TW202107158A - Virtual reality optical device with two focusing planes - Google Patents

Virtual reality optical device with two focusing planes Download PDF

Info

Publication number
TW202107158A
TW202107158A TW108128495A TW108128495A TW202107158A TW 202107158 A TW202107158 A TW 202107158A TW 108128495 A TW108128495 A TW 108128495A TW 108128495 A TW108128495 A TW 108128495A TW 202107158 A TW202107158 A TW 202107158A
Authority
TW
Taiwan
Prior art keywords
polarization
light
lens
wave plate
virtual reality
Prior art date
Application number
TW108128495A
Other languages
Chinese (zh)
Other versions
TWI715145B (en
Inventor
塗宗偉
邱奕榮
黃士挺
李彥賢
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW108128495A priority Critical patent/TWI715145B/en
Application granted granted Critical
Publication of TWI715145B publication Critical patent/TWI715145B/en
Publication of TW202107158A publication Critical patent/TW202107158A/en

Links

Images

Abstract

A virtual reality (VR) optical apparatus having two focusing planes is provided. The VR optical apparatus includes a display panel, and a first lens, a second lens, a quarter-wave plate, and a reflective polarizer that are sequentially arranged. The display panel is configured to emit first light having a first polarization and second light having a second polarization. The first lens includes a first surface and a second surface. The second surface is close to the display panel, and the first surface is close to the second lens, and the first surface is a transmissive-reflective surface. The reflective polarizer is configured to allow light having P polarization to pass through.

Description

具有雙對焦平面的虛擬實境光學裝置Virtual reality optical device with dual focus planes

本發明係有關於光學系統,特別是有關於一種具有雙對焦平面的虛擬實境(Virtual Reality,VR)光學裝置。The present invention relates to an optical system, in particular to a virtual reality (VR) optical device with dual focus planes.

立體影像顯示器,例如虛擬實境(VR)顯示裝置,一般都是分別投射具有視角差的左眼影像及右眼影像至使用者的左眼及右眼,且使用者的左眼及右眼分別聚焦在不同的平面上,即可產生立體視覺。Stereoscopic image displays, such as virtual reality (VR) display devices, generally project left-eye and right-eye images with different viewing angles to the left and right eyes of the user, and the left and right eyes of the user are respectively Focus on different planes to produce stereo vision.

此種立體視覺雖然可讓使用者感受到立體場景,但是人眼仍然是分別對焦在不同平面同深度的位置,與人眼觀察實際三維空間中之物體進行比較,立體影像顯示器所產生的立體視覺與人眼實際感受到的視覺效果是不同的。舉例來說,人眼在觀看實際三維空間之物體,在左眼及右眼的對焦位置及成像位置110是相同的,且成像位置110附近的畫面是清晰的,但在人眼的左右兩側視角的畫面則是較為模糊,但是視覺距離和對焦距離是相等的,如第1A圖所示。Although this kind of stereo vision allows users to perceive a stereo scene, the human eyes still focus on different planes at the same depth. Compared with the human eyes observing objects in the actual three-dimensional space, the stereo vision produced by the stereo image display It is different from the visual effect actually felt by the human eye. For example, when the human eye is viewing an object in the actual three-dimensional space, the focus position and imaging position 110 of the left eye and the right eye are the same, and the image near the imaging position 110 is clear, but on the left and right sides of the human eye The viewing angle of the picture is more blurred, but the visual distance and the focus distance are equal, as shown in Figure 1A.

然而,立體影像顯示器所投射的影像是在各視角範圍均是清晰的,且使用者所感受到的影像之物體之成像位置140是在立體影像顯示器的顯示面板150後方,如第1B圖所示。但是視覺距離和對焦距離是不相同的,這種視覺差異亦可能會造成某些使用者產生暈眩,此效應稱為視覺輻輳調節衝突(vergence-accommodation conflict,VAC)。此外,人眼在觀看實際場景中之物體是可以選擇對焦範圍,但是現有的立體影像顯示器並不具備此功能,進而造成使用者體驗不佳。However, the image projected by the 3D image display is clear in each viewing angle range, and the imaging position 140 of the image object felt by the user is behind the display panel 150 of the 3D image display, as shown in FIG. 1B. However, the visual distance and the focusing distance are not the same, and this visual difference may also cause dizziness for some users. This effect is called the vergence-accommodation conflict (VAC). In addition, the human eye can select the focus range when viewing objects in the actual scene, but the existing stereoscopic image display does not have this function, which causes a poor user experience.

本發明係提供一種具有雙對焦平面的虛擬實境光學裝置以解決上述問題。上述虛擬實境光學裝置包括:一顯示面板、以及依序排列設置的一第一透鏡、一第二透鏡、一四分之一波片、及一偏振反射鏡。顯示面板係用以發射具有第一偏振的第一光線及具有第二偏振的第二光線。第一透鏡包括一第一表面及一第二表面,第二表面係靠近該顯示面板,第一表面係靠近該第二透鏡,且第一表面為一半穿透半反射鏡面。偏振反射鏡係用以讓具有P偏振的光線穿過。The present invention provides a virtual reality optical device with dual focus planes to solve the above-mentioned problems. The aforementioned virtual reality optical device includes: a display panel, and a first lens, a second lens, a quarter wave plate, and a polarizing mirror arranged in sequence. The display panel is used to emit a first light with a first polarization and a second light with a second polarization. The first lens includes a first surface and a second surface. The second surface is close to the display panel, the first surface is close to the second lens, and the first surface is a semi-transmissive mirror surface. The polarizing mirror is used to let light with P polarization pass through.

在上述實施例中,第一偏振為R偏振且第二偏振為L偏振。顯示面板所發射出的第一光線係依序穿過該第一透鏡、第二透鏡、四分之一波片及偏振反射鏡以在一使用者之眼睛進行形成第一影像。顯示面板所發射出的第二光線係依序穿過該第一透鏡、該第二透鏡、該四分之一波片,且具有該第二偏振的該第二光線被該四分之一波片轉換為S偏振。具有S偏振的該第二光線被該偏振反射鏡所反射,並穿過該四分之一波片被轉換為R偏振,且具有R偏振的該第二光線穿過該第二透鏡,並且被該第一透鏡之該第一表面反射。被該第一表面反射的該第二光線穿過該第二透鏡及該四分之一波片被轉換為P偏振,且具有P偏振的該第二光線係穿過該偏振反射鏡,並在該使用者之眼睛形成第二影像。In the above embodiment, the first polarization is R polarization and the second polarization is L polarization. The first light emitted by the display panel sequentially passes through the first lens, the second lens, the quarter wave plate and the polarizing mirror to form a first image in the eyes of a user. The second light emitted by the display panel passes through the first lens, the second lens, and the quarter wave plate in sequence, and the second light having the second polarization is transmitted by the quarter wave The plate is converted to S polarization. The second light with S polarization is reflected by the polarizing mirror, and is converted into R polarization through the quarter wave plate, and the second light with R polarization passes through the second lens and is The first surface of the first lens reflects. The second light reflected by the first surface passes through the second lens and the quarter wave plate to be converted into P polarization, and the second light with P polarization passes through the polarizing mirror and is The user's eyes form a second image.

在上述實施例中,第一光線在使用者之眼睛所形成的第一影像係具有第一像距,且第二光線在該使用者之眼睛所形成的第二影像係具有第二像距,其中第二像距係大於第一像距。In the above embodiment, the first image formed by the first light on the user’s eyes has a first image distance, and the second image formed by the second light on the user’s eyes has a second image distance, The second image distance is greater than the first image distance.

在一些實施例中,第一偏振為P偏振且第二偏振為S偏振,且虛擬實境光學裝置更包括一半波片,設置於在該第一透鏡及該顯示面板之間。顯示面板所發射出的第一光線係依序穿過該半波片、第一透鏡、第二透鏡、四分之一波片及偏振反射鏡以在使用者之眼睛進行形成第一影像。In some embodiments, the first polarization is P polarization and the second polarization is S polarization, and the virtual reality optical device further includes a half-wave plate disposed between the first lens and the display panel. The first light emitted by the display panel sequentially passes through the half-wave plate, the first lens, the second lens, the quarter-wave plate, and the polarizing mirror to form a first image in the eyes of the user.

在上述實施例中,具有S偏振的第二光線穿過半波片後被轉換為L偏振,且具有L偏振的第二光線係依序穿過第一透鏡、第二透鏡、四分之一波片,且具有L偏振的該第二光線被該四分之一波片轉換為S偏振。具有S偏振的第二光線被偏振反射鏡所反射,並穿過四分之一波片被轉換為R偏振,且具有R偏振的第二光線穿過第二透鏡,並且被第一透鏡之第一表面反射。被第一表面反射的該第二光線穿過第二透鏡及四分之一波片被轉換為P偏振,且具有P偏振的第二光線係穿過偏振反射鏡,並在使用者之眼睛形成第二影像。In the above embodiment, the second light with S polarization is converted to L polarization after passing through the half-wave plate, and the second light with L polarization passes through the first lens, the second lens, and the quarter wave in sequence. The second light with L polarization is converted into S polarization by the quarter wave plate. The second light with S polarization is reflected by the polarizing mirror, and is converted into R polarization after passing through the quarter-wave plate, and the second light with R polarization passes through the second lens and is passed through the second lens of the first lens. A surface reflection. The second light reflected by the first surface passes through the second lens and the quarter wave plate to be converted into P polarization, and the second light with P polarization passes through the polarizing reflector and forms in the eyes of the user The second image.

在上述實施例中,第一光線在使用者之眼睛所形成的第一影像係具有第一像距,且第二光線在使用者之眼睛所形成的第二影像係具有第二像距,其中第二像距係大於第一像距。In the above embodiment, the first image formed by the first light on the user's eyes has a first image distance, and the second image formed by the second light on the user's eyes has a second image distance, wherein The second image distance is greater than the first image distance.

在一些實施例中,顯示面板係同時發射出第一光線及第二光線。在另一些實施例中,顯示面板係使用分時多工以輪流發射出第一光線及第二光線。In some embodiments, the display panel emits the first light and the second light at the same time. In other embodiments, the display panel uses time division multiplexing to emit the first light and the second light in turn.

在一些實施例中,第一透鏡可以為多片光學透鏡所構成的一鏡組。In some embodiments, the first lens may be a lens group composed of multiple optical lenses.

在一些實施例中,第一透鏡之第一表面可以獨立於第一透鏡,且可用單獨的半穿透半反射透鏡所實現。In some embodiments, the first surface of the first lens can be independent of the first lens, and can be realized by a separate semi-transmissive and semi-reflective lens.

在一些實施例中,第二透鏡可以為多片光學透鏡所構成的一鏡組。In some embodiments, the second lens may be a lens group composed of multiple optical lenses.

以下說明係為完成發明的較佳實現方式,其目的在於描述本發明的基本精神,但並不用以限定本發明。實際的發明內容必須參考之後的權利要求範圍。The following description is a preferred implementation of the invention, and its purpose is to describe the basic spirit of the invention, but is not intended to limit the invention. The actual content of the invention must refer to the scope of the claims that follow.

必須了解的是,使用於本說明書中的"包含"、"包括"等詞,係用以表示存在特定的技術特徵、數值、方法步驟、作業處理、元件以及/或組件,但並不排除可加上更多的技術特徵、數值、方法步驟、作業處理、元件、組件,或以上的任意組合。It must be understood that the words "including", "including" and other words used in this specification are used to indicate the existence of specific technical features, values, method steps, operations, elements, and/or components, but they do not exclude Add more technical features, values, method steps, job processing, components, components, or any combination of the above.

於權利要求中使用如"第一"、"第二"、"第三"等詞係用來修飾權利要求中的元件,並非用來表示之間具有優先權順序,先行關係,或者是一個元件先於另一個元件,或者是執行方法步驟時的時間先後順序,僅用來區別具有相同名字的元件。Words such as "first", "second", and "third" used in the claims are used to modify the elements in the claims, and are not used to indicate that there is an order of priority, antecedent relationship, or an element Prior to another element, or the chronological order of execution of method steps, is only used to distinguish elements with the same name.

第2A圖係顯示依據本發明一實施例中之虛擬實境光學裝置的示意圖。在一實施例中,虛擬實境光學裝置200包括顯示面板210、透鏡212、透鏡214、四分之一波片(quarter-wave plate)216及偏振反射鏡218,其中虛擬實境光學裝置200中的元件212~218可視為依序排列設置的一堆疊光學鏡片結構(stacked optical lens structure),且可設置於一光學組件中。FIG. 2A is a schematic diagram showing a virtual reality optical device according to an embodiment of the present invention. In one embodiment, the virtual reality optical device 200 includes a display panel 210, a lens 212, a lens 214, a quarter-wave plate 216, and a polarizing mirror 218, wherein the virtual reality optical device 200 The elements 212-218 can be regarded as a stacked optical lens structure arranged in sequence, and can be arranged in an optical component.

顯示面板210例如可為一液晶(liquid crystal)面板、一發光二極體(light-emitting diode)面板、一有機發光二極體(organic light-emitting diode)面板、液晶覆矽(liquid crystal on silicon,LCoS)面板、或微型發光二極體(Micro LED)面板,但本發明並不限於此。The display panel 210 can be, for example, a liquid crystal panel, a light-emitting diode panel, an organic light-emitting diode panel, liquid crystal on silicon , LCoS) panel, or micro light emitting diode (Micro LED) panel, but the present invention is not limited to this.

顯示面板210例如可發射具有R偏振的光線及具有L偏振的光線,分別代表距離不同的畫面,例如遠處畫面及近處畫面。其中,顯示面板210可同時輸出具有R偏振的光線及具有L偏振的光線,或是利用分時多工(time multiplexing)的方式在具有R偏振的光線及具有L偏振的光線中進行切換。The display panel 210 can emit, for example, light with R polarization and light with L polarization, which respectively represent images at different distances, such as a distant image and a near image. Wherein, the display panel 210 can output light with R polarization and light with L polarization at the same time, or switch between the light with R polarization and the light with L polarization by means of time multiplexing.

透鏡214例如可為一般的光學透鏡。透鏡212例如為一特殊透鏡,其中透鏡212靠近透鏡213的表面2121(例如第一表面)例如為一半穿透半反射鏡面(例如可用特殊鍍膜實現),且透鏡213靠近顯示面板210的表面2122(例如第二表面)例如為正常的透鏡表面。表面2121之反射率/穿透率例如可表示為50R/50T,意即來自表面2121左側的光線會有50%會被表面2121反射,且有50%的光線會穿過表面2121。此外,透鏡212之表面2121及2122可用不同類型的表面進行搭配,例如表面2121及2122可分別為平-凸、凹-凸、凸-平、或凸-凹表面等組合,但本發明並不限於此。The lens 214 may be, for example, a general optical lens. The lens 212 is, for example, a special lens, where the surface 2121 (for example, the first surface) of the lens 212 close to the lens 213 is, for example, a half-transmitting semi-reflective mirror surface (for example, it can be realized by a special coating), and the lens 213 is close to the surface 2122 of the display panel 210 ( For example, the second surface) is, for example, a normal lens surface. The reflectance/transmittance of the surface 2121 can be expressed as 50R/50T, for example, which means that 50% of the light from the left side of the surface 2121 will be reflected by the surface 2121, and 50% of the light will pass through the surface 2121. In addition, the surfaces 2121 and 2122 of the lens 212 can be matched with different types of surfaces. For example, the surfaces 2121 and 2122 can be flat-convex, concave-convex, convex-flat, or convex-concave surfaces, respectively, but the invention does not Limited to this.

在一些實施例中,透鏡212可以為多片光學透鏡所構成的一鏡組,且鏡組內的所有透鏡表面皆可以為凹、凸、非球面鏡、自由曲面鏡及菲涅耳透鏡(Fersnel lens)。In some embodiments, the lens 212 may be a lens group composed of multiple optical lenses, and all lens surfaces in the lens group may be concave, convex, aspherical, free-form surface, and Fresnel lens (Fersnel lens). ).

此外,透鏡212之表面2121的半穿透半反射鏡面可以獨立出於第一透鏡,且可用單獨的半穿透半反射透鏡所實現。In addition, the semi-transmissive and semi-reflective mirror of the surface 2121 of the lens 212 can be independently derived from the first lens, and can be realized by a separate semi-transmissive and semi-reflective lens.

在一些實施例中,透鏡214可以為多片光學透鏡所構成的一鏡組,且鏡組內的所有透鏡表面皆可以為凹、凸、非球面鏡、自由曲面鏡及菲涅耳透鏡。In some embodiments, the lens 214 may be a lens group composed of multiple optical lenses, and all lens surfaces in the lens group may be concave, convex, aspherical, free-form surface, and Fresnel lenses.

四分之一波片216亦可稱位相位延遲片,其係用以將入射光的相位延遲90度。無論是從四分之一波片216的右側表面或左側表面來的入射光,穿過四分之一波片216後,其相位均會被延遲90度。The quarter wave plate 216 can also be called a phase retarder, which is used to retard the phase of the incident light by 90 degrees. Whether it is incident light from the right side surface or the left side surface of the quarter wave plate 216, after passing through the quarter wave plate 216, its phase will be delayed by 90 degrees.

偏振反射鏡218係用以讓一具有特定偏振的光線穿過,例如具有P偏振的光線。The polarizing mirror 218 is used to allow a light with a specific polarization to pass through, for example, a light with a P polarization.

第2B圖為依據本發明一實施例中之R偏振光的行進路徑的示意圖。第2C圖為依據本發明一實施例中之L偏振光的行進路徑的示意圖。FIG. 2B is a schematic diagram of the traveling path of R-polarized light according to an embodiment of the present invention. FIG. 2C is a schematic diagram of the traveling path of L-polarized light according to an embodiment of the present invention.

在一實施例中,顯示面板210所射出的R偏振光表示近處畫面,L偏振光表示遠處畫面。從顯示面板210所輸出的R偏振光可直接穿過透鏡212及214,並經過四分之一波片216後轉換為P偏振光。若偏振反射鏡218是設計為讓P偏振光通過,則經過四分之一波片216後轉換後產生的P偏振光可穿過偏振反射鏡218並進入使用者眼睛220,並在使用者眼睛220產生較短像距的虛像。其中上述虛像之像距例如為295毫米(mm),其中使用者眼睛220觀察到上述虛像成像的位置是在顯示面板210後方,如第3A圖所示。In an embodiment, the R-polarized light emitted by the display panel 210 represents a near image, and the L-polarized light represents a distant image. The R-polarized light output from the display panel 210 may directly pass through the lenses 212 and 214, and be converted into P-polarized light after passing through the quarter-wave plate 216. If the polarizing reflector 218 is designed to pass P-polarized light, the P-polarized light generated after conversion by the quarter-wave plate 216 can pass through the polarizing reflector 218 and enter the user's eye 220, and is in the user's eye 220 produces a virtual image with a shorter image distance. The image distance of the virtual image is, for example, 295 millimeters (mm), and the position where the user's eyes 220 observe the virtual image is behind the display panel 210, as shown in FIG. 3A.

顯示面板210所射出的R偏振光在使用者眼睛220進行成像的路徑例如可參考第2B圖,其中光線路徑305、306、307係表示在顯示面板210中之不同位置301、302、303所發射出的R偏振光之行進路徑。顯示面板210之不同位置301、302、303所發射出的R偏振光均可直接穿過透鏡212及214、四分之一波片216(轉換為P偏振光)、及偏振反射鏡218(容許P偏振光通過),並在使用者眼睛220產生較短像距的虛像。The imaging path of the R-polarized light emitted by the display panel 210 in the eyes of the user 220 can be referred to, for example, Figure 2B, where the light paths 305, 306, and 307 represent the emission at different positions 301, 302, and 303 in the display panel 210. The travel path of the outgoing R-polarized light. The R-polarized light emitted from different positions 301, 302, and 303 of the display panel 210 can directly pass through the lenses 212 and 214, the quarter wave plate 216 (converted to P-polarized light), and the polarizing mirror 218 (allowing P-polarized light passes through), and a virtual image with a shorter image distance is generated in the user's eye 220.

此外,從顯示面板210所輸出的L偏振光可直接穿過透鏡212及214,並經過四分之一波片216後轉換為S偏振光。因為偏振反射鏡218是設計為讓P偏振光通過,故經過四分之一波片216轉換後產生的S偏振光會被偏振反射鏡218所反射,反射後的S偏振光再經過四分之一波片216後會被轉換為R偏振光並穿過透鏡214。然而,上述R偏振光有部分(約50%)會被透鏡212的側表面2121所反射。反射後的R偏振光會再度穿過透鏡214及四分之一波片216後被轉換為P偏振光。此時,轉換後產生的P偏振光即可通過偏振反射鏡218而進入使用者眼睛220,並在使用者眼睛220產生較長像距的虛像,如第2C圖所示。其中上述虛像之像距因為經過多次折射,故第2C圖中換算而得的像距例如為1726毫米(mm)會比第2B圖中之像距還長,其中使用者眼睛220觀察到上述虛像成像的位置是在顯示面板210後方,如第3B圖所示。In addition, the L-polarized light output from the display panel 210 can directly pass through the lenses 212 and 214, and pass through the quarter-wave plate 216 before being converted into S-polarized light. Because the polarizing mirror 218 is designed to pass P-polarized light, the S-polarized light generated after conversion by the quarter-wave plate 216 will be reflected by the polarizing mirror 218, and the reflected S-polarized light will pass through a quarter. A wave plate 216 is converted into R polarized light and passes through the lens 214. However, a part (about 50%) of the above-mentioned R-polarized light will be reflected by the side surface 2121 of the lens 212. The reflected R-polarized light passes through the lens 214 and the quarter wave plate 216 again, and then is converted into P-polarized light. At this time, the P-polarized light generated after the conversion can enter the user's eye 220 through the polarizing mirror 218, and produce a virtual image with a longer image distance in the user's eye 220, as shown in FIG. 2C. The image distance of the above virtual image has undergone multiple refractions, so the converted image distance in Figure 2C is, for example, 1726 millimeters (mm), which is longer than the image distance in Figure 2B. The user’s eyes 220 observe the above The virtual image is formed behind the display panel 210, as shown in FIG. 3B.

顯示面板210所射出的L偏振光在使用者眼睛220進行成像的路徑例如可參考第2C圖,其中光線路徑315、316、317係表示在顯示面板210中之不同位置311、312、313所發射出的L偏振光之行進路徑。L偏振光直接穿過透鏡212及214、及四分之一波片216後,會被轉換為S偏振光並且被偏振反射鏡218(容許P偏振光通過)所反射,反射後的S偏振光再經過四分之一波片216後會被轉換為R偏振光並穿過透鏡214,並且被透鏡212的側表面2121所反射。反射後的R偏振光會再度穿過透鏡214及四分之一波片216後被轉換為P偏振光,並在使用者眼睛220產生較短像距的虛像。The imaging path of the L-polarized light emitted by the display panel 210 in the eyes of the user 220 can be referred to, for example, Figure 2C, where the light paths 315, 316, and 317 indicate that the light paths 315, 316, and 317 are emitted at different positions 311, 312, and 313 in the display panel 210. The travel path of the L polarized light out. After the L-polarized light passes through the lenses 212 and 214 and the quarter wave plate 216 directly, it is converted into S-polarized light and is reflected by the polarizing mirror 218 (allowing P-polarized light to pass through). The reflected S-polarized light After passing through the quarter wave plate 216, it will be converted into R-polarized light and pass through the lens 214, and be reflected by the side surface 2121 of the lens 212. The reflected R-polarized light passes through the lens 214 and the quarter-wave plate 216 again, and then is converted into P-polarized light, and a virtual image with a shorter image distance is generated in the user's eye 220.

簡單來說,第3A及3B圖可依照其像距的實際比例而一起繪製為第3C圖,意即使用者眼睛220可同時從顯示面板210接收到不同像距的影像,且使用者眼睛220可自行調節其對焦點以對準較長像距(例如1726mm)的影像或是較短像距(例如295mm)的影像,但本發明並不限於此。In simple terms, the 3A and 3B images can be drawn together as the 3C image according to the actual ratio of the image distance, which means that the user's eyes 220 can receive images of different image distances from the display panel 210 at the same time, and the user's eyes 220 The focus point can be adjusted to align the image with a longer image distance (for example, 1726mm) or an image with a shorter image distance (for example, 295mm), but the invention is not limited to this.

需注意的是,本案第2~3圖中所使用的之不同像距僅為說明之用,且本發明領域中具有通常知識者可依實際情況調整在虛擬實境光學裝置200中之透鏡的配置及焦距以得到具有較長像距的影像及具有較短像距的影像。It should be noted that the different image distances used in Figures 2 to 3 of this case are for illustrative purposes only, and those with ordinary knowledge in the field of the present invention can adjust the lens in the virtual reality optical device 200 according to actual conditions. Configure and focus to obtain images with longer image distances and images with shorter image distances.

第4A圖為依據本發明另一實施例中虛擬實境光學裝置的示意圖。FIG. 4A is a schematic diagram of a virtual reality optical device according to another embodiment of the present invention.

如第4A圖所示,虛擬實境光學裝置400係類似於第2A圖中之虛擬實境光學裝置200,其差別在於虛擬實境光學裝置400中之顯示面板410係可同時發射出P偏振光及S偏振光,且虛擬實境光學裝置400在顯示面板410及透鏡412之間更配置了半波片(half-wave plate)411。As shown in Figure 4A, the virtual reality optical device 400 is similar to the virtual reality optical device 200 in Figure 2A. The difference is that the display panel 410 in the virtual reality optical device 400 can simultaneously emit P-polarized light. And S-polarized light, and the virtual reality optical device 400 is further equipped with a half-wave plate 411 between the display panel 410 and the lens 412.

詳細而言,虛擬實境光學裝置400中之顯示面板410及半波片411係與虛擬實境光學裝置200不同。因為偏振折射鏡418同樣是讓P偏振光穿過,若在顯示面板410及透鏡412之間未設置半波片411時,顯示面板410所發射出的P偏振光及S偏振光經過四分之一波片416的一次轉換及三次轉換所產生的偏振光均不是P偏振光,所以並無法穿過偏振反射鏡418而在使用者眼睛420中呈現不同像距的影像。當在顯示面板410及透鏡412之間配置了半波片411後,顯示面板410所發射出的P偏振光及S偏振光在進入透鏡412前即已被半波片411分別轉換為R偏振光及L偏振光,因此,R偏振光及L偏振光在進入透鏡412後的光線路徑則分別與第2B圖及第2C圖類似,故其細節於此不再贅述。In detail, the display panel 410 and the half-wave plate 411 in the virtual reality optical device 400 are different from the virtual reality optical device 200. Because the polarizing refractor 418 also allows P-polarized light to pass through, if the half-wave plate 411 is not provided between the display panel 410 and the lens 412, the P-polarized light and S-polarized light emitted by the display panel 410 pass through a quarter. The polarized light generated by the first conversion and the third conversion of the wave plate 416 is not P-polarized light, so it cannot pass through the polarizing mirror 418 and present images with different image distances in the user's eyes 420. When the half-wave plate 411 is arranged between the display panel 410 and the lens 412, the P-polarized light and S-polarized light emitted by the display panel 410 are converted into R-polarized light by the half-wave plate 411 before entering the lens 412. Therefore, the light paths of the R-polarized light and the L-polarized light after entering the lens 412 are similar to those in FIG. 2B and FIG. 2C, respectively, so the details will not be repeated here.

第4B圖為依據本發明又一實施例中虛擬實境光學裝置的示意圖。FIG. 4B is a schematic diagram of a virtual reality optical device according to another embodiment of the present invention.

在一些實施例中,虛擬實境光學裝置400可包括顯示面板410A及410B、及偏振分光鏡424。其中,顯示面板410A及410B分別用於發射P偏振及S偏振的光線,且P偏振光及S偏振光例如可經過偏振分光鏡(polarizing beam splitter,PBS)424進行合成後再進入半波片411及透鏡412,如第4B圖所示。當在顯示面板410及透鏡412之間配置了半波片411後,顯示面板410所發射出的P偏振光及S偏振光在進入透鏡412前即已被半波片411分別轉換為R偏振光及L偏振光,因此,R偏振光及L偏振光在進入透鏡412後的光線路徑則分別與第2B圖及第2C圖類似,故其細節於此不再贅述。In some embodiments, the virtual reality optical device 400 may include display panels 410A and 410B, and a polarization beam splitter 424. Among them, the display panels 410A and 410B are used to respectively emit P-polarized and S-polarized light, and the P-polarized light and S-polarized light can be synthesized by a polarizing beam splitter (PBS) 424, and then enter the half-wave plate 411. And lens 412, as shown in Figure 4B. When the half-wave plate 411 is arranged between the display panel 410 and the lens 412, the P-polarized light and S-polarized light emitted by the display panel 410 are converted into R-polarized light by the half-wave plate 411 before entering the lens 412. Therefore, the light paths of the R-polarized light and the L-polarized light after entering the lens 412 are similar to those in FIG. 2B and FIG. 2C, respectively, so the details will not be repeated here.

第5A圖為依據本發明一實施例中之虛擬實境裝置的示意圖。FIG. 5A is a schematic diagram of a virtual reality device according to an embodiment of the invention.

在第2A圖或第4A-4B圖所示的虛擬實境光學裝置200及400例如可設置於一頭戴式顯示器(head-mounted display,HMD)500中,藉以讓配戴頭戴式顯示器之使用者可觀看虛擬實境(Virtual Reality,VR)。The virtual reality optical devices 200 and 400 shown in Figure 2A or Figures 4A-4B, for example, can be set in a head-mounted display (HMD) 500, so that the head-mounted display can be worn Users can watch Virtual Reality (VR).

如第5A圖所示,頭戴式顯示器500包括兩套虛擬實境虛擬實境光學裝置500-1及500-2、一傳輸介面540、及一顯示控制器550。在一些實施例中,虛擬實境光學裝置510-1及510-2係可由第2A圖中之虛擬實境光學裝置200所實現。在一些實施例中,虛擬實境光學裝置510-1及510-2係可由第4圖中之虛擬實境光學裝置400所實現。As shown in FIG. 5A, the head-mounted display 500 includes two sets of virtual reality virtual reality optical devices 500-1 and 500-2, a transmission interface 540, and a display controller 550. In some embodiments, the virtual reality optical devices 510-1 and 510-2 can be implemented by the virtual reality optical device 200 in FIG. 2A. In some embodiments, the virtual reality optical devices 510-1 and 510-2 can be implemented by the virtual reality optical device 400 in FIG. 4.

舉例來說,為了呈現虛擬實境中之3D視覺,在頭戴式顯示器400中所配置的兩套虛擬實境光學裝置500-1及500-2,例如可以預定方式安置於頭戴式顯示器500的外殼530中,且分別用於左眼及右眼之成像。外殼530可包括一束帶或其他輔助裝置(未繪示)以供使用者戴於頭上以透過頭戴式顯示器500觀賞畫面。在第5A圖之實施例中,虛擬實境光學裝置500-1及500-2中之顯示面板510-1及510-2例如為獨立的顯示面板,且兩者之間係具有角度差。For example, in order to present 3D vision in virtual reality, the two sets of virtual reality optical devices 500-1 and 500-2 configured in the head-mounted display 400 can be arranged on the head-mounted display 500 in a predetermined manner, for example. In the outer shell 530 of, and used for left eye and right eye imaging respectively. The housing 530 may include a strap or other auxiliary device (not shown) for the user to wear on the head to view the screen through the head-mounted display 500. In the embodiment of FIG. 5A, the display panels 510-1 and 510-2 in the virtual reality optical devices 500-1 and 500-2 are, for example, independent display panels, and there is an angle difference between the two.

第5B圖為依據本發明另一實施例中之虛擬實境裝置的示意圖。在另一實施例中,虛擬實境光學裝置500-1及500-2中之顯示面板510-1及510-2為併排且平行的,兩者之間並無角度差,如第5B圖所示。在另一些實施例中,虛擬實境光學裝置500-1及500-2中之顯示面板510-1及510-2例如可由同一顯示面板所實現。FIG. 5B is a schematic diagram of a virtual reality device according to another embodiment of the present invention. In another embodiment, the display panels 510-1 and 510-2 in the virtual reality optical devices 500-1 and 500-2 are side by side and parallel, and there is no angle difference between the two, as shown in Fig. 5B Show. In other embodiments, the display panels 510-1 and 510-2 in the virtual reality optical devices 500-1 and 500-2 can be implemented by the same display panel, for example.

無論頭戴式顯示器500是由第5A圖或第5B圖中之配置所實現,虛擬實境光學裝置500-1及500-2所顯示之R偏振光及L偏振光之路徑均分別類似於第2B~2C圖,故其細節於此不再贅述。Regardless of whether the head mounted display 500 is implemented by the configuration shown in Figure 5A or Figure 5B, the paths of the R polarized light and L polarized light displayed by the virtual reality optical devices 500-1 and 500-2 are similar to those shown in the first Figures 2B to 2C, so the details will not be repeated here.

顯示控制器550係用以控制在顯示面板510-1及顯示面板510-2之顯示畫面。舉例來說,顯示控制器550可為一通用處理器(general-purpose processor)、數位信號處理器(DSP)、影像信號處理器(ISP)或具有同等功能之電路,其可經由傳輸介面540從一主控端接收影像資料,例如包括左眼影像及右眼影像,且顯示控制器550係將所接收的左眼影像及右眼影像分別在虛擬實境光學裝置500-1及500-2上顯示,使得使用者可觀看到立體的虛擬實境場景。此外,因為本發明之虛擬實境光學裝置500-1及500-2的特殊設計,使用者的眼睛可同時接收到兩種不同像距的虛擬實境場景,且使用者的眼睛可自行對焦以選擇要觀看在不同像距之影像平面的立體影像。The display controller 550 is used to control the display screens on the display panel 510-1 and the display panel 510-2. For example, the display controller 550 can be a general-purpose processor (general-purpose processor), a digital signal processor (DSP), an image signal processor (ISP) or a circuit with equivalent functions, which can be accessed from the transmission interface 540 A host receives image data, including, for example, left-eye images and right-eye images, and the display controller 550 transmits the received left-eye images and right-eye images on the virtual reality optical devices 500-1 and 500-2, respectively Display, so that users can watch a three-dimensional virtual reality scene. In addition, because of the special design of the virtual reality optical devices 500-1 and 500-2 of the present invention, the user's eyes can simultaneously receive two virtual reality scenes with different image distances, and the user's eyes can focus on their own Choose to view the 3D images in image planes with different image distances.

傳輸介面540係用以從一主控端(host)接收影像資料(例如包括左眼影像及右眼影像,例如為RGB影像),並將影像資料透過顯示控制器550於顯示面板510-1及顯示面板510-2進行播放。舉例來說,傳輸介面540可為高解析度多媒體介面(High Definition Multimedia Interface,HDMI)、或顯示埠(DisplayPort,DP)介面,但本發明並不限於此。The transmission interface 540 is used to receive image data (for example, including left-eye images and right-eye images, such as RGB images) from a host, and transmit the image data on the display panel 510-1 and through the display controller 550. The display panel 510-2 performs playback. For example, the transmission interface 540 can be a High Definition Multimedia Interface (HDMI) or a DisplayPort (DP) interface, but the invention is not limited to this.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above in a preferred embodiment, it is not intended to limit the scope of the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Retouching, therefore, the scope of protection of the present invention shall be subject to the scope of the attached patent application.

110、140:成像位置 150:顯示面板 200、400、500-1、500-2:虛擬實境光學裝置 210、410、510-1、510-2:顯示面板 212、412、512-1、512-2:透鏡 214、414、514-1、514-2:透鏡 216、416、516-1、516-2:四分之一波片 218、418、518-1、518-2:偏振反射鏡 220、420:使用者眼睛 2121、2122:表面 301-303、311-313:位置 305-307、315-317:光線路徑 410A、410B:顯示面板 411:半波片 500:頭戴式顯示器 530:外殼 540:傳輸介面 550:顯示控制器110, 140: imaging position 150: display panel 200, 400, 500-1, 500-2: virtual reality optical device 210, 410, 510-1, 510-2: display panel 212, 412, 512-1, 512-2: lens 214, 414, 514-1, 514-2: lens 216, 416, 516-1, 516-2: quarter wave plate 218, 418, 518-1, 518-2: Polarizing mirror 220, 420: user's eyes 2121, 2122: surface 301-303, 311-313: location 305-307, 315-317: light path 410A, 410B: display panel 411: Half Wave Plate 500: Head-mounted display 530: Shell 540: Transmission interface 550: display controller

第1A圖為三維空間中之物體在人眼進行成像的示意圖。 第1B圖為立體影像顯示器所顯示的物體在人眼進行成像的示意圖。 第2A圖係顯示依據本發明一實施例中之虛擬實境光學裝置的示意圖。 第2B圖為依據本發明一實施例中之R偏振光的行進路徑的示意圖。 第2C圖為依據本發明一實施例中之L偏振光的行進路徑的示意圖。 第3A圖為依據本發明第2A圖之實施例中R偏振光之影像像距的示意圖。 第3B圖為依據本發明第2A圖之實施例中L偏振光之影像像距的示意圖。 第3C圖為依據第3A-3B圖之實施例中之實際影像像距的示意圖。 第4A圖係顯示依據本發明另一實施例中之虛擬實境光學裝置的示意圖。 第4B圖為依據本發明又一實施例中虛擬實境光學裝置的示意圖。 第5A圖為依據本發明一實施例中之虛擬實境裝置的示意圖。 第5B圖為依據本發明另一實施例中之虛擬實境裝置的示意圖。Figure 1A is a schematic diagram of an object in a three-dimensional space being imaged by the human eye. Figure 1B is a schematic diagram of an object displayed by a stereoscopic image display being imaged by the human eye. FIG. 2A is a schematic diagram showing a virtual reality optical device according to an embodiment of the present invention. FIG. 2B is a schematic diagram of the traveling path of R-polarized light according to an embodiment of the present invention. FIG. 2C is a schematic diagram of the traveling path of L-polarized light according to an embodiment of the present invention. FIG. 3A is a schematic diagram of the image distance of R polarized light in the embodiment of FIG. 2A of the present invention. FIG. 3B is a schematic diagram of the image distance of L polarized light in the embodiment of FIG. 2A of the present invention. Fig. 3C is a schematic diagram of the actual image distance in the embodiment according to Figs. 3A-3B. FIG. 4A is a schematic diagram showing a virtual reality optical device according to another embodiment of the present invention. FIG. 4B is a schematic diagram of a virtual reality optical device according to another embodiment of the present invention. FIG. 5A is a schematic diagram of a virtual reality device according to an embodiment of the invention. FIG. 5B is a schematic diagram of a virtual reality device according to another embodiment of the present invention.

200:虛擬實境光學裝置 200: Virtual reality optical device

210:顯示面板 210: display panel

212:透鏡 212: lens

214:透鏡 214: lens

216:四分之一波片 216: quarter wave plate

218:偏振反射鏡 218: Polarizing mirror

220:使用者眼睛 220: User's eyes

2121、2122:表面 2121, 2122: surface

Claims (10)

一種具有雙對焦平面的虛擬實境光學裝置,包括:一顯示面板、以及依序排列設置的一第一透鏡、一第二透鏡、一四分之一波片、及一偏振反射鏡, 其中,該顯示面板係用以發射具有第一偏振的第一光線及具有第二偏振的第二光線, 其中該第一透鏡包括一第一表面及一第二表面,該第二表面係靠近該顯示面板,該第一表面係靠近該第二透鏡,且該第一表面為一半穿透半反射鏡面, 其中該偏振反射鏡係用以讓具有P偏振的光線穿過。A virtual reality optical device with dual focus planes, comprising: a display panel, and a first lens, a second lens, a quarter wave plate, and a polarizing mirror arranged in sequence, Wherein, the display panel is used to emit a first light with a first polarization and a second light with a second polarization, The first lens includes a first surface and a second surface, the second surface is close to the display panel, the first surface is close to the second lens, and the first surface is a semi-transmissive mirror surface, The polarizing mirror is used to allow light with P polarization to pass through. 如申請專利範圍第1項所述之具有雙對焦平面的虛擬實境光學裝置,其中,該第一偏振為R偏振且該第二偏振為L偏振, 其中,該顯示面板所發射出的該第一光線係依序穿過該第一透鏡、該第二透鏡、該四分之一波片及該偏振反射鏡以在一使用者之眼睛進行形成第一影像。The virtual reality optical device with dual focus planes as described in item 1 of the scope of patent application, wherein the first polarization is R polarization and the second polarization is L polarization, Wherein, the first light emitted by the display panel sequentially passes through the first lens, the second lens, the quarter wave plate, and the polarizing reflector to form a user’s eye. An image. 如申請專利範圍第2項所述之具有雙對焦平面的虛擬實境光學裝置,其中該第二光線係依序穿過該第一透鏡、該第二透鏡、該四分之一波片,且具有該第二偏振的該第二光線被該四分之一波片轉換為S偏振, 其中,具有S偏振的該第二光線被該偏振反射鏡所反射,並穿過該四分之一波片被轉換為R偏振,且具有R偏振的該第二光線穿過該第二透鏡,並且被該第一透鏡之該第一表面反射, 其中,被該第一表面反射的該第二光線穿過該第二透鏡及該四分之一波片被轉換為P偏振,且具有P偏振的該第二光線係穿過該偏振反射鏡,並在該使用者之眼睛形成第二影像。The virtual reality optical device with dual focus planes as described in item 2 of the scope of patent application, wherein the second light rays sequentially pass through the first lens, the second lens, and the quarter wave plate, and The second light with the second polarization is converted into S polarization by the quarter wave plate, Wherein, the second light with S polarization is reflected by the polarizing mirror, and is converted into R polarization by passing through the quarter wave plate, and the second light with R polarization passes through the second lens, And reflected by the first surface of the first lens, Wherein, the second light reflected by the first surface passes through the second lens and the quarter wave plate to be converted into P polarization, and the second light with P polarization passes through the polarizing mirror, And a second image is formed in the eyes of the user. 如申請專利範圍第3項所述之具有雙對焦平面的虛擬實境光學裝置,其中該第一光線在該使用者之眼睛所形成的第一影像係具有第一像距,且該第二光線在該使用者之眼睛所形成的第二影像係具有第二像距,其中該第二像距係大於第一像距。The virtual reality optical device with dual focus planes as described in item 3 of the scope of patent application, wherein the first image formed by the first ray of the user’s eyes has a first image distance, and the second ray The second image formed by the user's eyes has a second image distance, wherein the second image distance is greater than the first image distance. 如申請專利範圍第1項所述之具有雙對焦平面的虛擬實境光學裝置,其中該第一偏振為P偏振且該第二偏振為S偏振。The virtual reality optical device with dual focus planes as described in the first item of the scope of patent application, wherein the first polarization is P polarization and the second polarization is S polarization. 如申請專利範圍第5項所述之具有雙對焦平面的虛擬實境光學裝置,更包括一半波片,設置於在該第一透鏡及該顯示面板之間, 其中,該顯示面板所發射出的該第一光線係依序穿過該半波片、該第一透鏡、該第二透鏡、該四分之一波片及該偏振反射鏡以在一使用者之眼睛進行形成一第一影像。As described in item 5 of the scope of patent application, the virtual reality optical device with dual focus planes further includes a half wave plate arranged between the first lens and the display panel, Wherein, the first light emitted by the display panel passes through the half-wave plate, the first lens, the second lens, the quarter-wave plate and the polarizing mirror in order to a user The eyes proceed to form a first image. 如申請專利範圍第6項所述之具有雙對焦平面的虛擬實境光學裝置,其中具有S偏振的該第二光線穿過該半波片後被轉換為L偏振,且具有L偏振的該第二光線係依序穿過該第一透鏡、該第二透鏡、該四分之一波片,且具有L偏振的該第二光線被該四分之一波片轉換為S偏振, 其中,具有S偏振的該第二光線被該偏振反射鏡所反射,並穿過該四分之一波片被轉換為R偏振,且具有R偏振的該第二光線穿過該第二透鏡,並且被該第一透鏡之該第一表面反射, 其中,被該第一表面反射的該第二光線穿過該第二透鏡及該四分之一波片被轉換為P偏振,且具有P偏振的該第二光線係穿過該偏振反射鏡,並在該使用者之眼睛形成一第二影像。The virtual reality optical device with dual focus planes as described in item 6 of the scope of patent application, wherein the second light with S polarization is converted into L polarization after passing through the half-wave plate, and the second light with L polarization is Two rays of light pass through the first lens, the second lens, and the quarter wave plate in sequence, and the second light with L polarization is converted into S polarization by the quarter wave plate, Wherein, the second light with S polarization is reflected by the polarizing mirror, and is converted into R polarization by passing through the quarter wave plate, and the second light with R polarization passes through the second lens, And reflected by the first surface of the first lens, Wherein, the second light reflected by the first surface passes through the second lens and the quarter wave plate to be converted into P polarization, and the second light with P polarization passes through the polarizing mirror, And a second image is formed in the eyes of the user. 如申請專利範圍第7項所述之具有雙對焦平面的虛擬實境光學裝置,其中該第一光線在該使用者之眼睛所形成的該第一影像係具有第一像距,且該第二光線在該使用者之眼睛所形成的該第二影像係具有第二像距,其中該第二像距係大於該第一像距。The virtual reality optical device with dual focus planes as described in item 7 of the scope of patent application, wherein the first image formed by the first light in the eyes of the user has a first image distance, and the second The second image formed by the light in the eyes of the user has a second image distance, wherein the second image distance is greater than the first image distance. 如申請專利範圍第1項所述之具有雙對焦平面的虛擬實境光學裝置,其中該顯示面板係同時發射出該第一光線及該第二光線。In the virtual reality optical device with dual focus planes as described in item 1 of the scope of patent application, the display panel emits the first light and the second light at the same time. 如申請專利範圍第1項所述之具有雙對焦平面的虛擬實境光學裝置,其中該顯示面板係使用分時多工(time multiplexing)以輪流發射出該第一光線及該第二光線。In the virtual reality optical device with dual focus planes as described in claim 1, wherein the display panel uses time multiplexing to emit the first light and the second light in turn.
TW108128495A 2019-08-12 2019-08-12 Virtual reality optical device with two focusing planes TWI715145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108128495A TWI715145B (en) 2019-08-12 2019-08-12 Virtual reality optical device with two focusing planes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108128495A TWI715145B (en) 2019-08-12 2019-08-12 Virtual reality optical device with two focusing planes

Publications (2)

Publication Number Publication Date
TWI715145B TWI715145B (en) 2021-01-01
TW202107158A true TW202107158A (en) 2021-02-16

Family

ID=75237249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128495A TWI715145B (en) 2019-08-12 2019-08-12 Virtual reality optical device with two focusing planes

Country Status (1)

Country Link
TW (1) TWI715145B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI829434B (en) * 2022-11-17 2024-01-11 中強光電股份有限公司 Optical lens module, optical engine module and head mounted display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411953B2 (en) * 1996-04-24 2003-06-03 シャープ株式会社 Optical device and head-mounted display using the optical device
KR20130066902A (en) * 2011-12-13 2013-06-21 삼성디스플레이 주식회사 Method of displaying three-dimensional stereoscopic image and an display apparatus for performing the same
CN105093555B (en) * 2015-07-13 2018-08-14 深圳多新哆技术有限责任公司 Short distance optical amplifier module and the nearly eye display optics module for using it
US20190018255A1 (en) * 2017-07-11 2019-01-17 Google Llc Compact near-eye optical system including a refractive beam-splitting convex lens

Also Published As

Publication number Publication date
TWI715145B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP7408629B2 (en) Head-mounted display (HMD) with spatially varying retarder optics
US11277602B2 (en) Method and system for display device with integrated polarizer
US20080198459A1 (en) Conjugate optics projection display system and method having improved resolution
US9726891B2 (en) Left and right eye optical paths with shared optical element for head-mounted display device
US10061129B2 (en) Birefringent ocular for augmented reality imaging
US10623722B2 (en) Head-up multiplex display with redirection optic
TWI490547B (en) Autofocus head mounted display
US20170227773A1 (en) Catadioptric on-axis virtual/augmented reality glasses system and method
US20220317448A1 (en) AR Optical System and AR Display Device
TWI710805B (en) Near eye display apparatus
JP2019536089A (en) Monocentric wide-view personal display
CN111077672B (en) Perspective display device
JP2022547579A (en) Optical see-through head-mounted display with eye-matching occlusion
KR20150033369A (en) Optical system and head mount display apparatus for augmented reality implementation
US9507166B2 (en) Illumination system for stereoscopic projection device
TW201019031A (en) Projecting system capable of forming 3D images and related method
TWI715145B (en) Virtual reality optical device with two focusing planes
TWI669533B (en) Head mounted display and multiple depth imaging apparatus
TWI764763B (en) Head mounted display device
TWI476447B (en) Stereoscopic projection display apparatus
WO2019184322A1 (en) Optical component and virtual reality (vr) device
WO2022143236A1 (en) Display system
TW202212915A (en) Image display systems for eyebox expansion and methods of making the same
JP5485738B2 (en) Projection display device
KR20150098943A (en) High Picture quality Display Optical system