention is not limited thereto. The comparator 1642 is coupled to the second integrator 162 for comparing the second integration signal V2 with a predetermined value VT to generate a comparison signal Sc. When the second integral signal V2 is greater than the preset value VT, the comparison signal Sc is 1. The flip-flop 1644 is coupled to the comparator 1642, and generates a reset signal Sr according to the comparison signal Sc to control the reset circuit 166. In this embodiment, the output of the flip-flop 1644 at the output terminal Q is used as a reset signal. When the comparison signal Sc is 1, the output of the output terminal Q is 1, so that the switch SW2 of the reset circuit 166 is turned on. The counter 1646 is coupled to the flip-flop 1644, which generates the sensor So according to the output of the flip-flop 1644 at the output terminal Q (that is, the reset signal Sr). The counter 1646 counts the number of times the flip-flop 1644 outputs 1 during the measurement time T to generate a sensed value So. In other words, the counter 1646 can be understood as counting the number of times the second integrated signal V2 is greater than the preset value VT during the measurement time T to generate the sensing value So.

在光感測器10量測環境光時,第二積分信號V2的變化係如圖4的波形18所示。在時間t0~t1期間,第二積分信號V2逐漸增加。在時間t1時,第二積分信號V2大於預設值VT,此時重置信號Sr為1而重置第二積分器162,使第二積分信號V2歸零。在重置後,第二積分器162重新對第一積分信號V1進行積分,使得在時間t2時,第二積分信號V2再次上升至預設值VT。第二積分信號V2會不斷重複上升及歸零,直至量測時間T結束。由於第一積分信號V1會隨時間增加而上升,因此隨著時間增加,第二積分信號V2的上升速度也越快,第二積分信號V2每次歸零後再上升到預設值VT的時間會越來越短。When the light sensor 10 measures the ambient light, the change of the second integrated signal V2 is as shown in the waveform 18 of FIG. 4. During the time t0~t1, the second integral signal V2 gradually increases. At time t1, the second integrated signal V2 is greater than the preset value VT. At this time, the reset signal Sr is 1 and the second integrator 162 is reset, so that the second integrated signal V2 returns to zero. After the reset, the second integrator 162 integrates the first integrated signal V1 again, so that at the time t2, the second integrated signal V2 rises to the preset value VT again. The second integral signal V2 will continue to rise and return to zero repeatedly until the measurement time T ends. Since the first integral signal V1 rises with time, the second integral signal V2 rises faster as time increases. The time for the second integral signal V2 to rise to the preset value VT each time after returning to zero It will get shorter and shorter.

在圖3的實施例中,為避免第二積分信號V2超出第二積分器162的飽和電壓(Saturation voltage),預設值VT會低於該飽和電壓。In the embodiment of FIG. 3, in order to prevent the second integrated signal V2 from exceeding the saturation voltage of the second integrator 162, the preset value VT is lower than the saturation voltage.

本發明的光感測器10利用第一積分器14及第二積分器162二段式放大第一電流Iph以產生第二積分信號V2,因此光感測器10可以在短暫的量測時間T(例如1ms)獲得足夠大的第二積分信號V2來判斷光強度。故本發明的光感測器10具有較佳的感度。The photo sensor 10 of the present invention uses the first integrator 14 and the second integrator 162 to amplify the first current Iph in two stages to generate the second integrated signal V2, so the photo sensor 10 can measure the time T in a short period of time. (For example, 1 ms) obtain a sufficiently large second integrated signal V2 to determine the light intensity. Therefore, the light sensor 10 of the present invention has better sensitivity.

另外,本發明的第二積分器162還可以降低第一積分信號V1中的雜訊,因而可以提高光感測器10的訊號雜訊比(signal-to-noise ratio; SNR)。In addition, the second integrator 162 of the present invention can also reduce the noise in the first integrated signal V1, and thus can increase the signal-to-noise ratio (SNR) of the light sensor 10.

以上對於本發明之較佳實施例所作的敘述係為闡明之目的,而無意限定本發明精確地為所揭露的形式,基於以上的教導或從本發明的實施例學習而作修改或變化是可能的,實施例係為解說本發明的原理以及讓熟習該項技術者以各種實施例利用本發明在實際應用上而選擇及敘述,本發明的技術思想企圖由之後的申請專利範圍及其均等來決定。The above description of the preferred embodiments of the present invention is for the purpose of clarification, and is not intended to limit the present invention to the disclosed form accurately. Modifications or changes are possible based on the above teachings or learning from the embodiments of the present invention Yes, the embodiments are selected and described in order to explain the principles of the present invention and allow those familiar with the technology to use the present invention in various embodiments in practical applications. The technical ideas of the present invention are intended to be derived from the scope of subsequent patent applications and their equality. Decided.

10:光感測器 12:光感測元件 122:光二極體 14:第一積分器 142:運算放大器 16:三角積分類比數位轉換器 162:第二積分器 1622:運算放大器 164:量化器 1642:比較器 1644:正反器 1646:計數器 166:重置電路 18:第二積分信號V2的波形10: Light sensor 12: Light sensing element 122: Light Diode 14: The first integrator 142: Operational amplifier 16: Delta-sigma analog-to-digital converter 162: second integrator 1622: operational amplifier 164: quantizer 1642: Comparator 1644: Flip-Flop 1646: counter 166: reset circuit 18: Waveform of the second integral signal V2

圖1顯示本發明光感測器的實施例。 圖2顯示圖1中光感測元件及第一積分器的實施例。 圖3顯示圖1中三角積分類比數位轉換器的實施例 。 圖4顯示圖3中第二積分信號V2的波形。Figure 1 shows an embodiment of the light sensor of the present invention. FIG. 2 shows an embodiment of the light sensing element and the first integrator in FIG. 1. Figure 3 shows an embodiment of the sigma delta analog-to-digital converter in Figure 1. FIG. 4 shows the waveform of the second integrated signal V2 in FIG. 3.

10:光感測器10: Light sensor

12:光感測元件12: Light sensing element

14:第一積分器14: The first integrator

16:三角積分類比數位轉換器16: Delta-sigma analog-to-digital converter

Claims (12)

一種高感度的光感測器,包括: 一光感測元件,用以在一量測時間感測光而產生一第一電流; 一第一積分器,耦接該光感測元件,接收該第一電流並產生一第一積分信號;以及 一三角積分類比數位轉換器,耦接該第一積分器,用以將該第一積分信號轉換為一感測值。A high-sensitivity light sensor, including: A light sensing element for sensing light at a measuring time to generate a first current; A first integrator, coupled to the light sensing element, receives the first current and generates a first integrated signal; and A delta-sigma analog-to-digital converter is coupled to the first integrator for converting the first integrated signal into a sensing value. 如請求項1的光感測器,其中該光感測元件包括一光二極體。The light sensor of claim 1, wherein the light sensor element includes a photodiode. 如請求項1的光感測器,其中該第一積分器包括電容轉導放大器。The optical sensor of claim 1, wherein the first integrator includes a capacitive transconductance amplifier. 如請求項1的光感測器,其中該三角積分類比數位轉換器包括: 一第二積分器,耦接該第一積分器,根據該第一積分信號產生一第二積分信號; 一重置電路,耦接該第二積分器,用於重置該第二積分器;以及 一量化器,耦接該第二積分器與該重置電路,該量化器在該第二積分信號大於一預設值時使該重置電路重置該第二積分器,以及計數該第二積分信號在該量測時間內大於該預設值的次數以產生該感測值。Such as the light sensor of claim 1, wherein the delta-sigma analog-to-digital converter includes: A second integrator, coupled to the first integrator, to generate a second integration signal according to the first integration signal; A reset circuit coupled to the second integrator for resetting the second integrator; and A quantizer, coupled to the second integrator and the reset circuit, the quantizer causes the reset circuit to reset the second integrator when the second integrated signal is greater than a preset value, and counts the second integrator The number of times that the integrated signal is greater than the preset value in the measurement time is used to generate the sensed value. 如請求項4的光感測器,其中該量化器包括: 一比較器,耦接該第二積分器,用以比較該第二積分信號及該預設值以產生一比較信號; 一正反器,耦接該比較器,根據該比較信號產生一重置信號以控制該重置電路; 一計數器,耦接該正反器,根據該重置信號產生該感測值。Such as the light sensor of claim 4, wherein the quantizer includes: A comparator, coupled to the second integrator, for comparing the second integral signal with the preset value to generate a comparison signal; A flip-flop, coupled to the comparator, generates a reset signal according to the comparison signal to control the reset circuit; A counter is coupled to the flip-flop and generates the sensing value according to the reset signal. 如請求項4的光感測器,其中該預設值低於該第二積分器的飽和電壓。Such as the light sensor of claim 4, wherein the preset value is lower than the saturation voltage of the second integrator. 如請求項1的光感測器,其中該量測時間為1ms。Such as the light sensor of claim 1, wherein the measurement time is 1 ms. 一種光感測方法,包括下列步驟: A.在一量測時間感測光,以產生一第一電流; B.對該第一電流進行積分以產生一第一積分信號;以及 C.藉由一三角積分類比數位轉換器將該第一積分信號轉換為一感測值。A light sensing method includes the following steps: A. Sense light at a measurement time to generate a first current; B. Integrate the first current to generate a first integrated signal; and C. Convert the first integral signal into a sensed value by a delta-sigma analog-to-digital converter. 如請求項8的光感測方法,其中該步驟B包括使用一電容轉導放大器對該第一電流進行積分。The light sensing method of claim 8, wherein the step B includes integrating the first current by using a capacitive transconductance amplifier. 如請求項8的光感測方法,其中該步驟C包括: C1.對該第一積分信號進行積分以產生一第二積分信號; C2.在該第二積分信號大於一預設值時,將該第二積分信號歸零,並且回到步驟C1;以及 C3.計數該第二積分信號在該量測時間內大於該預設值的次數以產生該感測值。Such as the light sensing method of claim 8, wherein the step C includes: C1. Integrate the first integrated signal to generate a second integrated signal; C2. When the second integrated signal is greater than a preset value, reset the second integrated signal to zero, and return to step C1; and C3. Count the number of times the second integral signal is greater than the preset value in the measurement time to generate the sensed value. 如請求項10的光感測方法,其中該步驟C1包括使用一第二積分電路對該第一積分信號進行積分,以及該預設值小於該第二積分電路的飽和電壓。The light sensing method of claim 10, wherein the step C1 includes using a second integration circuit to integrate the first integration signal, and the preset value is less than the saturation voltage of the second integration circuit. 如請求項8的光感測方法,更包括設定量測時間為1ms。For example, the light sensing method of claim 8, further including setting the measurement time to 1ms.
TW109124383A 2019-12-03 2020-07-20 Light sensor and sensing method thereof TWI746067B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010771845.6A CN112097902B (en) 2019-12-03 2020-08-04 Optical sensor and sensing method thereof
US17/033,291 US11237048B2 (en) 2019-12-03 2020-09-25 Light sensor with a high sensitivity using a sigma-delta analog to digital converter and sensing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962942749P 2019-12-03 2019-12-03
US62/942,749 2019-12-03

Publications (2)

Publication Number Publication Date
TW202123438A true TW202123438A (en) 2021-06-16
TWI746067B TWI746067B (en) 2021-11-11

Family

ID=77516880

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109124383A TWI746067B (en) 2019-12-03 2020-07-20 Light sensor and sensing method thereof

Country Status (1)

Country Link
TW (1) TWI746067B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE901815A1 (en) * 1990-05-21 1991-12-04 Univ Cork An analog to digital converter
TWI398707B (en) * 2008-05-16 2013-06-11 Au Optronics Corp Photo sensitive unit and pixel structure and liquid crystal display panel having the same
CN101285975B (en) * 2008-06-06 2010-06-23 友达光电股份有限公司 Light sensing unit and pixel structure possessing the light sensing unit and liquid crystal display panel
US8946795B2 (en) * 2011-03-17 2015-02-03 Omnivision Technologies, Inc. Backside-illuminated (BSI) image sensor with reduced blooming and electrical shutter
TWI512954B (en) * 2013-03-18 2015-12-11 Lite On Singapore Pte Ltd Ambient light sensing with stacked photodiode
US9752929B2 (en) * 2014-05-08 2017-09-05 Pinnacle Imaging Corporation Light-detecting device and method for converting optical radiation on switched conductivity diodes
US10553633B2 (en) * 2014-05-30 2020-02-04 Klaus Y.J. Hsu Phototransistor with body-strapped base
KR102470567B1 (en) * 2017-07-10 2022-11-24 엘지디스플레이 주식회사 Display Device Having Optical Sensor
US10515989B2 (en) * 2017-08-30 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Device comprising photodiode and method of making the same
US10892290B2 (en) * 2018-03-27 2021-01-12 Omnivision Technologies, Inc. Interconnect layer contact and method for improved packaged integrated circuit reliability

Also Published As

Publication number Publication date
TWI746067B (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US20110248875A1 (en) Second-order delta-sigma analog-to-digital converter
EP1197735B1 (en) Photodetector
TW201639353A (en) Image sensor circuit with power noise filtering function and control method thereof
Sanjurjo et al. An energy-efficient 17-bit noise-shaping Dual-Slope Capacitance-to-Digital Converter for MEMS sensors
US20080054163A1 (en) Logarithmic-compression analog-digital conversion circuit and semiconductor photosensor device
US8957797B2 (en) Analog-to-digital converting circuit with temperature sensing and electronic device thereof
TW201728088A (en) Analog-to-digital converting module for related light sensing device
TWI746067B (en) Light sensor and sensing method thereof
CN112097902B (en) Optical sensor and sensing method thereof
US7659840B2 (en) Sigma-delta conversion circuit suitable for photocurrent measurement applications
EP3431939B1 (en) A method for electromagnetic energy sensing and a circuit arrangement
CN116086600A (en) High-sensitivity light sensor and sensing method thereof
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
JP5895232B2 (en) Infrared detector
CN112653471B (en) Digital second-order integral modulator for capacitance detection
KR102482182B1 (en) Optical-to-digital converter device and method for optical-to-digital conversion
KR100906958B1 (en) Method for converting signal by ADCanalogue-digital converter, and Method for measuring light intensity using it or the method, and ambient light sensor
CN112781631B (en) High-linearity optical sensor
WO2023170190A1 (en) Readout-circuit
TWI840098B (en) High-sensitivity light sensor and sensing method thereof
Khiarak et al. A 17-bit 104-dB-DR high-precision low-power CMOS fluorescence biosensor with extended counting ADC and noise cancellation
TWI750841B (en) High linearity digital controlling light sensor and method
US20220360275A1 (en) Current-mode analog-to-digital converter systems, devices and methods for multi-sensing
CN112880845B (en) Variable range temperature sensor
RU73074U1 (en) LIGHT FREQUENCY CONVERTER