TW202118130A - Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof - Google Patents

Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof Download PDF

Info

Publication number
TW202118130A
TW202118130A TW108138054A TW108138054A TW202118130A TW 202118130 A TW202118130 A TW 202118130A TW 108138054 A TW108138054 A TW 108138054A TW 108138054 A TW108138054 A TW 108138054A TW 202118130 A TW202118130 A TW 202118130A
Authority
TW
Taiwan
Prior art keywords
solid electrolyte
particle
hybrid
electrolyte system
dopant
Prior art date
Application number
TW108138054A
Other languages
Chinese (zh)
Other versions
TWI737011B (en
Inventor
楊思枬
德米特里 貝羅夫
Original Assignee
輝能科技股份有限公司
英屬開曼群島商輝能控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輝能科技股份有限公司, 英屬開曼群島商輝能控股股份有限公司 filed Critical 輝能科技股份有限公司
Priority to TW108138054A priority Critical patent/TWI737011B/en
Priority to US17/036,925 priority patent/US11495825B2/en
Priority to CN202011096063.3A priority patent/CN112701346A/en
Priority to RU2020133932A priority patent/RU2742533C1/en
Priority to KR1020200133456A priority patent/KR102480237B1/en
Priority to EP20202599.5A priority patent/EP3813173A1/en
Priority to JP2020175063A priority patent/JP7157117B2/en
Priority to BR102020021602-3A priority patent/BR102020021602B1/en
Priority to MX2020011219A priority patent/MX2020011219A/en
Publication of TW202118130A publication Critical patent/TW202118130A/en
Application granted granted Critical
Publication of TWI737011B publication Critical patent/TWI737011B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention provides an adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof. The adjusting material for contact surface of solid electrolyte is mainly composed of a polymer substrate capable of transmitting metallic ions inside the material, a dissociable metallic salt and an additive material as a plasticizer. The adjusting material is applied to a surface of a solid electrolyte to construct a face-to-face transmission mode. Therefore, the problems of the high resistances caused by the directly contact of the solid electrolyte are eliminated.

Description

固態電解質接面調整材及其混合式電解質系統 Solid electrolyte junction adjusting material and its mixed electrolyte system

本發明係關於一種電化學系統中的電解質,尤指一種固態電解質接面調整材及含有該固態電解質接面調整材的混合式電解質系統。 The present invention relates to an electrolyte in an electrochemical system, in particular to a solid electrolyte junction adjustment material and a hybrid electrolyte system containing the solid electrolyte junction adjustment material.

在當今能源危機與能源革命的時代,二次化學能源扮演著十分重要的角色,特別是具有高比能量與比功率等優勢的金屬離子電池更是受到矚目,例如鈉離子電池、鋁離子電池、鎂離子電池,或者是鋰離子電池,該些電池應用的範疇舉凡資訊與民生電子產品,近來更擴展到能源交通類別。 In today’s era of energy crisis and energy revolution, secondary chemical energy plays a very important role, especially metal ion batteries with high specific energy and specific power advantages, such as sodium ion batteries, aluminum ion batteries, Magnesium-ion batteries, or lithium-ion batteries, are used in information and consumer electronics products. Recently, they have expanded to the category of energy and transportation.

在二次化學能源中常見的電解質系統主要可分為液態電解質系統與固態電解質系統,上述的固態電解質系統更涵蓋了無機電解質和有機高分子電解質。液態電解質系統為了適應工作電壓高達3-4V的電池體系,例如鋰離子電池,因此排除採用水作為溶劑,而是改採高電壓下不易分解的有機溶劑和電解質鹽為主要成分。但該些有機溶劑卻有易燃、易揮發,以及導致電池漏液並引發爆炸與火災等問題。基於安全性的考量下,電解質系統由液態轉向較高安全性的固態電解質系統,特別是高熱穩定的無機固態電解質體系,如氧化物固態電解質。但是氧化物固態電解質不可 變形的特性,造成一些應用上的問題點,舉例來說,在氧化物固態電解質彼此之間或者是氧化物固態電解質與極層活性材料之間在界面上主要僅是點對點的接觸,並無法如液態電解質或者膠態電解質與另一材料是透過面到面方式或者近似浸潤性的包覆型態接觸,因此,高界面阻抗成為是氧化物固態電解質在二次化學能源應用上的重要瓶頸之一。 Common electrolyte systems in secondary chemical energy can be mainly divided into liquid electrolyte systems and solid electrolyte systems. The above solid electrolyte systems also cover inorganic electrolytes and organic polymer electrolytes. In order to adapt the liquid electrolyte system to battery systems with working voltages up to 3-4V, such as lithium-ion batteries, water is eliminated as the solvent, but organic solvents and electrolyte salts that are not easily decomposed under high voltage are used as the main components. However, these organic solvents are flammable, volatile, and cause battery leakage and cause explosions and fires. Based on safety considerations, electrolyte systems have shifted from liquid to higher-safety solid electrolyte systems, especially inorganic solid electrolyte systems with high thermal stability, such as oxide solid electrolytes. But oxide solid electrolyte cannot The characteristics of deformation cause some application problems. For example, the interface between oxide solid electrolytes or between oxide solid electrolytes and the active material of the electrode layer is mainly only point-to-point contact. The liquid electrolyte or colloidal electrolyte is in contact with another material through a surface-to-surface method or a similarly wettable coating type. Therefore, high interfacial impedance has become one of the important bottlenecks in the application of oxide solid electrolytes in secondary chemical energy. .

有鑑於此,本發明提出一種嶄新的固態電解質接面調整材及其混合式電解質系統,以解決上述的問題。 In view of this, the present invention proposes a new solid electrolyte junction adjustment material and its hybrid electrolyte system to solve the above-mentioned problems.

本發明之主要目的在提供一種固態電解質接面調整材及其混合式電解質系統,以解決無機固態電解質的高界面阻抗問題。 The main purpose of the present invention is to provide a solid electrolyte junction adjustment material and a hybrid electrolyte system thereof to solve the problem of high interface impedance of the inorganic solid electrolyte.

本發明提出一種固態電解質接面調整材,其係用於一金屬電化學系統,該固態電解質接面調整材由一可供金屬離子在材料內部移動的聚合物基材與一可解離金屬鹽並且作為增塑劑的添加材所混合而成。 The present invention provides a solid electrolyte junction adjustment material, which is used in a metal electrochemical system. The solid electrolyte junction adjustment material consists of a polymer substrate that can allow metal ions to move inside the material and a dissociable metal salt. As a plasticizer additive material mixed together.

本發明更提出一種含有上述固態電解質接面調整材的混合式電解質系統,其包含有一第一顆粒,其為第一無機固態電解質;一第二顆粒,其選自於第二無機固態電解質、鈍性陶瓷材料或者活性材料;以及一橋接部,其係位於該第一顆粒與該第二顆粒之間,該橋接部是由上述的固態電解質接面調整材所形成,並且該固態電解質接面調整材將該第一顆粒與第二顆粒接著形成一離子傳遞途徑。 The present invention further provides a hybrid electrolyte system containing the above-mentioned solid electrolyte junction adjustment material, which comprises a first particle, which is a first inorganic solid electrolyte; and a second particle, which is selected from the group consisting of the second inorganic solid electrolyte and the blunt Ceramic material or active material; and a bridge portion located between the first particle and the second particle, the bridge portion is formed by the above-mentioned solid electrolyte junction adjustment material, and the solid electrolyte junction adjustment The material then forms an ion transport path between the first particle and the second particle.

本發明更提出一種含有上述固態電解質接面調整材的混合式電解質系統,其包含有一第一顆粒,其為第一無機固態電解質;一第二 顆粒,其選自於第二無機固態電解質、鈍性陶瓷材料或者活性材料;以及一第一殼層,其包覆該第一顆粒的外表面;其中該第一殼層是由上述的固態電解質接面調整材所形成,並且該固態電解質接面調整材將該第一顆粒與第二顆粒接著形成一離子傳遞途徑。 The present invention further provides a hybrid electrolyte system containing the above solid electrolyte junction adjustment material, which includes a first particle, which is a first inorganic solid electrolyte; a second Particles, which are selected from a second inorganic solid electrolyte, a passive ceramic material or an active material; and a first shell layer, which covers the outer surface of the first particle; wherein the first shell layer is made of the above-mentioned solid electrolyte The junction adjustment material is formed, and the solid electrolyte junction adjustment material then forms an ion transfer path for the first particles and the second particles.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。 Detailed descriptions are given below by specific embodiments, so that it will be easier to understand the purpose, technical content, features, and effects of the present invention.

1、2、3‧‧‧混合式電解質系統 1, 2, 3‧‧‧Hybrid electrolyte system

11‧‧‧第一顆粒 11‧‧‧First particle

12‧‧‧第二顆粒 12‧‧‧Second particle

13‧‧‧橋接部 13‧‧‧Bridge

14‧‧‧第一摻雜物 14‧‧‧First adulterant

15‧‧‧第二摻雜物 15‧‧‧Second adulterant

16‧‧‧人工鈍性膜 16‧‧‧Artificial Passive Film

21‧‧‧第一殼層 21‧‧‧First Shell

22‧‧‧第二殼層 22‧‧‧Second Shell

第1a圖是使用本發明之固態電解質接面調整材所建構出的混合式電解質系統的示意圖。 Figure 1a is a schematic diagram of a hybrid electrolyte system constructed using the solid electrolyte junction adjustment material of the present invention.

第1b圖是本發明之橋接部與無機固態電解質間的接觸面示意圖。 Figure 1b is a schematic view of the contact surface between the bridge portion of the present invention and the inorganic solid electrolyte.

第1c圖-第1g圖各是本發明之混合式電解質系統的不同實施例示意圖。 Fig. 1c-Fig. 1g are schematic diagrams of different embodiments of the hybrid electrolyte system of the present invention.

第2a-2h圖各是本發明之混合式電解質系統不同的實施例示意圖。 Figures 2a-2h are schematic diagrams of different embodiments of the hybrid electrolyte system of the present invention.

第2a’圖是第2a圖的局部放大圖。 Fig. 2a' is a partial enlarged view of Fig. 2a.

第3a圖-第3f圖各是本發明之混合式電解質系統的不同實施例示意圖。 Figures 3a to 3f are schematic diagrams of different embodiments of the hybrid electrolyte system of the present invention.

第4圖是不同材料的離子傳導率與頻率的關係示意圖。 Figure 4 is a schematic diagram of the relationship between ion conductivity and frequency of different materials.

為了讓本發明的優點,精神與特徵可以更容易明確的了解,後續將以實施例並參照所述圖式進行詳述與討論。需聲明的是該些實施例僅為本發明代表性的實施例,並不以此侷限本發明之實施態樣與請求範疇僅能侷限於該些實施例態樣。提供該些實施例的目的僅是讓本發明的公開 內容更加透徹與易於了解。 In order to make the advantages, spirit and features of the present invention easier and clearer to understand, the following embodiments will be used for detailed and discussion with reference to the drawings. It should be stated that these embodiments are only representative embodiments of the present invention, and are not intended to limit the implementation modes and scope of the present invention to only these embodiments. The purpose of providing these embodiments is only to make the disclosure of the present invention The content is more thorough and easy to understand.

在本發明公開的各種實施例中使用的術語僅用於描述特定實施例的目的,並非在限制本發明所公開的各種實施例。除非有清楚的另外指示,所使用的單數形式係也包含複數形式。除非另有限定,否則在本說明書中使用的所有術語(包含技術術語和科學術語)具有與本發明公開的各種實施例所屬領域普通技術人員通常理解的涵義相同的涵義。上述術語(諸如在一般使用辭典中限定的術語)將被解釋為具有與在相同技術領域中的語境涵義相同的涵義,並且將不被解釋為具有理想化的涵義或過於正式的涵義,除非在本發明公開的各種實施例中被清楚地限定。 The terms used in the various embodiments disclosed in the present invention are only used for the purpose of describing specific embodiments, and are not intended to limit the various embodiments disclosed in the present invention. Unless otherwise clearly indicated, the singular form used also includes the plural form. Unless otherwise defined, all terms (including technical and scientific terms) used in this specification have the same meaning as commonly understood by those of ordinary skill in the art to which the various embodiments disclosed in the present invention belong. The above-mentioned terms (such as those defined in general use dictionaries) will be interpreted as having the same meaning as the contextual meaning in the same technical field, and will not be interpreted as having idealized or overly formal meanings, unless It is clearly defined in the various embodiments disclosed in the present invention.

在本說明書的描述中,參考術語”一實施例”、”一具體實施例”等地描述意指結合該實施例描述地具體特徵、結構、材料或者特點包含於本發明的至少一個實施例中。在本說明書中,對上述術語的示意性表述不一定指的是相同的實施例。而且,描述的具體特徵、結構、材料或者特點可以在任何一個或多個實施例中以合適的方式結合。 In the description of this specification, description with reference to the terms "an embodiment", "a specific embodiment", etc. means that the specific feature, structure, material or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present invention . In this specification, the schematic representations of the above-mentioned terms do not necessarily refer to the same embodiment. Moreover, the described specific features, structures, materials or characteristics can be combined in any one or more embodiments in a suitable manner.

在本發明的描述中,除非另有規定或限定,需要說明的是術語”耦接”、”連接”、”設置”應做廣義的理解,例如,可以是機械連接或電性連接,亦可以是兩個元件內部的連通,可以是直接相連,亦可以通過中間媒介間相連,對於本領域通常知識者而言,可以根據具體情況理解上述術語的具體涵義。 In the description of the present invention, unless otherwise specified or limited, it should be noted that the terms "coupled", "connected", and "arranged" should be understood in a broad sense. For example, they may be mechanically connected or electrically connected, or may be It is the internal connection between two elements, which can be directly connected or connected through an intermediate medium. For those skilled in the art, the specific meaning of the above terms can be understood according to the specific circumstances.

首先,本發明之固態電解質接面調整材主要包含有一可供金屬離子(例如鋰離子)在材料內部移動的聚合物基材與一可使金屬鹽(例如鋰鹽)解離並且作為增塑劑的添加材所混合而成。此外,該固態電解質接面調 整材更混合有一離子供應材料與一結晶抑制材。在下列的說明,金屬離子係以鋰離子進行陳述,金屬鹽係以鋰鹽進行陳述。 First of all, the solid electrolyte junction adjustment material of the present invention mainly includes a polymer substrate that can allow metal ions (such as lithium ions) to move inside the material and a polymer substrate that can dissociate metal salts (such as lithium salts) and act as a plasticizer. Mixed with additives. In addition, the solid electrolyte junction adjustment The whole material is further mixed with an ion supply material and a crystallization inhibitor material. In the following description, metal ions are described as lithium ions, and metal salts are described as lithium salts.

上述的可供鋰離子在材料內部移動的聚合物基材是指自身(原材料狀態或者說在電化學反應初期)不具有鋰離子,但可以傳遞鋰離子的材料,舉例來說可選自於不含有鹽類的線性結構材料,如聚氧化乙烯(PEO)。或者是除了可供鋰離子移動傳遞外,更因自身是交聯型態能夠增加成膜機械強度的材料,例如聚乙二醇雙丙烯酸酯(Poly(ethylene glycol)diacrylate(PEGDA))、聚乙二醇雙甲基丙烯酸酯(Poly(ethylene glycol)dimethacrylate(PEGDMA))、聚乙二醇甲基醚(Poly(ethylene glycol)monomethylether(PEGME))、聚乙二醇雙甲基醚(Poly(ethylene glycol)dimethylether(PEGDME))、聚氧化乙烯/2,(2-甲氧乙氧)-乙基縮水甘油基醚共聚物(poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE))。或者是超分支聚合物(Hyperbranched polymers)系列,例如聚雙(三乙二醇)苯甲酸酯(poly[bis(triethylene glycol)benzoate])。聚腈(Polynitriles)系列,如聚丙烯腈(Polyacrylonitrile(PAN))、聚甲基丙烯腈(poly(methacrylonitrile)(PMAN))、聚(N-2-氰乙基)乙胺(poly(N-2-cyanoethyl)ethyleneamine)(PCEEI))。 The above-mentioned polymer substrate that can move lithium ions inside the material refers to a material that does not have lithium ions by itself (in the raw material state or in the early stage of the electrochemical reaction), but can transfer lithium ions. For example, it can be selected from Linear structural materials containing salts, such as polyethylene oxide (PEO). Or in addition to being able to move and transmit lithium ions, it is also a material that can increase the mechanical strength of the film due to its own cross-linked form, such as polyethylene glycol diacrylate (PEGDA), polyethylene glycol Poly(ethylene glycol)dimethacrylate(PEGDMA), Poly(ethylene glycol)monomethylether(PEGME)), Poly(ethylene glycol)dimethacrylate(PEGDMA)) glycol)dimethylether(PEGDME)), polyethylene oxide/2,(2-methoxyethoxy)-ethyl glycidyl ether copolymer (poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (PEO/MEEGE)). Or it is a series of Hyperbranched polymers, such as poly[bis(triethylene glycol)benzoate]. Polynitriles series, such as polyacrylonitrile (PAN), poly(methacrylonitrile) (PMAN), poly(N-2-cyanoethyl) ethylamine (poly(N- 2-cyanoethyl)ethyleneamine)(PCEEI)).

而結晶抑制材可選自於更具有降低結晶性效果的材料,例如聚乙基丙烯酸甲酯(Poly(ethyl methacrylate)(PEMA))、聚甲基丙烯酸甲酯(Poly(methyl methacrylate)(PMMA))、聚氧乙烯(poly(oxyethylene))、聚氰基丙烯酸酯(poly(cyanoacrylate)(PCA))、聚乙二醇(Polyethylene glycol(PEG))、聚乙烯醇(Poly(vinyl alcohol)(PVA))、聚乙烯醇縮丁醛(Polyvinyl butyral(PVB))、聚氯乙烯(Poly(vinyl chloride)(PVC))、聚氯乙烯-聚乙基丙烯酸甲酯 (PVC-PEMA)、聚氧乙烯-聚甲基丙烯酸甲酯(PEO-PMMA)、聚丙烯腈甲基丙烯酸甲酯共聚物(Poly(acrylonitrile-co-methyl methacrylate)P(AN-co-MMA))、聚乙烯醇-聚偏二氟乙烯(PVA-PVdF)、聚丙烯腈-聚乙烯醇(PAN-PVA)、聚氯乙烯-聚乙基丙烯酸甲酯(PVC-PEMA)。聚碳酸酯(Polycarbonates)系列,例如聚環氧乙基乙烯基碳酸酯(poly(ethylene oxide-co-ethylene carbonate)(PEOEC))、多面體矽氧烷寡聚物(Polyhedral oligomeric silsesquioxane(POSS))、聚碳酸乙烯酯(Polyethylene carbonate(PEC))、聚碳酸丙烯酯(poly(propylene carbonate)(PPC))、聚乙基縮水甘油醚碳酸酯(poly(ethyl glycidyl ether carbonate)(P(Et-GEC))、聚叔丁基縮水甘油醚碳酸酯(poly(t-butyl glycidyl ether carbonate)P(tBu-GEC))。環狀碳酸酯(Cyclic carbonates)系列,如聚碳酸三甲烯酯(poly(trimethylene carbonate)(PTMC))。聚矽氧烷(Polysiloxane-based)系列,如聚二甲矽烷(Polydimethylsiloxane(PDMS))、聚二甲矽烷環氧乙烷共聚物(poly(dimethyl siloxane-co-ethylene oxide)P(DMS-co-EO))、聚乙烯氧基矽氧烷(Poly(siloxane-g-ethyleneoxide))。聚酯(Polyesters)系列,如乙烯己二酸酯(ethylene adipate)、乙烯丁二酸酯(ethylene succinate)、乙烯丙二酸酯(ethylene malonate)。再者,如聚偏二氟乙烯共六氟丙烯(Poly(vinylidenedifluoridehexafluoropropylene)(PvdF-HFP))、聚偏二氟乙烯(Poly(vinylidenedifluoride)(PvdF))、聚己內酯(Poly(ε-caprolactone)PCL)。 The crystallization inhibiting material can be selected from materials that have the effect of reducing crystallinity, such as poly(ethyl methacrylate) (PEMA), poly(methyl methacrylate) (PMMA) ), poly(oxyethylene), poly(cyanoacrylate)(PCA), polyethylene glycol(PEG), poly(vinyl alcohol)(PVA )), polyvinyl butyral (PVB), polyvinyl chloride (Poly(vinyl chloride) (PVC)), polyvinyl chloride-polyethyl methyl acrylate (PVC-PEMA), polyoxyethylene-polymethyl methacrylate (PEO-PMMA), poly(acrylonitrile-co-methyl methacrylate) P(AN-co-MMA) ), polyvinyl alcohol-polyvinylidene fluoride (PVA-PVdF), polyacrylonitrile-polyvinyl alcohol (PAN-PVA), polyvinyl chloride-polyethyl methacrylate (PVC-PEMA). Polycarbonates series, such as poly(ethylene oxide-co-ethylene carbonate) (PEOEC), polyhedral oligomeric silsesquioxane (POSS), Polyethylene carbonate (PEC), poly(propylene carbonate) (PPC)), poly(ethyl glycidyl ether carbonate) (P(Et-GEC) ), poly(t-butyl glycidyl ether carbonate)P(tBu-GEC). Cyclic carbonates series, such as poly(trimethylene carbonate) ) (PTMC)). Polysiloxane-based series, such as polydimethylsiloxane (PDMS), poly(dimethyl siloxane-co-ethylene oxide) P(DMS-co-EO)), Poly(siloxane-g-ethyleneoxide). Polyesters series, such as ethylene adipate, ethylene succinic acid Ester (ethylene succinate), ethylene malonate (ethylene malonate). Furthermore, such as poly (vinylidenedifluoride hexafluoropropylene) (PvdF-HFP), poly (vinylidenedifluoride) ) (PvdF)), Poly(ε-caprolactone) PCL).

上述的可以使鋰鹽解離並且作為增塑劑的添加材可選自於可塑晶體電解質(Plastic crystal electrolytes(PCEs))系列,例如丁二腈(Succinonitrile(SN)[ETPTA//SN;PEO/SN;PAN/PVA-CN/SN])、N-乙基-N-甲基吡咯烷+N,N-二乙基吡咯烷(N-ethyl-N-methylpyrrolidinium,[C2mpyr]+ AnionsN,N-diethyl-pyrrolidinium,[C2epyr])、季烷基銨(Quaternary alkylammonium)、正烷基三甲基鏻(n-alkyltrimethylphosphonium,[P1,1,1,n])、十甲基二茂鐵(Decamethylferro-cenium,[Fe(C5Me5)2])、1-(N,N-二甲胺)-2-氨基-三氟甲磺酸乙酯(1-(N,N-dimethylammonium)-2-(ammonium)ethane triflate([DMEDAH2][Tf]2))、Anions=[FSI],[FSA],[CFSA],[BETA]、雙(三甲基)矽基硫酸鋰(LiSi(CH3)3(SO4),Trimethy(lithium trimethylsilyl sulfate))。或者是離子液體,其可選自於咪唑(IMIDAZOLIUM)系列,如雙(三氟甲磺基)醯亞胺(ANION/Bis(trifluoromethanesulfonyl)imide)、雙(氟磺基)醯亞胺(ANION/Bis(fluorosulfonyl)imide)、三氟甲磺酸酯(ANION/Trifluoromethanesulfonate)。或是銨(AMMONIUM)系列,如雙(三氟甲磺基)醯亞胺(ANION/Bis(trifluoromethanesulfonyl)imide)。或是吡啶(PYRROLIDINIUM)系列,雙(三氟甲磺基)醯亞胺(ANION/Bis(trifluoromethanesulfonyl)imide)、雙(氟磺基)醯亞胺(ANION/Bis(fluorosulfonyl)imide)。或是哌啶(PIPERIDINIUM)系列,如雙(三氟甲磺基)醯亞胺(ANION/Bis(trifluoromethanesulfonyl)imide)、雙(氟磺基)醯亞胺(ANION/Bis(fluorosulfonyl)imide)。 The above-mentioned additives that can dissociate the lithium salt and act as a plasticizer can be selected from the plastic crystal electrolytes (PCEs) series, such as succinonitrile (SN) [ETPTA//SN; PEO/SN ;PAN/PVA-CN/SN]), N-ethyl-N-methylpyrrolidine+N,N-diethylpyrrolidine (N-ethyl-N-methylpyrrolidinium,[C2mpyr]+ AnionsN,N-diethyl -pyrrolidinium,[C2epyr]), Quaternary alkylammonium, n-alkyltrimethylphosphonium ([P1,1,1,n]), Decamethylferro-cenium ,[Fe(C 5 Me 5 ) 2 ]), 1-(N,N-dimethylamine)-2-amino-ethyl trifluoromethanesulfonate (1-(N,N-dimethylammonium)-2-( ammonium)ethane triflate([DMEDAH2][Tf]2)), Anions=[FSI],[FSA],[CFSA],[BETA], LiSi(CH 3 ) 3 (SO 4 ), Trimethy (lithium trimethylsilyl sulfate)). Or ionic liquid, which can be selected from the imidazole (IMIDAZOLIUM) series, such as bis(trifluoromethanesulfonyl) imide (ANION/Bis(trifluoromethanesulfonyl) imide), bis(fluorosulfonyl) imide (ANION/ Bis (fluorosulfonyl) imide), trifluoromethanesulfonate (ANION/Trifluoromethanesulfonate). Or ammonium (AMMONIUM) series, such as bis(trifluoromethanesulfonyl) imide (ANION/Bis(trifluoromethanesulfonyl) imide). Or pyridine (PYRROLIDINIUM) series, bis(trifluoromethanesulfonyl) imide (ANION/Bis(trifluoromethanesulfonyl) imide), bis(fluorosulfonyl) imide (ANION/Bis(fluorosulfonyl) imide). Or piperidine (PIPERIDINIUM) series, such as bis(trifluoromethanesulfonyl) imide (ANION/Bis(trifluoromethanesulfonyl) imide), bis(fluorosulfonyl) imide (ANION/Bis(fluorosulfonyl) imide).

上述的離子供應材料可以是鋰鹽。鋰鹽舉例來說如雙三氟甲基磺醯亞胺鋰(LiTFSI)、雙氟代磺醯亞胺鋰(LiFSI)、四氟硼酸鋰(LiBF4)或六氟磷酸鋰(LiPF6)。 The aforementioned ion supply material may be a lithium salt. The lithium salt is, for example, lithium bistrifluoromethylsulfonylimide (LiTFSI), lithium bisfluorosulfonylimide (LiFSI), lithium tetrafluoroborate (LiBF 4 ), or lithium hexafluorophosphate (LiPF 6 ).

再者,固態電解質接面調整材更可混入有第二摻雜物,此第二摻雜物可以是奈米級的鈍性陶瓷材料(非電解質氧化物)或者是無機固態電解質,也可以是導電材。當第二摻雜物為鈍性陶瓷材料時,可降低聚合物基材與添加材的使用量,並且提高成膜性,作為成膜加強材,在材料上 舉例來說二氧化矽,而若是奈米級的無機固態電解質則除了可降低聚合物基材與添加材的使用量外,更可提供一高速離子傳導途徑。此無機固態電解質舉例來說可以是氧化物固態電解質或者是硫化物固態電解質或其它無機固態電解質。舉例來說,離子在此固態電解質界面調整材內傳輸時,可單純僅選擇調整材進行移動,或者也可以在碰觸到奈米級無機固態電解質時,選擇奈米級無機固態電解質作為移動路徑。此第二摻雜物如果是導電材料,將可以提高導電性,特別是應用在極層時。 Furthermore, the solid electrolyte junction adjustment material can be further mixed with a second dopant. The second dopant can be a nano-level passive ceramic material (non-electrolyte oxide) or an inorganic solid electrolyte. Conductive material. When the second dopant is a passive ceramic material, it can reduce the amount of polymer base material and additives used, and improve the film-forming properties. It can be used as a film-forming reinforcing material on the material. For example, silicon dioxide, if it is a nano-level inorganic solid electrolyte, in addition to reducing the amount of polymer substrate and additives used, it can also provide a high-speed ion conduction path. The inorganic solid electrolyte may be, for example, an oxide solid electrolyte or a sulfide solid electrolyte or other inorganic solid electrolyte. For example, when ions are transported in the solid electrolyte interface adjustment material, you can simply select the adjustment material to move, or you can select the nano-level inorganic solid electrolyte as the moving path when it touches the nano-level inorganic solid electrolyte. . If the second dopant is a conductive material, the conductivity can be improved, especially when applied to the polar layer.

此外,本發明利用添加材提高聚合物基材的流動性,使聚合物基材具有更高的室溫離子傳導能力與較差的力學特性,能填設於固態電解質顆粒之間,或者是固態電解質顆粒與另一異性質顆粒之間,達到面到面(非點到點)或者近似浸潤性的接觸,進而降低固態電解質的界面阻值。此外,因為添加材,如離子液體不會揮發所以不會產生可燃性氣體的問題,同時在去水乾燥過程中,固態電解質接面調整材也不會因為內部添加劑揮發後而產生尺寸收縮與離子導通下降。 In addition, the present invention uses additives to improve the fluidity of the polymer substrate, so that the polymer substrate has higher room temperature ion conductivity and poor mechanical properties, and can be filled between solid electrolyte particles, or solid electrolyte A surface-to-surface (not point-to-point) or approximately wettability contact is achieved between the particle and another heterogeneous particle, thereby reducing the interface resistance of the solid electrolyte. In addition, because additives, such as ionic liquids, will not volatilize, there will be no problem of flammable gas. At the same time, during the dehydration and drying process, the solid electrolyte junction adjustment material will not shrink in size and ions due to the volatilization of internal additives. The continuity drops.

接續,請參閱第1a圖,其係含有本發明之固態電解質接面調整材之混合式電解質系統的一實施例示意圖。如圖所示,此混合式電解質系統1包含有一第一顆粒11,其為第一無機固態電解質;一第二顆粒12,其選自於第二無機固態電解質、鈍性的陶瓷材料或者活性材料;以及一橋接部13,其係位於該第一顆粒11與該第二顆粒12之間,該橋接部13是由該固態電解質接面調整材所形成,並且將該第一顆粒11與第二顆粒12接著形成一面到面的離子傳遞途徑。如同先前所述,本發明利用添加材,如離子液體提高聚合物基材的流動性,使聚合物基材具有更高的室溫離子傳導能力 與較差的力學特性,並且能填設於第一顆粒11與第二顆粒12之間,使無機固態電解質(第一顆粒)透過此接面調整材能夠達到面到面或者近似浸潤性的接觸另一顆粒(固態電解質或活性材料表面),而非如傳統固態電解質顆粒僅透過與另一顆粒的接觸點進行點對點的離子傳遞方式,因此本發明能降低固態電解質的界面阻值。上述的無機固態電解質舉例來說可以是氧化物固態電解質或者是硫化物固態電解質或其它無機固態電解質。 For continuation, please refer to Figure 1a, which is a schematic diagram of an embodiment of a hybrid electrolyte system containing the solid electrolyte junction adjustment material of the present invention. As shown in the figure, the hybrid electrolyte system 1 includes a first particle 11, which is a first inorganic solid electrolyte; a second particle 12, which is selected from a second inorganic solid electrolyte, a passive ceramic material or an active material And a bridging portion 13, which is located between the first particle 11 and the second particle 12, the bridging portion 13 is formed by the solid electrolyte junction adjustment material, and the first particle 11 and the second The particles 12 then form a face-to-face ion transport pathway. As mentioned earlier, the present invention uses additives, such as ionic liquids, to improve the fluidity of the polymer substrate, so that the polymer substrate has higher room temperature ion conductivity. And poor mechanical properties, and can be filled between the first particles 11 and the second particles 12, so that the inorganic solid electrolyte (first particles) can achieve surface-to-surface or nearly wettability contact through the interface adjustment material. A particle (solid electrolyte or active material surface), instead of the traditional solid electrolyte particle, only conducts point-to-point ion transfer through the contact point with another particle. Therefore, the present invention can reduce the interfacial resistance of the solid electrolyte. The foregoing inorganic solid electrolyte may be, for example, an oxide solid electrolyte or a sulfide solid electrolyte or other inorganic solid electrolyte.

本發明所界定的面到面或者是浸潤性的接觸係可以如第1b圖所示,若假設第一顆粒11是球狀的且半徑為D1,第二顆粒同樣是球狀的且半徑為D2,橋接部13與第一顆粒11的接面是弧度r1,該弧度r1對應的圓心角為θ1,弧度r1是2D τ×

Figure 108138054-A0101-12-0009-1
,0<θ1<90。橋接部13與第二顆粒12的接面是弧度r2,該弧度r2對應的圓心角為θ2,弧度r2是2D τ×
Figure 108138054-A0101-12-0009-2
,0<θ2<90。因此,第一顆粒11與第二顆粒12是透過接面弧度r1與r2進行離子傳輸,相對的傳統固態電解質顆粒對另一顆粒的點對點接觸方式僅是半徑上的單點,也可以是說θ≒0。 The surface-to-surface or wettability contact system defined by the present invention can be as shown in Figure 1b. If it is assumed that the first particle 11 is spherical and has a radius of D1, the second particle is also spherical and has a radius of D2. , The junction of the bridging portion 13 and the first particle 11 is a radian r1, the central angle corresponding to the radian r1 is θ1, and the radian r1 is 2D τ×
Figure 108138054-A0101-12-0009-1
, 0<θ 1 <90. The junction between the bridging portion 13 and the second particle 12 is a radian r2, the central angle corresponding to the radian r2 is θ2, and the radian r2 is 2D τ×
Figure 108138054-A0101-12-0009-2
, 0<θ2<90. Therefore, the first particle 11 and the second particle 12 transmit ions through the arcs of junction r1 and r2. The point-to-point contact of the traditional solid electrolyte particle to another particle is only a single point on the radius, or θ ≒0.

上述的聚合物基材在此混和電解質系統中除了作為離子傳導用途外,還作為接著劑與成膜劑,用以黏著第一顆粒11與第二顆粒12。 The above-mentioned polymer substrate not only serves as an ion conduction function in this mixed electrolyte system, but also serves as an adhesive and a film-forming agent for adhering the first particles 11 and the second particles 12.

請參閱第1c圖,其係本發明之另一實施例示意圖。如圖所示,該橋接部13非與該第一顆粒11以及該第二顆粒12接觸的面上更摻雜/設置有數個第一摻雜物14,該第一摻雜物14可以是第三無機固態電解質且粒徑小於該第一顆粒11與該第二顆粒12,或者是促進成膜效果的鈍性陶瓷材料(非電解質氧化物)。更者,該第一摻雜物14更延伸設置於該第一顆粒11與/或第二顆粒12的外表面,如第1d圖所示。此外,當第二顆粒12為活性材料時, 第一摻雜物14可以是導電物質。此導電物質可選自於石墨、乙炔黑、碳黑、碳管、碳纖維、石墨烯或者上述材料任二種以上的混合。 Please refer to Figure 1c, which is a schematic diagram of another embodiment of the present invention. As shown in the figure, the surface of the bridging portion 13 that is not in contact with the first particles 11 and the second particles 12 is further doped/disposed with a plurality of first dopants 14. The first dopants 14 may be the first dopants 14 Three inorganic solid electrolytes with a particle size smaller than the first particles 11 and the second particles 12, or a passive ceramic material (non-electrolyte oxide) that promotes the film-forming effect. Moreover, the first dopant 14 is further extended on the outer surface of the first particle 11 and/or the second particle 12, as shown in FIG. 1d. In addition, when the second particles 12 are active materials, The first dopant 14 may be a conductive substance. The conductive material can be selected from graphite, acetylene black, carbon black, carbon tube, carbon fiber, graphene, or a mixture of any two or more of the above materials.

請參閱第1e圖,其係本發明之又一實施例示意圖。如圖所示,橋接部13內更混有一第二摻雜物15,其可以是奈米級的鈍性陶瓷材料或者是無機固態電解質顆粒。混入第二摻雜物15於固態電解質接面調整材的相關說明與功效於先前已經有描述,於此不再贅述。此外,當第二顆粒12為活性材料時,第二摻雜物15可以是導電物質,或者是奈米級顆粒(氧化物或/固態電解質)與導電物質所混合。此導電物質可選自於石墨、乙炔黑、碳黑、碳管、碳纖維、石墨烯或者上述材料任二種以上的混合。 Please refer to Figure 1e, which is a schematic diagram of another embodiment of the present invention. As shown in the figure, the bridge portion 13 is further mixed with a second dopant 15, which can be a nano-level passive ceramic material or an inorganic solid electrolyte particle. The related descriptions and effects of mixing the second dopant 15 in the solid electrolyte junction adjustment material have been described previously, and will not be repeated here. In addition, when the second particle 12 is an active material, the second dopant 15 may be a conductive material, or a mixture of nano-scale particles (oxide or/solid electrolyte) and a conductive material. The conductive material can be selected from graphite, acetylene black, carbon black, carbon tube, carbon fiber, graphene, or a mixture of any two or more of the above materials.

橋接部13內混有第二摻雜物15的實施例能與上述第1c圖或第1d圖的實施例結合,舉例來說如第1f圖所示,該橋接部13內除了混有一第二摻雜物15外,橋接部13非與該第一顆粒11以及該第二顆粒12接觸的面上更摻雜/設置有數個第一摻雜物14。 The embodiment in which the second dopant 15 is mixed in the bridge portion 13 can be combined with the embodiment in FIG. 1c or FIG. 1d. For example, as shown in FIG. 1f, the bridge portion 13 is mixed with a second dopant. In addition to the dopants 15, the surface of the bridging portion 13 that is not in contact with the first particles 11 and the second particles 12 is further doped/disposed with several first dopants 14.

在接續的實施例中,具有相同結構、材料或者特性條件的元件將承接先前的相同名稱與元件符號進行陳述。 In the subsequent embodiments, the elements with the same structure, material or characteristic conditions will be described with the same names and element symbols previously.

請參閱第2a圖,其係含有本發明之固態電解質接面調整材的混合式電解質系統的另一實施例態樣示意圖。如圖所示,此混合式電解質系統2包含有一第一顆粒11,其為第一無機固態電解質;一第二顆粒12,其選自於第二無機固態電解質、鈍性陶瓷材料或活性材料;以及一第一殼層21,其包覆該第一顆粒11的外表面;其中該第一殼層21是由上述的固態電解質接面調整材所形成,並且該固態電解質接面調整材將該第一顆粒與第二顆粒接著形成一非單點的離子傳遞途徑。基於固態電解質接面調整材是 力學強度特性較差的材料,因此第二顆粒12與由固態電解質接面調整材構成之第一殼層21接著處將呈現是近似浸潤式的面接觸方式,而非點對點,如第2a圖中的局部放大圖2a’所示。在後續的利用固態電解質接面調整材所建構出的元件碰觸到硬質或者說具有固定外觀形狀的物質(顆粒)皆會是這樣的浸潤式面接觸。 Please refer to FIG. 2a, which is a schematic diagram of another embodiment of the hybrid electrolyte system containing the solid electrolyte junction adjustment material of the present invention. As shown in the figure, the hybrid electrolyte system 2 includes a first particle 11, which is a first inorganic solid electrolyte; a second particle 12, which is selected from a second inorganic solid electrolyte, a passive ceramic material or an active material; And a first shell layer 21 covering the outer surface of the first particles 11; wherein the first shell layer 21 is formed by the above-mentioned solid electrolyte junction adjustment material, and the solid electrolyte junction adjustment material will The first particle and the second particle then form a non-single-point ion transport path. Based on solid electrolyte junction adjustment material is Materials with poor mechanical strength characteristics, so the second particles 12 and the first shell layer 21 composed of solid electrolyte interface adjustment materials will be in an approximate wet surface contact mode, rather than point-to-point, as shown in Figure 2a Partially enlarged as shown in Figure 2a'. Subsequent components constructed using solid electrolyte junction adjustment materials will come into contact with such a wetted surface when they touch hard or fixed-appearance materials (particles).

請參閱第2b圖,其相較於第2a圖之實施例的差異在於該第一殼層21外表面更摻雜/設置有數個第一摻雜物14。請參閱第2c圖,其將較於第2b圖之實施例的差異在於該第一殼層21是混有第二摻雜物15。請參閱第2d圖,第二顆粒12的外表面上也可形成有一第二殼層22,此第二殼層22同樣是由上述的固態電解質接面調整材所形成。 Please refer to FIG. 2b. The difference compared with the embodiment in FIG. 2a is that the outer surface of the first shell layer 21 is more doped/disposed with a plurality of first dopants 14. Please refer to FIG. 2c. The difference from the embodiment in FIG. 2b is that the first shell layer 21 is mixed with the second dopant 15. Referring to FIG. 2d, a second shell layer 22 may also be formed on the outer surface of the second particle 12, and the second shell layer 22 is also formed of the aforementioned solid electrolyte junction adjustment material.

請參閱第2e圖,其相較於第2d圖之實施例的差異在於該第一殼層21與/或第二殼層22的外表面更摻雜/設置有數個第一摻雜物14。請參閱第2f圖,其將較於第2e圖之實施例的差異在於該第一殼層21與/或第二殼層22是混有第二摻雜物15。 Please refer to FIG. 2e. The difference from the embodiment in FIG. 2d is that the outer surface of the first shell layer 21 and/or the second shell layer 22 is more doped/disposed with a plurality of first dopants 14. Please refer to FIG. 2f. The difference from the embodiment in FIG. 2e is that the first shell layer 21 and/or the second shell layer 22 is mixed with the second dopant 15.

請參閱第3a圖,其係含有本發明之固態電解質接面調整材的混合式電解質系統的又一實施態樣示意圖。如圖所示,此混合式電解質系統3包含有一第一顆粒11,其為第一無機固態電解質;一第二顆粒12,其為第二無機固態電解質或活性材料;一第一殼層21,其包覆該第一顆粒11的外表面;一第二殼層22,其包覆該第二顆粒12的外表面;以及一橋接部13,其係位於該第一殼層21與該第二殼層22之間,並且連接或者說是接著該第一殼層21與該第二殼層22;其中該第一殼層21、該第二殼層22與該橋接部13皆是由該固態電解質接面調整材所形成,並且該固態電解質接面調整材 成為該第一顆粒與第二顆粒面到面的離子傳遞途徑。 Please refer to FIG. 3a, which is a schematic diagram of another embodiment of the hybrid electrolyte system containing the solid electrolyte junction adjustment material of the present invention. As shown in the figure, the hybrid electrolyte system 3 includes a first particle 11, which is a first inorganic solid electrolyte; a second particle 12, which is a second inorganic solid electrolyte or active material; and a first shell layer 21, It covers the outer surface of the first particle 11; a second shell layer 22 which covers the outer surface of the second particle 12; and a bridge 13 which is located between the first shell layer 21 and the second shell layer 21 Between the shell layers 22 and connected or connected to the first shell layer 21 and the second shell layer 22; wherein the first shell layer 21, the second shell layer 22 and the bridge portion 13 are all made of the solid state The electrolyte junction adjustment material is formed, and the solid electrolyte junction adjustment material It becomes the surface-to-surface ion transfer path of the first particle and the second particle.

請參閱第3b圖,其相較於第3a圖之實施例的差異在於該橋接部13非與該第一殼層21以及該第二殼層22接觸的面上更摻雜/設置有數個第一摻雜物14。請參閱第3c圖,其相較於第3b圖之實施例的差異在於該第一摻雜物14更延伸設置於該第一殼層21與/或第二殼層22的外表面。 Please refer to FIG. 3b. The difference compared with the embodiment in FIG. 3a is that the surface of the bridge 13 that is not in contact with the first shell layer 21 and the second shell layer 22 is more doped/disposed with several A dopant 14. Please refer to FIG. 3c, which is different from the embodiment in FIG. 3b in that the first dopant 14 is further extended on the outer surface of the first shell layer 21 and/or the second shell layer 22.

請參閱第3d圖,其將較於第3c圖之實施例的差異在於組構成該第一殼層21、第二殼層22與橋接部13的固態電解質接面調整材是混有第二摻雜物15。 Please refer to Fig. 3d, which is different from the embodiment in Fig. 3c in that the solid electrolyte junction adjustment material that composes the first shell layer 21, the second shell layer 22, and the bridge portion 13 is mixed with a second dopant. Sundries 15.

請參閱第3e圖,其相較於第3d圖之實施例的差異在於第一摻雜物14更延伸設置於該第一殼層21與/或第二殼層22的外表面。 Please refer to FIG. 3e, which is different from the embodiment in FIG. 3d in that the first dopant 14 is further extended on the outer surface of the first shell layer 21 and/or the second shell layer 22.

在上述各實施例中,當第二顆粒12是活性材料時,該混合式電解質系統可應用在極層,並且第二顆粒12的表面更可以形成有一人工鈍性膜,以避免電解質(固態電解質接面調整材)對活性材料產生的結構退化,以及所導致的表面電導率降低和鋰離子穿過表面層的速率降低。舉例來說,如第1g圖,第二顆粒12表面更可以形成有一人工鈍性膜16。或者如第2g圖、第2h圖與第3f圖所示,第二顆粒12表面更可以形成有一人工鈍性膜16。此人工鈍性膜16夾設於第二顆粒12與第二殼層22之間。人工鈍性膜16主要目的在於減少或避免固態電解質接面調整材成分與第二顆粒12的過度接觸。人工鈍性膜16可依據離子傳遞性與否,而區分為非固態電解質系列與固態電解質系列。人工鈍性膜16的厚度概略來說是小於100奈米。非固態電解質系列可以是導電材料、不具有鋰離子的陶瓷材料或者此兩種材料的混合。不含鋰的陶瓷材料可選自於氧化鋯、氧化矽、氧化鋁、氧化鈦或氧化鎵等。 In the above embodiments, when the second particle 12 is an active material, the hybrid electrolyte system can be applied to the electrode layer, and an artificial passive film can be formed on the surface of the second particle 12 to avoid electrolyte (solid electrolyte). The structural degradation of the active material caused by the junction adjustment material, and the resulting decrease in surface conductivity and the rate of lithium ions passing through the surface layer. For example, as shown in FIG. 1g, an artificial passive film 16 may be formed on the surface of the second particles 12. Or, as shown in FIG. 2g, FIG. 2h, and FIG. 3f, an artificial passivation film 16 may be formed on the surface of the second particles 12. The artificial passive film 16 is sandwiched between the second particles 12 and the second shell layer 22. The main purpose of the artificial passive film 16 is to reduce or avoid excessive contact between the components of the solid electrolyte junction adjustment material and the second particles 12. The artificial passive film 16 can be divided into a non-solid electrolyte series and a solid electrolyte series according to the ion transportability. The thickness of the artificial passive film 16 is roughly less than 100 nm. The non-solid electrolyte series can be conductive materials, ceramic materials without lithium ions, or a mixture of these two materials. The lithium-free ceramic material can be selected from zirconia, silicon oxide, aluminum oxide, titanium oxide, or gallium oxide.

當第二顆粒11是選自於無機固態電解質或鈍性陶瓷材料時,此混合式電解質系統可以應用於隔離層,且混合式電解質系統需具有離子供應材料,例如鹽類。再者,當第一顆粒11與第二顆粒12皆為無機固態電解質且不具備有殼層的架構時,第一顆粒11與第二顆粒12必需視應用於電池元件的位置來選擇材料種類,舉例來說,當該混合式電解質系統是應用在正極側,該第一顆粒11與第二顆粒12可以選擇磷酸鋰鋁鈦(LATP)或者是鋰蘭鋯氧(LLZO),而當混合式電解質系統是應用在負極側,該第一顆粒11與第二顆粒12可以選擇LLZO,以避免含有鈦元素的LATP使用在負極時產生還原反應。然而,當第一顆粒11與第二顆粒12外表面具備有殼層時,就無需依據極層類別(正極或負極)來調整固態電解質使用的類別,也就是說第一顆粒11與第二顆粒12都可以是成本較低的LATP並且應用於正負極。 When the second particles 11 are selected from inorganic solid electrolytes or passive ceramic materials, the hybrid electrolyte system can be applied to the isolation layer, and the hybrid electrolyte system needs to have ion supply materials, such as salts. Furthermore, when the first particles 11 and the second particles 12 are both inorganic solid electrolytes and do not have a shell structure, the materials of the first particles 11 and the second particles 12 must be selected according to the position of the battery element. For example, when the hybrid electrolyte system is applied to the positive electrode side, the first particles 11 and the second particles 12 can be lithium aluminum titanium phosphate (LATP) or lithium blue zirconium oxide (LLZO), and when the hybrid electrolyte The system is applied to the negative electrode side, and the first particles 11 and the second particles 12 can be selected from LLZO to avoid reduction reaction when LATP containing titanium is used in the negative electrode. However, when the outer surfaces of the first particles 11 and the second particles 12 are provided with a shell layer, there is no need to adjust the type of solid electrolyte used according to the type of the electrode layer (positive or negative electrode), that is to say, the first particle 11 and the second particle 12 can be LATP with lower cost and applied to positive and negative poles.

綜上所述,本發明所述之第一摻雜物14可選自於三種型態,第一種型態是固態電解質,且粒徑小於第一顆粒11與第二顆粒12;第二種型態是鈍性陶瓷材料,其除了可以減少固態電解質接面調整材的使用量外,可作為成膜加強材;第三種型態是導電材料,其主要是應用極層內的時候。第一種型態與第二種型態是極層與隔層都可適用。 In summary, the first dopant 14 of the present invention can be selected from three types, the first type is a solid electrolyte, and the particle size is smaller than the first particles 11 and the second particles 12; the second type The type is a passive ceramic material, which can not only reduce the amount of solid electrolyte junction adjustment material, but also can be used as a film-forming reinforcement; the third type is a conductive material, which is mainly used in the electrode layer. The first type and the second type are applicable to both polar layers and interlayers.

本發明所述之第二摻雜物15的粒徑或者說是尺寸是奈米級,並且同樣可選自於三種型態,第一種型態是固態電解質;第二種型態是鈍性陶瓷材料,其除了可以減少固態電解質接面調整材的使用量外,可作為成膜加強材;第三種型態是導電材料,其主要是應用極層內的時候。第一種型態與第二種型態是極層與隔層都可適用。 The particle size or size of the second dopant 15 of the present invention is nanometer level, and can also be selected from three types, the first type is solid electrolyte; the second type is passivation Ceramic material, in addition to reducing the amount of solid electrolyte junction adjustment material, can be used as a film-forming reinforcement; the third type is a conductive material, which is mainly used in the electrode layer. The first type and the second type are applicable to both polar layers and interlayers.

舉例來說,第二顆粒12為活性材料時,固態電解質調整材(做 為橋接部與/或者殼層)所混入或者說填充的第二摻雜物(奈米級顆粒)15可以是固態電解質、鈍性陶瓷材料,也可以是導電物質,或者上述材料任二種以上的混合。同樣的,若第二顆粒12為活性材料時,第一顆粒11、第二顆粒12表面,或者是第一殼層21、第二殼層22、橋接部13任一表面可設置有第一摻雜物14,此第一摻雜物14可以是固態電解質、鈍性陶瓷材料,也可以是導電物質,或者上述材料任二種以上的混合。 For example, when the second particles 12 are active materials, the solid electrolyte adjustment material (does The second dopant (nano-level particles) 15 mixed or filled for the bridge portion and/or shell layer may be a solid electrolyte, a passive ceramic material, or a conductive material, or any two or more of the above materials the mix of. Similarly, if the second particle 12 is an active material, the surface of the first particle 11, the second particle 12, or any surface of the first shell layer 21, the second shell layer 22, and the bridging portion 13 may be provided with a first dopant. Impurities 14, the first dopant 14 may be a solid electrolyte, a passive ceramic material, or a conductive material, or a mixture of any two or more of the foregoing materials.

請參閱第4圖,其係本發明的固態電解質接面調整材與化物固態電解質LATP在低頻與高頻下的離子傳導特性圖表,在此圖中,曲線A代表LATP,曲線B代表本發明之不含離子供應材料的固態電解質接面調整材,曲線C代表含有本發明之的固態電解質接面調整材之混合式電解質系統(可視為重量百分比為70%A及30%B混合而成),其是不含有離子供應材料,且LATP等同於說明書中的第一顆粒。曲線D是曲線C的成分加入鋰離子。由圖中可知,在高頻區時,氧化物固態電解質LATP離子傳導性較佳,因此,可知在高頻狀態時,離子的移動方式傾向於以在固態氧化物均相結構內為主,此均相結構泛指晶體內或是玻璃質或是固溶體的均質結構,反觀在中低頻區時,本發明之不含離子供應材料的固態電解質接面調整材表現較佳,因此可知在中低頻區狀態時,離子的移動方式主要是固/固界面(異相)為主。而本發明的固態電解質接面調整材因為產生較佳的面面接觸模式(近似液態的浸潤接觸)而有較佳表面。所以,本發明之混合式電解質是採A曲線與B曲線的成分在特定比例進行混合,由圖中可得知後,經這樣的混合方式下,離子傳導特性(曲線C或D)能夠達到最佳的中低頻與高頻均優性。 Please refer to Figure 4, which is a graph of the ion conduction characteristics of the solid electrolyte junction adjustment material of the present invention and the solid electrolyte LATP at low and high frequencies. In this figure, curve A represents LATP, and curve B represents the present invention. The solid electrolyte junction adjustment material without ion supply material, curve C represents the hybrid electrolyte system containing the solid electrolyte junction adjustment material of the present invention (which can be regarded as a mixture of 70% A and 30% B by weight), It does not contain ion supply materials, and LATP is equivalent to the first particle in the specification. Curve D is the component of curve C with lithium ions added. It can be seen from the figure that in the high frequency region, the solid oxide electrolyte LATP has better ion conductivity. Therefore, it can be seen that in the high frequency state, the movement of ions tends to be mainly in the homogeneous structure of the solid oxide. Homogeneous structure generally refers to the homogeneous structure of either vitreous or solid solution in the crystal. On the other hand, in the middle and low frequency region, the solid electrolyte junction adjustment material of the present invention without ion supply material performs better, so it can be seen that In the low-frequency region, the movement mode of ions is mainly the solid/solid interface (heterophase). The solid electrolyte junction adjustment material of the present invention has a better surface because it produces a better surface-to-surface contact mode (approximately liquid wetted contact). Therefore, the hybrid electrolyte of the present invention adopts the components of curve A and curve B to be mixed in a specific ratio. It can be seen from the figure that the ion conductivity characteristics (curve C or D) can be maximized through this mixing method. Good low frequency and high frequency are superior.

此外,由第4圖之曲線C可發現,當選用體積百分比為A0的 接面調整材與體積百分比為B0(A0+B0≒100,A0為30~40,B0為70-60)的固態電解質進行混合所得的混合式固態電解質系統(當第二摻雜物15為固態電解質時也含括在百分比B),若該接面調整材是用於接觸極層中的活性材料時,此混合式電解質系統內固態電解質調整材與固態電解質的比例可適當調整為接面調整材為A1,固態電解質的量為B1,A1+B1=100,50<A1<100。反之,若此混合式電解質系統是遠離活性材料時,固態電解質調整材的體積站整個混合式電解質系統為A2,固態電解質為B2,A2+B2=100,50<B2<100,如此一來,將可以更有效符合接近活性材料的是低頻傳導需求,高頻的傳導需求是位於遠離活性材料的位置,因此使用較高的固態電解質含量。也就是說,隨著距離活性材料的外表面由近到遠,接面調整材料在混合式固態電解質系統是呈現高到低的降幅體積比含量分佈。換句話說,使用此混合式電解質系統所組成之電池,該電池包含有一活性材料層與一隔離層,當該混合式電解質系統應用在該隔離層時,該固態電解質接面調整材的體積含量小於該混合式電解質系統中的固態電解質的體積含量。當該混合式電解質系統應用在該活性材料層時,越接近活性材料表面,該固態電解質接面調整材的體積含量相較於該混合式電解質系統中的固態電解質的體積含量越高。 In addition, from the curve C in Figure 4, it can be found that when the volume percentage of the junction adjusting material is A 0 and the volume percentage is B 0 (A 0 +B 0 ≒100, A 0 is 30-40, and B 0 is 70 -60) solid electrolyte mixed to obtain a hybrid solid electrolyte system (when the second dopant 15 is a solid electrolyte, it is also included in the percentage B), if the junction adjustment material is used to contact the active electrode layer When the material is used, the ratio of the solid electrolyte adjusting material to the solid electrolyte in the hybrid electrolyte system can be appropriately adjusted as the junction adjusting material is A 1 , and the amount of solid electrolyte is B 1 , A 1 +B 1 =100, 50<A 1 <100. Conversely, if the hybrid electrolyte system is far away from the active material, the volume of the solid electrolyte adjustment material for the entire hybrid electrolyte system is A 2 , and the solid electrolyte is B 2 , A 2 +B 2 =100, 50<B 2 <100 As a result, it will be able to more effectively meet the low-frequency conduction requirements close to the active material, and the high-frequency conduction demand is located far away from the active material, so a higher solid electrolyte content is used. That is to say, with the distance from the outer surface of the active material from close to far, the junction adjustment material in the hybrid solid electrolyte system exhibits a high to low drop volume ratio content distribution. In other words, a battery composed of this hybrid electrolyte system includes an active material layer and an isolation layer. When the hybrid electrolyte system is applied to the isolation layer, the volume content of the solid electrolyte junction adjustment material It is smaller than the volume content of the solid electrolyte in the hybrid electrolyte system. When the hybrid electrolyte system is applied to the active material layer, the closer to the surface of the active material, the higher the volume content of the solid electrolyte junction adjustment material compared to the volume content of the solid electrolyte in the hybrid electrolyte system.

綜上所述,本發明提出一種應用於電化學系統(例如鋰離子二次電池)的嶄新固態電解質接面調整材及其混合式電解質系統。此固態電解質調整材主要使用了可供金屬離子在材料內部移動的聚合物基材與一可解離金屬鹽並且作為增塑劑的添加材所混合而成,以在氧化物固態電解質顆粒與另一顆粒材料的接觸接面上形成較近似液態的浸潤接觸或者說是面 到面的接觸型態,藉此有效降低氧化物固態電解質的高界面阻抗問題。 In summary, the present invention proposes a new solid electrolyte junction adjustment material and its hybrid electrolyte system applied to electrochemical systems (such as lithium ion secondary batteries). This solid electrolyte adjustment material mainly uses a polymer base material that can move metal ions inside the material and a dissociable metal salt and is mixed as a plasticizer additive, so that the oxide solid electrolyte particles are mixed with another The contact surface of the granular material forms a relatively liquid wet contact or surface The contact type to the surface, thereby effectively reducing the problem of high interface impedance of the oxide solid electrolyte.

唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。 Only the above are only preferred embodiments of the present invention and are not used to limit the scope of implementation of the present invention. Therefore, all equivalent changes or modifications made in accordance with the characteristics and spirit of the application scope of the present invention should be included in the patent application scope of the present invention.

1‧‧‧混合式電解質系統 1‧‧‧Hybrid electrolyte system

11‧‧‧第一顆粒 11‧‧‧First particle

12‧‧‧第二顆粒 12‧‧‧Second particle

13‧‧‧橋接部 13‧‧‧Bridge

Claims (49)

一固態電解質接面調整材,其係用於一電化學系統且位於一固態電解質的表面上,該固態電解質接面調整材主要由一可供金屬離子在材料內部移動的聚合物基材與一可解離金屬鹽並且作為增塑劑的添加材所混合而成。 A solid electrolyte junction adjustment material, which is used in an electrochemical system and is located on the surface of a solid electrolyte. The solid electrolyte junction adjustment material is mainly composed of a polymer substrate that allows metal ions to move inside the material and a It is a mixture of dissociable metal salts and used as plasticizer additives. 如請求項1所述之固態電解質接面調整材,更包含有一結晶抑制材。 The solid electrolyte junction adjustment material described in claim 1 further includes a crystallization suppressing material. 如請求項1所述之固態電解質接面調整材,更混合有一離子供應材料。 The solid electrolyte junction adjustment material described in claim 1 is further mixed with an ion supply material. 如請求項3所述之固態電解質接面調整材,其中該離子供應材料是鋰鹽。 The solid electrolyte junction adjustment material according to claim 3, wherein the ion supply material is a lithium salt. 如請求項1所述之固態電解質接面調整材,其中該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料、導電材料或者上述兩種以上的材料混合。 The solid electrolyte junction adjustment material according to claim 1, wherein the solid electrolyte junction adjustment material is further mixed with a second dopant whose size is on the nanometer level, and the second dopant is selected from inorganic solid Electrolyte, passive ceramic material, conductive material, or a mixture of two or more of the above materials. 如請求項1所述之固態電解質接面調整材,其中該聚合物基材是選自於聚氧化乙烯(PEO)、聚乙二醇雙丙烯酸酯(Poly(ethylene glycol)diacrylate(PEGDA))、聚乙二醇雙甲基丙烯酸酯(Poly(ethylene glycol)dimethacrylate(PEGDMA))、聚乙二醇甲基醚(Poly(ethylene glycol)monomethylether(PEGME))、聚乙二醇雙甲基醚(Poly(ethylene glycol)dimethylether(PEGDME))、聚氧化乙烯/2,(2-甲氧乙氧)-乙基縮水甘油基醚共 聚物(poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE))、超分支聚合物(Hyperbranched polymers)系列或聚腈(Polynitriles)系列。 The solid electrolyte junction adjustment material according to claim 1, wherein the polymer substrate is selected from polyethylene oxide (PEO), polyethylene glycol diacrylate (PEGDA), Poly(ethylene glycol)dimethacrylate(PEGDMA), Poly(ethylene glycol)monomethylether(PEGME)), Poly(ethylene glycol)dimethacrylate(PEGDMA)), Poly(ethylene glycol)monomethylether(PEGME)) (ethylene glycol)dimethylether(PEGDME)), polyethylene oxide/2,(2-methoxyethoxy)-ethyl glycidyl ether co Polymer (poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE)), Hyperbranched polymers series or Polynitriles series. 如請求項1所述之固態電解質接面調整材,其中該添加材是可塑晶體電解質(Plastic crystal electrolytes(PCEs))或離子液體。 The solid electrolyte junction adjustment material according to claim 1, wherein the additive material is plastic crystal electrolytes (PCEs) or ionic liquids. 一混合式電解質系統,其包含有: A hybrid electrolyte system, which contains: 一第一顆粒,其為第一無機固態電解質; A first particle, which is a first inorganic solid electrolyte; 一第二顆粒,其選自於第二無機固態電解質、鈍性陶瓷材料或者活性材料;以及 A second particle selected from a second inorganic solid electrolyte, a passive ceramic material or an active material; and 一橋接部,其係位於該第一顆粒與該第二顆粒之間,該橋接部是由一固態電解質接面調整材所形成,並且將該第一顆粒與第二顆粒接著形成一離子傳遞途徑,其中該固態電解質接面調整材由一可供鋰離子在材料內部移動的聚合物基材與一可解離鋰鹽並且作為增塑劑的添加材所混合而成。 A bridging portion is located between the first particle and the second particle, the bridging portion is formed by a solid electrolyte junction adjustment material, and the first particle and the second particle then form an ion transfer path , Wherein the solid electrolyte junction adjustment material is mixed with a polymer base material that can allow lithium ions to move inside the material, and a dissociable lithium salt and an additive material as a plasticizer. 如請求項8所述之混合式電解質系統,其中該固態電解質接面調整材更包含有一結晶抑制材。 The hybrid electrolyte system according to claim 8, wherein the solid electrolyte junction adjustment material further includes a crystallization suppressing material. 如請求項8所述之混合式電解質系統,其中該固態電解質接面調整材更混合有一離子供應材料。 The hybrid electrolyte system according to claim 8, wherein the solid electrolyte junction adjustment material is further mixed with an ion supply material. 如請求項10所述之混合式電解質系統,其中該離子供應材料是鋰鹽。 The hybrid electrolyte system according to claim 10, wherein the ion supply material is a lithium salt. 如請求項8所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 8, wherein when the second particles are selected from a second inorganic solid electrolyte or a passive ceramic material, the solid electrolyte junction adjustment material is further mixed with a second dopant, Its size is nanometer level, and the second dopant is selected from inorganic solid electrolytes, passive ceramic materials or their mixtures. 如請求項8或12所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該橋接部非與該第一顆粒以及該第二顆粒接觸的面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 8 or 12, wherein when the second particle is selected from a second inorganic solid electrolyte or a passive ceramic material, the bridging portion is not connected to the first particle and the second particle The contacting surface is further doped/disposed with several first dopants, and the first dopants are selected from inorganic solid electrolytes, passive ceramic materials or their mixtures. 如請求項8所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料、導電材料或其任二者以上混合。 The hybrid electrolyte system according to claim 8, wherein when the second particle is an active material, the solid electrolyte junction adjustment material is further mixed with a second dopant whose size is on the nanometer level, and the second dopant The impurities are selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more thereof. 如請求項8或14所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該橋接部非與該第一顆粒以及該第二顆粒接觸的面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料、導電材料或任二者以上混合。 The hybrid electrolyte system according to claim 8 or 14, wherein when the second particle is an active material, the bridging portion is more doped/disposed on a surface not in contact with the first particle and the second particle The first dopant, the first dopant is selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more. 如請求項13或15所述之混合式電解質系統,其中該第一摻雜物更延伸設置於該第一顆粒與/或第二顆粒的外表面。 The hybrid electrolyte system according to claim 13 or 15, wherein the first dopant is further extended on the outer surface of the first particle and/or the second particle. 如請求項8所述之混合式電解質系統,其中當該第二顆 粒是活性材料時,該第二顆粒的表面更具有一人工鈍性膜。 The hybrid electrolyte system according to claim 8, wherein when the second particle When the particles are active materials, the surface of the second particles has an artificial passive film. 如請求項8所述之混合式電解質系統,其中該聚合物基材是選自於聚氧化乙烯(PEO)、聚乙二醇雙丙烯酸酯(Poly(ethylene glycol)diacrylate(PEGDA))、聚乙二醇雙甲基丙烯酸酯(Poly(ethylene glycol)dimethacrylate(PEGDMA))、聚乙二醇甲基醚(Poly(ethylene glycol)monomethylether(PEGME))、聚乙二醇雙甲基醚(Poly(ethylene glycol)dimethylether(PEGDME))、聚氧化乙烯/2,(2-甲氧乙氧)-乙基縮水甘油基醚共聚物(poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE))、超分支聚合物(Hyperbranched polymers)系列或聚腈(Polynitriles)系列。 The hybrid electrolyte system according to claim 8, wherein the polymer substrate is selected from polyethylene oxide (PEO), polyethylene glycol diacrylate (PEGDA), polyethylene glycol Poly(ethylene glycol)dimethacrylate(PEGDMA), Poly(ethylene glycol)monomethylether(PEGME)), Poly(ethylene glycol)dimethacrylate(PEGDMA)) glycol)dimethylether(PEGDME)), polyethylene oxide/2,(2-methoxyethoxy)-ethyl glycidyl ether copolymer (poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (PEO/MEEGE)), Hyperbranched polymers series or Polynitriles series. 如請求項8所述之混合式電解質系統,其中該添加材是可塑晶體電解質(Plastic crystal electrolytes(PCEs))或離子液體。 The hybrid electrolyte system according to claim 8, wherein the additive is plastic crystal electrolytes (PCEs) or ionic liquids. 一混合式固態電解質系統,其包含有: A hybrid solid electrolyte system, which includes: 一第一顆粒,其為第一無機固態電解質; A first particle, which is a first inorganic solid electrolyte; 一第二顆粒,其選自於第二無機固態電解質、鈍性陶瓷材料或者活性材料;以及 A second particle selected from a second inorganic solid electrolyte, a passive ceramic material or an active material; and 一第一殼層,其包覆該第一顆粒的外表面; A first shell layer covering the outer surface of the first particle; 其中該第一殼層是由一固態電解質接面調整材所形成,並且將該第一顆粒與第二顆粒接著形成一離子傳遞途徑,其中該固態電解質接面調整材由一可供金屬離子 在材料內部移動的聚合物基材與一可解離金屬鹽並作為增塑劑的添加材所混合而成。 Wherein the first shell layer is formed by a solid electrolyte junction adjustment material, and the first particles and the second particles then form an ion transfer path, wherein the solid electrolyte junction adjustment material is made of a metal ion The polymer base material that moves inside the material is mixed with a dissociable metal salt and used as an additive of plasticizer. 如請求項20所述之混合式電解質系統,其中該固態電解質接面調整材更包含有一結晶抑制材。 The hybrid electrolyte system according to claim 20, wherein the solid electrolyte junction adjustment material further includes a crystallization suppressing material. 如請求項20所述之混合式電解質系統,其中該固態電解質接面調整材更混合有一離子供應材料。 The hybrid electrolyte system according to claim 20, wherein the solid electrolyte junction adjustment material is further mixed with an ion supply material. 如請求項22所述之混合式電解質系統,其中該離子供應材料是鋰鹽。 The hybrid electrolyte system according to claim 22, wherein the ion supply material is a lithium salt. 如請求項20所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 20, wherein when the second particles are selected from a second inorganic solid electrolyte or a passive ceramic material, the solid electrolyte junction adjustment material is further mixed with a second dopant, Its size is nanometer level, and the second dopant is selected from inorganic solid electrolytes, passive ceramic materials or their mixtures. 如請求項20或24所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該第一殼層的外表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 20 or 24, wherein when the second particles are selected from a second inorganic solid electrolyte or a passive ceramic material, the outer surface of the first shell layer is more doped/disposed There are several first dopants, and the first dopants are selected from inorganic solid electrolytes, passive ceramic materials or mixtures thereof. 如請求項20所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料、導電材料或其任二者以上混合。 The hybrid electrolyte system according to claim 20, wherein when the second particle is an active material, the solid-state electrolyte junction adjustment material is further mixed with a second dopant whose size is on the order of nanometers, and the second dopant The impurities are selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more thereof. 如請求項20所述之混合式電解質系統,其中當該第二 顆粒是活性材料時,該第一殼層的表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料、導電材料或任二者以上混合。 The hybrid electrolyte system according to claim 20, wherein when the second When the particles are active materials, the surface of the first shell layer is further doped/disposed with several first dopants, and the first dopants are selected from inorganic solid electrolytes, passive ceramic materials, conductive materials or any Mix the two or more. 如請求項20所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該第二顆粒的表面具有一人工鈍性膜。 The hybrid electrolyte system according to claim 20, wherein when the second particle is an active material, the surface of the second particle has an artificial passive film. 如請求項20所述之混合式固態電解質系統,其中該第二殼粒的外表面形成有一第二殼層,該第二殼層是由該固態電解質接面調整材所形成。 The hybrid solid electrolyte system according to claim 20, wherein a second shell layer is formed on the outer surface of the second shell particle, and the second shell layer is formed by the solid electrolyte junction adjustment material. 如請求項29所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 29, wherein when the second particles are selected from a second inorganic solid electrolyte or a passive ceramic material, the solid electrolyte junction adjustment material is further mixed with a second dopant, Its size is nanometer level, and the second dopant is selected from inorganic solid electrolytes, passive ceramic materials or their mixtures. 如請求項29或第30項所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該第一殼層與/或該第二殼層的外表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 29 or 30, wherein when the second particle is selected from a second inorganic solid electrolyte or a passive ceramic material, the first shell layer and/or the second shell The outer surface of the layer is further doped/disposed with a number of first dopants, and the first dopants are selected from inorganic solid electrolytes, passive ceramic materials, or mixtures thereof. 如請求項29所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料、導電材料或其任二者以上混合。 The hybrid electrolyte system according to claim 29, wherein when the second particle is an active material, the solid electrolyte junction adjustment material is further mixed with a second dopant whose size is on the nanometer level, and the second dopant The impurities are selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more thereof. 如請求項29或32所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該第一殼層與/或該第二殼層的表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料、導電材料或任二者以上混合。 The hybrid electrolyte system according to claim 29 or 32, wherein when the second particle is an active material, the surface of the first shell layer and/or the second shell layer is more doped/disposed with a plurality of first The dopant, the first dopant is selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more. 如請求項29所述之混合式固態電解質系統,其中當該第二顆粒是活性材料時,該第二顆粒的表面具有一人工鈍性膜,該人工鈍性膜位於該第二顆粒與該第二殼層間。 The hybrid solid electrolyte system according to claim 29, wherein when the second particle is an active material, the surface of the second particle has an artificial passive film, and the artificial passive film is located between the second particle and the first particle. Between the two shells. 如請求項20所述之混合式固態電解質系統,其中該聚合物基材是選自於聚氧化乙烯(PEO)、聚乙二醇雙丙烯酸酯(Poly(ethylene glycol)diacrylate(PEGDA))、聚乙二醇雙甲基丙烯酸酯(Poly(ethylene glycol)dimethacrylate(PEGDMA))、聚乙二醇甲基醚(Poly(ethylene glycol)monomethylether(PEGME))、聚乙二醇雙甲基醚(Poly(ethylene glycol)dimethylether(PEGDME))、聚氧化乙烯/2,(2-甲氧乙氧)-乙基縮水甘油基醚共聚物(poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE))、超分支聚合物(Hyperbranched polymers)系列或聚腈(Polynitriles)系列。 The hybrid solid electrolyte system according to claim 20, wherein the polymer substrate is selected from polyethylene oxide (PEO), polyethylene glycol diacrylate (PEGDA), and poly(ethylene glycol) diacrylate (PEGDA). Poly(ethylene glycol)dimethacrylate(PEGDMA), Poly(ethylene glycol)monomethylether(PEGME)), Poly(ethylene glycol)dimethacrylate(PEGDMA), Poly(ethylene glycol)monomethylether(PEGME)) ethylene glycol)dimethylether(PEGDME)), poly(ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether copolymer), poly(ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether)/2,(2-methoxyethoxy)-ethyl glycidyl ether copolymer ] (PEO/MEEGE)), Hyperbranched polymers series or Polynitriles series. 如請求項20所述之混合式電解質系統,其中該添加材是可塑晶體電解質(Plastic crystal electrolytes(PCEs))或離子液體。 The hybrid electrolyte system according to claim 20, wherein the additive is plastic crystal electrolytes (PCEs) or ionic liquids. 一混合式固態電解質系統,其包含有: A hybrid solid electrolyte system, which includes: 一第一顆粒,其為第一無機固態電解質; A first particle, which is a first inorganic solid electrolyte; 一第二顆粒,其選自於第二無機固態電解質、鈍性陶瓷材料或者活性材料; A second particle, which is selected from a second inorganic solid electrolyte, a passive ceramic material or an active material; 一第一殼層,其包覆該第一顆粒的外表面; A first shell layer covering the outer surface of the first particle; 一第二殼層,其包覆該第二顆粒的外表面;以及 A second shell layer covering the outer surface of the second particle; and 一橋接部,其係位於該第一殼層與該第二殼層之間,並且接著該第一殼層與該第二殼層; A bridge portion located between the first shell layer and the second shell layer, and then the first shell layer and the second shell layer; 其中該第一殼層、該第二殼層與該橋接部皆是由一固態電解質接面調整材所形成,並且將該第一顆粒與第二顆粒接著形成一離子傳遞途徑,該固態電解質接面調整材由一可供金屬離子在材料內部移動的聚合物基材與一可解離金屬鹽並且作為增塑劑的添加材所混合而成。 Wherein the first shell layer, the second shell layer and the bridge portion are all formed by a solid electrolyte junction adjustment material, and the first particles and the second particles then form an ion transport path, and the solid electrolyte is connected The surface conditioning material is mixed with a polymer base material that can move metal ions inside the material and a dissociable metal salt as an additive material for plasticizers. 如請求項37所述之混合式電解質系統,其中該固態電解質接面調整材更包含有一結晶抑制材。 The hybrid electrolyte system according to claim 37, wherein the solid electrolyte junction adjustment material further includes a crystallization suppressing material. 如請求項37所述之混合式電解質系統,其中該固態電解質接面調整材更混合有一離子供應材料。 The hybrid electrolyte system according to claim 37, wherein the solid electrolyte junction adjustment material is further mixed with an ion supply material. 如請求項39所述之混合式電解質系統,其中該離子供應材料是鋰鹽。 The hybrid electrolyte system according to claim 39, wherein the ion supply material is a lithium salt. 如請求項37所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料 或其混合。 The hybrid electrolyte system according to claim 37, wherein when the second particles are selected from a second inorganic solid electrolyte or a passive ceramic material, the solid electrolyte junction adjustment material is further mixed with a second dopant, Its size is nanometer level, and the second dopant is selected from inorganic solid electrolytes and passive ceramic materials Or a mixture of them. 如請求項37或41所述之混合式電解質系統,其中當該第二顆粒是選自於第二無機固態電解質或鈍性陶瓷材料時,該第一殼層、該橋接部或該第二殼層的外表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料或其混合。 The hybrid electrolyte system according to claim 37 or 41, wherein when the second particle is selected from a second inorganic solid electrolyte or a passive ceramic material, the first shell, the bridge or the second shell The outer surface of the layer is further doped/disposed with a number of first dopants, and the first dopants are selected from inorganic solid electrolytes, passive ceramic materials, or mixtures thereof. 如請求項37所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該固態電解質接面調整材更混入有一第二摻雜物,其尺寸為奈米級,該第二摻雜物是選自於無機固態電解質、鈍性陶瓷材料、導電材料或其任二者以上混合。 The hybrid electrolyte system according to claim 37, wherein when the second particle is an active material, the solid-state electrolyte junction adjustment material is further mixed with a second dopant whose size is on the order of nanometers, and the second dopant The impurities are selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more thereof. 如請求項37或43所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該第一殼層、橋接部或該第二殼層的表面上更摻雜/設置有數個第一摻雜物,該第一摻雜物係選自於無機固態電解質、鈍性陶瓷材料、導電材料或任二者以上混合。 The hybrid electrolyte system according to claim 37 or 43, wherein when the second particle is an active material, the surface of the first shell layer, the bridge portion or the second shell layer is more doped/disposed with several A dopant, the first dopant is selected from inorganic solid electrolytes, passive ceramic materials, conductive materials, or a mixture of any two or more. 如請求項37所述之混合式電解質系統,其中當該第二顆粒是活性材料時,該第二顆粒的表面具有一人工鈍性膜,該人工鈍性膜位於該第二顆粒與該第二殼層間。 The hybrid electrolyte system according to claim 37, wherein when the second particle is an active material, the surface of the second particle has an artificial passive film, and the artificial passive film is located between the second particle and the second particle. Between shells. 如請求項37所述之混合式固態電解質系統,其中該聚合物基材是選自於聚氧化乙烯(PEO)、聚乙二醇雙丙烯酸酯(Poly(ethylene glycol)diacrylate(PEGDA))、聚乙二醇雙甲基丙烯酸酯(Poly(ethylene glycol)dimethacrylate(PEGDMA))、聚乙 二醇甲基醚(Poly(ethylene glycol)monomethylether(PEGME))、聚乙二醇雙甲基醚(Poly(ethylene glycol)dimethylether(PEGDME))、聚氧化乙烯/2,(2-甲氧乙氧)-乙基縮水甘油基醚共聚物(poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE))、超分支聚合物(Hyperbranched polymers)系列或聚腈(Polynitriles)系列。 The hybrid solid electrolyte system according to claim 37, wherein the polymer substrate is selected from polyethylene oxide (PEO), polyethylene glycol diacrylate (PEGDA), and poly(ethylene glycol) diacrylate (PEGDA). Poly(ethylene glycol) dimethacrylate (PEGDMA), polyethylene glycol Poly(ethylene glycol)monomethylether(PEGME)), Poly(ethylene glycol)dimethylether(PEGDME)), polyethylene oxide/2,(2-methoxyethoxy )-Ethyl glycidyl ether copolymer (poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether](PEO/MEEGE)), Hyperbranched polymers series or Polynitriles )series. 如請求項37所述之混合式電解質系統,其中該添加材是可塑晶體電解質(Plastic crystal electrolytes(PCEs))或離子液體。 The hybrid electrolyte system according to claim 37, wherein the additive is plastic crystal electrolytes (PCEs) or ionic liquids. 一種使用請求項8或20或37所述之混合式電解質系統所組成之電池,該電池包含有一活性材料層與一隔離層,當該混合式電解質系統應用在該活性材料層時,該混合式電解質系統越接近該活性材料層內的活性材料表面,該接面調整材料在該混合式固態電解質系統所佔的體積比越高。 A battery composed of the hybrid electrolyte system described in claim 8 or 20 or 37, the battery comprising an active material layer and an isolation layer, when the hybrid electrolyte system is applied to the active material layer, the hybrid electrolyte system The closer the electrolyte system is to the surface of the active material in the active material layer, the higher the volume ratio of the junction adjusting material in the hybrid solid electrolyte system. 一種使用請求項8或20或37所述之混合式電解質系統所組成之電池,該電池包含有一活性材料層與一隔離層,當該混合式電解質系統應用在該隔離層時,該固態電解質接面調整材的體積含量小於該混合式電解質系統中的該無機固態電解質的體積含量。 A battery composed of the hybrid electrolyte system described in claim 8 or 20 or 37. The battery includes an active material layer and an isolation layer. When the hybrid electrolyte system is applied to the isolation layer, the solid electrolyte is connected to The volume content of the surface adjusting material is less than the volume content of the inorganic solid electrolyte in the hybrid electrolyte system.
TW108138054A 2019-10-22 2019-10-22 Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof TWI737011B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
TW108138054A TWI737011B (en) 2019-10-22 2019-10-22 Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof
US17/036,925 US11495825B2 (en) 2019-10-22 2020-09-29 Contact surface adjusting material for solid electrolytes and composite electrolyte system thereof
CN202011096063.3A CN112701346A (en) 2019-10-22 2020-10-14 Solid electrolyte contact surface conditioning material and mixed electrolyte system thereof
KR1020200133456A KR102480237B1 (en) 2019-10-22 2020-10-15 Contact surface adjusting material for solid electrolytes and composite electrolyte system thereof
RU2020133932A RU2742533C1 (en) 2019-10-22 2020-10-15 Material for adapting contact surface for solid electrolyte and corresponding composite electrolyte system
EP20202599.5A EP3813173A1 (en) 2019-10-22 2020-10-19 Contact surface adjusting material for solid electrolytes and composite electrolyte system thereof
JP2020175063A JP7157117B2 (en) 2019-10-22 2020-10-19 Contact surface control material for solid electrolyte and its composite electrolyte system
BR102020021602-3A BR102020021602B1 (en) 2019-10-22 2020-10-21 CONTACT SURFACE ADJUSTMENT MATERIAL FOR SOLID ELECTROLYTES AND COMPOSITE ELECTROLYTE SYSTEM THEREOF
MX2020011219A MX2020011219A (en) 2019-10-22 2020-10-22 Contact surface adjusting material for solid electrolytes and composite electrolyte system thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108138054A TWI737011B (en) 2019-10-22 2019-10-22 Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof

Publications (2)

Publication Number Publication Date
TW202118130A true TW202118130A (en) 2021-05-01
TWI737011B TWI737011B (en) 2021-08-21

Family

ID=72943987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138054A TWI737011B (en) 2019-10-22 2019-10-22 Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof

Country Status (9)

Country Link
US (1) US11495825B2 (en)
EP (1) EP3813173A1 (en)
JP (1) JP7157117B2 (en)
KR (1) KR102480237B1 (en)
CN (1) CN112701346A (en)
BR (1) BR102020021602B1 (en)
MX (1) MX2020011219A (en)
RU (1) RU2742533C1 (en)
TW (1) TWI737011B (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
US8216722B2 (en) * 2007-11-27 2012-07-10 Ceramatec, Inc. Solid electrolyte for alkali-metal-ion batteries
JP2010033876A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Polymer-coated solid electrolyte and all-solid secondary battery using the same
CN101789519B (en) * 2010-01-25 2014-06-04 北京理工大学 Ionic liquid-based composite electrolyte
JP5443445B2 (en) * 2011-07-06 2014-03-19 トヨタ自動車株式会社 Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
JP6118521B2 (en) * 2012-08-21 2017-04-19 出光興産株式会社 Electrode layer including sulfide-based solid electrolyte, electrolyte layer including sulfide-based solid electrolyte, and all-solid-state battery using the same
CN104009253B (en) * 2014-04-25 2016-10-26 天津新动源科技有限公司 Solid electrolyte, its preparation method and its application and the lithium battery of application solid electrolyte
KR20160008041A (en) * 2014-07-11 2016-01-21 오씨아이 주식회사 Anode active material for lithium secondary battery and manufacturing mehtod of the same
DE102015111806A1 (en) * 2015-07-21 2017-01-26 Schott Ag Electrolyte for an electrochemical energy storage
WO2017030390A1 (en) * 2015-08-18 2017-02-23 울산과학기술원 Solid electrolyte and preparation method thereof, electrode active material-solid electrolyte complex and preparation method thereof, all-solid-state battery comprising solid electrolyte, and all-solid-state battery comprising electrode active material-solid electrolyte complex
JP6757797B2 (en) * 2015-12-28 2020-09-23 シーオ インコーポレーテッドSeeo, Inc. Ceramic-polymer composite electrolyte for lithium polymer batteries
US10392301B2 (en) * 2016-04-15 2019-08-27 Furcifer Inc. Integration of electrochromic films on a substrate
CN107768612B (en) * 2016-08-23 2022-10-14 松下知识产权经营株式会社 Electrode material and battery
KR101879503B1 (en) * 2016-09-21 2018-07-18 주식회사 세븐킹에너지 Hybrid solid electrolyte for rechargeable batteries and preparation method of the same
WO2019054729A1 (en) * 2017-09-13 2019-03-21 주식회사 엘지화학 Electrode for all-solid-state battery, comprising solid electrolyte
CN108199081A (en) * 2018-01-10 2018-06-22 苏州氟特电池材料股份有限公司 Solid electrolyte applied to lithium battery and preparation method thereof
CN110165221B (en) * 2018-02-14 2021-12-24 辉能科技股份有限公司 Electrode layer composite material
CN108365260B (en) * 2018-03-08 2019-11-19 浙江大学 A kind of quasi-solid electrolyte and its preparation method and application
CN109888373B (en) * 2018-12-27 2021-01-12 山东大学 Organic/inorganic composite solid electrolyte and preparation method thereof

Also Published As

Publication number Publication date
RU2742533C1 (en) 2021-02-08
TWI737011B (en) 2021-08-21
CN112701346A (en) 2021-04-23
MX2020011219A (en) 2021-04-23
KR20210048412A (en) 2021-05-03
JP7157117B2 (en) 2022-10-19
BR102020021602A2 (en) 2021-07-13
US20210119245A1 (en) 2021-04-22
EP3813173A1 (en) 2021-04-28
US11495825B2 (en) 2022-11-08
JP2021066879A (en) 2021-04-30
KR102480237B1 (en) 2022-12-21
BR102020021602B1 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
Xie et al. A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability
CN105703006B (en) Electrolyte and negative pole structure
CN105374980B (en) Interface-infiltrated quasi-solid alkali metal battery, battery electrode and battery preparation method
CN102130315B (en) Barrier film and nonaqueous electrolyte battery
US20210320331A1 (en) Solid polymer matrix electrolyte (pme) for rechargeable lithium batteries and batteries made therewith
US20140011095A1 (en) Organic/inorganic hybrid electrolyte, methods for preparing the same, and lithium battery including the same
JP2019530195A (en) Composite solid electrolyte for secondary battery and method for producing the same
CN109429535A (en) Cathode containing electrode protecting layer and the lithium secondary battery comprising the cathode
CN101499538B (en) Non-aqueous electrolyte cell, anode and manufacturing method of the same
CN102290601A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte
CN101499539B (en) Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
Dong et al. Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes
Liu et al. Rational Design of LLZO/Polymer Solid Electrolytes for Solid‐State Batteries
CN113471569B (en) Pole piece, electrochemical device and electronic device
US20210320382A1 (en) Composite separating layer
TWI787485B (en) Electrolyte composition, electrolyte sheet, and secondary battery
TWI737011B (en) Adjusting material for contact surface of solid electrolyte and composite electrolyte system thereof
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
TWI719683B (en) Ceramic separator
WO2020179126A1 (en) Non-aqueous electrolyte, semi-solid electrolyte membrane, sheet for secondary battery, and secondary battery
CN106935820A (en) A kind of manganese-based anode material and lithium titanate battery
JP5310223B2 (en) All solid battery
WO2021111847A1 (en) Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery
JPH11195432A (en) Polymer secondary battery