TW202104813A - Gas liquefaction method and gas liquefaction apparatus - Google Patents
Gas liquefaction method and gas liquefaction apparatus Download PDFInfo
- Publication number
- TW202104813A TW202104813A TW109124598A TW109124598A TW202104813A TW 202104813 A TW202104813 A TW 202104813A TW 109124598 A TW109124598 A TW 109124598A TW 109124598 A TW109124598 A TW 109124598A TW 202104813 A TW202104813 A TW 202104813A
- Authority
- TW
- Taiwan
- Prior art keywords
- feed gas
- refrigerant
- lng
- heat exchanger
- main heat
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000007789 gas Substances 0.000 claims abstract description 216
- 239000003507 refrigerant Substances 0.000 claims abstract description 149
- 238000000605 extraction Methods 0.000 claims description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 26
- 239000006200 vaporizer Substances 0.000 claims description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 230000008016 vaporization Effects 0.000 claims description 12
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 238000009834 vaporization Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000003570 air Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 20
- 239000003345 natural gas Substances 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract 1
- 239000003949 liquefied natural gas Substances 0.000 description 130
- 238000010438 heat treatment Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
- F25J1/0222—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
- F25J3/04272—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04381—Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/22—Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/60—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
本發明係關於一種氣體液化裝置及一種氣體液化方法,且詳言之本發明描述利用經液化天然氣之冷量之空氣分離裝置,其中根本上解決了天然氣組分污染空氣分離製程之危險,且可高效液化空氣。The present invention relates to a gas liquefaction device and a gas liquefaction method, and in detail, the present invention describes an air separation device using the cold energy of liquefied natural gas, which fundamentally solves the risk of natural gas components polluting the air separation process, and can High-efficiency air liquefaction.
經液化天然氣(在下文中被稱作「LNG」)經汽化且接著供應為天然氣(在下文中被稱作「NG」)。由於在汽化期間釋放大量冷量,因此需要實際上利用此冷量以便改良能效。低溫空氣分離裝置(在下文中被稱作「ASU」)在接近LNG之沸點(例如,-162℃)下運行,因此利用LNG冷量之複數個ASU由於用於利用自LNG釋放之冷量之方法當前亦在良好效率下操作(例如,專利文獻1中所揭示之設備)。Liquefied natural gas (hereinafter referred to as "LNG") is vaporized and then supplied as natural gas (hereinafter referred to as "NG"). Since a large amount of cold is released during vaporization, it is necessary to actually use this cold in order to improve energy efficiency. The cryogenic air separation unit (hereinafter referred to as "ASU") operates at a temperature close to the boiling point of LNG (for example, -162°C). Therefore, multiple ASUs using LNG cooling capacity are used to utilize the cooling capacity released from LNG. Currently, it also operates with good efficiency (for example, the device disclosed in Patent Document 1).
利用LNG之冷量之習知ASU實施用於藉由在含於ASU中之熱交換器中汽化LNG而恢復冷量之方法,或用於藉由利用LNG之冷量液化氮氣以獲得液氮,且接著將液氮引入至ASU製程中或在熱交換器中汽化液氮而將冷量提供至ASU之方法。 [先前技術文獻] [專利文獻]The conventional ASU using the cooling capacity of LNG implements a method for recovering the cooling capacity by vaporizing LNG in the heat exchanger contained in the ASU, or for obtaining liquid nitrogen by liquefying nitrogen by using the cooling capacity of LNG, And then the liquid nitrogen is introduced into the ASU process or the liquid nitrogen is vaporized in a heat exchanger to provide cold to the ASU method. [Prior Technical Literature] [Patent Literature]
[專利文獻1] JP 2000-337767 A[Patent Document 1] JP 2000-337767 A
[待藉由本發明解決的問題][Problems to be solved by the present invention]
當LNG之冷量由ASU利用時的重要安全性問題在於為LNG之主要組分之烴會洩漏至ASU之製程空氣管線中。An important safety issue when the cold energy of LNG is used by ASU is that hydrocarbons, which are the main components of LNG, leak into the process air pipeline of ASU.
對於LNG及空氣,在熱交換器中通常採用流體之間不存在接觸之間接熱交換。然而,當烴組分污染富含氧之空氣製程時,存在烴自身突然燃燒之危險及藉由點燃裝置內部之鋁產生熱,從而導致突然燃燒之危險。此意謂必須採取措施防止由諸如熱交換器破裂等故障引起之LNG洩漏,以便裝置安全操作。在例如專利文獻1中,LNG在相較於製程空氣之壓力較低之壓力下經歷熱交換,或LNG之冷量藉由冷卻製程空氣而供應至製程空氣,同時在LNG冷量之恢復期間在相較於製程空氣較低之壓力下操作,以作為中間加熱介質。For LNG and air, there is usually no contact and heat exchange between fluids in heat exchangers. However, when the hydrocarbon component contaminates the oxygen-enriched air process, there is a risk of sudden combustion of the hydrocarbon itself and the risk of sudden burning by igniting the aluminum inside the device to generate heat. This means that measures must be taken to prevent LNG leakage caused by failures such as the rupture of the heat exchanger, so that the device can operate safely. For example, in
然而,由於天然氣管路及發電設施中之高壓,LNG之壓力很有可能超過在ASU中合適的製程氣壓(例如,0.4至5.0 MPaG),且當LNG維持在相較於製程空氣之壓力較低之壓力下汽化以獲得天然氣時,可需要壓縮機以便獲得管路壓力,從而導致能效降低,且成本可提高。However, due to the high pressure in natural gas pipelines and power generation facilities, the pressure of LNG is likely to exceed the appropriate process pressure in ASU (for example, 0.4 to 5.0 MPaG), and when LNG is maintained at a lower pressure than the process air When the gas is vaporized under the pressure to obtain natural gas, a compressor may be required to obtain the pipeline pressure, which leads to a reduction in energy efficiency and an increase in cost.
替代地,使得製程氣壓高於LNG之氣壓在技術上亦為可行的,但過度增加空氣之壓力不僅造成能效較差,而且存在一問題,亦即空氣藉由與LNG之熱交換過度液化,在ASU中之精餾中液體與蒸汽之比率降低,且製程不再可行。Alternatively, it is technically feasible to make the process pressure higher than that of LNG, but excessively increasing the air pressure not only causes poor energy efficiency, but also has a problem that the air is excessively liquefied by heat exchange with LNG. The ratio of liquid to steam in the rectification is reduced, and the process is no longer feasible.
此外,利用氮或烴等作為中間加熱介質包括相比於當LNG及製程空氣在熱交換器中經歷熱交換時由至少一個額外熱交換器提供之熱交換,因此熱交換損耗效率會降低,此為低效的。In addition, the use of nitrogen or hydrocarbons as an intermediate heating medium includes heat exchange provided by at least one additional heat exchanger when LNG and process air undergo heat exchange in the heat exchanger, so the heat exchange loss efficiency will be reduced. Is inefficient.
因此,需要開發用於在天然氣供應壓力較高之當前情形下在ASU中安全且高效地利用LNG之冷量之方法。Therefore, it is necessary to develop a method for safely and efficiently using the cold capacity of LNG in ASU under the current situation of high natural gas supply pressure.
本發明之目標因此在於藉由利用自LNG釋放之冷量安全高效地液化空氣,同時自LNG供應在相較於製程氣壓較高之壓力下之NG。 [用於解決問題之方式] (發明1)The object of the present invention is therefore to safely and efficiently liquefy air by using the cold energy released from LNG, while supplying NG from LNG at a higher pressure than the process pressure. [Methods used to solve the problem] (Invention 1)
根據本發明之氣體液化方法包含:進料氣體液化步驟,其中進料氣體在主要熱交換器中藉助於與LNG及製冷劑之熱交換而冷卻及液化;及 汽化步驟,其中已經歷與該進料氣體之熱交換之該LNG藉助於與已經歷與該進料氣體之熱交換之該製冷劑的熱交換而汽化,以提供NG, 且其特徵在於該進料氣體之壓力在該進料氣體液化步驟中高於該LNG或該製冷劑之壓力。 (發明2)The gas liquefaction method according to the present invention includes: a feed gas liquefaction step, wherein the feed gas is cooled and liquefied by means of heat exchange with LNG and refrigerant in the main heat exchanger; and A vaporization step, in which the LNG that has undergone heat exchange with the feed gas is vaporized by heat exchange with the refrigerant that has undergone heat exchange with the feed gas to provide NG, And it is characterized in that the pressure of the feed gas is higher than the pressure of the LNG or the refrigerant in the feed gas liquefaction step. (Invention 2)
在上述發明中,進料氣體液化步驟可包含: 第一冷卻步驟,其中藉助於與製冷劑之熱交換將進料氣體冷卻至第一溫度;及第二冷卻步驟,其中藉助於與LNG之熱交換將進料氣體冷卻至低於第一溫度之第二溫度。 (發明3)In the above invention, the step of liquefying the feed gas may include: The first cooling step, in which the feed gas is cooled to a first temperature by heat exchange with the refrigerant; and the second cooling step, in which the feed gas is cooled to a temperature lower than the first temperature by heat exchange with LNG The second temperature. (Invention 3)
在上述發明中, 該汽化步驟可為在該第二冷卻步驟中經歷熱交換之後已經增壓之LNG藉助於與在該第一冷卻步驟中經歷熱交換之後已經膨脹之該製冷劑的熱交換而汽化的步驟。 (發明4)In the above invention, The vaporization step may be a step in which LNG that has been pressurized after undergoing heat exchange in the second cooling step is vaporized by heat exchange with the refrigerant that has expanded after undergoing heat exchange in the first cooling step. (Invention 4)
在上述發明中,進料氣體液化步驟可進一步包括:初步冷卻步驟,其中在主要熱交換器中將進料氣體冷卻至高於第二溫度之第三溫度;及 進料氣體壓縮步驟,其中在該初步冷卻步驟中已經冷卻之該進料氣體經壓縮並供應至該第一冷卻步驟。 (發明5)In the above invention, the feed gas liquefaction step may further include: a preliminary cooling step, in which the feed gas is cooled to a third temperature higher than the second temperature in the main heat exchanger; and The feed gas compression step, wherein the feed gas that has been cooled in the preliminary cooling step is compressed and supplied to the first cooling step. (Invention 5)
在上述汽化步驟中,製冷劑在經加熱至預定溫度之後可膨脹。 (發明6)In the above vaporization step, the refrigerant may expand after being heated to a predetermined temperature. (Invention 6)
此外,本發明構成用於藉助於主要熱交換器冷卻及液化進料氣體之氣體液化裝置,該氣體液化裝置包含: LNG引入管線,其用於將LNG引入至該主要熱交換器之冷端中; LNG抽取管線,其用於將引入至該主要熱交換器中之該LNG自該主要熱交換器之中間第一位置抽出; LNG泵,其用於對自該主要熱交換器抽出之該LNG增壓; LNG汽化器,其用於藉助於與製冷劑之熱交換使自該LNG泵抽出之該LNG汽化,以獲得NG; 製冷劑泵,其用於將該製冷劑自該LNG汽化器遞送至該主要熱交換器; 製冷劑引入管線,其用於在該主要熱交換器之中間第二位置處引入自該製冷劑泵抽出之該製冷劑; 製冷劑抽取管線,其用於將該製冷劑自該主要熱交換器之熱端抽出;以及 製冷劑膨脹渦輪機,其用於使得自該製冷劑抽取管線抽出之該製冷劑膨脹,並將經膨脹製冷劑遞送至該LNG汽化器, 其中該中間第一位置及該中間第二位置位於該冷端與該熱端之間,且該中間第一位置相較於該中間第二位置較接近於冷端側定位。 (發明7)In addition, the present invention constitutes a gas liquefaction device for cooling and liquefying the feed gas by means of a main heat exchanger, the gas liquefaction device comprising: LNG introduction pipeline, which is used to introduce LNG into the cold end of the main heat exchanger; LNG extraction pipeline, which is used to extract the LNG introduced into the main heat exchanger from the first middle position of the main heat exchanger; LNG pump, which is used to pressurize the LNG drawn from the main heat exchanger; LNG vaporizer, which is used to vaporize the LNG drawn from the LNG pump by means of heat exchange with the refrigerant to obtain NG; A refrigerant pump for delivering the refrigerant from the LNG vaporizer to the main heat exchanger; A refrigerant introduction line, which is used to introduce the refrigerant drawn from the refrigerant pump at a second position in the middle of the main heat exchanger; A refrigerant extraction line for extracting the refrigerant from the hot end of the main heat exchanger; and A refrigerant expansion turbine, which is used to expand the refrigerant extracted from the refrigerant extraction line and deliver the expanded refrigerant to the LNG vaporizer, The middle first position and the middle second position are located between the cold end and the hot end, and the middle first position is closer to the cold end side than the middle second position. (Invention 7)
根據上述發明之氣體液化裝置可包含:第一中間進料氣體抽取管線,其用於將在主要熱交換器中冷卻之進料氣體自主要熱交換器之中間第三位置抽出; 第一進料氣體壓縮機,其用於壓縮自該第一中間進料氣體抽取管線抽出之該進料氣體;以及 經壓縮進料氣體引入管線,其用於將藉由該第一進料氣體壓縮機壓縮之該進料氣體引入至該主要熱交換器之該熱端中, 且該第一進料氣體壓縮機可藉助於製冷劑膨脹渦輪機驅動。 (發明8)The gas liquefaction device according to the above invention may include: a first intermediate feed gas extraction line for extracting the feed gas cooled in the main heat exchanger from the third middle position of the main heat exchanger; A first feed gas compressor for compressing the feed gas extracted from the first intermediate feed gas extraction line; and Compressed feed gas introduction line for introducing the feed gas compressed by the first feed gas compressor into the hot end of the main heat exchanger, And the first feed gas compressor can be driven by means of a refrigerant expansion turbine. (Invention 8)
在根據上述發明之氣體液化裝置中,製冷劑加熱器可設置於製冷劑膨脹渦輪機之初級側上。 (發明9)In the gas liquefaction device according to the above invention, the refrigerant heater may be provided on the primary side of the refrigerant expansion turbine. (Invention 9)
根據上述發明之氣體液化裝置可包含:第二進料氣體壓縮機,其用於進一步壓縮自第一進料氣體壓縮機抽出之進料氣體; 第二中間進料氣體抽取管線,其用於將在該主要熱交換器中冷卻之該進料氣體之一部分在自該第二進料氣體壓縮機抽出之後自該主要熱交換器之中間部分抽出;以及 進料氣體渦輪機,其配置於第二中間進料氣體引入管線上, 且第二進料氣體壓縮機亦可藉助於進料氣體渦輪機驅動。 (發明10)The gas liquefaction device according to the above invention may include: a second feed gas compressor for further compressing the feed gas drawn from the first feed gas compressor; A second intermediate feed gas extraction line for extracting a part of the feed gas cooled in the main heat exchanger from the middle part of the main heat exchanger after being extracted from the second feed gas compressor ;as well as The feed gas turbine is configured on the second intermediate feed gas introduction pipeline, And the second feed gas compressor can also be driven by the feed gas turbine. (Invention 10)
根據上述發明之氣體液化裝置中之進料氣體可包含空氣、氮氣、氬氣、氧氣,或該等氣體中之任何兩種或多於兩種。 (發明11)The feed gas in the gas liquefaction device according to the above invention may include air, nitrogen, argon, oxygen, or any two or more of these gases. (Invention 11)
根據上述發明之氣體液化裝置中之製冷劑可為包含烴及氮中之一或多者之流體。 (發明12)The refrigerant in the gas liquefaction device according to the above invention may be a fluid containing one or more of hydrocarbons and nitrogen. (Invention 12)
此外,本發明構成包含上述氣體液化裝置之空氣分離裝置。In addition, the present invention constitutes an air separation device including the above-mentioned gas liquefaction device.
根據上述發明,在相較於進料氣體壓力較低之壓力下將LNG引入至主要熱交換器之冷端中,且LNG作為液體自主要熱交換器之中間第一位置抽出並藉由LNG泵增壓,之後將該LNG引入至汽化LNG之LNG汽化器中且接著作為NG抽出。According to the above invention, LNG is introduced into the cold end of the main heat exchanger at a lower pressure than the pressure of the feed gas, and LNG is pumped as a liquid from the middle first position of the main heat exchanger and is pumped by the LNG pump After pressurizing, the LNG is introduced into the LNG vaporizer that vaporizes the LNG and is then used as NG extraction.
製冷劑在已藉由LNG汽化器冷凝之後藉助於製冷劑泵增壓,該製冷劑在主要熱交換器之中間第二位置處引入且經汽化,且在已自熱端抽出之後,製冷劑藉由膨脹渦輪機膨脹且接著再次引入至LNG汽化器中。此處,中間第二位置相較於中間第一位置較接近於熱端側。After the refrigerant has been condensed by the LNG vaporizer, it is pressurized by the refrigerant pump. The refrigerant is introduced and vaporized at the second position in the middle of the main heat exchanger, and after it has been extracted from the hot end, the refrigerant is The expansion turbine expands and is then introduced again into the LNG vaporizer. Here, the middle second position is closer to the hot end side than the middle first position.
藉由製冷劑膨脹渦輪機獲得之原動力用於發電及冷凝氣體等,且可因此實現高能效。進料氣體自主要熱交換器之熱端引入且經冷卻,之後進料氣體自主要熱交換器之冷端抽出。The motive power obtained by the refrigerant expansion turbine is used for power generation and condensing gas, etc., and can therefore achieve high energy efficiency. The feed gas is introduced and cooled from the hot end of the main heat exchanger, and then the feed gas is extracted from the cold end of the main heat exchanger.
根據本發明,進料氣體藉助於LNG及製冷劑冷卻,但由於LNG在相較於進料氣體壓力較低之壓力下引入,因此諸如烴等LNG組分不會洩漏至進料氣體中,即使存在諸如熱交換器破裂等故障,這因此為安全的。此外,當將諸如丙烷或乙烷等烴用作製冷劑時,若製冷劑泵放電壓力低於進料氣體之製程壓力,則避免諸如上文所描述之烴組分之洩漏危險,且若使用諸如氮氣等惰性流體,則可實現較高安全性。According to the present invention, the feed gas is cooled by means of LNG and refrigerant, but since LNG is introduced at a pressure lower than the pressure of the feed gas, LNG components such as hydrocarbons will not leak into the feed gas, even if There are failures such as rupture of the heat exchanger, which is therefore safe. In addition, when hydrocarbons such as propane or ethane are used as refrigerants, if the discharge pressure of the refrigerant pump is lower than the process pressure of the feed gas, the risk of leakage of hydrocarbon components such as those described above is avoided, and if used Inert fluids such as nitrogen can achieve higher safety.
本發明之高效率之原因源自以下事實:藉由在主要熱交換器之冷端部分處在LNG與進料氣體之間進行熱交換的組態及藉由製冷劑循環中之製冷劑膨脹渦輪機獲得輸出。The reason for the high efficiency of the present invention is derived from the following facts: by the configuration of heat exchange between the LNG and the feed gas at the cold end of the main heat exchanger and by the refrigerant expansion turbine in the refrigerant cycle Get the output.
詳言之,關於熱交換,通常具有甲烷作為其主要組分之LNG儲存於在接近大氣壓之壓力下運行之較大儲槽內部,且由於LNG藉由泵增壓並供應至汽化器,因此所供應LNG之溫度為添加來自泵送之熱輸入至接近近似大氣壓之飽和溫度(例如,-162℃)的溫度。換言之,藉由泵送提供之增壓愈大,溫度升高愈多(例如,若壓力增加至10 MPaG,則溫度升高至-145℃),且藉由泵送提供之增壓愈小,溫度保持愈低(例如,若壓力增加至2 MPaG,則溫度升高至-155℃)。In detail, with regard to heat exchange, LNG with methane as its main component is usually stored in a larger storage tank operating at a pressure close to atmospheric pressure, and because LNG is pressurized by a pump and supplied to the vaporizer, the supplied The temperature of LNG is the temperature at which the heat input from pumping is added to the saturation temperature close to the approximate atmospheric pressure (for example, -162°C). In other words, the greater the boost provided by pumping, the more the temperature rises (for example, if the pressure is increased to 10 MPaG, the temperature rises to -145°C), and the lower the boost provided by pumping, Keep the temperature lower (for example, if the pressure increases to 2 MPaG, the temperature rises to -155°C).
在本發明之組態中,LNG在引入至主要熱交換器中之前之泵送相較於供應NG壓力可保持為較低層級,因此LNG可在較低溫度下供應至主要熱交換器之冷端且可在熱交換器中經歷與製程空氣之熱交換而無需中間加熱介質之中間物,這因此實現高效率。In the configuration of the present invention, the pumping of LNG before being introduced into the main heat exchanger can be maintained at a lower level than the pressure of supplying NG, so LNG can be supplied to the cold of the main heat exchanger at a lower temperature. End and can experience heat exchange with the process air in the heat exchanger without intermediate heating medium, which therefore achieves high efficiency.
本發明之具體實例之若干模式將在下文描述。下文描述之具體實例之模式為本發明之例示性描述。本發明絕不受具體實例之以下模式限制,以及包括實施於不會更改本發明之要點之範圍內的多個變型模式。應注意,下文描述之成分並不全部限於本發明之基本成分。 (具體實例1之模式)Several modes of specific examples of the present invention will be described below. The modes of specific examples described below are illustrative descriptions of the present invention. The present invention is by no means limited by the following modes of specific examples, and includes multiple modified modes implemented within a range that does not change the gist of the present invention. It should be noted that the ingredients described below are not all limited to the basic ingredients of the present invention. (Specific example 1 mode)
根據具體實例1之模式,氣體液化裝置101及採用該氣體液化裝置之氣體液化方法將參考圖1描述。[0028]
<氣體液化裝置>According to the mode of specific example 1, the
根據具體實例1之模式,氣體液化裝置101藉助於主要熱交換器1冷卻及液化進料氣體。According to the mode of specific example 1, the
氣體液化裝置101包含:LNG引入管線20,其用於將LNG引入至主要熱交換器1之冷端中;LNG抽取管線21,其用於將引入至主要熱交換器1中之LNG自主要熱交換器1之中間第一位置31抽出;LNG泵2,其用於對自主要熱交換器1抽出之LNG增壓;LNG汽化器3,其用於藉助於與製冷劑之熱交換汽化自LNG泵2抽出之LNG,以獲得NG;製冷劑泵4,其用於將製冷劑自LNG汽化器3遞送至主要熱交換器1;製冷劑引入管線41,其用於在主要熱交換器1之中間第二位置32處引入自製冷劑泵4抽出之製冷劑;製冷劑抽取管線42,其用於將製冷劑自主要熱交換器1之熱端抽出;以及製冷劑膨脹渦輪機5,其用於使得自製冷劑抽取管線42抽出之製冷劑膨脹並將經膨脹製冷劑遞送至LNG汽化器3。中間第一位置31及中間第二位置32位於主要熱交換器1之冷端與熱端之間,且中間第一位置31相較於中間第二位置32較接近於冷端側定位。
<進料氣體液化步驟>The
在進料氣體液化步驟中,進料氣體在主要熱交換器1中藉助於與LNG及製冷劑熱交換而冷卻及液化。In the feed gas liquefaction step, the feed gas is cooled and liquefied in the
此處,不存在關於進料氣體之特定限制,其限制條件為進料氣體藉助於LNG及製冷劑而液化,且進料氣體可包含例如空氣、氮氣、氬氣、氧氣,或該等氣體中之任何兩種或多於兩種。Here, there is no specific restriction on the feed gas. The restriction condition is that the feed gas is liquefied by means of LNG and refrigerant, and the feed gas can include, for example, air, nitrogen, argon, oxygen, or these gases. Of any two or more than two.
製冷劑可為具有能夠冷卻進料氣體之冷熱之加熱介質,且其可為液化烴(甲烷、乙烷等)或液氮。The refrigerant can be a heating medium with cold and heat capable of cooling the feed gas, and it can be a liquefied hydrocarbon (methane, ethane, etc.) or liquid nitrogen.
將進料氣體自進料氣體引入管線51引入至主要熱交換器1之熱端中。在主要熱交換器1中藉助於與製冷劑之熱交換將進料氣體冷卻至第一溫度(第一冷卻步驟)。第一溫度低於進料氣體在引入至主要熱交換器1中之前之溫度且高於引入至主要熱交換器1中之製冷劑之溫度,且此溫度可介於例如-138℃與-83℃之間。The feed gas is introduced from the feed
在此之後,藉助於與LNG之熱交換將進料氣體冷卻至第二溫度(第二冷卻步驟)。第二溫度低於第一溫度且高於引入至主要熱交換器1中之LNG之溫度,且此溫度可介於例如為甲烷之飽和溫度之-162℃與為空氣之臨界溫度之-141℃之間。After that, the feed gas is cooled to a second temperature by means of heat exchange with LNG (second cooling step). The second temperature is lower than the first temperature and higher than the temperature of the LNG introduced into the
如上文所描述之藉助於製冷劑及LNG冷卻之進料氣體藉助於冷端進料氣體抽取管線52自主要熱交換器1之冷端抽出。The feed gas cooled by means of refrigerant and LNG as described above is extracted from the cold end of the
裝置以此方式操作使得自主要熱交換器1之熱端抽出之進料氣體之壓力高於引入至主要熱交換器1中之LNG及製冷劑之壓力。
<汽化步驟>The device operates in this way so that the pressure of the feed gas drawn from the hot end of the
在汽化步驟中,已經歷與該進料氣體之熱交換之LNG藉助於與已經歷與該進料氣體之熱交換之製冷劑的熱交換而汽化,以形成NG。In the vaporization step, the LNG that has undergone heat exchange with the feed gas is vaporized by heat exchange with the refrigerant that has undergone heat exchange with the feed gas to form NG.
將LNG自LNG引入管線20引入至主要熱交換器1之冷端中。LNG之溫度可為LNG在引入至主要熱交換器1之冷端中之壓力下為液體的溫度,且該溫度可低於第二溫度之上限值約2℃,例如介於-162℃與-143℃之間。The LNG is introduced from the
LNG在主要熱交換器1內部經歷與進料氣體之熱交換,自中間第一位置31抽出,且經由LNG抽取管線21引入至LNG泵2中。LNG藉助於LNG泵2增壓,之後該LNG被供應至LNG汽化器3之冷端側且經加熱以形成NG。在此之後,氣體作為NG自LNG汽化器3之熱端側抽出,且被遞送至NG管路。The LNG undergoes heat exchange with the feed gas inside the
製冷劑在主要熱交換器1之中間第二位置32處自製冷劑引入管線41引入。引入至主要熱交換器1中之製冷劑之溫度可高於引入至主要熱交換器1中之LNG之溫度,且該製冷劑之該溫度可為低於第一溫度約2℃之溫度,例如介於-140℃與-85℃之間。製冷劑在主要熱交換器1內部經歷與進料氣體之熱交換,之後將其自主要熱交換器1之熱端側抽出。已經抽出之製冷劑經由製冷劑抽取管線42引入至製冷劑膨脹渦輪機5中,且經膨脹。經膨脹製冷劑被引入至LNG汽化器3之熱端側中且藉助於與LNG之熱交換而冷凝。經冷凝製冷劑藉助於製冷劑泵4而增壓且在主要熱交換器1之中間第二位置32處再次自製冷劑引入管線41引入。The refrigerant is introduced from the
此處描繪僅一個製冷劑循環,其中製冷劑在LNG汽化器3內部經冷凝,在利用其增壓、冷熱之後被引入至主要熱交換器1中,且已經自主要熱交換器1抽出之製冷劑藉由製冷劑膨脹渦輪機5而膨脹,之後製冷劑返回至LNG汽化器3,但亦有可能提供包含相同組成物或不同組成物(例如,可使用乙烷)之複數個製冷劑循環。
(具體實例2之模式)Depicted here is only one refrigerant cycle, in which the refrigerant is condensed inside the
根據具體實例2之模式,氣體液化裝置102及採用該氣體液化裝置之氣體液化方法將參考圖2描述。應注意,與具體實例1之模式中具有相同參考編號之元件具有相同功能且因此將不再描述。According to the mode of specific example 2, the
根據具體實例2之模式,氣體液化裝置102包含第一中間進料氣體抽取管線53,其用於將在主要熱交換器1中冷卻之進料氣體自主要熱交換器1之中間第三位置33抽出。已經自進料氣體引入管線51引入至主要熱交換器1中之進料氣體藉助於與製冷劑之熱交換而冷卻至第三溫度,且自中間第三位置33抽出。此處,第三溫度可高於第一溫度,且其可為高於第一溫度約1℃之溫度,例如介於-137℃與-84℃之間。According to the mode of specific example 2, the
自第一中間進料氣體抽取管線53抽出之進料氣體藉助於第一進料氣體壓縮機6壓縮且自主要熱交換器1之熱端再次引入至主要熱交換器1中。在此之後,進料氣體藉助於與製冷劑及LNG之熱交換而冷卻,且藉助於冷端進料氣體抽取管線52自主要熱交換器1之冷端抽出。The feed gas extracted from the first intermediate feed
根據具體實例之此模式,進料氣體在已冷卻之後經壓縮,且因此有可能使用較小原動力壓縮進料氣體。According to this mode of the specific example, the feed gas is compressed after it has been cooled, and therefore it is possible to compress the feed gas using a smaller motive force.
第一進料氣體壓縮機6可經組態以藉助於製冷劑膨脹渦輪機5驅動。
(具體實例3之模式)The first
根據具體實例3之模式,氣體液化裝置103及採用該氣體液化裝置之氣體液化方法將參考圖3描述。應注意,與具體實例1及2之模式中具有相同參考編號之元件具有相同功能且因此將不再描述。According to the mode of specific example 3, the
在根據具體實例3之模式之氣體液化裝置103中,製冷劑加熱器7設置於製冷劑膨脹渦輪機5之初級側上。製冷劑在引入至製冷劑膨脹渦輪機5中之前之溫度可藉助於製冷劑加熱器7自由調節,且該製冷劑溫度可調節至例如-67℃與135℃之間。In the
有可能藉由將製冷劑膨脹渦輪機5之入口溫度設定為高溫而增加製冷劑膨脹渦輪機5之輸出。此外,有可能使製冷劑膨脹渦輪機5之入口溫度保持恆定,獨立於主要熱交換器1之熱端側上之溫度,即使進料氣體供應溫度有所波動,且因此製冷劑膨脹渦輪機之輸出可穩定。
(具體實例4之模式)It is possible to increase the output of the
根據具體實例4之模式,氣體液化裝置104及採用該氣體液化裝置之氣體液化方法將參考圖4描述。應注意,與具體實例1、2及3之模式中具有相同參考編號之元件具有相同功能且因此將不再描述。According to the mode of specific example 4, the
根據具體實例4之模式之氣體液化裝置104包含:第二進料氣體壓縮機8,其用於進一步壓縮自第一進料氣體壓縮機6抽出之進料氣體;第二中間進料氣體抽取管線55,其用於將在主要熱交換器1中冷卻之進料氣體之一部分在自第二進料氣體壓縮機8抽出之後自主要熱交換器1之中間部分抽出;以及進料氣體渦輪機9,其配置於第二中間進料氣體引入管線55上。The
第二進料氣體壓縮機8可經組態以藉助於進料氣體渦輪機9驅動。
(例示性具體實例1)The second
構成進料氣體之製程空氣使用根據具體實例1之模式之氣體液化裝置液化的實例將參考圖1描述。An example in which the process air constituting the feed gas is liquefied using a gas liquefaction device according to the mode of Specific Example 1 will be described with reference to FIG. 1.
LNG在-160℃之溫度、2.0 MPaG之壓力,及1000 Nm3
/h之流動速率下自LNG引入管線20引入至主要熱交換器1之冷端中。此處,LNG之組成為:0.11莫耳%之氮、99.85莫耳%之甲烷,及0.04莫耳%之乙烷。The LNG is introduced from the
LNG在-118℃下自主要熱交換器1之中間第一位置31抽出且經由LNG抽取管線21遞送至LNG泵2。LNG之壓力藉助於LNG泵2增加至8.1 MPaG。LNG之溫度在LNG泵2之絕熱效率為50%時升高至-110℃。LNG is extracted from the middle
藉由LNG泵2增壓之LNG被供應至LNG汽化器3之冷端側且經加熱以形成NG。在此之後,氣體作為NG自LNG汽化器3之熱端側抽出且被遞送至NG管路。自LNG汽化器3抽出之NG之壓力為8 MPaG,且亦與用於汽化高壓LNG之製程相容。The LNG pressurized by the
製冷劑在-60℃之溫度、0.01 MPaG之壓力,及120 Nm3
/h之流動速率下被引入至LNG汽化器3之熱端側中。此處,製冷劑藉助於與LNG之熱交換而冷卻至-107℃,且經液化。應注意,所使用製冷劑之組成為70莫耳%之乙烷及30莫耳%之丙烷。The refrigerant is introduced into the hot end side of the
液化製冷劑藉助於製冷劑泵4增壓至0.2 MPaG。泵之絕熱效率為50%,因此製冷劑之溫度升高至-106℃。The liquefied refrigerant is pressurized to 0.2 MPaG by means of the refrigerant pump 4. The adiabatic efficiency of the pump is 50%, so the temperature of the refrigerant rises to -106°C.
藉由製冷劑泵4增壓之製冷劑在主要熱交換器1之中間第二位置32處引入且經加熱至-37℃並經氣化,之後製冷劑自主要熱交換器1之熱端抽出,經由製冷劑引入管線42引入至製冷劑膨脹渦輪機5中,且經膨脹。當製冷劑膨脹渦輪機5之絕熱效率為75%時,實現大致2 kW之輸出。The refrigerant pressurized by the refrigerant pump 4 is introduced at the
藉由製冷劑膨脹渦輪機5而膨脹之製冷劑再次自LNG汽化器3之熱端側引入。The refrigerant expanded by the
充當進料氣體之製程空氣在50℃之溫度、3.0 MPaG之壓力,及600 Nm3
/h之流動速率下被引入至主要熱交換器1之熱端側中。The process air serving as the feed gas is introduced into the hot end side of the
製程空氣之組成為78.11莫耳%之氮氣、0.93莫耳%之氬氣及20.96莫耳%之氧氣。The composition of the process air is 78.11 mol% nitrogen, 0.93 mol% argon, and 20.96 mol% oxygen.
製程空氣在主要熱交換器1內部經歷與製冷劑之熱交換且藉助於與LNG之熱交換冷卻至為第一溫度之-79℃,且接著冷卻至為第二溫度之-146℃。The process air undergoes heat exchange with the refrigerant inside the
在主要熱交換器1之冷端側處獲得大致46莫耳%之液化製程空氣。主要熱交換器1之接近溫度為3℃。此處,接近溫度指代流體間最小溫度差。Approximately 46 mol% of liquefied process air is obtained at the cold end side of the
如上文所指示,操作在製冷劑及LNG之壓力在主要熱交換器1中之熱交換期間低於進料氣體之壓力的狀態下,甚至在NG在高壓(例如,8 MPaG)下供應時為可能的。
(例示性具體實例2)As indicated above, the operation is in a state where the pressure of the refrigerant and LNG is lower than the pressure of the feed gas during the heat exchange in the
將描述例示性具體實例2,其中構成進料氣體之製程空氣使用根據具體實例2之模式之氣體液化裝置102液化。An illustrative specific example 2 will be described in which the process air constituting the feed gas is liquefied using the
製程空氣藉助於進料氣體引入管線51引入至主要熱交換器1之熱端中,且冷卻至為第三溫度之-50℃。將在-50℃下之製程空氣自第一中間進料氣體抽取管線53抽出且引入至第一進料氣體壓縮機6中。藉由第一進料氣體壓縮機6壓縮之製程空氣進一步藉助於主要熱交換器1冷卻且自冷端進料氣體抽取管線52抽出。The process air is introduced into the hot end of the
此處,當第一進料氣體壓縮機6之絕熱效率為75%時,製程空氣可經壓縮至3.24 MPaG。在例示性具體實例1中,自冷端進料氣體抽取管線52抽出之製程空氣在藉助於與例示性具體實例2中之第一進料氣體壓縮機6具有相同絕熱效率75%之壓縮機壓縮時可僅壓縮至3.12 MPaG。根據上文,可以說,空氣可藉由在已在主要熱交換器1中冷卻之後壓縮製程空氣而使用較小原動力壓縮。
(例示性具體實例3)Here, when the adiabatic efficiency of the first
將描述例示性具體實例3,其中構成進料氣體之製程空氣使用根據具體實例3之模式之氣體液化裝置103液化。An illustrative specific example 3 will be described in which the process air constituting the feed gas is liquefied using the
在例示性具體實例3中,製冷劑藉助於製冷劑加熱器7經加熱至20℃。在製冷劑未經加熱之例示性具體實例1中,引入至製冷劑膨脹渦輪機5中之製冷劑之溫度為-37℃,且所實現之製冷劑膨脹渦輪機5之原動力為2 kW。同時,由於製冷劑溫度在例示性具體實例3中為20℃,因此所實現之製冷劑膨脹渦輪機5之原動力為2.5 kW。In Exemplary Specific Example 3, the refrigerant is heated to 20° C. by means of the
如上文所描述,上述發明使得有可能將進料氣體維持在相較於在主要熱交換器內部之冷卻步驟中LNG之壓力較高的壓力下,甚至在供應高壓NG時,且不需要使用壓縮機來壓縮NG。因此,有可能藉由利用LNG之冷量安全地液化進料氣體。As described above, the above-mentioned invention makes it possible to maintain the feed gas at a higher pressure than the pressure of LNG in the cooling step inside the main heat exchanger, even when supplying high-pressure NG, without using compression Machine to compress NG. Therefore, it is possible to safely liquefy the feed gas by using the cold energy of LNG.
另外,上述發明藉助於LNG及進料氣體可在一個主要熱交換器中經歷熱交換的事實實現高進料氣體液化效率。使用中間加熱介質之先前技術中可見之方法在進料氣體將使用LNG之冷量液化時需要至少兩個或多於兩個熱交換器。一般而言,熱交換器中會考慮機械上有可能的流體間溫度差,但存在以下問題:當沿著管線設置複數個熱交換器時,難以使用LNG冷量將進料氣體設定在較低溫度下。In addition, the above-mentioned invention achieves high feed gas liquefaction efficiency by virtue of the fact that LNG and feed gas can undergo heat exchange in one main heat exchanger. The method seen in the prior art using an intermediate heating medium requires at least two or more heat exchangers when the feed gas is liquefied using the cold amount of LNG. Generally speaking, mechanically possible temperature differences between fluids are considered in heat exchangers, but there are the following problems: When multiple heat exchangers are installed along the pipeline, it is difficult to use LNG cold capacity to set the feed gas at a low level. Temperature.
根據上述發明,當主要熱交換器內部之流體間最小溫度差為3℃時,有可能液化大致46莫耳%之空氣。同時,當出於LNG與進料氣體之間的熱交換之目標使用中間加熱介質時,LNG及中間加熱介質,以及該中間加熱介質及進料氣體中之每一者均需要熱交換器,且鑒於各別熱交換器中之流體間最小溫度差例如為3℃,LNG及進料氣體之流體間最小溫度差實際上為6℃,且此時液化之空氣之量達到不超過大致34%。According to the above invention, when the minimum temperature difference between the fluids inside the main heat exchanger is 3°C, it is possible to liquefy approximately 46 mol% of air. At the same time, when an intermediate heating medium is used for the purpose of heat exchange between LNG and the feed gas, LNG and the intermediate heating medium, and each of the intermediate heating medium and the feed gas require a heat exchanger, and Considering that the minimum temperature difference between the fluids in the individual heat exchangers is, for example, 3°C, the minimum temperature difference between the LNG and feed gas fluids is actually 6°C, and the amount of liquefied air at this time does not exceed approximately 34%.
因此,本發明據稱可相較於先前技術改良液化效率大致37%。Therefore, the present invention is said to improve the liquefaction efficiency by approximately 37% compared to the prior art.
1:主要熱交換器 2:LNG泵 3:LNG汽化器 4:製冷劑泵 5:製冷劑膨脹渦輪機 6:第一進料氣體壓縮機 7:製冷劑加熱器 8:第二進料氣體壓縮機 9:進料氣體渦輪機 10:汽化單元 20:LNG引入管線 21:LNG抽取管線 31:中間第一位置 32:中間第二位置 41:製冷劑引入管線 42:製冷劑抽取管線 51:進料氣體引入管線 52:冷端進料氣體抽取管線 53:第一中間進料氣體抽取管線 54:經壓縮進料氣體引入管線 55:第二中間進料氣體引入管線 101:氣體液化裝置1: Main heat exchanger 2: LNG pump 3: LNG vaporizer 4: Refrigerant pump 5: refrigerant expansion turbine 6: The first feed gas compressor 7: Refrigerant heater 8: The second feed gas compressor 9: Feed gas turbine 10: Vaporization unit 20: LNG introduction pipeline 21: LNG extraction pipeline 31: First position in the middle 32: Middle second position 41: Refrigerant introduction pipeline 42: Refrigerant extraction line 51: Feed gas introduction pipeline 52: Cold end feed gas extraction line 53: The first intermediate feed gas extraction pipeline 54: The compressed feed gas is introduced into the pipeline 55: The second intermediate feed gas introduction line 101: Gas Liquefaction Device
[圖1]為展示根據具體實例1之模式的氣體液化裝置之例示性組態的圖。 [圖2]為展示根據具體實例2之模式的氣體液化裝置之例示性組態的圖。 [圖3]為展示根據具體實例3之模式的氣體液化裝置之例示性組態的圖。 [圖4]為展示根據具體實例4之模式的氣體液化裝置之例示性組態的圖。[Fig. 1] is a diagram showing an exemplary configuration of a gas liquefaction device according to the mode of specific example 1. [Fig. 2] is a diagram showing an exemplary configuration of a gas liquefaction device according to the mode of specific example 2. [Fig. [Fig. 3] is a diagram showing an exemplary configuration of a gas liquefaction device according to the mode of specific example 3. [Fig. [Fig. 4] is a diagram showing an exemplary configuration of a gas liquefaction device according to the mode of specific example 4. [Fig.
1:主要熱交換器 1: Main heat exchanger
2:LNG泵 2: LNG pump
3:LNG汽化器 3: LNG vaporizer
4:製冷劑泵 4: Refrigerant pump
5:製冷劑膨脹渦輪機 5: refrigerant expansion turbine
20:LNG引入管線 20: LNG introduction pipeline
21:LNG抽取管線 21: LNG extraction pipeline
31:中間第一位置 31: First position in the middle
32:中間第二位置 32: Middle second position
41:製冷劑引入管線 41: Refrigerant introduction pipeline
42:製冷劑抽取管線 42: Refrigerant extraction line
51:進料氣體引入管線 51: Feed gas introduction pipeline
52:冷端進料氣體抽取管線 52: Cold end feed gas extraction line
101:氣體液化裝置 101: Gas Liquefaction Device
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019136523A JP7379763B2 (en) | 2019-07-25 | 2019-07-25 | Gas liquefaction method and gas liquefaction device |
JP2019-136523 | 2019-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202104813A true TW202104813A (en) | 2021-02-01 |
Family
ID=74419699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109124598A TW202104813A (en) | 2019-07-25 | 2020-07-21 | Gas liquefaction method and gas liquefaction apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7379763B2 (en) |
CN (1) | CN112284039A (en) |
TW (1) | TW202104813A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024191546A1 (en) * | 2023-03-15 | 2024-09-19 | Cnx Resources Corporation | System and method for efficient natural gas pretreatment |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0784979B2 (en) * | 1987-04-28 | 1995-09-13 | 千代田化工建設株式会社 | Method for producing liquid air by LNG cold heat and expander cycle |
US5137558A (en) * | 1991-04-26 | 1992-08-11 | Air Products And Chemicals, Inc. | Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream |
TW414851B (en) * | 1998-03-27 | 2000-12-11 | Exxon Production Research Co | Producing power from liquefied natural gas |
TW432192B (en) * | 1998-03-27 | 2001-05-01 | Exxon Production Research Co | Producing power from pressurized liquefied natural gas |
JP2000337767A (en) * | 1999-05-26 | 2000-12-08 | Air Liquide Japan Ltd | Air separating method and air separating facility |
JP4276520B2 (en) * | 2003-10-30 | 2009-06-10 | 株式会社神戸製鋼所 | Operation method of air separation device |
JP4142559B2 (en) * | 2003-12-03 | 2008-09-03 | 日本エア・リキード株式会社 | Gas liquefaction apparatus and gas liquefaction method |
FR2913760B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION |
CN101806293B (en) * | 2010-03-10 | 2012-03-28 | 华南理工大学 | Integrating and optimizing method for improving generation efficiency of liquefied natural gas cold energy |
KR101784530B1 (en) * | 2012-10-18 | 2017-10-11 | 현대중공업 주식회사 | Floating Liquefaction Gas Production Storage Apparatus |
JP6087196B2 (en) * | 2012-12-28 | 2017-03-01 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Low temperature compressed gas or liquefied gas manufacturing apparatus and manufacturing method |
CN106288650B (en) * | 2015-06-26 | 2019-07-05 | 上海恩图能源科技有限公司 | Nitrogen at room recycles LNG cold energy technique |
KR20190041859A (en) * | 2017-10-13 | 2019-04-23 | 유병용 | Reliquefaction apparatus of liquified gas using fuel LNG and liquefied gas carrier having the same |
TWI746977B (en) * | 2019-01-22 | 2021-11-21 | 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Gas liquefaction method and gas liquefaction device |
-
2019
- 2019-07-25 JP JP2019136523A patent/JP7379763B2/en active Active
-
2020
- 2020-07-21 TW TW109124598A patent/TW202104813A/en unknown
- 2020-07-24 CN CN202010721633.7A patent/CN112284039A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN112284039A (en) | 2021-01-29 |
JP2021021500A (en) | 2021-02-18 |
JP7379763B2 (en) | 2023-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5647299B2 (en) | Liquefaction method and liquefaction apparatus | |
TW454086B (en) | Hybrid cycle for the production of liquefied natural gas | |
JP3586501B2 (en) | Cryogenic liquid and boil-off gas processing method and apparatus | |
RU2013108796A (en) | INTEGRATED LIQUID STORAGE | |
CN104884886B (en) | For the method and apparatus producing electric energy | |
KR20060123675A (en) | Lng bog reliquefaction apparatus and lng bog reliquefaction method | |
TW202104813A (en) | Gas liquefaction method and gas liquefaction apparatus | |
KR100761976B1 (en) | Lng bog reliquefaction apparatus and method with a cooler for startup | |
KR20080081436A (en) | Lng bog reliquefaction apparatus and method | |
CA2758095C (en) | Refrigeration process and system for recovering cold from methane refrigerants | |
JP7393607B2 (en) | Gas liquefaction method and gas liquefaction device | |
KR20070024071A (en) | Bog reliquefaction apparatus | |
KR102391288B1 (en) | Gas turbine power generation system using liquid oxygen | |
KR102391289B1 (en) | Gas turbine power generation system using liquid oxygen | |
JPH07218033A (en) | Cooling device for lng tank | |
KR101665495B1 (en) | BOG Re-liquefaction Apparatus and Method for Vessel | |
JP4142559B2 (en) | Gas liquefaction apparatus and gas liquefaction method | |
JP3222325U (en) | Nitrogen liquefier | |
KR102474224B1 (en) | Gas turbine power generation system using liquid air | |
KR102391287B1 (en) | Gas turbine power generation system using liquid air | |
JP2002338977A (en) | Process and apparatus for reliquefying boil-off gas from liquefied natural gas | |
JP2961072B2 (en) | Oxygen and nitrogen liquefaction equipment | |
EP2454518B1 (en) | Method for the gasification of a liquid hydrocarbon stream and an apparatus therefor | |
KR101670880B1 (en) | BOG Re-liquefaction Apparatus and Method for Vessel | |
KR102106621B1 (en) | Boil-Off Gas liquefaction system and liquefaction method |