TW202111657A - 醫療資源整合系統、計算機裝置及醫療資源整合方法 - Google Patents
醫療資源整合系統、計算機裝置及醫療資源整合方法 Download PDFInfo
- Publication number
- TW202111657A TW202111657A TW108131686A TW108131686A TW202111657A TW 202111657 A TW202111657 A TW 202111657A TW 108131686 A TW108131686 A TW 108131686A TW 108131686 A TW108131686 A TW 108131686A TW 202111657 A TW202111657 A TW 202111657A
- Authority
- TW
- Taiwan
- Prior art keywords
- prediction result
- data
- medical
- storage device
- deep learning
- Prior art date
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Electrotherapy Devices (AREA)
- Hardware Redundancy (AREA)
Abstract
一種醫療資源整合系統、計算機裝置及醫療資源整合方法。醫療資源整合系統包括遠端儲存裝置與計算機裝置。在預測模式中,計算機裝置發送第一讀取請求至遠端儲存裝置並從遠端儲存裝置接收醫療影像資料。計算機裝置經由深度學習模型分析醫療影像資料並產生第一預測結果。計算機裝置經由操作介面修改第一預測結果,以更正第一預測結果中的預測誤差。計算機裝置根據修改後的第一預測結果發送更新請求至遠端儲存裝置以更新病歷資料。
Description
本發明是有關於一種用於醫療領域的電子系統,且特別是有關於一種醫療資源整合系統、計算機裝置及醫療資源整合方法。
隨著網路及人工智慧的應用越來越普及,傳統的醫療資源的分配相對缺乏效率。例如,在醫療儀器方面,傳統的醫療儀器主要都是仰賴醫師或檢驗師進行人工操作與結果判讀。因此,儀器的診斷結果容易受到人為因素影像。例如,醫師或檢驗師的精神狀態與專業能力會嚴重影響儀器的操作與診斷結果。此外,在資療資源(例如病歷資料)的分享上,傳統上不同醫院(或診所)之間不會主動分享病患的病歷資料。因此,病患往往因轉診而導致病歷資料短缺。
本發明提供一種醫療資源整合系統、計算機裝置及醫療資源整合方法,可有效對包含醫療影像資料與病歷資料的醫療資源進行整合。
本發明提供一種醫療資源整合系統、計算機裝置及醫療資源整合方法,可藉由深度學習模型來分析醫療影像資料並可藉由操作介面對深度學習模型的預測結果進行修正,從而提高深度學習模型的訓練效率。
本發明的實施例提供一種醫療資源整合系統,其包括遠端儲存裝置與計算機裝置。所述遠端儲存裝置用以儲存醫療影像資料與病歷資料。所述計算機裝置耦接至所述遠端儲存裝置並且用以:在預測模式中,發送第一讀取請求至所述遠端儲存裝置並從所述遠端儲存裝置接收所述醫療影像資料;經由深度學習模型分析所述醫療影像資料並產生第一預測結果;經由操作介面修改所述第一預測結果,以更正所述第一預測結果中的預測誤差;以及根據修改後的所述第一預測結果發送更新請求至所述遠端儲存裝置以更新所述病歷資料。
本發明的實施例提供一種計算機裝置,其包括儲存裝置與處理器。所述儲存裝置儲存深度學習模型。所述處理器耦接至所述儲存裝置並且用以:在預測模式中,發送第一讀取請求至遠端儲存裝置並從所述遠端儲存裝置接收醫療影像資料;經由所述深度學習模型分析所述醫療影像資料並產生第一預測結果;經由操作介面修改所述第一預測結果,以更正所述第一預測結果中的預測誤差;以及根據修改後的所述第一預測結果發送更新請求至所述遠端儲存裝置以更新病歷資料。
本發明的實施例提供一種醫療資源整合方法,其包括:在預測模式中,發送第一讀取請求至遠端儲存裝置並從所述遠端儲存裝置接收醫療影像資料;經由深度學習模型分析所述醫療影像資料並產生第一預測結果;經由操作介面修改所述第一預測結果,以更正所述第一預測結果中的預測誤差;以及根據修改後的所述第一預測結果發送更新請求至所述遠端儲存裝置以更新病歷資料。
基於上述,在預測模式中,儲存於遠端儲存裝置的醫療影像資料可經由深度學習模型進行分析以產生第一預測結果。接著,第一預測結果可經由操作介面進行修改,以更正第一預測結果中的預測誤差。然後,根據修改後的第一預測結果,儲存於遠端儲存裝置的病歷資料可被更新。藉此,可有效提高醫療資源的整合效率與深度學習模型的訓練效率。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是根據本發明的一實施例所繪示的醫療資源整合系統的示意圖。請參照圖1,系統(亦稱為醫療資源整合系統)10包括計算機裝置11與儲存裝置(亦稱為遠端儲存裝置)12。計算機裝置11可包括桌上型電腦、筆記型電腦、平板電腦、智慧型手機或Kiosk等具有資料傳輸、運算及顯示功能的計算裝置。本發明不限制計算機裝置11的類型。此外,計算機裝置11可經由任意類型的網路連接至遠端儲存裝置12。例如,若將計算機裝置11視為本地裝置,則遠端儲存裝置12亦可視為雲端儲存裝置。藉此,計算機裝置11可經由網際網路(Internet)連接至遠端儲存裝置12,以存取遠端儲存裝置12。
遠端儲存裝置12用以儲存資料。例如,遠端儲存裝置12可包括揮發性儲存媒體與非揮發性儲存媒體。揮發性儲存媒體可包括隨機存取記憶體(RAM)。非揮發性儲存媒體可包括唯讀記憶體(ROM)、固態硬碟(SSD)或傳統硬碟(HDD)等。須注意的是,在系統10中,計算機裝置11與遠端儲存裝置12的總數皆可以是一或多個,本發明不加以限制。
遠端儲存裝置12可用以儲存醫療影像資料101與病歷資料102。醫療影像資料101可包括至少一個病患的醫療影像資料101(1)~101(n)。例如,醫療影像資料101(1)可包括藉由對某一病患(亦稱為第一病患)執行內視鏡攝影、輸卵管攝影、超音波掃描、X光照射或腦部核磁共振攝影(MRI)等各式影像擷取技術所獲得的醫療影像。此醫療影像可反映第一病患的特定生理資訊,例如病患體內的臟器圖像、血管圖像、骨骼圖像或腦部圖像。在一實施例中,當第一病患到某一醫院進行腦部MRI後,經由核磁共振儀所擷取的醫療影像資料101(1)可藉由網路傳送至遠端儲存裝置12進行儲存。
在一實施例中,病歷資料102亦稱為電子病歷。病歷資料102可包括至少一個病患(包括第一病患)的病歷資料102(1)~102(m)。例如,病歷資料102(1)可包括第一病患的個人資料、就診紀錄、及/或特定項目的檢測結果等等。在一實施例中,病歷資料102(1)可包括第一病患的實際MMSE評分。例如,第一病患可執行簡短智能測驗(Mini-Mental State Examination, MMSE)。根據MMSE的執行結果,可獲得第一病患的實際MMSE評分。此MMSE評分可用來評估第一病患是否罹患失智症或類似疾病。
圖2是根據本發明的一實施例所繪示的計算機裝置的功能方塊圖。請參照圖2,計算機裝置11包括儲存裝置21、處理器22及輸入/輸出(I/O)介面23。儲存裝置21用以儲存資料。例如,儲存裝置21可包括揮發性儲存媒體與非揮發性儲存媒體。揮發性儲存媒體可包括RAM。非揮發性儲存媒體可包括ROM、SSD或HDD等。此外,儲存裝置21的總數可以是一或多個。
處理器22耦接至儲存裝置21。處理器22可以是中央處理單元(CPU)、圖形處理器(GPU),或是其他可程式化之一般用途或特殊用途的微處理器、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)或其他類似裝置或這些裝置的組合。處理器22可控制計算機裝置11的整體或部分操作。此外,處理器22的總數可以是一或多個。
I/O介面23耦接至處理器22。I/O介面23可包括螢幕、觸控螢幕、觸控板、滑鼠、鍵盤、實體按鈕、揚聲器、麥克風、有線網路卡及/或無線網路卡,且I/O介面23的類型不限於此。
在本實施例中,儲存裝置21儲存有深度學習模型24。深度學習模型24可具有神經網路架構。例如,深度學習模型24可以是以軟體模組的形式儲存於儲存裝置21。處理器22可運行深度學習模型24以對影像資料執行影像辨識並產生預測結果。在一實施例中,深度學習模型24亦可以是實作為硬體電路,例如GPU。在一實施例中,深度學習模型24亦可以是以軟體、韌體或硬體形式設置於處理器22內,本發明不加以限制。
處理器22可運行於預測模式與訓練模式。在預測模式中,處理器22可藉由深度學習模型24對影像資料進行分析以獲得相應的預測結果。在訓練模式中,處理器22可藉由訓練資料來對深度學習模型24進行訓練,以提高深度學習模型24的預測正確性。
圖3是根據本發明的一實施例所繪示的預測模式的示意圖。請參照圖1至圖3,當第一病患就診時,計算機裝置11的操作者(例如醫師或檢驗師)可操作計算機裝置11對第一病患進行診察及/或訪談。例如,處理器22可經由I/O介面23發送讀取請求(亦稱為預設讀取請求)至遠端儲存裝置12,以向遠端儲存裝置12請求下載第一病患的病歷資料102(1)。在一實施例中,所下載的病歷資料102(1)未帶有MMSE評分(因為第一病患尚未實際執行過MMSE)。因此,處理器22可進入預測模式。
在預測模式中,處理器22可經由I/O介面23發送讀取請求(亦稱為第一讀取請求)至遠端儲存裝置12,以向遠端儲存裝置12請求下載影像資料31。例如,影像資料31可包括第一病患的醫療影像資料101(1)。此外,醫療影像資料101(1)可包括第一病患的腦部MRI之影像資料。
處理器22可經由I/O介面23從遠端儲存裝置12接收影像資料31(與第一病患的病歷資料102(1))並將影像資料31輸入至深度學習模型24。深度學習模型24可分析影像資料31並產生預測結果(亦稱為第一預測結果)。例如,第一預測結果可包括所預測的第一病患的MMSE評分。須注意的是,相較於第一病患藉由實際執行MMSE而獲得的實際MMSE評分,由深度學習模型24所預測的MMSE評分可能存在預測誤差。
在一實施例中,操作者可選擇是否藉由計算機裝置11對第一預測結果進行修改。例如,操作者可根據影像資料31或現場訪談狀況來評估第一預測結果的正確性。若操作者認為第一預測結果的正確性不足,則操作者可指示處理器22藉由一個操作介面來修改第一預測結果,以更正第一預測結果中的預測誤差。例如,此操作介面藉由計算機裝置11的顯示器呈現。
圖4是根據本發明的一實施例所繪示的修改第一預測結果的示意圖。請參照圖1至圖4,若操作者認為預測結果32(即第一預測結果)的正確性不足,則操作者可安排第一病患當場執行MMSE並記錄第一病患的實際檢測資料41。例如,實際檢測資料41可包括第一病患的實際MMSE評分。
處理器22可獲得實際檢測資料41並將預測結果32與實際檢測資料41進行比較。根據比較結果,操作者可藉由操作介面401來下達操作指令。處理器22可藉由操作介面401接收操作指令並根據操作指令與比較結果對預測結果32進行修改。處理器22可輸出修改後的預測結果42(即修改後的第一預測結果)。接著,處理器22可根據修改後的預測結果42發送更新請求至遠端儲存裝置12,以請求更新遠端儲存裝置12中的病歷資料102(1)。例如,此更新請求可請求將第一病患的實際MMSE評分紀錄於遠端儲存裝置12中的病歷資料102(1)。
須注意的是,在另一實施例中,若操作者認為第一預測結果的正確性足夠,則第一預測結果中所預測的MMSE評分可直接被視為第一病患的實際MMSE評分並更新至遠端儲存裝置12中。此時,操作者可不要求第一病患現場執行MMSE且處理器22亦可不修改第一預測結果。
換言之,在上述實施例中,若第一病患就診時尚未執行過MMSE且第一預測結果具有足夠的正確性,則第一預測結果中所預測的MMSE評分可直接被視為第一病患的實際MMSE評分並更新至遠端儲存裝置12。此外,醫師或檢驗師也可直接根據所預測的MMSE評分來對第一病患的腦部狀態進行評估(例如評估罹患失智症的風險),而不需要花費額外時間等待第一病患當場或於其他時間執行MMSE。藉此,可有效提高看診效率。
須注意的是,在上述實施例中,是以第一預測結果包含MMSE評分作為範例進行說明。然而,在另一實施例中,第一預測結果亦可反映其他類型的疾病或生理狀態之評估資訊,本發明不加以限制。此外,在一實施例中,遠端儲存裝置12中至少部分的醫療影像資料101與至少部分的病歷資料102亦可做為訓練資料,以用於訓練深度學習模型24。
圖5是根據本發明的一實施例所繪示的訓練模式的示意圖。請參照圖1、圖2及圖5,在訓練模式中,處理器22可發送讀取請求(亦稱為第二讀取請求)至遠端儲存裝置12並從遠端儲存裝置12接收醫療影像資料51與病歷資料53。例如,醫療影像資料51可包括醫療影像資料101(1),且病歷資料53可包括病歷資料102(1)。例如,醫療影像資料51可包括第一病患的腦部MRI之影像資料,且病歷資料53可包括第一病患的實際MMSE評分。處理器22可經由深度學習模型24分析醫療影像資料51並產生預測結果(亦稱為第二預測結果)52。例如,預測結果52可包括由深度學習模型24根據醫療影像資料51所預測的MMSE評分。處理器22可比較預測結果52與病歷資料53。處理器22可根據預測結果52與病歷資料53之間的差異來更新深度學習模型24。例如,處理器22可根據預測結果52中所預測的MMSE評分與病歷資料53中第一病患實際的MMSE評分之間的差異來更新深度學習模型24的至少一權重參數,以提高深度學習模型24往後的預測正確性。
在一實施例中,處理器22可加密病歷資料102(1)以產生對應於第一病患的識別資料。例如,處理器22可加密第一病患的病歷號碼以產生對應於第一病患的識別資料。爾後,在訓練模式中,處理器22可根據此識別資料來產生上述第二讀取請求並藉由第二讀取請求來下載對應於第一病患的醫療影像資料101(1)與病歷資料102(1)。
在一實施例中,在下載醫療影像資料101(1)之後,處理器22可移除醫療影像資料101(1)中的個人資料(例如病歷號碼)並將不包含個人資料的醫療影像資料101(1)儲存於儲存裝置21中。爾後,在訓練模式中,處理器22可直接使用上述修改後的第一預測結果以及儲存裝置21中不包含個人資料的醫療影像資料101(1)來訓練深度學習模型24。藉此,可節省從遠端儲存裝置12讀取訓練資料的時間與網路流量。
在一實施例中,處理器22可持續更新遠端儲存裝置12或儲存裝置21中可參與深度學習模型24之訓練的訓練資料之資料量。響應於訓練資料之資料量大於一個門檻值,處理器22可啟動深度學習模型24的訓練模式。此外,為避免妨礙平日的看診,可設定在訓練資料之資料量大於門檻值後,於午休或夜間時段由處理器22自動進入訓練模式並在訓練模式中對深度學習模型24進行訓練。
在一實施例中,處理器22可對不同操作者的操作權限進行管理。例如,每一個操作者可使用唯一的帳號登入計算機裝置11。每一個帳號都對應一個操作權限。例如,越資深的操作者可具有越高的系統權限及/或其對於預測結果的修改可具有越高的參考價值。訪客則沒有任何修改權限。
在一實施例中,處理器22可記錄經由上述操作介面(例如圖4的操作介面401)對第一預測結果進行修改的操作者的帳號資訊。爾後,在訓練模式中,處理器22可根據此帳號資訊決定是否使用修改後的第一預測結果來訓練深度學習模型24。例如,若此帳號資訊反映修改者為資淺人員(判定帳號資訊不符合特定條件),處理器22可不將修改後的第一預測結果作為訓練資料。反之,若此帳號資訊反映修改者為資深人員(判定帳號資訊符合特定條件),則處理器22可自動將修改後的第一預測結果作為訓練資料以用於對深度學習模型24進行訓練。
在一實施例中,處理器22可設定一自動化流程來進行模型訓練之管理。例如,處理器22可將自動化流程設定為,由特定帳號、特定的年資範圍(例如年資為三年以上)及/或特定的看診能力值之修改者所修改的第一預測結果可直接作為訓練資料以用於對深度學習模型24進行訓練。
在一實施例中,處理器22可將自動化流程設定為全自動模式、半自動模式及/或全手動模式。在全自動模式中,處理器22可完全自動地選擇及/或過濾可用於對深度學習模型24進行訓練的資料。在半自動模式中,處理器22可根據由操作者決定的規則來選擇訓練資料及/或所選定的訓練資料須由操作者進一步確認。在全手動模式中,處理器22只根據操作者所選定的資料來對深度學習模型24進行訓練。
在一實施例中,處理器22可評估經訓練的深度學習模型24的決策精準度是否高於訓練前的深度學習模型24的決策精準度。若經訓練的深度學習模型24的決策精準度高於訓練前的深度學習模型24的決策精準度,處理器22可根據訓練結果更新深度學習模型24的至少一權重參數。此外,若經訓練的深度學習模型24的決策精準度不高於訓練前的深度學習模型24的決策精準度,則處理器22可將深度學習模型24的至少一權重參數回復到更新前的狀態。
圖6是根據本發明的一實施例所繪示的醫療資源整合方法的流程圖。請參照圖6,在步驟S601中,在預測模式中,發送第一讀取請求至遠端儲存裝置並從所述遠端儲存裝置接收醫療影像資料。在步驟S602中,經由深度學習模型分析所述醫療影像資料並產生第一預測結果。在步驟S603中,經由操作介面修改所述第一預測結果,以更正所述第一預測結果中的預測誤差。在步驟S604中,根據修改後的所述第一預測結果發送更新請求至所述遠端儲存裝置以更新病歷資料。
然而,圖6中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖6中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖6的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。
綜上所述,在預測模式中,儲存於遠端儲存裝置的醫療影像資料可被下載至計算機裝置並經由深度學習模型進行分析以產生第一預測結果。接著,第一預測結果可經由操作介面進行修改,以更正第一預測結果中的預測誤差。根據修改後的第一預測結果,儲存於遠端儲存裝置的病歷資料可被同步更新。此外,所述醫療影像資料與更新後的病歷資料亦可用於訓練計算機裝置中的深度學習模型,以提升深度學習模型的預測效率,藉此,可有效提高醫療資源的整合效率與深度學習模型的訓練效率。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10:醫療資源整合系統
11:計算機裝置
12:遠端儲存裝置
101、101(1)~101(n)、31、51:醫療影像資料
102、102(1)~102(m)、53:病歷資料
21:儲存裝置
22:處理器
23:輸入/輸出(I/O)介面
24:深度學習模型
32、42、52:預測結果
41:實際檢測資料
401:操作介面
S601~S603:步驟
圖1是根據本發明的一實施例所繪示的醫療資源整合系統的示意圖。
圖2是根據本發明的一實施例所繪示的計算機裝置的功能方塊圖。
圖3是根據本發明的一實施例所繪示的預測模式的示意圖。
圖4是根據本發明的一實施例所繪示的修改第一預測結果的示意圖。
圖5是根據本發明的一實施例所繪示的訓練模式的示意圖。
圖6是根據本發明的一實施例所繪示的醫療資源整合方法的流程圖。
10:醫療資源整合系統
11:計算機裝置
12:遠端儲存裝置
101、101(1)~101(n):醫療影像資料
102、102(1)~102(m):病歷資料
Claims (15)
- 一種醫療資源整合系統,包括: 一遠端儲存裝置,用以儲存一醫療影像資料與一病歷資料; 一計算機裝置,耦接至該遠端儲存裝置並且用以: 在一預測模式中,發送一第一讀取請求至該遠端儲存裝置並從該遠端儲存裝置接收該醫療影像資料; 經由一深度學習模型分析該醫療影像資料並產生一第一預測結果; 經由一操作介面修改該第一預測結果,以更正該第一預測結果中的一預測誤差;以及 根據修改後的該第一預測結果發送一更新請求至該遠端儲存裝置以更新該病歷資料。
- 如申請專利範圍第1項所述的醫療資源整合系統,其中該計算機裝置更用以: 在一訓練模式中,發送一第二讀取請求至該遠端儲存裝置並從該遠端儲存裝置接收該醫療影像資料與該病歷資料; 經由該深度學習模型分析該醫療影像資料並產生一第二預測結果; 比較該第二預測結果與該病例資料;以及 根據該第二預測結果與該病例資料之間的差異更新該深度學習模型。
- 如申請專利範圍第2項所述的醫療資源整合系統,其中該計算機裝置更用以: 加密該病歷資料以產生一識別資料;以及 在該訓練模式中,根據該識別資料產生該第二讀取請求,以請求該醫療影像資料與該病歷資料。
- 如申請專利範圍第1項所述的醫療資源整合系統,其中該計算機裝置更用以: 移除該醫療影像資料中的一個人資料;以及 使用修改後的該第一預測結果與不包含該個人資料的該醫療影像資料來訓練該深度學習模型。
- 如申請專利範圍第1項所述的醫療資源整合系統,其中該計算機裝置經由該操作介面修改該第一預測結果之操作包括: 獲得一使用者的一實際檢測資料;以及 比較該實際檢測資料與該第一預測結果並根據一比較結果修改該第一預測結果。
- 如申請專利範圍第1項所述的醫療資源整合系統,其中該計算機裝置更用以: 紀錄經由該操作介面修改該第一預測結果的一操作者的一帳號資訊;以及 根據該帳號資訊決定是否使用修改後的該第一預測結果來訓練該深度學習模型。
- 如申請專利範圍第1項所述的醫療資源整合系統,其中該計算機裝置更用以: 更新可參與該深度學習模型之訓練的訓練資料之資料量;以及 響應於該訓練資料之該資料量大於一門檻值,啟動該深度學習模型的一訓練模式。
- 一種計算機裝置,包括: 一儲存裝置,儲存一深度學習模型; 一處理器,耦接至該儲存裝置並且用以: 在一預測模式中,發送一第一讀取請求至一遠端儲存裝置並從該遠端儲存裝置接收一醫療影像資料; 經由該深度學習模型分析該醫療影像資料並產生一第一預測結果; 經由一操作介面修改該第一預測結果,以更正該第一預測結果中的一預測誤差;以及 根據修改後的該第一預測結果發送一更新請求至該遠端儲存裝置以更新一病歷資料。
- 如申請專利範圍第8項所述的計算機裝置,其中該處理器更用以: 在一訓練模式中,發送一第二讀取請求至該遠端儲存裝置並從該遠端儲存裝置接收該醫療影像資料與該病歷資料; 經由該深度學習模型分析該醫療影像資料並產生一第二預測結果; 比較該第二預測結果與該病例資料;以及 根據該第二預測結果與該病例資料之間的差異更新該深度學習模型。
- 如申請專利範圍第9項所述的計算機裝置,其中該處理器更用以: 加密該病歷資料以產生一識別資料;以及 在該訓練模式中,根據該識別資料產生該第二讀取請求,以請求該醫療影像資料與該病歷資料。
- 如申請專利範圍第8項所述的計算機裝置,其中該處理器更用以: 移除該醫療影像資料中的一個人資料;以及 在一訓練模式中,使用修改後的該第一預測結果與不包含該個人資料的該醫療影像資料來訓練該深度學習模型。
- 如申請專利範圍第8項所述的計算機裝置,其中該處理器經由該操作介面修改該第一預測結果之操作包括: 獲得一使用者的一實際檢測資料; 比較該實際檢測資料與該第一預測結果;以及 根據該實際檢測資料與該第一預測結果之間的差異修改該第一預測結果。
- 如申請專利範圍第8項所述的計算機裝置,其中該處理器更用以: 紀錄經由該操作介面修改該第一預測結果的一操作者的一帳號資訊;以及 在一訓練模式中,根據該帳號資訊決定是否使用修改後的該第一預測結果來訓練該深度學習模型。
- 如申請專利範圍第8項所述的計算機裝置,其中該處理器更用以: 更新可參與該深度學習模型之訓練的訓練資料之資料量;以及 響應於該訓練資料之該資料量大於一門檻值,啟動該深度學習模型的一訓練模式。
- 一種醫療資源整合方法,包括: 在一預測模式中,發送一第一讀取請求至一遠端儲存裝置並從該遠端儲存裝置接收一醫療影像資料; 經由一深度學習模型分析該醫療影像資料並產生一第一預測結果; 經由一操作介面修改該第一預測結果,以更正該第一預測結果中的一預測誤差;以及 根據修改後的該第一預測結果發送一更新請求至該遠端儲存裝置以更新一病歷資料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108131686A TWI774982B (zh) | 2019-09-03 | 2019-09-03 | 醫療資源整合系統、計算機裝置及醫療資源整合方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108131686A TWI774982B (zh) | 2019-09-03 | 2019-09-03 | 醫療資源整合系統、計算機裝置及醫療資源整合方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202111657A true TW202111657A (zh) | 2021-03-16 |
TWI774982B TWI774982B (zh) | 2022-08-21 |
Family
ID=76035471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108131686A TWI774982B (zh) | 2019-09-03 | 2019-09-03 | 醫療資源整合系統、計算機裝置及醫療資源整合方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI774982B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI779765B (zh) * | 2021-08-09 | 2022-10-01 | 宏碁股份有限公司 | 遠端診療系統和遠端診療方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109903839A (zh) * | 2019-02-22 | 2019-06-18 | 武汉凯德维斯生物技术有限公司 | 一种基于云平台的医疗影像阅片系统 |
-
2019
- 2019-09-03 TW TW108131686A patent/TWI774982B/zh active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI779765B (zh) * | 2021-08-09 | 2022-10-01 | 宏碁股份有限公司 | 遠端診療系統和遠端診療方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI774982B (zh) | 2022-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12002553B2 (en) | Systems and methods for designing clinical trials | |
Allaudeen et al. | Inability of providers to predict unplanned readmissions | |
US20190087544A1 (en) | Surgery Digital Twin | |
Vogenberg | Predictive and prognostic models: implications for healthcare decision-making in a modern recession | |
EP3646331A1 (en) | Methods and systems for generating a patient digital twin | |
JP2020513615A (ja) | 深層学習ニューラルネットワークの分散化された診断ワークフロー訓練 | |
WO2019103908A1 (en) | Automated information collection and processing of clinical data | |
US20110218815A1 (en) | Method of data mining in medical applications | |
Mark et al. | Decision-making in clinical medicine | |
Gao et al. | Chest X-ray image analysis and classification for COVID-19 pneumonia detection using Deep CNN | |
US20210035688A1 (en) | Medical information processing apparatus, medical information processing method, and electronic medical record system | |
CN113012803B (zh) | 计算机设备、系统、可读存储介质及医学数据分析方法 | |
JP7107375B2 (ja) | 状態遷移予測装置、予測モデル学習装置、方法およびプログラム | |
KR20110120962A (ko) | 포인트-어브-케어 인액티브 의료 시스템 및 방법 | |
CN110706815A (zh) | 一种影像报告的评估方法、装置及电子设备 | |
JP2020187687A (ja) | 医用情報処理装置 | |
US20230245779A1 (en) | System and method for peri-anaesthetic risk evaluation | |
Farrow et al. | Interpretation and reporting of predictive or diagnostic machine-learning research in Trauma & Orthopaedics | |
JP7482972B2 (ja) | ゲノムテストステータスを特定するシステム及び方法 | |
KR20220039881A (ko) | 전문가의 진단 능력 평가 방법, 인공지능 기반의 진단 보조 방법 및 이를 이용한 디바이스 | |
US20120165615A1 (en) | Apparatus and method for telemedicine | |
CN109545384A (zh) | 一种医学诊断方法及装置 | |
Meier et al. | Outcomes of nonoperative vs operative management of acute appendicitis in older adults in the US | |
TWI774982B (zh) | 醫療資源整合系統、計算機裝置及醫療資源整合方法 | |
JP7485512B2 (ja) | 医用情報処理装置、医用情報処理方法、及び医用情報処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |