TW202120951A - Multi-turn contactless position sensing system and method - Google Patents

Multi-turn contactless position sensing system and method Download PDF

Info

Publication number
TW202120951A
TW202120951A TW108142779A TW108142779A TW202120951A TW 202120951 A TW202120951 A TW 202120951A TW 108142779 A TW108142779 A TW 108142779A TW 108142779 A TW108142779 A TW 108142779A TW 202120951 A TW202120951 A TW 202120951A
Authority
TW
Taiwan
Prior art keywords
rotating shaft
shaft
magnet
magnetic sensor
position sensing
Prior art date
Application number
TW108142779A
Other languages
Chinese (zh)
Inventor
西勒凡 蓋 伯特蘭
安托因 吉恩 米歇爾 拉諾特
塞巴斯蒂安 吉恩 羅伯特 馬爾基奧
Original Assignee
法商維夏公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商維夏公司 filed Critical 法商維夏公司
Priority to TW108142779A priority Critical patent/TW202120951A/en
Publication of TW202120951A publication Critical patent/TW202120951A/en

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Systems and methods for high-resolution multi-turn non-contact rotary sensing are disclosed herein. A position sensing device may include a first rotary shaft coupled to a second rotary shaft such that a rotation of the first rotary shaft causes the second rotary shaft to rotate. First and second magnets may be coupled to the first and second rotary shafts, respectively. The first and second rotary shafts may move angularly relative to at least one magnetic sensor circuit that is not in contact with the first or second rotary shafts. The at least one magnetic sensor circuit may measure angular positions of the first and second magnets to determine the angular position and number of rotations by the first rotary shaft.

Description

多轉數的非接觸式位置感測系統和方法Multi-rotation non-contact position sensing system and method

本發明大體上關於位置感測器,且更明確地說,關於高解析度之多轉數的無接觸式旋轉感測的系統和方法。The present invention generally relates to a position sensor, and more specifically, to a system and method for non-contact rotation sensing with high resolution and multiple revolutions.

舉例來說,位置感測器使用在機械及電機應用中,用以提供物體的絕對位置或位移量測資訊。角度或旋轉感測器量測旋轉物體的機械角位置(舉例來說,藉由量測連接至旋轉物體的軸桿的位置),其能夠用於決定其它有用資訊,例如,物體的頻率與速度。多轉數旋轉位置感測器使用在各種應用中,包含車用與電動馬達應用、消費電子與家電、工業應用、風力發電機、太陽能系統、測試與量測設備、機器人系統、以及醫療設備。For example, position sensors are used in mechanical and electrical applications to provide absolute position or displacement measurement information of objects. The angle or rotation sensor measures the mechanical angular position of a rotating object (for example, by measuring the position of a shaft connected to the rotating object), which can be used to determine other useful information, such as the frequency and speed of the object . Multi-rotation rotary position sensors are used in a variety of applications, including automotive and electric motor applications, consumer electronics and home appliances, industrial applications, wind turbines, solar systems, test and measurement equipment, robotics systems, and medical equipment.

位置感測器的範例為在電接點沿著電阻軌道滑動時量測電壓降的電位計,俾便(線性或旋轉)位置和電壓輸出成正比。雖然電位計通常為低成本、生產簡單、且重量輕;不過,容易受到高振動環境及外來顆粒(例如,粉塵)存在的影響。光學感測器(亦稱為編碼器)的操作為使用光偵測器量測通過光柵的光束,用以產生位置訊號。光學感測器能夠提供高解析度位置量測;但是,非常容易受到外來顆粒的影響,使得若透鏡或光柵系統變模糊則量測便失敗。An example of a position sensor is a potentiometer that measures the voltage drop when the electrical contact slides along the resistance track, so that the position (linear or rotary) is proportional to the voltage output. Although potentiometers are generally low-cost, simple to produce, and light in weight; however, they are susceptible to high-vibration environments and the presence of foreign particles (for example, dust). The operation of an optical sensor (also called an encoder) is to use a light detector to measure the light beam passing through the grating to generate a position signal. The optical sensor can provide high-resolution position measurement; however, it is very susceptible to the influence of foreign particles, making the measurement fail if the lens or grating system becomes blurred.

磁感測器使用磁偵測器在磁鐵相對於所述磁偵測器移動時量測所述磁鐵的磁場變化,俾便磁場變化和它們的相對位移成正比。磁感測器為非接觸式(無接觸式)感測器,因為在偵測器和轉子軸之間沒有接觸。磁角位置感測器的範例為霍爾效應(Hall Effect)感測器,其從稱為霍爾元件的棒狀導電材料產生和通過其之旋轉磁鐵磁場的密度成正比的電壓。美國專利公開案第US 2013/00 15844 A1號中揭示既有無接觸式多轉數之旋轉位置感測裝置使用單軸桿及雙磁感測器組件產生兩個輸出值:軸桿所進行的轉數以及軸桿在給定轉內的角位置。The magnetic sensor uses the magnetic detector to measure the change in the magnetic field of the magnet when the magnet moves relative to the magnetic detector, so that the change in the magnetic field is proportional to their relative displacement. The magnetic sensor is a non-contact (non-contact) sensor because there is no contact between the detector and the rotor shaft. An example of a magnetic angle position sensor is a Hall Effect sensor, which generates a voltage proportional to the density of the magnetic field of the rotating magnet passing through it from a rod-shaped conductive material called a Hall element. U.S. Patent Publication No. US 2013/00 15844 A1 discloses an existing non-contact multi-rotation rotational position sensing device that uses a single shaft and a dual magnetic sensor assembly to generate two output values: the rotation of the shaft The number and the angular position of the shaft within a given revolution.

存在的需要是多轉數旋轉感測器系統設計以高解析度提供在多轉數上的物體旋轉的單一輸出量測,並且為低成本、小型且低功率。There is a need for a multi-rotation rotation sensor system design to provide a single output measurement of object rotation at multiple rotations with high resolution, and be low-cost, small, and low-power.

本文記載用於高解析度之多轉數的無接觸式旋轉感測系統和方法。位置感測裝置可包含第一旋轉軸桿,耦接至第二旋轉軸桿,俾便第一旋轉軸桿的旋轉導致第二旋轉軸桿旋轉。第一與第二磁鐵可分別耦接至第一與第二旋轉軸桿。第一與第二旋轉軸桿可相對於未接觸第一或第二旋轉軸桿之至少一磁感測器電路進行角移動。所述至少一磁感測器電路可量測第一與第二磁鐵的角位置,用以決定第一旋轉軸桿的角位置和旋轉數。This article describes a non-contact rotation sensing system and method for high-resolution and multi-rotation. The position sensing device may include a first rotating shaft coupled to the second rotating shaft, so that the rotation of the first rotating shaft causes the second rotating shaft to rotate. The first and second magnets can be coupled to the first and second rotating shafts, respectively. The first and second rotating shafts can be angularly moved relative to at least one magnetic sensor circuit that is not in contact with the first or second rotating shaft. The at least one magnetic sensor circuit can measure the angular positions of the first and second magnets to determine the angular position and the number of rotations of the first rotating shaft.

本文所記載實施例包含藉由量測連接至物體之入口軸桿的旋轉來量測物體之位置的非接觸式角位置感測系統與方法。所記載非接觸式角位置感測系統與方法運用軸鑲磁鐵及一或更多個磁電路來量測在數轉上的軸桿旋轉。於一範例中,兩個磁鐵被鑲嵌至兩個個別軸桿,俾便所述磁電路量測所述磁鐵在兩個方向中(縱向與橫向)的磁場。於一範例中,被耦接至外部物體的主軸桿透過螺桿傳動由鏈輪組成的第二軸桿。螺桿和鏈輪的作用為減速齒輪,其中較大的鏈輪讓第二軸桿的轉動慢於較小的螺桿且因而慢於主軸桿。因此,在主軸桿與第二軸桿之間的旋轉降速和螺桿與鏈輪的直徑比成正比。在兩個軸桿之間的減速比使其可決定所述感測器可達成的轉數及感測器的電流。磁電路產生一或更多個感測器輸出訊號(舉例來說,組合或分離訊號),用以提供耦接至位置感測器的外部物體的旋轉角度及所述外部物體之完整旋轉的次數。The embodiments described herein include a non-contact angular position sensing system and method for measuring the position of an object by measuring the rotation of an entrance shaft connected to the object. The described non-contact angular position sensing system and method use shaft-mounted magnets and one or more magnetic circuits to measure the rotation of the shaft over several revolutions. In one example, two magnets are embedded in two individual shafts, so that the magnetic circuit measures the magnetic fields of the magnets in two directions (longitudinal and transverse). In one example, the main shaft coupled to the external object drives the second shaft composed of sprocket through a screw. The screw and sprocket function as a reduction gear, where the larger sprocket makes the rotation of the second shaft slower than the smaller screw and therefore slower than the main shaft. Therefore, the rotational speed reduction between the main shaft and the second shaft is proportional to the ratio of the diameter of the screw to the sprocket. The reduction ratio between the two shafts makes it possible to determine the achievable number of revolutions of the sensor and the current of the sensor. The magnetic circuit generates one or more sensor output signals (for example, combined or separated signals) to provide the rotation angle of the external object coupled to the position sensor and the number of complete rotations of the external object .

下文中顯示與說明範例非接觸式角位置感測系統,包含部分(非全部)可能的構件。本文所述及所示範例非接觸式角位置感測系統可包含未顯示之其它構件,例如,外部物體、外部系統、殼體、軸桿、齒輪、磁鐵、電路、保護屏蔽、電源、…等。又,所述構件及構件的排列僅為範例且可以具有等效或相同功能的其它構件或排列取代。又,所示或所述之任何構件皆可省略。The following shows and illustrates an example non-contact angular position sensing system, including some (but not all) possible components. The example non-contact angular position sensing system described and shown herein may include other components not shown, such as external objects, external systems, housings, shafts, gears, magnets, circuits, protective shields, power supplies, etc. . In addition, the components and the arrangement of the components are only examples and can be replaced by other components or arrangements with equivalent or identical functions. In addition, any components shown or described can be omitted.

圖1顯示根據本記載內容的範例非接觸式角位置感測系統100的高階方塊圖。非接觸式角位置感測系統100接收要受量測之旋轉物體的(入口)移動102作為輸入,並且產生一或更多個輸出訊號以表示所述旋轉物體的角位置及轉數。於一範例中,量測訊號115可提供轉數,而量測訊號113可提供目前轉裡面的精確角位置(舉例來說,物體在第4轉與第5轉之間的角位置)。圖1顯示基於磁電路112之輸出訊號113 (舉例來說,代表物體的旋轉位置)及磁電路114之輸出訊號115 (舉例來說,代表物體的轉數)的三個替代性範例輸出:藉由利用輸出訊號115調變輸出訊號113所產生的組合輸出訊號116A;藉由利用磁電路的輸出訊號113調變輸出訊號115所產生的組合輸出訊號116B;或是兩個分離輸出訊號113與115(也就是,不組合所述訊號)。旋轉物體的移動102可藉由耦接或連接所述旋轉物體至跟隨所述旋轉物體之移動的第一旋轉軸桿104而被輸入至系統。第一旋轉軸桿104進一步被耦接至第二旋轉軸桿106,俾便第一軸桿104的旋轉會導致第二軸桿106旋轉。FIG. 1 shows a high-level block diagram of an exemplary non-contact angular position sensing system 100 according to this description. The non-contact angular position sensing system 100 receives the (entry) movement 102 of the rotating object to be measured as input, and generates one or more output signals to indicate the angular position and the number of revolutions of the rotating object. In one example, the measurement signal 115 can provide the number of revolutions, and the measurement signal 113 can provide the precise angular position within the current revolution (for example, the angular position of the object between the 4th and 5th revolutions). Figure 1 shows three alternative example outputs based on the output signal 113 of the magnetic circuit 112 (for example, representing the rotational position of an object) and the output signal 115 of the magnetic circuit 114 (for example, representing the number of revolutions of the object): The combined output signal 116A produced by modulating the output signal 113 with the output signal 115; the combined output signal 116B produced by modulating the output signal 115 with the output signal 113 of the magnetic circuit; or two separate output signals 113 and 115 (That is, the signals are not combined). The movement 102 of the rotating object can be input to the system by coupling or connecting the rotating object to the first rotating shaft 104 that follows the movement of the rotating object. The first rotating shaft 104 is further coupled to the second rotating shaft 106 so that the rotation of the first shaft 104 will cause the second shaft 106 to rotate.

第一磁鐵108被耦接至第一軸桿104且具有和第一軸桿104一體的磁化軸,俾便第一軸桿104的角移動會導致第一磁鐵108的角旋轉。舉例來說,第一磁鐵108可被配向成使得第一磁鐵108的(第一)磁化軸和第一軸桿104的(第一)縱軸一致,或近似一致。於此情況中,第一磁鐵108的北極與南極垂直於第一軸桿104的旋轉軸。同樣地,第二磁鐵110被耦接至第二軸桿106且具有和第二軸桿106一體的磁化軸,俾便第二軸桿106的角移動會導致第二磁鐵110的角旋轉。舉例來說,第二磁鐵110可被配向成使得第二磁鐵110的(第二)磁化軸和第二軸桿106的(第二)縱軸一致,或近似一致。於此情況中,第二磁鐵110的北極與南極垂直於第二軸桿106的旋轉軸。The first magnet 108 is coupled to the first shaft 104 and has a magnetized shaft integrated with the first shaft 104, so that the angular movement of the first shaft 104 will cause the angular rotation of the first magnet 108. For example, the first magnet 108 may be aligned such that the (first) magnetization axis of the first magnet 108 and the (first) longitudinal axis of the first shaft 104 are the same, or approximately the same. In this case, the north and south poles of the first magnet 108 are perpendicular to the rotation axis of the first shaft 104. Similarly, the second magnet 110 is coupled to the second shaft 106 and has a magnetized shaft integrated with the second shaft 106, so that the angular movement of the second shaft 106 will cause the angular rotation of the second magnet 110. For example, the second magnet 110 may be aligned such that the (second) magnetization axis of the second magnet 110 and the (second) longitudinal axis of the second shaft 106 are the same, or approximately the same. In this case, the north and south poles of the second magnet 110 are perpendicular to the rotation axis of the second shaft 106.

於一範例中,旋轉軸桿104與106可被定位為相互不平行(舉例來說,非零角),使得第一與第二磁鐵108與110產生的磁場在不同的方向。舉例來說,第一旋轉軸桿104可被定位為垂直於(90度角)第二旋轉軸桿106。於此情況中,第一磁鐵108產生的第一磁場在相對於第一軸桿104與旋轉物體為縱向的方向中,而第二磁鐵110產生的第二磁場在相對於第一軸桿104與旋轉物體為橫向的方向中。In an example, the rotating shafts 104 and 106 may be positioned non-parallel to each other (for example, a non-zero angle), so that the magnetic fields generated by the first and second magnets 108 and 110 are in different directions. For example, the first rotation shaft 104 may be positioned perpendicular (90 degree angle) to the second rotation shaft 106. In this case, the first magnetic field generated by the first magnet 108 is in the longitudinal direction relative to the first shaft 104 and the rotating object, and the second magnetic field generated by the second magnet 110 is relative to the first shaft 104 and the rotating object. The rotating object is in the horizontal direction.

軸鑲式的第一與第二磁鐵108與110相對於磁感測器電路112與114 (舉例來說,其可由一或更多個印刷電路板(PCB)形成)呈角度移動。磁感測器電路112與114包括處理電子元件及/或保護電子元件,用以量測旋轉軸桿104與106的角位置,並且可實施額外處理,包含但不受限於訊號放大及/或類比數位轉換。圖中雖然顯示兩個磁感測器電路112與114;亦可使用任何數量的磁感測器電路(舉例來說,一個或兩個以上)。The pivoted first and second magnets 108 and 110 move at an angle relative to the magnetic sensor circuits 112 and 114 (for example, they may be formed by one or more printed circuit boards (PCBs)). The magnetic sensor circuits 112 and 114 include processing electronics and/or protection electronics for measuring the angular position of the rotating shafts 104 and 106, and can perform additional processing, including but not limited to signal amplification and/or Analog to digital conversion. Although two magnetic sensor circuits 112 and 114 are shown in the figure, any number of magnetic sensor circuits (for example, one or more) can be used.

磁感測器電路112藉由感測第一磁鐵108的磁場來量測第一軸桿104 (及因此所述物體)的旋轉位置,以便產生第一旋轉量測訊號,用以表示第一軸桿104在第一軸桿104之多轉上的旋轉。磁感測器電路112的輸出113可為類比形式,例如電壓訊號,或者數位形式,例如從所述電壓訊號產生的脈衝寬度調變(PWM)訊號。磁感測器電路114藉由感測第二磁鐵110的磁場來量測第二軸桿106的旋轉位置,以便產生第二軸桿106的第二旋轉量測訊號115,用以代表第一軸桿104 (及因此所述物體)的轉數。磁感測器電路114可產生以伏特為單位的類比訊號,用以追蹤第一軸桿104的轉數,並且可將所述類比訊號轉換成數位形式。於一範例中,磁感測器電路112與114中任一者或兩者可使用任何下面類型的磁感測器來量測對應磁鐵108與110的磁場:霍爾效應感測器、異向磁阻(Anisotropic Magnet Resistance,AMR)感測器、巨磁阻(Giant Magnetoresistance,GMR)感測器、穿隧磁阻(Tunnel Magneto Resistance,TMR)感測器。雖然記載磁感測器;不過,亦可使用非磁感測器,例如,絕對光學編碼器。舉例來說,可在感測器電路112或114中使用光學編碼器來計算第一軸桿104的轉數。The magnetic sensor circuit 112 measures the rotation position of the first shaft 104 (and therefore the object) by sensing the magnetic field of the first magnet 108 to generate a first rotation measurement signal to indicate the first axis The rotation of the rod 104 on the number of revolutions of the first shaft 104. The output 113 of the magnetic sensor circuit 112 may be in an analog form, such as a voltage signal, or a digital form, such as a pulse width modulation (PWM) signal generated from the voltage signal. The magnetic sensor circuit 114 measures the rotation position of the second shaft 106 by sensing the magnetic field of the second magnet 110 to generate a second rotation measurement signal 115 of the second shaft 106 to represent the first shaft The number of revolutions of the rod 104 (and therefore the object). The magnetic sensor circuit 114 can generate an analog signal in volts for tracking the number of revolutions of the first shaft 104, and can convert the analog signal into a digital form. In an example, either or both of the magnetic sensor circuits 112 and 114 can use any of the following types of magnetic sensors to measure the magnetic fields corresponding to the magnets 108 and 110: Hall effect sensor, anisotropy Anisotropic Magnet Resistance (AMR) sensors, Giant Magnetoresistance (GMR) sensors, Tunnel Magneto Resistance (TMR) sensors. Although magnetic sensors are described; however, non-magnetic sensors may also be used, for example, absolute optical encoders. For example, an optical encoder can be used in the sensor circuit 112 or 114 to calculate the number of revolutions of the first shaft 104.

如上討論,一或更多個輸出訊號可藉由範例非接觸式角位置感測系統100被產生,圖中顯示三個範例。於一範例中,第一軸桿104的第一旋轉量測訊號113調變第二軸桿106的第二旋轉量測訊號115,以便產生單一的組合輸出訊號116A,表示旋轉物體的角旋轉以及旋轉數或轉數(舉例來說,參見圖8C中範例)。於另一範例中,第二軸桿106的第二旋轉量測訊號115調變第一軸桿104的第一旋轉量測訊號113,以便產生單一的組合輸出訊號116B,表示旋轉物體的角旋轉以及旋轉數或轉數(舉例來說,參見圖7C中範例)。於另一範例中,訊號113與115被提供作為兩個分離輸出,並沒有組合它們(舉例來說,參見圖7A與7B或圖8A與8B中範例)。As discussed above, one or more output signals can be generated by the exemplary non-contact angular position sensing system 100, and three examples are shown in the figure. In an example, the first rotation measurement signal 113 of the first shaft 104 modulates the second rotation measurement signal 115 of the second shaft 106 to generate a single combined output signal 116A, which represents the angular rotation of the rotating object and The number of revolutions or revolutions (for example, see the example in Figure 8C). In another example, the second rotation measurement signal 115 of the second shaft 106 modulates the first rotation measurement signal 113 of the first shaft 104 to generate a single combined output signal 116B, which represents the angular rotation of the rotating object And the number of revolutions or revolutions (for example, see the example in Figure 7C). In another example, the signals 113 and 115 are provided as two separate outputs without combining them (for example, see the examples in FIGS. 7A and 7B or FIGS. 8A and 8B).

於一範例中,類比量測訊號115提供轉數,類比量測訊號113提供目前轉裡面的精確角位置(舉例來說,物體在第4轉與第5轉之間的角位置)。輸出訊號(舉例來說,組合輸出訊號116A、組合輸出訊號116B、或是訊號113與訊號115)的解析度取決於磁感測器電路112與114以及旋轉軸桿104與106。於一範例中,非接觸式角位置感測系統100的數位輸出(116A、116B、或113與115)的解析度為所述物體每轉有12位元加一轉的計數。於一範例中,若量測物體之角位置的磁感測器112為10轉感測器,解析度則為log2 (10*212 ) = 15.32位元,其等效於3600 上的40960個輸出數值。於另一範例中,若磁感測器112為16轉感測器,解析度則為log2 (16*212 ) = 16位元,其等效於5760 上的65536個輸出數值。因此,所記載非接觸式角位置感測系統100能夠達成高解析度和高精確度旋轉量測。In one example, the analog measurement signal 115 provides the number of revolutions, and the analog measurement signal 113 provides the precise angular position within the current revolution (for example, the angular position of the object between the 4th and 5th revolutions). The resolution of the output signal (for example, the combined output signal 116A, the combined output signal 116B, or the signal 113 and the signal 115) depends on the magnetic sensor circuits 112 and 114 and the rotating shafts 104 and 106. In an example, the resolution of the digital output (116A, 116B, or 113 and 115) of the non-contact angular position sensing system 100 is a count of 12 bits per revolution of the object plus one revolution. In an example, if the magnetic sensor 112 for measuring the angular position of the object is a 10-rotation sensor, the resolution is log 2 (10*2 12 ) = 15.32 bits, which is equivalent to 3600 . 40960 output values on the In another example, if the magnetic sensor 112 is a 16-rotation sensor, the resolution is log 2 (16*2 12 ) = 16 bits, which is equivalent to 5760 . 65536 output values on the Therefore, the described non-contact angular position sensing system 100 can achieve high-resolution and high-accuracy rotation measurement.

圖2顯示根據本記載內容之範例非接觸式角位置感測系統200的剖面圖,圖中顯示隨著時間的軸桿旋轉。非接觸式角位置感測系統200包含鑲嵌在且縱向對齊輸入之第一旋轉軸桿204的第一磁鐵208及鑲嵌在且縱向對齊第二旋轉軸桿(看不見但位於後面,雷同於圖1中的非接觸式角位置感測系統100)的第二磁鐵210。第一旋轉軸桿204為連接至旋轉物體(未顯示)的輸入或入口軸桿。第一旋轉軸桿204的橫軸垂直於耦接至齒輪207的第二旋轉軸桿206的橫軸(圖2中第二旋轉軸桿206位於磁鐵210後面)。第一旋轉軸桿204進一步包含螺桿205,其透過齒輪207旋轉第二旋轉軸桿206。齒輪207的直徑大於第一旋轉軸桿204的直徑,因此,第一旋轉軸桿204的多轉對應於第二旋轉軸桿206的單一轉。於一範例中,第一旋轉軸桿204和齒輪207的尺寸比使得第一旋轉軸桿204每完成十轉,第二旋轉軸桿206完成一轉。圖2圖解隨著時間的軸桿204與206以及磁鐵208與210的旋轉位置(顯示在三個範例時間實例處,t1 、t1 + t2 、及t1 + t2 + t3 ,其中,t1 、t2 、t3 >0)。FIG. 2 shows a cross-sectional view of an exemplary non-contact angular position sensing system 200 according to this description, showing the shaft rotation over time. The non-contact angular position sensing system 200 includes a first magnet 208 embedded in and longitudinally aligned with the input first rotary shaft 204 and a second rotary shaft embedded in and longitudinally aligned (invisible but located at the back, similar to FIG. 1 The second magnet 210 of the non-contact angular position sensing system 100). The first rotating shaft 204 is an input or inlet shaft connected to a rotating object (not shown). The horizontal axis of the first rotation shaft 204 is perpendicular to the horizontal axis of the second rotation shaft 206 coupled to the gear 207 (the second rotation shaft 206 in FIG. 2 is located behind the magnet 210). The first rotating shaft 204 further includes a screw 205 that rotates the second rotating shaft 206 through a gear 207. The diameter of the gear 207 is greater than the diameter of the first rotation shaft 204, and therefore, multiple rotations of the first rotation shaft 204 correspond to a single rotation of the second rotation shaft 206. In an example, the size ratio of the first rotating shaft 204 and the gear 207 is such that every ten revolutions of the first rotating shaft 204, the second rotating shaft 206 completes one revolution. Figure 2 illustrates the rotational positions of the shafts 204 and 206 and the magnets 208 and 210 over time (shown at three example time instances, t 1 , t 1 + t 2 , and t 1 + t 2 + t 3 , where , T 1 , t 2 , t 3 > 0).

非接觸式角位置感測系統200包含磁感測器電路212,藉由感測對應磁鐵208的磁場來量測第一旋轉軸桿204的角位置。於此範例中,磁感測器電路212雖然位於第一旋轉軸桿204之縱軸的反向處(舉例來說,使得霍爾效應感測器的導體垂直於磁鐵208的磁場的電子流方向);不過,磁感測器電路212亦可位於非接觸式角位置感測系統200中的其它位置。非接觸式角位置感測系統200包含第二磁感測器電路,圖2中未顯示,其量測第二旋轉軸桿206的角位置。第二磁感測器電路可位於第二旋轉軸桿206之縱軸的反向處(也就是,反向於磁鐵210)。圖中雖然描述兩個磁感測器電路;亦可使用任何數量個磁感測器電路(舉例來說,一個或兩個以上)。The non-contact angular position sensing system 200 includes a magnetic sensor circuit 212, which measures the angular position of the first rotating shaft 204 by sensing the magnetic field corresponding to the magnet 208. In this example, although the magnetic sensor circuit 212 is located at the opposite of the longitudinal axis of the first rotating shaft 204 (for example, so that the conductor of the Hall effect sensor is perpendicular to the electron flow direction of the magnetic field of the magnet 208 ); However, the magnetic sensor circuit 212 can also be located at other locations in the non-contact angular position sensing system 200. The non-contact angular position sensing system 200 includes a second magnetic sensor circuit, not shown in FIG. 2, which measures the angular position of the second rotating shaft 206. The second magnetic sensor circuit may be located at the opposite of the longitudinal axis of the second rotating shaft 206 (that is, opposite to the magnet 210). Although two magnetic sensor circuits are described in the figure; any number of magnetic sensor circuits (for example, one or more than two) can also be used.

於圖2的範例中,軸桿204與206相互垂直。圖3顯示根據本記載內容的範例非接觸式角位置感測系統300的剖面圖,其中,軸桿304與306為平行。非接觸式角位置感測系統300包含鑲嵌在且縱向對齊第一旋轉輸入軸桿304的第一磁鐵308以及鑲嵌在且縱向對齊第二旋轉軸桿306的第二磁鐵310。第一旋轉軸桿304為連接至旋轉物體(未顯示)的輸入或入口軸桿。於此情況中,第一旋轉軸桿304的橫軸平行於第二旋轉軸桿306的橫軸。In the example of FIG. 2, the shafts 204 and 206 are perpendicular to each other. FIG. 3 shows a cross-sectional view of an exemplary non-contact angular position sensing system 300 according to this description, in which the shafts 304 and 306 are parallel. The non-contact angular position sensing system 300 includes a first magnet 308 embedded in and longitudinally aligned with the first rotating input shaft 304 and a second magnet 310 embedded in and longitudinally aligned with the second rotating shaft 306. The first rotating shaft 304 is an input or inlet shaft connected to a rotating object (not shown). In this case, the horizontal axis of the first rotating shaft 304 is parallel to the horizontal axis of the second rotating shaft 306.

置中且耦接至第二旋轉軸桿306的齒輪307(舉例來說,鈍齒輪、鏈輪)藉由第一旋轉軸桿304上的螺桿305轉動,舉例來說,藉由互扣螺桿305的螺紋和齒輪307的齒部。於一範例中,齒輪307的直徑可大於第一旋轉軸桿304的直徑,因此,第一旋轉軸桿304的多轉對應於第二旋轉軸桿306的單一轉。於一範例中,第一旋轉軸桿304和齒輪307的尺寸比使得第一旋轉軸桿304每完成十轉,第二旋轉軸桿306完成一轉。為達成齒輪307的每一轉而輸入軸桿304有十轉(或是任何轉數,例如,3、5、或16轉)的比率,可在輸入軸桿304 (舉例來說,螺桿)的螺紋部的直徑和齒輪307的態樣(例如,齒數、模組、及/或間距)之間產生機械性匹配。圖9A至9E顯示能使用在輸入軸桿304上的範例螺桿的不同圖式,圖10A至10E顯示能作為齒輪307的範例鏈輪的不同圖式。圖9A顯示螺桿的側剖視圖;圖9B顯示螺桿的側視圖;圖9C顯示螺桿的正面剖視圖;以及圖9D與9E從兩個不同角度顯示螺桿的三維(3D)圖。圖10A顯示鏈輪的側剖視圖;圖10B顯示鏈輪的側視圖;圖10C顯示鏈輪的正面剖視圖;以及圖10D與10E從兩個不同角度顯示鏈輪的3D圖。圖9A至9E及10A至10E僅充當範例,亦可使用其它類型齒輪。The gear 307 (for example, cogwheel, sprocket) centered and coupled to the second rotating shaft 306 is rotated by the screw 305 on the first rotating shaft 304, for example, by the interlocking screw 305 The threads and the teeth of the gear 307. In an example, the diameter of the gear 307 may be larger than the diameter of the first rotation shaft 304, and therefore, multiple rotations of the first rotation shaft 304 correspond to a single rotation of the second rotation shaft 306. In an example, the size ratio of the first rotating shaft 304 and the gear 307 is such that every ten revolutions of the first rotating shaft 304, the second rotating shaft 306 completes one revolution. In order to achieve each revolution of the gear 307, the input shaft 304 has a ratio of ten revolutions (or any number of revolutions, for example, 3, 5, or 16 revolutions). There is a mechanical match between the diameter of the threaded portion and the configuration of the gear 307 (for example, the number of teeth, the module, and/or the pitch). FIGS. 9A to 9E show different diagrams of exemplary screw rods that can be used on the input shaft 304, and FIGS. 10A to 10E show different diagrams of exemplary sprockets that can be used as gears 307. Fig. 9A shows a side cross-sectional view of the screw; Fig. 9B shows a side view of the screw; Fig. 9C shows a front cross-sectional view of the screw; and Figs. 9D and 9E show three-dimensional (3D) views of the screw from two different angles. Fig. 10A shows a side sectional view of the sprocket; Fig. 10B shows a side view of the sprocket; Fig. 10C shows a front sectional view of the sprocket; and Figs. 10D and 10E show 3D views of the sprocket from two different angles. Figures 9A to 9E and 10A to 10E are only examples, and other types of gears can also be used.

參考圖3,分別位於第一與第二旋轉軸桿304與306之縱軸反向處的磁感測器電路312與314藉由感測對應磁鐵308與310的磁場來量測軸桿304與306的角位置。範例非接觸式角位置感測系統300進一步包含殼體320,以及屏蔽322,用以提供在磁鐵308與310之間的保護及/或在磁感測器電路312與314之間的保護。舉例來說,屏蔽322可由特定材料製成,例如軟鐵,並且可具有特定形狀與厚度,以便阻隔外部磁場。應被遮擋的不必要磁場可包含寄生磁場或是由相同或鄰近系統中的其它鄰近構件所強加的磁場。Referring to FIG. 3, the magnetic sensor circuits 312 and 314 respectively located at the opposite positions of the longitudinal axes of the first and second rotating shafts 304 and 306 measure the shafts 304 and 314 by sensing the magnetic fields of the corresponding magnets 308 and 310 306's angular position. The exemplary non-contact angular position sensing system 300 further includes a housing 320 and a shield 322 to provide protection between the magnets 308 and 310 and/or between the magnetic sensor circuits 312 and 314. For example, the shield 322 may be made of a specific material, such as soft iron, and may have a specific shape and thickness to block the external magnetic field. Unnecessary magnetic fields that should be blocked can include parasitic magnetic fields or magnetic fields imposed by other neighboring components in the same or neighboring systems.

圖4顯示根據本記載內容之具有垂直軸桿的範例非接觸式角位置感測系統400的三維(3D)圖。範例非接觸式角位置感測系統400的配置通常對應於圖2中所示之範例非接觸式角位置感測系統200。圖4顯示非接觸式角位置感測系統400的構件被分離成在殼體420a與殼體420b下的兩個部分,以便圖解內部構件;但是,在施行時,殼體420a與殼體420b為一體式連續殼體(參見圖5中的殼體420),並且螺桿405互扣鏈輪407 (等效於圖2中所示之殼體220、螺桿205、齒輪207、以及其它構件的排列)。於一範例中,殼體420a與殼體420b可被製成含有接合平面的兩個部分,接著可被組合在一起用以形成最終一體式的殼體420。更一般來說,殼體420能被製成一或數個配件。FIG. 4 shows a three-dimensional (3D) diagram of an exemplary non-contact angular position sensing system 400 with a vertical shaft according to this description. The configuration of the exemplary non-contact angular position sensing system 400 generally corresponds to the exemplary non-contact angular position sensing system 200 shown in FIG. 2. Figure 4 shows that the components of the non-contact angular position sensing system 400 are separated into two parts under the housing 420a and the housing 420b to illustrate the internal components; however, when implemented, the housing 420a and the housing 420b are One-piece continuous housing (see housing 420 in FIG. 5), and screw 405 interlocking sprocket 407 (equivalent to the arrangement of housing 220, screw 205, gear 207, and other components shown in FIG. 2) . In an example, the housing 420a and the housing 420b can be made into two parts with a joint plane, and then can be combined together to form the final integrated housing 420. More generally, the housing 420 can be made into one or several accessories.

外部物體(未顯示)的角位置係由耦接至殼體420a與420b裡面之第二軸桿406的入口軸桿404的旋轉以及包含磁感測器電路412與414的內部電子來定義。入口軸桿404的至少一部分(舉例來說,全部)位於殼體420a中且第二軸桿406的至少一部分(舉例來說,全部)位於殼體420a與420b中。舉例來說,入口軸桿404及/或第二軸桿406的形狀可為圓柱體或立方體。殼體部420a與420b的鑲嵌可為第二軸桿406提供導引。The angular position of the external object (not shown) is defined by the rotation of the inlet shaft 404 coupled to the second shaft 406 inside the housings 420a and 420b and the internal electronics including the magnetic sensor circuits 412 and 414. At least a part (for example, all) of the inlet shaft 404 is located in the housing 420a and at least a part (for example, all) of the second shaft 406 is located in the housings 420a and 420b. For example, the shape of the inlet shaft 404 and/or the second shaft 406 may be a cylinder or a cube. The inlay of the housing parts 420 a and 420 b can provide a guide for the second shaft 406.

入口軸桿404可包括具有螺桿405的部分,而第二軸桿406可包括具有鏈輪407 (舉例來說,鑲嵌至第二軸桿406的末端)的部分。於一範例中,整個入口軸桿404可為螺桿405,及/或整個第二軸桿406可為鏈輪407。入口軸桿404被耦接至外部物體,並且藉由轉動鏈輪407以經由螺桿405傳動第二軸桿406。藉由正確選擇鏈輪407的齒部的傾斜角和螺桿405的網部,鏈輪407的中央軸可被定位在相對於螺桿405的任何位置。於一範例中,鏈輪407的中央軸可在螺桿405的90角(如圖2、4、5中所示);不過,在達成所希減速比的前提下可採用任何其它機械可行角度。在入口軸桿404和第二軸桿406之間的減速比取決於螺桿405和鏈輪407之間的減速比,且更明確的說,取決於螺桿405上的螺紋數和鏈輪407上的齒數的比率。因此,減速比能藉由相對於鏈輪上的齒部選擇螺桿405上的螺紋來設定。減速比讓內部電子能夠決定物體的轉數以及磁鐵408與410的電動衝程。The inlet shaft 404 may include a portion with a screw 405, and the second shaft 406 may include a portion with a sprocket 407 (for example, inlaid to the end of the second shaft 406). In an example, the entire inlet shaft 404 may be a screw 405, and/or the entire second shaft 406 may be a sprocket 407. The inlet shaft 404 is coupled to an external object, and the second shaft 406 is driven through the screw 405 by rotating the sprocket 407. By correctly selecting the inclination angle of the tooth portion of the sprocket 407 and the mesh portion of the screw 405, the central axis of the sprocket 407 can be positioned at any position relative to the screw 405. In an example, the central axis of the sprocket 407 can be at 90 angles of the screw 405 (as shown in FIGS. 2, 4, and 5); however, any other mechanically feasible angles can be used under the premise of achieving the desired reduction ratio. The reduction ratio between the inlet shaft 404 and the second shaft 406 depends on the reduction ratio between the screw 405 and the sprocket 407, and more specifically, the number of threads on the screw 405 and the sprocket 407 The ratio of the number of teeth. Therefore, the reduction ratio can be set by selecting the thread on the screw 405 relative to the teeth on the sprocket. The reduction ratio allows the internal electronics to determine the number of revolutions of the object and the electric stroke of the magnets 408 and 410.

非接觸式角位置感測系統400量測軸桿404在數轉上的旋轉。包括磁感測器電路412與414的內部電子耦接和軸桿404與406一體的磁鐵408與410,以便量測相對於軸桿404及旋轉物體為縱向與橫向的兩個方向中的磁場。第二軸桿406的旋轉度(N度)和第一軸桿404的轉數成正比。The non-contact angular position sensing system 400 measures the rotation of the shaft 404 over several revolutions. The magnets 408 and 410 including the internal electronic coupling of the magnetic sensor circuits 412 and 414 and the shafts 404 and 406 are integrated to measure the magnetic field in the longitudinal and transverse directions relative to the shaft 404 and the rotating object. The degree of rotation (N degrees) of the second shaft 406 is proportional to the number of rotations of the first shaft 404.

主軸桿404和磁鐵408為一體,而磁鐵408所具有的磁化軸和主軸桿404的縱軸一致。第二軸桿406和磁鐵410為一體,而磁鐵410所具有的磁化軸垂直於主軸桿404的縱軸。殼體420a與420b在主軸桿404處包括帶螺紋緊固系統(或襯套) 434,用以固定、導引、及/或固持主軸桿404至殼體420a。帶螺紋緊固系統434允許外部旋轉物體或系統及入口軸桿404的調整及同軸性,並且能由使用者加以配置或調整。帶螺紋緊固系統434能用於鑲嵌非接觸式角位置感測系統400至外部結構或系統。The spindle rod 404 and the magnet 408 are integrated, and the magnetization axis of the magnet 408 is consistent with the longitudinal axis of the spindle rod 404. The second shaft 406 and the magnet 410 are integrated, and the magnetization axis of the magnet 410 is perpendicular to the longitudinal axis of the main shaft 404. The housings 420a and 420b include a threaded fastening system (or bushing) 434 at the main shaft 404 for fixing, guiding, and/or holding the main shaft 404 to the housing 420a. The threaded fastening system 434 allows the adjustment and coaxiality of the external rotating object or system and the inlet shaft 404, and can be configured or adjusted by the user. The threaded fastening system 434 can be used to embed the non-contact angular position sensing system 400 to an external structure or system.

磁電路412與414可分別被鑲嵌至殼體420a與420b的位置430與432處,並且產生及透過終端426提供輸出訊號給使用者(舉例來說,給使用者處理器及/或使用者介面)。一或更多個螺絲423可用於將殼體420a與420b的兩個部分固定在一起(可使用螺絲以外的其它機制,例如超音波焊接)。The magnetic circuits 412 and 414 can be embedded in the positions 430 and 432 of the housings 420a and 420b, respectively, and generate and provide output signals to the user through the terminal 426 (for example, to the user processor and/or user interface ). One or more screws 423 can be used to fix the two parts of the housing 420a and 420b together (other mechanisms other than screws can be used, such as ultrasonic welding).

殼體420a與420b可對應於圖5中所示範例一體式的殼體420。殼體420的外側及/或內側可有彎曲表面(舉例來說,如果使用模鑄法來形成殼體420a與420b的話),以便匹配製程。殼體420包含用於鑲嵌襯套434的位置442,用於鑲嵌第二軸桿406的位置444,以及用於鑲嵌輸出終端426的位置446。於一範例中,殼體420可為模鑄式塑膠部件,並且可由3D列印所製成或可以是數個部件的組件。於一範例中,襯套434可嵌入於殼體420中,或是以塑膠殼體件420a加以包覆模鑄,或是捲曲。The housings 420a and 420b may correspond to the exemplary integrated housing 420 shown in FIG. 5. The outer side and/or the inner side of the housing 420 may have curved surfaces (for example, if the housing 420a and 420b are formed using a die casting method) to match the manufacturing process. The housing 420 includes a position 442 for inserting the bushing 434, a position 444 for inserting the second shaft 406, and a position 446 for inserting the output terminal 426. In an example, the housing 420 may be a molded plastic part, and may be made by 3D printing or may be an assembly of several parts. In one example, the bushing 434 can be embedded in the housing 420, or over-molded with the plastic housing 420a, or crimped.

參考圖4,磁電路412與414可被形成在分離的PCB並被鑲嵌在個別軸桿404與406之反向的不同位置430與432處。磁感測器電路412藉由感測第一磁鐵408的磁場來量測第一軸桿404 (及因此所述物體)的旋轉位置,以便產生第一旋轉量測訊號。磁感測器電路414藉由感測第二磁鐵410的磁場來量測第二軸桿406的旋轉位置,以便產生第二軸桿406的第二旋轉量測訊號,用以表示第一軸桿104及因此所述物體的轉數。Referring to FIG. 4, the magnetic circuits 412 and 414 can be formed on separate PCBs and embedded at different positions 430 and 432 opposite to the respective shafts 404 and 406. The magnetic sensor circuit 412 measures the rotation position of the first shaft 404 (and therefore the object) by sensing the magnetic field of the first magnet 408 to generate a first rotation measurement signal. The magnetic sensor circuit 414 measures the rotation position of the second shaft 406 by sensing the magnetic field of the second magnet 410 to generate a second rotation measurement signal of the second shaft 406 to indicate the first shaft 104 and therefore the number of revolutions of the object.

連接磁電路412與414的額外電路系統(未顯示)可讓磁電路412提供第一軸桿404的第一旋轉量測訊號給第二磁感測器電路414。第二磁感測器電路414結合第一軸桿404的第一旋轉量測訊號和第二軸桿406的第二旋轉量測訊號,用以產生組合輸出訊號,表示旋轉物體的角旋轉及旋轉數或轉數。第二磁感測器電路414可透過輸出終端426提供組合輸出訊號給使用者。圖4中所示的磁感測器電路412與414雖然位在兩個位置430與432並且在分離的PCB上;不過,舉例來說,整個磁感測器電路可被施行在共同PCB或是一個或兩個以上PCB (舉例來說,用於結合第一與第二旋轉量測訊號的電路可位於第三PCB)。An additional circuit system (not shown) connecting the magnetic circuits 412 and 414 allows the magnetic circuit 412 to provide the first rotation measurement signal of the first shaft 404 to the second magnetic sensor circuit 414. The second magnetic sensor circuit 414 combines the first rotation measurement signal of the first shaft 404 and the second rotation measurement signal of the second shaft 406 to generate a combined output signal representing the angular rotation and rotation of the rotating object Number or revolutions. The second magnetic sensor circuit 414 can provide a combined output signal to the user through the output terminal 426. Although the magnetic sensor circuits 412 and 414 shown in FIG. 4 are located at two positions 430 and 432 and on separate PCBs; however, for example, the entire magnetic sensor circuit can be implemented on a common PCB or One or more than two PCBs (for example, the circuit for combining the first and second rotation measurement signals can be located on the third PCB).

圖6顯示根據本記載內容之可用於非接觸式角位置感測系統的範例內部電子元件600的功能方塊圖。舉例來說,內部電子元件可被施行在圖1至4中所示的磁感測器電路以及一或更多個PCB。內部電子元件600量測軸鑲磁鐵的磁場、處理量測(舉例來說,結合量測、將訊號從類比轉換成數位、…等)、保護感測器電路、以及產生且提供表示物體旋轉的組合輸出訊號616。電力被提供至資料處理微電路652與662,其中,V+為高輸入電壓(舉例來說,+5V或+10V)而V-為低輸入電壓(舉例來說,等於接地的0V或-5V)。FIG. 6 shows a functional block diagram of an exemplary internal electronic component 600 that can be used in a non-contact angular position sensing system according to this description. For example, internal electronic components can be implemented in the magnetic sensor circuit shown in FIGS. 1 to 4 and one or more PCBs. The internal electronic component 600 measures the magnetic field of the shaft magnet, processes the measurement (for example, combines measurement, converts the signal from analog to digital, etc.), protects the sensor circuit, and generates and provides a representation of the rotation of the object Combined output signal 616. Power is supplied to data processing microcircuits 652 and 662, where V+ is a high input voltage (for example, +5V or +10V) and V- is a low input voltage (for example, equal to 0V or -5V to ground) .

磁感測器電路612可為積體電路並且可包含資料處理微電路652,用以量測入口軸桿的旋轉並且提供數位形式的第一旋轉量測訊號653,用以表示入口軸桿隨著時間旋轉的角位置。舉例來說,資料處理微電路652可包含產生和通過它之磁鐵的磁場成正比的電壓的霍爾效應感測器,以及將測得電壓轉換成表示入口軸桿隨著時間旋轉之角位置的電訊號653 (舉例來說,PWM訊號)的電路系統。The magnetic sensor circuit 612 may be an integrated circuit and may include a data processing microcircuit 652 to measure the rotation of the entrance shaft and provide a digital first rotation measurement signal 653 to indicate that the entrance shaft follows The angular position of the time rotation. For example, the data processing microcircuit 652 may include a Hall-effect sensor that generates a voltage proportional to the magnetic field of the magnet passing through it, and converts the measured voltage into an angular position of the entrance shaft that rotates with time. The circuit system of the electrical signal 653 (for example, the PWM signal).

磁感測器電路614可為積體電路並且可包含資料處理微電路662,用以量測第二軸桿的旋轉並且提供類比形式的第二旋轉量測訊號663。舉例來說,資料處理微電路662可包含從第二軸桿上的第二感測器產生和通過它之磁鐵的磁場成正比的類比電壓訊號663的霍爾效應感測器。感測器保護電路654和664可提供保護避免有害效應,例如反極性、過電壓、或是暫態。The magnetic sensor circuit 614 may be an integrated circuit and may include a data processing microcircuit 662 for measuring the rotation of the second shaft and providing the second rotation measurement signal 663 in an analog form. For example, the data processing microcircuit 662 may include a Hall effect sensor that generates an analog voltage signal 663 proportional to the magnetic field of the magnet passing through it from the second sensor on the second shaft. The sensor protection circuits 654 and 664 can provide protection against harmful effects, such as reverse polarity, overvoltage, or transients.

組合電路675可結合在入口軸桿之主軸上的旋轉的PWM訊號655和表示入口軸桿之旋轉數的類比訊號665,其是藉由取得兩個訊號的乘積(舉例來說,布林乘法,其中處於低位準(例如,0V)的PWM訊號被視為邏輯「0」,而處於高位準(例如,1V或5V)被視為邏輯「1」)以產生組合輸出訊號616,表示旋轉物體的角旋轉及旋轉數或轉數。組合輸出訊號616可被使用者介面讀取,用以提供耦接至位置感測器之旋轉物體的角旋轉給使用者。在入口軸桿之N轉上的PWM訊號655、類比訊號665、以及組合輸出訊號616的範例顯示在圖7A至7C。於一範例中,PWM訊號655可具有360 的範圍及0.09 的解析度,類比訊號665可具有3600 的範圍及1 的解析度,而組合輸出訊號616可具有3600 的範圍及0.09 的解析度。雖然顯示組合輸出訊號616;不過,PWM訊號655與類比訊號665亦可被提供作為分離輸出(類比形式或轉換成數位形式)。The combination circuit 675 can combine the rotation PWM signal 655 on the main shaft of the entrance shaft and the analog signal 665 representing the rotation number of the entrance shaft by obtaining the product of the two signals (for example, the Bollinger multiplication, The PWM signal at the low level (for example, 0V) is regarded as logic "0", and the PWM signal at the high level (for example, 1V or 5V) is regarded as logic "1") to generate the combined output signal 616, which represents the rotation of the object Angular rotation and number of rotations or revolutions. The combined output signal 616 can be read by the user interface to provide the user with the angular rotation of the rotating object coupled to the position sensor. Examples of the PWM signal 655, the analog signal 665, and the combined output signal 616 on the N rotation of the entrance shaft are shown in FIGS. 7A to 7C. In an example, the PWM signal 655 may have 360 degrees . The range and 0.09 . The resolution of the analog signal 665 can be 3,600 . The range and 1 . The resolution of the combined output signal 616 can be 3,600 . The range and 0.09 . Resolution. Although the combined output signal 616 is shown; however, the PWM signal 655 and the analog signal 665 can also be provided as separate outputs (analog form or converted to digital form).

PWM訊號655的工作循環賦予入口軸桿之角位置有高精確度(因為高解析度和精細力學)。類比訊號665的振幅(以伏特為單位)和由入口軸桿完成的轉數成正比,其中,第二軸桿的1/N轉對應於入口軸桿的1轉(也就是,N為齒輪比或減速比)。類比訊號665被PWM 655調變,用以產生組合輸出訊號616,其提供角位置資訊及旋轉數。The duty cycle of the PWM signal 655 endows the angular position of the entrance shaft with high accuracy (because of high resolution and fine mechanics). The amplitude of the analog signal 665 (in volts) is proportional to the number of revolutions completed by the inlet shaft, where 1/N revolution of the second shaft corresponds to 1 revolution of the inlet shaft (that is, N is the gear ratio Or reduction ratio). The analog signal 665 is modulated by the PWM 655 to generate a combined output signal 616, which provides angular position information and the number of rotations.

圖7A至7C顯示來自感測電路之訊號(舉例來說,類比/類比)的形狀與類型(類比相對於數位)的範例,俾便訊號之形狀與類型的其它組合能以合適電子裝置混合,以便取得含有數則資訊的單一輸出訊號,包含已完成的轉數及進行中的轉之具有良好解析度的角位置。圖8A至8C顯示圖6中所示的替代配置之在入口軸桿的N轉上的另一組範例量測訊號。於圖8A至8C的範例中,和入口軸桿之磁鐵耦接的磁電路供應類比訊號855(以伏特為單位)。類比訊號855的振幅以高精確度提供在入口軸桿之每一轉內的入口軸桿的角位置。和第二軸桿之磁鐵耦接的磁電路供應PWM訊號865,使得PWM訊號865的工作循環提供第一軸桿的轉數。類比訊號855被PWM訊號865調變(也就是,PWM 訊號865和類比訊號855的乘積),用以產生組合輸出訊號816,包含第一軸桿(及相對應的旋轉物體)的角位置與轉數的精密性。如上解釋,PWM訊號和類比訊號之組合為非必要,並且可提供分離訊號作為輸出。7A to 7C show examples of the shape and type (analog vs. digital) of the signal from the sensing circuit (for example, analog/analog), so that other combinations of the shape and type of the signal can be mixed with a suitable electronic device. In order to obtain a single output signal containing several pieces of information, including the number of revolutions completed and the angular position of the revolution in progress with good resolution. 8A to 8C show another set of example measurement signals on the N rotation of the entrance shaft of the alternative configuration shown in FIG. 6. In the example of FIGS. 8A to 8C, the magnetic circuit coupled to the magnet of the entrance shaft supplies an analog signal 855 (in volts). The amplitude of the analog signal 855 provides the angular position of the entrance shaft within each revolution of the entrance shaft with high accuracy. The magnetic circuit coupled with the magnet of the second shaft supplies the PWM signal 865 so that the duty cycle of the PWM signal 865 provides the number of revolutions of the first shaft. The analog signal 855 is modulated by the PWM signal 865 (that is, the product of the PWM signal 865 and the analog signal 855) to generate a combined output signal 816, including the angular position and rotation of the first shaft (and the corresponding rotating object) The precision of the number. As explained above, the combination of PWM signal and analog signal is not necessary, and a separate signal can be provided as output.

於任何本文所記載範例中,可使用冗餘感測器電路提供更健全量測資訊。舉例來說,於所述非接觸式位置感測系統的殼體內能使用兩個分離的磁感測電路,從而供應兩個獨立及冗餘的輸出訊號,每一者表示進行中的轉之具有良好解析度的角位置及已完成的轉數。於另一範例中,可於相同的非接觸式角位置感測系統內施行不同類型的磁感測電路的不同組合,例如,同時使用霍爾效應感測器及磁阻感測器。於本文的記載範例中,構件的尺寸及組合可根據使用者需求(例如,尺寸、長度、以及附接模式)加以調適。In any of the examples described herein, redundant sensor circuits can be used to provide more robust measurement information. For example, two separate magnetic sensing circuits can be used in the housing of the non-contact position sensing system, so as to provide two independent and redundant output signals. Angular position with good resolution and the number of revolutions completed. In another example, different combinations of different types of magnetic sensing circuits can be implemented in the same non-contact angular position sensing system, for example, using Hall effect sensors and magnetoresistive sensors at the same time. In the examples described herein, the size and combination of components can be adjusted according to user requirements (for example, size, length, and attachment mode).

100:非接觸式角位置感測系統 102:旋轉物體的移動 104:第一旋轉軸桿/旋轉軸桿/第一軸桿 106:第二旋轉軸桿/旋轉軸桿/第二軸桿 108:第一磁鐵/磁鐵 110:第二磁鐵/磁鐵 112:磁電路/磁感測器電路/感測器電路/磁感測器 113:量測訊號/輸出訊號/輸出/第一旋轉量測訊號/訊號/類比量測訊號 114:磁電路/磁感測器電路/感測器電路 115:量測訊號/輸出訊號/第二旋轉量測訊號/訊號/類比量測訊號 116A、116B:組合輸出訊號 200:非接觸式角位置感測系統 204:第一旋轉軸桿/軸桿 205:螺桿 206:第二旋轉軸桿/軸桿 207:齒輪 208:第一磁鐵/磁鐵 210:第二磁鐵/磁鐵 212:磁感測器電路 300:非接觸式角位置感測系統 304:第一旋轉軸桿/軸桿/輸入軸桿 305:螺桿 306:第二旋轉軸桿/軸桿 307:齒輪 308:第一磁鐵/磁鐵 310:第二磁鐵/磁鐵 312:磁感測器電路 314:磁感測器電路 320:殼體 322:屏蔽 400:非接觸式角位置感測系統 404:入口軸桿/軸桿/第一軸桿/主軸桿 405:螺桿 406:第二軸桿/軸桿 407:鏈輪 408:磁鐵 410:磁鐵/第二磁鐵 412:磁電路/磁感測器電路 414:磁電路/磁感測器電路/第二磁感測器電路 420:殼體 420a:殼體/殼體部/殼體件 420b:殼體/殼體部 423:螺絲 426:輸出終端 430、432:位置 434:帶螺紋緊固系統/襯套 442、444、446:位置 600:內部電子元件 612:磁感測器電路 614:磁感測器電路 616:組合輸出訊號 652:資料處理微電路 653:第一旋轉量測訊號/電訊號 654:感測器保護電路 655:PWM訊號 662:資料處理微電路 663:第二旋轉量測訊號/類比電壓訊號 664:感測器保護電路 665:類比訊號 675:組合電路100: Non-contact angular position sensing system 102: Movement of rotating objects 104: The first rotating shaft/rotating shaft/first shaft 106: second rotating shaft/rotating shaft/second shaft 108: The first magnet/magnet 110: second magnet/magnet 112: Magnetic circuit/magnetic sensor circuit/sensor circuit/magnetic sensor 113: measurement signal/output signal/output/first rotation measurement signal/signal/analog measurement signal 114: Magnetic circuit/magnetic sensor circuit/sensor circuit 115: measurement signal/output signal/second rotation measurement signal/signal/analog measurement signal 116A, 116B: combined output signal 200: Non-contact angular position sensing system 204: The first rotating shaft/shaft 205: Screw 206: second rotating shaft/shaft 207: Gear 208: The first magnet/magnet 210: second magnet/magnet 212: Magnetic Sensor Circuit 300: Non-contact angular position sensing system 304: first rotating shaft/shaft/input shaft 305: Screw 306: second rotating shaft/shaft 307: Gear 308: first magnet/magnet 310: second magnet/magnet 312: Magnetic Sensor Circuit 314: Magnetic Sensor Circuit 320: shell 322: Shield 400: Non-contact angular position sensing system 404: Entry shaft/shaft/first shaft/spindle 405: Screw 406: second shaft/shaft 407: Sprocket 408: Magnet 410: Magnet/Second Magnet 412: Magnetic circuit/magnetic sensor circuit 414: Magnetic circuit/magnetic sensor circuit/second magnetic sensor circuit 420: Shell 420a: shell/shell part/shell part 420b: Shell/shell part 423: Screw 426: output terminal 430, 432: Location 434: With threaded fastening system/bushing 442, 444, 446: location 600: Internal electronic components 612: Magnetic Sensor Circuit 614: Magnetic Sensor Circuit 616: Combined output signal 652: Data Processing Microcircuit 653: The first rotation measurement signal / electrical signal 654: Sensor protection circuit 655: PWM signal 662: Data Processing Microcircuit 663: The second rotation measurement signal / analog voltage signal 664: Sensor protection circuit 665: Analog Signal 675: Combination Circuit

圖1顯示根據本記載內容的範例非接觸式角位置感測系統的高階方塊圖;Figure 1 shows a high-level block diagram of an exemplary non-contact angular position sensing system according to this record;

圖2顯示根據本記載內容之具有垂直軸桿的範例非接觸式角位置感測系統的剖面圖並且圖解隨著時間的軸桿旋轉;Figure 2 shows a cross-sectional view of an exemplary non-contact angular position sensing system with a vertical shaft according to this description and illustrates the shaft rotation over time;

圖3顯示根據本記載內容之具有平行軸桿的範例非接觸式角位置感測系統的剖面圖;Figure 3 shows a cross-sectional view of an exemplary non-contact angular position sensing system with parallel shafts according to the content of this record;

圖4顯示根據本記載內容之具有垂直軸桿的範例非接觸式角位置感測系統的三維(3D)圖;Figure 4 shows a three-dimensional (3D) diagram of an exemplary non-contact angular position sensing system with a vertical shaft according to the content of this record;

圖5顯示根據本記載內容之可用於非接觸式角位置感測系統的範例一體式殼體;Figure 5 shows an exemplary integrated housing that can be used in a non-contact angular position sensing system according to the content of this record;

圖6顯示根據本記載內容之可用於非接觸式角位置感測系統的範例內部電子元件的功能方塊圖;FIG. 6 shows a functional block diagram of an example internal electronic component that can be used in a non-contact angular position sensing system according to the content of this record;

圖7A至7C顯示根據本記載內容之在入口軸桿的N轉上的一組範例量測訊號;Figures 7A to 7C show a set of example measurement signals on the N-turn of the entrance shaft according to this record;

圖8A至8C顯示根據本記載內容之在入口軸桿的N轉上的另一組範例量測訊號;Figures 8A to 8C show another set of example measurement signals on the N-turn of the entrance shaft according to this record;

圖9A至9E顯示根據本記載內容之能使用在輸入軸桿上的範例螺桿(worm screw)的不同圖式;以及Figures 9A to 9E show different diagrams of example worm screws that can be used on the input shaft according to the content of this record; and

圖10A至10E顯示根據本記載內容之能作為齒輪的範例鏈輪的不同圖式。Figures 10A to 10E show different diagrams of exemplary sprocket wheels that can be used as gears according to this description.

閱讀隨附詳細說明並參考附圖便明白所記載教示之前述與其它觀點、優點、及新穎特點。於圖中,相同元件具有相同元件符號。Read the accompanying detailed description and refer to the accompanying drawings to understand the foregoing and other viewpoints, advantages, and novel features of the recorded teachings. In the figures, the same components have the same component symbols.

100:非接觸式角位置感測系統100: Non-contact angular position sensing system

102:旋轉物體的移動102: Movement of rotating objects

104:第一旋轉軸桿/旋轉軸桿/第一軸桿104: The first rotating shaft/rotating shaft/first shaft

106:第二旋轉軸桿/旋轉軸桿/第二軸桿106: second rotating shaft/rotating shaft/second shaft

108:第一磁鐵/磁鐵108: The first magnet/magnet

110:第二磁鐵/磁鐵110: second magnet/magnet

112:磁電路/磁感測器電路/感測器電路/磁感測器112: Magnetic circuit/magnetic sensor circuit/sensor circuit/magnetic sensor

113:量測訊號/輸出訊號/輸出/第一旋轉量測訊號/訊號/類比量測訊號113: measurement signal/output signal/output/first rotation measurement signal/signal/analog measurement signal

114:磁電路/磁感測器電路/感測器電路114: Magnetic circuit/magnetic sensor circuit/sensor circuit

115:量測訊號/輸出訊號/第二旋轉量測訊號/訊號/類比量測訊號115: measurement signal/output signal/second rotation measurement signal/signal/analog measurement signal

116A、16B:組合輸出訊號116A, 16B: combined output signal

Claims (20)

一種位置感測裝置,包括: 第一旋轉軸桿,具有第一縱軸; 第二旋轉軸桿,具有第二縱軸,所述第一旋轉軸桿耦接至所述第二旋轉軸桿,使得所述第一旋轉軸桿的旋轉導致所述第二旋轉軸桿旋轉; 第一磁鐵,耦接至所述第一旋轉軸桿且具有對齊所述第一旋轉軸桿之所述第一縱軸的第一磁化軸; 第二磁鐵,耦接至所述第二旋轉軸桿且具有對齊所述第二旋轉軸桿之所述第二縱軸的第二磁化軸;以及 至少一磁感測器電路,未接觸所述第一旋轉軸桿且未接觸所述第二旋轉軸桿,其中,所述第一旋轉軸桿與所述第二旋轉軸桿相對於所述至少一磁感測器電路進行角移動,且其中,所述至少一磁感測器電路被配置成: 量測所述第一磁鐵的角位置,用以產生第一角量測值, 量測所述第二磁鐵的角位置,用以產生第二角量測值,代表所述第一旋轉軸桿進行的旋轉數,以及 組合所述第一角量測值和所述第二角量測值,用以產生組合角量測值,表示所述第一旋轉軸桿的角位置和所述旋轉軸桿的旋轉數。A position sensing device includes: The first rotating shaft has a first longitudinal axis; A second rotation shaft having a second longitudinal shaft, the first rotation shaft being coupled to the second rotation shaft, so that the rotation of the first rotation shaft causes the second rotation shaft to rotate; A first magnet coupled to the first rotating shaft and having a first magnetization axis aligned with the first longitudinal axis of the first rotating shaft; A second magnet coupled to the second rotating shaft and having a second magnetization axis aligned with the second longitudinal axis of the second rotating shaft; and At least one magnetic sensor circuit is not in contact with the first rotating shaft and not in contact with the second rotating shaft, wherein the first rotating shaft and the second rotating shaft are opposite to the at least one A magnetic sensor circuit performs angular movement, and wherein the at least one magnetic sensor circuit is configured to: Measuring the angular position of the first magnet to generate a first angular measurement value, Measuring the angular position of the second magnet to generate a second angular measurement value representing the number of rotations of the first rotating shaft, and The first angle measurement value and the second angle measurement value are combined to generate a combined angle measurement value, which represents the angular position of the first rotating shaft and the number of rotations of the rotating shaft. 如請求項1所述之位置感測裝置,其中,所述第一旋轉軸桿耦接至外部旋轉物體以傳動所述第一旋轉軸桿的旋轉。The position sensing device according to claim 1, wherein the first rotating shaft is coupled to an external rotating object to drive the rotation of the first rotating shaft. 如請求項1所述之位置感測裝置,其中,所述第一旋轉軸桿包括具有螺桿的部分,所述第二旋轉軸桿包括具有鏈輪的部分,且其中,所述螺桿的旋轉導致所述鏈輪旋轉。The position sensing device according to claim 1, wherein the first rotating shaft includes a portion with a screw, the second rotating shaft includes a portion with a sprocket, and wherein the rotation of the screw causes The sprocket rotates. 如請求項3所述之位置感測裝置,其中,在所述第一旋轉軸桿與所述第二旋轉軸桿之間的減速比和在所述螺桿之螺紋數及所述鏈輪之齒數的比率成正比。The position sensing device according to claim 3, wherein the reduction ratio between the first rotating shaft and the second rotating shaft and the number of threads of the screw and the number of teeth of the sprocket The ratio is directly proportional. 如請求項4所述之位置感測裝置,其中,所述組合角量測值的解析度取決於所述第一旋轉軸桿與所述第二旋轉軸桿之間的所述減速比。The position sensing device according to claim 4, wherein the resolution of the combined angle measurement value depends on the reduction ratio between the first rotating shaft and the second rotating shaft. 如請求項1所述之位置感測裝置,所述至少一磁感測器電路包括資料處理器電路系統和感測器保護電路系統。In the position sensing device according to claim 1, the at least one magnetic sensor circuit includes a data processor circuit system and a sensor protection circuit system. 如請求項1所述之位置感測裝置,其中,所述至少一磁感測器電路包括至少一微電路。The position sensing device according to claim 1, wherein the at least one magnetic sensor circuit includes at least one microcircuit. 如請求項1所述之位置感測裝置,其中,所述至少一磁感測器電路位於至少一印刷電路板(PCB)上。The position sensing device according to claim 1, wherein the at least one magnetic sensor circuit is located on at least one printed circuit board (PCB). 如請求項1所述之位置感測裝置,其中,所述至少一磁感測器電路包括至少一霍爾效應感測器,其被配置成量測所述第一磁鐵與所述第二磁鐵的磁場。The position sensing device according to claim 1, wherein the at least one magnetic sensor circuit includes at least one Hall effect sensor configured to measure the first magnet and the second magnet Magnetic field. 如請求項1所述之位置感測裝置,其中,所述至少一磁感測器電路包括: 第一磁感測器電路,位於所述第一旋轉軸桿之所述第一縱軸的反向處且被配置成藉由感測所述第一磁鐵的磁場來量測所述第一磁鐵的所述角位置;以及 第二磁感測器電路,位於所述第二旋轉軸桿之所述第二縱軸的反向處且被配置成藉由感測所述第二磁鐵的磁場來量測所述第一磁鐵的所述角位置。The position sensing device according to claim 1, wherein the at least one magnetic sensor circuit includes: The first magnetic sensor circuit is located at the opposite of the first longitudinal axis of the first rotating shaft and is configured to measure the first magnet by sensing the magnetic field of the first magnet The angular position of; and A second magnetic sensor circuit, located at the opposite of the second longitudinal axis of the second rotating shaft and configured to measure the first magnet by sensing the magnetic field of the second magnet Of the angular position. 如請求項10所述之位置感測裝置,其中,所述第一磁感測器電路被配置成基於所述第一磁鐵的所述角位置來產生和所述第一旋轉軸桿之旋轉成正比的數位電脈衝寬度調變(PWM)訊號。The position sensing device according to claim 10, wherein the first magnetic sensor circuit is configured to generate a relationship with the rotation of the first rotating shaft based on the angular position of the first magnet Proportional digital pulse width modulation (PWM) signal. 如請求項11所述之位置感測裝置,其中,所述第二磁感測器電路被配置成基於所述第二磁鐵的所述角位置來產生和所述第二旋轉軸桿之旋轉成正比的類比電訊號。The position sensing device according to claim 11, wherein the second magnetic sensor circuit is configured to generate a relationship with the rotation of the second rotating shaft based on the angular position of the second magnet Proportional analog signal. 如請求項12所述之位置感測裝置,其中,所述第二磁感測器電路進一步被配置成藉由取得所述數位電脈衝寬度調變(PWM)訊號和所述類比電訊號之乘積而組合所述第一角量測值和所述第二角量測值。The position sensing device according to claim 12, wherein the second magnetic sensor circuit is further configured to obtain the product of the digital electrical pulse width modulation (PWM) signal and the analog electrical signal The first angle measurement value and the second angle measurement value are combined. 如請求項10所述之位置感測裝置,其中,所述第一磁感測器電路被配置成基於所述第一磁鐵的所述角位置來產生和所述第一旋轉軸桿之旋轉成正比的類比電訊號。The position sensing device according to claim 10, wherein the first magnetic sensor circuit is configured to generate a relationship with the rotation of the first rotating shaft based on the angular position of the first magnet Proportional analog signal. 如請求項14所述之位置感測裝置,其中,所述第二磁感測器電路被配置成基於所述第二磁鐵的所述角位置來產生和所述第二旋轉軸桿之旋轉成正比的數位電脈衝寬度調變(PWM)訊號。The position sensing device according to claim 14, wherein the second magnetic sensor circuit is configured to generate a relationship with the rotation of the second rotating shaft based on the angular position of the second magnet Proportional digital pulse width modulation (PWM) signal. 如請求項15所述之位置感測裝置,其中,所述第二磁感測器電路進一步被配置成藉由取得所述數位電脈衝寬度調變(PWM)訊號和所述類比電訊號之乘積而組合所述第一角量測值和所述第二角量測值。The position sensing device according to claim 15, wherein the second magnetic sensor circuit is further configured to obtain the product of the digital electrical pulse width modulation (PWM) signal and the analog electrical signal The first angle measurement value and the second angle measurement value are combined. 如請求項1所述之位置感測裝置,其進一步包括一殼體,包圍至少部分所述第一旋轉軸桿、所述第二旋轉軸桿、所述第一磁鐵、所述第二磁鐵、以及所述至少一磁感測器電路。The position sensing device according to claim 1, further comprising a housing that surrounds at least part of the first rotating shaft, the second rotating shaft, the first magnet, the second magnet, And the at least one magnetic sensor circuit. 如請求項17所述之位置感測裝置,其中,所述殼體進一步包括一螺紋端,被配置成導引及固持所述第一旋轉軸桿。The position sensing device according to claim 17, wherein the housing further includes a threaded end configured to guide and hold the first rotating shaft. 如請求項17所述之位置感測裝置,其中,所述殼體進一步包括彎曲壁部。The position sensing device according to claim 17, wherein the housing further includes a curved wall portion. 如請求項1所述之位置感測裝置,進一步包括: 至少一輸出終端,用以提供所述組合角量測值給使用者。The position sensing device according to claim 1, further comprising: At least one output terminal is used to provide the combined angle measurement value to the user.
TW108142779A 2019-11-25 2019-11-25 Multi-turn contactless position sensing system and method TW202120951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108142779A TW202120951A (en) 2019-11-25 2019-11-25 Multi-turn contactless position sensing system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108142779A TW202120951A (en) 2019-11-25 2019-11-25 Multi-turn contactless position sensing system and method

Publications (1)

Publication Number Publication Date
TW202120951A true TW202120951A (en) 2021-06-01

Family

ID=77516711

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142779A TW202120951A (en) 2019-11-25 2019-11-25 Multi-turn contactless position sensing system and method

Country Status (1)

Country Link
TW (1) TW202120951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375700A (en) * 2021-06-28 2021-09-10 北京精密机电控制设备研究所 Dual-redundancy low-temperature-resistant high-rotation-speed encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375700A (en) * 2021-06-28 2021-09-10 北京精密机电控制设备研究所 Dual-redundancy low-temperature-resistant high-rotation-speed encoder

Similar Documents

Publication Publication Date Title
CN109141482B (en) Stray field robust magnetic position sensor device
US8111065B2 (en) Sensor unit for a rotary encoder and a rotary encoder equipped with such a sensor unit
JP4880066B2 (en) Origin position signal detector
US10908177B2 (en) Magnetic speed sensor with a distributed wheatstone bridge
KR101476564B1 (en) Magnetic multi-turn absolute position detection device
US7307415B2 (en) Contactless angular position sensor and method for sensing angular position of a rotatable shaft
US9846058B2 (en) Non-contact potentiometer
US20100301845A1 (en) Absolute measurement steering angle sensor arrangement
US10852367B2 (en) Magnetic-field sensor with a back-bias magnet
US20150115940A1 (en) Position Measuring Device
TW202120951A (en) Multi-turn contactless position sensing system and method
JP2008544245A (en) Sensor system for measuring the position or rotational speed of an object
WO2021105741A1 (en) Multi-turn contactless position sensing system and method
CN206459686U (en) Encoder
CN210922654U (en) Magnetoelectric encoder based on giant magnetoresistance effect
CN208968461U (en) A kind of position sensor system applied to linear motor vector controlled
CN111284560B (en) Steering position rotation sensor fitting
CN207439425U (en) High speed and super precision machine tool chief axis, electro spindle magnetic induction sine and cosine encoder
JP2020088976A (en) motor
CN109323646B (en) Position sensor system applied to linear motor vector control
RU178708U1 (en) Non-contact precision shaft angle encoder
WO2021144614A1 (en) Low consumption contactless sensor
Slatter Low power miniaturized tunnel magnetoresistive (TMR) sensors for Industry 4.0 applications
JP4343585B2 (en) Bearing device with absolute angle sensor and method of using the same
CN220795250U (en) Magnetic absolute value position sensor