TW202112054A - 低指間距疊瓦太陽能電池 - Google Patents

低指間距疊瓦太陽能電池 Download PDF

Info

Publication number
TW202112054A
TW202112054A TW109118512A TW109118512A TW202112054A TW 202112054 A TW202112054 A TW 202112054A TW 109118512 A TW109118512 A TW 109118512A TW 109118512 A TW109118512 A TW 109118512A TW 202112054 A TW202112054 A TW 202112054A
Authority
TW
Taiwan
Prior art keywords
hdm
finger
bus bar
solar cell
conductive fingers
Prior art date
Application number
TW109118512A
Other languages
English (en)
Inventor
瑟斯特 丹尼斯 德
凱文 吉普森
Original Assignee
美商索拉利亞股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商索拉利亞股份有限公司 filed Critical 美商索拉利亞股份有限公司
Publication of TW202112054A publication Critical patent/TW202112054A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種高密度模組(HDM)設計的疊瓦太陽能電池,與相應的非HDM太陽能電池相比呈現出低指間距(並因此增加了指數)。 通過從承載複數個前側匯流排條的較大非HDM工件的單個化可製造出載有單獨前側匯流排條的疊瓦HDM太陽能電池。 實施例認識到,根據這種基於單個化的HDM製造工藝,所得到的疊瓦HDM設計的有效指長(LEFF )將比非HDM設計的更長。 為了補償由於該較長的HDM LEFF 所增加的電阻,實施例減小了導電指間的間距,從而增加了實際上佔據光伏材料的給定面積的指的數量。為了收集效率的目的,由實施例所提供的減小指間距大於由較多指數所引起的任何陰影損失。

Description

低指間距疊瓦太陽能電池
本非臨時專利申請案主張於2019年6月3日申請的美國臨時專利申請案62/856,636號的優先權,並出於所有目的通過引用將其全部內容合併於此。
光伏設備正成為全球能源生產中越來越重要的元素。 隨著用於製造光伏材料的技術的改進和規模經濟的顯現,光伏材料的價格一直呈指數下降,這使得光伏裝置與其他能源生產技術的成本競爭力越來越高。
就而言,一種高密度模組(HDM)設計的疊瓦太陽能電池,相對於相應的非HDM太陽能電池,呈現出降低的指間距(並因此增加了指數)。可通過從承載複數個前側匯流排條的較大非HDM工件單個化來製造載有單獨前側匯流排條的疊瓦HDM太陽能電池。 實施例認識到,根據這種基於單個化的HDM製造工藝,所得到的疊瓦HDM設計的有效指長(LEFF )將比非HDM設計的更長。 為了補償由該較長HDM LEFF 所增加的電阻,實施例減小了導電指間的間距,從而增加了實際上佔據光伏材料給定面積的指的數量。為了收集效率的目的,實施例提供的指間距的減小大於由較大指數所引起的任何陰影損失。
下面結合附圖提供實施例的詳細描述。 本揭露的範圍僅由申請專利範圍限制,並且涵蓋許多替代,修改和等同物。 儘管以特定順序呈現了各種處理的步驟,但是實施例不必限於以所列出的順序執行。在一些實施例中,某些操作可以以所述順序以外的順序同時執行,或者根本不執行。
在以下描述中闡述了許多具體細節。 提供這些細節是為了藉由特定示例促進對本揭露的範圍的透徹理解,並且可以根據申請專利範圍來實踐實施例而無需這些特定細節中的一些或全部。 因此,本揭露的特定實施例是說明性的,並不意圖是排他性的或限制性的。為了清楚起見,未詳細描述與本揭露相關的技術領域中已知的技術材料,因此本揭露不會被不必要的模糊。
易於認識到,光伏模組在使用時有向太陽側和背向太陽的相反側。 儘管該模組可存在於任何方向,但便於參考方向,其中“上”,“頂”,“前”和“孔側”是指面向太陽的一側,而“下”,“底”是指 “背面”指的是其相對側。 因此,一個被稱為覆蓋另一個元素的元素將比其覆蓋的元素更靠近“上”側。
太陽能電池,也稱為光伏(PV)電池,利用通常由矽製成的半導體將太陽能轉化為電能。該電池彼此被電連接並被組裝成太陽能模組。可以將多個模組連接在一起以形成陣列。該模組或陣列越大,效率越高,其產生的電能就越多。創新是優化太陽能模組能源和降低成本的關鍵。
本揭露的實施例包括互連PV電池的高密度串,其被更有效地封裝在太陽能模組上以減少電池之間的無用空間。實施例使用先進的半導體製造工藝和設備,在這些工藝和設備中,太陽能電池被刻劃(切割)並單個化(分離)成高度均勻的條帶,重新組裝成電池串,被封裝和測試。
通常將方形電池與沿匯流排條焊接的金屬帶串聯連接,然後將前匯流排條連接到下一個太陽能電池的相應後側匯流排條,從而將它們組裝到太陽能面板中。在工作時,電流在太陽能電池內產生並由電極收集,並通過焊接的金屬帶從一個太陽能電池流向下一個。
圖8示出了方形形狀的太陽能電池800的簡化視圖,在前表面804上具有金屬指802,該金屬指垂直且連接到數個(在此為五個)匯流排條806。 舉例來說,在具有方形尺寸為156.75毫米的太陽能電池中,可存在超過一百個指。
太陽能電池的前電極包括該前金屬結構。電池的後側電極可以由後側表面上的金屬指和匯流排條組成(或者可能用金屬覆蓋整個或大部分後表面)。
在具有前接面和選擇性射極的P型太陽能電池的最常見配置中,前電極收集射極擴散中的電子電流,射極擴散位於前表面並與前電極電連接。 圖8A的簡化放大橫截面圖對此進行了描述。
具體地說,電子812流過射極擴散814到最近的指802下方的選擇性射極815,然後通過指到達最近的匯流排條806,最後通過帶850到達下一個太陽能電池。
電阻損耗發生在此過程的每個步驟中,例如,在射極、指和帶中。此外,指和帶遮蔽太陽能電池並減少產生的電流。
適當設計的前電極將優化指和匯流排條的間距。 這種間距優化考慮了諸如最小化電阻和遮蔽損耗之和等因素。
還要注意的是,由於前電極通常包括(昂貴的)銀,所以還考慮了成本。 因此,所選擇的指間距可大於最佳數量。
前電極技術的進步允許較窄的前側指的形成。 例如,大約在2010年,典型的指寬度約為100μm,但也可能會更窄。
指寬的減小理想地減少了光學遮蔽。 然而,它也不利地增加了指的線性電阻率,增加了功率損耗且降低了效率。
為了減少與帶相關的電阻和遮蔽損耗,而提出利用疊瓦太陽能電池的高密度模組(HDM)設計。疊瓦太陽能電池的形狀是矩形,即具有長軸和短軸。
尤其是,將正方形太陽能電池分割成多個矩形條帶來製造疊瓦太陽能電池。可利用包括但不限於鋸切和雷射刻劃的技術來完成這種分離。
矩形條帶的數量可以是5條或6條,其中原始方形太陽能電池的尺寸為156.75mm。 然而,不要求特定數量的條帶或原始方形太陽能電池的尺寸。
圖1示出了矩形條帶形式的HDM的個別單個化的太陽能電池100的簡化透視圖。 用於單一電池的電極設計包括靠近矩形條帶106其中一個長邊104的前匯流排條102,以及靠近矩形條帶另一邊110的後側匯流排條108。
前側指112垂直於匯流排條102延伸。為了簡化圖示,圖1中所示出指的數量少於實際預期存在的指的數量(例如100個或更多)。平行指間的距離(例如,從一個指的中心到相鄰指的中心)在這裡被稱為指間距150。
僅作為示例,對於具有156.75mm長軸的HDM疊瓦電池,其實際指數目可以超過一百。 對特定實施例的實際指數由指間距所定。
圖2是示出了疊瓦HDM組件200中,包括太陽能電池的單條帶的位置的分解圖。特別地,單個化條通過將條帶的後匯流排條疊於下一條帶的前匯流排條上串聯連接成串。可利用焊接或複合導電粘合劑在兩個疊瓦條帶之間建立電連接202。
對於疊瓦電池,無需帶即可將電流從一條帶攜帶至下一條帶。因此,與帶相關的電阻損耗被期望減少。
此外,單個化條的前匯流排條被下一條帶完全重疊。 因此,帶遮蔽損失也被消除。至少出於這些原因,這種疊瓦技術可能導致太陽能電池模組顯示出更高的效率。
現在討論與太陽能電池指相關的電阻損耗。 特別地,光電流基本上均勻地產生於太陽能電池的整個未遮蔽表面上。
所產生的載子取最小電阻的路徑朝最靠近的指移動。 然後,載子通過指朝向最近的匯流排條移動。電流以與電流收集面積成比例的方式線性累積在指中。
在非HDM太陽能電池中(如圖8所示),有效指長度(LEFF )-電流累積在金屬指中最大長度的路徑 - 是兩個匯流排條之間距離的一半,或者在電池的邊緣(匯流排條外部),是指的端部到最近的匯流排條的距離。
正是這個LEFF 決定了在指中電阻損耗的大小。LEFF 標記在圖8中。
於非HDM電池的邊緣,LEFF 是從指的端部到最近的匯流排條之間的距離。這在圖8中也被標記為LEFF
反之,對於HDM設計的疊瓦太陽能電池,決定電阻損耗的LEFF 是不同的。如圖1所示,對於HDM來說, LEFF 是指的端部到該匯流排條間的距離。LEFF 被標記於圖1中。
實施例認識到,圖1中HDM設計的疊瓦太陽能電池的指長相較於非HDM設計的非疊瓦太陽能電池指長可以更長。而較長的LEFF 會影響電阻,因而影響到太陽能電池的最佳指數。
與相應的非HDM太陽能電池相比,高密度模組(HDM)設計的疊瓦太陽能電池展現出較小的指間距(並因此增加了指數)。可以通過從承載有複數個前側匯流排條的較大的非HDM工件中單個化來製造載有單獨前側匯流排條的疊瓦HDM太陽能電池。 實施例認識到,根據這種基於單個化的HDM製造工藝,疊瓦HDM設計所得有效指長(LEFF )將比用於非HDM設計的更長。 為了補償可歸因於更長的HDM LEFF 所增加的電阻,實施例減小了導電指之間的間距,從而增加了實際上佔據光伏材料給定面積的指的數量。為了收集效率的目的,實施例所提供的指間距減小超過由較多指數所引起的任何遮蔽損失。
結合特定示例可以進一步理解LEFF 中的這種差異。 特別地,5個匯流排條的非HDM太陽能電池可具寬度為0.7 mm的匯流排條以及邊到邊的距離為156.75 mm。 在此,非HDM LEFF 距離為15.325毫米。
相比之下,可以通過將156.75mm的方形非HDM工件單個化成僅5條帶,每條具有0.7 mm寬度的匯流排條,來製造疊瓦HDM電池。 對於這種HDM太陽能電池,LEFF 距離增加了一倍,達到30.65 mm 。
如下面結合方程式(1)所詳細討論的,LEFF 距離是決定與指相關的電阻損耗的因素。
除LEFF 距離外,在決定電阻損耗納入考慮的其他此類因素可包括但不限於: ① 指寬 ② 指形狀和長寬比 ③ 指厚度(高度) ④ 指結構:例如包括單層或多層堆疊 ⑤ 指組成:例如,導電材料的電阻率,包括材料疊層和/或合金 ⑥ 材料密度、孔隙率或結晶度 ⑦ 材料純度 ⑧ 添加劑的存在 ⑨ 用於形成金屬電極的工藝,特別是熱處理
根據一實施例,指可被製造為具有40μm或更小的寬度。 根據某些實施例,可能的指寬可為約50μm、約35μm、30μm、約25μm、約20μm、約15μm、約10μm或約5μm。
各種可能的不同材料可用於指。下表列出金屬寬度為40um的典型電阻並給出了平均高度的示例。
指材料(平均高度) 線性電阻(歐姆/公分)
銀漿印刷銀 (15μm) 0.68
鈦(0.1μm)或鈀(0.1μm )或銀(10μm) 0.40
鉻(0.1μm)或鎳(0.1μm)或銀(10μm) 0.40
銅(12μm) 0.35
鋁(15μm) 0.44
金(10μm) 0.55
給定: ① 電流密度(Jmp ) ② 指-線性電阻(RLIN ),以及 ③ 指間距(間距)值, ④ 與通過指的電阻損耗相關的功率損耗密度可用以下方程式 (1) 表示: (1)  RLOSS ,FINGERS = RLIN / 3 * 間距 * LEFF 2 * Jmp 2
該表達式表明RLOSS ,FINGERS 的數量與LEFF 距離長度的平方成正比。 因此,在其他所有條件都相同的情況下,此電阻損耗RLOSS ,FINGERS 將在具有5個匯流排條的非HDM電池和寬度為非HDM太陽能電池的1/5寬度的相應HDM疊瓦電池間增加四倍 。 因此,指電阻的電阻損耗會顯著的增加。
實施例認識到,HDM太陽能電池的較長有效指長。 不同於那些非HDM電池,由於HDM電池是疊瓦式的,因此顯示出此較長的有效指長,且計算各種太陽能電池架構以減少電阻和遮蔽損失之和。
特別地,特定實施例通過減小指間距來減少在單個HDM太陽能電池設計中指電阻所造成的電阻損耗。 此指間距的減小導致相同面積的PV活性材料的指數增加。
減小指間距也減少了與通過射極的電流路徑相關的電阻損耗。 類似於與指相關的電阻損耗,此類損耗與載子到達最接近的指所必須經過的最長距離的平方成正比,該距離是兩指間的距離的一半,減小指間距則減小該距離。
值得注意的是,與指覆蓋範圍相關的遮蔽損失低於指覆蓋範圍的物理面積。這種效應可被描述為具有光學寬度的指小於指的物理寬度。
產生這種效果的原因是,在指表面反射的某些光可以重新進入電池區域。 這可能是由於光從指側壁以淺角度反射。 這也可能是由於光被玻璃/空氣表面內部反射回電池表面上。
最終,當將遮蔽損耗、指電阻損耗和射極電阻損耗的總和最小化時,則可以得到理想的指數。
圖9描繪了非HDM五個匯流排條156.75mm電池的遮蔽損耗、電阻損耗及其總和的密度。圖7描繪了含有單個化條帶156.75 x 31.35 mm疊瓦HDM的遮蔽損耗、電阻損耗及其總和的密度。
圖7和9基於以下參數: (1) 指物理寬度:40 µm (2) 指光學寬度:物理寬度的40% (3) 指線性電阻:0.4 Ω/ cm (4) 電流密度:37 mA / cm2 (5)  射極片電阻:80 Ω/平方
圖9中的非HDM五個匯流排條設計的有效指長為15.25 mm。圖7中的HDM疊瓦設計的有效指長為30.50 mm。
檢查圖7和圖9顯示,與五個匯流排條的非HDM設計相比,降低HDM單一設計的指間距可減少總損耗。 特別是,圖9提出了非HDM五個匯流排條設計的最佳指間距為1.20 mm。 這是相較於HDM疊瓦設計電池的最佳指間距為1.00 mm。
可以用於根據實施例的疊瓦HDM太陽能電池設計的指間距的示例可包括但不限於:0.7mm、0.75mm、0.8mm、0.85mm、0.9mm、0.95mm、1.00mm、1.05mm 、1.10mm、1.15mm和1.20。 指間距的特定示例可包括但不限於1.10mm、1.11mm、1.12mm、1.13mm、1.14mm、1.15mm、1.16mm、1.17mm、1.18mm和1.19mm。
儘管圖7描述了由寬度為156.75 mm的非HDM工件單個化而得到的疊瓦HDM太陽能電池設計,但是實施例不限於此特定示例。例如, 非HDM工件的寬度可為160 mm、164 mm或158 mm。
值得注意的是,在雙面HDM電池的情況下,通過實施例所獲得的期望結果可更加顯著。在那裡,電池的後側也以類似的電極設計(包括指和匯流排條)來製造,以便捕獲入射到電池後側的光(例如,反射光或環境光)。
值得注意的是,指寬的較小尺寸目前約為35μm。 進一步減小指寬的趨勢將增加R_LIN,從而增加R_LOSS,這種影響對於疊瓦HDM電池可能變為更加明顯。 因此,在減小指寬方面的進展,在鼓勵減小指間距方面對疊瓦HDM電池會比非HDM電池更加顯著。 也就是說,減小的指寬會需要進一步減小指間距的設計,因此電池有多於130個指。
還要注意的是,特定實施例可以不具有前側匯流排條。 根據一些實施例,導電指可存在於前表面上,而匯流排條存在於後表面上。通過疊瓦組裝的相鄰單個化條帶的後側匯流排條建立與該條帶的前側指的電連接(例如,使用ECA)。
如以上詳細描述的,HDM方法的特點是可以將個別條帶疊瓦佈置成串。現在提供對關於將單個化條帶組裝成串以及將串組裝成更大的太陽能模組的進一步討論。
圖3A、3B和3C示出了包括複數個條帶302的串300的實施例,每個條在長邊上連接至少一個其他條帶。圖3A示出了串300的前表面,而圖3B示出了串300的後表面,圖3C示出了串300的側視圖。
在圖3A至3C的實施例中,串300具有串聯連接的十七個條帶302。 然而,串300中的條帶302的數量可在不同實施例之間變化。 例如,串300可包括兩個條帶302、十個條帶302、二十個條帶302或五十個條帶302。
串300中的條帶302的數量影響該串的電特性。當條帶302被串聯連接以形成串300時,個別條帶的電流與整個串的電流相同,但是每條帶的電壓是被相加的。在簡化的示例中,10個條帶的一串,其中每條帶在5伏和5安培下工作,將具有50伏的工作電壓和5安培的工作電流。 因此,將條帶302佈置成串300有利於適應光伏材料的電特性。
如圖3C中所示,條帶302被以重疊或瓦鋪配置佈置在串300內。更詳細地說,在串300中條帶302的前匯流排條304與相鄰條帶的後匯流排條306重疊並電和機械耦合。在實施例中,條帶302可以通過諸如金屬焊料或導電粘合劑(ECA)的材料連接。
ECA作為串300中的耦合材料具有多個優點。ECA的聚合物組分可以提供比金屬材料更高的彈性,當材料收縮和膨脹時,ECA可以幫助在各種熱狀態下保持機械結合。換句話說,ECA可以緩解由於配合材料之間的熱膨脹係數(CTE)不匹配而引起的機械應力。可以將ECA配製為可溶於各種溶劑,這有助於各種製造工藝。 此外,ECA黏合劑接合通常比例如焊料接合更具彈性,因此ECA接合在組裝過程中不易破裂。
在條帶通過ECA連接的實施例中,ECA可以是高度載有導電金屬顆粒的固化粘合劑聚合物製劑。 在一些實施例中,導電金屬是銀。 ECA可以是熱固性丙烯酸酯粘合劑。粘合劑可用一種或多種如環氧樹脂、酚-甲醛、脲-甲醛等硬化組分進行修改以提供硬度和接合強度。在一個示例中,ECA是低溫固化單組分粘合劑。
當條帶302串聯連接在串300時,在串遠端處的匯流排條被暴露出。 換言之,與串300中間的條帶302不同,於串最外面的條中的一個匯流排條被連接至相鄰的條帶,但是匯流排不連接到條帶。 相反,在本揭露的實施例中,最外面的條帶302的匯流排條被連接到導電帶。
在本揭露的實施例中,系統利用1/5的條帶寬度對比於1/3、1/4或1/6的電池條帶寬度。
在此,寬度是指從電池切下後的條帶的寬度。 電流是條帶所產生與條帶的大小成正比的電流量。 指携帶電流穿過條帶,而遮蔽則是該條帶被指所遮蓋的區域。 電池利用率是在串中條帶彼此不重疊的區域的數量。放置的數量是從電池中切出多少條帶並被放置成串。填充因子存在於串中的光伏材料與其最大發電潛力相比的效率。
在示例中,模組被配置為具有與傳統模組(Voc,Vmp,Isc,Imp,Power)相似的電流和電阻特性。 但是,針對不同的應用,模組可被設計為具有不同的特性。 例如,根據本揭露的實施例所創建的模組可被配置為用於太陽能跟踪應用具有較低的電壓和較高的電流,以及具有較高的電壓和較低的電流以用於與模組功率電子設備介面接的住宅模組。
在一個示例中,使用條帶寬度為31.2mm的實施例,其優化模組特性,並且提供與標準模組相似的電流和電壓。這允許實施例利用標準逆變器、電子設備和機械特徵。
圖3A示出了在串300中最下面的條帶302暴露出的前匯流排條304上的前帶308。 如圖3B所示,後導電帶310覆蓋串300最上面的條帶302的後匯流排條306。後匯流排條306是條帶302的後終端,前匯流排條304是前終端。 每個前帶和後帶308和310都具有從各自的帶突出的兩個突片。 在平面取向上,前帶308的突片從串300向外延伸,而後帶310的突片從後帶310所被附接的邊緣條帶向內延伸至串的中間。 在一個實施例中,條帶302的前表面具有正極性,而後表面具有負極性。但是,其他實施例也是可能的,其中暴露出的前孔表面具有負極性,而後表面具有正極性。
圖4示出了兩個相鄰的條帶302在串300中彼此連接的重疊接頭的詳細視圖。條帶302的重疊開放端具有交錯不平的輪廓,這是由於使用兩個不同的操作如劃線操作和斷開操作來分離PV電池的分離過程所致。切割操作會導致在邊緣的插入部分中有切縫,而斷開操作不會導致切縫,從而導致圖4中可見的輕微突出。
在串300中的每個條帶302具有PV材料314的厚度和背襯材料316的厚度。在許多傳統PV電池中,背襯材料316為鋁,但是實施例不限於該材料。背襯材料316露出背匯流排條306,並且ECA 312層將背匯流排條306機械地和電氣地耦合到重疊條帶302上的前匯流排條308。
圖5是光伏裝置的簡化圖,其包括被佈置成複數個區域318的複數個串300。 如圖5所示的具體實施例中,每一串300具有彼此串聯連接的20個條帶302。 每一串300通過佈置在並聯連接串的相對端部的電氣匯流排320與另外五個串並聯連接,使得總共六個串並聯連接。 每組被並聯連接的串300在本文中被稱為“區域” 318。
區域318中串300的數量可以在實施例之間變化。 例如,其他實施例在區域318中可有兩個到十個串300。另外,在模組中區域318的數量可以在實施例之間變化。
如圖5所示的實施例具有四個獨立的區域318,並且每個區域被並聯耦合到個別區域中的五個串300的單二極體322所保護。傳統的PV模組配置被分成全部彼此串聯連接的多個電池,並且二極體被周期性地佈置在串聯連接的電池的子組之間。在這樣的傳統佈置中,當單個電池失能時,例如被遮蔽,所有被耦合到相同二極體的其他電池也會失能。換句話說,在傳統裝置中,當一個電池失能時,所有被耦合到保護該失能電池的二極體的電池也會失能。
相比之下,圖5所示的PV裝置具有較佳的性能。每個二極體322以比傳統裝置更有效的方式保護區域318。類似於傳統裝置,當第一串300中的一個或多個條帶302失能時,所有在第一串的條也一併失能,並且電流流過該二極體322。然而,與傳統裝置不同,所有存在於相同區域318且沒有任何失能的條帶302的其它串300繼續產生正常水平的能量。因此,在本申請的實施例中,由於遮蔽所導致的能量損失比傳統裝置低得多。
圖6示出了包括圖5所示的光伏組件的PV模組324的示例。 更詳細地說,圖6中所示的PV模組324具有20個串300,並且每個串300具有二十(20)個彼此機械和電氣串聯連接的條帶302。
返回圖3A和3B,串300的前匯流排條304被前帶308所覆蓋,而後匯流排條306被後帶310所覆蓋。帶在PV串300的個別匯流排條和電氣匯流排320之間機械和電氣連接。
圖10是示出根據一實施例的通用處理流程1000的簡化圖。在1002,提供了載有複數個沿第一軸平行定向的薄導電指的半導體基板。在每一端部,薄導電指在離基板邊緣一小段距離處停止。
在1004,沿著第二軸平行地形成複數個前匯流排條,以與薄導電指重疊。其中,兩個邊緣前匯流排條重疊並覆蓋基板每一端部的個別距離。 其他一個或多個前匯流排條位於基板表面的內部區域中,遠離端部,與基板內部區域中的連續薄導電指重疊。
在1005,可以在基板上形成附加結構。 例如,後側匯流排條可以形成在基板的後側上。尤其是,那些後側匯流排條可明確的被形成對準於各個條帶將被分離所沿著的線的預期位置。
在1006,沿著分離線將基板分離成具有各自的前側匯流排條的個別條帶。特別地,第一端部條帶包括覆蓋在基板的第一邊緣處的距離的第一前匯流排條。第二端部條帶包括覆蓋在基板與第一邊緣相對的第二邊緣處的距離的第二前匯流排。第三端部條帶包括存在於基板內部區域中的第三匯流條。
在1008,將第一、第二和第三條帶組裝成太陽能模組。
現在討論根據某些實施例將分離的條帶組裝成模組。 圖11示出PV模組1100的實施例的組件的後表面視圖。
PV模組1100的外表面是玻璃面板1102,並且半透明層壓材料1104被設置在玻璃面板和PV元件的開孔側之間。在一實施例中,層壓材料1104是PV模組1100組裝時封裝PV元件的EVA膜片。當組裝PV模組時,可對圖11中所示的模組組件施加熱、真空和壓力,以便層壓材料密封並接合到相鄰的組件。
PV元件直接設置在層壓板1104正下方。在本揭露的實施例中,PV元件是複數個串300,每一串包括相應的複數個條帶302。每一串300具有設置在串的第一端部的前帶700,和設置在串相對第二端部上的後帶800。
匯流排配線1106設置在複數個串300的後面。匯流排配線1106將PV串300的前終端和後終端連接至PV模組的電路。儘管本實施例使用扁平匯流排配線1106,但是其他實施例可以使用其他導線形狀。
複數個絕緣貼片1108被設置在PV材料和扁平匯流排配線1106之間,以防止PV模組1100的導電元件之間的電短路。第二半透明元件1004被設置在匯流排配線1106和絕緣貼片1108之後,後面是形成PV模組的外部背襯表面的背片1110。
圖12示出了PV模組1100的後視圖。如圖12的實施例中所示,五個PV串300彼此平行地佈置以創建四個獨立的區域318。每個區域318的每個PV串300具有彼此對準的相對終端部,並共同耦合至同一匯流排配線1106。 區域的佈置使得一個區域318的前終端與相鄰區域的後終端相鄰。
例如,圖12左下部分中的區域的前終端部緊鄰左上部分或圖中所示的X方向上的區域的後終端部。 類似地,每個區域318的後終端部和前終端部的取向與Y方向上相鄰區域的取向相反。 結果,每個區域318的每個終端部與具有相反極性的另一區域的終端部相鄰。
圖13是圖12的部分A的詳細視圖,其示出了根據本揭露實施例的PV串300的PV條帶302的前終端部。前帶700的匯流排介面部分704通過ECA 312層耦合到前匯流排條304。前帶700的突片702延伸越過PV條帶302的邊緣一段預定距離,該預定距離可以是1.0mm或更小,或在0.5mm至2.0mm間。 該預定距離產生的間隙可防止PV材料的損壞。
在一個實施例中,使用工具在PV條帶302的邊緣形成彎曲前帶700。該工具可以確保在將帶材料固定在適當位置的同時提供預定間隙,以便在彎曲突片時不會損害ECA接合。 突片可以從平面方向彎曲180度,因此相較於帶700的平面方向,它們沿相反的方向延伸。
當組裝PV模組1000時,前帶700可見的朝外部分上存在不透明的塗層材料708。前帶的整個匯流排介面部分704被塗有不透明塗層708。此外,突片702的部分被塗有塗層708,因此突片的塗層部分與匯流排介面部分704上的塗層相鄰。突片702被塗覆的部分是在PV條帶302的邊緣上折疊的部分。在導電帶700的那些區域中存在塗層材料的實施例中,在組裝好的PV模組1000中看不到導電帶的反射表面。
絕緣貼片1108被設置在PV條帶300的後表面和前帶700的內表面之間。絕緣貼片1108可以通過如EVA的粘合劑或層壓材料被固定到PV條帶302的後表面。在圖12所示的實施例中,從匯流排介面704的表面延伸的導電突起710與PV條帶302的前匯流排條304對準,並在前帶700和PV條帶302之間提供低電阻連接。 相對地,突片702上的導電突起710向內面向絕緣貼片1008。 在圖12所示的實施例中,突片704上的導電突起710不在帶700和PV條帶302的匯流排間的導電路徑中。
與傳統太陽能模組相比,導電帶提供的優點之一是降低電流密度。 匯流排介面部分704和804的實施例覆蓋了前匯流排的整個表面,並且ECA存在於匯流排介面部分和匯流排之間的大部分或全部空間中。因此,這樣的實施例的電流密度遠低於傳統模組的電流密度,在傳統模組中,導電介面的區域限於連接導線的焊料連接。
回到圖12,佈置在模組的頂邊上的PV串300的外邊緣上的前帶700的突片702連接至第一平匯流排配線1106。類似地,沿頂邊的後帶800的突片802耦合至 第二匯流排配線1106。相對地,沿模組1100的底邊佈置的個別前帶和後帶700和800的突片702和802通常耦合到同一匯流排配線1106。類似地,相鄰區域318的相鄰邊緣的前帶700和後帶800通常耦合到同一匯流排配線1106。
前帶和後帶的突片與匯流排配線1006間的連接可以是焊料連接或ECA連接。當存在ECA連接時,設置在突片上的導電突起可以與ECA材料對準。在一些實施例中,導電帶的突片上的導電突起可以存在於與相同帶的匯流排介面部分上的導電突起的帶的相對面上。換句話說,帶的突片上的導電突起可以在與帶的匯流排介面上的導電帶的相反的面上。
圖14是圖12截面B的詳細視圖。並且示出了相鄰PV串300的帶組態。後帶800的匯流排介面804耦合到邊緣條帶302的後匯流排條306,使得後帶的塗覆表面從PV材料的後表面面向外。在一個實施例中,絕緣貼片1108耦合到PV材料的後表面,且可以通過諸如EVA的粘合劑或層壓材料來保持。
後帶800的突片802延伸遠離匯流排介面804,在絕緣片1108上折疊,並被耦合到該匯流排配線1106。前帶700的突片702從它們被附接的條帶的前面折疊至後帶800被附接到條帶302後表面。
因此,附接到第一串300的後帶800的突片802與相鄰於第一條帶的第二串300的前帶700的突片702平行地對準。 因此,在PV串300的相對終端彼此相鄰的實施例中,個別導電帶的突片沿相同方向佈置並且通常耦合至同一匯流排配線1106。
回到圖12,PV模組1100中組件有效且獨特的佈置提供了許多技術優勢。如圖5所示,使用相同的匯流排材料1106從相鄰區域318的相對極來連接導電帶的突片,實現了分離區域之間的同時串聯連接以及同一區域內的串300之間的並聯連接,如圖5所示, 同時減少了面板中的連接數量和材料數量。 因此,根據本揭露的實施例的PV模組1100是高效且可靠的。
另外,面板1100的面板佈置的元件提供了PV面板,該PV面板不具有從面板的孔側可見的反射表面。每個串中瓦鋪的PV條帶隱藏了傳統面板中可見的金屬匯流排條。儘管在PV串300的每一端部的PV條帶302具有一個暴露出金屬匯流排條的匯流排區域,但是本揭露的實施例用導電帶完全覆蓋該匯流排條,且在組裝好的PV模組中導電帶可見的所有表面皆被不透明的塗層材料覆蓋。同時,PV串被佈置在面板中,使得在相鄰的條帶和串之間不存在大於幾毫米的間隙,並且所存在的間隙尺寸最小。可以連接PV模組的組件以形成機械子結構,該機械子結構在層壓過程中將組件保持在原位,以確保間隙和對準保持在高公差範圍內。
除了導電帶的塗覆表面之外,從PV模組1100的孔側看不到匯流排配線。根據本揭露的一個實施例,從PV模組1100的孔側只能看到的唯一反射元件是穿過PV材料表面上的指,且該指太小而無法在10英尺或以上的距離被看到,因此從典型PV裝置的大多數觀察位置上,指都不會被視為反射面。
在一些實施例中,太陽能模組可以使用不具有包含太陽能電池上導電材料的匯流排,或「無匯流排條」電池的PV條帶。 例如,實施例可以使用從諸如設計專利申請29/646,603和29/646,604中所示的電池之類的電池切下的條帶,其每一個均通過引用併入本文。 在這樣的實施例中,導電帶可以被耦合到與通常應用導電匯流排材料的區域相對應的區域,該區域可被稱為匯流排區域。導電帶和無匯流排條的條帶的匯流排區域之間的導電介面可以是ECA材料,ECA材料與被定向垂直於條接頭的導電指相接。與帶有印刷匯流排條的電池相比,無匯流排條電池具有許多優勢,包括成本較低以及在指與相鄰的與ECA重疊並耦合的電池之間的優越電氣連接。
以上是具體實施例的完整描述,但是可以使用各種修改、替代構造和等同形式。儘管已經使用選定的步驟順序描述了以上內容,但是可以使用所描述的步驟的任何元素以及其他元素的任何組合。 另外,取決於實施例,某些步驟可以被組合和/或省略。
當然,可有其他變化、修改和替代。 因此,以上的描述和說明不應被視為限制由所附申請專利範圍所限定的本發明的範圍。
100:太陽能電池 102、108、304、306、806:匯流排條 104:長邊 106:矩形條 108:凹陷部 110:相對邊 112:指 150:間距 200:疊瓦HDM組件 202:電連接 300:串 302:條 帶 308、310、700、800、580:帶 312:ECA層 314:PV材料 316:材料 318:區 域 320:電氣匯流排條 322:二極體 324、1100:PV模組 1000:通用處理流程 1002、1004、1006、1008:步驟 1100:面板 1102:玻璃面板 1104:層壓板、層壓材料 1106:匯流排配線 1108:絕緣貼片 702、802:突片 704、804:匯流排介面 708:塗層 710:導電突起 802:金屬指 812:電子 814:射極擴散 815:選擇性射極
圖1示出了高密度太陽能模組(HDM)的單個化太陽能電池的簡化透視圖。
圖2示出了單個化太陽能電池在較大的疊瓦組件中的位置的分解圖。
圖3A、3B和3C分別示出了光伏串的前表面、側表面和後表面。
圖4示出了在一串中重疊的光伏條帶。
圖5示出了具有四個分區域的光伏模組的簡化圖。
圖6示出了組裝後的光伏模組。
圖7示出了根據一實施例的疊瓦條帶的功率損耗與指間距的關係圖。
圖8示出了含有五個匯流排條的非疊瓦太陽能電池前側的簡化透視圖。
圖8A示出了於圖8中非HDM太陽能電池的放大截面圖。
圖9示出了圖8之太陽能電池的功率損耗與指間距的關係圖。
圖10示出了概括根據一個實施例的處理流程的簡化圖。
圖11示出了光伏模組的分解圖。
圖12是沒有背板的光伏模組的後視圖。
圖13示出了於串的端部折疊的導電帶示意圖。
圖14示出了導電帶結構示意圖。
100:太陽能電池
102、108:匯流排條
112:指
200:疊瓦HDM組件
202:電連接

Claims (20)

  1. 一種裝置,包含: 一第一單個化矩形矽光伏材料,具有一前表面、一長邊和一短邊; 一第一單獨匯流排條,在靠近該長邊的該第一單個化矩形矽光伏材料邊緣的該前表面上;以及 複數個平行導電指,覆蓋在該前表面上並與該匯流排條相交,該複數個平行導電指被以小於1.2 mm的一指間距隔開。
  2. 如請求項1所述的裝置,其中,該複數個導電指包含銀。
  3. 如請求項1所述的裝置,其中,該指間距大於0.7mm且小於1.2mm。
  4. 如請求項1所述的裝置,還包括: 一第二單個化矩形矽光伏材料,其一後表面沿該長邊與該第一匯流排條重疊,以形成一疊瓦條,該第二單個化矩形矽光伏材料包括: 一前表面; 一第二單獨匯流排條,在靠近一長邊的該第二單個化矩形矽光伏材料的一邊緣的該前表面上;以及 一第二複數個平行導電指,覆蓋在該前表面上並與該第二匯流排條相交,該第二複數個平行導電指以該指間距隔開。
  5. 如請求項4所述的裝置,其中,從含有該第一單獨匯流排條和該第二單獨匯流排條的一工件切割出該第一單個化矩形矽光伏材以及該第二單個化距形矽光伏材料。
  6. 如請求項4所述的裝置,其中,從具有一寬度介於約156-166mm之間的一工件切割出該第一單個化矩形矽光伏材料和該第二單個化矩形矽光伏材料。
  7. 如請求項6所述的裝置,其中,該指間距約為1.00mm。
  8. 如請求項4所述的裝置,其中,該第一複數個平行導電指的每一個和該第二複數個平行導電指的每一個的寬度約為0.35µm。
  9. 如請求項4所述的裝置,其中,該第一複數個平行導電指的每一個具有約30.50mm的一有效長度。
  10. 如請求項1所述的裝置,其中,該第一單個化矩形矽光伏材料是雙面的。
  11. 一種方法,包括: 提供含有光伏矽材料的一集成工件,該光伏矽材料承載有: 複數個平行導電指,以約為0.7至1.19 mm的一指間距隔開;以及 複數個平行匯流排條,與該複數個平行導電指相交;以及 將該集成工件切割成一第一高密度模組(HDM)太陽能電池,其承載該複數個匯流排條的一第一匯流排條以及具有一有效長度的該複數個導電指的一第一部分。
  12. 如請求項11所述之方法,還包括: 將該集成工件切割成一第二高密度模組(HDM)太陽能電池,其承載該複數個匯流排條的一第二匯流排條以及具有該有效長度的該複數個導電指的一第二部分;以及 將該第二HDM太陽能電池與該第一匯流排條重疊,以建立一第一串聯電連接。
  13. 如請求項12所述之方法,其中,該第一串聯電連接以粘合劑建立。
  14. 如請求項12所述之方法,其中,該第一串聯電連接以焊料建立。
  15. 如請求項12所述之方法,還包括: 放置該第一串聯電連接以與佈置在一第二串聯電連接中的複數個附加的HDM太陽能電池並聯電連通,且各具有以該指間距隔開的複數個平行導電指並且具有該有效長度。
  16. 如請求項12所述之方法,其中: 該集成工件有156.75mm的一尺寸; 該有效長度約為30.50mm。
  17. 如請求項12所述之方法,其中,該第一HDM太陽能電池和該第二HDM太陽能電池是雙面的。
  18. 一種設計高密度模組(HDM)太陽能電池的方法,該方法包括: 於一第一單個化矩形矽光伏材料上,降低一第一指間距以及增加具有一第一有效長度的一第一複數個平行導電指的一第一指數,其分別相對於: 在承載複數個匯流排條的相應集成工件上的具有一第二有效長度的一第二複數個導電指的一第二指間距和一第二指數,該第二有效長度短於該第一有效長度, 其中,該第一單個化矩形矽光伏材料的一前表面包括與具有該第一指數且被該第一指間距所隔開的該第一複數個平行導電指相交的一單獨匯流排條,以及 其中,該第一指間距為約0.7mm和1.9mm間。
  19. 如請求項18所述之方法,其中,該相應集成工件的尺寸為156.75mm。
  20. 如請求項18所述之方法,其中,該HDM太陽能電池為雙面的。
TW109118512A 2019-06-03 2020-06-02 低指間距疊瓦太陽能電池 TW202112054A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962856636P 2019-06-03 2019-06-03
US62/856,636 2019-06-03

Publications (1)

Publication Number Publication Date
TW202112054A true TW202112054A (zh) 2021-03-16

Family

ID=73550030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118512A TW202112054A (zh) 2019-06-03 2020-06-02 低指間距疊瓦太陽能電池

Country Status (3)

Country Link
US (1) US20200382054A1 (zh)
TW (1) TW202112054A (zh)
WO (1) WO2020247517A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089088B1 (ko) * 2008-09-12 2011-12-06 주식회사 엘지화학 전력 손실이 최소화된 태양전지용 전면 전극 및 이를 포함하는 태양전지
WO2010137854A2 (ko) * 2009-05-26 2010-12-02 주식회사 엘지화학 고효율 태양전지 전면 전극의 제조 방법
TWI643351B (zh) * 2013-01-31 2018-12-01 澳洲商新南創新有限公司 太陽能電池金屬化及互連方法
KR101739404B1 (ko) * 2015-08-07 2017-06-08 엘지전자 주식회사 태양 전지 패널
WO2017117136A1 (en) * 2015-12-30 2017-07-06 Sunedison, Inc. Advanced interconnect method for photovoltaic strings and modules
WO2017117125A1 (en) * 2015-12-31 2017-07-06 Sunedison, Inc. Systems and methods for production and testing of segmented pv cells

Also Published As

Publication number Publication date
US20200382054A1 (en) 2020-12-03
WO2020247517A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US10115839B2 (en) Module fabrication of solar cells with low resistivity electrodes
US10164127B2 (en) Module fabrication of solar cells with low resistivity electrodes
EP2917940B1 (en) High efficiency configuration for solar cell string
EP2911206B1 (en) Solar cell module and method for manufacturing the same
US20100243024A1 (en) Solar cell, solar cell module and solar cell system
US20180019349A1 (en) Gridless photovoltaic cells and methods of producing a string using the same
US20090050190A1 (en) Solar cell and solar cell module
US20140124013A1 (en) High efficiency configuration for solar cell string
US20160079459A1 (en) Solar cell module
WO2016095859A1 (zh) 太阳能电池片、太阳能电池组件和旁路二极管的组装方法
US20100243027A1 (en) Solar cell and solar cell module
KR20190093173A (ko) 광전지 모듈 및 시스템 효율에 대한 최적화된 인터페이스
KR102244597B1 (ko) 태양 전지 모듈
US10115852B2 (en) Solar cell module
US11189738B2 (en) Solar cell side surface interconnects
WO2023143144A1 (zh) 光伏组件及其制备方法
KR101788160B1 (ko) 태양 전지 모듈
TW202112054A (zh) 低指間距疊瓦太陽能電池
KR101806972B1 (ko) 태양 전지 모듈
US10622502B1 (en) Solar cell edge interconnects
JP7483382B2 (ja) 太陽電池モジュール
WO2017056483A1 (ja) 太陽電池モジュール
KR101816151B1 (ko) 태양 전지 모듈
KR101816180B1 (ko) 태양 전지 모듈
JP2022149039A (ja) 太陽電池モジュール