TW202105440A - Charged particle beam device and operation method therefor - Google Patents

Charged particle beam device and operation method therefor Download PDF

Info

Publication number
TW202105440A
TW202105440A TW109109356A TW109109356A TW202105440A TW 202105440 A TW202105440 A TW 202105440A TW 109109356 A TW109109356 A TW 109109356A TW 109109356 A TW109109356 A TW 109109356A TW 202105440 A TW202105440 A TW 202105440A
Authority
TW
Taiwan
Prior art keywords
aforementioned
image
charged particle
particle beam
beam device
Prior art date
Application number
TW109109356A
Other languages
Chinese (zh)
Other versions
TWI741535B (en
Inventor
永島和治
池田一樹
李雯
和田正司
川野源
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202105440A publication Critical patent/TW202105440A/en
Application granted granted Critical
Publication of TWI741535B publication Critical patent/TWI741535B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

When adjusting optical axes of a multi-beam charged particle beam device and the like, because parameters of optical systems are dependent on each other, the time it takes to adjust the parameters increases. Thus, the present invention provides a charged particle beam device provided with an optical parameter setting unit (160) for setting parameters of optical systems for emitting multiple primary charged particle beams to a sample, detectors (101) for individually detecting multiple secondary charged particle beams discharged from the sample, multiple memories (112) for storing signals detected by the detectors and converted into digital pixels in the form of images, evaluation value derivation units (113) for deriving evaluation values of the primary charged particle beams from the images, and a GUI (130) capable of displaying the images and receiving an input from a user, wherein the GUI displays evaluation results based on the images and the evaluation values and changes optical parameters of various kinds in real time.

Description

帶電粒子束裝置,及其作動方法Charged particle beam device and its operating method

本發明有關具有複數個檢測器之帶電粒子束裝置,及其作動方法。The present invention relates to a charged particle beam device with a plurality of detectors and its operating method.

作為具有複數個檢測器之帶電粒子束裝置的先前技術,例如有日本特開2006-190554號公報(專利文獻1)。此公報中,記載於帶有複數個二次電子或是反射電子檢測器之電子顯微鏡中,設計成可藉由單一的控制操作來進行複數個檢測器的對比度/亮度之控制,因此運用伴隨作動距離等的觀察條件的變化而改變之各檢測器間的訊號量比率,對每一檢測器設定對比度可變量係數。例如預先求出作動距離與對比度可變量係數之關係,對於從觀察條件記憶體讀出的作動距離,是藉由係數算出部對上方檢測器與下方檢測器個別地算出對比度可變量係數,對於對比度/亮度操作部所做的單一的控制動作,是透過檢測器控制部個別地賦予對各個檢測器之對比度的變化量。 先前技術文獻 專利文獻As a prior art of a charged particle beam device having a plurality of detectors, there is, for example, Japanese Patent Application Laid-Open No. 2006-190554 (Patent Document 1). In this publication, it is described in an electron microscope with multiple secondary electron or reflected electron detectors. It is designed to control the contrast/brightness of multiple detectors through a single control operation, so the use of accompanying actions The ratio of the signal amount between the detectors changed by the change of the observation conditions such as distance, and the contrast variable coefficient is set for each detector. For example, the relationship between the operating distance and the contrast variable coefficient is obtained in advance. For the operating distance read from the observation condition memory, the coefficient calculation unit separately calculates the contrast variable coefficient for the upper detector and the lower detector. / The single control action performed by the brightness operation section is to individually give the change amount of the contrast to each detector through the detector control section. Prior art literature Patent literature

專利文獻1:日本特開2006-190554號公報Patent Document 1: Japanese Patent Application Publication No. 2006-190554

發明所欲解決之問題The problem to be solved by the invention

專利文獻1中,揭示一種圖像調整手法,是於帶有複數個檢測器之電子顯微鏡中,藉由單一的控制操作來達成藉由複數檢測器而獲得的圖像的對比度/亮度。然而,專利文獻1的方法中,是將每一檢測器獲得的圖像予以加算而顯示,由使用者做參數調整,因此當參數間有相依性的情形下調整會複雜化而調整期間可能長時間化。例如,多射束型帶電粒子束裝置中,是藉由孔徑陣列的各電壓亦即孔徑電壓來進行複數個一次電子束的光軸調整,但若使對於某一射束的孔徑電壓變化則電場狀態會變化,因此會導致對其他射束造成影響。像這樣當參數間有相依性的情形下,料想難以在單一的圖像顯示下做參數調整,導致易用性降低。Patent Document 1 discloses an image adjustment method that uses a single control operation to achieve the contrast/brightness of an image obtained by multiple detectors in an electron microscope with multiple detectors. However, in the method of Patent Document 1, the images obtained by each detector are added and displayed, and the parameters are adjusted by the user. Therefore, when there is a dependency between the parameters, the adjustment will be complicated and the adjustment period may be long. Timed. For example, in a multi-beam type charged particle beam device, the optical axis of a plurality of primary electron beams is adjusted by each voltage of the aperture array, that is, the aperture voltage. However, if the aperture voltage for a certain beam is changed, the electric field The state will change, so it will affect other beams. Like this, when there are dependencies between parameters, it is expected that it is difficult to adjust the parameters under a single image display, resulting in reduced ease of use.

本發明之目的在於解決上述的待解問題,提供一種實現和複數個檢測器的數量相應之複數個圖像顯示的參數調整而不肇生圖像的廢棄之帶電粒子束裝置,及其作動方法。 解決問題之技術手段The purpose of the present invention is to solve the above-mentioned unsolved problems, and provide a charged particle beam device that realizes the parameter adjustment of a plurality of images corresponding to the number of a plurality of detectors without causing the abandonment of the image, and an operating method thereof . Technical means to solve the problem

為達成上述目的,本發明提供一種帶電粒子束裝置,具備:光學系統,將複數個一次帶電粒子束對試料照射;及光學參數設定部,設定光學系統的參數;及檢測器,個別地檢測從試料放出的複數個二次帶電粒子束;及複數個記憶部,將檢測器檢測出的訊號變換成數位像素,存放作為圖像;及評估值導出部,從圖像導出一次帶電粒子束的評估值;及GUI,顯示圖像,可受理來自使用者的輸入;GUI,顯示前述圖像、及基於前述評估值之評估結果。In order to achieve the above-mentioned object, the present invention provides a charged particle beam device, which includes: an optical system for irradiating a plurality of primary charged particle beams to a sample; and an optical parameter setting section for setting the parameters of the optical system; and a detector for detecting the slaves individually A plurality of secondary charged particle beams emitted from the sample; and a plurality of memory parts, which convert the signals detected by the detector into digital pixels, and store them as an image; and an evaluation value derivation part, which derives the evaluation of the primary charged particle beam from the image Value; and GUI, which displays an image that can accept input from the user; GUI, which displays the aforementioned image and the evaluation result based on the aforementioned evaluation value.

此外,為達成上述目的,本發明提供一種帶電粒子束裝置的作動方法,其中,帶電粒子束裝置,具備可做圖像顯示與受理來自使用者的輸入之GUI,設定將複數個一次帶電粒子束對試料照射之光學系統的參數,個別地檢測從試料放出的複數個二次帶電粒子束,將測出的訊號變換成數位像素而做成圖像,從圖像導出一次帶電粒子束的評估值,將圖像及基於評估值之評估結果顯示於GUI。 發明之功效In addition, in order to achieve the above object, the present invention provides a method for operating a charged particle beam device, wherein the charged particle beam device has a GUI that can display images and accept input from a user, and set a plurality of primary charged particle beams The parameters of the optical system used to irradiate the sample are individually detected for a plurality of secondary charged particle beams emitted from the sample, and the measured signals are converted into digital pixels to create an image, and the evaluation value of the primary charged particle beam is derived from the image , Display the image and the evaluation result based on the evaluation value on the GUI. The effect of invention

按照本發明,於具有複數個檢測器之帶電粒子束裝置的參數的調整中,可一面綜觀全體一面調整,藉此能夠謀求調整效率的提升。According to the present invention, in the adjustment of the parameters of the charged particle beam device having a plurality of detectors, it is possible to view the whole and to adjust the parameters, thereby improving the adjustment efficiency.

以下依照圖面依序說明本發明的種種實施例。另,以下實施例中,是示例電子束作為帶電粒子束來說明,但不限定於電子束,亦可適用於其他的帶電粒子束。 實施例1Hereinafter, various embodiments of the present invention will be described in sequence according to the drawings. In addition, in the following embodiments, an electron beam is illustrated as a charged particle beam, but it is not limited to an electron beam, and can also be applied to other charged particle beams. Example 1

實施例1中,說明藉由使用者的參數手動調整而調整複數個一次電子束的光軸之帶電粒子束裝置的實施例。In the first embodiment, an embodiment of a charged particle beam device that adjusts the optical axis of a plurality of primary electron beams by manually adjusting the parameters of the user is described.

圖1為實施例1之帶電粒子束裝置的一構成示意概略圖。帶電粒子束裝置,由下述所構成:像素取得裝置100,由複數個檢測器101、A/D變換器102所成;演算裝置110,由記憶體控制器111、記憶取得的圖像之複數個記憶體112、被輸入從記憶體112讀出的圖像之評估值導出部113、圖像縮小部114所成;全體控制部120;包含顯示器之Graphical User Interface(GUI)(圖像使用者介面)130;顯示控制部140;顯示圖像記憶體150;設定光學系統的參數之光學參數設定部160;掃描控制部170;及省略圖示之鏡柱。另,A/D變換器102、記憶體控制器111、複數個記憶體112、評估值導出部113、圖像縮小部114,係有檢測器101的數量份(n)的系統(以下稱為通道),各自並行動作。全體控制部120,將從GUI130輸入的資訊設定於光學參數設定部160,將掃描資訊設定於掃描控制部170。FIG. 1 is a schematic diagram of a structure of the charged particle beam device of the first embodiment. The charged particle beam device is composed of the following: a pixel acquisition device 100 composed of a plurality of detectors 101 and an A/D converter 102; an arithmetic device 110, a memory controller 111, and a plurality of images acquired by memory A memory 112, an evaluation value derivation unit 113 and an image reduction unit 114 inputted into the image read out from the memory 112; the overall control unit 120; Graphical User Interface (GUI) including the display Interface) 130; display control unit 140; display image memory 150; optical parameter setting unit 160 for setting the parameters of the optical system; scanning control unit 170; In addition, the A/D converter 102, the memory controller 111, the plurality of memories 112, the evaluation value derivation unit 113, and the image reduction unit 114 are a system having the number (n) of the detector 101 (hereinafter referred to as Channel), each act in parallel. The overall control unit 120 sets the information input from the GUI 130 to the optical parameter setting unit 160, and sets the scan information to the scan control unit 170.

同圖中,像素取得裝置100、光學參數設定部160、掃描控制部170各自藉由專用的硬體所構成。演算裝置110、全體控制部120、GUI130、顯示控制部140、顯示圖像記憶體150,可藉由具備顯示器的Personal Computer(PC)(個人電腦)的中央處理部(CPU)、以記憶體或SSD(Solid State Drive)(固態硬碟)等的記憶元件為代表的記憶部、顯示控制器等所構成。例如,評估值導出部113或圖像縮小部114,能夠藉由CPU中執行的機能程式而實現。In the same figure, the pixel acquisition device 100, the optical parameter setting unit 160, and the scanning control unit 170 are each constituted by dedicated hardware. The arithmetic device 110, the overall control unit 120, the GUI 130, the display control unit 140, and the display image memory 150 can be used by Personal Computer (PC) (personal computer) central processing unit (CPU), memory unit represented by memory or SSD (Solid State Drive) (solid state drive), etc., memory unit, display controller, etc. For example, the evaluation value derivation unit 113 or the image reduction unit 114 can be realized by a function program executed in the CPU.

圖2A、圖2B示意本實施例之帶電粒子束裝置的GUI畫面的顯示例。圖2A為將9通道的圖像全部顯示的例子,圖2B為選擇通道5、6、8、9這4通道而顯示的另一例子。2A and 2B show examples of display of GUI screens of the charged particle beam device of this embodiment. Fig. 2A is an example of displaying all 9-channel images, and Fig. 2B is another example of displaying 4 channels of channels 5, 6, 8, and 9.

GUI畫面200,由下述所構成:顯示藉由檢測器101獲得的圖像及和各檢測器相對應的一次電子束的評估結果之圖像顯示部201;選擇顯示的圖像之顯示選擇輸入部202;選擇設定的參數之參數選擇部203;參數變更之滑動條輸入部204;各射束的評估值之規定值輸入部205;選擇自動調整之自動調整按鈕206;選擇手動調整之手動調整按鈕207;及用來輸入調整完成之完成按鈕208。The GUI screen 200 is composed of: an image display unit 201 that displays the image obtained by the detector 101 and the evaluation result of the primary electron beam corresponding to each detector; the display selection input for selecting the displayed image Section 202; parameter selection section 203 for selecting the set parameters; sliding bar input section 204 for parameter change; predetermined value input section 205 for the evaluation value of each beam; automatic adjustment button 206 for selecting automatic adjustment; manual adjustment for selecting manual adjustment Button 207; and a completion button 208 used to input adjustment completion.

也就是說,GUI130,包含選擇顯示的圖像之顯示選擇輸入部202、及將使用者選擇的規定數的圖像與相對應的評估結果並排顯示之圖像顯示部201。藉此,使用者便可一面綜觀全體或其一部分一面做調整,藉此能夠提升調整效率。此外,GUI130,包含選擇參數之參數選擇部203、及可即時地變更參數之滑動條輸入部204、及輸入評估值的規定值之規定值輸入部205。藉此,能夠縮短參數調整時間。That is, the GUI 130 includes a display selection input unit 202 for selecting an image to be displayed, and an image display unit 201 for displaying a predetermined number of images selected by the user and the corresponding evaluation result side by side. In this way, the user can make adjustments while viewing the whole or a part thereof, thereby improving the adjustment efficiency. In addition, the GUI 130 includes a parameter selection unit 203 for selecting parameters, a slider input unit 204 for changing parameters in real time, and a predetermined value input unit 205 for inputting predetermined values of evaluation values. Thereby, the parameter adjustment time can be shortened.

以下利用圖3所示本實施例之手動調整流程例來說明一連串的參數調整流程。首先,按下手動調整按鈕207後,使用者選擇顯示的通道(步驟300,以下S300)。有時也會連續性地變更參數而進行圖像變化的確認,因此S300可略過。接著,藉由滑動條輸入部204變更和調整參數亦即各通道相對應之孔徑電壓,而進行參數設定(S301)。在滑動輸入完成的時間點,將光學參數資訊161及掃描方法等的掃描資訊171從全體控制部120各自轉送至光學參數設定部160及掃描控制部170,藉由掃描控制部170實施一次電子束的1圖幀掃描(S302)。掃描的同時,一次電子束往省略圖示的鏡柱內的光軸調整用的試料入射,藉此而射出的二次電子束會輸入至檢測器101。藉由檢測器101而輸出的類比訊號103藉由A/D變換器102被變換成數位像素值104,透過記憶體控制器111被存放於記憶體112作為圖像資訊115。Hereinafter, a series of parameter adjustment procedures will be explained by using the example of the manual adjustment procedure of this embodiment shown in FIG. 3. First, after pressing the manual adjustment button 207, the user selects the displayed channel (step 300, S300 below). Sometimes the parameters are continuously changed to confirm the image change, so S300 can be skipped. Then, the slider input part 204 is used to change and adjust the parameter, that is, the aperture voltage corresponding to each channel, to perform parameter setting (S301). At the time when the sliding input is completed, the scanning information 171 such as the optical parameter information 161 and the scanning method is transferred from the overall control unit 120 to the optical parameter setting unit 160 and the scanning control unit 170, and the scanning control unit 170 performs an electron beam 1 picture frame scanning (S302). While scanning, the primary electron beam enters the sample for adjusting the optical axis in the mirror cylinder (not shown), and the secondary electron beam emitted thereby is input to the detector 101. The analog signal 103 output by the detector 101 is converted into a digital pixel value 104 by the A/D converter 102, and is stored in the memory 112 as the image information 115 through the memory controller 111.

取得的圖像資訊115,被圖像轉送至演算裝置110的評估值導出部113及圖像縮小部114作為圖像資訊116(S303),而並行地進行評估值導出(S304)、縮小處理(S305)。被導出的評估值117轉送往顯示控制部140(S306),被縮小的圖像118轉送往顯示圖像記憶體150(S307),使用者選擇的通道的評估結果/圖像藉由顯示控制部140而顯示於GUI畫面200(S308)。基於此結果,使用者判定是否繼續參數調整(S309),當繼續的情形下回到(S300)。雖未圖示,但(S303)~(S308)實施通道的數量份。The acquired image information 115 is image transferred to the evaluation value derivation unit 113 and the image reduction unit 114 of the calculation device 110 as the image information 116 (S303), and the evaluation value derivation (S304) and reduction processing (S304) are performed in parallel ( S305). The derived evaluation value 117 is forwarded to the display control unit 140 (S306), the reduced image 118 is forwarded to the display image memory 150 (S307), and the evaluation result/image of the channel selected by the user is displayed The control unit 140 is displayed on the GUI screen 200 (S308). Based on this result, the user determines whether to continue parameter adjustment (S309), and returns to (S300) if it continues. Although not shown, (S303) to (S308) implement the number of channels.

此處評估值導出手法,有訂為取得圖像的真圓度之方法或訂為取得圖像與標準圖樣(golden pattern)之常態化互相關值之方法等,並不限定評估手法。此外,圖像縮小部114中,具有基於選擇的通道數而變換圖像的縮小率之機能。例如,在圖像顯示部201設為可顯示最大512×512的圖像尺寸,當藉由各通道取得了512×512的圖像的情形下,若如圖2A般選擇9通道所有的通道,則會將各圖像縱橫分別縮小成3分之1(170×170尺寸)而轉送至顯示圖像記憶體150。此外,若如圖2B般選擇4通道份,則僅對被選擇的通道將縱橫分別縮小2分之1(256×256尺寸)而轉送往顯示圖像記憶體150。無論哪一種情形,皆能綜觀複數個圖像。The method of deriving the evaluation value here includes the method of obtaining the roundness of the image or the method of obtaining the normalized cross-correlation value of the image and the golden pattern, etc. The evaluation method is not limited. In addition, the image reduction unit 114 has a function of converting the reduction ratio of the image based on the selected number of channels. For example, when the image display unit 201 is set to display a maximum image size of 512×512, and when a 512×512 image is obtained from each channel, if all channels of 9 channels are selected as shown in FIG. 2A, Each image will be reduced vertically and horizontally to one-third (170×170 size) and transferred to the display image memory 150. In addition, if 4 channels are selected as shown in FIG. 2B, only the selected channel will be reduced by one-half (256×256 size) in the vertical and horizontal directions and transferred to the display image memory 150. In either case, multiple images can be viewed.

藉由本實施例,即使如一次電子束的光軸調整等在參數間有相依性的情形下,仍可綜觀9通道的全射束狀態,同時若進一步選擇任意的通道則可一面掌握射束狀態的細節一面做參數調整,相依性的確認亦變得容易。其結果調整效率會提升,可達成參數調整時間縮短。另,本實施例中雖訂為全9通道,若射束道數增大而通道數亦增大至例如36、64等,則本實施例之構成會更有效率地發揮機能。此外,GUI畫面200中配置了自動調整按鈕206、手動調整按鈕207,故能夠謀求使用者的作業效率的提升。With this embodiment, even if there is a dependency between the parameters such as the adjustment of the optical axis of the primary electron beam, the full beam state of the 9 channels can still be viewed, and at the same time, the beam state can be grasped at the same time if any channel is further selected. While adjusting the parameters of the details, it becomes easy to confirm the dependencies. As a result, the adjustment efficiency will be improved, and the parameter adjustment time can be shortened. In addition, although all 9 channels are set in this embodiment, if the number of beam channels increases and the number of channels increases to, for example, 36, 64, etc., the configuration of this embodiment will function more efficiently. In addition, since the automatic adjustment button 206 and the manual adjustment button 207 are arranged in the GUI screen 200, the user's work efficiency can be improved.

按照以上說明之實施例1,於具有複數個檢測器的例如多射束型帶電粒子束裝置的孔徑電壓等在參數間有相依性之參數調整中,可一面綜觀全體一面調整,藉此能夠提升調整效率。又,能夠防止掃描的像素的覆寫所造成之廢棄,同時並行地實施掃描與評估值導出及圖像顯示,而縮短參數調整時間。 實施例2According to the first embodiment described above, in the adjustment of parameters that are dependent on the parameters such as the aperture voltage of a multi-beam type charged particle beam device with a plurality of detectors, it is possible to comprehensively view the whole and adjust the parameters, thereby improving Adjust efficiency. In addition, it is possible to prevent discarding caused by overwriting of scanned pixels, and simultaneously perform scanning, evaluation value derivation, and image display in parallel, thereby shortening the parameter adjustment time. Example 2

實施例2中,說明取代使用者的參數手動調整而是按下自動調整按鈕206,藉由自動調整來調整複數個一次電子束的光軸之帶電粒子束裝置的實施例。以下,說明自動調整是藉由事先設定好的參數的值域及刻度幅度以全部組合改動參數,而採用評估值高者之調整手法。例如,當訂為各孔徑電壓的值域:-100V~+100V、刻度幅度:2V的情形下,對於1個射束會改動100組合的參數。然而,本實施例並非限定於上述的調整手法。In the second embodiment, an embodiment of a charged particle beam device in which the optical axis of a plurality of primary electron beams is adjusted by automatic adjustment is described by pressing the automatic adjustment button 206 instead of manually adjusting the parameters of the user. In the following, it is explained that the automatic adjustment is to change the parameters by all combinations of the preset value range and scale width of the parameters, and the adjustment method of the higher estimated value is adopted. For example, when setting the value range of each aperture voltage: -100V to +100V, and the scale width: 2V, the parameters of 100 combinations will be changed for one beam. However, this embodiment is not limited to the above-mentioned adjustment method.

圖4揭示圖1的記憶體控制器111的詳細構成的一例。從A/D變換器102輸出的數位像素值104,透過寫入控制400被寫入記憶體112作為圖像資訊115。此外,圖像轉送時,從記憶體112透過讀取控制401而圖像資訊116被傳送往評估值導出部113等的各種處理部。FIG. 4 shows an example of the detailed structure of the memory controller 111 of FIG. 1. The digital pixel value 104 output from the A/D converter 102 is written into the memory 112 as the image information 115 through the writing control 400. In addition, at the time of image transfer, the image information 116 is transferred from the memory 112 through the reading control 401 to various processing units such as the evaluation value derivation unit 113.

記憶體控制器111,包含將數位像素予以計數之掃描像素計數器403、及於圖像轉送時將轉送像素數予以計數之轉送像素計數器405,基於從掃描像素計數器403輸出的掃描像素數與事先設定好的圖像尺寸而判定出掃描完成的同時,以切換存放圖像的記憶體之方式做寫入控制,基於從轉送像素計數器405輸出的轉送像素數與事先設定好的圖像尺寸而判定出轉送完成的同時,以切換讀出圖像的記憶體之方式做讀取控制。The memory controller 111 includes a scanning pixel counter 403 for counting digital pixels, and a transfer pixel counter 405 for counting the number of pixels to be transferred during image transfer, based on the number of scanned pixels output from the scanning pixel counter 403 and a preset setting When it is judged that the scan is completed with a good image size, the writing control is performed by switching the memory storing the image, and it is judged based on the number of transferred pixels output from the transfer pixel counter 405 and the preset image size At the same time the transfer is completed, the reading control is performed by switching the memory for reading the image.

以下,運用圖5的本實施例之記憶體控制器的動作流程例,說明防止掃描的像素的覆寫所造成之廢棄,同時並行執行掃描與圖像轉送之控制方法。首先設定將藉由第1圖幀的掃描而取得的圖像予以寫入之記憶體112(以下稱寫入記憶體)、及將同圖像予以讀取(轉送)之記憶體112(以下稱讀取記憶體)(S500、S501),設定光學參數的初始值(S502)。參數設定完成同時開始掃描(S503),在掃描完成前待命(S504)。此處,掃描完成判定402是比較藉由記憶體控制器內的掃描像素計數器403而計數出的掃描像素數407與事先設定好的圖像尺寸(像素數),藉此實施。若掃描像素數407等於圖像尺寸則成為掃描完成。Hereinafter, using the operation flow example of the memory controller of the present embodiment of FIG. 5, a control method of preventing scanning pixels from being discarded due to overwriting of the scanned pixels is described, and at the same time, scanning and image transfer are executed in parallel. First, set the memory 112 (hereinafter referred to as the writing memory) to write the image obtained by scanning the frame of the first image, and the memory 112 (hereinafter referred to as the same image) for reading (transferring) the same image Read the memory) (S500, S501), and set the initial value of the optical parameter (S502). Scanning is started at the same time as the parameter setting is completed (S503), and it is on standby before the scanning is completed (S504). Here, the scan completion determination 402 is implemented by comparing the number of scanned pixels 407 counted by the scan pixel counter 403 in the memory controller with a preset image size (number of pixels). If the number of scanned pixels 407 is equal to the image size, the scanning is completed.

掃描完成的同時切換寫入記憶體(S505),判定是否為第1圖幀的掃描(506),若為第1圖幀則變更參數(S507),立即將下一光學參數設定於光學參數設定部160,實施掃描(第2圖幀以後)。此外若為第1掃描則掃描完成的同時開始圖像轉送(S509),若為第2圖幀以後則在所有通道的圖像轉送完成前待命(S508)再開始轉送。轉送完成判定404,是比較藉由轉送像素計數器405計數出的轉送像素數408與未圖示之事先設定好的圖像尺寸,藉此實施。若轉送像素數408和圖像尺寸為同數量,則成為轉送完成(此處訂定轉送完成訊號409=“1”)。轉送完成(S510)的同時切換讀取記憶體(S511),如同實施例1,實施評估值導出與圖像縮小處理流程而顯示於GUI畫面200(S512)~(S517)。When the scan is completed, switch to the memory (S505), determine whether it is the scan of the first frame (506), if it is the first frame, change the parameters (S507), and immediately set the next optical parameter to the optical parameter setting Section 160 performs scanning (after the second frame). In addition, if it is the first scan, the image transfer is started at the same time as the scan is completed (S509), and if it is the second frame or later, it waits until the image transfer of all channels is completed (S508) to restart the transfer. The transfer completion determination 404 is implemented by comparing the number of transferred pixels 408 counted by the transfer pixel counter 405 with a previously set image size not shown. If the number of pixels 408 to be transferred is the same as the image size, the transfer is completed (here, the transfer completion signal 409 = "1"). When the transfer is completed (S510), the read memory is switched (S511). As in the first embodiment, the evaluation value derivation and image reduction processing flow is implemented and displayed on the GUI screen 200 (S512) to (S517).

此處雖未圖示,但S509~S517以通道數量份並行地執行。若為2圖幀以後且所有參數下的評估完成,則調整結束(S518)。若調整繼續則進行下一參數設定(S519),等待所有通道的圖像轉送完成(S520),於轉送完成時間點進行下一掃描(S503)。所有通道下轉送完成判定,是取所有記憶體控制器的轉送完成訊號410的邏輯和406,藉由其輸出成為“1”而判定完成。將邏輯和輸出往掃描控制部170輸入,藉此成為下一掃描開始的觸發訊號。也就是說,基於和複數個檢測器相對應之記憶體控制器的轉送完成,指示掃描控制部170開始掃描。Although not shown here, S509 to S517 are executed in parallel for the number of channels. If it is after 2 frames and the evaluation under all parameters is completed, the adjustment ends (S518). If the adjustment continues, proceed to the next parameter setting (S519), wait for the image transfer of all channels to be completed (S520), and perform the next scan at the point of completion of the transfer (S503). The transfer completion determination under all channels is to take the logical sum 406 of the transfer completion signal 410 of all the memory controllers, and determine the completion by the output of the transfer completion signal 410 becoming "1". The logical sum output is input to the scan control unit 170, thereby becoming a trigger signal for the start of the next scan. That is, based on the completion of the transfer of the memory controllers corresponding to the plurality of detectors, the scan control unit 170 is instructed to start scanning.

圖6A、圖6B揭示習知構成下之掃描/圖像轉送的時間圖例子。因簡單的關係僅揭示1通道的圖像轉送。圖6A為圖像轉送時間603≦(參數設定時間600+掃描時間601)的例子,在此情形下沒有問題地並行地執行掃描與圖像轉送。圖6B為圖像轉送時間612>(參數設定時間610+掃描時間611)的例。習知構成中,是將掃描的圖像存放於和轉送中的記憶體不同之記憶體,但因等待CPU的處理等而轉送時間長期間化,藉此讀取記憶體會成為使用中而產生無法存放於記憶體之像素(圖中斜線部613、614)。藉此,會有變得不能做所有圖像的評估之待解問題。本例中以記憶體為2的情形下為例,但複數記憶體下亦留下同樣的待解問題。Fig. 6A and Fig. 6B show examples of the time chart of scanning/image transfer under the conventional structure. Due to a simple relationship, only 1-channel image transfer is disclosed. 6A is an example of image transfer time 603≦(parameter setting time 600+scan time 601). In this case, scanning and image transfer are performed in parallel without any problems. FIG. 6B is an example of image transfer time 612>(parameter setting time 610 + scanning time 611). In the conventional structure, the scanned image is stored in a memory that is different from the memory that is being transferred, but the transfer time is long due to waiting for CPU processing, etc., so reading the memory will become in use and cause failure. Pixels stored in the memory (shaded areas 613 and 614 in the figure). As a result, there are unsolved problems that make it impossible to evaluate all images. In this example, the case where the memory is 2 is taken as an example, but the same problem remains to be solved under the plural memory.

圖7為和圖6B同條件下之依本實施例之掃描/圖像轉送時間圖。揭示了參數設定時間700、掃描時間701後的通道1與通道2的圖像轉送期間702、703的例子,但可知是在所有通道的圖像轉送完成前做了掃描待命704後再實施掃描,因此可做掃描與圖像轉送之並行執行而沒有像素的廢棄。藉由本實施例,可藉由簡單的構成來防止像素的廢棄,同時達成掃描與圖像轉送的並行執行。也就是說,能夠確實地做所有參數下的圖像評估,同時縮短參數調整時間。Fig. 7 is a time chart of scanning/image transfer according to this embodiment under the same conditions as Fig. 6B. An example of the image transfer periods 702 and 703 of channel 1 and channel 2 after the parameter setting time 700 and scan time 701 is revealed, but it can be seen that the scan is performed after the scan standby 704 is performed before the image transfer of all channels is completed. Therefore, scanning and image transfer can be executed in parallel without pixel waste. With this embodiment, it is possible to prevent pixel waste from being discarded with a simple structure, and to achieve parallel execution of scanning and image transfer at the same time. In other words, it is possible to reliably perform image evaluation under all parameters, while shortening the parameter adjustment time.

另本實施例中,雖訂為2個記憶體構成而進行記憶體的切換,但亦可設計成在1個記憶體上確保能夠存放2張圖像的區域,而分別切換圖像寫入之位址及圖像讀取之位址。 實施例3In addition, in this embodiment, although it is configured with two memories to switch the memories, it can also be designed to ensure an area for storing two images on one memory, and switch the image writing respectively. Address and the address where the image is read. Example 3

實施例2中揭示了2個記憶體構成下之像素廢棄防止手法。本實施例中,揭示運用3個以上的複數記憶體,來延長發生掃描待命為止的期間,藉此可提升全體產出之手法。In the second embodiment, a method for preventing pixel obsolescence in a two-memory configuration is disclosed. In this embodiment, it is disclosed that more than three plural memories are used to extend the period until the scan standby occurs, thereby improving the overall output method.

圖8揭示4個記憶體112下之像素廢棄防止的記憶體控制器111的構成。就和圖4相異之構成而言,係具備寫入/讀取記憶體不一致判定806,其從寫入控制800及讀取控制801分別讀取寫入記憶體資訊809及讀取記憶體資訊810,若寫入記憶體及讀取記憶體就不一致判定訊號811而言為不一致則輸出“1”,若為一致則輸出“0”。其具有下述機能:從所有通道的不一致判定訊號812的邏輯和807的輸出訊號,若所有通道下使用中記憶體不一致則立即開始下一掃描,而只要有其中1通道一致則掃描待命。也就是說,記憶體控制器,執行判定存放圖像的記憶體與讀取圖像的記憶體是否不一致之不一致判定,基於和複數個檢測器相對應之記憶體控制器的不一致判定,來指示掃描控制部170開始掃描。另,本實施例之記憶體切換,是以像記憶體1、記憶體2、記憶體3、記憶體4、記憶體1…這樣在環緩衝區(ring buffer)上切換之手法為例。FIG. 8 shows the structure of the memory controller 111 for preventing pixel obsolescence under the four memories 112. In terms of a configuration different from that shown in Figure 4, it has a write/read memory inconsistency determination 806, which reads write memory information 809 and read memory information from write control 800 and read control 801, respectively 810. If the inconsistency determination signal 811 is inconsistent in the write memory and read memory, "1" is output, and "0" is output if they are consistent. It has the following functions: from the logic of the inconsistency determination signal 812 of all channels and the output signal of 807, if the memory in use in all channels is inconsistent, the next scan will start immediately, and as long as one of the channels is consistent, the scan is on standby. In other words, the memory controller executes the inconsistency determination of whether the memory storing the image and the memory for reading the image are inconsistent, and instructs based on the inconsistency determination of the memory controllers corresponding to a plurality of detectors The scan control unit 170 starts scanning. In addition, the memory switching in this embodiment is based on a method of switching on a ring buffer such as memory 1, memory 2, memory 3, memory 4, memory 1, etc. as an example.

圖9為本實施例中的流程圖。存在和實施例2共通的步驟因此細節省略,惟就新的步驟而言有(步驟S907)(步驟S913)。掃描完成時切換寫入記憶體,轉送完成時切換讀取記憶體,因此(步驟S907)中在所有通道實施記憶體的一致判定,只要有1通道一致則設為掃描待命,藉此便能實施掃描及圖像轉送而沒有像素的廢棄。此外,(步驟S913)中對每一通道進行記憶體的一致判定,藉此當不一致的情形下便能立即開始圖像轉送。此處(步驟S910)~(步驟S919)以通道數量份並行地執行。Fig. 9 is a flowchart in this embodiment. There are steps common to the second embodiment, so the details are omitted, but there are new steps (step S907) (step S913). Switch to write memory when scanning is completed, and switch to read memory when transfer is completed. Therefore, in step S907, the consistency determination of memory is performed on all channels. As long as one channel is consistent, it will be set to scan standby, so that it can be implemented. Scanning and image transfer without pixel waste. In addition, in (step S913), the consistency of the memory is determined for each channel, so that the image transmission can be started immediately in the case of inconsistency. Here (step S910) to (step S919) are executed in parallel by the number of channels.

圖10為本實施例中的掃描/圖像轉送時間圖。以通道2中圖像轉送期間1003成為長期間的情形為例。如圖10所示,能夠僅當發生像素的廢棄的情形下才設為掃描待命1004,因此相較於實施例2可達成全體性的產量提升。另,轉送待命1005為對每一通道待命直到可做圖像轉送為止之期間,本實施例中雖是構成為隨時轉送可轉送的圖像,但亦可構成為以同步做所有通道的圖像轉送為目的而等待所有通道的圖像轉送完成來做圖像轉送。 實施例4Fig. 10 is a time chart of scanning/image transfer in this embodiment. Take the case where the image transfer period 1003 becomes a long period in channel 2 as an example. As shown in FIG. 10, the scanning standby 1004 can be set only when the pixel is discarded. Therefore, compared with the second embodiment, an overall increase in yield can be achieved. In addition, the transfer standby 1005 is the period when each channel is on standby until the image can be transferred. Although this embodiment is configured to transfer images that can be transferred at any time, it can also be configured to synchronize images of all channels. For the purpose of transfer, wait for the image transfer of all channels to be completed for image transfer. Example 4

實施例2及實施例3,為依掃描待命而達成用來防止像素的廢棄之實施例,於掃描間會產生浪費時間。也就是說,意指相較於無浪費時間而掃描的情形下之最高圖幀率(每單位時間的掃描圖幀數),圖幀率會降低。圖11為對使用者揭示圖幀率降低之GUI構成1100。當發生掃描待命的情形下,係顯示圖幀率降低資訊並且包含哪一通道為轉送長期間化亦予以顯示1101,藉此便可掌握用來做參數調整的條件設定(掃描的圖像尺寸等)是否妥當或掌握成為瓶頸的通道等,能夠提升易用性。顯示控制部140,基於存放於顯示圖像記憶體150的圖像的狀況,來控制以進行這樣的顯示1101。也就是說,顯示控制部14,當於每一1圖幀的掃描間發生了掃描停止期間的情形下係控制在GUI130顯示圖幀率降低資訊。Embodiments 2 and 3 are implemented to prevent pixel wastage based on scanning standby, and waste time between scans. In other words, it means that compared to the highest image frame rate (number of scanned image frames per unit time) in the case of scanning without wasting time, the image frame rate will be reduced. FIG. 11 shows a GUI composition 1100 that reveals to the user that the frame rate of the picture is reduced. When scanning is on standby, the frame rate reduction information of the display image and which channel is included for the long-term transmission is also displayed 1101, so that you can grasp the condition settings for parameter adjustment (scanning image size, etc.) ) Whether it is appropriate or mastering the channel that becomes the bottleneck, etc., can improve the ease of use. The display control unit 140 controls to perform such a display 1101 based on the status of the image stored in the display image memory 150. In other words, the display control unit 14 controls the GUI 130 to display the image frame rate reduction information when a scan stop period occurs between scans of one image frame.

另,本發明並非由上述實施例所限定,還包含各式各樣的變形例。例如,上述實施例是為了便於說明本發明而詳加說明,並非限定於一定要具備所說明之所有構成。此外,可將某一實施例的一部分置換成其他實施例之構成,又,亦可於某一實施例之構成追加其他實施例之構成。此外,針對各實施例的構成的一部分,可追加、刪除或置換其他構成。In addition, the present invention is not limited by the above-mentioned embodiments, and includes various modifications. For example, the above-mentioned embodiments are described in detail to facilitate the description of the present invention, and are not limited to all the configurations described. In addition, a part of a certain embodiment may be replaced with a configuration of another embodiment, and the configuration of a certain embodiment may be added to the configuration of another embodiment. In addition, with respect to a part of the configuration of each embodiment, other configurations may be added, deleted, or replaced.

此外,上述的各構成、功能、處理部、處理手段等,它們的一部分或全部,例如亦可藉由以積體電路設計等而由硬體來實現。此外,上述各構成、功能等,亦可由處理器來分別解譯實現各功能之程式,並藉由執行而由軟體來實現。實現各功能的程式、表格、檔案等資訊,能夠置放於記憶體、或硬碟、SSD(Solid State Drive)等記錄裝置,或IC卡、SD卡、DVD等記錄媒體。 此外,控制線或資訊線係揭示說明上認為有必要者,未必揭示製品上所有控制線或資訊線。實際上可認為幾乎所有的構成均相互連接。In addition, a part or all of the above-mentioned various configurations, functions, processing units, processing means, etc. may also be realized by hardware by, for example, an integrated circuit design or the like. In addition, each of the above-mentioned structures, functions, etc., may also be separately interpreted by the processor to realize the program for each function, and implemented by software through execution. The programs, forms, files and other information that realize each function can be placed in memory, hard disk, SSD (Solid State Drive) and other recording devices, or IC card, SD card, DVD and other recording media. In addition, control lines or information lines are deemed necessary in the disclosure instructions, and may not reveal all control lines or information lines on the product. In fact, it can be considered that almost all the components are connected to each other.

100:像素取得裝置 101:檢測器 102:A/D變換器 103:類比訊號 104:數位像素值 110:演算裝置 111:控制器 112:記憶體 113:評估值導出部 114:圖像縮小部 115,116:圖像資訊 117:評估值 118:縮小圖像資訊 120:全體控制部 130:GUI 200:GUI畫面 201:圖像顯示部 202:顯示選擇輸入部 203:參數選擇按鈕 204:滑動條輸入部 205:規定值輸入部 206:自動調整按鈕 207:手動調整按鈕 208:完成按鈕 140:顯示控制部 150:顯示圖像記憶體 160:光學參數設定部 161:光學參數資訊 170:掃描控制部 171:掃描資訊 400:寫入控制 401:讀取控制 402:掃描完成判定 403:掃描像素計數器 404:轉送完成判定 405:轉送像素計數器100: Pixel acquisition device 101: Detector 102: A/D converter 103: Analog signal 104: Digital pixel value 110: calculation device 111: Controller 112: Memory 113: Evaluation Value Derivation Department 114: Image reduction section 115, 116: image information 117: evaluation value 118: Reduce image information 120: Overall control department 130: GUI 200: GUI screen 201: Image display section 202: Display selection input section 203: Parameter selection button 204: Slider input section 205: Rated value input section 206: Automatic adjustment button 207: Manual adjustment button 208: Finish button 140: display control unit 150: Display image memory 160: Optical parameter setting department 161: Optical parameter information 170: Scan Control Department 171: Scan Information 400: Write control 401: read control 402: Scanning completion judgment 403: Scanning pixel counter 404: Judgment of completion of transfer 405: Transfer pixel counter

[圖1] 實施例1之帶電粒子束裝置的一構成的概略圖。 [圖2A] 實施例1之GUI畫面顯示的一例示意圖。 [圖2B] 實施例1之GUI畫面顯示的另一例示意圖。 [圖3] 實施例1之參數手動調整時的動作流程示意圖。 [圖4] 實施例2之記憶體控制器的詳細構成圖。 [圖5] 實施例2之參數自動調整時的記憶體控制器的動作流程示意圖。 [圖6A] 習知之掃描/圖像轉送的時間圖的一例示意圖。 [圖6B] 習知之掃描/圖像轉送的時間圖的另一例示意圖。 [圖7] 實施例2之掃描/圖像轉送的時間圖的一例示意圖。 [圖8] 實施例3之記憶體控制器的詳細構成圖。 [圖9] 實施例3之參數自動調整時的記憶體控制器的動作流程示意圖。 [圖10] 實施例3之掃描/圖像轉送的時間圖的一例示意圖。 [圖11] 實施例4之GUI畫面顯示的一例示意圖。[Fig. 1] A schematic diagram of a configuration of the charged particle beam device of the first embodiment. [Fig. 2A] A schematic diagram of an example of GUI screen display in the first embodiment. [Fig. 2B] A schematic diagram of another example of GUI screen display in the first embodiment. [Fig. 3] The schematic diagram of the action flow of the manual adjustment of the parameters of the first embodiment. [Figure 4] A detailed configuration diagram of the memory controller of the second embodiment. [Fig. 5] A schematic diagram of the operation flow of the memory controller during automatic parameter adjustment of the second embodiment. [Figure 6A] A schematic diagram of an example of a conventional scanning/image transfer timing chart. [Figure 6B] A schematic diagram of another example of the conventional scanning/image transfer timing chart. [Fig. 7] A schematic diagram of an example of the time chart of scanning/image transfer in the second embodiment. [Figure 8] A detailed configuration diagram of the memory controller of the third embodiment. [Fig. 9] A schematic diagram of the operation flow of the memory controller during automatic parameter adjustment of the third embodiment. [Fig. 10] A schematic diagram of an example of the time chart of scanning/image transfer in the third embodiment. [Fig. 11] A schematic diagram of an example of GUI screen display in the fourth embodiment.

100:像素取得裝置 100: Pixel acquisition device

101:檢測器 101: Detector

102:A/D變換器 102: A/D converter

103:類比訊號 103: Analog signal

104:數位像素值 104: Digital pixel value

110:演算裝置 110: calculation device

111:控制器 111: Controller

112:記憶體 112: Memory

113:評估值導出部 113: Evaluation Value Derivation Department

114:圖像縮小部 114: Image reduction section

116:圖像資訊 116: Image Information

120:全體控制部 120: Overall control department

130:GUI 130: GUI

140:顯示控制部 140: display control unit

150:顯示圖像記憶體 150: Display image memory

160:光學參數設定部 160: Optical parameter setting department

161:光學參數資訊 161: Optical parameter information

170:掃描控制部 170: Scan Control Department

171:掃描資訊 171: Scan Information

Claims (15)

一種帶電粒子束裝置,其特徵為,具備: 光學系統,將複數個一次帶電粒子束對試料照射;及 光學參數設定部,設定前述光學系統的參數;及 檢測器,個別地檢測從前述試料放出的複數個二次帶電粒子束;及 複數個記憶部,將前述檢測器檢測出的訊號變換成數位像素,存放作為圖像;及 評估值導出部,從前述圖像導出前述一次帶電粒子束的評估值;及 GUI,顯示前述圖像,可受理來自使用者的輸入; 前述GUI,顯示前述圖像、及基於前述評估值之評估結果。A charged particle beam device, characterized in that it has: The optical system irradiates the sample with a plurality of primary charged particle beams; and The optical parameter setting unit sets the parameters of the aforementioned optical system; and A detector to individually detect a plurality of secondary charged particle beams emitted from the aforementioned sample; and A plurality of memory units convert the signals detected by the aforementioned detectors into digital pixels and store them as images; and An evaluation value derivation unit that derives the evaluation value of the aforementioned primary charged particle beam from the aforementioned image; and GUI, which displays the aforementioned image and can accept input from the user; The aforementioned GUI displays the aforementioned image and the evaluation result based on the aforementioned evaluation value. 如請求項1記載之帶電粒子束裝置,其中,具備: 圖像縮小部,縮小前述圖像;及 顯示圖像記憶體,存放前述圖像縮小部縮小後的前述圖像。The charged particle beam device according to claim 1, wherein: The image reduction section reduces the aforementioned image; and The display image memory stores the image reduced by the image reduction unit. 如請求項2記載之帶電粒子束裝置,其中,具備: 顯示控制部,將前述顯示圖像記憶體中存放的前述圖像及前述評估結果顯示於前述GUI的畫面。The charged particle beam device according to claim 2, wherein: The display control unit displays the image and the evaluation result stored in the display image memory on the screen of the GUI. 如請求項3記載之帶電粒子束裝置,其中,具備: 掃描控制部,產生前述一次帶電粒子束的掃描訊號;及 全體控制部,將從前述GUI輸入的資訊設定至前述光學參數設定部,而對前述掃描控制部設定掃描資訊。The charged particle beam device described in claim 3, which includes: The scanning control unit generates the scanning signal of the aforementioned primary charged particle beam; and The overall control unit sets the information input from the GUI to the optical parameter setting unit, and sets scan information to the scan control unit. 如請求項4記載之帶電粒子束裝置,其中, 前述GUI,包含選擇顯示的前述圖像之顯示選擇輸入部、及將使用者選擇的規定數的前述圖像與相對應的前述評估結果並排顯示之圖像顯示部。The charged particle beam device described in claim 4, wherein: The GUI includes a display selection input unit for selecting and displaying the image, and an image display unit for displaying a predetermined number of the images selected by the user and the corresponding evaluation results side by side. 如請求項5記載之帶電粒子束裝置,其中, 前述GUI,更包含選擇前述參數之參數選擇部、及可即時地變更前述參數之滑動條輸入部、及輸入前述評估值的規定值之規定值輸入部。The charged particle beam device described in claim 5, wherein: The aforementioned GUI further includes a parameter selection unit for selecting the aforementioned parameter, a slider input unit for instantly changing the aforementioned parameter, and a predetermined value input unit for inputting a predetermined value of the evaluation value. 如請求項6記載之帶電粒子束裝置,其中, 前述GUI,更包含選擇使用者所做的手動調整或是自動調整之手動調整按鈕及自動調整按鈕。The charged particle beam device described in claim 6, wherein: The aforementioned GUI further includes a manual adjustment button and an automatic adjustment button for selecting manual adjustment or automatic adjustment made by the user. 如請求項4記載之帶電粒子束裝置,其中, 具備:控制器,控制前述記憶部的圖像寫入及讀取, 前述控制器,包含將前述數位像素予以計數之掃描像素計數器、及於圖像轉送時將轉送像素數予以計數之轉送像素計數器, 基於從前述掃描像素計數器輸出的掃描像素數與事先設定好的圖像尺寸而判定出掃描完成的同時,以切換存放前述圖像的前述記憶部之方式做寫入控制, 基於從前述轉送像素計數器輸出的轉送像素數與事先設定好的圖像尺寸而判定出轉送完成的同時,以切換讀出前述圖像的前述記憶部之方式做讀取控制。The charged particle beam device described in claim 4, wherein: Equipped with: a controller that controls the image writing and reading of the aforementioned memory unit, The controller includes a scanning pixel counter that counts the digital pixels, and a transfer pixel counter that counts the number of pixels to be transferred when the image is transferred, When it is determined that the scanning is completed based on the number of scanned pixels output from the scanning pixel counter and the pre-set image size, the writing control is performed by switching the memory section storing the aforementioned image, When the transfer is determined based on the number of transfer pixels output from the transfer pixel counter and the image size set in advance, the reading control is performed by switching the memory unit for reading the image. 如請求項8記載之帶電粒子束裝置,其中, 基於和複數個前述檢測器相對應之前述控制器的前述轉送完成,指示前述掃描控制部開始掃描。The charged particle beam device described in claim 8, wherein: Based on the completion of the transfer of the controller corresponding to the plurality of the detectors, the scanning control unit is instructed to start scanning. 如請求項8記載之帶電粒子束裝置,其中, 前述控制部,係 執行判定存放圖像的前述記憶部與讀取圖像的前述記憶部是否不一致之不一致判定, 基於和複數個前述檢測器相對應之前述控制器的前述不一致判定,指示前述掃描控制部開始掃描。The charged particle beam device described in claim 8, wherein: The aforementioned control unit is Perform an inconsistency determination to determine whether the aforementioned memory portion storing the image and the aforementioned memory portion for reading the image are inconsistent, Based on the inconsistency determination of the controllers corresponding to the plurality of detectors, the scanning control unit is instructed to start scanning. 如請求項3記載之帶電粒子束裝置,其中, 前述顯示控制部,當於每一1圖幀的掃描間發生了掃描停止期間的情形下係控制在前述GUI顯示圖幀率降低資訊。The charged particle beam device described in claim 3, wherein: The aforementioned display control unit controls to display the frame rate reduction information in the aforementioned GUI when a scanning stop period occurs between scanning of each 1 frame. 一種帶電粒子束裝置的作動方法,其特徵為, 前述帶電粒子束裝置,具備可做圖像顯示與受理來自使用者的輸入之GUI, 設定將複數個一次帶電粒子束對試料照射之光學系統的參數, 個別地檢測從前述試料放出的複數個二次帶電粒子束,將檢測出的訊號變換成數位像素而做成圖像, 從前述圖像導出前述一次帶電粒子束的評估值, 將前述圖像及基於前述評估值之評估結果顯示於前述GUI。An actuation method of a charged particle beam device, which is characterized by: The aforementioned charged particle beam device has a GUI that can display images and accept input from users, Set the parameters of the optical system that irradiates the sample with multiple primary charged particle beams, Individually detect a plurality of secondary charged particle beams emitted from the aforementioned sample, and convert the detected signals into digital pixels to create an image, Derive the evaluation value of the aforementioned primary charged particle beam from the aforementioned image, The aforementioned image and the evaluation result based on the aforementioned evaluation value are displayed on the aforementioned GUI. 如請求項12記載之帶電粒子束裝置的作動方法,其中, 前述GUI,將使用者選擇的規定數的前述圖像與相對應的前述評估結果並排顯示。Such as the operating method of the charged particle beam device described in claim 12, wherein: The aforementioned GUI displays a predetermined number of the aforementioned images selected by the user and the corresponding aforementioned evaluation results side by side. 如請求項13記載之帶電粒子束裝置的作動方法,其中, 前述GUI,可選擇前述參數,即時地變更前述參數。The operating method of the charged particle beam device described in claim 13, wherein: In the aforementioned GUI, the aforementioned parameters can be selected, and the aforementioned parameters can be changed in real time. 如請求項14記載之帶電粒子束裝置的作動方法,其中, 前述GUI,可選擇使用者所做的手動調整或是自動調整。The operating method of the charged particle beam device described in claim 14, wherein: In the aforementioned GUI, manual adjustment or automatic adjustment by the user can be selected.
TW109109356A 2019-04-24 2020-03-20 Charged particle beam device and its operating method TWI741535B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2019/017496 2019-04-24
PCT/JP2019/017496 WO2020217354A1 (en) 2019-04-24 2019-04-24 Charged particle beam device and operation method therefor

Publications (2)

Publication Number Publication Date
TW202105440A true TW202105440A (en) 2021-02-01
TWI741535B TWI741535B (en) 2021-10-01

Family

ID=72941087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109356A TWI741535B (en) 2019-04-24 2020-03-20 Charged particle beam device and its operating method

Country Status (5)

Country Link
US (1) US11961701B2 (en)
JP (1) JP7165260B2 (en)
DE (1) DE112019007019T5 (en)
TW (1) TWI741535B (en)
WO (1) WO2020217354A1 (en)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237611A (en) * 1994-12-27 1996-09-13 Olympus Optical Co Ltd Image storage device and scanning converter
WO2002040980A1 (en) * 2000-11-17 2002-05-23 Ebara Corporation Wafer inspecting method, wafer inspecting instrument, and electron beam apparatus
US6855929B2 (en) * 2000-12-01 2005-02-15 Ebara Corporation Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former
JP4486509B2 (en) 2005-01-06 2010-06-23 日本電子株式会社 electronic microscope
US7358493B2 (en) * 2005-06-08 2008-04-15 Infineon Technologies Richmond, Lp Method and apparatus for automated beam optimization in a scanning electron microscope
JP4936985B2 (en) * 2007-05-14 2012-05-23 株式会社日立ハイテクノロジーズ Scanning electron microscope and three-dimensional shape measuring apparatus using the same
JP2010033723A (en) 2008-07-25 2010-02-12 Hitachi High-Technologies Corp Scanning electron microscope
WO2010082451A1 (en) * 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ Charged particle beam applied apparatus
WO2011030508A1 (en) * 2009-09-11 2011-03-17 株式会社 日立ハイテクノロジーズ Signal processing method for charged particle beam device, and signal processing device
JP5047318B2 (en) 2010-03-05 2012-10-10 株式会社日立ハイテクノロジーズ Method for displaying an electron microscope image and an optical image in an overlapping manner
JP5712073B2 (en) 2011-07-19 2015-05-07 株式会社日立ハイテクノロジーズ Automatic determination method of inspection condition / measurement condition of sample and scanning microscope
JP5777967B2 (en) * 2011-07-26 2015-09-16 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and measurement method
JP5743955B2 (en) * 2012-05-28 2015-07-01 株式会社日立ハイテクノロジーズ Pattern inspection apparatus and pattern inspection method
JP2014026834A (en) 2012-07-26 2014-02-06 Hitachi High-Technologies Corp Charged particle beam application apparatus
JP2015201304A (en) * 2014-04-07 2015-11-12 株式会社日立ハイテクノロジーズ Image processing system and image processing method, and sem device using image processing system
KR102145256B1 (en) * 2015-04-10 2020-08-19 에이에스엠엘 네델란즈 비.브이. Method and apparatus for inspection and metrology
US11056314B2 (en) * 2015-10-22 2021-07-06 Northwestern University Method for acquiring intentionally limited data and the machine learning approach to reconstruct it
JP2020181629A (en) 2017-07-27 2020-11-05 株式会社日立ハイテク Electron beam observation device, electron beam observation system, and control method for electron beam observation device

Also Published As

Publication number Publication date
US11961701B2 (en) 2024-04-16
JPWO2020217354A1 (en) 2020-10-29
DE112019007019T5 (en) 2021-11-25
WO2020217354A1 (en) 2020-10-29
US20220189729A1 (en) 2022-06-16
JP7165260B2 (en) 2022-11-02
TWI741535B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
US9704221B2 (en) Image processing apparatus and image processing method
US9064348B2 (en) Image processing apparatus, method of processing image, and computer-readable storage medium
US20170094147A1 (en) Reproducing apparatus and reproducing method
JP2005354690A (en) System and method for utilizing effectively live preview mode of electronic image instrument
US10636388B2 (en) Display device, display method, and storage medium
CN105191291A (en) Information processing apparatus, program, and video output system
US10447980B2 (en) Image display apparatus, control method for image display apparatus and storage medium for image quality adjustment
US20140333540A1 (en) Optical navigation device with different optical mechanisms and associated method thereof
JP6567810B2 (en) microscope
US7929185B2 (en) System and method for switching screens from overview and preview
TWI741535B (en) Charged particle beam device and its operating method
DE102021121513A1 (en) Projection device and control method
JP2016163228A5 (en)
US11463612B2 (en) Control apparatus, control method, and program
JP6399002B2 (en) Image forming apparatus, image forming method, and image forming program
JP2017126914A (en) Image processing system
JP2005348363A (en) Imaging device
WO2022071271A1 (en) Imaging device, image processing method, and image processing program
JP2023091398A (en) Information processing device, control method for the same, and program
JPWO2020217354A5 (en)
JP2006227033A (en) Display monitor switching device and monitor device
US20120127101A1 (en) Display control apparatus
KR20110067551A (en) Apparatus and method for processing image
JP2000332966A (en) Scanning device and method for displaying preview image
JP2014192531A (en) Image processing program and image processing device