TW202111456A - Servo amplifier and servo system including a torque control unit, a disturbance torque estimation unit, a load torque estimation unit and an output unit - Google Patents

Servo amplifier and servo system including a torque control unit, a disturbance torque estimation unit, a load torque estimation unit and an output unit Download PDF

Info

Publication number
TW202111456A
TW202111456A TW109125245A TW109125245A TW202111456A TW 202111456 A TW202111456 A TW 202111456A TW 109125245 A TW109125245 A TW 109125245A TW 109125245 A TW109125245 A TW 109125245A TW 202111456 A TW202111456 A TW 202111456A
Authority
TW
Taiwan
Prior art keywords
torque
load torque
servo amplifier
estimation unit
motor
Prior art date
Application number
TW109125245A
Other languages
Chinese (zh)
Other versions
TWI734569B (en
Inventor
藍原隆司
Original Assignee
日商富士電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士電機股份有限公司 filed Critical 日商富士電機股份有限公司
Publication of TW202111456A publication Critical patent/TW202111456A/en
Application granted granted Critical
Publication of TWI734569B publication Critical patent/TWI734569B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

The invention provides a servo amplifier and a servo system. The servo amplifier includes a torque control unit, a disturbance torque estimation unit, a load torque estimation unit and an output unit. The torque control unit is configured to control the torque of a motor based on a torque command of the motor that moves a movable portion in a movement direction having a vertical direction component. The disturbance torque estimation unit is configured to estimate the disturbance torque experienced by the motor. The load torque estimation unit subtracts a gravitational torque generated by a gravity of the movable portion from the disturbance torque estimated by the disturbance torque estimation unit to estimate a load torque received by the motor. The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier.

Description

伺服放大器和伺服系統Servo amplifier and servo system

本發明涉及伺服放大器(servo amplifier)和伺服系統。The present invention relates to a servo amplifier and a servo system.

以往,熟知一種具備負載轉矩觀測器(load torque observer)的馬達控制裝置,該負載轉矩觀測器可根據轉矩指令和馬達速度對馬達承受的負載轉矩進行估計(estimation)(例如,參照專利文獻1)。 [先前技術文獻] [專利文獻] [專利文獻1](日本)特開2012-130214號公報In the past, a motor control device equipped with a load torque observer is well known. The load torque observer can estimate the load torque borne by the motor based on the torque command and the motor speed (for example, refer to Patent Document 1). [Prior Technical Literature] [Patent Literature] [Patent Document 1] (Japan) JP 2012-130214 A

[發明欲解決的課題] 然而,現有技術中,所估計的負載轉矩是以抑制干擾(disturbance)為目的而應用於馬達控制的,並不能從外部對與所估計的負載轉矩相關的資訊進行監視。 因此,本公開的目的在於,提供一種可從外部對與所估計的負載轉矩相關的資訊進行監視的伺服放大器和伺服系統。 [用於解決課題的手段] 本公開提供一種伺服放大器,具備: 轉矩控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的轉矩指令,對所述馬達的轉矩進行控制; 干擾轉矩估計部,對所述馬達所承受的干擾轉矩進行估計; 負載轉矩估計部,從由所述干擾轉矩估計部所估計的所述干擾轉矩減去由作用於所述可動部上的重力所產生的重力轉矩,由此對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。 此外,本公開提供一種伺服放大器,具備: 速度控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的速度指令,生成所述馬達的轉矩指令; 轉矩控制部,根據所述轉矩指令對所述馬達的轉矩進行控制; 負載轉矩估計部,根據所述速度指令對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。 此外,本公開提供一種伺服系統,具備伺服放大器和設置在所述伺服放大器的外部的外部機器,所述伺服放大器具備: 轉矩控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的轉矩指令,對所述馬達的轉矩進行控制; 干擾轉矩估計部,對所述馬達所承受的干擾轉矩進行估計; 負載轉矩估計部,從由所述干擾轉矩估計部所估計的所述干擾轉矩減去由作用於所述可動部上的重力所產生的重力轉矩,由此對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。 此外,本公開提供一種伺服系統,具備伺服放大器和設置在所述伺服放大器的外部的外部機器,所述伺服放大器具備: 速度控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的速度指令,生成所述馬達的轉矩指令; 轉矩控制部,根據所述轉矩指令對所述馬達的轉矩進行控制; 負載轉矩估計部,根據所述速度指令對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。 [發明的效果] 根據本公開的技術,能夠提供一種可從外部對與所估計的負載轉矩相關的資訊進行監視的伺服放大器和伺服系統。[The problem to be solved by the invention] However, in the prior art, the estimated load torque is applied to motor control for the purpose of suppressing disturbance, and the information related to the estimated load torque cannot be monitored from the outside. Therefore, the purpose of the present disclosure is to provide a servo amplifier and a servo system that can monitor information related to the estimated load torque from the outside. [Means used to solve the problem] The present disclosure provides a servo amplifier including: A torque control unit, which controls the torque of the motor based on a torque command of the motor that causes the movable unit to move in a movement direction having a vertical direction component; A disturbance torque estimation unit, which estimates the disturbance torque borne by the motor; The load torque estimation unit subtracts the gravitational torque generated by the gravity acting on the movable part from the disturbance torque estimated by the disturbance torque estimation unit, thereby applying the load to the motor To estimate the load torque; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. In addition, the present disclosure provides a servo amplifier including: A speed control unit that generates a torque command of the motor based on a speed command of the motor that causes the movable part to move in a movement direction having a vertical direction component; A torque control unit, which controls the torque of the motor according to the torque command; A load torque estimation unit, which estimates the load torque borne by the motor according to the speed command; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. In addition, the present disclosure provides a servo system including a servo amplifier and an external device provided outside the servo amplifier, the servo amplifier including: A torque control unit, which controls the torque of the motor based on a torque command of the motor that causes the movable unit to move in a movement direction having a vertical direction component; A disturbance torque estimation unit, which estimates the disturbance torque borne by the motor; The load torque estimation unit subtracts the gravitational torque generated by the gravity acting on the movable part from the disturbance torque estimated by the disturbance torque estimation unit, thereby applying the load to the motor To estimate the load torque; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. In addition, the present disclosure provides a servo system including a servo amplifier and an external device provided outside the servo amplifier, the servo amplifier including: A speed control unit that generates a torque command of the motor based on a speed command of the motor that causes the movable part to move in a movement direction having a vertical direction component; A torque control unit, which controls the torque of the motor according to the torque command; A load torque estimation unit, which estimates the load torque borne by the motor according to the speed command; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. [Effects of the invention] According to the technology of the present disclosure, it is possible to provide a servo amplifier and a servo system that can monitor information related to the estimated load torque from the outside.

以下,參照附圖對本公開的實施方式進行說明。首先,為了與本公開的實施方式進行比較,對一比較方式的伺服系統的構成進行說明。 圖1是一比較方式的伺服系統構成例示圖。圖1所示的伺服系統100是對用於使未圖示的可動部移動的馬達9進行控制的馬達系統。伺服系統100具備速度控制部1、加法器2、轉矩控制部3、速度檢測部4、負載轉矩估計部5、控制濾波器(filter)8、馬達9及位置檢測器10。 轉矩控制部3根據轉矩指令Tr對馬達9的轉矩進行控制。位置檢測器10對馬達9的位置(旋轉位置θ)進行檢測。位置檢測器也被稱為PG。速度檢測部4根據由位置檢測器10檢測的旋轉位置θ的時間變化,對馬達9的速度(角速度ω)進行檢測。速度控制部1生成用於使由速度檢測部4檢測的角速度ω跟隨(follow)從圖中未示的上一級的控制塊所供給的速度指令ωr的反饋轉矩指令Tb。 此外,伺服系統100具備用於對馬達9承受的負載轉矩TL進行估計的負載轉矩估計部5。負載轉矩估計部5可根據轉矩指令Tr和由速度檢測部4檢測的角速度ω對負載轉矩TL進行估計。 當將馬達9的發生轉矩設為T、將馬達9的慣性矩(慣性值)設為J、並將馬達9的角加速度設為dω/dt時,在負載轉矩TL包括由作用於藉由馬達9而進行移動的可動部上的重力所生成的轉矩(重力轉矩)的情況下,下述關係成立。 TL=T-J×dω/dt    ・・・式1 因此,負載轉矩估計部5藉由利用減法器7從轉矩指令Tr減去由轉矩計算部6計算的轉矩(J×dω/dt),可對負載轉矩TL進行估計。 控制濾波器8藉由對由負載轉矩估計部5估計的負載轉矩TL(估計負載轉矩TLe)進行濾波器處理,可生成補償負載轉矩TLc。加法器2藉由使由速度控制部1生成的反饋轉矩指令Tb加上由控制濾波器8生成的補償負載轉矩TLc,可生成轉矩指令Tr。 然而,圖1所示的伺服系統100中,由負載轉矩估計部5估計的負載轉矩TL是以抑制干擾為目的而應用於馬達控制的,並不能從外部對與估計負載轉矩TLe相關的資訊進行監視。 因此,本公開的實施方式的伺服放大器和伺服系統具備可從外部對與所估計的負載轉矩相關的資訊進行監視的構成。接下來,對本公開的實施方式的伺服放大器和伺服系統的該構成進行說明。 圖2是第1實施方式的伺服系統的構成例示圖。圖2所示的伺服系統120是對馬達19進行驅動和控制的馬達驅動控制系統,該馬達19藉由臂部41可使可動部40沿具有鉛直方向分量的移動方向進行移動。伺服系統120例如藉由對馬達19進行驅動和控制,可將可動部40的位置控制在預期的位置。伺服系統120具備伺服放大器111和外部機器122。 外部機器122是設置在伺服放大器121的外部的裝置,具備對負載轉矩TL進行監視的監視功能。外部機器122可藉由模擬(analog)電壓或者有線通信或無線通信與伺服放大器121連接。外部機器122例如為可編程邏輯控制器等的控制裝置。 伺服放大器111是對馬達19進行驅動的馬達驅動裝置,該馬達19藉由臂部41可使可動部40沿具有鉛直方向分量的移動方向進行移動,例如,藉由對馬達19進行驅動,可將可動部40的位置控制在預期的位置。就伺服放大器111而言,例如,作為其主要構成可具備速度控制部11、加法器12、轉矩控制部13、速度檢測部14、負載轉矩估計部15、控制濾波器18及輸出部23。 轉矩控制部13基於轉矩指令Tr對馬達19的轉矩進行控制。位置檢測器20對馬達19的位置(旋轉位置θ)進行檢測。速度檢測部14根據由位置檢測器20檢測的位置的時間變化,對馬達19的速度(角速度ω)進行檢測。速度控制部11生成用於使由速度檢測部14檢測的角速度ω跟隨從圖中未示的前一級的控制塊所供給的速度指令ωr的反饋轉矩指令Tb。例如,速度控制部11可藉由採用使由速度檢測部14所檢測的角速度ω和從圖中未示的前一級的控制塊所供給的速度指令ωr之偏差為零的方式進行PI控制(比例控制和積分控制)來生成反饋轉矩指令Tb。 負載轉矩估計部15根據轉矩指令Tr或轉矩檢測值Tde、以及由速度檢測部14檢測的角速度ω,對馬達9承受的負載轉矩TL(施加至馬達9的負載轉矩TL)進行估計。負載轉矩估計部5例如是對負載轉矩TL進行估計的負載轉矩觀測器。負載轉矩TL的估計中使用的轉矩檢測值Tde表示由轉矩檢測部21檢測的馬達19的轉矩值。也就是說,負載轉矩TL的估計中可使用轉矩指令Tr,也可使用轉矩檢測值Tde。例如,在轉矩檢測部21不包含於伺服放大器111的情況下,轉矩指令Tr可用於負載轉矩TL的估計。以下,也將由負載轉矩估計部15估計的負載轉矩TL稱為“估計負載轉矩TLe”。 圖1所示的比較方式中,負載轉矩TL包括重力轉矩,並對負載轉矩TL進行了估計。圖2所示的第1實施方式示出了以負載轉矩TL不包括重力轉矩的方式對負載轉矩TL進行估計的情況。 重力轉矩是指,對沿具有鉛直方向分量的移動方向藉由臂部41而進行移動的可動部40上所作用的重力進行取消時所需的轉矩。馬達19藉由使經由齒輪等與馬達19的旋轉輸出軸連接的臂部41沿具有鉛直方向分量的方向(例如,上下方向)進行移動,可使與臂部41連結的可動部40沿具有鉛直方向分量的移動方向進行移動。可動部40例如是從上方對固定在載置臺上的工件W進行按壓的按壓操作部。臂部41例如可利用滾珠絲杠使可動部40沿具有鉛直方向分量的移動方向進行移動。需要說明的是,可動部40也可執行按壓動作、鉆孔動作、剪切動作等的其他工作動作。 例如,考慮臂部41是沿其延伸方向可使可動部40進行移動的滾珠絲杠的情況。假設可動部40的重心位置處所作用的重力為Fg,重力Fg中的臂部41的延伸方向(可動部40的移動方向)的重力分量為Fg’,重力轉矩為Tg,鉛直方向和臂部41的延伸方向之間的角度為α,滾珠絲杠的螺距(lead)為BP。在角度α為零的情況下,表示可動部40僅沿鉛直方向進行移動。此時,重力分量Fg’和重力轉矩Tg分別滿足如下關係。 Fg’=Fg×cosα         ・・・式2 Tg=(BP/2π)×Fg’        ・・・式3 此外,假設馬達19的發生轉矩為T,馬達19和與馬達19直接或間接連接的負載機械可動部的慣性矩(慣性值)為J,馬達19的角加速度為dω/dt,馬達19承受的干擾轉矩為Td,干擾轉矩Td中所含的重力轉矩為Tg。此時,在負載轉矩TL不包括重力轉矩Tg的情況下滿足 TL=Td-Tg=T-J×dω/dt-Tg    ・・・式4 之關係。藉由從估計對象的負載轉矩TL去除(減去)重力轉矩Tg,可提高負載轉矩TL的估計精度。 在使用公式4對負載轉矩TL進行估計的情況下,負載轉矩估計部15例如具有干擾轉矩估計部28和減法器30。 干擾轉矩估計部28根據轉矩指令Tr或轉矩檢測值Tde、以及由速度檢測部14檢測的角速度ω,可對馬達19承受的干擾轉矩Td(施加至馬達19的干擾轉矩Td)進行估計。干擾轉矩估計部28例如是可對干擾轉矩Td進行估計的干擾轉矩觀測器。以下,也將由干擾轉矩估計部28估計的干擾轉矩Td稱為“估計干擾轉矩Tdie”。 干擾轉矩估計部28例如具有與圖1所示的負載轉矩估計部5相同的構成。此情況下,干擾轉矩估計部28與上述同樣地,藉由使用減法器7從轉矩指令Tr或轉矩檢測值Tde減去由轉矩計算部6計算的轉矩(J×dω/dt),可對干擾轉矩Td進行估計。需要說明的是,干擾轉矩估計部28並不限定於該構成,也可為任意的公知構成。 如公式4所示,藉由從干擾轉矩Td減去重力轉矩Tg可對負載轉矩TL進行估計。因此,負載轉矩估計部15藉由使用減法器30從由干擾轉矩估計部28估計的干擾轉矩Td(估計干擾轉矩Tdie)減去重力轉矩Tg,可對負載轉矩TL進行估計。也就是說,藉由重力轉矩Tg的補償可獲得高精度的估計負載轉矩TLe。 例如,負載轉矩估計部15藉由從由干擾轉矩估計部28估計的干擾轉矩Td(估計干擾轉矩Tdie)減去一定(固定)的重力轉矩Tg,可對負載轉矩TL進行估計。在角度α被固定並且可動部40沿鉛直方向在一條直線上進行移動的情況下,由公式3可知,重力轉矩Tg為固定值。因此,可預先將一定(固定)的重力轉矩Tg保存(存儲)在伺服放大器111的內部。 或者,負載轉矩估計部15藉由從由干擾轉矩估計部28估計的干擾轉矩Td(估計干擾轉矩Tdie)減去從伺服放大器外部供給的重力轉矩Tg,也可對負載轉矩TL進行估計。由於動作狀態和/或設置條件的變化,存在可動部40的質量發生改變或角度α發生改變的情況。在外部機器122具有這樣的可變資訊的情況下,外部機器122可計算每一刻的重力轉矩Tg的值,並且每一刻的重力轉矩Tg的計算值都會從外部機器122藉由通信而被供給至伺服放大器111的負載轉矩估計部15。這樣,即使重力轉矩Tg發生了變化,伺服放大器111也可從外部機器122獲得重力轉矩Tg,並將其應用於負載轉矩TL的估計。 控制濾波器18藉由對估計負載轉矩TLe進行濾波器處理,可生成補償負載轉矩TLc。加法器12藉由使由速度控制部11生成的反饋轉矩指令Tb加上由控制濾波器18生成的補償負載轉矩TLc,可生成轉矩指令Tr。 伺服放大器111具備將與估計負載轉矩TLe相關的資訊(監視資訊)輸出至伺服放大器111的外部的輸出部23。據此,與估計負載轉矩TLe相關的資訊可被輸出至伺服放大器111的外部(例如,外部機器122)。因此,不僅能以抑制干擾為目的地將估計負載轉矩TLe反映於轉矩指令Tr的計算以用於馬達19的伺服控制,而且還可從伺服放大器111的外部(例如,外部機器122)對與估計負載轉矩TLe相關的資訊進行監視。 例如,如果由馬達19進行位置等的控制的可動部40或馬達19本身發生了異常(例如,經年劣化、異物接觸等),則估計負載轉矩TLe也會發生變化。因此,通過在伺服放大器111的外部對從輸出部23輸出的與估計負載轉矩TLe相關的資訊進行監視,可在伺服放大器111的外部對可動部40或馬達19發生的異常進行檢測。 作為與估計負載轉矩TLe相關的資訊,例如可列舉出估計負載轉矩TLe的值、在伺服放大器111的內部基於估計負載轉矩TLe進行異常判定而獲得的結果等。 輸出部23可採用模擬輸出的方式將與估計負載轉矩TLe相關的資訊輸出至外部,也可採用有線通信或無線通信的方式將其輸出至外部。 例如,輸出部23可將估計負載轉矩TLe的值轉換為模擬電壓值並將其輸出至外部。據此,伺服放大器111的外部裝置122可根據從輸出部23輸出的模擬電壓值,對估計負載轉矩TLe的值進行檢測。另外,在輸出部23藉由預定的載波並採用通信的方式對估計負載轉矩TLe的值進行輸出的情況下,同樣地,伺服放大器111的外部裝置122藉由接收從輸出部23輸出的載波,也可對估計負載轉矩TLe的值進行檢測。例如,輸出部23可對負載轉矩的估計值進行峰值保持,並將其估計值的峰值保持值發送至伺服放大器的外部。 同理,輸出部23可將表示在伺服放大器111的內部根據估計負載轉矩TLe進行異常判定而獲得的結果(正常或異常)的資訊轉換為模擬電壓值並將其輸出至外部,還可藉由預定的載波並採用通信的方式將其輸出至外部。據此,伺服放大器111的外部裝置122藉由對從輸出部23輸出的模擬電壓或載波進行檢測,可獲取伺服放大器111進行異常判定而得到的結果。 此外,進行負載轉矩TL的估計時,如上所述,可使用馬達19和與馬達19連接的負載機械可動部的慣性矩(慣性值J)。當負載轉矩TL的估計中所使用的慣性值兼作伺服控制參數(例如,由速度控制部11進行的比例控制的控制增益A)的確定中所使用的慣性值的情況下,就負載轉矩TL的估計中所使用的慣性值而言,並不限定於一定要對其進行正確的設定。其原因在於,適於提高伺服控制的控制性的慣性值並不一定也適於提高負載轉矩TL的估計精度。此外,就伺服控制參數的確定中所使用的慣性矩比而言,即使存在一些誤差,只要不會發生伺服控制上的障礙即可,因此,存在將其設定為1、5、10倍等的概略值,並藉由自動調諧增益對其進行微調整的情況。在這樣的情況下,難以高精度地對負載轉矩TL進行估計。 關於該點,圖2所示的伺服放大器111具備對第1慣性值Jc進行設定以用於進行馬達19的控制的第1慣性值設定部24和對第2慣性值Je進行設定以用於進行負載轉矩TL的估計的第2慣性值設定部26。也就是說,設置了可分別獨立地對負載轉矩TL的估計用和馬達19的控制用的慣性值進行設定的功能。藉由設置這樣的可分別獨立地對慣性值進行設定的功能,為了進行負載轉矩TL的估計,可設定更適當的慣性值,由此可提高負載轉矩TL的估計精度。此外,由於可分別設定用於負載轉矩TL的估計和馬達19的控制的適當的慣性值,因此可同時提高伺服控制的控制精度和負載轉矩TL的估計精度。 例如,第1慣性值設定部24可根據所輸入的第1慣性值Jc對控制增益A進行自動調諧,並將自動調諧後的控制增益A設定給由速度控制部11進行的比例控制的控制增益。另一方面,第2慣性值設定部26可將所輸入的第2慣性值Je設定給在負載轉矩估計部15內用於進行負載轉矩TL的估計的慣性值J(例如,用於計算上述(J×dω/dt)的慣性值J)。 需要說明的是,就第1慣性值Jc或第2慣性值Je而言,可為由伺服放大器111所具備的慣性值估計計算功能獲得的估計值,也可為根據使用者或從伺服放大器111的外部裝置122所輸入的資訊而確定的值。 此外,圖2所示的伺服放大器111具備對第1濾波器值Kc進行設定以用於進行馬達19的控制的第1濾波器值設定部25和對第2濾波器值Ko進行設定以用於進行與估計負載轉矩TLe相關的監視資訊的輸出的第2濾波器值設定部27。也就是說,設置了可分別獨立地對用於監視資訊的輸出和用於馬達19的控制的濾波器值進行設定的功能。藉由設置這樣的可分別獨立地對濾波器值進行設定的功能,不僅可對適於馬達19的伺服控制的濾波器值進行設定,而且還可對適於伺服放大器111的外部裝置122對監視資訊進行監視的濾器值進行設定。 伺服放大器111例如具備馬達19的控制用的控制濾波器18和監視資訊的輸出用的輸出濾波器22。第1濾波器值設定部25向控制濾波器18設定所輸入的第1濾波器值Kc,第2濾波器值設定部27向輸出濾波器22設定所輸入的第2濾波器值Ko。例如,第1濾波器值Kc為控制濾波器18的響應時常數,第2濾波器值Ko為輸出濾波器22的響應時常數,但並不限定於此,也可將其設定為適於由各濾波器進行的濾波器處理的值。控制濾波器18藉由對估計負載轉矩TLe實施使用了第1濾波器值Kc的濾波器處理,可生成補償負載轉矩TLc。輸出濾波器22藉由對估計負載轉矩TLe實施使用了第2濾波器值Ko的濾波器處理,可生成適於外部監視的估計負載轉矩TLe。 需要說明的是,輸出濾波器22可為低通濾波器、帶通濾波器或高通濾波器。可設定適於外部監視的濾波器特性。 圖3是第2實施方式的伺服系統的構成例示圖。圖3所示的伺服系統140具備伺服放大器121和外部機器122。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 第2實施方式在負載轉矩估計部15的構成這點上與第1實施方式不同。第2實施方式中,負載轉矩估計部15藉由使用高通濾波器32從由干擾轉矩估計部28估計的干擾轉矩Td(估計干擾轉矩Tdie)減去重力轉矩Tg,可對負載轉矩TL進行估計。就高通濾波器32而言,輸入干擾轉矩Td,並對所輸入的干擾轉矩Td中包含的重力轉矩Tg進行減衰,由此可輸出重力轉矩Tg的成分被進行了減衰的估計負載轉矩TLe。在重力轉矩Tg的頻率成分為直流成分的情況(例如,如上所述,重力轉矩Tg為固定值的情況)下,藉由對干擾轉矩Td實施基於高通濾波器32的濾波器處理,可獲得相當於重力轉矩Tg的直流成分被進行了減衰的估計負載轉矩TLe。 圖4是估計負載轉矩中包括重力轉矩的情況下的各波形的例示圖,示出了比較方式中的負載轉矩估計部5對負載轉矩TL進行估計的情況。圖5是估計負載轉矩中不包括重力轉矩的情況下的各波形的例示圖,示出了第1或第2實施方式中的負載轉矩估計部15對負載轉矩TL進行估計的情況。圖4和圖5中,“速度”表示可動部40對金屬的工件W進行按壓時的按壓速度(或角速度ω),“負載轉矩”表示在伺服放大器的內部所計算的估計負載轉矩TLe。 圖4的情況下,藉由下降動作對金屬進行了按壓,故下支點付近被施加了負載轉矩,但估計負載轉矩TLe中包含了20%左右的重力轉矩Tg,故無法高精度地對負載轉矩(此情況下為按壓轉矩)進行監視。另一方面,圖5的情況下,估計負載轉矩TLe中不包含重力轉矩Tg,故可將估計負載轉矩TLe表示為以零基準進行變化的量,由此可精確且直觀地對按壓轉矩進行監視。 圖6是第3實施方式的伺服系統的構成例示圖。圖6所示的伺服系統160具備伺服放大器131和外部機器122。需要說明的是,就與上述實施方式相同的構成和效果的說明而言,這裡援引上述說明,並對其進行了省略或簡略。 第3實施方式在負載轉矩估計部15基於馬達19的速度指令ωr對負載轉矩TL進行估計這點上與基於馬達19的速度檢測值(由速度檢測部14檢測的角速度ω)對負載轉矩TL進行估計的上述實施方式不同。干擾轉矩估計部28基於速度指令ωr對干擾轉矩Td進行估計,據此,負載轉矩估計部15可對負載轉矩TL進行估計。 例如,圖1所示的負載轉矩TL的計算中,使用了速度檢測部14對由位置檢測器20檢測的旋轉位置θ進行微分而獲得的角速度ω。然而,由位置檢測器20檢測的旋轉位置θ中含有噪音成分,故對其進行微分時,容易在角速度ω中出現較大的噪音成分。尤其是存在如果慣性值較大則會出現不適於進行監視的噪音成分的情況。如果進一步對由速度檢測部14獲得的角速度ω進行微分以獲得角加速度dω/dt,則噪音成分可能會進一步增大。 與此相對地,圖6所示的負載轉矩估計部15使用對由速度指令ωr所指令的速度(指令速度)進行微分而獲得的角加速度dω/dt來計算負載轉矩TL。由速度指令ωr所指令的速度(指令速度)是伺服放大器131的內部值,故噪音成分較少。因此,藉由使用由速度指令ωr所指令的速度(指令速度),能夠進行噪音較少的高精度的監視。 需要說明的是,就圖6所示的負載轉矩估計部15而言,如圖3所示,也可使用高通濾波器32來估計負載轉矩TL。 圖7是負載轉矩的估計中使用了反饋速度(由速度檢測部14所檢測的角速度ω)的情況下的各波形的例示圖。圖8是負載轉矩的估計中使用了指令速度(由速度指令ωr所指令的速度)的情況下的各波形的例示圖。 圖7的情況下,由於使用了反饋速度的微分,故可隨著基於實際負載的負載轉矩TL的施加時的角速度ω的變化,立即計算出估計負載轉矩TLe。另一方面,如圖8所示,在使用了指令速度的微分的情況下,基於實際負載的負載轉矩TL的施加時的角速度ω的變化並沒有反應至負載轉矩TL的估計。為此,隨著作為速度控制的結果的轉矩指令Tr的上升,估計負載轉矩TLe也上升。也就是說,估計負載轉矩TLe的響應速度取決於速度控制的響應速度。然而,速度控制的響應通常為30~100Hz左右(換算至時間常數後約為5~1ms左右),這非常快,故實際應用中沒有問題。 另外,圖5中例示的估計負載轉矩TLe的波形中,為了使外部機器122可從由輸出部23輸出的估計負載轉矩TLe中檢測其峰值,需要1ms左右的采樣。在藉由匯流排(bus)通信進行該峰值檢測的情況下,要求以大約1ms的方式進行匯流排通信,故外部機器122側的峰檢測需要較高的精度,不容易進行高精度的峰值檢測。 因此,就各實施方式中的輸出部23而言,例如,如圖9所示,每次對負載轉矩TL的估計值進行峰值保持並將其估計值的峰值保持值發送至伺服放大器的外部時都進行重置(reset),由此可再次對負載轉矩TL的估計值進行峰值保持。輸出部23在藉由匯流排通信進行發送和接收的期間對估計負載轉矩TLe進行峰值保持,在發送時將最新的峰值保持值發送至外部機器122,並對內部的峰值保持值進行重置。據此,例如即使在以大約5ms的方式進行匯流排通信的情況下,外部機器122也可無遺漏地進行峰值檢測。因此,即使是數據(data)更新較遲的系統,外部機器122也可無遺落地獲取估計負載轉矩TLe的峰值,並根據估計負載轉矩TLe高精度地實施馬達19等的異常判定。 作為要求在外部機器122側對峰值轉矩進行檢測的例子,例如具有如下情況等。 ・機械的一個周期的資訊僅存在於外部機器122側,並且也不知曉伺服放大器側應該檢測哪個區間的峰值的情況; ・用於確定將一個周期內的多個峰值中的哪個峰值應用於異常判定的條件僅存在於外部機器122側的情況。 或者,各實施方式中的輸出部23也可對負載轉矩TL的估計值進行時間積分,並將其估計值的時間積分值發送至伺服放大器的外部。據此,即使估計負載轉矩TLe的峰值的正常時和異常時的差較小,外部機器122根據從輸出部23供給的時間積分值也可高精度地實施馬達19等的異常判定。 圖12是對負載轉矩的估計值進行了時間積分的情況下的各波形的例示圖,示出了在將本實施方式的伺服系統應用於按壓機械的情況下的速度和負載轉矩的波形的正常時和異常時的比較結果。圖12中,“速度”表示可動部40對金屬的插座端子進行按壓時的按壓速度(或角速度ω),“負載轉矩”表示伺服放大器的內部所計算的估計負載轉矩TLe。圖12中,“正常”表示插座端子60和電線51的壓接為正常的情況(參照圖10),“異常”表示插座端子60和電線51的壓接為異常的情況(參照圖11)。 圖10示出了,按壓機械的可動部40與藉由剝掉電線51的前端部的覆蓋物52而露出的導線53一起對插座端子60的根部61進行按壓,由此導線53和根部61被進行了壓接的正常狀態。圖11示出了,按壓機械的可動部40在電線51的前端部的覆蓋物52沒有被剝掉而是覆蓋了導線53的狀態下對插座端子60的根部61進行按壓,由此電線51和根部61被進行了壓接的異常狀態。 圖12中例示的異常波形中,由於是在覆蓋物52覆蓋了電線51的狀態下進行了壓接,故異物(覆蓋物52)的存在導致估計負載轉矩TLe與正常波形相比,較早地在負側進行了變大。輸出部23例如在角速度ω低於預定的速度閾值ωa (例如,-200rpm)且估計負載轉矩TLe低於預定的轉矩閾值TLa(例如,-20%)的期間進行了估計負載轉矩TLe的時間積分。當在該條件下進行時間積分的情況下,就輸出部23而言,異常時在期間t1-t3內進行時間積分,正常時在期間t2-t3內進行時間積分。由此可明顯地判別出異常時和正常時的時間積分值(相當於圖12的陰影部分的面積)的不同。這樣,即使在藉由估計負載轉矩TLe的峰值難以進行判別的情況下,藉由採用時間積分值進行比較,也可容易地進行馬達19等的異常判定。 如此,根據上述實施方式可知,由於與所估計的負載轉矩TL相關的監視資訊被進行了外部輸出,故可對與所估計的負載轉矩相關的資訊進行外部監視。 需要說明的是,上述實施方式中,就伺服放大器所具備的估計轉矩估計部等的各部分的功能而言,可藉由處理器(例如,CPU(Central Processing Unit))執行以可讀方式存儲在存儲器中的程式(program)而實現。 以上盡管藉由實施方式對伺服放大器和伺服系統進行了說明,但本發明並不限定於上述實施方式。在本發明的範圍內,還可進行諸如針對其他實施方式的一部分或全部與其進行組合或對其進行置換等的各種各樣的變形和改良。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. First, in order to compare with the embodiment of the present disclosure, the configuration of a servo system of a comparison method will be described. Fig. 1 is a diagram showing an example of the configuration of a servo system in a comparison mode. The servo system 100 shown in FIG. 1 is a motor system which controls the motor 9 for moving the movable part which is not shown in figure. The servo system 100 includes a speed control unit 1, an adder 2, a torque control unit 3, a speed detection unit 4, a load torque estimation unit 5, a control filter 8, a motor 9, and a position detector 10. The torque control unit 3 controls the torque of the motor 9 based on the torque command Tr. The position detector 10 detects the position (rotation position θ) of the motor 9. The position detector is also called PG. The speed detection unit 4 detects the speed (angular speed ω) of the motor 9 based on the temporal change of the rotational position θ detected by the position detector 10. The speed control unit 1 generates a feedback torque command Tb for causing the angular velocity ω detected by the speed detection unit 4 to follow a speed command ωr supplied from a control block of the upper stage not shown in the figure. In addition, the servo system 100 includes a load torque estimation unit 5 for estimating the load torque TL received by the motor 9. The load torque estimation unit 5 can estimate the load torque TL based on the torque command Tr and the angular velocity ω detected by the speed detection unit 4. When the generated torque of the motor 9 is set to T, the moment of inertia (inertia value) of the motor 9 is set to J, and the angular acceleration of the motor 9 is set to dω/dt, the load torque TL includes In the case of the torque (gravity torque) generated by the gravity on the movable part that is moved by the motor 9, the following relationship holds. TL=T-J×dω/dt    ・・・Equation 1 Therefore, the load torque estimation unit 5 can estimate the load torque TL by subtracting the torque (J×dω/dt) calculated by the torque calculation unit 6 from the torque command Tr by the subtractor 7. The control filter 8 performs filter processing on the load torque TL (estimated load torque TLe) estimated by the load torque estimation unit 5 to generate a compensated load torque TLc. The adder 2 can generate the torque command Tr by adding the feedback torque command Tb generated by the speed control unit 1 to the compensation load torque TLc generated by the control filter 8. However, in the servo system 100 shown in FIG. 1, the load torque TL estimated by the load torque estimation unit 5 is applied to motor control for the purpose of suppressing interference, and cannot be correlated with the estimated load torque TLe from the outside. Information to monitor. Therefore, the servo amplifier and the servo system of the embodiment of the present disclosure have a configuration capable of monitoring information related to the estimated load torque from the outside. Next, the configuration of the servo amplifier and the servo system of the embodiment of the present disclosure will be described. Fig. 2 is a diagram showing an example of the configuration of a servo system according to the first embodiment. The servo system 120 shown in FIG. 2 is a motor drive control system that drives and controls a motor 19 that can move the movable part 40 in a movement direction having a vertical component through the arm 41. The servo system 120 can control the position of the movable part 40 at a desired position by, for example, driving and controlling the motor 19. The servo system 120 includes a servo amplifier 111 and an external device 122. The external device 122 is a device provided outside the servo amplifier 121, and has a monitoring function for monitoring the load torque TL. The external device 122 may be connected to the servo amplifier 121 by analog voltage, wired communication or wireless communication. The external device 122 is, for example, a control device such as a programmable logic controller. The servo amplifier 111 is a motor drive device that drives the motor 19. The motor 19 uses the arm 41 to move the movable portion 40 in a moving direction having a vertical component. For example, by driving the motor 19, The position of the movable part 40 is controlled to a desired position. Regarding the servo amplifier 111, for example, as its main components, a speed control unit 11, an adder 12, a torque control unit 13, a speed detection unit 14, a load torque estimation unit 15, a control filter 18, and an output unit 23 can be provided. . The torque control unit 13 controls the torque of the motor 19 based on the torque command Tr. The position detector 20 detects the position (rotation position θ) of the motor 19. The speed detection unit 14 detects the speed (angular velocity ω) of the motor 19 based on the temporal change of the position detected by the position detector 20. The speed control unit 11 generates a feedback torque command Tb for causing the angular velocity ω detected by the speed detection unit 14 to follow a speed command ωr supplied from a control block of the previous stage (not shown). For example, the speed control unit 11 can perform PI control (proportional control) by adopting a method such that the deviation between the angular velocity ω detected by the speed detecting unit 14 and the speed command ωr supplied from a control block of the previous stage not shown in the figure is zero. Control and integral control) to generate feedback torque command Tb. The load torque estimation unit 15 performs a calculation of the load torque TL (load torque TL applied to the motor 9) applied to the motor 9 based on the torque command Tr or the torque detection value Tde, and the angular velocity ω detected by the speed detection unit 14. estimate. The load torque estimation unit 5 is, for example, a load torque observer that estimates the load torque TL. The torque detection value Tde used in the estimation of the load torque TL indicates the torque value of the motor 19 detected by the torque detection unit 21. In other words, the torque command Tr may be used for the estimation of the load torque TL, and the torque detection value Tde may also be used. For example, in a case where the torque detection unit 21 is not included in the servo amplifier 111, the torque command Tr can be used to estimate the load torque TL. Hereinafter, the load torque TL estimated by the load torque estimation unit 15 is also referred to as "estimated load torque TLe". In the comparison method shown in Fig. 1, the load torque TL includes gravity torque, and the load torque TL is estimated. The first embodiment shown in FIG. 2 shows a case where the load torque TL is estimated so that the load torque TL does not include the gravity torque. The gravitational torque refers to the torque required to cancel the gravitational force acting on the movable portion 40 that is moved by the arm portion 41 in the movement direction having a vertical direction component. The motor 19 moves the arm 41 connected to the rotation output shaft of the motor 19 via a gear or the like in a direction having a vertical component (for example, an up-and-down direction), so that the movable part 40 connected to the arm 41 can be vertically aligned. The direction component moves in the direction of movement. The movable part 40 is, for example, a pressing operation part that presses the work W fixed on the mounting table from above. The arm portion 41 can move the movable portion 40 in a movement direction having a vertical component by using a ball screw, for example. It should be noted that the movable portion 40 may also perform other work operations such as a pressing operation, a drilling operation, and a cutting operation. For example, consider the case where the arm portion 41 is a ball screw capable of moving the movable portion 40 in the extending direction. Assuming that the gravity acting at the center of gravity of the movable part 40 is Fg, the gravity component in the extending direction of the arm 41 (moving direction of the movable part 40) in the gravity Fg is Fg', the gravity torque is Tg, the vertical direction and the arm are The angle between the extending directions of 41 is α, and the lead of the ball screw is BP. When the angle α is zero, it means that the movable portion 40 moves only in the vertical direction. At this time, the gravity component Fg' and the gravity torque Tg respectively satisfy the following relationships. Fg’=Fg×cosα         ・・・Equation 2 Tg=(BP/2π)×Fg’        ・・・Equation 3 In addition, assuming that the torque generated by the motor 19 is T, the moment of inertia (inertia value) of the movable part of the motor 19 and the load machinery directly or indirectly connected to the motor 19 is J, the angular acceleration of the motor 19 is dω/dt, and the motor 19 bears The disturbance torque of is Td, and the gravity torque contained in the disturbance torque Td is Tg. At this time, when the load torque TL does not include the gravity torque Tg, it satisfies TL=Td-Tg=T-J×dω/dt-Tg    ・・・Equation 4 The relationship. By subtracting (subtracting) the gravity torque Tg from the load torque TL of the estimation target, the estimation accuracy of the load torque TL can be improved. In the case of estimating the load torque TL using Formula 4, the load torque estimating section 15 has, for example, a disturbance torque estimating section 28 and a subtractor 30. The disturbance torque estimation unit 28 can bear the disturbance torque Td to the motor 19 (the disturbance torque Td applied to the motor 19) based on the torque command Tr or the torque detection value Tde and the angular velocity ω detected by the speed detection unit 14 Make an estimate. The disturbance torque estimation unit 28 is, for example, a disturbance torque observer that can estimate the disturbance torque Td. Hereinafter, the disturbance torque Td estimated by the disturbance torque estimation unit 28 is also referred to as “estimated disturbance torque Tdie”. The disturbance torque estimation unit 28 has, for example, the same configuration as the load torque estimation unit 5 shown in FIG. 1. In this case, the disturbance torque estimation unit 28 uses the subtractor 7 to subtract the torque calculated by the torque calculation unit 6 (J×dω/dt ), the disturbance torque Td can be estimated. It should be noted that the disturbance torque estimation unit 28 is not limited to this configuration, and may have any known configuration. As shown in Equation 4, the load torque TL can be estimated by subtracting the gravity torque Tg from the disturbance torque Td. Therefore, the load torque estimation unit 15 can estimate the load torque TL by subtracting the gravity torque Tg from the disturbance torque Td (estimated disturbance torque Tdie) estimated by the disturbance torque estimation unit 28 by using the subtractor 30. . In other words, the high-precision estimated load torque TLe can be obtained by the compensation of the gravity torque Tg. For example, the load torque estimation unit 15 can calculate the load torque TL by subtracting a certain (fixed) gravity torque Tg from the disturbance torque Td (estimated disturbance torque Tdie) estimated by the disturbance torque estimation unit 28 estimate. When the angle α is fixed and the movable portion 40 moves in a straight line in the vertical direction, it can be seen from Equation 3 that the gravitational torque Tg is a fixed value. Therefore, a certain (fixed) gravitational torque Tg can be stored (stored) in the servo amplifier 111 in advance. Alternatively, the load torque estimation unit 15 may subtract the gravitational torque Tg supplied from the outside of the servo amplifier from the disturbance torque Td (estimated disturbance torque Tdie) estimated by the disturbance torque estimation unit 28, and the load torque TL is estimated. Due to changes in the operating state and/or setting conditions, there are cases where the mass of the movable portion 40 changes or the angle α changes. In the case that the external machine 122 has such variable information, the external machine 122 can calculate the value of the gravity torque Tg at every moment, and the calculated value of the gravity torque Tg at every moment will be received from the external machine 122 through communication. It is supplied to the load torque estimation unit 15 of the servo amplifier 111. In this way, even if the gravity torque Tg changes, the servo amplifier 111 can obtain the gravity torque Tg from the external machine 122 and apply it to the estimation of the load torque TL. The control filter 18 can generate a compensated load torque TLc by performing filter processing on the estimated load torque TLe. The adder 12 can generate the torque command Tr by adding the feedback torque command Tb generated by the speed control unit 11 to the compensation load torque TLc generated by the control filter 18. The servo amplifier 111 includes an output unit 23 that outputs information (monitoring information) related to the estimated load torque TLe to the outside of the servo amplifier 111. Accordingly, information related to the estimated load torque TLe can be output to the outside of the servo amplifier 111 (for example, the external device 122). Therefore, not only can the estimated load torque TLe be reflected in the calculation of the torque command Tr for the purpose of suppressing interference for the servo control of the motor 19, but it can also be used for servo control from the outside of the servo amplifier 111 (for example, the external device 122). The information related to the estimated load torque TLe is monitored. For example, if an abnormality occurs in the movable portion 40 or the motor 19 itself that controls the position and the like by the motor 19 (for example, deterioration over the years, contact with foreign objects, etc.), the estimated load torque TLe also changes. Therefore, by monitoring the information related to the estimated load torque TLe output from the output unit 23 outside the servo amplifier 111, it is possible to detect an abnormality occurring in the movable unit 40 or the motor 19 outside the servo amplifier 111. As the information related to the estimated load torque TLe, for example, the value of the estimated load torque TLe, the result of abnormality determination based on the estimated load torque TLe in the servo amplifier 111, and the like can be cited. The output unit 23 may output the information related to the estimated load torque TLe to the outside by means of analog output, and may also output it to the outside by means of wired communication or wireless communication. For example, the output unit 23 may convert the value of the estimated load torque TLe into an analog voltage value and output it to the outside. According to this, the external device 122 of the servo amplifier 111 can detect the value of the estimated load torque TLe based on the analog voltage value output from the output unit 23. In addition, when the output unit 23 uses a predetermined carrier wave to output the value of the estimated load torque TLe by means of communication, similarly, the external device 122 of the servo amplifier 111 receives the carrier wave output from the output unit 23. , Can also detect the value of the estimated load torque TLe. For example, the output unit 23 may perform peak hold on the estimated value of the load torque, and send the peak hold value of the estimated value to the outside of the servo amplifier. In the same way, the output unit 23 can convert the information indicating the result (normal or abnormal) obtained by the abnormality determination based on the estimated load torque TLe inside the servo amplifier 111 into an analog voltage value and output it to the outside. A predetermined carrier wave is used to output it to the outside by means of communication. According to this, the external device 122 of the servo amplifier 111 can obtain the result of the abnormality determination of the servo amplifier 111 by detecting the analog voltage or the carrier wave output from the output unit 23. In addition, when the load torque TL is estimated, as described above, the moment of inertia (inertia value J) of the motor 19 and the movable part of the load machine connected to the motor 19 can be used. When the inertia value used in the estimation of the load torque TL also serves as the inertia value used in the determination of the servo control parameter (for example, the control gain A of the proportional control performed by the speed control unit 11), the load torque The inertia value used in the estimation of TL is not limited to the correct setting. The reason is that the inertia value suitable for improving the controllability of the servo control is not necessarily also suitable for improving the estimation accuracy of the load torque TL. In addition, with regard to the moment of inertia ratio used in the determination of the servo control parameters, even if there is some error, as long as there is no obstacle to the servo control, it is possible to set it to 1, 5, 10 times, etc. Approximate value and fine-tuning the gain by auto tuning. In such a case, it is difficult to estimate the load torque TL with high accuracy. In this regard, the servo amplifier 111 shown in FIG. 2 includes a first inertia value setting unit 24 for setting the first inertia value Jc for controlling the motor 19, and a second inertia value Je for setting the second inertia value Je The estimated second inertia value setting unit 26 of the load torque TL. That is, a function is provided that can independently set the inertia values for the estimation of the load torque TL and the control of the motor 19. By providing such a function that can independently set the inertia value, in order to estimate the load torque TL, a more appropriate inertia value can be set, thereby improving the estimation accuracy of the load torque TL. In addition, since appropriate inertia values for the estimation of the load torque TL and the control of the motor 19 can be set separately, the control accuracy of the servo control and the estimation accuracy of the load torque TL can be improved at the same time. For example, the first inertia value setting unit 24 can automatically tune the control gain A based on the input first inertia value Jc, and set the auto-tuned control gain A to the control gain of the proportional control performed by the speed control unit 11. . On the other hand, the second inertia value setting unit 26 can set the input second inertia value Je to the inertia value J used in the load torque estimating unit 15 to estimate the load torque TL (for example, for calculating The above-mentioned (J×dω/dt) inertia value J). It should be noted that the first inertia value Jc or the second inertia value Je may be an estimated value obtained by the inertia value estimation calculation function of the servo amplifier 111, or may be based on the user or from the servo amplifier 111 The value determined by the information input by the external device 122. In addition, the servo amplifier 111 shown in FIG. 2 includes a first filter value setting unit 25 that sets the first filter value Kc for use in controlling the motor 19, and a second filter value Ko for setting the second filter value Ko. The second filter value setting unit 27 outputs monitoring information related to the estimated load torque TLe. In other words, a function is provided that can independently set the output for monitoring information and the filter value for control of the motor 19. By installing such a function that can independently set the filter value, not only the filter value suitable for the servo control of the motor 19 can be set, but also the external device 122 suitable for the servo amplifier 111 can be monitored. Information is set to monitor the filter value. The servo amplifier 111 includes, for example, a control filter 18 for controlling the motor 19 and an output filter 22 for outputting monitoring information. The first filter value setting unit 25 sets the input first filter value Kc to the control filter 18, and the second filter value setting unit 27 sets the input second filter value Ko to the output filter 22. For example, the first filter value Kc is the response time constant of the control filter 18, and the second filter value Ko is the response time constant of the output filter 22, but it is not limited to this, and it may be set to be suitable for The value of the filter processing performed by each filter. The control filter 18 performs filter processing using the first filter value Kc on the estimated load torque TLe, thereby generating a compensated load torque TLc. The output filter 22 performs filter processing using the second filter value Ko on the estimated load torque TLe, thereby generating an estimated load torque TLe suitable for external monitoring. It should be noted that the output filter 22 may be a low-pass filter, a band-pass filter, or a high-pass filter. The filter characteristics suitable for external monitoring can be set. Fig. 3 is a diagram showing an example of the configuration of a servo system according to a second embodiment. The servo system 140 shown in FIG. 3 includes a servo amplifier 121 and an external device 122. It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. The second embodiment is different from the first embodiment in the configuration of the load torque estimation unit 15. In the second embodiment, the load torque estimation unit 15 uses the high-pass filter 32 to subtract the gravitational torque Tg from the disturbance torque Td (estimated disturbance torque Tdie) estimated by the disturbance torque estimation unit 28. The torque TL is estimated. For the high-pass filter 32, the disturbance torque Td is input, and the gravity torque Tg included in the input disturbance torque Td is attenuated, thereby outputting an estimated load whose gravity torque Tg has been attenuated. Torque TLe. In the case where the frequency component of the gravity torque Tg is a direct current component (for example, when the gravity torque Tg is a fixed value as described above), the disturbance torque Td is subjected to filter processing based on the high-pass filter 32, The estimated load torque TLe in which the DC component corresponding to the gravity torque Tg is attenuated can be obtained. FIG. 4 is an exemplary diagram of each waveform when the gravity torque is included in the estimated load torque, and shows a case where the load torque estimator 5 in the comparison method estimates the load torque TL. FIG. 5 is an exemplary diagram of each waveform when the gravity torque is not included in the estimated load torque, and shows how the load torque estimator 15 in the first or second embodiment estimates the load torque TL . In FIGS. 4 and 5, "speed" indicates the pressing speed (or angular velocity ω) when the movable part 40 presses the metal workpiece W, and "load torque" indicates the estimated load torque TLe calculated inside the servo amplifier . In the case of Figure 4, the metal is pressed by the lowering action, so the load torque is applied near the lower fulcrum. However, it is estimated that the load torque TLe includes about 20% of the gravity torque Tg, so it cannot be accurately measured. Monitor the load torque (press torque in this case). On the other hand, in the case of FIG. 5, the gravitational torque Tg is not included in the estimated load torque TLe, so the estimated load torque TLe can be expressed as an amount that changes on a zero basis, so that the pressing can be accurately and intuitively Torque is monitored. Fig. 6 is a diagram showing an example of the configuration of a servo system according to a third embodiment. The servo system 160 shown in FIG. 6 includes a servo amplifier 131 and an external device 122. It should be noted that, regarding the description of the same configuration and effects as the above-mentioned embodiment, the above-mentioned description is cited here, and the above-mentioned description is omitted or abbreviated. In the third embodiment, the load torque estimation unit 15 estimates the load torque TL based on the speed command ωr of the motor 19, and the load torque TL is changed based on the speed detection value of the motor 19 (the angular velocity ω detected by the speed detection unit 14). The above-mentioned implementation of estimating the moment TL is different. The disturbance torque estimation unit 28 estimates the disturbance torque Td based on the speed command ωr, and accordingly, the load torque estimation unit 15 can estimate the load torque TL. For example, in the calculation of the load torque TL shown in FIG. 1, the angular velocity ω obtained by differentiating the rotational position θ detected by the position detector 20 by the speed detection unit 14 is used. However, the rotational position θ detected by the position detector 20 contains a noise component, so when it is differentiated, a large noise component tends to appear in the angular velocity ω. In particular, if the inertia value is large, noise components that are not suitable for monitoring may appear. If the angular velocity ω obtained by the velocity detection section 14 is further differentiated to obtain the angular acceleration dω/dt, the noise component may further increase. In contrast, the load torque estimation unit 15 shown in FIG. 6 calculates the load torque TL using angular acceleration dω/dt obtained by differentiating the speed (command speed) commanded by the speed command ωr. The speed (command speed) commanded by the speed command ωr is an internal value of the servo amplifier 131, so the noise component is small. Therefore, by using the speed commanded by the speed command ωr (command speed), it is possible to perform high-precision monitoring with less noise. It should be noted that as for the load torque estimation unit 15 shown in FIG. 6, as shown in FIG. 3, a high-pass filter 32 may also be used to estimate the load torque TL. FIG. 7 is an exemplary diagram of each waveform when the feedback speed (the angular velocity ω detected by the speed detection unit 14) is used for the estimation of the load torque. FIG. 8 is an illustration diagram of each waveform when a command speed (speed commanded by a speed command ωr) is used for the estimation of the load torque. In the case of FIG. 7, since the differential of the feedback speed is used, the estimated load torque TLe can be calculated immediately following the change in the angular speed ω when the load torque TL is applied based on the actual load. On the other hand, as shown in FIG. 8, when the derivative of the command speed is used, the change in the angular velocity ω when the load torque TL is applied based on the actual load is not reflected in the estimation of the load torque TL. For this reason, as the torque command Tr, which is the result of the speed control, rises, the estimated load torque TLe also rises. That is, the response speed of the estimated load torque TLe depends on the response speed of the speed control. However, the response of speed control is usually about 30~100Hz (about 5~1ms after conversion to the time constant), which is very fast, so there is no problem in practical applications. In addition, in the waveform of the estimated load torque TLe exemplified in FIG. 5, in order for the external device 122 to detect the peak value of the estimated load torque TLe output from the output unit 23, sampling of about 1 ms is required. When the peak detection is performed by bus communication, it is required to perform bus communication in about 1 ms. Therefore, the peak detection on the external device 122 side requires high accuracy, and it is not easy to perform high-precision peak detection. . Therefore, with the output unit 23 in each embodiment, for example, as shown in FIG. 9, the estimated value of the load torque TL is peak-held each time and the peak-hold value of the estimated value is sent to the outside of the servo amplifier. Reset is performed at all times, so that the estimated value of the load torque TL can be held at the peak value again. The output unit 23 peak-holds the estimated load torque TLe during transmission and reception through bus communication, sends the latest peak-hold value to the external device 122 during transmission, and resets the internal peak-hold value . According to this, for example, even when the bus communication is performed in about 5 ms, the external device 122 can perform peak detection without omission. Therefore, even in a system in which data is updated late, the external device 122 can obtain the peak value of the estimated load torque TLe without fail, and execute the abnormality determination of the motor 19 and the like with high accuracy based on the estimated load torque TLe. As an example of requiring detection of the peak torque on the side of the external device 122, for example, there are the following cases. ・The information of one cycle of the machine only exists on the side of the external device 122, and the servo amplifier side does not know which interval peak value should be detected; ・The condition for determining which peak of a plurality of peaks in one cycle is to be used for abnormality determination only exists on the side of the external device 122. Alternatively, the output unit 23 in each embodiment may time-integrate the estimated value of the load torque TL, and send the time-integrated value of the estimated value to the outside of the servo amplifier. According to this, even if the difference between the normal time and the abnormal time of the peak of the estimated load torque TLe is small, the external device 122 can perform the abnormality determination of the motor 19 and the like with high accuracy based on the time integral value supplied from the output unit 23. FIG. 12 is an exemplary diagram of each waveform when the estimated value of the load torque is time-integrated, showing the waveforms of the speed and the load torque when the servo system of this embodiment is applied to a pressing machine The comparison result of normal and abnormal conditions. In FIG. 12, "speed" indicates the pressing speed (or angular velocity ω) when the movable portion 40 presses the metal socket terminal, and "load torque" indicates the estimated load torque TLe calculated internally in the servo amplifier. In FIG. 12, "normal" means that the crimping of the socket terminal 60 and the electric wire 51 is normal (refer to FIG. 10), and "abnormal" means that the crimping of the socket terminal 60 and the electric wire 51 is abnormal (refer to FIG. 11). 10 shows that the movable part 40 of the pressing machine presses the root 61 of the socket terminal 60 together with the wire 53 exposed by peeling off the cover 52 of the front end of the wire 51, whereby the wire 53 and the root 61 are pressed The normal state of crimping. 11 shows that the movable part 40 of the pressing machine presses the root 61 of the socket terminal 60 in the state where the cover 52 of the front end of the wire 51 is not peeled off but covers the wire 53, whereby the wire 51 and The root 61 is in an abnormal state where it is crimped. In the abnormal waveform illustrated in FIG. 12, since the crimping was performed with the cover 52 covering the wire 51, the presence of foreign matter (cover 52) caused the estimated load torque TLe to be earlier than the normal waveform. The ground has been enlarged on the negative side. The output unit 23 performs the estimated load torque TLe, for example, while the angular velocity ω is lower than the predetermined speed threshold ωa (for example, -200 rpm) and the estimated load torque TLe is lower than the predetermined torque threshold TLa (for example, -20%).的 time integration. When the time integration is performed under this condition, the output unit 23 performs time integration in the period t1-t3 when abnormal, and performs time integration in the period t2-t3 when it is normal. From this, it is possible to clearly distinguish the difference between the time integral value (corresponding to the area of the shaded part in FIG. 12) between abnormal and normal time. In this way, even when it is difficult to determine the peak value of the estimated load torque TLe, it is possible to easily determine the abnormality of the motor 19 and the like by using the time-integrated value for comparison. In this way, according to the above-described embodiment, since the monitoring information related to the estimated load torque TL is externally output, the information related to the estimated load torque can be externally monitored. It should be noted that in the above-mentioned embodiment, the functions of the estimated torque estimating unit and other parts of the servo amplifier can be executed by a processor (for example, CPU (Central Processing Unit)) in a readable manner. It is realized by a program stored in a memory. Although the servo amplifier and the servo system have been described above with the embodiment, the present invention is not limited to the above embodiment. Within the scope of the present invention, various modifications and improvements can be made, such as combining or substituting a part or all of other embodiments with them.

15:負載轉矩估計部 18:控制濾波器 22:輸出濾波器 23:輸出部 24:第1慣性值設定部 25:第1濾波器值設定部 26:第2慣性值設定部 27:第2濾波器值設定部 28:干擾轉矩估計部 29:摩擦轉矩估計部 30:減法器 32:高通濾波器 40:可動部 100,120,140,160:伺服系統 111,121,131:伺服放大器 122:外部機器15: Load torque estimation section 18: Control filter 22: output filter 23: output section 24: The first inertia value setting part 25: The first filter value setting section 26: The second inertia value setting part 27: Second filter value setting section 28: Disturbance torque estimation section 29: Friction torque estimation section 30: subtractor 32: high pass filter 40: movable part 100, 120, 140, 160: Servo system 111, 121, 131: Servo amplifier 122: external machine

[圖1]一比較方式的伺服系統的構成例示圖。 [圖2]第1實施方式的伺服系統的構成例示圖。 [圖3]第2實施方式的伺服系統的構成例示圖。 [圖4]估計負載轉矩中包括重力轉矩的情況下的各波形的例示圖。 [圖5]估計負載轉矩中不包括重力轉矩的情況下的各波形的例示圖。 [圖6]第3實施方式的伺服系統的構成例示圖。 [圖7]負載轉矩的估計中使用了反饋速度的情況下的各波形的例示圖。 [圖8]負載轉矩的估計中使用了指令速度的情況下的各波形的例示圖。 [圖9]對負載轉矩的估計值進行了峰值保持(peak hold)的情況下的各波形的例示圖。 [圖10]端子和電線的壓接為正常狀態的示意圖。 [圖11]端子和電線的壓接為異常狀態的示意圖。 [圖12]對負載轉矩的估計值進行了時間積分的情況下的各波形的例示圖。[Fig. 1] A diagram showing an example of the configuration of a servo system of a comparison method. [Fig. 2] A diagram showing an example of the configuration of a servo system according to the first embodiment. [Fig. 3] A diagram showing an example of the configuration of a servo system according to a second embodiment. [Fig. 4] Illustrative diagrams of respective waveforms in the case where the gravity torque is included in the estimated load torque. [FIG. 5] Illustrative diagrams of respective waveforms in the case where the gravitational torque is not included in the estimated load torque. [Fig. 6] A diagram showing an example of the configuration of a servo system according to a third embodiment. [FIG. 7] Illustrative diagrams of respective waveforms in the case where the feedback speed is used for the estimation of the load torque. [FIG. 8] Illustrative diagrams of respective waveforms when the command speed is used for the estimation of the load torque. [FIG. 9] Illustrative diagrams of respective waveforms when the estimated value of load torque is peak held. [Fig. 10] A schematic diagram showing that the crimping of the terminal and the wire is in a normal state. [Fig. 11] A schematic diagram showing that the crimping of the terminal and the wire is in an abnormal state. [FIG. 12] Illustrative diagrams of respective waveforms when the estimated value of load torque is time-integrated.

120:伺服系統120: Servo system

122:外部機器122: external machine

111:伺服放大器111: Servo amplifier

11:速度控制部11: Speed control department

12:加法器12: adder

13:轉矩控制部13: Torque control department

14:速度檢測部14: Speed detection department

15:負載轉矩估計部15: Load torque estimation section

18:控制濾波器18: Control filter

19:馬達19: Motor

20:位置檢測器20: position detector

21:轉矩檢測部21: Torque detection department

22:輸出濾波器22: output filter

23:輸出部23: output section

24:第1慣性值設定部24: The first inertia value setting part

25:第1濾波器值設定部25: The first filter value setting section

26:第2慣性值設定部26: The second inertia value setting part

27:第2濾波器值設定部27: Second filter value setting section

28:干擾轉矩估計部28: Disturbance torque estimation section

30:減法器30: subtractor

40:可動部40: movable part

41:臂部41: Arm

Jc:第1慣性值Jc: 1st inertia value

Kc:第1濾波器值Kc: the first filter value

Je:第2慣性值Je: 2nd inertia value

Ko:第2濾波器值Ko: 2nd filter value

ωr:速度指令ωr: Speed command

A:控制增益A: Control gain

ω:角速度ω: angular velocity

θ:旋轉位置θ: Rotation position

Tb:反饋轉矩指令Tb: feedback torque command

TLc:補償負載轉矩TLc: Compensate load torque

Tg:重力轉矩Tg: gravitational torque

Tdie:估計干擾轉矩Tdie: Estimated disturbance torque

TLe:估計負載轉矩TLe: Estimated load torque

Tr:轉矩指令Tr: Torque command

Tde:轉矩檢測值Tde: Torque detection value

TL:負載轉矩TL: Load torque

Td:干擾轉矩Td: disturbance torque

W:工件W: Workpiece

Claims (13)

一種伺服放大器,具備: 轉矩控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的轉矩指令,對所述馬達的轉矩進行控制; 干擾轉矩估計部,對所述馬達所承受的干擾轉矩進行估計; 負載轉矩估計部,從由所述干擾轉矩估計部所估計的所述干擾轉矩減去由作用在所述可動部上的重力所產生的重力轉矩,由此對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。A servo amplifier with: A torque control unit, which controls the torque of the motor based on a torque command of the motor that causes the movable unit to move in a movement direction having a vertical direction component; A disturbance torque estimation unit, which estimates the disturbance torque borne by the motor; The load torque estimation unit subtracts the gravitational torque generated by the gravity acting on the movable portion from the disturbance torque estimated by the disturbance torque estimation unit, thereby applying the load to the motor To estimate the load torque; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. 如請求項1所述的伺服放大器,其中, 所述負載轉矩估計部從由所述干擾轉矩估計部所估計的所述干擾轉矩減去固定的所述重力轉矩,由此對所述負載轉矩進行估計。The servo amplifier according to claim 1, wherein The load torque estimation unit subtracts the fixed gravity torque from the disturbance torque estimated by the disturbance torque estimation unit, thereby estimating the load torque. 如請求項1所述的伺服放大器,其中, 所述負載轉矩估計部從由所述干擾轉矩估計部所估計的所述干擾轉矩減去從伺服放大器外部所供給的所述重力轉矩,由此對所述負載轉矩進行估計。The servo amplifier according to claim 1, wherein The load torque estimation unit subtracts the gravity torque supplied from the outside of the servo amplifier from the disturbance torque estimated by the disturbance torque estimation unit, thereby estimating the load torque. 如請求項1所述的伺服放大器,其中, 所述負載轉矩估計部利用高通濾波器從由所述干擾轉矩估計部所估計的所述干擾轉矩減去所述重力轉矩,由此對所述負載轉矩進行估計。The servo amplifier according to claim 1, wherein The load torque estimation unit uses a high-pass filter to subtract the gravity torque from the disturbance torque estimated by the disturbance torque estimation unit, thereby estimating the load torque. 如請求項1至4中的任一項所述的伺服放大器,還具備: 速度控制部,基於所述馬達的速度指令生成所述轉矩指令, 其中,所述負載轉矩估計部根據所述速度指令對所述負載轉矩進行估計。The servo amplifier according to any one of claims 1 to 4, further comprising: The speed control unit generates the torque command based on the speed command of the motor, Wherein, the load torque estimation unit estimates the load torque according to the speed command. 如請求項5所述的伺服放大器,其中, 所述負載轉矩估計部藉由所述干擾轉矩估計部根據所述速度指令估計所述干擾轉矩,對所述負載轉矩進行估計。The servo amplifier according to claim 5, wherein: The load torque estimation unit estimates the load torque by using the disturbance torque estimation unit to estimate the disturbance torque according to the speed command. 一種伺服放大器,具備: 速度控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的速度指令,生成所述馬達的轉矩指令; 轉矩控制部,根據所述轉矩指令,對所述馬達的轉矩進行控制; 負載轉矩估計部,根據所述速度指令,對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。A servo amplifier with: A speed control unit that generates a torque command of the motor based on a speed command of the motor that causes the movable part to move in a movement direction having a vertical direction component; A torque control unit, which controls the torque of the motor according to the torque command; A load torque estimation unit, which estimates the load torque borne by the motor according to the speed command; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. 如請求項1至7中的任一項所述的伺服放大器,其中, 所述輸出部對所述負載轉矩的估計值進行峰值保持,並將所述估計值的峰值保持值發送至伺服放大器的外部。The servo amplifier according to any one of claims 1 to 7, wherein The output unit performs peak hold on the estimated value of the load torque, and transmits the peak hold value of the estimated value to the outside of the servo amplifier. 如請求項8所述的伺服放大器,其中, 所述輸出部在每次將所述峰值保持值發送至伺服放大器的外部時都對所述峰值保持值進行重置,並再次對所述負載轉矩的估計值進行峰值保持。The servo amplifier according to claim 8, wherein The output unit resets the peak hold value every time the peak hold value is sent to the outside of the servo amplifier, and performs peak hold on the estimated value of the load torque again. 如請求項1至7中的任一項所述的伺服放大器,其中, 所述輸出部對所述負載轉矩的估計值進行時間積分,並將所述估計值的時間積分值發送至伺服放大器的外部。The servo amplifier according to any one of claims 1 to 7, wherein The output unit time-integrates the estimated value of the load torque, and sends the time-integrated value of the estimated value to the outside of the servo amplifier. 如請求項1至10中的任一項所述的伺服放大器,其中, 所述負載轉矩估計部對所述可動部的按壓動作時的所述負載轉矩進行估計。The servo amplifier according to any one of claims 1 to 10, wherein: The load torque estimation unit estimates the load torque during the pressing operation of the movable portion. 一種伺服系統,具備伺服放大器和設置在所述伺服放大器的外部的外部機器,其中, 所述伺服放大器具備: 轉矩控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的轉矩指令,對所述馬達的轉矩進行控制; 干擾轉矩估計部,對所述馬達所承受的干擾轉矩進行估計; 負載轉矩估計部,從由所述干擾轉矩估計部所估計的所述干擾轉矩減去由作用在所述可動部上的重力所產生的重力轉矩,由此對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。A servo system includes a servo amplifier and an external device provided outside the servo amplifier, wherein, The servo amplifier has: A torque control unit, which controls the torque of the motor based on a torque command of the motor that causes the movable unit to move in a movement direction having a vertical direction component; A disturbance torque estimation unit, which estimates the disturbance torque borne by the motor; The load torque estimation unit subtracts the gravitational torque generated by the gravity acting on the movable portion from the disturbance torque estimated by the disturbance torque estimation unit, thereby applying the load to the motor To estimate the load torque; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier. 一種伺服系統,具備伺服放大器和設置在所述伺服放大器的外部的外部機器,其中, 所述伺服放大器具備: 速度控制部,根據使可動部沿具有鉛直方向分量的移動方向進行移動的馬達的速度指令,生成所述馬達的轉矩指令; 轉矩控制部,根據所述轉矩指令,對所述馬達的轉矩進行控制; 負載轉矩估計部,根據所述速度指令,對所述馬達所承受的負載轉矩進行估計;及 輸出部,將與由所述負載轉矩估計部所估計的所述負載轉矩相關的資訊輸出至伺服放大器的外部。A servo system includes a servo amplifier and an external device provided outside the servo amplifier, wherein, The servo amplifier has: A speed control unit that generates a torque command of the motor based on a speed command of the motor that causes the movable part to move in a movement direction having a vertical direction component; A torque control unit, which controls the torque of the motor according to the torque command; A load torque estimation unit, which estimates the load torque borne by the motor according to the speed command; and The output unit outputs information related to the load torque estimated by the load torque estimation unit to the outside of the servo amplifier.
TW109125245A 2019-09-11 2020-07-27 Servo amplifier and servo system TWI734569B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-165481 2019-09-11
JP2019165481A JP6885436B2 (en) 2019-09-11 2019-09-11 Servo amplifier and servo system

Publications (2)

Publication Number Publication Date
TW202111456A true TW202111456A (en) 2021-03-16
TWI734569B TWI734569B (en) 2021-07-21

Family

ID=74862406

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125245A TWI734569B (en) 2019-09-11 2020-07-27 Servo amplifier and servo system

Country Status (4)

Country Link
JP (1) JP6885436B2 (en)
KR (1) KR102567673B1 (en)
CN (1) CN112486219B (en)
TW (1) TWI734569B (en)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569152B2 (en) * 1988-10-17 1997-01-08 ファナック株式会社 Servo control method
JPH02297603A (en) * 1989-05-12 1990-12-10 Fanuc Ltd Servo control system using sliding mode and also disturbance estimation observer
JP2838578B2 (en) * 1990-06-19 1998-12-16 株式会社日立製作所 Motor control device, disturbance load torque estimation device
JPH0866893A (en) * 1994-08-24 1996-03-12 Fanuc Ltd Collision detecting method
JPH10203479A (en) * 1997-01-23 1998-08-04 Mitsubishi Heavy Ind Ltd Position and attitude controller of underwater vehicle
JP3204207B2 (en) * 1998-03-30 2001-09-04 松下電器産業株式会社 Robot control device and control method
FI112734B (en) * 1998-05-20 2003-12-31 Abb Oy Method and apparatus for adaptive compensation of load changes
JP3757101B2 (en) * 2000-06-09 2006-03-22 株式会社日立産機システム Online auto tuning servo controller
JP4166157B2 (en) * 2004-01-07 2008-10-15 三菱電機株式会社 Electric motor control device
JP2007219991A (en) * 2006-02-20 2007-08-30 Fanuc Ltd Abnormal load detection device
DE102007028914B4 (en) * 2006-06-23 2013-03-07 Fuji Electric Co., Ltd Device for controlling and / or regulating the speed of an electric motor
CN101499696B (en) * 2009-03-06 2010-12-22 北京理工大学 Servo system controlling method
CN102063134A (en) * 2009-11-18 2011-05-18 北京航空航天大学 Device and method for controlling moment
KR101671527B1 (en) * 2010-12-10 2016-11-01 두산공작기계 주식회사 Real time servo motor controller which controlled by load weight
JP2012130214A (en) 2010-12-17 2012-07-05 Sanyo Denki Co Ltd Motor control device and motor control method
WO2014080456A1 (en) * 2012-11-20 2014-05-30 株式会社安川電機 Motor drive system and motor control device
TWI494725B (en) * 2012-12-18 2015-08-01 Ind Tech Res Inst Control device, control method and compensating method of position command
JP2014240162A (en) * 2013-06-12 2014-12-25 ファナック株式会社 Valve gate control device of injection molding machine
EP2889433B1 (en) * 2013-12-20 2019-05-01 Doosan Infracore Co., Ltd. System and method of controlling vehicle of construction equipment
JP6374274B2 (en) * 2014-09-04 2018-08-15 国立大学法人長岡技術科学大学 Control device and reduction gear system
EP3144754A1 (en) * 2015-09-17 2017-03-22 Siemens Aktiengesellschaft Damping of load swinging without additional measurement means on the load side
JP6451662B2 (en) * 2016-02-23 2019-01-16 株式会社安川電機 Abnormality determination device, abnormality determination program, abnormality determination system, and motor control device
JP2018112972A (en) * 2017-01-13 2018-07-19 ファナック株式会社 Servo motor control apparatus, servo motor control method, and servo motor control program
JP6426770B2 (en) * 2017-02-06 2018-11-21 ファナック株式会社 Servo controller
TWI620077B (en) * 2017-02-08 2018-04-01 義守大學 Method of estimating dc machine parameters by laplace transform
JP6457569B2 (en) * 2017-02-24 2019-01-23 ファナック株式会社 Servo motor control device, servo motor control method, and servo motor control program
JP6464226B2 (en) * 2017-06-14 2019-02-06 ファナック株式会社 Electric motor control device
JP6703021B2 (en) * 2018-02-20 2020-06-03 ファナック株式会社 Servo control device
CN108649851B (en) * 2018-06-08 2019-12-20 郑州轻工业学院 Maximum torque current ratio control method for permanent magnet synchronous motor
CN109856468B (en) * 2018-12-25 2020-10-09 南京埃斯顿自动化股份有限公司 Detection method for wiring phase sequence error of power line of servo motor

Also Published As

Publication number Publication date
JP6885436B2 (en) 2021-06-16
KR20210031365A (en) 2021-03-19
JP2021043714A (en) 2021-03-18
CN112486219B (en) 2022-02-08
TWI734569B (en) 2021-07-21
CN112486219A (en) 2021-03-12
KR102567673B1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
EP3369536B1 (en) Monitoring device for robot system
JP5821210B2 (en) Horizontal articulated robot and control method of horizontal articulated robot
JP4581096B2 (en) Friction compensation method, friction compensator, and motor control device
US10985684B2 (en) Motor control device
JP2010148178A (en) Inertia estimating controller and control system
US9952249B2 (en) Inertia estimating method and inertia estimation apparatus of position control apparatus
KR20160117223A (en) Apparatus for controlling servo motor and method for detecting collision
KR20130057455A (en) Motor control apparatus, motor control method, control system, and position estimation method to be used in control system
CN109309466A (en) Control device of electric motor
EP0806717B1 (en) Method of estimating disturbance load on servomotors
JP2011257205A (en) Axial torque controller for dynamometer system
JP5371882B2 (en) Force control device
JP7464391B2 (en) Mechanical system with trajectory estimation using motor encoders and sensors
JP2005316937A (en) Control device and its control method
TWI734569B (en) Servo amplifier and servo system
US11056992B2 (en) Motor controller
JP2005279872A (en) Robot control method
JP6614384B1 (en) Servo amplifier and servo system
TWI720662B (en) Servo amplifier and servo system
CN115533891A (en) Machining system, machining robot control device, and machining method
JP7176255B2 (en) Motor control device and collision detection method
JP5473889B2 (en) Force control device
JP6043191B2 (en) Motor speed control device
JPH1142576A (en) Control method and device for robot
JP2003131704A (en) Motor control unit equipped with overshoot control function