TW202111379A - Projection lens and projector - Google Patents
Projection lens and projector Download PDFInfo
- Publication number
- TW202111379A TW202111379A TW108132229A TW108132229A TW202111379A TW 202111379 A TW202111379 A TW 202111379A TW 108132229 A TW108132229 A TW 108132229A TW 108132229 A TW108132229 A TW 108132229A TW 202111379 A TW202111379 A TW 202111379A
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- projection
- item
- outer diameter
- group
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0055—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
- G02B13/0065—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
- G02B13/007—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/142—Adjusting of projection optics
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/28—Reflectors in projection beam
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Projection Apparatus (AREA)
- Overhead Projectors And Projection Screens (AREA)
Abstract
Description
本發明是有關於一種光學鏡頭及光學裝置,且特別是有關於一種多次成像的投影鏡頭及投影機。The present invention relates to an optical lens and an optical device, and particularly relates to a projection lens and a projector for multiple imaging.
相較於電視機,投影機因不需使用太多空間即能投射出大尺寸影像,因此投影機在市場上占有一定的比例。Compared with TV sets, projectors can project large-size images without using too much space, so projectors occupy a certain proportion in the market.
一般來說,投影機若要投影到較大的螢幕尺寸,則必須有較長的投影距離。相對地,若要在較短之投影距離投影大尺寸畫面,此時會使用包括有反射鏡的特殊廣角鏡頭來減少投影所需距離。然而在目前的設計中,為了有效的減少鏡頭畸變以及色差,往往需要較多的透鏡片數來修正前述的誤差。然而增加的透鏡存在鏡頭體積過大及成本過高的問題,因此如何兼顧鏡頭的體積、成本和光學效果,是本領域尚待努力的方向之一。Generally speaking, if the projector wants to project to a larger screen size, it must have a longer projection distance. In contrast, if you want to project a large-size image at a shorter projection distance, a special wide-angle lens including a mirror is used to reduce the distance required for projection. However, in current designs, in order to effectively reduce lens distortion and chromatic aberration, more lens elements are often required to correct the aforementioned errors. However, the added lens has the problem of too large lens volume and high cost. Therefore, how to balance the volume, cost, and optical effect of the lens is one of the directions yet to be worked hard in this field.
本發明的一範疇提供一種投影鏡頭及投影機,包括一凹面反射鏡,可使光閥所發出的光線通過光軸三次並產生三次成像,並且在大光圈、低畸變以及低色差的要求下具有較佳的光學品質。One category of the present invention provides a projection lens and a projector, including a concave reflector, which allows the light emitted by the light valve to pass through the optical axis three times and produce three times of imaging, and has the requirements of large aperture, low distortion and low chromatic aberration. Better optical quality.
本發明的一實施例提出一種投影鏡頭,包括由一縮小側往一放大側依序排列的一第一透鏡、一第二透鏡、一孔徑光欄、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡以及一凹面鏡。第一透鏡為投影鏡頭中最接近縮小側的透鏡。第二透鏡的外徑小於第一透鏡的外徑。第五透鏡的外徑大於第四透鏡的外徑。第六透鏡為投影鏡頭中最接近放大側的透鏡。第六透鏡的外徑小於第五透鏡的外徑,其中投影鏡頭在對焦時,第一透鏡、第二透鏡、孔徑光欄及第三透鏡相對凹面鏡的位置為固定,且第四透鏡可相對凹面鏡沿光軸移動。投影鏡頭中具有屈光度的透鏡數量為9至30。An embodiment of the present invention provides a projection lens, which includes a first lens, a second lens, an aperture stop, a third lens, a fourth lens, and a A fifth lens, a sixth lens, and a concave mirror. The first lens is the lens closest to the reduction side in the projection lens. The outer diameter of the second lens is smaller than the outer diameter of the first lens. The outer diameter of the fifth lens is larger than the outer diameter of the fourth lens. The sixth lens is the lens closest to the magnification side in the projection lens. The outer diameter of the sixth lens is smaller than the outer diameter of the fifth lens. When the projection lens is in focus, the positions of the first lens, the second lens, the aperture stop and the third lens relative to the concave mirror are fixed, and the fourth lens can be relative to the concave mirror Move along the optical axis. The number of lenses with refractive power in the projection lens is 9 to 30.
本發明的一實施例提出一種投影鏡頭,包括由一縮小側往一放大側依序排列的一第一透鏡組、一第二透鏡組以及一凹面鏡。第一透鏡組包括由縮小側往放大側依序排列的一第一透鏡、一第二透鏡、一孔徑光欄以及一第三透鏡。第一透鏡為第一透鏡組中最接近縮小側的透鏡。第一透鏡為一非球面透鏡,且第一透鏡的外徑大於該第二透鏡的外徑。第二透鏡組包括由縮小側往放大側依序排列的一第四透鏡、一第五透鏡及一第六透鏡。第四透鏡為第二透鏡組中最接近縮小側的透鏡。第六透鏡為第二透鏡組中最接近放大側的透鏡。第五透鏡的外徑大於第四透鏡及第六透鏡的外徑,其中投影鏡頭在對焦時,第一透鏡組相對凹面鏡的位置為固定,且第二透鏡組可沿光軸移動。投影鏡頭中具有屈光度的透鏡數量為9至30。An embodiment of the present invention provides a projection lens, which includes a first lens group, a second lens group, and a concave mirror arranged in order from a reduction side to a magnification side. The first lens group includes a first lens, a second lens, an aperture stop, and a third lens arranged in sequence from the reduction side to the magnification side. The first lens is the lens closest to the reduction side in the first lens group. The first lens is an aspheric lens, and the outer diameter of the first lens is larger than the outer diameter of the second lens. The second lens group includes a fourth lens, a fifth lens and a sixth lens arranged in sequence from the reduction side to the magnification side. The fourth lens is the lens closest to the reduction side in the second lens group. The sixth lens is the lens closest to the magnification side in the second lens group. The outer diameter of the fifth lens is larger than the outer diameters of the fourth lens and the sixth lens. When the projection lens is in focus, the position of the first lens group relative to the concave mirror is fixed, and the second lens group can move along the optical axis. The number of lenses with refractive power in the projection lens is 9 to 30.
本發明的一實施例提出一種投影鏡頭,包括由一縮小側往一放大側依序排列的一第一透鏡組、一第二透鏡組以及一凹面鏡。第一透鏡組包括由縮小側往放大側依序排列的一第一透鏡、一第二透鏡、一孔徑光欄以及一第三透鏡。第一透鏡為第一透鏡組中最接近縮小側的透鏡。第一透鏡為一非球面透鏡,且第一透鏡的外徑大於第二透鏡的外徑。第二透鏡組包括由縮小側往放大側依序排列的一第四透鏡、一第五透鏡及一第六透鏡。第四透鏡為第二透鏡組中最接近縮小側的透鏡。第六透鏡為第二透鏡組中最接近放大側的透鏡。第五透鏡的外徑大於第四透鏡及第六透鏡的外徑。第二透鏡組的第四透鏡和第六透鏡之間包括一反光鏡,其中投影鏡頭在對焦時,第一透鏡組相對凹面鏡的位置為固定,且第二透鏡組可相對凹面鏡沿光軸移動。投影鏡頭中第一透鏡組和反光鏡之間的光軸有轉折且非單一直線。投影鏡頭中具有屈光度的透鏡數量為9至30。An embodiment of the present invention provides a projection lens, which includes a first lens group, a second lens group, and a concave mirror arranged in order from a reduction side to a magnification side. The first lens group includes a first lens, a second lens, an aperture stop, and a third lens arranged in sequence from the reduction side to the magnification side. The first lens is the lens closest to the reduction side in the first lens group. The first lens is an aspheric lens, and the outer diameter of the first lens is larger than the outer diameter of the second lens. The second lens group includes a fourth lens, a fifth lens and a sixth lens arranged in sequence from the reduction side to the magnification side. The fourth lens is the lens closest to the reduction side in the second lens group. The sixth lens is the lens closest to the magnification side in the second lens group. The outer diameter of the fifth lens is larger than the outer diameters of the fourth lens and the sixth lens. A reflection mirror is included between the fourth lens and the sixth lens of the second lens group. When the projection lens is in focus, the position of the first lens group relative to the concave mirror is fixed, and the second lens group can move along the optical axis relative to the concave mirror. The optical axis between the first lens group and the mirror in the projection lens has a turning point and is not a single straight line. The number of lenses with refractive power in the projection lens is 9 to 30.
本發明的一實施例提出一種投影機,包括一光源、一光閥、一投影鏡頭、一第一透鏡組、一第二透鏡組以及一凹面鏡。光閥設於光源的光路下游。投影鏡頭設於光閥的光路下游,包括由一縮小側往一放大側依序排列的一第一透鏡組、一第二透鏡組以及一凹面鏡。第一透鏡組包括由縮小側往放大側依序排列的一第一透鏡、一第二透鏡、一孔徑光欄以及一第三透鏡。第一透鏡為第一透鏡組中最接近縮小側的透鏡。第一透鏡的外徑大於第二透鏡的外徑第一透鏡的外徑為光閥的反應表面的對角線長度的兩倍或以上。第二透鏡組包括由縮小側往放大側依序排列的一第四透鏡、一第五透鏡及一第六透鏡。第四透鏡為第二透鏡組中最接近縮小側的透鏡。第六透鏡為第二透鏡組中最接近放大側的透鏡。第五透鏡的外徑大於第四透鏡及第六透鏡的外徑,其中投影鏡頭在對焦時,第一透鏡組相對凹面鏡的位置為固定,且第二透鏡組可相對凹面鏡沿光軸移動。投影鏡頭中具有屈光度的透鏡數量為9至30。An embodiment of the present invention provides a projector including a light source, a light valve, a projection lens, a first lens group, a second lens group, and a concave mirror. The light valve is arranged downstream of the light path of the light source. The projection lens is arranged downstream of the light path of the light valve, and includes a first lens group, a second lens group and a concave mirror arranged in sequence from a reduction side to an enlargement side. The first lens group includes a first lens, a second lens, an aperture stop, and a third lens arranged in sequence from the reduction side to the magnification side. The first lens is the lens closest to the reduction side in the first lens group. The outer diameter of the first lens is larger than the outer diameter of the second lens. The outer diameter of the first lens is twice or more than the diagonal length of the reaction surface of the light valve. The second lens group includes a fourth lens, a fifth lens and a sixth lens arranged in sequence from the reduction side to the magnification side. The fourth lens is the lens closest to the reduction side in the second lens group. The sixth lens is the lens closest to the magnification side in the second lens group. The outer diameter of the fifth lens is larger than the outer diameters of the fourth lens and the sixth lens. When the projection lens is in focus, the position of the first lens group relative to the concave mirror is fixed, and the second lens group can move along the optical axis relative to the concave mirror. The number of lenses with refractive power in the projection lens is 9 to 30.
基於上述,在本發明的一實施例中的投影鏡頭及應用其投影鏡頭的投影機可讓光閥所發出的光束通過光軸三次而產生三次成像,並且在大光圈、低畸變以及低色差的要求下具有良好的光學品質。Based on the above, in an embodiment of the present invention, the projection lens and the projector using the projection lens can allow the light beam emitted by the light valve to pass through the optical axis three times to produce three times of imaging, and in a large aperture, low distortion and low chromatic aberration Good optical quality under requirements.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
圖1為本發明第一實施例的投影機的示意圖。請參照圖1。在本實施例中,投影機10包括光源20、光閥30以及投影鏡頭100。Fig. 1 is a schematic diagram of a projector according to a first embodiment of the present invention. Please refer to Figure 1. In this embodiment, the
光源20用以提供出不同波長的光以作為影像光的來源。在本實施例中,光源20例如是能提供紅、綠及藍等可見光或例如是紅外光或紫外光等不可見光的發光二極體(Light-emitting diode,LED)或雷射二極體(laser diode,LD)。然而,本發明並不限定光源20的種類或形態,其詳細結構及實施方式可以由所屬技術領域的通常知識獲致足夠的教示、建議與實施說明,因此不再贅述。The
光閥30,可用以將不同波長的照明光轉換成影像光。光閥30可例如是液晶覆矽板(Liquid Crystal On Silicon panel,LCoS panel)、數字微鏡元件(Digital Micro-mirror Device,DMD)等反射式光調變器,光閥30也可以是透光液晶面板(Transparent Liquid Crystal Panel),電光調變器(Electro-Optical Modulator)、磁光調變器(Magneto-Optic modulator)、聲光調變器(Acousto-Optic Modulator,AOM)等穿透式光調變器,本發明對光閥30的型態及其種類並不加以限制。在本實施例中。光閥30為一數字微鏡元件,其包括一個由多數微透鏡所組成的反射表面,可將照明光束轉換為具有影像資訊的光束。前述轉換的詳細步驟及實施方式可以由所屬技術領域的通常知識獲致足夠的教示、建議與實施說明,因此不再贅述。The
投影鏡頭100用以將影像光投射並成像於一目標的投影面上。投影鏡頭100例如包括具有屈光度的一或多個透鏡的組合,透鏡例如包括雙凹透鏡、雙凸透鏡、透鏡二光學表面形狀分別為凹凸、平凸或是平凹的透鏡等,非平面鏡片。在一些實施例中,除透鏡及光圈等元件外,投影鏡頭100中的各透鏡之間亦可選擇性的增設平面反射鏡或曲面反射鏡等元件,以反射及轉折光束的光路,並將來自光閥30的影像光投射至投影目標。投影鏡頭100的詳細設計將於後續說明。The
在本實施例中,投影機10還包括玻璃蓋40、稜鏡50以及穿透式平順圖像裝置60等元件。In this embodiment, the
玻璃蓋40用以防塵而保護光閥。The
稜鏡50,用以調整不同波長的光的光路徑。於本例中,稜鏡可利用其中的全反射面的設計來反射特定入射角度範圍的光束並允許讓另一入射角度範圍的光束通過。於本例中,稜鏡50由二枚呈三角柱體的單體稜鏡所組成,惟其不以為限,其亦可僅包括單枚單體稜鏡或包括3枚或更多的單體稜鏡;於本例中,稜鏡50按光路的行進方式,為一TIR稜鏡;惟其亦可以一RTIR稜鏡取代之。稜鏡50, used to adjust the light path of light of different wavelengths. In this example, the design of the total reflection surface can be used to reflect the beam of a specific incident angle range and allow the beam of another incident angle range to pass through. In this example, the
穿透式平順圖像裝置(Transmissive Smooth Picture,TSP)60,可沿單軸或多軸晃動而使得投影後的影像之畫素點很小程度地暈開,藉此增加解析度。The Transmissive Smooth Picture (TSP) 60 can shake along a single axis or multiple axes so that the pixel points of the projected image are blurred to a small extent, thereby increasing the resolution.
於本例中,光閥30設於光源20的光路下游,投影鏡頭100設於光閥30的光路下游。詳細而言,在本實施例中,光源20所提供的光束傳遞依序經過稜鏡50、玻璃蓋40至光閥30。光閥30將光束轉換為具有影像資訊的影像光束,影像光束隨後可依序經過玻璃蓋40、稜鏡50、穿透式平順圖像裝置60至投影鏡頭100,最後影像光束藉由投影鏡頭100投射並成像於投影機10外的投影面上。In this example, the
圖2為本發明第一實施例的投影鏡頭的剖面示意圖。請參照圖2。圖2所顯示的投影鏡頭100至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。投影鏡頭100包括透鏡組150、透鏡組140以及凹面鏡130。2 is a schematic cross-sectional view of the projection lens of the first embodiment of the invention. Please refer to Figure 2. The
於本例中,凹面鏡130具有一非球面表面。凹面鏡130的開口可選擇性地設有一透光玻璃蓋(未繪示於圖1),以將凹面鏡130中的凹陷部份封閉為一密閉公間以為防塵之效。於本例中,凹面鏡130相對投影鏡頭100的光軸A是軸對稱的,但不以此為限。需要時,凹面鏡130可按需求被切裁,如將凹面鏡130在光軸上方,靠近出光方向的,特定部份裁切,即為一例。再者,於凹面鏡130被切裁時,凹面鏡130將有一上開口和面對透鏡組140的側向開口,此時,可選擇性的於上開口及側向開口分設一玻璃蓋以為防塵之效。In this example, the
在本實施例中,投影鏡頭100中具有屈光度的透鏡數量為13枚。而投影鏡頭100中具有屈光度的透鏡數量在9枚以上,並於15枚及30枚或以下時,其有最佳及較佳的成本效益。此外,於本實施例中,投影鏡頭100為定焦鏡頭。In this embodiment, the number of lenses with refractive power in the
在本實施例中,透鏡組150與透鏡組140為共光軸。此外,透鏡組140中具有屈光度的透鏡數量為7,透鏡組140中包括的透鏡數量在少於等於7、10或15時,其有最佳、較佳及佳的成本效益。此外,在本實施例中,透鏡組140包括至少兩個非球面透鏡,可有效的減少透鏡的數量並改善像差。In this embodiment, the
在本實施例中,透鏡組150包括了六枚透鏡以及一設於其中的孔徑光欄160,透鏡組150中包括的透鏡數量在少於等於6、10或15時,其有最佳、較佳及佳的成本效益。In this embodiment, the
詳細而言,在本實施例中,投影鏡頭100透鏡組150、透鏡組140以及凹面鏡130沿投影鏡頭100的光軸A由縮小側110往放大側120依序排列。其中縮小側110是投影鏡頭100的光線輸入側,而放大側120是投影鏡頭100的光線輸出側。在投影鏡頭100朝縮小側110的一側中,光閥30、玻璃蓋40、稜鏡50以及穿透式平順圖像裝置60由縮小側110往放大側120依序排列於投影鏡頭100之前。In detail, in this embodiment, the
於本實施例中,在透鏡組150中,沿投影鏡頭100的光軸A由縮小側110往放大側120依序排列包括透鏡L13、透鏡L12、透鏡L11、透鏡L10、透鏡L9、孔徑光欄160及透鏡L8。而在透鏡組140中,沿光軸A由縮小側110往放大側120依序排列包括透鏡L7、透鏡L6、透鏡L5、透鏡L4、透鏡L3、透鏡L2及透鏡L1。換句話說,透鏡L13為透鏡組150中最接近縮小側110的透鏡,亦為投影鏡頭100中最接近縮小側110的透鏡。透鏡L8為透鏡組150中最接近放大側120的透鏡。透鏡L7為透鏡組140中最接近縮小側110的透鏡。透鏡L1為透鏡組140中最接近放大側120的透鏡,亦為投影鏡頭100中最接近放大側120的,具有屈光度的,透鏡。於本實施例中,孔徑光欄160設於透鏡L8和透鏡L9之間,亦即,其不是位在透鏡組150第一或最後一枚光學元件。In this embodiment, in the
於本實施例中,透鏡L1及透鏡L2為複合透鏡,複合透鏡可以利用多種方式相互固定,例如是以機構方式夾緊或是將二者以黏膠固定亦可。透鏡L9、透鏡L10及透鏡L11為複合透鏡,例如是三膠合透鏡。於本例中,前述的各複合透鏡均膠合透鏡。於本實施例中,透鏡L4、透鏡L6及透鏡L13為非球面透鏡,亦即非球面透鏡數量為3枚。In this embodiment, the lens L1 and the lens L2 are compound lenses, and the compound lenses can be fixed to each other in a variety of ways, for example, clamping by a mechanism or fixing the two with glue. The lens L9, the lens L10, and the lens L11 are compound lenses, for example, a triplet lens. In this example, the aforementioned compound lenses are all cemented lenses. In this embodiment, the lens L4, the lens L6, and the lens L13 are aspheric lenses, that is, the number of aspheric lenses is three.
此外,於本實施例中,透鏡L7為透鏡組140中最接近縮小側110的透鏡。In addition, in this embodiment, the lens L7 is the lens closest to the
於本實施例中,透鏡中有兩個尺寸參數,一者為通光孔徑RF(Clear aperture,CA),又稱光學有效徑。通光孔徑可簡略理解為各透鏡的光學有效區。另一者為透鏡的外徑TRF,外徑TRF是指透鏡中包括通光孔徑及其他非光學有效區部份的外輪廓的最大直徑。而於本例中,通光孔徑RF和外徑TRF是呈正相關的,但透鏡的通光孔徑RF與外徑TRF之間並無特定比例關係。而透鏡L7、透鏡L6及透鏡L5的通光孔徑RF及外徑TRF均依序漸增;而透鏡L5、透鏡L4、透鏡L3、透鏡L2及透鏡L1的通光孔徑RF及外徑TRF均依序漸減;而透鏡L13、透鏡L12、透鏡L11、透鏡L10、透鏡L9的通光孔徑RF及外徑TRF均依序漸減,而透鏡L8的通光孔徑RF分別大於透鏡L13、透鏡L12、透鏡L11、透鏡L10及透鏡L9的通光孔徑。透鏡L8的外徑TRF亦分別大於透鏡L13、透鏡L12、透鏡L11、透鏡L10及透鏡L9的外徑TRF。In this embodiment, there are two size parameters in the lens, one is the clear aperture RF (Clear aperture, CA), also known as the optical effective diameter. The clear aperture can be simply understood as the optical effective area of each lens. The other is the outer diameter TRF of the lens. The outer diameter TRF refers to the maximum diameter of the outer contour of the lens including the clear aperture and other non-optical effective areas. In this example, the clear aperture RF and the outer diameter TRF are positively correlated, but there is no specific proportional relationship between the clear aperture RF and the outer diameter TRF of the lens. The clear aperture RF and outer diameter TRF of lens L7, lens L6, and lens L5 all gradually increase in sequence; while the clear aperture RF and outer diameter TRF of lens L5, lens L4, lens L3, lens L2, and lens L1 all follow The order is gradually decreasing; and the clear aperture RF and outer diameter TRF of lens L13, lens L12, lens L11, lens L10, and lens L9 are gradually decreasing, while the clear aperture RF of lens L8 is larger than that of lens L13, lens L12, and lens L11, respectively. , The clear aperture of lens L10 and lens L9. The outer diameter TRF of the lens L8 is also larger than the outer diameters TRF of the lens L13, the lens L12, the lens L11, the lens L10, and the lens L9, respectively.
透鏡L1為透鏡組140中最接近放大側120且通光孔徑RF及外徑TRF最小的透鏡。具體而言,在透鏡組140中,透鏡的通光孔徑RF及外徑TRF的變化由縮小側110至放大側120呈現先由小變大再由大變小的變化。The lens L1 is a lens in the
在本實施例中,投影鏡頭100為超短焦鏡頭,舉例來說,鏡頭總長TL為透鏡L13的朝向縮小側110的表面(即表面S25)至凹面鏡130(即表面S1)於投影鏡頭100的光軸A上的距離,且EFL為投影鏡頭100的有效焦距。在TL/EFL≧100、TL/EFL≧70及TL/EFL≧50時,其所需投影距離的表現分別為最佳、較佳及佳。於本例中,TL/EFL為106.1。另一方面,在本實施例中,投影鏡頭100在對焦時,透鏡組150中各個透鏡及光圈等元件均固定於投影鏡頭100的光軸A上,且無論是水平或垂直於光軸A的方向上均相對凹面鏡130的位置及距離均為固定。在對焦時,透鏡組140中的一枚或是多枚透鏡相對於凹面鏡130為可動的。於本例中,最靠近透鏡組150的透鏡,如透鏡L7,可相對凹面鏡130沿投影鏡頭的光軸A移動。由於,透鏡組150中的透鏡在對焦時全數固定,而透鏡組150最接近縮小側的一枚透鏡在對焦時需為可動,藉此可區別透鏡組140及透鏡組150。於本例中,凹面鏡130、透鏡組140及透鏡組150為共光軸。In this embodiment, the
圖3為本發明第一實施例的光閥的示意圖。請參照圖2及圖3。另外,投影鏡頭100的縮小側110具有實質上的遠心(Telecentric)特性,舉例來說,遠心鏡頭是具有至少一個無限遠光瞳的鏡頭。就主光線而言,具有無限遠光瞳表示(a)如果入射光瞳在無限遠,則主光線與物體空間的光軸平行,或(b)如果出射光瞳在無限遠,則主光線與影像空間的光軸平行。 在實際的應用中,遠心光瞳實際上並不一定要在無限遠,因為離鏡頭光學表面足夠大的距離之具有入射或出射光瞳的鏡頭實質上即可當作遠心系統操作。此類鏡頭的主光線實質上會與光軸平行,因此鏡頭一般在功能上會等同於光瞳的理論(高斯)位置在無限遠的鏡頭。於本例中,光束由縮小側110進入投影鏡頭時,光束的各主光線L(chief ray)均分別實質平行於投影鏡頭100的光軸A。各主光線L為實質平行於投影鏡頭100的光軸行進的,例如,主光線L相對光軸的傾斜角例如小於或等於5度,本發明並不限於此。Fig. 3 is a schematic diagram of the light valve according to the first embodiment of the present invention. Please refer to Figure 2 and Figure 3. In addition, the
再者,請參照圖3。投影鏡頭100在像平面上有一對應的像高IMH。於本例中,縮小側的像平面上設有一光閥30,像高IMH等同光軸A至光閥30的反應表面的對角線的最大直線長度。Again, please refer to Figure 3. The
對應於投影鏡頭100縮小側的遠心特性,本例中,投影鏡頭100中最接近縮小側110的透鏡的外徑TRF(包括光學有效區及無效區)以及通光孔徑RF都較像高IMH大兩倍或以上。於本例中,通光孔徑RF除以像高IMH(RF/IMH)約為3。而外徑TRF較通光孔徑RF大,故外徑TRF除以像高IMH(TRF/IMH)亦大於3。Corresponding to the telecentric characteristics of the reduced side of the
於本例中,投影鏡頭100為三次成像系統。投影鏡頭100的第一中間像形成於透鏡L5與透鏡L4之間。第二中間像形成於透鏡L1與凹面鏡130之間。隨後,投影鏡頭100會將光束投影至投影表面(例如是投影螢幕)上成像,為三次成像。In this example, the
於本例中,透鏡L5的出光端(面向透鏡L4側)及透鏡L4入光端(面向透鏡L5側)均分別具有非遠心特性。另外,透鏡L5和透鏡L4之間的光束的各主光線L實質上非全平行於投影鏡頭100的光軸A。In this example, the light exit end of the lens L5 (facing the lens L4 side) and the light entrance end of the lens L4 (facing the lens L5 side) both have non-telecentric characteristics. In addition, each chief ray L of the light beam between the lens L5 and the lens L4 is not substantially parallel to the optical axis A of the
本例中,投影鏡頭100可將位於第一像平面上的光閥30所輸入的光線投影到投影表面的第二像平面上成像。於本例中,投影表面處可設有一投影螢幕或平整表面,以提高成像品質。而由前述的第一像表面的中央出發,到達第二像表面的中央的光束,會穿過透鏡組140、透鏡組150或凹面鏡130的光軸共三次。In this example, the
舉例來說,投影鏡頭100使由光閥30傳遞進入投影鏡頭100的光束的主光線L,在透鏡L9和透鏡L10的光路之間、透鏡L1和凹面鏡130的光路之間以及凹面鏡130的光路下游分別穿過投影鏡頭100的光軸A,共三次。For example, the
於本例中,投影鏡頭100的投射比約為0.22,而光圈值F/#為1.8,並可經適度調整後為介於1.7至1.9之間。In this example, the throw ratio of the
在本實施例中,前述的各元件的實際設計可見於下列表一。In this embodiment, the actual design of the aforementioned components can be seen in Table 1 below.
表一
請同時參照圖2、表一。具體來說,在本實施例的投影鏡頭100中,凹面鏡130具有表面S1,且表面S1為非球面表面。透鏡L1由放大側120至縮小側110具有表面S2,透鏡L2由放大側120至縮小側110依序具有表面S3與表面S4,依此類推,各元件所對應的表面則不再重複贅述。其中,孔徑光欄160的成像面以表面S17來表示,且其曲率半徑為無限大(即為垂直光軸A的平面);而透鏡L1與透鏡L2、透鏡L9與透鏡L10以及透鏡L11與透鏡L12分別具有共同的表面S3、表面S19以及表面S20,意思是,透鏡L2與透鏡L3為沿著光軸A上相連結的兩個透鏡,或者是雙膠合透鏡。透鏡L9、透鏡L10與透鏡L11為沿著光軸A上相連結的三個透鏡,或者是三膠合透鏡。Please refer to Figure 2 and Table 1 at the same time. Specifically, in the
此外,表一中的間隔為該表面由放大側120至縮小側110的下一個表面之間的間隔的倒數,例如是,透鏡L1的厚度為10.45毫米,透鏡L2的厚度為1.00毫米,而透鏡L2和透鏡L3的距離0.20毫米,依此類推而不再重複贅述。表一中,“表面”編號旁有標示*符號者,代表其為非球面表面。In addition, the interval in Table 1 is the reciprocal of the interval between the next surface of the surface from the
此外,表一中的曲率半徑即為該表面的曲率半徑,其正負值代表了彎曲的方向,例如是,透鏡L3的表面S5的曲率半徑為負,且透鏡L3的表面S6的曲率半徑為正,因此,透鏡L3為雙凸透鏡。透鏡L6的表面S11的曲率半徑為負,透鏡L6的表面S12的曲率半徑為負,因此,透鏡L6為凹面朝向縮小側110的彎月形透鏡,依此類推。In addition, the radius of curvature in Table 1 is the radius of curvature of the surface, and its positive and negative values represent the direction of curvature. For example, the radius of curvature of the surface S5 of the lens L3 is negative, and the radius of curvature of the surface S6 of the lens L3 is positive. , Therefore, the lens L3 is a biconvex lens. The radius of curvature of the surface S11 of the lens L6 is negative, and the radius of curvature of the surface S12 of the lens L6 is negative. Therefore, the lens L6 is a meniscus lens with a concave surface facing the
在本實施例中,凹面鏡130的表面S1、透鏡L4的表面S7及表面S8、透鏡L6的表面S11表面S12以及透鏡L13的表面S24及表面S25為非球面表面。下方表二列出凹面鏡130的表面S1、透鏡L4的表面S7與表面S8、透鏡L6的表面S11與表面S12以及透鏡L13的表面S24與表面S25的二次曲面係數值K與各階非球面係數A-G。非球面多項式可用下列公式表示:
(1) In this embodiment, the surface S1 of the
其中,x為光軸A方向之偏移量(sag),c’是密切球面(Osculating Sphere)的半徑之倒數,也就是接近光軸處的曲率半徑的倒數,K是二次曲面係數,y是非球面高度,即為從透鏡中心往透鏡邊緣的高度。A-G分別代表非球面多項式的各階非球面係數。Where x is the offset in the direction of the optical axis A (sag), c'is the reciprocal of the radius of the Osculating Sphere, that is, the reciprocal of the radius of curvature close to the optical axis, K is the quadric coefficient, y It is the height of the aspheric surface, which is the height from the center of the lens to the edge of the lens. A-G respectively represent the aspheric coefficients of the aspheric polynomials.
表二
圖4為本發明第一實施例的投影鏡頭的成像光學模擬數據圖。請參照圖4。圖4為投影鏡頭100的光學傳遞函數曲線圖(modulation transfer function,MTF),其橫軸為每週期/毫米(mm)之空間頻率(spatial frequency in cycles per millimeter),縱軸為光學轉移函數的模數(modulus of the optical transfer function),T代表在子午方向的曲線,S代表在弧矢方向的曲線,而「TS」後面的數值代表像高。由此可驗證,本實施例的投影鏡頭100所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質,如圖4所顯示。FIG. 4 is an imaging optical simulation data diagram of the projection lens according to the first embodiment of the present invention. Please refer to Figure 4. 4 is a graph of the optical transfer function (modulation transfer function, MTF) of the
圖5為本發明第二實施例的投影鏡頭的剖面示意圖。請參照圖5。圖5所顯示的投影鏡頭100A至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。本實施例的投影鏡頭100A類似於圖2所顯示的投影鏡頭100,兩者主要差別在於,在本實施例中,投影鏡頭100A的透鏡組150具有兩組雙膠合透鏡,且透鏡組140也具有兩組雙膠合透鏡。FIG. 5 is a schematic cross-sectional view of a projection lens according to a second embodiment of the present invention. Please refer to Figure 5. The
詳細而言,在本實施例中,在透鏡組150中,沿光軸A由縮小側110往放大側120依序排列包括透鏡L15、透鏡L14、透鏡L13、透鏡L12、透鏡L11、透鏡L10、孔徑光欄160及透鏡L9。而在透鏡組140中,沿光軸A由縮小側110往放大側120依序排列包括透鏡L8、透鏡L7、透鏡L6、透鏡L5、透鏡L4、透鏡L3、透鏡L2及透鏡L1。換句話說,透鏡L15為透鏡組150中最接近縮小側110的透鏡,亦為投影鏡頭100A中最接近縮小側110的透鏡。透鏡L9為透鏡組150中最接近放大側120的透鏡。透鏡L8為透鏡組140中最接近縮小側110的透鏡。透鏡L1為透鏡組140中最接近放大側120的透鏡,亦為投影鏡頭100A中最接近放大側120的透鏡。In detail, in the present embodiment, in the
在本實施例中,前述的各元件的實際設計可見於下列表三。表三的解讀方式同表一,故不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 3 below. The interpretation of Table 3 is the same as that of Table 1, so I won’t repeat it.
表三
請同時參照圖5、表三。其中,透鏡L1與透鏡L2、透鏡L3與透鏡L4、透鏡L10與透鏡L11以及透鏡L12與透鏡L13為複合透鏡,例如是雙膠合透鏡。透鏡L5、透鏡L7及透鏡L15為非球面透鏡。換句話說,即凹面鏡130的表面S1、透鏡L5的表面S8及表面S9、透鏡L7的表面S12表面S13以及透鏡L15的表面S27及表面S28為非球面表面。此外,其餘的光學特性及其效果可參照圖1的投影鏡頭100說明,在此不再贅述。Please refer to Figure 5 and Table 3 at the same time. Among them, the lens L1 and the lens L2, the lens L3 and the lens L4, the lens L10 and the lens L11, and the lens L12 and the lens L13 are compound lenses, such as double cemented lenses. Lens L5, lens L7, and lens L15 are aspheric lenses. In other words, the surface S1 of the
下方表四列出凹面鏡130的表面S1、透鏡L5的表面S8與表面S9、透鏡L7的表面S12與表面S13以及透鏡L15的表面S27與表面S28的二次曲面係數值K與各階非球面係數A-G。Table 4 below lists the surface S1 of the
表四
圖6為本發明第二實施例的投影鏡頭的成像光學模擬數據圖。請參照圖6。圖6為投影鏡頭100A的光學傳遞函數曲線圖(modulation transfer function,MTF),圖6的解讀方式同圖3,故不予贅述。由此可驗證,本實施例的投影鏡頭100A所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質。FIG. 6 is an imaging optical simulation data diagram of the projection lens according to the second embodiment of the present invention. Please refer to Figure 6. FIG. 6 is an optical transfer function (modulation transfer function, MTF) diagram of the
圖7為本發明第三實施例的投影鏡頭的剖面示意圖。請參照圖7。圖7所顯示的投影鏡頭100B至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。本實施例的投影鏡頭100B類似於圖2所顯示的投影鏡頭100,兩者主要差別在於,在本實施例中,投影鏡頭100B的透鏡組150具有兩組雙膠合透鏡,且透鏡組140也具有兩組雙膠合透鏡。此外,投影鏡頭100B的透鏡組140中非球面透鏡的位置與投影鏡頭100的透鏡組140中非球面透鏡的位置不同。FIG. 7 is a schematic cross-sectional view of a projection lens according to a third embodiment of the present invention. Please refer to Figure 7. The
在本實施例中,前述的各元件的實際設計可見於下列表五。下表的解讀方式同表一,重復的內容將不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 5 below. The interpretation of the following table is the same as that of Table 1, and the repetitive content will not be repeated.
表五
請同時參照圖7、表五。其中,透鏡L1與透鏡L2、透鏡L3與透鏡L4、透鏡L10與透鏡L11以及透鏡L12與透鏡L13為複合透鏡,例如是雙膠合透鏡。透鏡L6、透鏡L7及透鏡L15為非球面透鏡。換句話說,即凹面鏡130的表面S1、透鏡L6的表面S10及表面S11、透鏡L7的表面S12表面S13以及透鏡L15的表面S27及表面S28為非球面表面。此外,其餘的光學特性及其效果可參照圖1的投影鏡頭100說明,在此不再贅述。Please refer to Figure 7 and Table 5 at the same time. Among them, the lens L1 and the lens L2, the lens L3 and the lens L4, the lens L10 and the lens L11, and the lens L12 and the lens L13 are compound lenses, such as double cemented lenses. Lens L6, lens L7, and lens L15 are aspheric lenses. In other words, the surface S1 of the
下方表六列出凹面鏡130的表面S1、透鏡L6的表面S10及表面S11、透鏡L7的表面S12表面S13以及透鏡L15的表面S27及表面S28的二次曲面係數值K與各階非球面係數A-G。Table 6 below lists the surface S1 of the
表六
圖8為本發明第三實施例的投影鏡頭的成像光學模擬數據圖。請參照圖8。圖8為投影鏡頭100B的光學傳遞函數曲線圖(modulation transfer function,MTF),圖8的解讀方式同圖3,將不予贅述。由此可驗證,本實施例的投影鏡頭100B所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質。FIG. 8 is an imaging optical simulation data diagram of the projection lens according to the third embodiment of the present invention. Please refer to Figure 8. FIG. 8 is an optical transfer function (modulation transfer function, MTF) graph of the
圖9為本發明第四實施例的投影鏡頭的剖面示意圖。請參照圖9。圖9所顯示的投影鏡頭100C至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。本實施例的投影鏡頭100C類似於圖2所顯示的投影鏡頭100,兩者主要差別在於,在本實施例中,投影鏡頭100B的透鏡組140中最靠近縮小側110的透鏡為非球面透鏡。FIG. 9 is a schematic cross-sectional view of a projection lens according to a fourth embodiment of the present invention. Please refer to Figure 9. The
在本實施例中,前述的各元件的實際設計可見於下列表七。下表的解讀方式同表一,重復的內容將不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 7 below. The interpretation of the following table is the same as that of Table 1, and the repetitive content will not be repeated.
表七
請同時參照圖9、表七。其中,透鏡L1與透鏡L2為複合透鏡,例如是雙膠合透鏡,而透鏡L8、透鏡L9與透鏡L10為複合透鏡,例如是三膠合透鏡。透鏡L4、透鏡L6及透鏡L12為非球面透鏡。換句話說,即凹面鏡130的表面S1、透鏡L4的表面S7及表面S8、透鏡L6的表面S11表面S12以及透鏡L12的表面S22及表面S23為非球面表面。此外,其餘的光學特性及其效果可參照圖1的投影鏡頭100說明,在此不再贅述。Please refer to Figure 9 and Table 7 at the same time. Among them, lens L1 and lens L2 are compound lenses, such as double cemented lenses, and lens L8, lens L9, and lens L10 are compound lenses, such as triple cemented lenses. Lens L4, lens L6, and lens L12 are aspheric lenses. In other words, the surface S1 of the
下方表八列出凹面鏡130的表面S1、透鏡L4的表面S7及表面S8、透鏡L6的表面S11表面S12以及透鏡L12的表面S22及表面S23的二次曲面係數值K與各階非球面係數A-G。Table 8 below lists the surface S1 of the
表八
圖10為本發明第四實施例的投影鏡頭的成像光學模擬數據圖。請參照圖10。圖10為投影鏡頭100C的光學傳遞函數曲線圖(modulation transfer function,MTF),圖10的解讀方式同圖3,將不予贅述。由此可驗證,本實施例的投影鏡頭100C所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質,如圖10所顯示。FIG. 10 is an imaging optical simulation data diagram of the projection lens according to the fourth embodiment of the present invention. Please refer to Figure 10. FIG. 10 is an optical transfer function (modulation transfer function, MTF) diagram of the
圖11為本發明第五實施例的投影鏡頭的剖面示意圖。請參照圖11。圖11所顯示的投影鏡頭100D至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。本實施例的投影鏡頭100D類似於圖2所顯示的投影鏡頭100,兩者主要差別在於,在本實施例中,投影鏡頭100D的透鏡組150具有兩組雙膠合透鏡。FIG. 11 is a schematic cross-sectional view of a projection lens according to a fifth embodiment of the present invention. Please refer to Figure 11. The
在本實施例中,前述的各元件的實際設計可見於下列表九。下表的解讀方式同表一,重復的內容將不予贅述。In this embodiment, the actual design of the aforementioned components can be seen in Table 9 below. The interpretation of the following table is the same as that of Table 1, and the repetitive content will not be repeated.
表九
請同時參照圖11、表九。其中,透鏡L1與透鏡L2、透鏡L9與透鏡L10以及透鏡L11與透鏡L12為複合透鏡,例如是雙膠合透鏡。透鏡L4、透鏡L6及透鏡L14為非球面透鏡。換句話說,即凹面鏡130的表面S1、透鏡L4的表面S7及表面S8、透鏡L6的表面S11表面S12以及透鏡L14的表面S26及表面S27為非球面表面。此外,其餘的光學特性及其效果可參照圖1的投影鏡頭100說明,在此不再贅述。Please refer to Figure 11 and Table 9 at the same time. Among them, the lens L1 and the lens L2, the lens L9 and the lens L10, and the lens L11 and the lens L12 are compound lenses, such as double cemented lenses. Lens L4, lens L6, and lens L14 are aspheric lenses. In other words, the surface S1 of the
下方表十列出凹面鏡130的表面S1、透鏡L4的表面S7及表面S8、透鏡L6的表面S11表面S12以及透鏡L14的表面S26及表面S27的二次曲面係數值K與各階非球面係數A-G。The following table ten lists the surface S1 of the
表十
圖12為本發明第五實施例的投影鏡頭的成像光學模擬數據圖。請參照圖12。圖12為投影鏡頭100D的光學傳遞函數曲線圖(modulation transfer function,MTF),圖12的解讀方法同圖3,重復部份將不予贅述。由此可驗證,本實施例的投影鏡頭100D所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質,如圖12所顯示。FIG. 12 is an imaging optical simulation data diagram of the projection lens according to the fifth embodiment of the present invention. Please refer to Figure 12. FIG. 12 is a graph of the optical transfer function (MTF) of the
圖13A為本發明第六實施例的投影鏡頭的剖面示意圖。圖13B為本發明第七實施例的投影鏡頭的剖面示意圖。請參照圖13A及圖13B。圖13A所顯示的投影鏡頭100E至少可應用於圖1所顯示投影機10中,故以下將以應用於圖1的投影機10為例說明,但本發明並不限於此。本實施例的投影鏡頭100E類似於圖2所顯示的投影鏡頭100,兩者主要差別在於,在本實施例中,投影鏡頭100E的透鏡組150具有兩組雙膠合透鏡。此外,投影鏡頭100E還包括玻璃蓋170,玻璃蓋170位於透鏡組140與凹面鏡130之間。圖13A的例中,玻璃蓋170與凹面鏡130之間是有保留空間的,但其大小及位置僅為示意,實際上,玻璃蓋170可按需求平移並與凹面鏡130連接且其大小足以封閉凹面鏡130的整個開口,以為防塵之效。另外,在應用時,亦可採如圖13B中投影鏡頭100E2的設計,其差別在於,投影鏡頭100E2將上述玻璃蓋170平移至與凹面鏡130接觸並確保二者之間為封閉,即可蓋設於凹面鏡130的側方開口,而當凹面鏡130有經切裁時,則凹面鏡130於切裁側的開口側亦可進一步包括另一玻璃蓋170A,以確保防塵效果不被影響,但本發明並不限於此。而圖13A及圖13B中所述的凹面鏡130之切裁及玻璃蓋170、170A的設計可自由套用於各實施例中。FIG. 13A is a schematic cross-sectional view of a projection lens according to a sixth embodiment of the invention. FIG. 13B is a schematic cross-sectional view of a projection lens according to a seventh embodiment of the invention. Please refer to Figure 13A and Figure 13B. The
在本實施例中,前述圖13A所顯示投影鏡頭100E的各元件的實際設計可見於下列表十一。下表的解讀方法同表一,重復部份將不予贅述。In this embodiment, the actual design of each element of the
表十一
請同時參照圖13A、表十一。其中,透鏡L1與透鏡L2、透鏡L9與透鏡L10以及透鏡L11與透鏡L12為複合透鏡,例如是雙膠合透鏡。透鏡L4、透鏡L6及透鏡L14為非球面透鏡。換句話說,即凹面鏡130的表面S1、透鏡L4的表面S9及表面S10、透鏡L6的表面S13表面S14以及透鏡L14的表面S28及表面S29為非球面表面。此外,其餘的光學特性及其效果可參照圖1的投影鏡頭100說明,在此不再贅述。Please refer to Figure 13A and Table 11 at the same time. Among them, the lens L1 and the lens L2, the lens L9 and the lens L10, and the lens L11 and the lens L12 are compound lenses, such as double cemented lenses. Lens L4, lens L6, and lens L14 are aspheric lenses. In other words, the surface S1 of the
下方表十二列出凹面鏡130的表面S1、透鏡L4的表面S9及表面S10、透鏡L6的表面S13表面S14以及透鏡L14的表面S28及表面S29的二次曲面係數值K與各階非球面係數A-G。Table 12 below lists the surface S1 of the
表十二
圖14為本發明第六實施例的投影鏡頭的成像光學模擬數據圖。請參照圖14。圖14為投影鏡頭100E的光學傳遞函數曲線圖(modulation transfer function,MTF),圖14的解讀方法同圖3,重復部份將不予贅述。由此可驗證,本實施例的投影鏡頭100E所顯示出的光學轉移函數曲線在標準範圍內,故具有良好的光學成像品質。FIG. 14 is an imaging optical simulation data diagram of the projection lens according to the sixth embodiment of the present invention. Please refer to Figure 14. FIG. 14 is a graph of the optical transfer function (MTF) of the
圖15為本發明第八實施例的投影鏡頭的剖面示意圖。請參照圖15。本實施例的投影鏡頭100F類似於圖5所顯示的投影鏡頭100A。兩者不同之處在於,在本實施例中,投影鏡頭100F還包括一反光鏡180。反光鏡180配置於透鏡組140中透鏡L5與透鏡L6之間,用以轉折光線的行進方向,但本發明並不限於此。如此一來,投影鏡頭100F可適應於不同種類的投影機中,且配置反光鏡180可縮減投影鏡頭100F的總長度。15 is a schematic cross-sectional view of a projection lens according to an eighth embodiment of the invention. Please refer to Figure 15. The
以下表十三,為各實施例的參數列表。The following table 13 is a list of parameters of each embodiment.
表十三
綜上所述,在本發明的一實施例中的投影鏡頭及應用其投影鏡頭的投影機可讓光閥所發出的光束通過光軸三次而產生三次成像,並且在大光圈、低畸變以及低色差的要求下具有較佳的光學品質。In summary, in an embodiment of the present invention, the projection lens and the projector using the projection lens can allow the light beam emitted by the light valve to pass through the optical axis three times to produce three times of imaging. It has better optical quality under the requirement of chromatic aberration.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.
10:投影機
20:電子裝置
30:光閥
40、170:玻璃蓋
50:稜鏡
60:穿透式平順圖像裝置
100、100A、100B、100C、100D、100E、100E2、100F:投影鏡頭
110:縮小側
120:放大側
130:曲面鏡
140、150:透鏡組
160:孔徑光欄
170、170A:玻璃蓋
180:反光鏡
A、A1、A2:光軸
H:像高
L:主光線
L1~L15:透鏡
S1~S29:表面10: Projector
20: Electronic device
30:
圖1為本發明第一實施例的投影機的示意圖。 圖2為本發明第一實施例的投影鏡頭的剖面示意圖。 圖3為本發明第一實施例的光閥的示意圖。 圖4為本發明第一實施例的投影鏡頭的成像光學模擬數據圖。 圖5為本發明第二實施例的投影鏡頭的剖面示意圖。 圖6為本發明第二實施例的投影鏡頭的成像光學模擬數據圖。 圖7為本發明第三實施例的投影鏡頭的剖面示意圖。 圖8為本發明第三實施例的投影鏡頭的成像光學模擬數據圖。 圖9為本發明第四實施例的投影鏡頭的剖面示意圖。 圖10為本發明第四實施例的投影鏡頭的成像光學模擬數據圖。 圖11為本發明第五實施例的投影鏡頭的剖面示意圖。 圖12為本發明第五實施例的投影鏡頭的成像光學模擬數據圖。 圖13A為本發明第六實施例的投影鏡頭的剖面示意圖。 圖13B為本發明第七實施例的投影鏡頭的剖面示意圖。 圖14為本發明第六實施例的投影鏡頭的成像光學模擬數據圖。 圖15為本發明第八實施例的投影鏡頭的剖面示意圖。Fig. 1 is a schematic diagram of a projector according to a first embodiment of the present invention. 2 is a schematic cross-sectional view of the projection lens of the first embodiment of the invention. Fig. 3 is a schematic diagram of the light valve according to the first embodiment of the present invention. FIG. 4 is an imaging optical simulation data diagram of the projection lens according to the first embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a projection lens according to a second embodiment of the present invention. FIG. 6 is an imaging optical simulation data diagram of the projection lens according to the second embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of a projection lens according to a third embodiment of the present invention. FIG. 8 is an imaging optical simulation data diagram of the projection lens according to the third embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of a projection lens according to a fourth embodiment of the present invention. FIG. 10 is an imaging optical simulation data diagram of the projection lens according to the fourth embodiment of the present invention. FIG. 11 is a schematic cross-sectional view of a projection lens according to a fifth embodiment of the present invention. FIG. 12 is an imaging optical simulation data diagram of the projection lens according to the fifth embodiment of the present invention. FIG. 13A is a schematic cross-sectional view of a projection lens according to a sixth embodiment of the invention. FIG. 13B is a schematic cross-sectional view of a projection lens according to a seventh embodiment of the invention. FIG. 14 is an imaging optical simulation data diagram of the projection lens according to the sixth embodiment of the present invention. 15 is a schematic cross-sectional view of a projection lens according to an eighth embodiment of the invention.
30:光閥30: Light valve
40:玻璃蓋40: glass cover
50:稜鏡50: 稜鏡
60:穿透式平順圖像裝置60: Transmissive smooth image device
100:投影鏡頭100: Projection lens
110:縮小側110: Reduced side
120:放大側120: Magnified side
130:曲面鏡130: curved mirror
140、150:透鏡組140, 150: lens group
160:孔徑光欄160: aperture diaphragm
A:光軸A: Optical axis
L:主光線L: chief ray
L1~L13:透鏡L1~L13: lens
S1~S25:表面S1~S25: surface
Claims (24)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132229A TWI795592B (en) | 2019-09-06 | 2019-09-06 | Projection lens and projector |
CN201911015468.7A CN112462491B (en) | 2019-09-06 | 2019-10-24 | Projection lens and projector |
US16/690,142 US10928612B1 (en) | 2019-09-06 | 2019-11-21 | Projection lens and projector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108132229A TWI795592B (en) | 2019-09-06 | 2019-09-06 | Projection lens and projector |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202111379A true TW202111379A (en) | 2021-03-16 |
TWI795592B TWI795592B (en) | 2023-03-11 |
Family
ID=74659342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132229A TWI795592B (en) | 2019-09-06 | 2019-09-06 | Projection lens and projector |
Country Status (3)
Country | Link |
---|---|
US (1) | US10928612B1 (en) |
CN (1) | CN112462491B (en) |
TW (1) | TWI795592B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798802B (en) * | 2021-08-31 | 2023-04-11 | 中強光電股份有限公司 | Projection lens and projection apparatus |
TWI809587B (en) * | 2021-12-07 | 2023-07-21 | 揚明光學股份有限公司 | Projection lens |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM554571U (en) * | 2017-09-13 | 2018-01-21 | 孔建平 | Reflective type wide angle lens |
CN112230499A (en) * | 2019-07-15 | 2021-01-15 | 中强光电股份有限公司 | Illumination system and projection apparatus |
CN114859524B (en) * | 2022-07-07 | 2022-10-25 | 沂普光电(天津)有限公司 | Ultra-short-focus optical system and projection equipment |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI393916B (en) * | 2009-03-12 | 2013-04-21 | Young Optics Inc | Fixed-focus lens |
JP2011033737A (en) * | 2009-07-30 | 2011-02-17 | Fujifilm Corp | Projection optical system and projection type display using the same |
CN103293642B (en) * | 2012-03-02 | 2015-08-26 | 扬明光学股份有限公司 | Projection lens and projection arrangement |
CN107490844B (en) * | 2012-10-25 | 2020-05-19 | 扬明光学股份有限公司 | Wide-angle projection lens |
JP5963057B2 (en) * | 2013-07-26 | 2016-08-03 | 株式会社リコー | Projection optical system and image projection apparatus |
TWI551884B (en) * | 2013-10-31 | 2016-10-01 | 揚明光學股份有限公司 | Projection lens |
JP6497573B2 (en) * | 2014-06-23 | 2019-04-10 | 株式会社リコー | Projection device and projection system |
JP6540044B2 (en) * | 2015-01-27 | 2019-07-10 | セイコーエプソン株式会社 | Projection optical device and projector |
CN107636511B (en) * | 2015-06-12 | 2020-06-19 | 精工爱普生株式会社 | Projection optical system and projector |
TWI773677B (en) * | 2017-06-30 | 2022-08-11 | 揚明光學股份有限公司 | Wide-angle projection lens |
-
2019
- 2019-09-06 TW TW108132229A patent/TWI795592B/en active
- 2019-10-24 CN CN201911015468.7A patent/CN112462491B/en active Active
- 2019-11-21 US US16/690,142 patent/US10928612B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798802B (en) * | 2021-08-31 | 2023-04-11 | 中強光電股份有限公司 | Projection lens and projection apparatus |
TWI809587B (en) * | 2021-12-07 | 2023-07-21 | 揚明光學股份有限公司 | Projection lens |
Also Published As
Publication number | Publication date |
---|---|
US20210072523A1 (en) | 2021-03-11 |
US10928612B1 (en) | 2021-02-23 |
CN112462491A (en) | 2021-03-09 |
CN112462491B (en) | 2024-06-11 |
TWI795592B (en) | 2023-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9261767B2 (en) | Projection optical system and image display apparatus | |
TWI795592B (en) | Projection lens and projector | |
US9785043B2 (en) | Projection optical system and projector apparatus | |
CN101685199B (en) | Optical engine and wide angle projection lens module thereof | |
US7558002B2 (en) | Projection zoom lens and projection-type display device | |
JP6270128B2 (en) | Projection optical system and image projection apparatus | |
JP5513248B2 (en) | Projection zoom lens and projection display device | |
JP5442515B2 (en) | Projection lens and projection display device using the same | |
JP2015108797A (en) | Wide-angle projection optical system | |
US20100165477A1 (en) | Projection zoom lens and projection-type display apparatus | |
CN210323733U (en) | Projection lens and projection device | |
CN109491053B (en) | Miniature projection lens | |
WO2023070811A1 (en) | Optical system and projection device | |
JP2018180238A (en) | Projection optical system and image projection device | |
US8422140B2 (en) | Fixed focal length lens | |
TWI530710B (en) | Projection apparatus and projection lens | |
JP2023035891A (en) | Projection lens assembly and projection apparatus | |
TWI831882B (en) | Zoom projection lens | |
CN109975951B (en) | Projection lens and projection system | |
TWI809587B (en) | Projection lens | |
TW201706670A (en) | Projection lens and projection device thereof | |
TWI803955B (en) | Projection lens and projection apparatus | |
TWI798802B (en) | Projection lens and projection apparatus | |
CN214540364U (en) | Automatic focusing ultra-short focus projection lens based on liquid lens | |
US11856337B2 (en) | Projection-type display device |