TW202111551A - Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet) - Google Patents

Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet) Download PDF

Info

Publication number
TW202111551A
TW202111551A TW108132336A TW108132336A TW202111551A TW 202111551 A TW202111551 A TW 202111551A TW 108132336 A TW108132336 A TW 108132336A TW 108132336 A TW108132336 A TW 108132336A TW 202111551 A TW202111551 A TW 202111551A
Authority
TW
Taiwan
Prior art keywords
source
drain
channel
logic
current
Prior art date
Application number
TW108132336A
Other languages
Chinese (zh)
Inventor
S·M 朔貝爾
R·C 朔貝爾
提摩西 霍華 理察斯
T·R 哈德里克
亞倫 柯瑞
Original Assignee
美商電路種子有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商電路種子有限責任公司 filed Critical 美商電路種子有限責任公司
Priority to TW108132336A priority Critical patent/TW202111551A/en
Publication of TW202111551A publication Critical patent/TW202111551A/en

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

The present invention relates to novel inventive compound device structures, enabling charged-based logic gates. In particular, a switched p-channel and/or n-channel current field effect transistor, a solid state device based on a complimentary pair of a switched p-channel and n-channel current field effect transistors, and/or a solid state device based on a complimentary pair of a p-channel and n-channel current field effect transistors are used for constructing such logic gates. The switched current field effect transistor comprising a source and a drain, wherein the source and drain defines a channel, a diffusion that divides the channel into a source channel segment between the source and the diffusion and a drain channel segment between the drain and the diffusion, a source channel gate that is coupled to the source channel, and a drain channel gate that coupled to the drain channel. These novel device structures provide various improvements over the conventional devices.

Description

使用互補電流場效電晶體裝置和/或互補切換電流場效電晶體裝置之電荷傳遞邏輯Charge transfer logic using complementary current field effect transistor devices and/or complementary switching current field effect transistor devices

本發明涉及基於互補電流場效電晶體(complementary current field effect transistor,CiFET)和/或互補切換電流場效電晶體(complementary switched current field effect transistor,CsiFET)發展一新型電荷傳遞邏輯(charge transfer logic,CTL),以開發包括或閘、與閘、或非閘,與非閘的邏輯電路與各種正反器。這些電路構成任何具有邏輯功能性的實體數位裝置。如果需要的話,CiFET/CsiFET作為一邏輯裝置,獨特地伺服CTL流的同時也提供電壓於邏輯位準。這種新邏輯能力尤其是從PCT國際申請案PCT/US2015/042696及PCT/US2016/044800所揭露的CiFET裝置開發,該些PCT申請案的整體內容透過引用合併於此。The present invention relates to the development of a new type of charge transfer logic based on complementary current field effect transistor (CiFET) and/or complementary switched current field effect transistor (CsiFET), CTL) to develop logic circuits and various flip-flops including OR gate, AND gate, NOR gate, and NAND gate. These circuits constitute any physical digital device with logical functionality. If necessary, CiFET/CsiFET as a logic device, uniquely servos the CTL flow while also providing voltage at the logic level. This new logic capability is especially developed from the CiFET devices disclosed in PCT international applications PCT/US2015/042696 and PCT/US2016/044800, the entire contents of which are incorporated herein by reference.

相關技術描述Related technology description

由於CiFET裝置的獨特功能,包括跨阻轉換而將電流轉化為電壓,使得所存在的邏輯電路有了實現的可能。此邏輯的基礎是使用由標準互補金屬氧化物半導體(CMOS)數位處理節點(process node)所發展的CiFET裝置控制與操縱非常微小電流的能力。CiFET邏輯介面易收容CMOS處理,且CMOS電路允許現有CMOS目的功能與設計之間的無縫轉移,並將CTL納入其設計。Due to the unique function of the CiFET device, including transimpedance conversion to convert current into voltage, it is possible to realize the existing logic circuit. The basis of this logic is the ability to control and manipulate very small currents using a CiFET device developed by a standard complementary metal oxide semiconductor (CMOS) digital processing node (process node). The CiFET logic interface is easy to accommodate CMOS processing, and the CMOS circuit allows seamless transfer between the existing CMOS purpose function and design, and incorporates CTL into its design.

對於從前端類比訊號至將其數位化至電腦或數位訊號處理器(DSP)處理的系統整合問題乃至於處理後資料最終輸出應用至其他系統的整合問題而言,目前需要將數個個別的積體電路(IC)晶片一併結合於陶瓷基板上,以達至如此整合系統的功能。CiFET邏輯藉由從其類比功能至快速的類比數位(A/D)轉換器,而在類比世界與可以應用或整合至包含微電腦或DSP的複雜系統的CiFET邏輯之間提供路徑;其中前述類比數位(A/D)轉換器已揭露於PCT國際申請案PCT/US2016/067529且其整體內容透過引用合併於此。由於CiFET程序包括此系統鏈中全部的步驟,整個系統可設計成一晶片上的具有CiFET類比輸入及CiFET數位輸出的單一系統,而不需類比IC處理擴充。From the front-end analog signal to the system integration problem of digitizing it to a computer or digital signal processor (DSP), and even the final output of the processed data to other systems, it is currently necessary to integrate several individual products. The bulk circuit (IC) chip is combined on the ceramic substrate to achieve the function of such an integrated system. CiFET logic provides a path between the analog world and the CiFET logic that can be applied or integrated into complex systems including microcomputers or DSPs by going from its analog function to a fast analog-to-digital (A/D) converter; the aforementioned analog-to-digital The (A/D) converter has been disclosed in the PCT international application PCT/US2016/067529 and its entire content is incorporated here by reference. Since the CiFET program includes all the steps in the system chain, the entire system can be designed as a single system with CiFET analog input and CiFET digital output on a chip, without the need for analog IC processing expansion.

在設計中使用CiFET產生許多益處;包含廣的Vdd供應值、超寬的運作溫度範圍以及極高的反向器增益,使得CiFET電荷操縱邏輯能夠因為基於邏輯的電流不銜接寄生電容而非常高速地運作。The use of CiFETs in the design has many benefits; including a wide Vdd supply value, an ultra-wide operating temperature range and a very high inverter gain, which enables the CiFET charge manipulation logic to be very high-speed because the logic-based current does not connect to the parasitic capacitance. Operation.

現有技術current technology 較快的電腦輸出率會因為熱能的產生與排出而中止The faster computer output rate will stop due to the generation and discharge of heat energy

目前不斷增長的數位資訊處理功能被一道功率消耗的壁壘所阻止。由於產生的熱能不可能來得及排出,將處理器的時率提高至3Gz中段(mid-3Gz)是不實際的。The current growing number of digital information processing functions is blocked by a power consumption barrier. Since the heat generated cannot be discharged in time, it is impractical to increase the processor's time rate to mid-3Gz (mid-3Gz).

散熱對單晶片來說是重要的,而在如伺服器農場(server farm)的系統中使用大量處理器時,散熱變得更為重要。據估計,美國有10%的總發電量是用於為電腦和IT設備供電,且根據SMART 2020 report這個報導,這比例每年增長7%,而其中增長最快的領域是細胞4G聯結和不久後的5G聯結。通過這些聯結傳輸1百萬位元組(MB)數據的成本是幾千焦耳的能量,隨著無線應用的增長,這領域將經歷全球範圍內最大的即時增長。對於物聯網,推進5G是需要的,甚至自動駕駛汽車也會有需求。如此,將大幅提高高速數據傳輸的增長速度。為了突破目前限制電腦輸出率的功率壁壘,需要透過模式轉變(paradigm shift)。Heat dissipation is important for a single chip, and heat dissipation becomes even more important when a large number of processors are used in a system such as a server farm. It is estimated that 10% of the total power generation in the United States is used to power computers and IT equipment, and according to the SMART 2020 report, this proportion is increasing by 7% every year, and the fastest growing area is cell 4G connection and soon 5G connection. The cost of transmitting 1 megabyte (MB) of data through these connections is a few thousand joules of energy. With the growth of wireless applications, this field will experience the largest immediate growth in the world. For the Internet of Things, it is necessary to promote 5G, and even self-driving cars will have demand. In this way, the growth rate of high-speed data transmission will be greatly increased. In order to break through the current power barriers that limit the output rate of computers, paradigm shifts are needed.

隨著對類比和數位電路的需求不斷增加和發展,將類比介面資訊世界融入數位處理世界的推力持續存在。在高質量類比、獨特數位功能以及無縫至日益縮小的CMOS處理節點當中的IC處理節點合併的功能,將可允許無縫的高層級的系統整合。這樣的合併將為許多基於感測器的系統提供真正的單晶片系統解決方案。這功能需要類比和數位設計元件於裝置層級的兼容性。寄生分布電容直接地影響數位電路的性能並增加晶片電路的發熱。在很大程度上繞過此限制的邏輯家族將同時受益於許多數位設計問題。隨著單奈米積體電路設計的推進,人們意識到這些裝置所取得的增益會因為其調變汲極電流因越來越小的源極汲極電阻短路而崩潰。這是類比設計節點落後數位處理節點數個世代的原因之一。As the demand for analog and digital circuits continues to increase and develop, the push to integrate the analog interface information world into the digital processing world continues. The combination of high-quality analog, unique digital functions, and seamless integration of IC processing nodes among increasingly shrinking CMOS processing nodes will allow seamless high-level system integration. Such a merger will provide a true single-chip system solution for many sensor-based systems. This feature requires compatibility of analog and digital design components at the device level. The parasitic distributed capacitance directly affects the performance of the digital circuit and increases the heat generation of the chip circuit. Logic families that largely bypass this restriction will benefit from many digital design issues at the same time. With the advancement of single-nanometer integrated circuit design, people realized that the gain achieved by these devices would collapse because of their modulated drain current due to short-circuiting of smaller and smaller source-drain resistances. This is one of the reasons why the analog design node lags behind the digital processing node by several generations.

較新的數位設計只有最佳化處理節點互補對電晶體以用於其設計。奈米層級的處理節點非常死板。Newer digital designs have only optimized processing node complementary pair transistors for their design. The processing nodes at the nano-level are very rigid.

數位和類比處理節點需求的差異使得複雜的類比設計和複雜的數位設計使用各自的處理節點而保持於分別的晶片上,並於放置於同一陶瓷基板上時互連(interconnected)。此晶片外互連(off-chip interconnects)為雜訊提供了一個現成的接入點且需要大的緩衝區來驅動外部接腳。對於內部和外部節點,速度考量有很大的不同。此外,晶片外訊號降低了整體設計的可靠性。The difference in the requirements of digital and analog processing nodes makes complex analog designs and complex digital designs use separate processing nodes to maintain on separate wafers, and are interconnected when placed on the same ceramic substrate. This off-chip interconnects provides a ready access point for noise and requires a large buffer to drive external pins. For internal and external nodes, speed considerations are very different. In addition, off-chip signals reduce the reliability of the overall design.

CMOS電壓擺幅邏輯電路的運作在低於約800毫伏的供應電壓(supply voltage)時開始失效。許多運算感測系統受益於較低的運作電壓、較寬的運作溫度範圍和較高的頻寬。The operation of the CMOS voltage swing logic circuit begins to fail when the supply voltage is lower than about 800 millivolts. Many computing sensing systems benefit from lower operating voltage, wider operating temperature range, and higher bandwidth.

並行處理經常被談論,此邏輯串流功能有很多用途,可以大幅減少產生這運作功能所需的成品電路板和能源。動態互連或於如果需要重新編程時重新配置其邏輯的能力,將帶來了動態三維結構的功能。當真正的互連是為了適應即時數據處理需求而被建立和重新建立時,這種變化的結構在某種意義上可以包絡資訊數據流及產生一種生產線式的訊號處理結構。如果這些互連結構能夠立即被提取和實現的話,則在那一刻成為動態機器。然而,如果互連和這樣一個動態結構能夠被建立,將為DSP科學提供一些新的獨特功能。Parallel processing is often talked about. This logic streaming function has many uses, which can greatly reduce the finished circuit board and energy required to generate this function. Dynamic interconnection, or the ability to reconfigure its logic if reprogramming is required, will bring the function of a dynamic three-dimensional structure. When the real interconnection is established and re-established to meet the needs of real-time data processing, this changed structure can in a sense envelope the information data flow and produce a production-line signal processing structure. If these interconnected structures can be extracted and realized immediately, they will become dynamic machines at that moment. However, if interconnection and such a dynamic structure can be established, it will provide some new unique features for DSP science.

在傳統邏輯中,邏輯決策於多數工作的答案非0即1。在人工智慧(AI)中,邏輯運行於每一級運作的可能性上。由於在幾近無限的選擇中,在圍棋中大約有10350 個這樣的選擇,你不可能知道答案,AI邏輯只能希望給你其最好的猜選。這種可能性甚至需要一個訊號模態形狀的閾值動態比較器而不是一個硬性比較器。這個閾值比較器需要是動態可編程的以允許加權決策的改變。In traditional logic, the answer to most tasks in logical decision-making is either 0 or 1. In artificial intelligence (AI), logic operates on the possibilities of each level of operation. Since there are about 10 350 such choices in Go, among the almost limitless choices, you can't know the answer. AI logic can only hope to give you its best guess. This possibility even requires a threshold dynamic comparator of the signal modal shape rather than a rigid comparator. This threshold comparator needs to be dynamically programmable to allow for changes in weighting decisions.

此外,雖然二進制邏輯系統只有兩種狀態(0,1),但在實現一個完整的單晶片系統(SOC),愈來愈需要處理分級邏輯位準的能力,並能夠從低階類比程序和所有小型成品電路板上提取該二進制邏輯訊號的能力。在較小的平面互連區域縮小IC處理節點是為了產生較小的互連節點電容;然而,隨著特徵尺寸的縮小,調變汲極電流分流縮短的通道區域。隨著元件間距的減小,由於其較小的尺寸,附近寄生元件的增加速度比裝置的gm值增加速度快。這些寄生元件的變化也會影響晶片的功率消耗。電壓模式場效電晶體(FinFET)和絕緣層上矽晶(SOI)的物理布局有助於半導體層控制電容寄生,並提供更高的驅動功能,使節點電壓切換更快,訊號位準將保持在雜訊裕度之上。這些改良促使設計人員在考慮最大化數位資訊處理時,使用以3GHz中段(mid-3GHz)時脈速度運行的多個並發核心作為速度、輸出率、發熱和可製造性方面的實際權衡。In addition, although the binary logic system has only two states (0, 1), in the realization of a complete single chip system (SOC), the ability to handle hierarchical logic levels is increasingly required, and the ability to process low-level analog programs and all The ability to extract this binary logic signal on a small finished circuit board. The purpose of shrinking the IC processing node in a smaller planar interconnect area is to produce a smaller interconnect node capacitance; however, as the feature size shrinks, the channel area where the drain current shunt is shortened is modulated. As the element pitch decreases, due to its smaller size, nearby parasitic elements increase faster than the gm value of the device. The changes of these parasitic elements will also affect the power consumption of the chip. The physical layout of the voltage-mode field-effect transistor (FinFET) and the silicon-on-insulator (SOI) helps the semiconductor layer control capacitance parasitics, and provides higher driving functions, so that the node voltage switches faster, and the signal level will remain at Above the noise margin. These improvements have prompted designers to use multiple concurrent cores running at mid-3GHz clock speeds as practical trade-offs in terms of speed, output rate, heat generation, and manufacturability when considering maximizing digital information processing.

在目前的設計中,為了最大限度地減少高頻寄生電容的½CV2 功率消耗,定義「0」和「1」的節點電壓擺幅已降低至有效雜訊的底限。In the current design, in order to minimize the ½CV 2 power consumption of the high-frequency parasitic capacitance, the node voltage swing defined as "0" and "1" has been reduced to the lower limit of the effective noise.

最快的有效邏輯之一是射極連接邏輯(emitter coupled logic,ECL),這是一種基於電壓的邏輯。其速度依賴於差動輸入感測及差動輸出的邏輯驅動。One of the fastest effective logic is emitter coupled logic (ECL), which is a voltage-based logic. Its speed depends on the differential input sensing and the logic drive of the differential output.

½CV2 功率的消耗經常輻射和降低局部的雜訊底限。內連和互連是半導體層和互連的高頻功率消耗以及基於I2 R電導消耗的主要來源。較小的處理尺寸產生更緊密的金屬互連結構,這導致寄生元件相對地隨著尺寸的減小而增加。由於串擾和電容損耗路徑使用任何電容連接作為介質來降低基於電壓的系統中的雜訊位準,縱向以及表面區域相關的阻抗影響必須被考慮。隨著尺寸的變小,互連的熱阻增大,通常需要通過增加互連的橫截面來補償而使金屬變厚以達成切換的目的。較小的IC處理節點電晶體速度更快,然而,較大的側壁、縱切面、互連電容隨著處理節點縮小而增加,進而增加了½CV2 功率消耗而有效地抵消了較小處理節點所希望的速度和熱能優勢。使用基於電壓的邏輯家族時,較高的頻率時脈意味著較高的功率消耗。隨著處理節點的縮小,寄生電容的大小往往隨著尺寸和功率消耗無法線性追蹤的最終結果增大。這種不確定性降低了設計的可預測性。快速邏輯電壓訊號通過對互連電容充電而產生相當大的供電電流峰值。加在訊號線或電源線上的雜訊降低了邏輯位準雜訊裕度。在電流邏輯位準下,電流回路被建立起來,從而避免電流雜訊注入。此外,如果將電流位準轉換為本地邏輯電壓位準,即電壓訊號在接收器處被本地參考,也能再次避免引入某些雜訊源。The consumption of ½CV 2 power often radiates and reduces the local noise floor. Interconnects and interconnects are the main sources of high-frequency power consumption of semiconductor layers and interconnects and I 2 R-based conductivity consumption. A smaller process size produces a tighter metal interconnect structure, which causes parasitic elements to increase relatively as the size decreases. Since crosstalk and capacitive loss paths use any capacitive connection as the medium to reduce the noise level in voltage-based systems, the longitudinal and surface area-related impedance effects must be considered. As the size becomes smaller, the thermal resistance of the interconnection increases, and it is usually necessary to increase the cross-section of the interconnection to compensate and make the metal thicker to achieve the purpose of switching. Smaller IC processing node transistors are faster. However, larger sidewalls, longitudinal sections, and interconnect capacitance increase as the processing node shrinks, which in turn increases ½ CV 2 power consumption and effectively offsets the smaller processing nodes. The desired speed and thermal advantage. When using voltage-based logic family, higher frequency clock means higher power consumption. As the processing node shrinks, the size of the parasitic capacitance tends to increase with the final result that the size and power consumption cannot be linearly tracked. This uncertainty reduces the predictability of the design. The fast logic voltage signal generates considerable power supply current peaks by charging the interconnect capacitors. The noise added to the signal line or power line reduces the logic level noise margin. Under the current logic level, a current loop is established to avoid current noise injection. In addition, if the current level is converted to a local logic voltage level, that is, the voltage signal is locally referenced at the receiver, the introduction of certain noise sources can be avoided again.

電荷傳遞邏輯(CTL)是違反直覺的,因為成熟的CMOS邏輯相對適合靜態邏輯,大部分時間耗散功率(leakage power)被消耗,但C*V2 為其限制。在CMOS中,電力消耗快速,但在這種CiFET電荷傳遞邏輯(CTL)或CsiFET電荷傳遞邏輯(CTL)中,當速度過快時幾乎不存在電力的增加。這是因為將電荷從邏輯訊號源轉移至邏輯接收器的低阻抗輸入不會顯著地改變互連線上的電壓。另外,線的數量並非邏輯傳輸訊號的數量,而是接收器的數量。閘極僅是由有線或閘(OR)邏輯傳輸的電荷/電流形成的,這些電荷/電流的大小落在每個接收器端接的數奈米安培數的數量級。Charge transfer logic (CTL) is counter-intuitive, because mature CMOS logic is relatively suitable for static logic. Leakage power is consumed most of the time, but C*V 2 is its limit. In CMOS, power consumption is fast, but in this type of CiFET charge transfer logic (CTL) or CsiFET charge transfer logic (CTL), there is almost no increase in power when the speed is too fast. This is because the low impedance input that transfers the charge from the logic signal source to the logic sink does not significantly change the voltage on the interconnection lines. In addition, the number of lines is not the number of logical transmission signals, but the number of receivers. The gate is only formed by the charge/current transferred by wired OR logic, and the magnitude of these charges/current falls on the order of several nano-amps at the termination of each receiver.

本發明一個方面提供一種場效電晶體,包括一源極及一汲極,其中該源極與該汲極界定一通道;一擴散區劃分該通道成位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段;一源極通道閘連接該源極通道段;以及一汲極通道閘連接該汲極通道段。該擴散區可為一電流輸入節點或一電流輸出節點。該擴散區可為一電流槽或一電流源節點。此外,該源極通道閘連接一共模電壓,該源極連接一供電源,該汲極通道閘被配置為接收一邏輯電壓輸入以提供一邏輯電流於該汲極輸出。One aspect of the present invention provides a field effect transistor including a source electrode and a drain electrode, wherein the source electrode and the drain electrode define a channel; a diffusion region divides the channel into a space between the source electrode and the diffusion region A source channel segment and a drain channel segment located between the drain and the diffusion region; a source channel gate connected to the source channel segment; and a drain channel gate connected to the drain channel segment. The diffusion area can be a current input node or a current output node. The diffusion region can be a current sink or a current source node. In addition, the source channel gate is connected to a common mode voltage, the source is connected to a power supply, and the drain channel gate is configured to receive a logic voltage input to provide a logic current to the drain output.

本發明另一個方面提供一種固態裝置,包括:如上所述之一對第一互補場效電晶體及第二互補場效電晶體,其中,該第一互補場效電晶體之該汲極與該第二互補場效電晶體之該汲極連接形成一汲極埠。此外,該第一互補場效電晶體之該源極通道閘及該汲極通道閘與該第二互補場效電晶體之該源極通道閘及該汲極通道閘連接一共模電壓。該固態裝置被配置而於該第一互補場效電晶體之該擴散區和/或該第二互補場效電晶體之該第二擴散區接收一邏輯電流輸入以產生一邏輯電壓於該汲極埠輸出。Another aspect of the present invention provides a solid-state device, comprising: a pair of first complementary field effect transistors and a second complementary field effect transistor as described above, wherein the drain of the first complementary field effect transistor and the The drain connection of the second complementary field effect transistor forms a drain port. In addition, the source channel gate and the drain channel gate of the first complementary field effect transistor and the source channel gate and the drain channel gate of the second complementary field effect transistor are connected to a common mode voltage. The solid-state device is configured to receive a logic current input in the diffusion region of the first complementary field effect transistor and/or the second diffusion region of the second complementary field effect transistor to generate a logic voltage at the drain Port output.

本發明又另一方面提供一種邏輯電流-邏輯電壓轉換器,包括:一對第一互補場效電晶體及第二互補場效電晶體,該第一互補場效電晶體及該第二互補場效電晶體各包括一源極及一汲極,其中該第一互補場效電晶體之該源極與該汲極界定一第一通道,該第二互補場效電晶體之該源極與該汲極界定一第二通道;一第一擴散區(第一iPort)劃分該第一通道為位於該源極與該第一iPort之間的一第一源極通道段以及位於該汲極與該第一iPort之間的一第一汲極通道段;一第二擴散區(第二iPort)劃分該第二通道為位於該源極與該第二iPort之間的一第二源極通道段以及位於該源極與該第二iPort之間的一第二汲極通道段;一閘極連接該第一源極通道段、該第一汲極通道段、該第二源極通道段及該第二汲極通道段;以及其中該第一互補場效電晶體之該汲極與該第二互補場效電晶體之該汲極連接而形成一汲極埠;其中該閘極連接一共模電壓,該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源;以及其中該邏輯電流-邏輯電壓轉換器被配置而於該第一iPort或該第二iPort接收一邏輯電流輸入以產生一邏輯電壓於該汲極埠輸出。Yet another aspect of the present invention provides a logic current-to-logic voltage converter, including: a pair of first complementary field effect transistors and a second complementary field effect transistor, the first complementary field effect transistor and the second complementary field The effect transistors each include a source and a drain, wherein the source and the drain of the first complementary field effect transistor define a first channel, and the source and the drain of the second complementary field effect transistor The drain defines a second channel; a first diffusion region (first iPort) divides the first channel into a first source channel section between the source and the first iPort, and a first source channel section between the drain and the drain A first drain channel segment between the first iPort; a second diffusion region (second iPort) divides the second channel into a second source channel segment between the source and the second iPort, and A second drain channel segment located between the source and the second iPort; a gate connects the first source channel segment, the first drain channel segment, the second source channel segment and the first Two drain channel segments; and wherein the drain of the first complementary field effect transistor is connected to the drain of the second complementary field effect transistor to form a drain port; wherein the gate is connected to a common mode voltage, The source of the first complementary field effect transistor and the source of the second complementary field effect transistor are connected to a power supply; and wherein the logic current-to-logic voltage converter is configured in the first iPort or the The second iPort receives a logic current input to generate a logic voltage to output at the drain port.

一種具有二個以上邏輯輸入及一邏輯輸出的電荷傳遞邏輯模組包括,如上所述之固態裝置,其中該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源;對於該些邏輯輸入電壓的每一者,一邏輯電流-邏輯電壓轉換器將各該邏輯輸入電壓轉換至一邏輯電流;其中配置該第一互補場效電晶體之該擴散區及該第二互補場效電晶體之該擴散區被配置而接收源自於該邏輯電流-邏輯電壓轉換器之該邏輯電流;以及其中該固態裝置之該汲極埠被配置以輸出該邏輯電壓輸出。此外,該邏輯電流-邏輯電壓轉換器包括一場效電晶體,該場效電晶體包括:一源極及一汲極,其中該源極與該汲極界定一通道;一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段;一源極通道閘連接該源極通道段;以及一汲極通道閘連接該汲極通道段;其中該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收該二個以上邏輯電壓輸入之一者以產生源自於該汲極之一邏輯電流輸出。A charge transfer logic module with more than two logic inputs and one logic output includes the solid-state device as described above, wherein the source of the first complementary field effect transistor and the second complementary field effect transistor The source is connected to a power supply; for each of the logic input voltages, a logic current-to-logic voltage converter converts each of the logic input voltages to a logic current; wherein the first complementary field effect transistor is configured The diffusion region and the diffusion region of the second complementary field effect transistor are configured to receive the logic current derived from the logic current-to-logic voltage converter; and wherein the drain port of the solid-state device is configured to output the Logic voltage output. In addition, the logic current-to-logic voltage converter includes a field-effect transistor. The field-effect transistor includes: a source and a drain, wherein the source and the drain define a channel; a diffusion region divides the channel into A source channel section between the source and the diffusion region and a drain channel section between the drain and the diffusion region; a source channel gate connected to the source channel section; and a drain The channel gate is connected to the drain channel segment; wherein the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured to receive one of the two or more logic voltage inputs to generate a source A logic current output from the drain.

本發明更另一方面提供一種邏輯電流-邏輯電壓轉換器,包括:一場效電晶體,包括:一源極及一汲極,其中該源極與該汲極界定一通道;一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段;一源極通道閘連接該源極通道段;以及一汲極通道閘連接該汲極通道段;其中該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收一邏輯電壓輸入以產生源自於該汲極之一邏輯電流輸出。Another aspect of the present invention provides a logic current-to-logic voltage converter, including: a field-effect transistor, including: a source and a drain, wherein the source and the drain define a channel; and a diffusion region divides the The channel is a source channel section between the source and the diffusion region and a drain channel section between the drain and the diffusion region; a source channel gate is connected to the source channel section; and a The drain channel gate is connected to the drain channel segment; wherein the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured to receive a logic voltage input to generate a source from the drain One of the logic current output.

本發明又更另一方面提供一種數據匯流排結構,包括:一匯流排;一匯流排傳送器包括一場效電晶體,該場效電晶體包括:一源極及一汲極,其中該源極與該汲極界定一通道;一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段;一源極通道閘連接該源極通道段;以及一汲極通道閘連接該汲極通道段;其中該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收一邏輯電壓輸入以產生源自於該汲極之一邏輯電流於該匯流排輸出;以及一匯流排接收器包括一對第一互補場效電晶體及第二互補場效電晶體,該第一互補場效電晶體及該第二互補場效電晶體各包括:一源極及一汲極,其中該第一互補場效電晶體之該源極與該汲極界定一第一通道,該第二互補場效電晶體之該源極與該汲極界定一第二通道;一第一擴散區(第一iPort)劃分該第一通道為位於該源極與該第一iPort之間的一第一源極通道段以及位於該汲極與該第一iPort之間的一第一汲極通道段;一第二擴散區(第二iPort)劃分該第二通道為位於該源極與該第二iPort之間的一第二源極通道段以及位於該源極與該第二iPort之間的一第二汲極通道段;一閘極連接該第一源極通道段、該第一汲極通道段、該第二源極通道段及該第二汲極通道段;以及其中該第一互補場效電晶體之該汲極與該第二互補場效電晶體之該汲極連接形成一汲極埠。In still another aspect of the present invention, there is provided a data bus structure, including: a bus; a bus transmitter including a field-effect transistor, the field-effect transistor including: a source and a drain, wherein the source A channel is defined with the drain; a diffusion region divides the channel into a source channel section between the source and the diffusion region and a drain channel section between the drain and the diffusion region; The source channel gate is connected to the source channel section; and a drain channel gate is connected to the drain channel section; wherein the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured And receiving a logic voltage input to generate a logic current derived from the drain to the bus output; and a bus receiver including a pair of first complementary field effect transistors and a second complementary field effect transistor, the The first complementary field effect transistor and the second complementary field effect transistor each include: a source and a drain, wherein the source and the drain of the first complementary field effect transistor define a first channel, The source and the drain of the second complementary field-effect transistor define a second channel; a first diffusion region (first iPort) divides the first channel to be located between the source and the first iPort A first source channel segment and a first drain channel segment between the drain and the first iPort; a second diffusion region (second iPort) divides the second channel into the source and the first iPort A second source channel section between the second iPort and a second drain channel section between the source and the second iPort; a gate connects the first source channel section and the first drain A pole channel section, the second source channel section and the second drain channel section; and wherein the drain of the first complementary field effect transistor and the drain of the second complementary field effect transistor are connected to form a Jijibu.

其中該閘極連接一共模電壓,該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源;以及其中該匯流排接收器被配置而於該第一iPort或該第二iPort接收源自於該匯流排之該邏輯電流以產生一邏輯電壓於該汲極埠輸出。Wherein the gate is connected to a common mode voltage, the source of the first complementary field effect transistor and the source of the second complementary field effect transistor are connected to a power supply; and wherein the bus receiver is configured to The first iPort or the second iPort receives the logic current from the bus to generate a logic voltage to output at the drain port.

根據本發明又更另一方面,提供一種基於電荷的時脈樹,包括:如上所述之匯流排結構,其中該匯流排傳送器之該汲極通道閘被配置而接收一邏輯電壓時脈訊號於該匯流排被轉換為一欲傳送邏輯電流時脈訊號。According to yet another aspect of the present invention, there is provided a charge-based clock tree, comprising: the bus structure as described above, wherein the drain channel gate of the bus transmitter is configured to receive a logic voltage clock signal The bus is converted into a clock signal to transmit logic current.

電荷轉移邏輯(charge transfer logic或CTL,以下簡稱CTL)是一個緊湊的系統,當中,一個或多個邏輯定義的電流或電荷訊號以電流或電荷脈衝的形式通過單一線路從一個或多個邏輯訊號源傳輸至邏輯接收器。電流/電荷邏輯訊號被定義為對內電流為正,對外電流為負,兩者的大小均按慣例定義,即「0」或「1」。此外,非閘-變化(NO-Change)或非閘-電流狀態(NO-current state)存在則不提取電力。在分級邏輯中,通常需要用非二進制輸出來表示邏輯決策,CTL也可以提供這樣的分級輸出。互補電流場效電晶體(以下簡稱CiFET)在邏輯運作的接收端和發送端的分級多邏輯位準功能將使非二進制邏輯電路成為可能。例如,在這種電路中,電流位準可以分為四個電流位準;因此,由於有四個電流位準,每個位準將編碼兩個二進制位元。增加的訊號資訊實際上會使匯流速度加倍。雖然這類的非二進制電路在CiFET裝置獨特混合類比功能之前就已經被發展出來,但它的數位邏輯功能及與其互補式金屬氧化物半導體(以下簡稱CMOS)家族無縫收容連接的能力,帶來了一種嶄新級別的系統整合功能。一種可調變並提供超過-170℃至275℃的運作溫度範圍的功能。Charge transfer logic (CTL, hereinafter referred to as CTL) is a compact system in which one or more logic-defined current or charge signals are transferred from one or more logic signals in the form of current or charge pulses through a single line The source is transmitted to the logical sink. The current/charge logic signal is defined as the internal current being positive and the external current being negative. The magnitudes of both are defined by convention, namely "0" or "1". In addition, no power is drawn if the NO-Change or NO-current state exists. In hierarchical logic, non-binary output is usually required to represent logical decisions, and CTL can also provide such hierarchical output. Complementary current field effect transistors (hereinafter referred to as CiFETs) with hierarchical multi-logic level functions at the receiving and transmitting ends of logic operations will make non-binary logic circuits possible. For example, in this circuit, the current level can be divided into four current levels; therefore, since there are four current levels, each level will encode two binary bits. The increased signal information actually doubles the convergence speed. Although this kind of non-binary circuit has been developed before the unique hybrid analog function of the CiFET device, its digital logic function and its ability to seamlessly accommodate and connect with its complementary metal oxide semiconductor (hereinafter referred to as CMOS) family has brought A new level of system integration function. A function that can be adjusted and provide an operating temperature range exceeding -170°C to 275°C.

CTL也可被觸發,例如在正反器結構中,當設定或重設線在特定時間段內接收電流脈衝時翻轉(flip)狀態,其優點是一旦鎖存器具有切換後的狀態,則鎖存器不需要保持電流。CTL可運作為電壓觸發邏輯(voltage triggered logic)或電流引導邏輯(current steering logic)。在電流引導邏輯模式下,由於當節點電壓基礎保持恆定時,寄生電容基礎上被繞過,因此邏輯速度可以很快地運行。CTL can also be triggered. For example, in the flip-flop structure, when the set or reset line receives a current pulse within a certain period of time, the state is flipped (flip). The advantage is that once the latch has a switched state, the lock The register does not need to hold current. CTL can operate as voltage triggered logic or current steering logic. In the current-guided logic mode, since the parasitic capacitance is bypassed on the basis when the node voltage basis remains constant, the logic speed can run very quickly.

1d 繪示了CiFET20a 的剖面圖,詳情見PCT國際申請案PCT/US2015/042696及PCT/US2016/044800,其整體內容透過引用合併於此。CiFET20a 包括一對互補的iFET,即p型iFET(PiFET)20Pa 和n型iFET(NiFET)20Na 。汲極20at220at3 連接在一起而形成汲極埠20at7 。源極20at120at4 連接至電源(分別為VssVdd )。當用於數位目的時,運作擴散點20at520at6 被調整,使得p型iFET(PiFET)20Pa 的源極通道段20PaSC (源極20at4 和PiPort20at6 之間的通道段)和n型iFET(NiFET)20Na 的源極通道段20NaSC (源極20at1 和NiPort20at5 之間的通道段)在運作上超飽和(supersaturated),此時電荷密度和電荷通道深度增加而PiFET20Pa 和NiFET20Na 的汲極通道20at220at3 飽和,但低於夾止值(pinch off)。在圖1d 中,所有的通道閘(PiFET和NiFET的源極和汲極通道段20PaSc20PaDc20NaSc20NaDc )配置連接於Vcm 。在使用CsiFET的一些電路中,如圖3a3b 所示,各個閘極可不同地連接,其中siFET電流邏輯連接被配置而使得源極通道閘連接於Vcm 並且汲極通道閘可用於邏輯訊號輸入。Figure 1d shows a cross- sectional view of CiFET 20a . For details, see PCT International Applications PCT/US2015/042696 and PCT/US2016/044800, the entire contents of which are incorporated herein by reference. CiFET 20a comprises a pair of complementary iFET, i.e., p-type iFET (PiFET) 20Pa and n-type iFET (NiFET) 20Na. The drains 20at2 and 20at3 are connected together to form a drain port 20at7 . The sources 20at1 and 20at4 are connected to the power supply ( Vss and Vdd respectively). When used for the digital object, and the operation of diffusion point 20at5 20at6 is adjusted so that the p-type iFET (PiFET) 20PaSC 20Pa source path section (the channel section between the source and 20at4 PiPort 20at6) and n-type iFET (NiFET) 20nA source channel sections 20NaSC (20at1 source and the channel section between 20at5 NiPort) on the operating supersaturated (supersaturated), charge density and charge this case the channel depth increases NiFET 20Na PiFET 20Pa and the drain passage and 20at2 20at3 is saturated, but lower than the pinch off value (pinch off). In Figure 1d , all channel gates (PiFET and NiFET source and drain channel segments 20PaSc , 20PaDc , 20NaSc, and 20NaDc ) are configured to be connected to Vcm . In some circuits using CsiFET, as shown in Figures 3a and 3b , each gate can be connected differently, where the siFET current logic connection is configured so that the source channel gate is connected to Vcm and the drain channel gate can be used for logic signal input .

當通道段飽和時,經過這些通道段的運動是由小的電荷位移組成,其對調變需求非常迅速地回應。這類型的小位移能量運動是由圖1f 所演示,其使用牛頓球來演示輸入能量到輸出能量的流動是如何以中間載體透過非常小的位移而發生。When the channel segments are saturated, the movement through these channel segments is composed of small charge displacements, which respond very quickly to modulation requirements. This type of small displacement energy movement is demonstrated in Figure 1f , which uses Newton spheres to demonstrate how the flow of input energy to output energy occurs through a very small displacement through an intermediate carrier.

在圖1e 中,繪示通道電流從V+/Vdd進入而自V-/Vss離開。於圖示的結構中,NiFET和PiFET的源極通道是橫截面小的長通道。PiFET和NiFET的汲極通道是薄的,具有大的橫截面。雙通道電流注入點標示為NiPort和PiPort,輸出埠也標示出。注入任何埠或埠的組合的電流將迅速改變可行的結構堆疊埠電壓。In Figure 1e , the channel current is shown entering from V+/Vdd and leaving from V-/Vss. In the structure shown in the figure, the source channels of NiFET and PiFET are long channels with small cross-sections. The drain channels of PiFET and NiFET are thin and have a large cross section. The dual-channel current injection points are marked as NiPort and PiPort, and the output ports are also marked. The current injected into any port or combination of ports will quickly change the voltage of the feasible structure stack port.

5b 示出了用於傳輸邏輯電流訊號的電路配置。Figure 5b shows a circuit configuration for transmitting logic current signals.

參考圖5b ,電路包括發射器500b1 和接收器500b2 。發射器500b1 和接收器500b2 可以由單一CiFET/CsiFET結構構成,或者可以使用實質上獨立的CiFETs/CsiFETs構成。發射器500b1 包括一對互補的PsiFET100Pfb 和NsiFET100Nfb ,其中PsiFET100Pfb 的汲極100Pfbd 和NsiFET100Nfb 的汲極100Nfbd 連接在一起而形成電流訊號端子500b1c 。PsiFET100Pfb 的源極通道閘100Pfbgs 和NsiFET100Nfb 的源極通道閘100Nfbgs 偏壓於共模電壓Vcm1 ,而PsiFET100Pfb 的汲極通道閘100Pfbgd 用於接收Transmit 1 的電壓邏輯訊號,且NsiFET100Nfb 的汲極通道閘100Nfbgd 用於接收Transmit 0 的電壓邏輯訊號。發送器500b1 被配置成將電壓邏輯訊號Transmit 1 /Transmit 0 轉換為雙向電流訊號,該雙向電流訊號經過電流訊號端子500b1c 向內流為1,向外流為0,並且在無電流流動時導入新的狀態。這種新的狀態給邏輯電路帶來了一種生物學的功能,在邏輯電路中,在資訊傳輸時被期待只使用能量,而沒有電流輸入或輸出則意味著沒有新的資訊。在使用併入無變化態(No-Change state)的三態發射器(3-State transmitter)以及鎖存接收器的節電方式中,統計學上地將平均訊號功率降低一半。接收器500b2 包括一對CiFETs20fb120fb2 以及一對PsiFET100Pfb1100Pfb2 。CiFETs20fb120fb2 的源極20fb1t120fb2t1 以及源極100Pfb1s100Pfb2s 分別連接至電源Vdd2 。閘極20fb1g20fb2g 連接至共模電壓Vcm 。源極通道閘100Pfb1gs100Pfb2gs 也連接至共模電壓Vcm 。PsiFET100Pfb1 的汲極通道閘100Pfb1gd 連接至CiFET20fb2 的PiFET的汲極20fb2t2 以及連接至CiFET20fb2 的NiFET的汲極20fb2t3 。CiFET20fb2 的NiPort20fb2t6 連接至PsiFET100Pfb2 的汲極;PsiFET100Pfb2 的汲極通道閘100Pfb2gd 連接至CiFET20fb1 的PiFET的汲極20fb1t2 以及連接至CiFET20fb1 的NiFET的汲極20fb1t3 ,以形成輸出電壓Vout 。從發射器500b1 發送的電流訊號接收於PsiFET100Pfb1 的汲極100Pfb1d 和CiFET20fb1 的NiPort20fb1t6 。接受器500b2 接收從發射器500b1 發送的電流訊號,並將該電流轉換成電壓訊號VoutReferring to Figure 5b , the circuit includes a transmitter 500b1 and a receiver 500b2 . The transmitter 500b1 and the receiver 500b2 may be composed of a single CiFET/CsiFET structure, or may be composed of substantially independent CiFETs/CsiFETs. The transmitter includes a pair of complementary 500b1 PsiFET 100Pfb and NsiFET 100Nfb, wherein PsiFET 100Pfb 100Pfbd and drain of the drain 100Nfbd NsiFET 100Nfb coupled together to form current signal terminals 500b1c. PsiFET 100Pfb 100Pfbgs source channel gate and source NsiFET 100Nfb 100Nfbgs channel gate bias to the common mode voltage Vcm1, and PsiFET 100Pfb the drain channel gate for receiving a Transmit 100Pfbgd voltage logic signal 1, and the drain of NsiFET 100Nfb The channel gate 100Nfbgd is used to receive the voltage logic signal of Transmit 0. The transmitter 500b1 is configured to convert the voltage logic signal Transmit 1 / Transmit 0 into a bidirectional current signal. The bidirectional current signal flows inward to 1 through the current signal terminal 500b1c , and flows out to 0, and introduces a new one when there is no current flowing. status. This new state brings a biological function to the logic circuit. In the logic circuit, it is expected that only energy is used in the transmission of information, and no current input or output means that there is no new information. In a power-saving method that uses a 3-State transmitter and a latched receiver incorporating the No-Change state, the average signal power is statistically reduced by half. The receiver 500b2 includes a pair of CiFETs 20fb1 and 20fb2 and a pair of PsiFETs 100Pfb1 and 100Pfb2 . CiFETs 20fb1 source electrode and the 20fb2 20fb1t1 100Pfb1s and 20fb2t1 and source are connected to the power source and 100Pfb2s Vdd2. The gates 20fb1g and 20fb2g are connected to the common mode voltage Vcm . The source channel gates 100Pfb1gs and 100Pfb2gs are also connected to the common mode voltage Vcm . PsiFET 100Pfb1 the drain connected to the drain channel gate 100Pfb1gd PiFET of CiFET 20fb2 20fb2t2 and connected to the source of NiFET CiFET 20fb2 drain of 20fb2t3. CiFET 20fb2 NiPort 20fb2t6 connected to the drain of PsiFET 100Pfb2; PsiFET 100Pfb2 a drain connected to the drain channel gate 100Pfb2gd PiFET of CiFET 20fb1 20fb1t2 and connected to the source of NiFET CiFET 20fb1 drain of 20fb1t3, to form an output voltage Vout. Drain current signal from the transmitter is received in the transmission 500b1 PsiFET 100Pfb1 100Pfb1d pole and the CiFET 20fb1 NiPort 20fb1t6. The receiver 500b2 receives the current signal sent from the transmitter 500b1 , and converts the current into a voltage signal Vout .

CTL電流邏輯訊號產生其他電流邏輯訊號路徑,或者可使用CiFET/CsiFET固有的電流-電壓轉換能力/特性直接轉換訊號電流,通常在邏輯電路中,兩個邏輯轉換狀態之間存在開關(switch)。這種由電流至電壓(CtoV)、電流至電流(CtoC)、電壓至電流(VtoC)和電壓至電壓(VtoV)簡單轉換的邏輯狀態,使得CiFET/CsiFET能夠實現壓縮物理邏輯的新邏輯結構。The CTL current logic signal generates other current logic signal paths, or the inherent current-voltage conversion capability/characteristics of the CiFET/CsiFET can be used to directly convert the signal current. Usually, in a logic circuit, there is a switch between two logic conversion states. This simple conversion of logic states from current to voltage (CtoV), current to current (CtoC), voltage to current (VtoC) and voltage to voltage (VtoV) enables CiFET/CsiFET to realize a new logic structure that compresses physical logic.

由於CiFET/CsiFET裝置能夠獨特地執行CtoV、VtoC、VtoV和CtoC的所有訊號轉換,因此它適合實現CTL。此外,CiFET/CsiFET的PiPort或NiPort電流注入端口提供了一個電流或電壓接收器,其輸入阻抗(50歐姆Ò100千歐姆)可以被設計至矽中。CiFET/CsiFET直接地在其輸出共通汲極端子將邏輯電流訊號轉換成邏輯定義的電壓。Since the CiFET/CsiFET device can uniquely perform all signal conversions of CtoV, VtoC, VtoV and CtoC, it is suitable for implementing CTL. In addition, the PiPort or NiPort current injection port of the CiFET/CsiFET provides a current or voltage receiver whose input impedance (50 ohm Ò 100 k ohm) can be designed into silicon. The CiFET/CsiFET directly converts the logic current signal into a logic-defined voltage at its output common drain terminal.

電流邏輯訊號發送器可通過使用PsiFET構成,將其汲極連接至路徑或互連導線(wire interconnect),如圖3a3c 所示,至CiFET接收器節點的任何一個,包括iPort或甚至考慮直流偏壓位準的輸出節點(之後將進一步討論細節)。以類似的方式,NsiFET可用於通過將其汲極連接至路徑或互連導線,來建構如圖3b3d 所示的電流邏輯訊號發射器(之後將進一步討論細節)。在圖5a5b 中,這兩種類型的邏輯訊號電流源同時連接至路徑或互連導線,然後它們的訊號電流被注入或退出,或者沒有邏輯訊號電流被傳送至接收器NiPort節點(之後將進一步討論細節)。然後,經過n-iPort200Ni 返回的邏輯的電流,經過Vss 而完成循環。當訊號電流通過其保護通道時,可繞過如圖所示的系統接地。另外,使用CiFET20a 作為邏輯結構時,可以通過控制汲極通道閘電壓在邏輯上切換設計,並靜態或動態地施加在源極通道的閘極上的Vcm 電壓,而定義了通道閘至源極電壓,進而界定如何控制和調節輸出電流。Current logic signal transmitters can be constructed by using PsiFETs, connecting their drains to paths or wire interconnects, as shown in Figures 3a and 3c , to any of the CiFET receiver nodes, including iPort or even considering DC The output node of the bias level (more details will be discussed later). In a similar manner, the NsiFET can be used to construct a current logic signal transmitter as shown in Figures 3b and 3d by connecting its drain to a path or interconnection wire (more details will be discussed later). In Figures 5a and 5b , these two types of logic signal current sources are connected to paths or interconnecting wires at the same time, and then their signal currents are injected or withdrawn, or no logic signal current is delivered to the receiver NiPort node (later will Discuss the details further). Then, the current flowing through the logic returned by the n-iPort 200Ni passes through Vss to complete the cycle. When the signal current passes through its protection channel, it can bypass the system grounding as shown in the figure. In addition, when using CiFET 20a as a logic structure, the design can be switched logically by controlling the gate voltage of the drain channel, and the Vcm voltage applied to the gate of the source channel statically or dynamically, which defines the channel gate-to-source voltage , And then define how to control and regulate the output current.

當使用CiFET作為電流並集邏輯閘(current summing logic gate),導線連接的或閘或與閘可以幾乎不受限制的扇入(fan in)直接實現,這有助於減少互連和邏輯接收器發射器數量。採用電流作為邏輯扇入的變數,在以高速運行的情況下,可以最大限度地減少½CV2 的寄生損耗和接地雜訊邏輯訊號注入。When using CiFETs as current summing logic gates, wire-connected OR gates or AND gates can be directly implemented with almost unlimited fan in, which helps reduce interconnections and logic receivers Number of transmitters. Using current as the variable of the logic fan-in, in the case of high-speed operation, it can minimize the parasitic loss of ½ CV 2 and the logic signal injection of ground noise.

當使用電壓邏輯訊號時,所有的瞬態電源雜訊加至淨邏輯訊號中,並減少有效雜訊容限。在基於訊號的電流邏輯系統,電流迴路承載訊號,而不受供應電壓(supply voltage)雜訊或接地線雜訊的直接影響。當CiFET先作為線性元件運行然後作為邏輯元件運行時,CiFET實體電路圍繞其共模電壓擺幅(swing)。通過擺幅產生共模電壓的此電路,訊號可避免會降低電路的有效雜訊底限的電源和接地系統的雜訊。When voltage logic signals are used, all transient power noise is added to the net logic signal and reduces the effective noise tolerance. In signal-based current logic systems, the current loop carries the signal without being directly affected by supply voltage noise or ground wire noise. When the CiFET first operates as a linear element and then as a logic element, the physical circuit of the CiFET swings around its common-mode voltage. By swinging this circuit that generates a common-mode voltage, the signal can avoid noise in the power and ground systems that would lower the effective noise floor of the circuit.

如此相同的電流邏輯可以提供對驅動相位敏感(drive phase sensitive)的訊號,例如時脈樹,從而允許所有的接收器完全同步,並有助於消除時脈樹的相位變化、電路複雜度和消耗功率,還有助於時脈樹優化程序。此如圖13 所示,並在相應的說明中討論。Such the same current logic can provide a signal that is drive phase sensitive, such as a clock tree, which allows all receivers to be fully synchronized, and helps eliminate the phase change, circuit complexity and consumption of the clock tree. Power also helps the clock tree optimization program. This is shown in Figure 13 and discussed in the corresponding description.

從整合系統運行的角度來看,寬的CiFET/CsiFET運行溫度範圍,超過軍用規格(Mil-Spec)要求的(攝氏-50至175度),意味著電路可以比傳統CMOS邏輯電路運行得更熱或更冷。CiFET裝置對於製造過程中產生的參數變化也相當寬容,這在很大程度上取決於電路產生其共模電壓Vcm 的功能,前述參數變化發生於,當產生共模電壓Vcm 的反饋連接逆變器具有其最大增益時,該共模電壓Vcm 被使用來偏壓系統的其他部分,從而補償矽參數的變化。From the perspective of integrated system operation, the wide operating temperature range of CiFET/CsiFET exceeds the military specification (Mil-Spec) requirements (-50 to 175 degrees Celsius), which means that the circuit can run hotter than traditional CMOS logic circuits. Or colder. The CiFET device is also quite tolerant of parameter changes generated during the manufacturing process, which largely depends on the circuit 's function of generating its common mode voltage Vcm . The aforementioned parameter changes occur when the feedback generating the common mode voltage Vcm is connected to the inverter. With its maximum gain, the common mode voltage Vcm is used to bias other parts of the system to compensate for changes in silicon parameters.

用電流代替電壓作為邏輯訊號Use current instead of voltage as a logic signal

使用「1」和「0」電壓定義邏輯位準和通過邏輯元件之間的互連導線傳遞邏輯訊號的限制和成功是廣泛可用的。作為邏輯元件的CiFET/CsiFET可用於電壓位準。最重要的是,當在鎖存器中增加電容以表示「1」和「0」的邏輯位準,並使用電荷封包來觸動正反器時,CiFET/CsiFET可以作為電流位準或甚至是離散的電荷封包。作為邏輯電流接收器的CiFET/CsiFET如圖5a5b 所示。The use of "1" and "0" voltages to define logic levels and the limits and success of logic signals passing through interconnecting wires between logic elements are widely available. As a logic element, CiFET/CsiFET can be used for voltage level. Most importantly, when adding capacitance to the latch to represent the logic levels of "1" and "0", and using charge packets to trigger the flip-flop, CiFET/CsiFET can be used as a current level or even discrete的charge packet. The CiFET/CsiFET as a logic current receiver is shown in Figures 5a and 5b.

9a 顯示了一個具有線與閘(wire-AND)邏輯電壓以及邏輯電流邏輯輸入/輸出介面的CiFET/CsiFET CTL電壓保持鎖存器,其中CiFET/CsiFET在作為邏輯或非閘(NOR)或與非閘(NAND)功能運行時終止輸入邏輯電流/電荷傳輸。圖9b 顯示了一個CiFET/CsiFET CTL電壓保持鎖存器,該鎖存器具有有線或閘(wire-OR)邏輯電壓以及邏輯電流邏輯輸入/輸出介面,其中CiFET/CsiFET是邏輯電荷傳輸來源,描述或非閘(NOR)於或閘功能中使用電壓和電流邏輯訊號。Figure 9a shows a CiFET/CsiFET CTL voltage holding latch with a wire-AND logic voltage and logic current logic input/output interface, where the CiFET/CsiFET is used as a logic NOR or AND When the NAND function is running, the input logic current/charge transfer is terminated. Figure 9b shows a CiFET/CsiFET CTL voltage holding latch, which has a wired OR (wire-OR) logic voltage and logic current logic input/output interface, where CiFET/CsiFET is a source of logic charge transfer, description NOR uses voltage and current logic signals in the OR gate function.

當電流訊號通過互連導線傳輸時,位置段導線電壓因其分布的阻抗而變化,並且不會顯著地於段至段之間改變,因此互連導線寄生位移電容電流(I=CdV/dt + VdC/dt)的影響顯著地減小。作為一種邏輯電流節點接收器,CiFET具有低阻抗節點,使得通常來自高阻抗電流來源的位移電流很難對訊號電流產生影響。如此,因為雜訊源在受測試時,因為試圖將其電流添加至訊號電流中,然而其阻抗失配(mismatch)使這些雜訊源具有明顯的缺點,故對於基於電流的邏輯,這產生獨特的雜訊抗擾度。When the current signal is transmitted through the interconnection wire, the wire voltage of the position segment changes due to its distributed impedance and does not change significantly from segment to segment. Therefore, the parasitic displacement capacitance current of the interconnection wire (I=CdV/dt + The influence of VdC/dt) is significantly reduced. As a logic current node receiver, the CiFET has a low-impedance node, which makes it difficult for the displacement current from a high-impedance current source to affect the signal current. So, because the noise source is under test, because it tries to add its current to the signal current, but its impedance mismatch (mismatch) makes these noise sources have obvious shortcomings, so for current-based logic, this produces unique Noise immunity.

CiFET電流邏輯接收節點可以將不同的本地雜訊迴路電流以及期望中的邏輯電流訊號相加,但是節點可控制它們對雜訊底限的損耗。CiFET電流接收器監視其與發送器所共享的迴路電流的變化。CiFET電流小訊號節點電壓對於運作邏輯電流訊號是次要的。邏輯接收器的低輸入阻抗使高阻抗電壓雜訊源短路,而高阻抗電壓雜訊源通常會以快速邏輯的大瞬態雜訊峰值干擾基於電壓的邏輯。優先瞬態雜訊抑制是電流感測邏輯技術的固有特性,而在基於電壓的邏輯技術中沒有對應的技術。對於輻射點源而言,電壓注入雜訊強度下降為1/r,其中r即與輻射源的距離。電流注入雜訊依賴於驅動電場,因此隨著距離發射器1/r2 的距離而下降。對於基於電流位準的CiFET/CsiFET邏輯技術而言,電流位準是磁通密度,而磁通密度又是電場乘以局部導電率。位移電流注入能力下降的速度快於雜訊源向高阻抗接收節點的發射速度。The CiFET current logic receiving node can add different local noise loop currents and expected logic current signals, but the node can control their loss to the noise floor. The CiFET current receiver monitors the changes in the loop current shared by it and the transmitter. The CiFET current small signal node voltage is of secondary importance to the operation of the logic current signal. The low input impedance of the logic receiver short-circuits the high-impedance voltage noise source, and the high-impedance voltage noise source usually interferes with the voltage-based logic with the large transient noise peak of the fast logic. Priority transient noise suppression is an inherent characteristic of current sensing logic technology, and there is no corresponding technology in voltage-based logic technology. For the radiation point source, the voltage injection noise intensity drops to 1/r, where r is the distance from the radiation source. Current injection noise depends on the driving electric field and therefore decreases with the distance of 1/r 2 from the transmitter. For CiFET/CsiFET logic technology based on the current level, the current level is the magnetic flux density, and the magnetic flux density is the electric field multiplied by the local conductivity. The displacement current injection capability decreases faster than the transmission speed of the noise source to the high impedance receiving node.

由於CiFET電流驅動的節點電壓變化不大,因此寄生電容的損耗和驅動需求降低。因此重要地,隨著邏輯訊號的數據速率的增加,CiFET/CsiFET邏輯電路提供了不增加基極電流的能力。Since the node voltage of the CiFET current drive does not change much, the loss of parasitic capacitance and the drive demand are reduced. Therefore, importantly, as the data rate of the logic signal increases, the CiFET/CsiFET logic circuit provides the ability to not increase the base current.

由於散熱是運算輸出率(computational throughput)考慮的限制性設計特性,CiFET/CsiFET邏輯在寬範圍的頻率上,提供可預測的熱能生成,其使用電流模式邏輯來減少½CV2 損耗,並且以其極寬的運作溫度範圍而能夠可靠地在更高溫下運作。Since heat dissipation is a restrictive design feature considered for computational throughput, CiFET/CsiFET logic provides predictable heat generation over a wide range of frequencies. It uses current mode logic to reduce ½ CV 2 loss, and is extremely The wide operating temperature range enables reliable operation at higher temperatures.

CiFET系列元件從根本上改變了設計功能,並藉由增加電路佈局密度提供一種縮短訊號路徑並繞過許多限速步驟的路徑。這種新的速度在不增加功率的情況下,當評估電路定時估計或定時關閉限制時,將在IC設計領域中敏銳地被察覺。The CiFET series of components have fundamentally changed the design function, and by increasing the circuit layout density, it provides a path that shortens the signal path and bypasses many speed-limiting steps. This new speed will be keenly noticed in the field of IC design when evaluating circuit timing estimates or timing closure limits without increasing power.

CiFET/CsiFET邏輯設計在多個層次上改良。CiFET數位和CiFET類比構造使用完全相同的標準程序,使收容(hosting)CMOS數位電晶體提供無程序擴充。如果一個處理節點可以產生一對互補的CMOS,擇其可以用來產生CiFET結構;然而,由CiFET電晶體製成的逆變器相比於對應的CMOS,具有大約20倍的增益優勢。CiFET數位和類比電路在最基礎的製造層級上是兼容的。可以在同一晶片上製造和互連類比和數位系統。對大多數內部互連模式的晶片,外部的系統連接減少,因此,由於高阻抗雜訊入口節點愈來愈少,系統的訊噪比(S/N)將提高。結合類比至數位兩個世界的程序,將能夠使用相同的處理節點設計。The CiFET/CsiFET logic design has been improved on multiple levels. The CiFET digital and CiFET analog structures use exactly the same standard procedures, enabling the hosting of CMOS digital transistors to provide program-less expansion. If a processing node can produce a pair of complementary CMOS, it can be used to produce a CiFET structure; however, an inverter made of CiFET transistors has a gain advantage of approximately 20 times compared to the corresponding CMOS. CiFET digital and analog circuits are compatible at the most basic manufacturing level. Analog and digital systems can be manufactured and interconnected on the same wafer. For most chips with internal interconnection mode, the external system connections are reduced. Therefore, since there are fewer and fewer high-impedance noise entry nodes, the system's signal-to-noise ratio (S/N) will increase. Programs that combine analog to digital two worlds will be able to use the same processing node design.

CiFET電路產生並使用自己產生的共模參考電壓,而與此相對地,邏輯訊號被參照。這種共電壓是一條安定參考線,並與此相對地「1」或「0」的回應被給定或判斷,因此這種共電壓非常方便,。二進制邏輯變成了高於Vcm之上的任何東西為「1」而低於Vcm的任何東西為「0」,其遵循複雜系統雜訊裕度的考量,並且可通過稍後敘述的施密特觸發器(Schmitt trigger)偵測來解決。The CiFET circuit generates and uses its own common-mode reference voltage, and in contrast, the logic signal is referenced. This kind of common voltage is a stable reference line, and the response of "1" or "0" relative to this is given or judged, so this kind of common voltage is very convenient. Binary logic becomes "1" for anything above Vcm and "0" for anything below Vcm. It follows the consideration of the noise margin of the complex system and can be triggered by Schmidt as described later. (Schmitt trigger) detection to solve.

共模軌道的分流可由多個位移的共模產生器驅動,如圖1a1b1c 所示。在一複雜系統中,可能產生不止一個這樣的共模電壓。於偏壓位準時,邏輯檢測閾值僅僅是受調變共模電壓影響的幾個參數。該共模電壓軌道與系統電源匯流排上的高電流脈衝所引起的雜訊瞬態隔離。系統參考訊號被與正負供電源以及它們經常承載的雜散雜訊隔離。根據本發明,這個技術進一步降低了電路的雜訊底限。共模電壓產生器將CiFET/CsiFET邏輯配置於其傳輸功能的最高跨阻增益(rm)部分。快速邏輯需要在電路的最高增益點運作,或者考量將該點轉移至其他整體波形的傳輸功能。The shunt of the common mode track can be driven by multiple displacement common mode generators, as shown in Figures 1a , 1b, and 1c. In a complex system, more than one such common-mode voltage may be generated. At the bias level, the logic detection threshold is only a few parameters affected by the modulated common-mode voltage. This common mode voltage rail is transiently isolated from noise caused by high current pulses on the system power bus. The system reference signal is isolated from the positive and negative power supplies and the spurious noise they often carry. According to the present invention, this technique further reduces the noise floor of the circuit. The common-mode voltage generator configures the CiFET/CsiFET logic in the highest transimpedance gain (rm) part of its transmission function. Fast logic needs to operate at the highest gain point of the circuit, or consider transferring this point to other overall waveform transmission functions.

CiFET/CsiFET邏輯速度和驅動功率可從與系統相關的邏輯電路內動態控制。由於CiFET/CsiFET的邏輯需要更高的頻寬,因此可以透過改變供應電壓,動態地調整速度和功耗。對於最高的運算輸出率,供應電壓受到閘極氧化層崩潰的限制。CiFET/CsiFET logic speed and drive power can be dynamically controlled from the logic circuit related to the system. Because the CiFET/CsiFET logic requires a higher bandwidth, it is possible to dynamically adjust the speed and power consumption by changing the supply voltage. For the highest arithmetic output rate, the supply voltage is limited by the collapse of the gate oxide layer.

CiFET/CsiFET邏輯的獨特的完整部分可以在少於一微秒的時間內被完全關閉和打開,是透過將p型通道源極電晶體M3 的閘極M3g 從Vcm切換至Vdd來實現。CsiFET的數位性能和功耗適合於編程控制,如圖3a3b3c3d 所示。The unique integral part of the CiFET/CsiFET logic can be completely closed and opened in less than one microsecond. This is achieved by switching the gate M3g of the p-channel source transistor M3 from Vcm to Vdd. The digital performance and power consumption of CsiFET are suitable for programming control, as shown in Figures 3a , 3b , 3c and 3d.

CiFET/CsiFET邏輯與傳統CMOS晶片位準邏輯無縫地連接。CiFET/CsiFET邏輯係誕生於其所兼容CMOS處理節點。CiFET/CsiFET邏輯結構易於實現幾乎無限制的或非閘(NOR)和與非閘(NAND)扇入能力。CiFET/CsiFET邏輯擅於在電壓模式和電流模式下運作。CiFET/CsiFET logic is seamlessly connected with traditional CMOS chip level logic. The CiFET/CsiFET logic system was born from its compatible CMOS processing node. CiFET/CsiFET logic structure is easy to realize almost unlimited NOR and NAND fan-in capabilities. CiFET/CsiFET logic is good at operating in voltage mode and current mode.

CiFET/CsiFET邏輯結構允許多個調變輸入端口。具體來說,N和P iPort電流可用於移動數位邏輯的運作點。電流可以從每個iPort注入或退出,而各iPort係允許邏輯元件參數在功能上被調變。此特徵加入至CiFET系列元件的動態重新配置。偵測的閾值可以被動態地改變,為CiFET/CsiFET邏輯家族的固有功能增加不同的模式。The CiFET/CsiFET logic structure allows multiple modulation input ports. Specifically, N and PiPort currents can be used to move the operating point of digital logic. Current can be injected or withdrawn from each iPort, and each iPort allows the logic element parameters to be functionally adjusted. This feature is added to the dynamic reconfiguration of CiFET series components. The detection threshold can be dynamically changed, adding different modes to the inherent functions of the CiFET/CsiFET logic family.

CiFET在低電壓下運作的能力使得將幾個CiFET串聯在適度的Vdd和Vss之間變成可能。CiFET/CsiFET邏輯和鎖存器將以(Vdd-Vss<250毫伏特)運作並維持狀態,而運作速度隨供應電壓下降。如圖15 所示,若有需要,由不同共模電壓分離的串聯堆疊CiFET/CsiFET邏輯電路可以運行並行邏輯通道。The ability of CiFETs to operate at low voltages makes it possible to connect several CiFETs in series between moderate Vdd and Vss. The CiFET/CsiFET logic and latch will operate and maintain the state (Vdd-Vss <250 millivolts), and the operating speed will decrease with the supply voltage. As shown in Figure 15 , if necessary, a series-stacked CiFET/CsiFET logic circuit separated by different common-mode voltages can run parallel logic channels.

CiFET/CsiFET邏輯已被展示可以製作D正反器(D flip flop)、RS正反器(RS flip flop)和鎖存器(latch),因此,使用CiFET鎖存器作為儲存元件時,CiFET可被用於製造記憶體單元和記憶體儲存結構。對於SRAM和其他鎖存器,因為可以將電流推至交叉連接的CiFET鎖存器的iPort中並將其設置為「一」,或者將電流從相同的iPort中提出並將其設置為「零」於鎖存器中,因此只需要一位元線。CiFET/CsiFET logic has been shown to be able to make D flip flop, RS flip flop and latch. Therefore, when using CiFET latch as a storage element, CiFET can be It is used to manufacture memory cells and memory storage structures. For SRAM and other latches, because the current can be pushed into the iPort of the cross-connected CiFET latch and set to "one", or the current can be drawn from the same iPort and set to "zero" In the latch, so only one bit line is needed.

CiFET數位邏輯與可擦除(erasable)的FPGA結構兼容。此外,CiFET類比邏輯和CiFET數位邏輯的功能部分都與FPGA技術兼容。CiFET digital logic is compatible with erasable FPGA architecture. In addition, the functional parts of CiFET analog logic and CiFET digital logic are compatible with FPGA technology.

基本的CMOS結構源極、通道、汲極和閘極於基材上被製造,基材的範圍從從碳奈米管到以噴墨式印表機製成且具有導電噴霧的結構。如果可以構成互補的CMOS結構,則也可以構成互補的CiFET結構,只需要實體地將另一汲極或源極擴散小心地放置在通道中,以在各自的通道中實現iPort。當這些CiFET結構受偏壓至自生成的共模電壓時,它們被偏壓至最大值傳遞功能。無論CiFET結構是由矽、碳奈米管、印刷導電油墨或任何有機或無機生長結構所構成,皆為如此。CiFET/CsiFET邏輯電路可在柔性基材上印刷,並用於提供一次性接觸點裝置的邏輯。The basic CMOS structure source, channel, drain, and gate are fabricated on a substrate, which ranges from carbon nanotubes to structures made by inkjet printers with conductive spray. If a complementary CMOS structure can be formed, then a complementary CiFET structure can also be formed. It is only necessary to physically place the other drain or source diffusion carefully in the channel to realize the iPort in the respective channel. When these CiFET structures are biased to a self-generated common-mode voltage, they are biased to the maximum transfer function. This is true whether the CiFET structure is made of silicon, carbon nanotubes, printed conductive inks, or any organic or inorganic growth structure. CiFET/CsiFET logic circuits can be printed on flexible substrates and used to provide logic for disposable contact point devices.

1a 示出了一種類似於CiFET的CsiFET結構100a ,其具有連接至Vss 的n型通道電晶體源極,被命名為M1M2M3 和最後的M4 ,其p型通道電晶體源極連接至VddM1M2M3M4 的閘極M1gM2gM3gM4g 分別連接至共模電壓Vcm 。如圖所示,該CsiFET100a 為完全偏壓運作。注入PiPort100aPi 或NiPort100aNi 的電流將導致Vout100aout 輸出電壓增加並向Vdd 移動。如果電流從任何一個節點被提取出來,Vout電壓將開始向Vss 下降。Figure 1a shows a CsiFET structure 100a similar to CiFET, which has an n-channel transistor source connected to Vss , named M1 , M2 , M3 and finally M4 , and its p-channel transistor source is connected To Vdd . The gates M1g , M2g , M3g, and M4g of M1 , M2 , M3, and M4 are respectively connected to the common mode voltage Vcm . As shown in the figure, the CsiFET 100a is fully biased. The current injected into PiPort 100aPi or NiPort 100aNi will cause the output voltage of Vout 100aout to increase and move toward Vdd. If the current is drawn from any node, the Vout voltage will start to drop towards Vss.

參考圖1b 和圖1c ,標示出CiFET20a 的電路符號。圖1b 中的電路100b 和圖1c 中的電路100c 都表明,CiFET20a 的連接方式使得CiFET20a 將產生自生的共模電壓Vcm 。在一電路系統中,Vcm 會像VddVss 一樣分布於電路的周圍,但沒有緩衝電容。在設計階段可視需要將驅動容量加至該分布配置中。Referring to Fig. 1b and Fig. 1c , the circuit symbol of the CiFET 20a is marked. Both the circuit 100b in FIG. 1b and the circuit 100c in FIG. 1c show that the CiFET 20a is connected in such a way that the CiFET 20a will generate a self-generated common mode voltage Vcm . In a circuit system, Vcm will be distributed around the circuit like Vdd and Vss , but there is no snubber capacitor. In the design phase, the drive capacity can be added to the distributed configuration as needed.

在圖2 中,一個單獨的CsiFET,藉由施加到其共通閘極的Vcm偏壓運作,係繪示於電路及其運作圖中。指定的電流和電壓值不太重要,因為其可以透過改變CsiFET設計結構的幾個方面進行調整。然而,不管具體值是多少,CsiFET都會顯示該電路所呈現的運作曲線。從負值至正值的輸入斜坡電流(ramp current)將應用於iPort,在本例中,將應用於PiPort。在電流被推入節點的情況下,當該訊號電流變為0時,Vout被驅動至Vdd,而當CsiFET的Vout變為Vcm且當電流從iPort被提取出來時,Vout被驅動至Vss。圖中顯示了進入PiPort節點的電流分布。這些電流總和將為零,並且包括注入訊號電流、來自CsiFET通道外部的p型通道源極的電流,和進入p型通道汲極對應通道的源極節點的電流。In Figure 2 , a single CsiFET, operating with a Vcm bias applied to its common gate, is shown in the circuit and its operation diagram. The specified current and voltage values are not important because they can be adjusted by changing several aspects of the CsiFET design structure. However, regardless of the specific value, CsiFET will display the operating curve presented by the circuit. The input ramp current from negative to positive will be applied to the iPort, in this case, it will be applied to the PiPort. When the current is pushed into the node, when the signal current becomes 0, Vout is driven to Vdd, and when the Vout of the CsiFET becomes Vcm and when the current is extracted from the iPort, Vout is driven to Vss. The figure shows the current distribution into the PiPort node. The sum of these currents will be zero and include the injected signal current, the current from the source of the p-type channel outside the CsiFET channel, and the current into the source node of the corresponding channel of the p-type channel drain.

如圖所示,CsiFET是一主動式裝置,具有4個通道,而通道是於每個兼容的CMOS處理節點的互補倒對中擴散一個額外節點所製造。外部的互補源極通道設定節點輸入電阻,並且由於其固定的閘極-源極電壓來調節通道電流。內部汲極通道作為共通閘極放大器電壓增益階段運作。注入iPort電阻的電流調變源電壓去驅動汲極電壓發生線性變化。由於在共通汲極輸出電壓的變化是以互補的方式驅動,非線性在數學上被取消。必須注意的是,共通閘極放大器是由源電壓驅動的。As shown in the figure, the CsiFET is an active device with 4 channels, and the channels are manufactured by diffusing an extra node in the complementary inverted pair of each compatible CMOS processing node. The external complementary source channel sets the node input resistance and adjusts the channel current due to its fixed gate-source voltage. The internal drain channel operates as a common gate amplifier voltage gain stage. The current injected into the iPort resistor modulates the source voltage to drive the drain voltage to change linearly. Since the change in the output voltage at the common drain is driven in a complementary manner, the non-linearity is mathematically cancelled. It must be noted that the common gate amplifier is driven by the source voltage.

基本的CsiFET邏輯支持PiPort和NiPort電流注入。電流注入其中的任一節點將導致Vout節點向Vdd軌道移動,相似地,電流提取出其中的任一節點將導致Vout節點向Vss軌道移動。在這兩個端口上所示之輸入阻抗可透過調整描述通道中新節點擴散位置的iRatio值而被調整至應用需求。雖然在製造時輸入阻抗是不變的,但是透過調變CsiFET分段供應電壓,可以動態地調變所呈現的輸入阻抗。標準輸入阻抗可以很容易地設計為50歐姆。這些節點用於透過輸入或輸出電流而控制Vout的表現。還可以透過以電壓訊號驅動高輸入阻抗共通閘極節點來控制CsiFET。還示出了用於將CsiFET偏壓至其最大跨阻增益的共模電壓,可以有多個Vcm產生器來滿足Vcm負載限制。然而,由於CsiFET對偏壓點及線性的高容許值,不同Vcm產生器之間的小變化很少引起關注。這種對參數變化的容忍也適用於處理節點的變化。除了滿足不同的設計目標、速度、邏輯閾值或其他要求以外,特定的共模電壓產生器還可以根據其本地電路的需要進行調整。The basic CsiFET logic supports PiPort and NiPort current injection. Injecting current into any one of the nodes will cause the Vout node to move to the Vdd orbit. Similarly, extracting any of the nodes from the current will cause the Vout node to move to the Vss orbit. The input impedance shown on these two ports can be adjusted to the application requirements by adjusting the iRatio value describing the diffusion position of the new node in the channel. Although the input impedance is constant during manufacturing, the presented input impedance can be dynamically adjusted by modulating the segmented supply voltage of the CsiFET. The standard input impedance can be easily designed as 50 ohms. These nodes are used to control the performance of Vout through input or output current. The CsiFET can also be controlled by driving a high input impedance common gate node with a voltage signal. The common mode voltage used to bias the CsiFET to its maximum transimpedance gain is also shown. There can be multiple Vcm generators to meet the Vcm load limit. However, due to the high tolerances of the bias point and linearity of the CsiFET, small changes between different Vcm generators rarely cause concern. This tolerance for parameter changes also applies to processing node changes. In addition to meeting different design goals, speeds, logic thresholds, or other requirements, a specific common-mode voltage generator can also be adjusted according to the needs of its local circuit.

3a3b3c3d 繪示幾種利用siFET(PsiFET或NsiFET)的電路配置,係將電壓邏輯位準改變為適於攜帶邏輯位準資訊的受控電流訊號。參考圖3a ,PsiFET100P 被配置將電壓輸入Vin 轉換成電流輸出Iout 。PsiFET100P 包括源極通道電晶體M4 和汲極通道電晶體M3 。源極通道電晶體M4 的源極M4s 連接至電源Vdd 。源極通道電晶體M4 的汲極M4d 連接至汲極通道電晶體M3 的源極M3s 。源極通道閘100Pgs 連接至共模電壓Vcm ,而汲極通道閘100Pgd 被配置而接收輸入電壓Vin 。汲極通道電晶體M3 的汲極M3d 提供對應於電壓輸入Vin 的輸出電流Iout 。源極通道電晶體M4 和汲極通道電晶體M3 之間提供PiPort100PiFigures 3a , 3b , 3c, and 3d illustrate several circuit configurations using siFETs (PsiFETs or NsiFETs), which change the voltage logic level to a controlled current signal suitable for carrying logic level information. Referring to Figure 3a , PsiFET 100P is configured to convert a voltage input Vin into a current output Iout . The PsiFET 100P includes a source channel transistor M4 and a drain channel transistor M3 . The source-channel transistor M4 is connected to the power source M4s Vdd. The source-channel transistor M4, a drain connected to the source M3s M4d drain channel transistor M3. The source channel gate 100Pgs is connected to the common mode voltage Vcm , and the drain channel gate 100Pgd is configured to receive the input voltage Vin . The drain M3d of the drain channel transistor M3 provides an output current Iout corresponding to the voltage input Vin . PiPort 100Pi provided between the source-channel transistor M4 and the drain channel transistor M3.

3c 所示的電路係等效於圖3a 所示的電路,其中PsiFET100P 被配置將電壓輸入轉換成電流,其中源極100Ps 連接至電源Vdd ,源極通道閘100Pgs 連接至共模電壓Vcm ,並且汲極通道閘100Pgd 被配置成接收輸入電壓Vin 。汲極100Pd 提供對應於輸入電壓Vin 的電流輸出PiOutThe circuit shown in Figure 3c is equivalent to the circuit shown in Figure 3a , where the PsiFET 100P is configured to convert voltage input into current, where the source 100Ps is connected to the power supply Vdd , and the source channel gate 100Pgs is connected to the common mode voltage Vcm , And the drain channel gate 100Pgd is configured to receive the input voltage Vin . The drain 100Pd provides a current output PiOut corresponding to the input voltage Vin .

參考圖3b ,NsiFET100N 被配置成將電壓輸入Vin 轉換成電流輸出Iout 。NsiFET100N 包括汲極通道電晶體M2 和源極通道電晶體M1 。源極電晶體M1 的源極M1s 連接至電源Vss 。汲極通道電晶體M2 的源極M2s 連接至源極通道電晶體M1 的汲極M1d 。源極通道閘100Ngs 連接至共模電壓Vcm ,而汲極閘100Ngd 被配置成接收輸入電壓Vin 。汲極通道電晶體M2 的汲極M2d 提供對應於電壓輸入Vin 的輸出電流Iout 。源極通道電晶體M1 和汲極通道電晶體M2 之間提供NiPort100NiReferring to Figure 3b , NsiFET 100N is configured to convert a voltage input Vin into a current output Iout . The NsiFET 100N includes a drain channel transistor M2 and a source channel transistor M1 . The source M1s of the source transistor M1 is connected to the power supply Vss . The source M2s of the drain channel transistor M2 is connected to the drain M1d of the source channel transistor M1 . The source channel gate 100Ngs is connected to the common mode voltage Vcm , and the drain gate 100Ngd is configured to receive the input voltage Vin . The drain M2d of the drain channel transistor M2 provides an output current Iout corresponding to the voltage input Vin . NiPort 100Ni is provided between the source channel transistor M1 and the drain channel transistor M2 .

3d 所示的電路係等效於圖3b 所示的電路,其中NsiFET100N 被配置將電壓輸入轉換成電流,其中源極100Ns 連接至電源Vss ,源極通道閘100Ngs 連接至共模電壓Vcm ,並且汲極通道閘100Ngd 被配置成接收輸入電壓Vin 。汲極100Pd 提供對應於輸入電壓Vin 的電流輸出NiOutThe circuit shown in Figure 3d is equivalent to the circuit shown in Figure 3b , where the NsiFET 100N is configured to convert voltage input into current, where the source 100Ns is connected to the power supply Vss , and the source channel gate 100Ngs is connected to the common mode voltage Vcm , And the drain channel gate 100Ngd is configured to receive the input voltage Vin . The drain 100Pd provides a current output NiOut corresponding to the input voltage Vin .

除了通過最終被鑄成矽的裝置的iRatio(iRatio的定義如下所示)影響設計的多種方式之外,如果有必要的話,可以改變Vdd為工作電壓或從中汲取電流,而使電流位準被控制和動態地調。這些電流源和電流槽被呈現為完整CiFET/CsiFET的主動部分,其具有設計的iRatio,使得CiFET/CsiFET的一半基本上是被動的或者結構實際上是CiFET/CsiFET的一半,並對電流槽(sink)或電流源(source)的任務保留了適當的通道。In addition to the various ways of affecting the design through the iRatio of the device that is finally cast into silicon (the definition of iRatio is shown below), if necessary, you can change Vdd to the working voltage or draw current from it, so that the current level can be controlled And dynamically adjust. These current sources and current sinks are presented as the active part of a complete CiFET/CsiFET, which has a designed iRatio, so that half of the CiFET/CsiFET is basically passive or the structure is actually half of the CiFET/CsiFET, and the current sink ( The task of sink) or current source (source) retains the appropriate channel.

3a3b3c3d 所示的siFET邏輯電流源提供受Vcm 控制的訊號電流、受控制的電晶體和邏輯訊號驅動的電晶體。在圖4a4b4c4d 中,示出了單電晶體電流邏輯訊號源。這種類型的電流訊號源省略了Vcm 電流調節,並使用這樣一種設計的電晶體完全非調變(full unregulated)電流驅動能力。這種結構將被使用在需要最大邏輯速度的地方。The siFET logic current sources shown in FIGS. 3a , 3b , 3c, and 3d provide a signal current controlled by Vcm , a controlled transistor, and a transistor driven by a logic signal. In Figures 4a , 4b , 4c and 4d , a single transistor current logic signal source is shown. This type of current signal source omits the Vcm current adjustment, and uses such a designed transistor with a full unregulated current drive capability. This structure will be used where the maximum logic speed is required.

4a4b4c4d 顯示了將電流訊號轉換為電壓的簡化示意圖。當用來驅動後面描述的有線或閘(OR)和與閘(AND)結構時,這些電壓-電流裝置是合適的。當向這種有線設備增加另一個輸入時,只需要這個槽或源,接收器就保持不變,這個CiFET/CsiFET有線邏輯大幅地減少了許多用於陣列交換和存取應用以及需要時脈同步的矽空間。Figures 4a , 4b , 4c, and 4d show simplified schematic diagrams of converting current signals into voltages. These voltage-current devices are suitable when used to drive the wired OR (OR) and AND (AND) structures described later. When adding another input to this wired device, only this slot or source is needed and the receiver remains the same. This CiFET/CsiFET wired logic greatly reduces the number of applications used for array switching and access and the need for clock synchronization Silicon space.

4a4b4c4d 還繪示與驅動電流槽或電流源相連接並用於邏輯目的的CiFET/CsiFET完整結構。在這些圖中可以清楚地看到,可以增加另一個源(source)電流或槽(sink)電流產生器以驅動其各自的PiPort或NiPort。此結構將用於生成可擴充的有線或閘(OR)、與閘(AND)、或非閘(NOR)和與非閘(NAND)結構。電流係以粗體虛線示出,當邏輯訊號被呈現時,電流路徑被活化。Figures 4a , 4b , 4c, and 4d also illustrate the complete structure of the CiFET/CsiFET connected to the driving current tank or current source and used for logic purposes. It can be clearly seen in these figures that another source current or sink current generator can be added to drive its respective PiPort or NiPort. This structure will be used to generate expandable wired OR (OR), AND (AND), NOR and NAND structures. The current is shown in bold dashed lines. When the logic signal is presented, the current path is activated.

參考圖4a4b ,CsiFET100 被配置成將電流訊號iSignal (非「1」即「0」)轉換為電壓輸出Vout 。在這種配置中,p型源極通道閘100Pgs 、p型汲極通道閘100Pgd 、n型汲極通道閘100Ngd 和n型源極通道閘100Ngs 連接至共模電壓Vcm 。電流訊號iSignal 被配置於汲極通道閘電晶體M2 的源極M2s 和源極通道電晶體M1 的汲極M1d 被接收。汲極通道電晶體M3 的汲極M3d 和汲極通道電晶體M2 的汲極M2d 提供輸出電壓VoutReferring to FIGS. 4a and 4b , the CsiFET 100 is configured to convert the current signal iSignal (not "1" or "0") into a voltage output Vout . In this configuration, the p-type source channel gate 100Pgs , the p-type drain channel gate 100Pgd , the n-type drain channel gate 100Ngd, and the n-type source channel gate 100Ngs are connected to the common mode voltage Vcm . The current signal iSignal is received by the source M2s of the drain channel thyristor M2 and the drain M1d of the source channel transistor M1 . Drain channel transistor M3 and the drain of drain M3d drain channel transistor M2 is M2d provides output voltage Vout.

參照圖4c4d ,除了源極通道電晶體M4 的汲極M4d 和汲極通道電晶體M3 的源極M3s 連接電流訊號iSignal 外,CsiFET100 的配置與圖4a4b 中所示的配置相同。Referring to FIGS. 4c and 4d, in addition to the drain source path of the transistor M4 and the source electrode M3s M4d drain channel transistor M3 is connected to an outer current signal iSignal, CsiFET 100 of the same configuration of Figures 4a and 4b in the configuration shown.

表格一、單CiFET/CsiFET邏輯狀態 CiFET 邏輯表格    Current control       In Out Vout Vout             null null Vcm Vcm             In    1 Vdd Ip    1 Vdd In+Ip    1 Vdd                In 0 Vss    Ip 0 Vss    In+Ip 0 Vss             In Ip Z Vss<Z<Vdd Ip In Z Vss<Z<Vdd Table 1. Logic state of single CiFET/CsiFET CiFET logic table Current control In Out Vout Vout null null Vcm Vcm In 1 Vdd Ip 1 Vdd In+Ip 1 Vdd In 0 Vss Ip 0 Vss In+Ip 0 Vss In Ip Z Vss<Z<Vdd Ip In Z Vss<Z<Vdd

CiFET/CsiFET作為邏輯元件可同時地通過電壓和電流輸入驅動多個端口。電流可以從每個PiPort或NiPort流出或流入。流入其中一個或兩個端口的電流將驅動Vout至Vdd。從其中一個或兩個端口流出的電流將驅動Vout至Vss。由於這是一個二進制邏輯,若電流流入至一個iPort和流出於互補iPort的源極,Vout狀態將是未定義的。運行CiFET/CsiFET邏輯所需的流入或流出電流,是將驅動Vout至Vdd或Vss達到邏輯運作可接受的位準的,流入或流出於iPort時的電流。由於邏輯位準的閾值可以動態地被調整,這些狀態定義將取決於開發的特定電路和邏輯。此外,可透過將除了Vcm以外的電壓施加至共通閘極,來控制CiFET/CsiFET邏輯狀態。如果比Vcm更正向,則輸出將下降,而如果比Vcm更負向,則輸出將升高。作為邏輯「0」和「1」的附加狀態,CiFET/CsiFET邏輯允許在Vcm保持共通閘極,並且不從任一iPort流入或流出任何邏輯電流,Vout將返回至其未受干擾Vcm之Vout。這可被認為是一個什麼都沒有發生的邏輯狀態。As a logic element, CiFET/CsiFET can simultaneously drive multiple ports through voltage and current inputs. Electricity can flow in or out of each PiPort or NiPort. The current flowing into one or both ports will drive Vout to Vdd. The current flowing from one or both ports will drive Vout to Vss. Since this is a binary logic, if current flows into an iPort and flows out of the source of the complementary iPort, the Vout state will be undefined. The inflow or outflow current required to run the CiFET/CsiFET logic is the current that will drive Vout to Vdd or Vss to a level acceptable for the logic operation and flow into or out of the iPort. Since the logic level threshold can be dynamically adjusted, these state definitions will depend on the specific circuit and logic being developed. In addition, the CiFET/CsiFET logic state can be controlled by applying a voltage other than Vcm to the common gate. If it is more positive than Vcm, the output will decrease, and if it is more negative than Vcm, the output will increase. As an additional state of logic "0" and "1", CiFET/CsiFET logic allows the common gate to be maintained at Vcm, and no logic current flows in or flows from any iPort, Vout will return to its undisturbed Vcm Vout. This can be thought of as a logical state where nothing happens.

5a 示出了利用CiFET/CsiFET用於電壓數據流的電路示意圖,其中該電壓數據流被轉換成電流數據流,並且在傳輸線上沿著傳輸線相對地減少電壓變化,傳輸「0」(即無電流」和「1」(即有電流)的數據值。發射器500a1 轉換電壓訊號Transmit 1 /Transmit 0 為電流數據流。發射器500a1 包括CsiFET100fa ,其中PsiFET100Pfa 的源極100Pfas 連接至電源Vdd1 ,NsiFET100Nfa 的源極100Nfa 連接至Vss1 。PsiFET100Pfa 的源極通道閘100Pfags 和NsiFET100Nfa 的源極通道閘100Nfags 連接至共模電壓Vcm1 。PsiFET100Pfa 的汲極通道閘100Pfbd 被配置為接收Transmit 1 的電壓邏輯訊號,並且NsiFET100Nfa 的汲極通道閘100Nfagd 用於接收Transmit 0 的電壓邏輯訊號。PsiFET100Pfa 的汲極100Pfad 和NsiFET100Nfa 的汲極100Nfad 連接在一起而形成用於發送電流數據流的輸出。Figure 5a shows a schematic diagram of a circuit using CiFET/CsiFET for voltage data flow, where the voltage data flow is converted into a current data flow, and the voltage change is relatively reduced along the transmission line on the transmission line to transmit "0" (ie no current "and" (i.e., current) data value 1. "emitter 500a1 voltage converter transmit 1 / transmit 0 as a current data stream. emitter 500a1 includes CsiFET 100fa, wherein PsiFET 100Pfa source 100Pfas is connected to the power supply Vdd1, NsiFET 100Nfa 100Nfa source connected to the source Vss1 .PsiFET 100Pfa 100Pfags channel gate and source NsiFET 100Nfa 100Nfags channel gate connected to the common-mode voltage Vcm1 .PsiFET 100Pfa 100Pfbd the drain channel gate voltage is configured to receive the Transmit 1 logical signal, and a drain NsiFET 100Nfa 100Nfagd channel gate for receiving the logical signal voltage transmit .PsiFET 100Pfa 0 100Pfad the drain and the drain 100Nfad NsiFET 100Nfa joined together to form a current output for transmitting the data stream.

接收器500a2 包括一對CiFET20fa120fab 。CiFET20fa120fa2 的源極20fa1s20fa2s 連接至電源Vdd2 。CiFET20fa1 的閘極20fa1g 連接至CiFET20fa2 的PiFET的汲極20fa2t2 和NiFET的汲極20fa2t3 ;而CiFET20fa2 的閘極20fa2g 連接至CiFET20fa1 的PiFET的汲極20fa1t2 和NiFET的汲極20fa1t3The receiver 500a2 includes a pair of CiFETs 20fa1 and 20fab . The sources 20fa1s and 20fa2s of the CiFETs 20fa1 and 20fa2 are connected to the power supply Vdd2 . CiFET 20fa1 20fa1g connected to the gate of the PiFET CiFET 20fa2 20fa2t2 the drain and the drain NiFET 20fa2t3; and CiFET 20fa2 20fa2g connected to the gate of the PiFET CiFET 20fa1 20fa1t2 and drain of the drain NiFET 20fa1t3.

這些邏輯電流位準由CiFET20fa1 的NiPort20fa2t6 於接收器500a2 接收。該電流通過低輸入阻抗端口(即NiPort20fa2t6 )被接收。接收的端口阻抗可設定於在製造時間,並在運行期間被動態調整。由於電流在迴路中的行進是一通過變量(through variable),並且接收器在本地向接受器Vss2 電源端接(terminates),因此發射器Vss1Vss2 之間的接地雜訊,不會像常規的電壓邏輯傳輸系統那樣地直接進入接收訊號雜訊容限。由於CiFET跨阻轉換(rm )而產生的電流被直接轉換成輸出電壓,而在電路的其他地方使用。These logic current levels are received by the NiPort 20fa2t6 of the CiFET 20fa1 at the receiver 500a2 . This current is received through the low input impedance port (ie NiPort 20fa2t6). The received port impedance can be set at the time of manufacture and dynamically adjusted during operation. Since the current travels in the loop is a through variable, and the receiver is locally terminated to the receiver Vss2 power supply, the ground noise between the transmitter Vss1 and Vss2 will not be like conventional The voltage logic transmission system directly enters the received signal noise tolerance. The current generated by the CiFET transimpedance conversion (r m ) is directly converted into the output voltage and used elsewhere in the circuit.

6a 示出了具有電壓位準和電流位準邏輯輸入的有線或閘(OR)電路的示意圖,輸入邏輯變數由電壓-電流輸出轉換器提供,其中輸出電流驅動有線或閘(OR)邏輯軌道。額外的電流源可以連接至有線或閘(OR)邏輯軌道。PsiFET100Pga1100Pga2100Pga3 被配置將電壓轉換為電流,同樣的配置如圖3c 所示。例如第一邏輯輸入A 通過PsiFET100Pga1 轉換為電流iA ,而第二邏輯輸入B 通過PsiFET100Pga2 轉換為電流iB 。邏輯輸入電流iAiB 串接,並饋入CiFET20ga 的NiPort20gat6 ,用於將電流iA +iB 轉換為邏輯輸出電壓Vout 。PsiFET100Pga3Vout 轉換為邏輯輸出電流iOutFigure 6a shows a schematic diagram of a wired OR (OR) circuit with voltage level and current level logic inputs. The input logic variables are provided by a voltage-current output converter, where the output current drives the wired OR (OR) logic track . Additional current sources can be connected to wired OR logic tracks. PsiFETs 100Pga1 , 100Pga2, and 100Pga3 are configured to convert voltage to current, and the same configuration is shown in Figure 3c. For example, the first logic input A is converted into the current iA by the PsiFET 100Pga1 , and the second logic input B is converted into the current iB by the PsiFET 100Pga2 . The logic input current iA and iB are connected in series and fed into the NiPort 20gat6 of the CiFET 20ga to convert the current iA + iB into the logic output voltage Vout . PsiFET 100Pga3 converts Vout into logic output current iOut .

6b 示出了有線與閘(AND)電路的示意圖。輸入邏輯變數由邏輯電壓輸入(AB )提供。這些邏輯訊號由被配置成將邏輯電壓AB 轉換為電流iA_iB_ 的電壓-電流輸出轉換器NsiFET100Ngb1100Ngb2100Ngb3 提供,其配置如圖3d 所示。輸出電流iA_iB_ 驅動有線與閘(AND)邏輯軌道或PiPort20gbt5 。該CiFET/CsiFET邏輯元件既提供電流控制邏輯輸出狀態,又提供電壓邏輯位準輸出。額外的電流源很容易連接至這個有線與閘(AND)邏輯軌道。邏輯訊號是電流,且最後為一個完整的迴路,於迴路中電流邏輯訊號固有地避開位移電流雜訊。在CiFET裝置iPort可調時,雜訊是一個高阻抗源,但在這種接收器的使用情況下,輸入阻抗將被設計為一個低阻抗iPort。該節點阻抗設計在小於50歐姆至大於100千歐姆的範圍內。取決於電路Vdd、CiFET/CsiFET設計偏壓,節點DC輸出偏壓電壓也會從幾毫伏特變為100毫伏特,並且可以通過在電路中從另一控制電路調整其Vdd來動態地改變。不同情況下的CiFET/CsiFET邏輯可以由電壓對電壓、電壓對電流、電流對電流或電流對電壓驅動。這四種運作模式都是處理邏輯數據流的可能方法。這種完整的數據驅動模式的互換性為數位邏輯設計者提供了獨特的功能。在CiFET電晶體結構中,所有四種運作模式都是可能的,透過使用該單電晶體,使用者可以在邏輯過程硬件路徑內通過這些邏輯傳輸模式。Figure 6b shows a schematic diagram of a wired AND circuit. The input logic variable is provided by the logic voltage input ( A , B ). These logic signals are provided by voltage-current output converters NsiFETs 100Ngb1 , 100Ngb2, and 100Ngb3 configured to convert the logic voltages A and B into currents iA_ and iB_ , the configuration of which is shown in FIG. 3d. The output current iA_ and iB_ drives the wired AND logic track or PiPort 20gbt5 . The CiFET/CsiFET logic element not only provides current control logic output state, but also provides voltage logic level output. Additional current sources are easily connected to this wired AND logic track. The logic signal is a current, and finally a complete loop, in which the current logic signal inherently avoids displacement current noise. When the CiFET device iPort is adjustable, the noise is a high-impedance source, but in the use of this type of receiver, the input impedance will be designed as a low-impedance iPort. The node impedance is designed to be in the range of less than 50 ohms to more than 100 kiloohms. Depending on the circuit Vdd and CiFET/CsiFET design bias, the node DC output bias voltage will also change from a few millivolts to 100 millivolts, and it can be dynamically changed by adjusting its Vdd from another control circuit in the circuit. CiFET/CsiFET logic in different situations can be driven by voltage versus voltage, voltage versus current, current versus current, or current versus voltage. These four modes of operation are all possible methods of processing logical data flow. The interchangeability of this complete data-driven model provides unique features for digital logic designers. In the CiFET transistor structure, all four operating modes are possible. By using the single transistor, the user can pass these logic transmission modes in the logic process hardware path.

7a 繪示了4輸入的CMOS或非閘(NOR)邏輯閘的示意圖,圖7b 示出了使用CiFET的或非閘(NOR)邏輯閘示意圖。參考圖7a ,在CMOS邏輯情況下,隨著或非閘(NOR)輸入數量的增加,電路的尺寸迅速增大,這種尺寸的增加還必須包括新增加的邏輯發射器的尺寸,還必須考慮寄生電路的相關增加和因為必須驅動這些電容而導致的電晶體尺寸的增加。相反地,如圖7b 所示,CiFET20 被連線並配置成作為或非閘(NOR)邏輯元件時,當額外電流邏輯源輸入其邏輯數據至單個互連導線或收集導線上時,或非閘(NOR)邏輯元件的大小將保持恆定。矽尺寸減小,而CiFET有線邏輯閘允許非常大的扇入能力,使得具有25個輸入不會不切實際。FIG. 7a shows a schematic diagram of a 4-input CMOS NOR logic gate, and FIG. 7b shows a schematic diagram of a NOR logic gate using CiFET. Referring to Figure 7a , in the case of CMOS logic, as the number of NOR inputs increases, the size of the circuit increases rapidly. This increase in size must also include the size of the newly added logic transmitter, and must also be considered The associated increase in parasitic circuits and the increase in transistor size due to the need to drive these capacitors. Conversely, as shown in Figure 7b , when the CiFET 20 is wired and configured as a NOR logic element, when an additional current logic source inputs its logic data to a single interconnection wire or a collection wire, the NOR The size of the gate (NOR) logic element will remain constant. The silicon size is reduced, and the CiFET wired logic gate allows a very large fan-in capability, making it not unrealistic to have 25 inputs.

8a8b 示出了由CMOS和FinFET的幾種不同邏輯所佔據的各自的矽表面區域。要注意的是,當CMOS被要求從輸入1(one)非閘(NOT)移動至輸入2或非閘(NOR)時,所需的矽表面區域面積係不成比例地增長,且及時地,CMOS將為這種CMOS邏輯結構中的扇入提供限制。對於FinFET結構也同樣如此。然而,如圖7b 所示,CiFET有線或非(NOR)閘是由收集或非閘輸入的總電流的一導線所組成。這種CiFET結構的扇入可以適應任何設計需要。Figures 8a to 8b show the respective silicon surface areas occupied by several different logics of CMOS and FinFET. It should be noted that when CMOS is required to move from input 1 (one) non-gate (NOT) to input 2 or non-gate (NOR), the required silicon surface area increases disproportionately, and in time, CMOS A restriction will be provided for fan-in in this CMOS logic structure. The same is true for the FinFET structure. However, as shown in Figure 7b , the CiFET wired NOR gate is composed of a wire that collects the total current input by the NOR gate. The fan-in of this CiFET structure can be adapted to any design needs.

8c 示出了平面CMOS中與物理尺寸相關的CiFET設備20, 20’和矽佈局(layout)平面圖20’’。圖8d 繪示了與FinFET技術中物理尺寸相關的CiFET裝置20’’’和矽佈局平面圖。Figure 8c shows a physical size-related CiFET device 20, 20' and a silicon layout plan view 20" in a planar CMOS. FIG. 8d shows a plan view of the CiFET device 20"' and silicon layout in relation to the physical dimensions in FinFET technology.

8e 顯示了4輸入的或閘(OR)邏輯閘的CMOS佈局。與圖8b 所示的佈局相比,明顯地,其尺寸隨著輸入端子數量的增加而增加。CiFET 4輸入的或非閘(NOR)的矽電路與具有n個輸入的或非閘(NOR)的矽電路基本上相同,圖7b 所示電路的唯一附加部分是邏輯發射器與有線收集導線的連接。Figure 8e shows the CMOS layout of the 4-input OR gate (OR) logic gate. Compared with the layout shown in Fig. 8b , it is obvious that its size increases as the number of input terminals increases. The NOR silicon circuit with CiFET 4 input is basically the same as the silicon circuit with n inputs NOR. The only additional part of the circuit shown in Figure 7b is the logic transmitter and the wired collector wire. connection.

輸入跳閘電流(trip current)設定脈衝係來自圖5a5b 所示的發射器。基於設計需要,PiPort處的DC端口電壓高於PiNort處的DC端口電壓。根據底層電路(underlying circuit)的速度需求,該輸入跳閘電流的範圍可以從100皮安培至100微安培。跳閘電流驅動共通汲極連接的輸出降至Vss,而Vss因此關閉作為邏輯電壓-電流轉換器的iFET/siFET,其中該轉換器交叉反饋(cross feedback)相鄰的CiFET/CsiFET對應的驅動端口,以類似從相應的iPort中提取的重設電流脈衝將使CiFET/CsiFET正反器的狀態反轉至重設狀態的方式,該反饋動作快速地將CiFET/CsiFET正反器捕捉至設置狀態。The input trip current (trip current) setting pulse is from the transmitter shown in Figures 5a and 5b. Based on design requirements, the DC port voltage at PiPort is higher than the DC port voltage at PiNort. According to the speed requirements of the underlying circuit, the input trip current can range from 100 picoamps to 100 microamps. The trip current drives the output of the common drain connection to Vss, and Vss therefore turns off the iFET/siFET as a logic voltage-current converter, where the converter cross feedbacks the drive port corresponding to the adjacent CiFET/CsiFET, In a similar way that the reset current pulse extracted from the corresponding iPort will reverse the state of the CiFET/CsiFET flip-flop to the reset state, this feedback action quickly captures the CiFET/CsiFET flip-flop to the set state.

正反器已經被模擬在100奈米安培下運行,並且仍然以100kHz區域的速度運行;然而,對於其他具有不同iRatio的正反器,則需要微安培的電流來觸發正反器並以數個GHz區域的速度運行。這種獨特的廣泛設計彈性拓寬了CiFET/CsiFET邏輯的應用範圍。CiFET設計可以調整Vdd-Vss電壓以在對淨速度和雜訊抗擾性的影響最小的情況下達到其整體功率目標,其部分原因是基於電流的邏輯節點電壓不改變。在電路的功率預先計算以及由變化的節點電壓產生的多節點雜訊天線引起的射頻問題中,必須考慮由輻射位移電流引起的功率損失。CiFET/CsiFET邏輯正反器結構將iRatio、p型通道倍增比、可設定的Vcm以及動態改變其中一些參數的能力添加至設計者工具集中,而這些工具集可以根據速度、總功率消耗、源電壓可用性和運作溫度進行修改,以滿足設計整體目標及現實要求。The flip-flop has been simulated to operate at 100 nanoamperes and is still operating at a speed in the 100kHz region; however, for other flip-flops with different iRatio, microampere current is required to trigger the flip-flop and several Speed operation in the GHz region. This unique and extensive design flexibility broadens the application range of CiFET/CsiFET logic. The CiFET design can adjust the Vdd-Vss voltage to reach its overall power target with minimal impact on net speed and noise immunity, partly because the current-based logic node voltage does not change. In the pre-calculation of the power of the circuit and the radio frequency problem caused by the multi-node noise antenna caused by the varying node voltage, the power loss caused by the radiated displacement current must be considered. The CiFET/CsiFET logic flip-flop structure adds iRatio, p-type channel multiplication ratio, configurable Vcm, and the ability to dynamically change some of these parameters to the designer’s tool set, which can be based on speed, total power consumption, and source voltage. The availability and operating temperature are modified to meet the overall design goals and realistic requirements.

CiFET/CsiFET邏輯提供了無電流輸入為「1」或電流輸出為「0」的新邏輯狀態,其使得設計能夠在必要時同時包括基於電流的邏輯路徑和基於電壓的邏輯路徑。CiFET/CsiFET邏輯可以在小於250毫伏特的源電壓下運作。透過測試,已經證實了CiFET在攝氏-80至220度的溫度範圍內運行。基於CiFET電流的邏輯連接兼容(hosting)電壓模式CMOS邏輯及其電壓邏輯位準輸出。CiFET/CsiFET logic provides a new logic state where no current input is "1" or current output is "0", which enables the design to include both current-based logic paths and voltage-based logic paths when necessary. CiFET/CsiFET logic can operate at a source voltage of less than 250 millivolts. Through testing, it has been confirmed that the CiFET operates in a temperature range of -80 to 220 degrees Celsius. The logic connection based on the CiFET current is compatible with the voltage mode CMOS logic and its voltage logic level output.

參考圖9a ,鎖存器組合顯示為(set)的有線2輸入的與閘(AND),以及顯示為(reset)的有線2輸入的與閘(AND)。輸入(A_B_C_D_ )將電壓位準轉換為電流輸入(iA_iB_iC_iD_ )。邏輯電壓-邏輯電流轉換由NsiFET100Nia1100Nia2100Nia3100Nia4100Nia5100Nia6 執行,排列方式如圖3d 所示。例如,輸入A_、B_、C_和D_分別由NsiFET100Nia1100Nia2100Nia3100Nia4 轉換為電流iA_、iB_、iC_和iD_。一對CiFET20ia120ia2 被配置成鎖存器,其中在PiPort20ia1t5 接收電流轉換的重設訊號iReset_ ,而在PiPort20ia2t5 接收設定訊號iSet_ 。來自CiFET20ia1 的Vout是VQ_ ,其被饋送至NsiFET100Nia5 以將電壓轉換為電流iQ_ ,而來自CiFET20ia2 的Vout是VQ ,被饋送至NsiFET100Nia6 以將電壓轉換為電流iQ 。因此,鎖存器的輸出將以電壓位準「1」和「0」以及電流位準(「0」無電流,「1」有電流)邏輯訊號的形式呈現。Referring to Figure 9a , the latch combination is shown as (set) wired 2 input AND gate (AND), and shown as (reset) wired 2 input AND gate (AND). Inputs ( A_ , B_ , C_ , D_ ) convert voltage levels to current inputs (iA_, iB_ , iC_ , iD_ ). The logic voltage-to-logic current conversion is performed by NsiFETs 100Nia1 , 100Nia2 , 100Nia3 , 100Nia4 , 100Nia5, and 100Nia6 , and the arrangement is shown in Figure 3d. For example, input A_, B_, C_ D_, respectively, and by the NsiFET 100Nia1, 100Nia2, 100Nia3, 100Nia4 converted to a current iA_, iB_, iC_ and iD_. A pair of CiFETs 20ia1 and 20ia2 are configured as latches, where PiPort 20ia1t5 receives the reset signal iReset_ for current conversion, and PiPort 20ia2t5 receives the setting signal iSet_ . Vout from CiFET 20ia1 is VQ_ which is fed to NsiFET 100Nia5 to convert the voltage into current iQ_ , while Vout from CiFET 20ia2 is VQ and is fed to NsiFET 100Nia6 to convert the voltage into current iQ . Therefore, the output of the latch will be presented in the form of logic signals at voltage levels "1" and "0" and current levels ("0" without current, "1" with current).

相似地,圖9b 中的鎖存器組合顯示為(set)的有線2輸入的或閘(OR)以及顯示為(reset)的有線2輸入的或閘(OR)。輸入(A、B、C、D)將電壓位準轉換成電流輸入(iA、iB、iC、iD)至相應的有線閘。邏輯電壓-電流轉換由PsiFET100Pib1100Pib2100Pib3100Pib4100Pib5100Pib6 執行,排列方式如圖3c 所示。例如,輸入A、B、C和D分別由PsiFET100Pib1100Pib2100Pib3100Pib4 轉換為電流iA、iB、iC和iD。一對CiFET20ib120ib2 被配置成鎖存器,在NiPort20ib2t6 接收電流轉換的重設訊號iReset ,在NiPort20ib2t6 接收設定訊號iSet 。來自CiFET20ib1 的Vout是Q_ ,其饋送至PsiFET100Pib5 以將電壓轉換為電流iQ_ ,而來自CiFET20ib2 的Vout是Q ,其饋送至PsiFET100Pib6 以將電壓轉換為電流iQ 。因此,鎖存器的輸出將以電壓位準「1」和「0」以及電流位準(「0」無電流,「1」有電流)邏輯訊號的形式呈現。Similarly, the latch combination in Figure 9b is shown as a wired 2-input OR gate (OR) as (set) and a wired 2-input OR gate (OR) shown as (reset). Input (A, B, C, D) converts the voltage level into current input (iA, iB, iC, iD) to the corresponding wired gate. The logic voltage-current conversion is performed by PsiFETs 100Pib1 , 100Pib2 , 100Pib3 , 100Pib4 , 100Pib5, and 100Pib6 , and the arrangement is shown in Figure 3c. For example, inputs A, B, C, and D are converted into currents iA, iB, iC, and iD by PsiFET 100Pib1 , 100Pib2 , 100Pib3 , and 100Pib4, respectively. And one pair CiFET 20ib1 20ib2 latch configured to receive the reset signal converted in the current iReset NiPort 20ib2t6, receiving the set signal iSet NiPort 20ib2t6. Vout from CiFET 20ib1 is Q_ , which is fed to PsiFET 100Pib5 to convert voltage into current iQ_ , and Vout from CiFET 20ib2 is Q , which is fed to PsiFET 100Pib6 to convert voltage into current iQ . Therefore, the output of the latch will be presented in the form of logic signals at voltage levels "1" and "0" and current levels ("0" without current, "1" with current).

9c 顯示了電壓保持鎖存器(voltage-holding-LATCH)在-170°C、-55°C、25°C、125°C和275°C下示例波形圖。圖9c 中的圖形是指圖9b 中的電路,在這些不同溫度下模擬運行的輸出。溫度範圍以°C為單位,從-170°C、-55°C、27°C、125°C至275°C。從底部開始的圖顯示電壓邏輯輸入C或D的重設電壓脈衝。從底部算起的第二個圖顯示電壓邏輯輸入A或B的設定電壓脈衝。中間的圖顯示實際鎖存器的原始Q和Q_輸出。從頂部算起的第二個圖是Q鎖存器的緩衝輸出。最上面的圖是Q_鎖存器的緩衝輸出。Figure 9c shows sample waveforms of voltage-holding-LATCH at -170°C, -55°C, 25°C, 125°C, and 275°C. The graph in Figure 9c refers to the circuit in Figure 9b , and the output of the simulated operation at these different temperatures. The temperature range is in °C, from -170°C, -55°C, 27°C, 125°C to 275°C. The diagram from the bottom shows the reset voltage pulse of voltage logic input C or D. The second graph from the bottom shows the set voltage pulse for voltage logic input A or B. The middle figure shows the raw Q and Q_ outputs of the actual latch. The second graph from the top is the buffered output of the Q latch. The top figure is the buffered output of the Q_latch.

進一步參考圖9c ,這些模擬係於如上述所示的寬溫度範圍內進行。在最上面的圖,多條曲線顯示為從邏輯狀態(「1」)下降至邏輯狀態(「0」)。最左邊的向下軌跡對應於-170°C的模擬條件,下一個對應於-55°C的模擬條件,再下一個則對應於27°C的模擬條件。這似乎是最後一個向下的軌跡。更右下的軌跡實際上是125°C的模擬條件和270°C的模擬條件的軌跡。為了在如此寬的溫度範圍內運作,圖9a 和圖9b 所示的CiFET/CsiFET鎖存器需要毫安培的偏壓電流位準。With further reference to Figure 9c , these simulations were performed over a wide temperature range as shown above. In the top graph, multiple curves are shown as falling from the logic state ("1") to the logic state ("0"). The leftmost downward trajectory corresponds to the simulated condition of -170°C, the next one corresponds to the simulated condition of -55°C, and the next one corresponds to the simulated condition of 27°C. This seems to be the last downward trajectory. The trajectory on the lower right is actually the trajectory of the simulated condition at 125°C and the simulated condition at 270°C. In order to operate within such a wide temperature range, the CiFET/CsiFET latch shown in Figures 9a and 9b requires a bias current level of milliamps.

10a 示出了CTL全電流模式(full-current-mode)有線與閘(AND)高扇入鎖存器的示意圖,該鎖存器具有高總匯流量(high-bus-traffic)和高速的I/O選項。一有線多輸入與閘(AND)顯示輸入為(set),一有線多輸入與閘(AND)顯示輸入(reset)。輸入(R0R1R2 、…、RN )被轉換為電流(iR0_iR1_iR2_ 、…、iRN_ )。相似地,輸入(S0S1S2 、…、SN )被轉換為電流輸入(iS0_iS1_iS2_ 、…、iSN_ )。邏輯電壓-電流轉換係由NsiFET100NjaR0100NjaR1100NjaR2 、…、100NjaRN100NjaS0100NjaS1100NjaS2 …、100NjaSN 執行,排列方式如圖3d 所示。例如,輸入R0R1R2 、…、RN 分別由NsiFET100NjaR0100NjaR1100NjaR2 …、100NjaSN 轉換為電流iR0_iR1_iR2_ 、…、iRN_ ;而輸入S0S1S2 、…、SN 分別由NsiFET100NjaS0100NjaS1100NjaS2 、…、100NjaSN 轉換為電流的iS0_iS1_iS2_ 、…、iSN_Figure 10a shows a schematic diagram of a CTL full-current-mode wired and gate (AND) high fan-in latch, which has high-bus-traffic and high-speed I /O option. One wired multi-input and gate (AND) shows the input as (set), one wired multi-input and gate (AND) shows the input (reset). The inputs ( R0 , R1 , R2 ,..., RN ) are converted to currents ( iR0_ , iR1_ , iR2_ ,..., iRN_ ). Similarly, the inputs ( S0 , S1 , S2 ,..., SN ) are converted to current inputs ( iS0_ , iS1_ , iS2_ ,..., iSN_ ). The logic voltage-current conversion is performed by NsiFET 100NjaR0 , 100NjaR1 , 100NjaR2 , ..., 100NjaRN , 100NjaS0 , 100NjaS1 , 100NjaS2 , ..., 100NjaSN , and the arrangement is shown in Figure 3d. For example, input R0, R1, R2, ..., RN respectively, by NsiFET 100NjaR0, 100NjaR1, 100NjaR2, ... , 100NjaSN converted to a current iR0_, iR1_, iR2_, ..., iRN_; input S0, S1, S2, ..., SN , respectively the NsiFET 100NjaS0 , 100NjaS1 , 100NjaS2 ,..., 100NjaSN is converted into current iS0_ , iS1_ , iS2_ ,..., iSN_ .

一對CiFET20ja120ja2 以及第一對NsiFET100Nja1100Nja2 和第二對NsiFET100Nja3100Nja4 被配置成鎖存器,其中CiFET20ja120ja2 的閘極被連接至共模電壓Vcm ;CiFET20ja120ja2 的PiFET的源極20ja1t120ja2t1 分別被連接至Vdd ,CiFET20ja120ja2 的NiFET的源極20ja1t420ja2t4 分別連接至Vss 。第一對NsiFET100Nja1100Nja2 被配置在一起,其中源極通道閘100Nja1gs100Nja2gs 連接至共模電壓Vcm ,而源極100Nja1s100Nja2s 連接至Vss 。相似地,第二對NsiFET100Nja3100Nja4 被配置在一起,其中源極通道閘100Nja3gs100Nja4gs 連接至共模電壓Vcm ,而源極100Nja3s100Nja4s 連接至VssA pair of CiFET 20ja1 and 20ja2 and the first pair of NsiFET 100Nja1 and 100Nja2 and the second pair of NsiFET 100Nja3 and 100Nja4 are configured as latches, in which the gates of CiFET 20ja1 and 20ja2 are connected to the common mode voltage Vcm ; of CiFET 20ja1 and 20ja2 PiFET sources 20ja1t1 and 20ja2t1 are respectively connected to Vdd , and CiFET 20ja1 and 20ja2 NiFET sources 20ja1t4 and 20ja2t4 are respectively connected to Vss . The first pair of NsiFETs 100Nja1 and 100Nja2 are configured together, wherein the source channel gates 100Nja1gs and 100Nja2gs are connected to the common mode voltage Vcm , and the source electrodes 100Nja1s and 100Nja2s are connected to Vss . Similarly, the second pair of NsiFETs 100Nja3 and 100Nja4 are configured together, where the source channel gates 100Nja3gs and 100Nja4gs are connected to the common mode voltage Vcm , and the source electrodes 100Nja3s and 100Nja4s are connected to Vss .

iR0 _、iR1 _、iR2_ 、…、iRN_ 形成重設電流訊號,iReset_ ;和iS0_iS1_iS2_ 、…、iSN_ 形成設定電流訊號iSet_ 。重設電流訊號iReset 被饋送至CiFET20ja1 的PiPort20ja1t5 ,並被饋送至NsiFET100Nja2 的汲極100Nja2d ;而設定電流訊號iSet 被饋送至CiFET20ja2 的PiPort20ja2t5 ,並被饋送至NsiFET100Nja3 的汲極100Nja3d 。汲極通道閘100Nja1gd100Nja2gd 連接CiFET20ja2 的PiFET的汲極20ja2t2 和NiFET的汲極20ja2t3 而形成輸出電壓vQ_ ,汲極通道閘100Nja3gd100Nja4gd 與CiFET20ja1 的PiFET的汲極20ja1t2 和NiFET的汲極20ja1t3 連接而形成輸出電壓vQ 。NsiFET100Nja1 的汲極100Nja1d 提供輸出電流iQout ,而NsiFET100Nja4 的汲極100Nja4d 提供輸出電流iQout_ iR0 _, iR1 _, iR2_, ..., iRN_ reset current signal is formed, iReset_; and iS0_, iS1_, iS2_, ..., iSN_ form a set current signal iSet_. IReset reset current signal is fed to the CiFET 20ja1 PiPort 20ja1t5, and is fed to the drain NsiFET 100Nja2 100Nja2d; iSet set current signal is fed to the CiFET 20ja2 PiPort 20ja2t5, and fed to drain 100Nja3 NsiFET pole 100Nja3d. Drain channel gate 100Nja1gd and 100Nja2gd connected CiFET 20ja2 of PiFET the drain 20ja2t2 and NiFET the drain 20ja2t3 formed output voltage vQ_, drain channel gate 100Nja3gd and PiFET the 100Nja4gd and CiFET 20ja1 the drain 20ja1t2 and NiFET the drain 20ja1t3 Connect to form the output voltage vQ . NsiFET 100Nja1 the drain providing an output current 100Nja1d iQout, and NsiFET 100Nja4 drain providing an output current of the electrode 100Nja4d iQout_.

10b 示出了CTL全電流模式有線或閘(OR)高扇入鎖存器1000 的示意圖,該鎖存器具有高總匯流量和高速的I/O選項。輸入(R0R1R2 、…、RN )被轉換為電流(iR0iR1iR2 、…、iRN )。類似地,輸入(S0S1S2 、…、SN )被轉換為電流輸入(iS0iS1iS2 、…、iSN )。邏輯電壓-電流轉換係由PsiFET100PjbR0100PjbR1100PjbR2 、…、100PjbRN100PjbS0100PjbS1100PjbS2 、…、100PjbSN 執行,排列方式如圖3c 所示。例如,輸入R0R1R2 、…、RN 分別由PsiFET100PjbR0100PjbR1100PjbR2 、…、100PjbRN 轉換為電流iR0iR1iR2 、…、iRN ;而輸入S0S1S2 、…、SN 分別由PsiFET100PjbS0100PjbS1100PjbS2 、…、100PjbSN 轉換為電流iS0iS1iS2 、…、iSNFIG. 10b shows a schematic diagram of a CTL full-current mode wired or gate (OR) high fan-in latch 1000 , which has a high total flow rate and high-speed I/O options. The inputs ( R0 , R1 , R2 ,..., RN ) are converted to currents ( iR0 , iR1 , iR2 ,..., iRN ). Similarly, the input (S0, S1, S2, ... , SN) is converted to a current input (iS0, iS1, iS2, ... , iSN). The logic voltage-current conversion is performed by PsiFETs 100PjbR0 , 100PjbR1 , 100PjbR2 ,..., 100PjbRN , 100PjbS0 , 100PjbS1 , 100PjbS2 ,..., 100PjbSN , and the arrangement is shown in Figure 3c. For example, input R0, R1, R2, ..., RN respectively, by PsiFET 100PjbR0, 100PjbR1, 100PjbR2, ... , 100PjbRN converted to a current iR0, iR1, iR2, ..., iRN; input S0, S1, S2, ..., SN , respectively the PsiFET 100PjbS0, 100PjbS1, 100PjbS2, ... , 100PjbSN converted to a current iS0, iS1, iS2, ..., iSN.

一對CiFET20jb120jb2 以及第一對PsiFET100Pjb1100Pjb2 和第二對PsiFET 100Pjb3 和100Pjb4 配置成鎖存器,其中CiFET20jb120jb2 的閘極連接至共模電壓Vcm ;CiFET20jb120jb2 的PiFET的源極20jb1t120jb2t1 分別連接至Vdd ,CiFET20jb120jb2 的NiFET的源極20jb1t420jb2t4 分別連接至Vss 。第一對PsiFET100Pjb1100Pjb2 被配置在一起,其中源極通道閘100Pjb1gs100Pjb2gs 連接至共模電壓Vcm ,而源極100Pjb1s100Pjb2s 連接至Vdd 。相似地,第二對PsiFET100Pjb3100Pjb4 被配置在一起,其中源極通道閘100Pjb3gs100Pjb4gs 連接至共模電壓Vcm ,而源極100Pjb3100Pjb4s 連接至VddA pair of CiFET 20jb1 and 20jb2 and the first pair of PsiFET 100Pjb1 and 100Pjb2 and the second pair of PsiFET 100 Pjb3 and 100 Pjb4 are configured as latches, in which the gates of CiFET 20jb1 and 20jb2 are connected to the common mode voltage Vcm ; the CiFET 20jb1 and 20jb2 PiFET sources 20jb1t1 and 20jb2t1 are respectively connected to Vdd , and CiFET 20jb1 and 20jb2 NiFET sources 20jb1t4 and 20jb2t4 are respectively connected to Vss . The first pair of PsiFETs 100Pjb1 and 100Pjb2 are configured together, wherein the source channel gates 100Pjb1gs and 100Pjb2gs are connected to the common mode voltage Vcm , and the source electrodes 100Pjb1s and 100Pjb2s are connected to Vdd . Similarly, the second pair of PsiFETs 100Pjb3 and 100Pjb4 are configured together, wherein the source channel gates 100Pjb3gs and 100Pjb4gs are connected to the common mode voltage Vcm , and the source electrodes 100Pjb3 and 100Pjb4s are connected to Vdd .

iR0iR1iR2 、…、iRN 形成重設電流訊號iReset ;而iS0iS1iS2 、…、iSN 則形成設定電流訊號iSet 。重設電流訊號iReset 被饋送至CiFET20jb2 的NiPort20jb2t6 和PsiFET100Pjb3 的汲極100Pjb3d ;而設定電流訊號iSet 被饋送至CiFET20jb1 的NiPort20jb1t6 和PsiFET100Pjb2 的汲極100Pjb2d 。汲極通道閘100Pjb3gd100Pjb4gd 連接CiFET20jb1 的PiFET的汲極20jb1t2 和NiFET的汲極20jb1t3 而形成輸出電壓vQ ;汲極通道閘100Pjb1gd和100Pjb2gd連接CiFET20jb2 的PiFET的汲極20jb2t2和NiFET的汲極20jb2t3 而形成輸出電壓vQ_ 。PsiFET100Pjb1 的汲極100Pjb1d 提供輸出電流iQout ,而NsiFET100Pjb4 的汲極100Pjb4d 提供輸出電流iQout_ iR0, iR1, iR2, ..., iRN formed iReset reset current signal; and iS0, iS1, iS2, ..., iSN set current signal is formed iSet. NiPort 20jb2t6 PsiFET 100Pjb3 and the drain of the reset current signal is fed to CiFET 20jb2 iReset pole 100Pjb3d; iSet set current signal is fed to the NiPort 20jb1t6 CiFET 20jb1 PsiFET 100Pjb2 and the drain 100Pjb2d. The drain channel gates 100Pjb3gd and 100Pjb4gd are connected to the drain 20jb1t2 of the PiFET of the CiFET 20jb1 and the drain 20jb1t3 of the NiFET to form the output voltage vQ ; the drain channel gates 100Pjb1gd and 100Pjb2gd are connected to the drain 20jb2 of the PiFET of the CiFET 20jb2 and the drain 20jb2 of the PiFET 20jb2 And the output voltage vQ_ is formed. PsiFET 100Pjb1 the drain providing an output current 100Pjb1d iQout, and NsiFET 100Pjb4 drain providing an output current of the electrode 100Pjb4d iQout_.

10c 顯示了電流導向鎖存器(current-steered LATCH)在-170°C、-55°C、25°C、125°C和275°C下示例波形圖。圖10c 中的圖形是指圖10b 中的電路。圖中的正反器是刻意於低功率下運行的。其運作溫度範圍較窄,運作速度較低。圖10c 底部的第一個圖顯示進入CiFET正反器對的Q_側的NiPort的重設電流脈衝。從底部算起的第二個圖顯示進入CiFET正反器對的Q側的NiPort的設定電流脈衝。中間的圖顯示從Vdd流過CiFET正反器對的Q側的電流。請注意,這對CiFET正反器的電流是電流的兩倍或總共約70奈米安培。從頂部算起的第二個圖是正反器Q側的電流邏輯訊號輸出,iQout,而最上面的圖是正反器Q_側的電流邏輯訊號輸出,iQout_。Figure 10c shows example waveforms of a current-steered LATCH at -170°C, -55°C, 25°C, 125°C, and 275°C. The graph in Figure 10c refers to the circuit in Figure 10b. The flip-flop in the picture is deliberately operated at low power. Its operating temperature range is narrow and its operating speed is low. The first graph at the bottom of Figure 10c shows the reset current pulse into the NiPort on the Q_ side of the CiFET flip-flop pair. The second graph from the bottom shows the set current pulse of NiPort entering the Q side of the CiFET flip-flop pair. The middle graph shows the current flowing from Vdd through the Q side of the CiFET flip-flop pair. Please note that the current of this pair of CiFET flip-flops is twice the current or about 70 nanoamperes in total. The second diagram from the top is the current logic signal output on the Q side of the flip-flop, iQout, and the top diagram is the current logic signal output on the Q_ side of the flip-flop, iQout_.

陣列存取(array access)系統的構成如圖11 所示,其提供根據本發明的使用CiFET/CsiFET的雙向電流數據匯流結構。輸入數據(「0」,「1」)進入將數據流的「0」和「1」分割為兩個驅動端口的邏輯,PsiFET100Pk 的汲極通道閘100Pkgd 用於「1」,表示為Data in 1 ;NsiFET100Nk 的汲極通道閘100Nkgd 用於「0」,表示為Data in 0 。這些汲極通道閘100Pkgd100Nkgd 因此驅動各自的PiFET/PsiFET和NiFET/NsiFET,或開啓單個iFET/SiFET,從而使各自的PsiFET和/或NsiFET裝置向該數據匯流排1100d 流入或流出電流。邏輯狀態「0」將電流驅動至共通數據匯流排1100d 。該受推送電流係由一個或多個數據匯流接收器接收。數據匯流排1100d 必須具有足夠的電流以驅動一個或多個接收iPort的輸入電阻,此處以NiPort20k0t620k1t620k2t6 、…、20knt6 表示。以類似的方式,邏輯狀態「1」活化一iFET/SiFET或獨立的iFET/SiFET,向共通數據匯流排1100d 流入或流出電流。The structure of the array access system is shown in FIG. 11 , which provides a bidirectional current data sink structure using CiFET/CsiFET according to the present invention. Input data ( "0", "1") into the data stream of "0" and "1" is divided into two logical drive ports, PsiFET 100Pk the drain channel gate 100Pkgd to "1" to indicate that Data in 1; NsiFET 100Nk the drain channel gate 100Nkgd for "0", expressed as Data in 0. These drain channel gates 100Pkgd and 100Nkgd therefore drive respective PiFET/PsiFET and NiFET/NsiFET, or turn on a single iFET/SiFET, so that the respective PsiFET and/or NsiFET device flows into or out of the data bus 1100d. The logic state "0" drives the current to the common data bus 1100d . The pushed current is received by one or more data sink receivers. The data bus 1100d must have enough current to drive one or more input resistances of the receiving iPort, which are represented by NiPort 20k0t6 , 20k1t6 , 20k2t6 ,..., 20knt6 here . In a similar manner, the logic state "1" activates an iFET/SiFET or an independent iFET/SiFET, and current flows into or out of the common data bus 1100d.

CiFET接收器20k020k 1、20k2 、…或20kN 對從其NiPort20k0t620k1t620k2t6 ,…或20kNt6 被提供或接收的電流作出反應,進而導致接收器20k020k120k2 、…、20kN 改變輸出共通汲極電壓VDB0VDB1VDB2 ,…、VDBN 。該電壓可以作為邏輯訊號,也可以轉換為圖3a3d 以及圖4a4d 所示的電流邏輯訊號。The CiFET receiver 20k0 , 20k 1, 20k2 ,... or 20kN reacts to the current supplied or received from its NiPort 20k0t6 , 20k1t6 , 20k2t6 ,... or 20kNt6 , which in turn causes the receiver 20k0 , 20k1 , 20k2 ,..., 20kN to change its output Common drain voltages VDB0 , VDB1 , VDB2 ,..., VDBN . The voltage can be used as a logic signal, and can also be converted into the current logic signal shown in FIGS. 3a to 3d and 4a to 4d.

由於匯流排是由電流驅動的,因此其電壓位準變化很小,並且不會與會阻礙以電壓驅動的數據匯流排的相位一致性的數據路徑寄生電容接合(engage)。在圖11 中只顯示數據匯流排,在一個完整的數據匯流排系統中,還需要讀、寫以及選擇控制導線。這些控制導線可以是電壓或電流邏輯訊號。如果控制導線也是基於電流的邏輯訊號,則整個數據匯流排和控制導線結構避免寄生電容的模糊性及其影響。通過避免寄生電容的影響,基於電流的邏輯匯流排將可不受這些寄生電容的充電和放電的阻礙而運行,因此將運行得更快。需要注意的是,在電流驅動的匯流排中,所有的寄生電路都被組合成一個淨寄生電容,而不是像電壓驅動系統那樣在每個輸入端分別顯示為一個分布電容(distributed capacitance)。藉由作為基於電流的匯流排運行,數據保持較高的相位一致性,並且在每個數據匯流排分接頭所觀測到的時脈振幅顯著減少。Since the bus is driven by current, its voltage level changes very little, and it will not engage with the parasitic capacitance of the data path that would hinder the phase consistency of the data bus driven by the voltage. In Figure 11 , only the data bus is shown. In a complete data bus system, you also need to read, write, and select control wires. These control wires can be voltage or current logic signals. If the control wire is also a current-based logic signal, the entire data bus and control wire structure avoid the ambiguity and influence of parasitic capacitance. By avoiding the influence of parasitic capacitances, the current-based logic bus will be able to operate without being hindered by the charging and discharging of these parasitic capacitances, and therefore will run faster. It should be noted that in a current-driven bus, all parasitic circuits are combined into a net parasitic capacitance, instead of being displayed as a distributed capacitance at each input end as in a voltage driving system. By operating as a current-based bus, the data maintains high phase consistency, and the observed clock amplitude at each data bus tap is significantly reduced.

12 顯示了CiFET/CsiFET電流傳輸邏輯的另一個應用,是一個分配帶有時脈資訊的共通導線邏輯電流脈衝的系統。目前IC的時脈速度徘徊在3.5 GHz左右;這對應於約8.5 cm的波長,因此,在IC導線中的傳輸可預期以0.5倍至0.75倍的光速移動,而在電路中,這仍然較慢。因此,當IC特徵尺寸小於100倍至第一個數量級時,可以認為在IC長度時脈樹的長度中,電流密度是準靜態(quasi static)的。因此,每個從這個電流電荷轉移電流樹的CiFET/CsiFET時脈分接頭,將觀測到較負載電壓為基礎的時脈樹更接近的相位一致性。Figure 12 shows another application of CiFET/CsiFET current transfer logic, which is a system that distributes common wire logic current pulses with clock information. The current IC clock speed hovers around 3.5 GHz; this corresponds to a wavelength of about 8.5 cm, so the transmission in the IC wire can be expected to move at 0.5 to 0.75 times the speed of light, while in the circuit, this is still slow . Therefore, when the IC feature size is less than 100 times to the first order of magnitude, it can be considered that the current density in the length of the IC length clock tree is quasi static. Therefore, each CiFET/CsiFET clock tap from this current charge transfer current tree will observe a closer phase consistency than the load voltage-based clock tree.

以圖3c 所示的相同方式,PsiFET100Pm 將時脈訊號電壓vCk 轉換為電流iOut 輸出;而以圖3d 所示的相同方式,NsiFET100Nm 將時脈訊號電壓vCk 轉換為電流iOut- 輸出。該系統包括CiFETs20ma020ma120ma220ma320ma420ma5 、…、20maN 和CiFETs20mb020mb120mb220mb3 20mb4 20mb5 、…、20mbN 。閘極20ma0g20ma1g20ma2g20ma3g20ma4g20ma5g 、…、20maNg20mb0g20mb1g20mb2g20mb3g20mb4g20mb5g 、…、20mbNg 連接至共模電壓Vcm ;PsiFETs的源極20ma0t120ma1t120ma2t120ma3t120ma4t120ma5t1 、…、20maNt120mb0t120mb1t120mb2t120mb3t120mb4t120mb5t1 、…、20mbNt1 連接至Vdd ;NiFETs的源極20ma0t420ma1t420ma2t420ma3t420ma4t420ma5t4 、…、20maNt420mb0t420mb1t420mb2t420mb3t420mb4t420mb5t4 、…、20mbNt4 連接至Vss 。每個CiFET的PiFET和NiFET的汲極20ma0t220ma0t320ma1t220ma1t320ma2t220ma2t320ma3t220ma3t320ma4t220ma4t320ma5t220ma5t3 ;…;20maNt220maNt320mb0t220mb0t320mb1t220mb1t320mb2t220mb2t320mb3t220mb3t320mb4t220mb4t320mb5t220mb5t3 ;…;20mbNt220mbNt3 連接在一起而分別形成電壓時脈訊號輸出vCk0vCk1vCk2vCk3vCk4vCk5 ;…、vCkNvCk0_vCk1_vCk2_vCk3_vCk4_vCk5_ ;…,vCkN_In the same manner as shown in FIG. 3c , the PsiFET 100Pm converts the clock signal voltage vCk into a current iOut output; and in the same manner as shown in FIG. 3d , the NsiFET 100Nm converts the clock signal voltage vCk into a current iOut- output. The system includes CiFETs 20ma0 , 20ma1 , 20ma2 , 20ma3 , 20ma4 , 20ma5 ,..., 20maN and CiFETs 20mb0 , 20mb1 , 20mb2 , 20mb3 , 20mb4 , 20mb5 ,..., 20mbN . Gate 20ma0g, 20ma1g, 20ma2g, 20ma3g, 20ma4g, 20ma5g, ..., 20maNg, 20mb0g, 20mb1g, 20mb2g, 20mb3g, 20mb4g, 20mb5g, ..., 20mbNg connected to the common-mode voltage Vcm; source PsiFETs pole 20ma0t1, 20ma1t1, 20ma2t1, 20ma3t1, 20ma4t1, 20ma5t1, ..., 20maNt1, 20mb0t1, 20mb1t1, 20mb2t1, 20mb3t1, 20mb4t1, 20mb5t1, ..., 20mbNt1 connected to Vdd; NiFETs source 20ma0t4, 20ma1t4, 20ma2t4, 20ma3t4, 20ma4t4, 20ma5t4, ..., 20maNt4, 20mb0t4 , 20mb1t4 , 20mb2t4 , 20mb3t4 , 20mb4t4 , 20mb5t4 ,..., 20mbNt4 are connected to Vss . PiFET and NiFET each CiFET the drain 20ma0t2 and 20ma0t3; 20ma1t2 and 20ma1t3; 20ma2t2 and 20ma2t3; 20ma3t2 and 20ma3t3; 20ma4t2 and 20ma4t3; 20ma5t2 and 20ma5t3; ...; 20maNt2 and 20maNt3; 20mb0t2 and 20mb0t3; 20mb1t2 and 20mb1t3; 20mb2t2 and 20mb2t3; 20mb3t2 and 20mb3t3; 20mb4t2 and 20mb4t3; 20mb5t2 and 20mb5t3; ...; 20mbNt2 20mbNt3 connected together and are formed when the voltage output clock signal vCk0; vCk1; vCk2; vCk3; vCk4; vCk5; ..., vCkN; vCk0_; vCk1_; vCk2_ ; vCk3_ ; vCk4_ ; vCk5_ ;..., vCkN_ .

接著,時脈電流iOut 分別被饋送至CiFETs20ma020ma120ma220ma320ma420ma5 、…、20maN 的NiPorts20ma0t620ma1t620ma2t620ma3t620ma4t620ma5t6 、…、20maNt6 ;而時脈電流iOut_ 則分別被饋送至CiFETs20mb020mb120mb220mb320mb420mb5 、…、20mbN 的PiPorts20mb0t520mb1t520mb2t520mb3t520mb4t520mb5t5 、…、20mbNt5Next, when the clock current iOut are fed to CiFETs 20ma0, 20ma1, 20ma2, 20ma3 , 20ma4, 20ma5, ..., NiPorts 20maN the 20ma0t6, 20ma1t6, 20ma2t6, 20ma3t6, 20ma4t6, 20ma5t6, ..., 20maNt6; the clock current iOut_ the They are fed to CiFETs 20mb0 , 20mb1 , 20mb2 , 20mb3 , 20mb4 , 20mb5 ,..., 20mbN PiPorts 20mb0t5 , 20mb1t5 , 20mb2t5 , 20mb3t5 , 20mb4t5 , 20mb5t5 ,..., 20mbNt5 .

13 繪示了基於電荷的邊緣至脈衝(edge to pulse)產生器的示意圖,包括一對CiFET20n120n2 ,具有一同連接至共模電壓Vcm 的閘極20n1g20n2g ;CiFET20n120n2 的PiFET的源極20n1t120n2t1 連接至Vdd ;CiFET20n120n2 的NiFET的源極20n1t420n2t4 連接至Vss 。輸入Vin 連接至第三CiFET20n3 的閘極20n3g 以及連接至NsiFET100Nn1 的汲極通道閘100Nn1gd ,而用於轉換為電流訊號iSet_ 。CiFET20n3 的PiFET和NiFET的汲極20n3t220n3t4 分別連接至電容器C-delay 以及NsiFET100Nn6 的汲極通道閘100Nn6gd ,而用於將電壓轉換為電流訊號iReset_ 。電流訊號iSet_iReset_ 基於CiFET20n120n2 、第一對NsiFET100Nn2100Nn3 以及第二對NsiFET100Nn4100Nn5 來控制鎖存器,其中第一對NsiFET100Nn2100Nn3 的源極通道閘100Nn2gs100Nn3gsVcm 連接;而第二對NsiFET100Nn4100Nn5 的源極通道閘100Nn4gs100Nn5gs 也與Vcm 連接。第一對NsiFET100Nn2100Nn3 的汲極通道閘100Nn2gd100Nn3gd 與CiFET20n1 的PiFET和NiFET的閘極20n1t220n1t3 連接形成Vout_ ;而第二對NsiFET100Nn4100Nn5 的汲極通道閘100Nn4gd100Nn5gd 與CiFET20n2 的PiFET和NiFET的閘極20n2t220n2t3 連接形成vOut 。設定電流訊號iSet_ 被饋送至CiFET20n1 的PiPort20n1t5 和饋送至NsiFET100Nn3 的汲極100Nn3d ;其中重設電流訊號iReset_ 被饋送至CiFET20n2 的PiPort20n2t5 和饋送至NsiFET100Nn4 的汲極100Nn4dFigure 13 illustrates the edge-based charge to the pulse (edge to pulse) schematic generator, includes a pair of CiFET 20n1 and 20n2, having gates connected together to the common mode voltage Vcm poles 20n1g and 20n2g; PiFET CiFET 20n1 and 20n2 of The sources 20n1t1 and 20n2t1 of CiFETs are connected to Vdd ; the sources of NiFETs 20n1t4 and 20n2t4 of CiFETs 20n1 and 20n2 are connected to Vss . Vin is connected to the third input of gate CiFET 20n3 20n3g NsiFET 100Nn1 and connected to the drain channel gate 100Nn1gd, and for converting the current signal into iSet_. The PiFET NiFET CiFET 20n3 and the drain respectively connected to 20n3t4 20n3t2 and C-delay capacitor and the drain of NsiFET 100Nn6 channel gate 100Nn6gd, and for the voltage into a current signal iReset_. The current signals iSet_ and iReset_ are based on CiFET 20n1 and 20n2 , the first pair of NsiFET 100Nn2 and 100Nn3, and the second pair of NsiFET 100Nn4 and 100Nn5 to control the latch. The first pair of NsiFET 100Nn2 and 100Nn3 source channel gates 100Nn2gs and 100Nn3gs and Vcm Connected; and the source channel gates 100Nn4gs and 100Nn5gs of the second pair of NsiFETs 100Nn4 and 100Nn5 are also connected to Vcm . A first pair of NsiFET 100Nn2 channel gate and drain and 100Nn3gd 100Nn2gd 100Nn3 CiFET 20n1 with the PiFET NiFET and the gate connected to form 20n1t2 and 20n1t3 VOUT_; NsiFET 100Nn4 and a second pair of drain channels and 100Nn5gd 100Nn4gd 100Nn5 brakes and CiFET The 20n2 PiFET and NiFET gates 20n2t2 and 20n2t3 are connected to form vOut . ISet_ set current signal is fed to the PiPort 20n1t5 CiFET 20n1 and fed to the drain electrode of NsiFET 100Nn3 100Nn3d; iReset_ wherein the reset current signal is fed to the PiPort 20n2t5 CiFET 20n2 and the drain fed to NsiFET 100Nn4 pole 100Nn4d.

13 所示的基於電荷的邊緣至脈衝產生器是可調整的。產生器能發出可控制的電荷脈衝。這種電荷脈衝可以用來驅動進一步的邏輯系統,也可以用來驅動如圖16 所示的累積電容器(accumulating capacitor)。其基礎結構是採用電流訊號iSet_iReset_ 控制的鎖存器。Vin 觸發的脈衝進入產生器,該脈衝從CiFET20n1 的PiPort20n1t5 提取電流而驅動其閘極20n1t220n1t3 朝向Vss 。這新的狀態被傳送至正反器的另一側,從而引起切換動作(toggle action)。Vin 輸入也被應用於連接至電容器C-delay 的CiFET20n3 ,從而使其開啟並開始對電容器C-delay 充電。這導致電容器C-delay 累積電荷而使電容器電壓升高。電容器C-delay 通過CiFET20n3 的導通電阻充電,該導通電阻可動態改變或根據設計需求改變。一旦電容器C-delay 充電至足夠的位準,電容器C-delay 就向正反器提供所需的重設狀態輸入電壓,從而使正反器重設至其初始狀態。當正反器重設時,可以添加在電容器C-delay 上釋放電荷的放電開關(圖中未示出)來放電。一旦返回至初始狀態,電路即準備接受一個新Vin 脈衝,啟動單觸發以再次發生上述過程。The charge-based edge-to-pulse generator shown in Figure 13 is adjustable. The generator can send out controllable charge pulses. This charge pulse can be used to drive further logic systems, and can also be used to drive an accumulating capacitor as shown in Figure 16. Its basic structure is a latch controlled by current signals iSet_ and iReset_. The pulse triggered by Vin enters the generator, which draws current from the PiPort 20n1t5 of the CiFET 20n1 and drives its gates 20n1t2 and 20n1t3 towards Vss . This new state is transmitted to the other side of the flip-flop, causing a toggle action. The Vin input is also applied to the CiFET 20n3 connected to the capacitor C-delay to turn it on and start charging the capacitor C-delay. This causes the capacitor C-delay to accumulate charge and increase the capacitor voltage. The capacitor C-delay is charged through the on-resistance of the CiFET 20n3 , and the on-resistance can be changed dynamically or according to design requirements. Once the capacitor C-delay is charged to a sufficient level, the capacitor C-delay provides the required reset state input voltage to the flip-flop, thereby resetting the flip-flop to its initial state. When the flip-flop is reset, a discharge switch (not shown in the figure) that discharges charge on the capacitor C-delay can be added to discharge. Once it returns to the initial state, the circuit is ready to receive a new Vin pulse and start one-shot to reoccur the above process.

14a14b14c 顯示CiFET/CsiFET的進一步應用,係為使用CiFET/CsiFET的施密特正反器的示例態樣,其中施密特正反器具有閾值偵測設備,其偵測位準在偵測(detect)狀態和失去偵測(loss of detection)狀態之間偏移。施密特正反器是由Otto Schmitt博士發明,目的是幫助研究神經的去極化反應。在本發明的這個實施例中,這種的閾值變化是由從待偵測輸入電壓位準的增加開始處理所產生,這會導致輸出電壓下降。當輸出電壓下降時,p通道CMOS開始從CiFET結構的PiPort啟動槽電流,而從PiPort引出的電流進一步驅動Vout電壓朝向Vss。偵測過程在電路中導入了變化,從而改變返回初始狀態閾值的值。開閾值(ON threshold)與關閾值(OFF threshold)不同,關閾值是由最小部分的施密特正反器提供,在設計時使用CiFETs iRatio設置閾值。Figures 14a , 14b, and 14c show further applications of CiFET/CsiFET, which are examples of Schmitt flip-flops using CiFET/CsiFET. The Schmidt flip-flop has a threshold detection device and its detection level Shift between the detect state and the loss of detection state. The Schmidt flip-flop was invented by Dr. Otto Schmitt to help study the depolarization response of nerves. In this embodiment of the present invention, this threshold change is caused by processing from an increase in the input voltage level to be detected, which will cause the output voltage to drop. When the output voltage drops, the p-channel CMOS starts to start the tank current from the PiPort of the CiFET structure, and the current drawn from the PiPort further drives the Vout voltage toward Vss. The detection process introduces a change in the circuit, thereby changing the value of the threshold for returning to the initial state. The ON threshold is different from the OFF threshold. The OFF threshold is provided by the smallest part of the Schmidt flip-flop. The CiFETs iRatio is used to set the threshold during the design.

參考圖14b14c ,當如圖14c 所示的另一背對背CiFET/CsiFET施密特正反器(CiST)被添加時,施密特觸發電路140 從圖7b 所示的電路進一步提升。CiST140 包括CiFET20p ,其閘極20pg 中用於接收電壓數據Vin ,汲極20pt320pt4 連接形成Vout ;PiPort20pt5 和NiPort20pt6 用於接收設定/重設訊號。雙施密特正反器1400 如圖14c 所示,其中兩個CiST140a140b 通過將一個CiST的Vout 連接至另一個CiST的Vin 而背對背地連接。雙施密特正反器1400 的作用為一個具有SET與RESET控制的正反器。CiST140aPSNS 是指PiPort SET和NiPort SET輸入端口。可以使用NSPS 端口中的任何一個來輸入SET邏輯脈衝。以類似的方式,PRNR 是指PiPort RESET和NiPort RESET輸入,同樣地,任一端口都可以用來傳送RESET脈衝。需要注意的是,使用施密特正反器的滯後現象(hysteresis)所製作的正反器,將具有稍微偏移內部設置/重設開關點所需的滯後,從而消除雜訊SET和RESET時可能出現的顫動。Referring to FIGS. 14b and 14c , when another back-to-back CiFET/CsiFET Schmitt flip-flop (CiST) as shown in FIG. 14c is added, the Schmitt trigger circuit 140 is further improved from the circuit shown in FIG. 7b. CiST 140 includes CiFET 20p, in which the gate electrode for receiving a voltage 20pg data Vin, and a drain 20pt3 20pt4 connection formed Vout; PiPort 20pt5 NiPort 20pt6 and for receiving a set / reset signal. The dual Schmitt flip-flop 1400 is shown in FIG. 14c , in which two CiSTs 140a and 140b are connected back-to-back by connecting Vout of one CiST to Vin of the other CiST. The double Schmidt flip-flop 1400 functions as a flip-flop with SET and RESET control. The PS and NS of CiST 140a refer to the PiPort SET and NiPort SET input ports. Either of the NS or PS ports can be used to input SET logic pulses. In a similar way, PR and NR refer to PiPort RESET and NiPort RESET inputs. Similarly, either port can be used to transmit RESET pulses. It should be noted that the flip-flop made by using the hysteresis of the Schmidt flip-flop will have the hysteresis required to slightly shift the internal setting/reset switch point, thereby eliminating the noise during SET and RESET Possible vibrations.

15b 顯示了四個基於CiFET/CsiFET的鎖存器1000a1000b1000c1000d ,每個鎖存器與圖10b 所示的鎖存器1000 的結構相同,以並聯方式堆疊在一起。對於1伏特Vdd相對Vss,每個堆疊的CiFET/CsiFET鎖存器將在0.250 Vdc上運作。每個位準的共模電壓基準是不同的,可以由類似的堆疊式Vcm產生器產生,其中該產生器使用CiFETs/CsiFETs20q020q120q220q320q4 來產生如同圖15a 所示的共模電壓Vcm0Vcm1Vcm2Vcm3 。該結構可以支持許多並聯的數據流通道,而這些通道可以接著支持需要這種並聯數據流堆疊的CiFET/CsiFET邏輯結構。CiFET/CsiFET在Vdd低於250毫伏特的情況下運作的能力,使得這種電路即使在使用太陽能電池或其他電池來源的情況下也能進行疊加。邏輯結構的三維堆疊(3D stack)為訊號和結構之間的交流,提供了幾個獨特的路徑,例如,邏輯訊號可以跳二或三層至另一層。在一邏輯結構中,例如圖15b 所示的邏輯結構中,考量到DC偏壓位準,來自一層的電流邏輯訊號可以另外進入其它層P或N iPort的iPort。這種能力將邏輯設計從二維(2D)結構轉移至三維(3D)結構,這因此增加可設計至給矽區域的可能邏輯密度。Figure 15b shows four CiFET/CsiFET-based latches 1000a , 1000b , 1000c, and 1000d . Each latch has the same structure as the latch 1000 shown in Figure 10b and is stacked in parallel. For 1 volt Vdd vs. Vss, each stacked CiFET/CsiFET latch will operate at 0.250 Vdc. The common-mode voltage reference for each level is different and can be generated by a similar stacked Vcm generator, which uses CiFETs/CsiFETs 20q0 , 20q1 , 20q2 , 20q3, and 20q4 to generate the common voltage as shown in Figure 15a. Mode voltages Vcm0 , Vcm1 , Vcm2 and Vcm3 . This structure can support many parallel data stream channels, and these channels can then support the CiFET/CsiFET logic structure that requires such parallel data stream stacking. The ability of the CiFET/CsiFET to operate at Vdd below 250 millivolts allows this circuit to be superimposed even when using solar cells or other battery sources. The three-dimensional stacking of logic structures (3D stack) provides several unique paths for the communication between signals and structures. For example, logic signals can jump from two or three levels to another. In a logic structure, such as the logic structure shown in FIG. 15b , considering the DC bias level, the current logic signal from one layer can additionally enter the iPort of the other layer P or NiPort. This ability shifts the logic design from a two-dimensional (2D) structure to a three-dimensional (3D) structure, which therefore increases the possible logic density that can be designed to a silicon area.

16 示出了電荷泵1600 的示意圖,包括一對互補的PsiFET100Pr 和NsiFET100Nr ,其中PsiFET100Pr 的源極100Prs 連接至V+ ;NsiFET100Nr 的源極100Nrs 連接至V- ;PsiFET100Pr 和NsiFET100Nr 的源極通道閘100Prgs100Nrgs 連接至一共模電壓Vcm ;PsiFET100Pr 和NsiFET100Nr 的汲極100Prd100Nrd 連接形成VoutVout 透過電容器Cc1 連接至V+ 以及透過電容器Cc2 連接至V- 。汲極通道閘100Prgd 被配置為接收Pump Up 訊號,而汲極通道閘100Nrgd 被配置為接收Pump Down 訊號。電荷泵1600 將電荷移入或移出累積或整合電容器Cc1Cc2 。電荷泵1600 線路(Pump Up )或(Pump Down )由單觸發裝置(one shot device)驅動,其中每個Pump UpPump Down 脈衝向整合電容器Cc1Cc2 輸送固定量的電荷。電容器Cc1Cc2 上電荷增加或減少改變電容器Cc1Cc2 的跨電壓。可通過改變驅動(Pump UpPump Down )邏輯脈衝的週期來調整輸送的電荷量。亦可增加邏輯活化開關(圖中未示出),其中該開關將放電電容器Cc1Cc2 以從已知起始點開始充放電順序。FIG 16 shows a schematic diagram of the charge pump 1600 includes a pair of complementary PsiFET 100Pr and NsiFET 100Nr, wherein PsiFET 100Pr 100Prs a source connected to V +; NsiFET 100Nr 100Nrs source connected to V-; PsiFET 100Pr and the NsiFET 100Nr Source channel gates 100Prgs and 100Nrgs are connected to a common mode voltage Vcm ; drains 100Prd and 100Nrd of PsiFET 100Pr and NsiFET 100Nr are connected to form Vout ; Vout is connected to V+ through capacitor Cc1 and to V- through capacitor Cc2 . The drain channel gate 100Prgd is configured to receive the Pump Up signal, and the drain channel gate 100Nrgd is configured to receive the Pump Down signal. The charge pump 1600 moves charge in or out of the accumulation or integration capacitors Cc1 and Cc2 . The charge pump 1600 circuit ( Pump Up ) or ( Pump Down ) is driven by a one shot device, in which each Pump Up or Pump Down pulse delivers a fixed amount of charge to the integrated capacitors Cc1 and Cc2. The increase or decrease of the charge on the capacitors Cc1 and Cc2 changes the voltage across the capacitors Cc1 and Cc2. The amount of charge delivered can be adjusted by changing the cycle of the drive (Pump Up or Pump Down) logic pulse. A logic activation switch (not shown in the figure) can also be added, wherein the switch discharges the capacitors Cc1 and Cc2 in order to start charging and discharging from a known starting point.

以分級方式控制每個脈衝的電荷的能力,使得CiFET二進制邏輯得以透過分級方式在電容器上沉降電荷而從數位世界返回至類比世界,這將以分級類比方式改變電容器電壓。The ability to control the charge of each pulse in a hierarchical manner allows the CiFET binary logic to sink charge on the capacitor in a hierarchical manner and return from the digital world to the analog world, which will change the capacitor voltage in a hierarchical analog manner.

克服以前的局限性Overcome previous limitations

1.        由於節點電壓的局部變化是訊號電流的變化與連接導電性的增量變化之間的相互作用,因此,½CV2 損耗被降至最低。局部條件產生局部節點電壓{ΔVnode=ΔiPort/Δ導電率}。由於這些條件都是局部的,設計上的考慮可以確保局部導電率高,進一步減少對這些寄生分布電容的驅動。 2.        發送端和接收端之間的雜訊大幅度地降低。在基於電流的系統中,一個性能指標的雜訊裕度測量值是{

Figure 02_image001
}。在接收器輸入電阻為50歐姆的數量級而電流發射器輸出電阻的低估值約為一百萬歐姆的情況下,固有的信噪比抑制為萬分之一的數量級。基於電流的引導邏輯固有地比基於電壓擺幅的邏輯快。然而,基於電流的引導邏輯需要DC偏壓電流,因此它的使用是針對非常快速的數據密集型應用,例如數據匯流排。不管邏輯運行的速度如何,功率需求保持在第一個數量級常數。 3.        基於CiFET電流的邏輯很容易支持廣泛的扇入與閘(AND)、與非閘(NAND)、或閘(OR)、及或非閘(NOR)有線邏輯連接。這允許與陣列結構連接,並在陣列尺寸改變時支持比例的調整。CiFETs有線或連接的易用性減少了所需的邏輯閘數量並減少了互連(interconnect)的需求。 4.        CiFET/CsiFET邏輯在引入基於電流的邏輯的同時,還可以支持基於電壓擺幅的邏輯。電流開關邏輯更快但需要更多的直流電。CiFET結構在某些配置中同時支持電流和電壓模式。 5.        對於一般邏輯,CiFET/CsiFET邏輯的表面積與CMOS相同或略為緊密。然而,CiFET/CsiFET邏輯擅長於結構有線或閘(OR)或與閘(AND),並且在連接陣列時需要。在這些類型的陣列有線或閘(OR)或與閘(AND)結構中,尺寸的節省可能是巨大的。CiFET/CsiFET邏輯結構的尺寸隨處理節點的變化而變化。1. Since the local change in node voltage is the interaction between the change in signal current and the incremental change in connection conductivity, ½CV 2 loss is minimized. Local conditions produce local node voltage {ΔVnode=ΔiPort/Δconductivity}. Since these conditions are local, design considerations can ensure that the local conductivity is high, and further reduce the driving of these parasitic distributed capacitances. 2. The noise between the sending end and the receiving end is greatly reduced. In a current-based system, the noise margin measurement value of a performance index is {
Figure 02_image001
}. In the case where the input resistance of the receiver is on the order of 50 ohms and the low estimate of the output resistance of the current transmitter is about one million ohms, the inherent signal-to-noise ratio is suppressed to the order of 1/10,000. Current-based guidance logic is inherently faster than voltage swing-based logic. However, current-based steering logic requires DC bias current, so its use is for very fast data-intensive applications, such as data buses. Regardless of the speed at which the logic runs, the power demand remains constant at the first order of magnitude. 3. The CiFET current-based logic can easily support a wide range of fan-in and gate (AND), NAND gate (NAND), OR gate (OR), and NOR gate (NOR) wired logic connections. This allows connection with the array structure and supports the adjustment of the ratio when the array size changes. The ease of use of CiFETs wired or connected reduces the number of logic gates required and reduces the need for interconnects. 4. CiFET/CsiFET logic can support voltage swing-based logic while introducing current-based logic. The current switching logic is faster but requires more direct current. The CiFET structure supports both current and voltage modes in some configurations. 5. For general logic, the surface area of CiFET/CsiFET logic is the same as or slightly tighter than that of CMOS. However, CiFET/CsiFET logic is good at structured wired OR (OR) or AND gate (AND), and is required when connecting arrays. In these types of array wired or gate (OR) or AND gate (AND) structures, the size savings can be huge. The size of the CiFET/CsiFET logic structure changes with the processing node.

過往限制的其他解決方案Other solutions to past limitations

需要高速和抗雜訊的匯流排結構,可在內部晶片超快匯流排中找到。如果匯流排活動是連續性的並且高速是首要的情況下,這些匯流排可以包括像是生產線超執行緒(pipeline hyper threading)或記憶體存取之類的應用程序,這些高速設計受到熱效應的限制,而CiFET/CsiFET邏輯導致可預測的負載加熱。為了與已經複雜的CMOS設計基礎設施兼容,連接至CMOS電路必須是無縫的,而CiFET/CsiFET邏輯提供了這種能力。The bus structure that requires high speed and anti-noise can be found in the internal chip ultra-fast bus. If bus activity is continuous and high speed is the priority, these buses can include applications such as pipeline hyper threading or memory access. These high-speed designs are limited by thermal effects. , And the CiFET/CsiFET logic leads to predictable load heating. In order to be compatible with the already complex CMOS design infrastructure, the connection to the CMOS circuit must be seamless, and CiFET/CsiFET logic provides this capability.

1.        CiFET/CsiFET邏輯電路使電流訊號位準或電荷封包通過電流脈衝。CiFET電晶體支持直流-電壓轉換和電壓-控制電流轉換。電流脈衝用於觸發多個CiFET正反器設計,並提供了一種實現另一種形式的分級邏輯的方法。 2.        CiFET/CsiFET裝置實現了圖10a 和圖10b 所示的新型電流引導鎖存器,其偏壓電流大致等於低狀態電流最小值。此外,如圖9a9b 所示,以另一種形式的基於CiFET/CsiFET的鎖存器,可在沒有偏壓電流需求的情況下保持電壓。D型、RS或JK等各種形式的鎖存器的性質在製造時係可調整的,可通過調整額外通道節點擴散的位置進行調整,這為設計師提供了一個廣闊的設計選擇空間,在設計鎖存器時可以直接設計為慢速或快速,而如果需要的話,可以動態地調整參數,例如在電路內部,透過將所提供的Vdd控制至將動態改變地CiFET/CsiFET運作參數的特殊電路部分。 3.        二元或梯度的CiFET/CsiFET邏輯設計的因有許多可控參數的基礎裝置而受益。CiFET/CsiFET設計帶來了調節iRatio的能力,iRatio表示當引入額外節點時,內部通道的強度與外部通道的強度比。iRatio被定義為iRatio= [(W/Louter ) / (W/Linner )],這裡假設p和n通道的強度相同。提供了寬的設計餘裕而可以同步或不同步地調整CiFET/CsiFET的強度。由於p通道和n通道的移動率(mobilities)不同,p通道乘法器是表示平衡點所需的設備尺寸的實體差異的數字。改變這個p通道乘法器即改變了平衡點並將改變運作參數,而使其受益於將CiFET/CsiFET概念推向其擴充極限的發散設計。 4.        CiFET/CsiFET電路通常使用一種稱為共模電壓的自生成基準;產生共模電壓的電路如圖1a1c 所示。通過使用這種共模電壓作為基準,在Vss線路中,與Vdd線路相關或在Vdd線路上被發現的許多雜訊問題係被繞開(bypassed)。在Vss線路的Vdd線路上導入尖峰的每一個邏輯負載都可以反映在電壓擺幅位準上,並導致誤觸發。電壓擺幅邏輯的Vmin和Vmax電壓擺幅通常由這些期望的雜訊裕度決定。使用電流作為邏輯位準可以發揮一些新的固有降噪特性,如前面提至的雜訊裕度測量。 5.        CiFET/CsiFET邏輯提供了一個寬的運作溫度範圍,至少地較最嚴格的軍用規格(mil spec)多了正負50℃。有關運作範圍的詳細資訊,請參閱PCT國際申請案PCT/US2015/042696,其內容全部通過引用併入本文。CiFET對弱反轉特性和超低溫的變化不敏感,對產生和改變高溫的弱反轉特性(inversion characteristics)變化不敏感,且弱反轉特性的變化依合理結論,係CiFET在電離輻射作用下運作在電離路徑損傷破壞結構通道的地方為節點的合理結論。 6.        CiFET/CsiFET對處理運行過程中可能發生的裝置參數變化的彈性,意味著晶圓將具有更高的運作成品率。CiFET/CsiFET電路對蒙地卡羅(Monte Carlo)裝置的老化具有很強的不敏感性(insensitivity)。 7.        對參數變化運作的不敏感,意味著電路間時序裕度(inter-circuit timing margins)將保持穩定,時序閉合(timing closure)條件可以變得更緊密,從而允許更高的速度、更高的成品率以及更一致的設計和更短的設計週期。 8.        兩種類型的邏輯是新興的離散位準,二進制CMOS是最普遍的,並且是一種分級邏輯響應,其根據邏輯選擇的概率來分配邏輯真值或假值。CiFET/CsiFET裝置可以在這兩種邏輯形式之間架起橋樑,因為它可以兩種形式運作:分級響應(graded respsonse)需要一定線性保真度,而二進制形式則虛要高增益、高速逆變器和少量邏輯結構。1. The CiFET/CsiFET logic circuit makes the current signal level or charge packet pass the current pulse. CiFET transistors support DC-voltage conversion and voltage-controlled current conversion. Current pulses are used to trigger multiple CiFET flip-flop designs and provide a way to implement another form of hierarchical logic. 2. The CiFET/CsiFET device implements the new current-guided latch shown in Figures 10a and 10b , and its bias current is roughly equal to the minimum value of the low-state current. In addition, as shown in Figures 9a and 9b , in another form of CiFET/CsiFET-based latches, the voltage can be maintained without the need for bias current. The nature of various types of latches such as D-type, RS or JK are adjustable during manufacture, and can be adjusted by adjusting the position of the additional channel node diffusion, which provides designers with a broad design choice space. The latch can be directly designed to be slow or fast, and if necessary, the parameters can be dynamically adjusted, for example, within the circuit, by controlling the provided Vdd to the special circuit part that will dynamically change the operating parameters of the CiFET/CsiFET . 3. Binary or gradient CiFET/CsiFET logic designs benefit from basic devices with many controllable parameters. The CiFET/CsiFET design brings the ability to adjust iRatio. iRatio represents the ratio of the intensity of the internal channel to the intensity of the external channel when additional nodes are introduced. iRatio is defined as iRatio= [(W/L outer ) / (W/L inner )], here it is assumed that the p and n channels have the same intensity. Provides a wide design margin and can adjust the strength of CiFET/CsiFET synchronously or asynchronously. Since the mobilities of the p-channel and the n-channel are different, the p-channel multiplier is a number that represents the physical difference in the size of the equipment required for the equilibrium point. Changing this p-channel multiplier changes the balance point and changes the operating parameters, allowing it to benefit from the divergent design that pushes the CiFET/CsiFET concept to its limit of expansion. 4. CiFET/CsiFET circuits usually use a self-generated reference called common-mode voltage; the circuit that generates common-mode voltage is shown in Figures 1a to 1c. By using this common-mode voltage as a reference, in the Vss line, many noise problems related to or found on the Vdd line are bypassed. Every logic load that introduces a spike on the Vdd line of the Vss line can be reflected on the voltage swing level and cause false triggering. The Vmin and Vmax voltage swings of voltage swing logic are usually determined by these expected noise margins. Using current as a logic level can give play to some new inherent noise reduction characteristics, such as the noise margin measurement mentioned above. 5. CiFET/CsiFET logic provides a wide operating temperature range, at least plus or minus 50°C higher than the most stringent military specifications (mil spec). For detailed information on the scope of operations, please refer to the PCT International Application PCT/US2015/042696, the contents of which are incorporated herein by reference. CiFETs are not sensitive to changes in weak inversion characteristics and ultra-low temperature, and are insensitive to changes in weak inversion characteristics that produce and change high temperatures. The changes in weak inversion characteristics are based on reasonable conclusions, and CiFETs operate under the action of ionizing radiation. It is a reasonable conclusion for the node where the ionization path damages the structure channel. 6. The flexibility of CiFET/CsiFET to device parameter changes that may occur during processing operation means that wafers will have a higher operating yield. The CiFET/CsiFET circuit has a strong insensitivity to the aging of the Monte Carlo device. 7. The insensitivity to parameter changes means that the inter-circuit timing margins will remain stable, and the timing closure conditions can become tighter, allowing higher speeds and higher High yield rate and more consistent design and shorter design cycle. 8. Two types of logic are emerging discrete levels. Binary CMOS is the most common and a hierarchical logic response, which assigns logic true or false values according to the probability of logic selection. The CiFET/CsiFET device can bridge these two logic forms because it can operate in two forms: the graded response (graded response) requires a certain linear fidelity, while the binary form requires high gain and high-speed inverter. And a small amount of logical structure.

20a:CiFET 20Pa:p型iFET 20PaSC:源極通道段 20PaDC:汲極通道段 20Na:n型iFET 20NaSC:源極通道段 20NaDC:汲極通道段 20at1:源極 20at2:汲極 20at3:汲極 20at4:源極 20at5:擴散區 20at6:擴散區 20at7:汲極埠 Vss:電源 Vdd:電源 Vcm:共模電壓 500b1:發射器 500b1c:電流訊號端子 500b2:接收器 100Pfb:PsiFET 100Pfbd:汲極 100Pfbgs:源極通道閘 100Pfbgd:汲極通道閘 100Nfb:NsiFET 100Nfbd:汲極 100Nfbgs:源極通道閘 100Nfbgd:汲極通道閘 20fb1:CiFET 20fb1t1:源極 20fb1g:閘極 20fb1t2:汲極 20fb1t3:汲極 20fb2:CiFET 20fb2t1:源極 20fb2g:閘極 20fb2t2:汲極 20fb2t3:汲極 20fb2t6:NiPort 100Pfb1:PsiFET 100Pfb1s:源極 100Pfb1gs:源極通道閘 100Pfb1gd:汲極通道閘 100Pfb2:PsiFET 100Pfb2s:源極 100Pfb2gs:源極通道閘 100Pfb2gd:汲極通道閘 Vcm:共模電壓 Vcm1:共模電壓 Vdd2:電源 Vout:輸出電壓/電壓訊號 200Ni:n-iPort M3:p型通道電晶體 M3g:閘極 100a:CsiFET M1:n型通道電晶體源極/源極通道電晶體 M2:n型通道電晶體汲極/汲極通道電晶體 M3:p型通道電晶體汲極/汲極通道電晶體 M4:p型通道電晶體源極/源極通道電晶體 M1g:閘極 M2g:閘極 M3g:閘極 M4g:閘極 100aPi:PiPort 100aNi:NiPort 100aout:Vout 100b:電路 100c:電路 100P:PsiFET Vin:電壓輸入/輸入電壓 Iout:電流輸出/輸出電流 M3s:源極 M3d:汲極 M4s:源極 M4d:汲極 100Pgs:源極通道閘/p型源極通道閘 100Pgd:汲極通道閘/p型汲極通道閘 100Pi:PiPort 100P:PsiFET 100Ps:源極 100Pd:汲極 PiOut:電流輸出 100N:NsiFET M1s:源極 M1d:汲極 M2s:源極 M2d:汲極 100Ngs:源極通道閘 100Ngd:汲極通道閘 100Ni:NiPort 100Ns:源極 100Ngs:源極通道閘/n型源極通道閘 100Ngd:汲極通道閘/n型汲極通道閘 100Nd:汲極 NiOut:電流輸出 100:CsiFET iSignal:電流訊號 500a1:發射器 100fa:CsiFET 100Pfa:PsiFET 100Pfas:源極 100Pfad:汲極 100Pfags:源極通道閘 100Pfbd:汲極通道閘 Vdd1:電源 100Nfa:NsiFET 100Nfas:源極 100Nfad:汲極 100Nfags:源極通道閘 100Nfagd:汲極通道閘 500a2:接收器 20fa1:CiFET 20fa2:CiFET 20fa1s:源極 20fa2s:源極 20fa1g:閘極 20fa2g:閘極 20fa2t2:汲極 20fa2t3:汲極 20fa1t2:汲極 20fa1t3:汲極 20fa2t6:NiPort Vss1:電源 Vss2:電源 100Pga1:PsiFET 100Pga2:PsiFET 100Pga3:PsiFET A:第一邏輯輸入/邏輯電壓輸入 B:第二邏輯輸入/邏輯電壓輸入 iA:電流 iB:電流 20ga:CiFET 20gat6:NiPort iOut:輸出電流 100Ngb1:NsiFET 100Ngb2:NsiFET 100Ngb3:NsiFET iA_:電流 iB_:電流 20gbt5:PiPort 20:CiFET A_:輸入 B_:輸入 C_:輸入 D_:輸入 iA_:電流輸入 iB_:電流輸入 iC_:電流輸入 iD_:電流輸入 100Nia1:NsiFET 100Nia2:NsiFET 100Nia3:NsiFET 100Nia4:NsiFET 100Nia5:NsiFET 100Nia6:NsiFET 20ia1:CiFET 20ia2:CiFET 20ia1t5:PiPort 20ia2t5:PiPort iReset_:重設訊號 iSet_:設定訊號 VQ_:輸出電壓 iQ_:電流 VQ:輸出電壓 iQ:電流 100Pib1:PsiFET 100Pib2:PsiFET 100Pib3:PsiFET 100Pib4:PsiFET 100Pib5:PsiFET 100Pib6:PsiFET 20ib1:CiFET 20ib2:CiFET iReset:重設訊號 iSet:設定訊號 20ib1t6:NiPort 20ib2t6:NiPort Q_:輸出電壓 iQ_:電流 Q:輸出電壓 iQ:電流 R0、R1、R2、…、RN:輸入 iR0_、iR1_、iR2_、…、iRN_:電流 S0、S1、S2、…、SN:輸入 iS0_、iS1_、iS2_、…、iSN_:電流 100NjaR0、100NjaR1、100NjaR2、…、100NjaRN:NsiFET 100NjaS0、100NjaS1、100NjaS2、…、100NjaSN:NsiFET 20ja1:CiFET 20ja2:CiFET 100Nja1:NsiFET 100Nja2:NsiFET 20ja1t1:源極 20ja2t1:源極 20ja1t4:源極 20ja2t4:源極 100Nja1gs:源極通道閘 100Nja2gs:源極通道閘 100Nja1s:源極 100Nja2s:源極 100Nja3gs:源極通道閘 100Nja4gs:源極通道閘 100Nja3s:源極 100Nja4s:源極 20ja1:CiFET 20ja1t5:PiPort 100Nja2:NsiFET 100Nja2d:汲極 20ja2:CiFET 20ja2t5:PiPort 100Nja3:NsiFET 100Nja3d:汲極 100Nja1gd:汲極通道閘 100Nja1gd:汲極通道閘 20ja2t2:汲極 20ja2t3:汲極 vQ_:輸出電壓 100Nja3gd:汲極通道閘 100Nja4gd:汲極通道閘 20ja1t2:汲極 20ja1t3:汲極 vQ:輸出電壓 100Nja1:NsiFET 100Nja1d:汲極 iQout:輸出電流 100Nja4:NsiFET 100Nja4d:汲極 iQout_:輸出電流 1000:鎖存器 iR0、iR1、iR2、…、iRN:電流 iS0、iS1、iS2、…、iSN:電流 100PjbR0、100PjbR1、100PjbR2、…、100PjbRN:PsiFET 100PjbS0、100PjbS1、100PjbS2、…、100PjbSN:PsiFET 20jb1:CiFET 20jb2:CiFET 100Pjb1:PsiFET 100Pjb2:PsiFET 100Pjb3:PsiFET 100Pjb4:PsiFET 20jb1t1:源極 20jb2t1:源極 20jb1t4:源極 20jb2t4:源極 100Pjb1gs:源極通道閘 100Pjb2gs:源極通道閘 100Pjb1s:源極 100Pjb2s:源極 100Pjb3gs:源極通道閘 100Pjb4gs:源極通道閘 100Pjb3s:源極 100Pjb4s:源極 100Pk:PsiFET 100Pkgd:汲極通道閘 100Nk:NsiFET 100Nkgd:汲極通道閘 1100d:數據匯流排 20k0t6、20k1t6、20k2t6、…、20knt6:NiPort 20k0、20k1、20k2、…、20kN:CiFET接收器 20k0t6、20k1t6、20k2t6,…、20kNt6:NiPort VDB0、VDB1、VDB2,…、VDBN:共通汲極電壓 100Pm:PsiFET vCk:時脈訊號電壓 iOut:電流 100Nm:NsiFET iOut-:電流 20ma0、20ma1、20ma2、20ma3、20ma4、20ma5、…、20maN:CiFET 20mb0、20mb1、20mb2、20mb3、20mb4、20mb5、…、20mbN:CiFET 20ma0g、20ma1g、20ma2g、20ma3g、20ma4g、20ma5g、…、20maNg:閘極 20mb0g、20mb1g、20mb2g、20mb3g、20mb4g、20mb5g、…、20mbNg:閘極 20ma0t1、20ma1t1、20ma2t1、20ma3t1、20ma4t1、20ma5t1、…、20maNt1:源極 20mb0t1、20mb1t1、20mb3t1、20mb4t1、20mb5t1、…、20mbNt1:源極 20ma0t4、20ma1t4、20ma2t4、20ma3t4、20ma4t4、20ma5t4、…、20maNt4:源極 20mb0t4、20mb1t4、20mb2t4、20mb3t4、20mb4t4、20mb5t4、…、20mbNt4:源極 20ma0t2、20ma0t3、20ma1t2、20ma1t3、20ma2t2、20ma2t3、20ma3t2、20ma3t3、20ma4t2、20ma4t3、20ma5t2、20ma5t3、…、20maNt2、20maNt3:汲極 20mb0t2、20mb0t3、20mb1t2、20mb1t3、20mb2t2、20mb2t3、20mb3t2、20mb3t3、20mb4t2、20mb4t3、20mb5t2、20mb5t3、…、20mbNt2、20mbNt3:汲極 vCk0、vCk1、vCk2、vCk3、vCk4、vCk5、…、vCkN:電壓時脈訊號輸出 vCk0_、vCk1_、vCk2_、vCk3_、vCk4_、vCk5_、…、vCkN_:電壓時脈訊號輸出 20ma0t6、20ma1t6、20ma2t6、20ma3t6、20ma4t6、20ma5t6、…、20maNt6:NiPorts 20mb0t5、20mb1t5、20mb2t5、20mb3t5、20mb4t5、20mb5t5、…、20mbNt5:PiPorts 20n1:CiFET 20n2:CiFET 20n1g:閘極 20n2g:閘極 20n1t1:源極 20n2t1:源極 20n1t4:源極 20n2t4:源極 20n3:CiFET 20n3g:閘極 100Nn1:NsiFET 100Nn1gd:汲極通道閘 iSet_:電流訊號 20n3t2:汲極 20n3t4:汲極 C-delay:電容器 100Nn6:NsiFET 100Nn6gd:汲極通道閘 iReset_:電流訊號 100Nn2:NsiFET 100Nn3:NsiFET 100Nn4:NsiFET 100Nn5:NsiFET 100Nn2gs:源極通道閘 100Nn3gs:源極通道閘 100Nn4gs:源極通道閘 100Nn5gs:源極通道閘 100Nn2gd:汲極通道閘 100Nn3gd:汲極通道閘 20n1t2:閘極 20n1t3:閘極 100Nn4gd:汲極通道閘 100Nn5gd:汲極通道閘 20n2t2:閘極 20n2t3:閘極 20n1t5:PiPort 100Nn3d:汲極 20n2t5:PiPort 100Nn4d:汲極 20n1t2:閘極 20n1t3:閘極 140:施密特觸發電路 20p:CiFET 20pg:閘極 20pt3:汲極 20pt4:汲極 20pt5:PiPort 20pt6:NiPort 1400:雙施密特正反器 140a:CiST 140b:CiST PS:PiPort:SET輸入 NS:NiPort:SET輸入 PR:PiPort:RESET輸入 NR:NiPort:RESET輸入 1000a:鎖存器 1000b:鎖存器 1000c:鎖存器 1000d:鎖存器 20q0:CiFET/CsiFET 20q1:CiFET/CsiFET 20q2:CiFET/CsiFET 20q3:CiFET/CsiFET 20q4:CiFET/CsiFET Vcm0:共模電壓 Vcm1:共模電壓 Vcm2:共模電壓 Vcm3:共模電壓 1600:電荷泵 100Pr:PsiFET 100Nr:NsiFET 100Prs:源極 100Nrs:源極 100Prgs:源極通道閘 100Nrgs:源極通道閘 100Prd:汲極 100Nrd:汲極 Cc1:電容器 Cc2:電容器 100Prgd:汲極通道閘 100Nrgd:汲極通道閘20a: CiFET 20Pa: p-type iFET 20PaSC: source channel segment 20PaDC: Drain channel section 20Na: n-type iFET 20NaSC: source channel segment 20NaDC: Drain channel section 20at1: source 20at2: drain 20at3: drain 20at4: source 20at5: diffusion zone 20at6: diffusion zone 20at7: Drain port Vss: power supply Vdd: power supply Vcm: common mode voltage 500b1: transmitter 500b1c: Current signal terminal 500b2: receiver 100Pfb: PsiFET 100Pfbd: Drain 100Pfbgs: source channel gate 100Pfbgd: Drain channel gate 100Nfb:NsiFET 100Nfbd: Drain 100Nfbgs: source channel gate 100Nfbgd: Drain channel gate 20fb1: CiFET 20fb1t1: source 20fb1g: gate 20fb1t2: drain 20fb1t3: drain 20fb2: CiFET 20fb2t1: source 20fb2g: gate 20fb2t2: drain 20fb2t3: drain 20fb2t6:NiPort 100Pfb1: PsiFET 100Pfb1s: source 100Pfb1gs: source channel gate 100Pfb1gd: Drain channel gate 100Pfb2: PsiFET 100Pfb2s: source 100Pfb2gs: source channel gate 100Pfb2gd: Drain channel gate Vcm: common mode voltage Vcm1: common mode voltage Vdd2: power supply Vout: output voltage/voltage signal 200Ni:n-iPort M3: p-channel transistor M3g: gate 100a: CsiFET M1: n-channel transistor source/source channel transistor M2: n-channel transistor drain/drain channel transistor M3: p-channel transistor drain/drain channel transistor M4: p-channel transistor source/source channel transistor M1g: gate M2g: gate M3g: gate M4g: gate 100aPi: PiPort 100aNi:NiPort 100aout:Vout 100b: Circuit 100c: circuit 100P: PsiFET Vin: voltage input/input voltage Iout: current output/output current M3s: source M3d: Dip pole M4s: source M4d: Drain 100Pgs: source channel gate/p-type source channel gate 100Pgd: Drain channel gate/p-type drain channel gate 100Pi: PiPort 100P: PsiFET 100Ps: source 100Pd: Drain PiOut: current output 100N: NsiFET M1s: source M1d: Drain M2s: source M2d: drain 100Ngs: source channel gate 100Ngd: Drain channel gate 100Ni:NiPort 100Ns: source 100Ngs: source channel gate/n-type source channel gate 100Ngd: Drain channel gate/n-type drain channel gate 100Nd: Drain NiOut: current output 100: CsiFET iSignal: current signal 500a1: transmitter 100fa: CsiFET 100Pfa: PsiFET 100Pfas: source 100Pfad: Dip pole 100Pfags: source channel gate 100Pfbd: Drain channel gate Vdd1: power supply 100Nfa:NsiFET 100Nfas: source 100Nfad: Drain 100Nfags: source channel gate 100Nfagd: Drain channel gate 500a2: receiver 20fa1: CiFET 20fa2: CiFET 20fa1s: source 20fa2s: source 20fa1g: gate 20fa2g: gate 20fa2t2: drain 20fa2t3: drain 20fa1t2: drain 20fa1t3: Drain 20fa2t6:NiPort Vss1: power supply Vss2: power supply 100Pga1: PsiFET 100Pga2: PsiFET 100Pga3: PsiFET A: The first logic input / logic voltage input B: The second logic input / logic voltage input iA: current iB: current 20ga: CiFET 20gat6:NiPort iOut: output current 100Ngb1: NsiFET 100Ngb2: NsiFET 100Ngb3: NsiFET iA_: current iB_: current 20gbt5: PiPort 20: CiFET A_: input B_: input C_: input D_: input iA_: current input iB_: current input iC_: current input iD_: current input 100Nia1:NsiFET 100Nia2:NsiFET 100Nia3:NsiFET 100Nia4: NsiFET 100Nia5: NsiFET 100Nia6: NsiFET 20ia1: CiFET 20ia2: CiFET 20ia1t5: PiPort 20ia2t5: PiPort iReset_: Reset signal iSet_: Set signal VQ_: output voltage iQ_: current VQ: output voltage iQ: current 100Pib1: PsiFET 100Pib2: PsiFET 100Pib3: PsiFET 100Pib4: PsiFET 100Pib5: PsiFET 100Pib6: PsiFET 20ib1: CiFET 20ib2: CiFET iReset: Reset signal iSet: Set the signal 20ib1t6:NiPort 20ib2t6:NiPort Q_: output voltage iQ_: current Q: output voltage iQ: current R0, R1, R2,..., RN: input iR0_, iR1_, iR2_,..., iRN_: current S0, S1, S2,..., SN: input iS0_, iS1_, iS2_,..., iSN_: current 100NjaR0, 100NjaR1, 100NjaR2,..., 100NjaRN: NsiFET 100NjaS0, 100NjaS1, 100NjaS2,..., 100NjaSN: NsiFET 20ja1:CiFET 20ja2:CiFET 100Nja1:NsiFET 100Nja2:NsiFET 20ja1t1: source 20ja2t1: source 20ja1t4: source 20ja2t4: source 100Nja1gs: source channel gate 100Nja2gs: source channel gate 100Nja1s: source 100Nja2s: source 100Nja3gs: source channel gate 100Nja4gs: source channel gate 100Nja3s: source 100Nja4s: source 20ja1:CiFET 20ja1t5:PiPort 100Nja2:NsiFET 100Nja2d: Dip pole 20ja2:CiFET 20ja2t5:PiPort 100Nja3:NsiFET 100Nja3d: Dip pole 100Nja1gd: Drain channel gate 100Nja1gd: Drain channel gate 20ja2t2: Dip pole 20ja2t3: Dip pole vQ_: output voltage 100Nja3gd: Drain channel gate 100Nja4gd: Drain channel gate 20ja1t2: Dip pole 20ja1t3: Dip pole vQ: output voltage 100Nja1:NsiFET 100Nja1d: Dip pole iQout: output current 100Nja4: NsiFET 100Nja4d: Dip pole iQout_: output current 1000: latch iR0, iR1, iR2,..., iRN: current iS0, iS1, iS2,..., iSN: current 100PjbR0, 100PjbR1, 100PjbR2,..., 100PjbRN: PsiFET 100PjbS0, 100PjbS1, 100PjbS2,..., 100PjbSN: PsiFET 20jb1: CiFET 20jb2: CiFET 100Pjb1: PsiFET 100Pjb2: PsiFET 100Pjb3: PsiFET 100Pjb4: PsiFET 20jb1t1: source 20jb2t1: source 20jb1t4: source 20jb2t4: source 100Pjb1gs: source channel gate 100Pjb2gs: source channel gate 100Pjb1s: source 100Pjb2s: source 100Pjb3gs: source channel gate 100Pjb4gs: source channel gate 100Pjb3s: source 100Pjb4s: source 100Pk: PsiFET 100Pkgd: Drain channel gate 100Nk: NsiFET 100Nkgd: Drain channel gate 1100d: data bus 20k0t6, 20k1t6, 20k2t6,..., 20knt6: NiPort 20k0, 20k1, 20k2, ..., 20kN: CiFET receiver 20k0t6, 20k1t6, 20k2t6,..., 20kNt6: NiPort VDB0, VDB1, VDB2, ..., VDBN: common drain voltage 100Pm: PsiFET vCk: Clock signal voltage iOut: current 100Nm: NsiFET iOut-: current 20ma0, 20ma1, 20ma2, 20ma3, 20ma4, 20ma5,..., 20maN: CiFET 20mb0, 20mb1, 20mb2, 20mb3, 20mb4, 20mb5,..., 20mbN: CiFET 20ma0g, 20ma1g, 20ma2g, 20ma3g, 20ma4g, 20ma5g,..., 20maNg: gate 20mb0g, 20mb1g, 20mb2g, 20mb3g, 20mb4g, 20mb5g,..., 20mbNg: gate 20ma0t1, 20ma1t1, 20ma2t1, 20ma3t1, 20ma4t1, 20ma5t1,..., 20maNt1: source 20mb0t1, 20mb1t1, 20mb3t1, 20mb4t1, 20mb5t1,..., 20mbNt1: source 20ma0t4, 20ma1t4, 20ma2t4, 20ma3t4, 20ma4t4, 20ma5t4,..., 20maNt4: source 20mb0t4, 20mb1t4, 20mb2t4, 20mb3t4, 20mb4t4, 20mb5t4,..., 20mbNt4: source 20ma0t2, 20ma0t3, 20ma1t2, 20ma1t3, 20ma2t2, 20ma2t3, 20ma3t2, 20ma3t3, 20ma4t2, 20ma4t3, 20ma5t2, 20ma5t3,..., 20maNt2, 20maNt3: drain 20mb0t2, 20mb0t3, 20mb1t2, 20mb1t3, 20mb2t2, 20mb2t3, 20mb3t2, 20mb3t3, 20mb4t2, 20mb4t3, 20mb5t2, 20mb5t3,..., 20mbNt2, 20mbNt3: drain vCk0, vCk1, vCk2, vCk3, vCk4, vCk5,..., vCkN: voltage clock signal output vCk0_, vCk1_, vCk2_, vCk3_, vCk4_, vCk5_,..., vCkN_: voltage clock signal output 20ma0t6, 20ma1t6, 20ma2t6, 20ma3t6, 20ma4t6, 20ma5t6,..., 20maNt6: NiPorts 20mb0t5, 20mb1t5, 20mb2t5, 20mb3t5, 20mb4t5, 20mb5t5,..., 20mbNt5: PiPorts 20n1: CiFET 20n2: CiFET 20n1g: gate 20n2g: gate 20n1t1: source 20n2t1: source 20n1t4: source 20n2t4: source 20n3: CiFET 20n3g: gate 100Nn1: NsiFET 100Nn1gd: Drain channel gate iSet_: current signal 20n3t2: drain 20n3t4: Drain C-delay: capacitor 100Nn6: NsiFET 100Nn6gd: Drain channel gate iReset_: current signal 100Nn2: NsiFET 100Nn3: NsiFET 100Nn4: NsiFET 100Nn5: NsiFET 100Nn2gs: source channel gate 100Nn3gs: source channel gate 100Nn4gs: source channel gate 100Nn5gs: source channel gate 100Nn2gd: Drain channel gate 100Nn3gd: Drain channel gate 20n1t2: gate 20n1t3: gate 100Nn4gd: Drain channel gate 100Nn5gd: Drain channel gate 20n2t2: gate 20n2t3: gate 20n1t5: PiPort 100Nn3d: Drain 20n2t5: PiPort 100Nn4d: Drain 20n1t2: gate 20n1t3: gate 140: Schmidt trigger circuit 20p: CiFET 20pg: gate 20pt3: Dip pole 20pt4: drain 20pt5: PiPort 20pt6: NiPort 1400: Double Schmidt flip-flop 140a: CiST 140b: CiST PS: PiPort: SET input NS:NiPort:SET input PR: PiPort: RESET input NR: NiPort: RESET input 1000a: latch 1000b: latch 1000c: latch 1000d: latch 20q0: CiFET/CsiFET 20q1: CiFET/CsiFET 20q2: CiFET/CsiFET 20q3: CiFET/CsiFET 20q4: CiFET/CsiFET Vcm0: common mode voltage Vcm1: common mode voltage Vcm2: common mode voltage Vcm3: common mode voltage 1600: charge pump 100Pr: PsiFET 100Nr:NsiFET 100Prs: source 100Nrs: source 100Prgs: source channel gate 100Nrgs: source channel gate 100Prd: Drain 100Nrd: Drain Cc1: Capacitor Cc2: Capacitor 100Prgd: Drain channel gate 100Nrgd: Drain channel gate

[圖1a]繪示一基本的互補切換電流場效電晶體(CsiFET)偏壓閘極電壓(Vgs)堆疊之示意圖。 [圖1b]繪示一基本的互補電流場效電晶體(CiFET)以輸入電壓(Vin)為訊號參考之示意圖。 [圖1c]繪示一CiFET共模電壓(Vcm)產生器之示意圖。 [圖1d]繪示一CiFET裝置的立體圖。 [圖1e]為一基本的CiFET通道電流流動之可視化示意圖。 [圖1f]為一基本的CiFET/CsiFET中能量流之類比概念示意圖。 [圖2]顯示一CiFET/CsiFET偏壓操作性能圖。 [圖3a]繪示一切換p通道電流場效電晶體iFET(PsiFET)電壓邏輯(voltage-LOGIC)至電流邏輯(current-LOGIC)轉換之示意圖。 [圖3b]繪示一切換n通道電流場效電晶體(NsiFET)電壓邏輯(voltage-LOGIC)至電流邏輯(current-LOGIC)轉換之示意圖。 [圖3c]繪示一切換p通道電流場效電晶體(PsiFET)電流源(current source)之符號圖。 [圖3d]繪示一切換n通道電流場效電晶體(NsiFET)電流源(current source)之符號圖。 [圖4a、圖4b]繪示基於CsiFET的一邏輯電流-邏輯電壓轉換器。 [圖4c、圖4d]繪示基於CsiFET的另一邏輯電流-邏輯電壓轉換器。 [圖5a]示出連接於CiFET鎖存電壓接收器之基於電壓的數據傳輸。 [圖5b]示出連接於CiFET/CsiFET鎖存電流接收器之基於電流的數據傳輸。 [圖6a]繪示一有線或閘(OR)電路於電壓位準及電流位準邏輯輸入/輸出之示意圖。 [圖6b]繪示一有線與閘(AND)閘之示意圖,其具有採用電壓或電流模式邏輯訊號的反向輸入(inverted inputs)及反向輸出(inverted outputs)。 [圖7a]示出用於四輸入或非閘(NOR)邏輯的一CMOS邏輯之示意圖。 [圖7b]示出一四輸入CiFET iPort有線或閘(OR)邏輯之示意圖。 [圖8a]繪示先前技術中矽佈局及一CMOS逆變器的相關物理尺寸。 [圖8b]繪示先前技術中矽佈局及一CMOS二輸入或閘(OR)的相關物理尺寸。 [圖8c]繪示在平面COMS的CiFET裝置及矽佈局相關物理尺寸。 [圖8d]繪示在FinFET科技的CiFET裝置及矽佈局相關物理尺寸。 [圖8e]示出CMOS四輸入或非閘(NOR)的矽佈局,其用以尺寸比較。 [圖9a]繪示根據本發明一實施例之一CTL電壓保持鎖存器於有線與閘(AND)邏輯電壓及邏輯電流的邏輯輸入/輸出介面之示意圖。 [圖9b]繪示根據本發明一實施例之一CTL電壓保持鎖存器於有線或閘(OR)邏輯電壓及邏輯電流的邏輯輸入/輸出介面之示意圖。 [圖9c]示出電壓保持鎖存器於-170°C、-55°C、25°C、125°C和275°C下之示例波形圖。 [圖10a]繪示具有高總匯流量(high-bus-traffic)和高速的I/O選項的一CTL全電流模式(full-current-mode)有線與閘(AND)高扇入鎖存器之示意圖。 [圖10b]繪示具有高總匯流量(high-bus-traffic)和高速的I/O選項一CTL全電流模式(full-current-mode)有線或閘(OR)高扇入鎖存器之示意圖。 [圖10c]示出電壓保持鎖存器於-170°C、-55°C、25°C、125°C和275°C下之示例波形圖。 [圖11]繪示一數據處理匯流排讀入/寫出放大器(amp)之示意圖(其全電流模式算數邏輯單元(ALU)亦可於高速下執行。 [圖12]繪示一種基於電荷的時脈樹之示意圖,其藉由統一電流傳遞而提供同等的時間給接收器,進而在最大速度及區域密度下提供簡單的時序收斂(timing closure)。 [圖13]繪示一基於電荷的邊緣至脈衝產生器(edge to pulse generator)之示意圖。 [圖14a至圖14c]繪示施密特電流輸入運作符號示意圖。 [圖15a]一共模電壓產生器之示意圖。 [圖15b]繪示一CTL堆疊處理陣列之示意圖。 [圖16]基於CsiFET一電荷泵電路之示意圖。[Figure 1a] shows a schematic diagram of a basic complementary switching current field effect transistor (CsiFET) bias gate voltage (Vgs) stack. [Figure 1b] shows a schematic diagram of a basic complementary current field effect transistor (CiFET) with input voltage (Vin) as signal reference. [Figure 1c] shows a schematic diagram of a CiFET common mode voltage (Vcm) generator. [Figure 1d] shows a perspective view of a CiFET device. [Figure 1e] is a visualized schematic diagram of a basic CiFET channel current flow. [Fig. 1f] is a schematic diagram of the analogous concept of energy flow in a basic CiFET/CsiFET. [Figure 2] Shows a graph of CiFET/CsiFET bias operation performance. [Figure 3a] shows a schematic diagram of switching a p-channel current field effect transistor iFET (PsiFET) from voltage-LOGIC to current-LOGIC. [Figure 3b] shows a schematic diagram of switching n-channel current field effect transistor (NsiFET) voltage logic (voltage-LOGIC) to current logic (current-LOGIC) conversion. [Figure 3c] shows a symbol diagram of a switched p-channel current field effect transistor (PsiFET) current source. [Figure 3d] shows a symbol diagram of a switched n-channel current field effect transistor (NsiFET) current source. [Figure 4a, Figure 4b] shows a logic current-to-logic voltage converter based on CsiFET. [Figure 4c, Figure 4d] shows another logic current-to-logic voltage converter based on CsiFET. [Figure 5a] shows voltage-based data transmission connected to a CiFET latch voltage receiver. [Figure 5b] shows current-based data transmission connected to a CiFET/CsiFET latch current receiver. [Figure 6a] shows a schematic diagram of a wired OR circuit in voltage level and current level logic input/output. [Figure 6b] shows a schematic diagram of a wired AND gate with inverted inputs and inverted outputs using voltage or current mode logic signals. [Figure 7a] shows a schematic diagram of a CMOS logic for four-input NOR logic. [Figure 7b] shows a schematic diagram of a four-input CiFET iPort wired OR logic. [Figure 8a] shows the silicon layout in the prior art and the relative physical size of a CMOS inverter. [Figure 8b] shows the prior art silicon layout and the relative physical dimensions of a CMOS two-input OR gate (OR). [Figure 8c] shows the physical dimensions of the CiFET device and the silicon layout on the planar COMS. [Figure 8d] shows the physical dimensions of the CiFET device and silicon layout in FinFET Technology. [Figure 8e] shows the CMOS four-input NOR silicon layout for size comparison. [Fig. 9a] is a schematic diagram showing a logic input/output interface of a wired AND logic voltage and a logic current of a CTL voltage holding latch according to an embodiment of the present invention. [FIG. 9b] is a schematic diagram showing a logic input/output interface of a wired OR logic voltage and logic current of a CTL voltage holding latch according to an embodiment of the present invention. [Figure 9c] shows sample waveforms of the voltage holding latch at -170°C, -55°C, 25°C, 125°C and 275°C. [Figure 10a] shows a CTL full-current mode (full-current-mode) wired and gate (AND) high fan-in latch with high-bus-traffic and high-speed I/O options Schematic. [Figure 10b] shows a schematic diagram of a high-bus-traffic and high-speed I/O option-CTL full-current-mode wired or gate (OR) high fan-in latch . [Figure 10c] shows sample waveforms of the voltage holding latch at -170°C, -55°C, 25°C, 125°C and 275°C. [Figure 11] shows a schematic diagram of a data processing bus read/write amplifier (amp) (the full current mode arithmetic logic unit (ALU) can also be executed at high speed. [Figure 12] shows a schematic diagram of a charge-based clock tree, which provides equal time to the receiver by uniform current transfer, thereby providing simple timing closure at maximum speed and area density. [Figure 13] shows a schematic diagram of a charge-based edge to pulse generator. [Figures 14a to 14c] show schematic diagrams of Schmidt current input operation symbols. [Figure 15a] A schematic diagram of a common mode voltage generator. [Figure 15b] shows a schematic diagram of a CTL stacked processing array. [Figure 16] Schematic diagram of a charge pump circuit based on CsiFET.

20a:CiFET20a: CiFET

20Pa:p型iFET20Pa: p-type iFET

20PaSC:源極通道段20PaSC: source channel segment

20PaDC:汲極通道段20PaDC: Drain channel section

20Na:n型iFET20Na: n-type iFET

20NaSC:源極通道段20NaSC: source channel segment

20NaDC:汲極通道段20NaDC: Drain channel section

20at1:源極20at1: source

20at2:汲極20at2: drain

20at3:汲極20at3: drain

20at4:源極20at4: source

20at5:擴散區20at5: diffusion zone

20at6:擴散區20at6: diffusion zone

20at7:汲極埠20at7: Drain port

Vss:電源Vss: power supply

Vdd:電源Vdd: power supply

Claims (13)

一種場效電晶體,包括: a.        一源極及一汲極,其中該源極與該汲極界定一通道; b.        一擴散區劃分該通道劃分為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段; c.        一源極通道閘,連接該源極通道段;以及 d.        一汲極通道閘,連接該汲極通道段。A field effect transistor, including: a. A source and a drain, where the source and the drain define a channel; b. A diffusion zone divides the channel into a source channel segment between the source and the diffusion zone and a drain channel segment between the drain and the diffusion zone; c. A source channel gate connected to the source channel segment; and d. A drain channel gate, which connects the drain channel segment. 如請求項1所述之場效電晶體,其中該擴散區為一電流輸入節點或一電流輸出節點。The field effect transistor according to claim 1, wherein the diffusion region is a current input node or a current output node. 如請求項1所述之場效電晶體,其中該擴散區為一電流槽或一電流源節點。The field effect transistor according to claim 1, wherein the diffusion region is a current sink or a current source node. 如請求項1所述之場效電晶體,其中該源極通道閘之尺寸及該源極通道段之尺寸分別不同於該汲極通道閘之尺寸及該汲極通道段之尺寸。The field effect transistor according to claim 1, wherein the size of the source channel gate and the size of the source channel section are different from the size of the drain channel gate and the size of the drain channel section, respectively. 如請求項1所述之場效電晶體,其中該源極通道閘連接一共模電壓,該源極連接一電源,該汲極通道閘被配置為接收一邏輯電壓輸入以提供一邏輯電流輸出於該汲極。The field effect transistor of claim 1, wherein the source channel gate is connected to a common mode voltage, the source is connected to a power source, and the drain channel gate is configured to receive a logic voltage input to provide a logic current output at The drain. 一種固態裝置,包括: a.        如請求項1所述之一對第一互補場效電晶體及第二互補場效電晶體,其中,該第一互補場效電晶體之該汲極及該第二互補場效電晶體之該汲極連接而形成一汲極埠。A solid-state device including: a. A pair of the first complementary field effect transistor and the second complementary field effect transistor as described in claim 1, wherein the drain of the first complementary field effect transistor and the second complementary field effect transistor The drain is connected to form a drain port. 如請求項6所述之固態裝置,其中該第一互補場效電晶體之該源極通道閘及該汲極通道閘與該第二互補場效電晶體之該源極通道閘及該汲極通道閘連接一共模電壓;以及 其中該固態裝置被配置而於該第一互補場效電晶體之該擴散區及/或該第二互補場效電晶體之該第二擴散區接收一邏輯電流輸入以產生一邏輯電壓輸出於該汲極埠。The solid-state device according to claim 6, wherein the source channel gate and the drain channel gate of the first complementary field effect transistor and the source channel gate and the drain of the second complementary field effect transistor The channel gate is connected to a common mode voltage; and The solid-state device is configured to receive a logic current input in the diffusion region of the first complementary field effect transistor and/or the second diffusion region of the second complementary field effect transistor to generate a logic voltage output to the Jijibu. 一種邏輯電流-邏輯電壓轉換器,包括: a.        一對第一互補場效電晶體及第二互補場效電晶體,該第一互補場效電晶體及該第二互補場效電晶體各包括一源極及一汲極,其中該第一互補場效電晶體之該源極與該汲極界定一第一通道,該第二互補場效電晶體之該源極與該汲極界定一第二通道; b.        一第一擴散區(第一iPort)劃分該第一通道為位於該源極與該第一iPort之間的一第一源極通道段以及位於該汲極與該第一iPort之間的一第一汲極通道段; c.        一第二擴散區(第二iPort)劃分該第二通道為位於該源極與該第二iPort之間的一第二源極通道段以及位於該源極與該第二iPort之間的一第二汲極通道段; d.        一閘極,連接該第一源極通道段、該第一汲極通道段、該第二源極通道段及該第二汲極通道段;以及 其中,該第一互補場效電晶體之該汲極與該第二互補場效電晶體之該汲極連接而形成一汲極埠; 其中,該閘極連接一共模電壓,該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源;以及 其中,該邏輯電流-邏輯電壓轉換器被配置而於該第一iPort或該第二iPort接收一邏輯電流輸入以產生一邏輯電壓輸出於該汲極埠。A logic current-to-logic voltage converter includes: a. A pair of a first complementary field effect transistor and a second complementary field effect transistor. The first complementary field effect transistor and the second complementary field effect transistor each include a source and a drain, wherein the first complementary field effect transistor and the second complementary field effect transistor each include a source and a drain. The source and the drain of a complementary field effect transistor define a first channel, and the source and the drain of the second complementary field effect transistor define a second channel; b. A first diffusion area (first iPort) divides the first channel into a first source channel segment between the source and the first iPort, and a first channel segment between the drain and the first iPort. A first drain channel section; c. A second diffusion area (second iPort) divides the second channel into a second source channel segment between the source and the second iPort, and a second source channel segment between the source and the second iPort A second drain channel section; d. A gate connecting the first source channel segment, the first drain channel segment, the second source channel segment, and the second drain channel segment; and Wherein, the drain of the first complementary field effect transistor is connected to the drain of the second complementary field effect transistor to form a drain port; Wherein the gate is connected to a common mode voltage, the source of the first complementary field effect transistor and the source of the second complementary field effect transistor are connected to a power supply; and Wherein, the logic current-to-logic voltage converter is configured to receive a logic current input at the first iPort or the second iPort to generate a logic voltage output at the drain port. 一種具有二個以上邏輯輸入及一邏輯輸出的電荷傳遞邏輯模組,包括: a.        如請求項3所述之固態裝置,其中該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源; b.        對於該些邏輯輸入電壓的每一者,一邏輯電流-邏輯電壓轉換器將各該邏輯輸入電壓轉換至一邏輯電流; 其中,該第一互補場效電晶體之該擴散區及該第二互補場效電晶體之該擴散區被配置而接收源自於該邏輯電流-邏輯電壓轉換器之該邏輯電流;以及 其中,該固態裝置之該汲極埠被配置以輸出該邏輯電壓輸出。A charge transfer logic module with more than two logic inputs and one logic output, including: a. The solid-state device according to claim 3, wherein the source of the first complementary field effect transistor and the source of the second complementary field effect transistor are connected to a power supply; b. For each of the logic input voltages, a logic current-to-logic voltage converter converts each logic input voltage to a logic current; Wherein the diffusion region of the first complementary field effect transistor and the diffusion region of the second complementary field effect transistor are configured to receive the logic current derived from the logic current-to-logic voltage converter; and Wherein, the drain port of the solid-state device is configured to output the logic voltage output. 一種如請求項9所述之電荷傳遞邏輯模組,其中該邏輯電流-邏輯電壓轉換器包括一場效電晶體,該場效電晶體包括: a.        一源極及一汲極,其中該源極與該汲極界定一通道; b.        一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段; c.        一源極通道閘,連接該源極通道段;以及 d.        一汲極通道閘,連接該汲極通道段; 其中,該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收該二個以上邏輯電壓輸入之一者以產生源自於該汲極之一邏輯電流輸出。A charge transfer logic module according to claim 9, wherein the logic current-to-logic voltage converter includes a field-effect transistor, and the field-effect transistor includes: a. A source and a drain, where the source and the drain define a channel; b. A diffusion zone divides the channel into a source channel segment between the source and the diffusion zone and a drain channel segment between the drain and the diffusion zone; c. A source channel gate connected to the source channel segment; and d. A drain channel gate, which connects the drain channel section; Wherein, the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured to receive one of the two or more logic voltage inputs to generate a logic derived from the drain Current output. 一種邏輯電流-邏輯電壓轉換器,包括: a.        一場效電晶體,包括: i.              一源極及一汲極,其中該源極與該汲極界定一通道; ii.              一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段; iii.              一源極通道閘,連接該源極通道段;以及 iv.              一汲極通道閘,連接該汲極通道段; 其中,該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收一邏輯電壓輸入以產生源自於該汲極之一邏輯電流輸出。A logic current-to-logic voltage converter includes: a. A field-effect transistor, including: i. A source and a drain, where the source and the drain define a channel; ii. A diffusion zone divides the channel into a source channel section between the source and the diffusion zone and a drain channel section between the drain and the diffusion zone; iii. A source channel gate connecting the source channel segment; and iv. A drain channel gate to connect the drain channel segment; Wherein, the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured to receive a logic voltage input to generate a logic current output derived from the drain. 一種數據匯流排結構,包括: a.        一匯流排; b.        一匯流排傳送器,包括一場效電晶體,該場效電晶體包括: i.              一源極及一汲極,其中該源極與該汲極界定一通道; ii.              一擴散區劃分該通道為位於該源極與該擴散區之間的一源極通道段以及位於該汲極與該擴散區之間的一汲極通道段; iii.              一源極通道閘,連接該源極通道段;以及 iv.              一汲極通道閘,連接該汲極通道段; 其中,該源極連接一供電源,該源極通道閘連接一共模電壓,該汲極通道閘被配置而接收一邏輯電壓輸入以產生源自於該汲極之一邏輯電流於該匯流排輸出;以及 c.        一匯流排接收器包括一對第一互補場效電晶體及第二互補場效電晶體,該第一互補場效電晶體及該第二互補場效電晶體各包括: i.              一源極及一汲極,其中該第一互補場效電晶體之該源極與該汲極界定一第一通道,該第二互補場效電晶體之該源極與該汲極界定一第二通道; ii.              一第一擴散區(第一iPort)劃分該第一通道為位於該源極與該第一iPort之間的一第一源極通道段以及位於該汲極與該第一iPort之間的一第一汲極通道段; iii.              一第二擴散區(第二iPort)劃分將該第二通道為位於該源極與該第二iPort之間的一第二源極通道段以及位於該源極與該第二iPort之間的一第二汲極通道段; iv.              一閘極,連接該第一源極通道段、該第一汲極通道段、該第二源極通道段及該第二汲極通道段;以及 其中,該第一互補場效電晶體之該汲極與該第二互補場效電晶體之該汲極連接而形成一汲極埠; 其中,該閘極連接一共模電壓,該第一互補場效電晶體之該源極及該第二互補場效電晶體之該源極連接一供電源;以及 其中,該匯流排接收器被配置而於該第一iPort或該第二iPor接收源自於該匯流排之該邏輯電流t以產生一邏輯電壓輸出於該汲極埠。A data bus structure, including: a. A bus bar; b. A bus transmitter, including field-effect transistors, which include: i. A source and a drain, where the source and the drain define a channel; ii. A diffusion zone divides the channel into a source channel section between the source and the diffusion zone and a drain channel section between the drain and the diffusion zone; iii. A source channel gate connecting the source channel segment; and iv. A drain channel gate to connect the drain channel segment; Wherein, the source is connected to a power supply, the source channel gate is connected to a common mode voltage, and the drain channel gate is configured to receive a logic voltage input to generate a logic current derived from the drain to the bus output ;as well as c. A bus receiver includes a pair of first complementary field effect transistors and a second complementary field effect transistor, each of the first complementary field effect transistor and the second complementary field effect transistor includes: i. A source and a drain, where the source and the drain of the first complementary field-effect transistor define a first channel, and the source and the drain of the second complementary field-effect transistor define a A second channel; ii. A first diffusion area (first iPort) divides the first channel into a first source channel segment between the source and the first iPort, and a first source channel segment between the drain and the first iPort A first drain channel section; iii. A second diffusion area (second iPort) divides the second channel into a second source channel segment between the source and the second iPort and between the source and the second iPort A second drain channel section; iv. A gate connecting the first source channel segment, the first drain channel segment, the second source channel segment, and the second drain channel segment; and Wherein, the drain of the first complementary field effect transistor is connected to the drain of the second complementary field effect transistor to form a drain port; Wherein the gate is connected to a common mode voltage, the source of the first complementary field effect transistor and the source of the second complementary field effect transistor are connected to a power supply; and Wherein, the bus receiver is configured to receive the logic current t derived from the bus at the first iPort or the second iPor to generate a logic voltage to output to the drain port. 一種基於電荷的時脈樹,包括: a.        如請求項12所述之匯流排結構; 其中,該匯流排傳送器之該汲極通道閘被配置而接收一邏輯電壓時脈訊號以轉換為將被傳送至該匯流排之一邏輯電流時脈訊號。A charge-based clock tree, including: a. The bus structure as described in claim 12; Wherein, the drain channel gate of the bus transmitter is configured to receive a logic voltage clock signal to be converted into a logic current clock signal to be transmitted to the bus.
TW108132336A 2019-09-06 2019-09-06 Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet) TW202111551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108132336A TW202111551A (en) 2019-09-06 2019-09-06 Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108132336A TW202111551A (en) 2019-09-06 2019-09-06 Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet)

Publications (1)

Publication Number Publication Date
TW202111551A true TW202111551A (en) 2021-03-16

Family

ID=76035639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132336A TW202111551A (en) 2019-09-06 2019-09-06 Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet)

Country Status (1)

Country Link
TW (1) TW202111551A (en)

Similar Documents

Publication Publication Date Title
Zhang et al. Configurable circuits featuring dual-threshold-voltage design with three-independent-gate silicon nanowire FETs
US8854123B1 (en) On-package multiprocessor ground-referenced single-ended interconnect
AU2017237713B2 (en) Superconducting cell array logic circuit system
US9153539B2 (en) Ground-referenced single-ended signaling connected graphics processing unit multi-chip module
US9170980B2 (en) Ground-referenced single-ended signaling connected graphics processing unit multi-chip module
US9171607B2 (en) Ground-referenced single-ended system-on-package
CN108141181A (en) The complementary current FET amplifier of multi-stag and feedforward compensation
US9153314B2 (en) Ground-referenced single-ended memory interconnect
US9130568B2 (en) Controllable polarity FET based arithmetic and differential logic
Gan et al. Voltage-controlled multiple-valued logic design using negative differential resistance devices
Vana et al. C $^\text {2} $ TIG: Dynamic C $^\text {2} $ MOS Design Based on Three-Independent-Gate Field-Effect Transistors
TW202111551A (en) Charge transfer logic (ctl) using complementary current field effect transistor devices (cifet) and / or complementary switched current field effect transistor devices (csifet)
Chaudhuri Beyond bits: A quaternary FPGA architecture using multi-VT multi-Vdd FDSOI devices
CN104718699A (en) Method and apparatus for an active negative-capacitor circuit
Jabeur et al. Reducing transistor count in clocked standard cells with ambipolar double-gate FETs
Roy et al. Brain-inspired computing with spin torque devices
O'connor et al. CNTFET-based logic circuit design
US20210020766A1 (en) CHARGE TRANSFER LOGIC (CTL) USING COMPLEMENTARY CURRENT FIELD EFFECT TRANSISTOR DEVICES (CiFET) AND / OR COMPLEMENTARY SWITCHED CURRENT FIELD EFFECT TRANSISTOR DEVICES (CsiFET)
Roy et al. Computing with spin-transfer-torque devices: Prospects and perspectives
Roy et al. Exploring Boolean and non-Boolean computing with spin torque devices
Agarwal et al. Energy efficiency limits of logic and memory
US20100080072A1 (en) Methods and systems to write to soft error upset tolerant latches
CN203675066U (en) Pulse D type trigger employing floating gate MOS pipe
Chaudhuri et al. Multi-valued routing tracks for FPGAs in 28nm FDSOI technology
CN103281063A (en) Gating logical circuit composed of SET/MOS hybrid circuit