TW202100759A - Steel sheet for can, and method for manufacturing same - Google Patents

Steel sheet for can, and method for manufacturing same Download PDF

Info

Publication number
TW202100759A
TW202100759A TW109110111A TW109110111A TW202100759A TW 202100759 A TW202100759 A TW 202100759A TW 109110111 A TW109110111 A TW 109110111A TW 109110111 A TW109110111 A TW 109110111A TW 202100759 A TW202100759 A TW 202100759A
Authority
TW
Taiwan
Prior art keywords
less
steel sheet
invention examples
rolling
cans
Prior art date
Application number
TW109110111A
Other languages
Chinese (zh)
Other versions
TWI728760B (en
Inventor
齋藤勇人
假屋房亮
小島克己
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202100759A publication Critical patent/TW202100759A/en
Application granted granted Critical
Publication of TWI728760B publication Critical patent/TWI728760B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a steel sheet for a can, suitable as a can container material used in a food or beverage can, and a method for manufacturing the steel sheet for a can. This steel sheet for a can has a component composition containing, in terms of mass%, 0.010-0.080% C, no more than 0.05% Si, 0.10-0.70% Mn, no more than 0.03% P, no more than 0.020% S, 0.005-0.020% Al, and 0.0120-0.0180% N, the remainder being Fe and unavoidable impurities, and the steel sheet for a can has a [Delta]r of -0.3-0.3.

Description

罐用鋼板及其製造方法Steel plate for tank and manufacturing method thereof

本發明是有關於一種適於食品或飲料罐所使用的罐容器材料的罐用鋼板及其製造方法。本發明特別是有關於一種對於用作深沖(Draw and Redraw,DRD)罐體、瓶的蓋的凸耳蓋(lug cap)及螺旋蓋(screw cap)而言較佳的罐用鋼板及其製造方法。The present invention relates to a can steel plate suitable for can container materials used for food or beverage cans and a manufacturing method thereof. The present invention particularly relates to a steel plate for cans that is better for lug caps and screw caps for deep drawing (Draw and Redraw, DRD) cans and bottle caps, and Production method.

飲料罐或食品罐所使用的鋼板中,罐蓋、罐底、三片罐的罐體等有時會使用被稱為二次軋製(Double Reduced,DR)材的鋼板。DR材是指在一次冷軋之後實施退火,然後再次以一定以上的軋製率進行二次冷軋而製造的鋼板。與僅進行軋製率小的回火軋製(temper rolling)的一次軋製(Single Reduced,SR)材相比,可容易地硬質化並減薄板厚。就近年來的降低環境負荷及削減成本的觀點而言,要求削減飲料罐或食品罐中使用的鋼板的使用量,對容易實現鋼板的薄壁化的DR材的期望越來越大。Among the steel plates used in beverage cans and food cans, steel plates called Double Reduced (DR) materials are sometimes used for can lids, can bottoms, and three-piece can bodies. The DR material refers to a steel sheet manufactured by performing annealing after primary cold rolling, and then performing secondary cold rolling at a rolling rate of more than a certain level. Compared with single-reduced (SR) material that only performs temper rolling (temper rolling) with a small rolling rate, it can be hardened and thinned easily. From the viewpoints of reducing environmental load and cost reduction in recent years, it is required to reduce the amount of steel plates used in beverage cans or food cans, and there is an increasing demand for DR materials that can easily achieve thinning of steel plates.

DR材主要藉由加工硬化而硬質化,因此一般而言拉深成形性低。因此,有在易開端(Easy-Open End,EOE)的鉚釘(rivet)部、三片罐體部的進行凸緣加工等要求高拉深成形性的部位發生裂紋等不良情況的問題。對此,提出有改善了拉深成形性的鋼板。DR materials are hardened mainly by work hardening, and therefore generally have low drawing formability. Therefore, there is a problem that defects such as cracks occur in the rivet portion of the Easy-Open End (EOE) and the flange processing of the three-piece can body portion that requires high drawing formability. In this regard, a steel sheet with improved drawing formability has been proposed.

例如,專利文獻1中揭示有一種高強度容器用鋼板,其以質量%計含有C:0.01%~0.05%、Si:0.04%以下、Mn:0.1%~1.2%、S:0.10%以下、Al:0.001%~0.100%、N:0.10%以下、P:0.0020%~0.100%,剩餘部分包含Fe及不可避免的雜質,拉伸強度TS為500 MPa以上,且板寬方向與軋製方向的耐力差為20 MPa以下。For example, Patent Document 1 discloses a steel sheet for high-strength containers containing C: 0.01% to 0.05%, Si: 0.04% or less, Mn: 0.1% to 1.2%, S: 0.10% or less, and Al :0.001%~0.100%, N: 0.10% or less, P: 0.0020%~0.100%, the remainder contains Fe and inevitable impurities, the tensile strength TS is 500 MPa or more, and the endurance in the width direction and the rolling direction The difference is 20 MPa or less.

另外,例如專利文獻2中揭示有一種高強度鋼板,其特徵在於,具有以質量%計含有C:0.010%以上且0.080%以下、Si:0.05%以下、Mn:0.10%以上且0.70%以下、P:0.03%以下、S:0.020%以下、Al:0.005%以上且0.070%以下、N:0.0120%以上且0.0180%以下,剩餘部分包含Fe及不可避免的雜質的成分組成,於所含有的所述N內,作為固溶N的N含量為0.0100%以上,肥粒鐵(ferrite)平均粒徑為7.0 μm以下,自表面起板厚的1/4深度位置的位錯密度為4.0×1014 m-2 以上且2.0×1015 m-2 以下,時效處理後的軋製垂直方向的拉伸強度為530 MPa以上,伸長率為7%以上。 [現有技術文獻] [專利文獻]In addition, for example, Patent Document 2 discloses a high-strength steel sheet characterized by containing C: 0.010% or more and 0.080% or less, Si: 0.05% or less, and Mn: 0.10% or more and 0.70% or less in mass%. P: 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.070% or less, N: 0.0120% or more and 0.0180% or less, and the remainder contains Fe and unavoidable impurities. In the above-mentioned N, the N content as solid solution N is 0.0100% or more, the average particle size of ferrite is 7.0 μm or less, and the dislocation density at 1/4 depth of the plate thickness from the surface is 4.0×10 14 m -2 or more and 2.0×10 15 m -2 or less, the tensile strength in the rolling direction perpendicular to the aging treatment is 530 MPa or more, and the elongation is 7% or more. [Prior Art Document] [Patent Document]

專利文獻1:WO2009/125876 專利文獻2:WO2015/166646Patent Document 1: WO2009/125876 Patent Document 2: WO2015/166646

[發明所欲解決之課題] 於專利文獻1所記載的技術中,獲得了良好的凸緣加工性及頸縮(necking)加工性,但例如加工為DRD罐體、螺旋蓋等時所要求的拉深成形性不充分。例如,於將鋼板拉深成形為罐體時,理想的是成形後的凸緣部的伸出量(凸緣寬度)在罐體圓周方向上均等。要求提供一種該凸緣寬度的圓周方向變動小、拉深成形性優異的罐用鋼板。另外,專利文獻1所記載的技術中拉伸強度為640 MPa左右,對於使薄壁的製品具有充分的耐壓強度而言,鋼板強度不足。[The problem to be solved by the invention] In the technique described in Patent Document 1, good flange workability and necking workability are obtained, but the drawing formability required for processing into DRD cans, screw caps, etc., is insufficient. For example, when drawing a steel plate into a can body, it is desirable that the protrusion amount (flange width) of the flange portion after forming is uniform in the circumferential direction of the can body. There is a demand for a steel sheet for cans that has small circumferential fluctuations in the flange width and is excellent in deep drawing formability. In addition, the technique described in Patent Document 1 has a tensile strength of about 640 MPa, and the strength of the steel sheet is insufficient for a thin-walled product to have sufficient compressive strength.

同樣地,專利文獻2所記載的技術中,拉深成形性亦不足。Similarly, in the technique described in Patent Document 2, the drawing formability is also insufficient.

本發明是鑒於所述情況而成,其目的在於提供一種拉深成形性優異的高強度的罐用鋼板及其製造方法。此處,高強度是指時效處理後的軋製方向的拉伸強度為650 MPa以上。The present invention has been made in view of the foregoing circumstances, and its object is to provide a high-strength steel sheet for cans having excellent draw formability and a method of manufacturing the same. Here, high strength means that the tensile strength in the rolling direction after aging treatment is 650 MPa or more.

本發明者等人為解決所述課題而進行努力研究。結果,本發明者等人著眼於鋼板所具有的r值的面內各向異性Δr對罐用鋼板的拉深成形性帶來的影響而獲得新的發現,即,若鋼板的Δr為-0.3以上且0.3以下,則可獲得優異的拉深成形性。另外,本發明者等人發現,藉由使鋼成分、板坯加熱、熱軋、捲繞、一次冷軋、退火及二次冷軋的各條件為規定的範圍內,能夠提供Δr為-0.3以上且0.3以下的罐用鋼板。而且,基於該見解而完成本發明。 再者,於本說明書中,「r值」是指表示塑性應變比的蘭克福德值(Lankford value)。另外,於本說明書中,「Δr」可依照後述的式子進行計算。 [解決課題之手段]The inventors of the present invention made diligent studies to solve the above-mentioned problems. As a result, the inventors of the present invention focused on the influence of the in-plane anisotropy Δr of the r-value of the steel sheet on the drawing formability of the steel sheet for cans and obtained new findings, that is, if the Δr of the steel sheet is -0.3 Above and 0.3 or less, excellent drawing formability can be obtained. In addition, the inventors of the present invention found that by setting the steel composition, slab heating, hot rolling, coiling, primary cold rolling, annealing, and secondary cold rolling conditions within a predetermined range, it is possible to provide a Δr of -0.3 Steel plate for cans of above and below 0.3. And based on this knowledge, this invention was completed. In addition, in this specification, the "r value" refers to a Lankford value that represents a plastic strain ratio. In addition, in this specification, "Δr" can be calculated in accordance with the equation described later. [Means to solve the problem]

本發明是基於以上見解而成,其要旨如下。 (1)一種罐用鋼板,具有以質量%計,含有 C:0.010%以上且0.080%以下、 Si:0.05%以下、 Mn:0.10%以上且0.70%以下、 P:0.03%以下、 S:0.020%以下、 Al:0.005%以上且0.020%以下、 及N:0.0120%以上且0.0180%以下,且 剩餘部分為Fe及不可避免的雜質的成分組成, r值的面內各向異性Δr為-0.3以上且0.3以下。The present invention is based on the above findings, and its gist is as follows. (1) A steel plate for cans, with mass%, containing C: 0.010% or more and 0.080% or less, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less, P: 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.020% or less, And N: 0.0120% or more and 0.0180% or less, and The remainder is the composition of Fe and inevitable impurities, The in-plane anisotropy Δr of the r value is -0.3 or more and 0.3 or less.

(2)如所述(1)所記載的罐用鋼板,其中除所述成分組成以外,亦含有以質量%計, Ti:0.005%以上且0.020%以下、 Nb:0.005%以上且0.020%以下、 Mo:0.01%以上且0.05%以下、 Cr:0.04%以上且0.10%以下、 B:0.0005%以上0.0060%以下、 Ca:0.0010%以上且0.01%以下、 Ni:0.05%以上且0.15%以下、及 Cu:0.05%以上且0.20%以下 中的一種以上。(2) The steel sheet for cans as described in (1) above, in which in addition to the component composition, it also contains in mass %, Ti: 0.005% or more and 0.020% or less, Nb: 0.005% or more and 0.020% or less, Mo: 0.01% or more and 0.05% or less, Cr: 0.04% or more and 0.10% or less, B: 0.0005% or more and 0.0060% or less, Ca: 0.0010% or more and 0.01% or less, Ni: 0.05% or more and 0.15% or less, and Cu: 0.05% or more and 0.20% or less More than one of them.

(3)一種罐用鋼板的製造方法,包括:將具有如所述(1)或(2)所記載的成分組成的板坯加熱至1180℃以上的步驟;對經加熱的板坯以精加工溫度820℃以上進行熱軋的步驟;將經熱軋的熱軋板以超過640℃且700℃以下捲繞的步驟;對經捲繞的熱軋板以85%以上的軋製率進行一次冷軋的步驟;對經一次冷軋的冷軋板以620℃以上且690℃以下進行退火的步驟;以及對經退火的退火板以軋製率超過20%且40%以下進行二次冷軋的步驟。 [發明的效果](3) A method for manufacturing a steel plate for cans, including the steps of heating a slab having the composition described in (1) or (2) above to 1180°C; and finishing the heated slab The step of performing hot rolling at a temperature above 820°C; the step of winding the hot-rolled hot-rolled sheet at a temperature exceeding 640°C and below 700°C; and performing a primary cooling on the coiled hot-rolled sheet at a rolling rate of over 85% The step of rolling; the step of annealing the cold-rolled cold-rolled sheet at a temperature above 620°C and below 690°C; and the step of cold-rolling the annealed sheet at a rolling rate of more than 20% and less than 40% step. [Effects of the invention]

根據本發明,可提供r值的面內各向異性Δr為-0.3以上且0.3以下、拉深成形性優異的高強度的罐用鋼板。藉由使用本發明的罐用鋼板,能夠利用板厚薄的DR鋼板進行製罐或製蓋,可達成省資源化及低成本化,發揮產業上顯著的效果。According to the present invention, it is possible to provide a high-strength steel sheet for cans that has an r-value in-plane anisotropy Δr of -0.3 or more and 0.3 or less, and excellent deep drawability. By using the steel plate for cans of the present invention, a thin DR steel plate can be used to make cans or lids, which can achieve resource saving and cost reduction, and exhibit significant industrial effects.

以下,詳細說明本發明。本發明的罐用鋼板的特徵在於, 具有以質量%計,含有 C:0.010%以上且0.080%以下、 Si:0.05%以下、 Mn:0.10%以上且0.70%以下、 P:0.03%以下、 S:0.020%以下、 Al:0.005%以上且0.020%以下、 及N:0.0120%以上且0.0180%以下,且 剩餘部分為Fe及不可避免的雜質的成分組成, r值的面內各向異性Δr為-0.3以上且0.3以下。 而且,本發明的罐用鋼板可藉由如下方式而製造:將具有所述成分組成的板坯加熱至1180℃以上,以精加工溫度820℃以上進行熱軋後,以超過640℃且700℃以下進行捲繞,並以85%以上的軋製率進行一次冷軋,以620℃以上且690℃以下進行退火,以軋製率超過20%且40%以下進行二次冷軋。Hereinafter, the present invention will be described in detail. The steel sheet for cans of the present invention is characterized in that: With mass%, containing C: 0.010% or more and 0.080% or less, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less, P: 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.020% or less, And N: 0.0120% or more and 0.0180% or less, and The remainder is the composition of Fe and inevitable impurities, The in-plane anisotropy Δr of the r value is -0.3 or more and 0.3 or less. Furthermore, the steel sheet for cans of the present invention can be manufactured by heating a slab having the above-mentioned composition to 1180°C or higher, and then hot rolling at a finishing temperature of 820°C or higher, and then at a temperature exceeding 640°C and 700°C. Hereinafter, winding is performed, primary cold rolling is performed at a rolling rate of 85% or more, annealing is performed at 620° C. or higher and 690° C. or less, and secondary cold rolling is performed at a rolling rate of more than 20% and 40% or less.

首先,對本發明的罐用鋼板的成分組成進行說明。 C:0.010%以上且0.080%以下 C是對強度提高而言重要的元素,藉由設為0.010%以上,有助於實現高強度,具體而言使時效處理後的軋製方向的拉伸強度為650 MPa以上。較佳的C量為0.020%以上。另一方面,若C量超過0.080%,則r值的面內各向異性Δr低於-0.3,拉深成形性降低,因此需要將C量的上限設為0.080%以下。較佳的C量為0.040%以下。First, the component composition of the steel sheet for cans of the present invention will be described. C: 0.010% or more and 0.080% or less C is an important element for improving the strength, and by making it 0.010% or more, it contributes to achieving high strength. Specifically, the tensile strength in the rolling direction after the aging treatment is 650 MPa or more. The preferred amount of C is 0.020% or more. On the other hand, if the C content exceeds 0.080%, the in-plane anisotropy Δr of the r value is less than -0.3, and the drawing formability is reduced. Therefore, the upper limit of the C content needs to be 0.080% or less. The preferable amount of C is 0.040% or less.

Si:0.05%以下 Si若大量添加,則由於Si的表面濃化,表面處理性劣化,耐腐蝕性降低,因此需要將Si量設為0.05%以下,較佳為0.03%以下。另一方面,Si有助於拉伸強度的提高,因此Si的下限較佳為設為0.01%。Si: 0.05% or less If Si is added in a large amount, the surface of Si will be concentrated, the surface treatment properties will be deteriorated, and the corrosion resistance will be reduced. Therefore, the amount of Si needs to be 0.05% or less, preferably 0.03% or less. On the other hand, Si contributes to the improvement of tensile strength, so the lower limit of Si is preferably set to 0.01%.

Mn:0.10%以上且0.70%以下 Mn具有藉由固溶強化而使鋼板的拉伸強度提高的效果、及藉由形成MnS而防止由鋼中所含的S引起的熱延性的降低的效果。為了獲得該效果,需要添加0.10%以上的Mn。特別是就鋼板的高強度化的觀點而言,較佳為添加0.20%以上的Mn,進而佳為0.50%以上。另一方面,若Mn超過0.70%,則面內各向異性劣化。因此,Mn量設為0.70%以下。較佳為Mn量為0.65%以下。Mn: 0.10% or more and 0.70% or less Mn has the effect of improving the tensile strength of the steel sheet by solid solution strengthening, and the effect of preventing the decrease in hot ductility due to S contained in the steel by forming MnS. In order to obtain this effect, it is necessary to add 0.10% or more of Mn. In particular, from the viewpoint of increasing the strength of the steel sheet, it is preferable to add 0.20% or more of Mn, and more preferably 0.50% or more. On the other hand, if Mn exceeds 0.70%, the in-plane anisotropy deteriorates. Therefore, the amount of Mn is set to 0.70% or less. Preferably, the amount of Mn is 0.65% or less.

P:0.03%以下 P若大量添加,則過度硬質化、P向鋼板中央部偏析,藉此拉深成形性降低,另外,耐腐蝕性降低。因此,P量的上限設為0.03%。較佳為P量為0.02%以下。再者,將P量減少至小於0.01%會伴隨冶煉成本等成本的增加。因此,就經濟性的觀點而言,較佳為將P量設為0.01%以上。P: Below 0.03% If P is added in a large amount, it becomes excessively hardened and P segregates in the center of the steel sheet, thereby reducing the drawing formability and also reducing the corrosion resistance. Therefore, the upper limit of the amount of P is set to 0.03%. Preferably, the amount of P is 0.02% or less. Furthermore, reducing the amount of P to less than 0.01% will be accompanied by an increase in costs such as smelting costs. Therefore, from the viewpoint of economy, it is preferable to set the amount of P to 0.01% or more.

S:0.020%以下 S於鋼中形成硫化物,使熱延性降低,且使熱軋中的加工性降低。因此,S量的上限設為0.020%以下。較佳為S量為0.015%以下。再者,若S量為0.008%以上,則可與罐的內容物無關地防止孔蝕,因此S量較佳為設為0.008%以上。S: 0.020% or less S forms sulfides in steel, reduces hot ductility, and reduces workability in hot rolling. Therefore, the upper limit of the amount of S is made 0.020% or less. Preferably, the amount of S is 0.015% or less. Furthermore, if the S content is 0.008% or more, pitting corrosion can be prevented regardless of the contents of the tank, so the S content is preferably 0.008% or more.

Al:0.005%以上且0.020%以下 Al是作為脫氧劑而添加的元素。為了獲得該效果,需要添加0.005%以上的Al。於鋼中Al過量存在的情況下,與N結合而形成AlN,使鋼中的固溶N減少,結果鋼板的拉伸強度降低。因此,Al量需要設為0.020%以下。Al量較佳為0.008%~0.019%,更佳為0.011%~0.016%。Al量較佳為0.008%以上,更佳為0.011%以上,且較佳為0.019%以下,更佳為0.016%以下。Al: 0.005% or more and 0.020% or less Al is an element added as a deoxidizer. In order to obtain this effect, it is necessary to add 0.005% or more of Al. When Al is present in excess in the steel, it combines with N to form AlN, which reduces the solid solution N in the steel, and as a result, the tensile strength of the steel sheet decreases. Therefore, the amount of Al needs to be 0.020% or less. The amount of Al is preferably 0.008% to 0.019%, more preferably 0.011% to 0.016%. The amount of Al is preferably 0.008% or more, more preferably 0.011% or more, and preferably 0.019% or less, and more preferably 0.016% or less.

N:0.0120%以上且0.0180%以下 N作為固溶強化元素,有助於鋼板的高強度化。為了該效果,作為N量,需要添加0.0120%以上。另一方面,若大量添加N,則r值的面內各向異性Δr顯著降低,拉深成形性降低,因此N量的上限設為0.0180%。較佳為N量為0.0135%~0.0165%。N量較佳為0.0135%以上,且較佳為0.0165%以下。 本發明的罐用鋼板將含有以上各成分,且剩餘部分為Fe及不可避免的雜質的成分組成作為基本成分。N: 0.0120% or more and 0.0180% or less As a solid solution strengthening element, N contributes to increasing the strength of the steel sheet. For this effect, it is necessary to add 0.0120% or more as the amount of N. On the other hand, if a large amount of N is added, the in-plane anisotropy Δr of the r value is significantly reduced, and the drawing formability is reduced, so the upper limit of the amount of N is made 0.0180%. Preferably, the amount of N is 0.0135% to 0.0165%. The amount of N is preferably 0.0135% or more, and more preferably 0.0165% or less. The steel sheet for a can of the present invention contains the above-mentioned components, and the remainder is Fe and unavoidable impurities as its basic components.

根據需要,除所述基本成分以外,本發明的罐用鋼板可亦含有 Ti:0.005%以上且0.020%以下、 Nb:0.005%以上且0.020%以下、 Mo:0.01%以上且0.05%以下、 Cr:0.04%以上且0.10%以下、 B:0.0005%以上0.0060%以下、 Ca:0.0010%以上且0.01%以下、 Ni:0.05%以上且0.15%以下、及 Cu:0.05%以上且0.20%以下 中的一種以上。If necessary, in addition to the basic components, the steel plate for cans of the present invention may also contain Ti: 0.005% or more and 0.020% or less, Nb: 0.005% or more and 0.020% or less, Mo: 0.01% or more and 0.05% or less, Cr: 0.04% or more and 0.10% or less, B: 0.0005% or more and 0.0060% or less, Ca: 0.0010% or more and 0.01% or less, Ni: 0.05% or more and 0.15% or less, and Cu: 0.05% or more and 0.20% or less More than one of them.

Ti:0.005%以上且0.020%以下 Ti作為析出強化元素,有助於鋼板的高強度化。為了該效果,較佳為添加0.005%以上的Ti。另一方面,若大量添加Ti,則鋼板的各向異性過大,因此Ti量較佳為設為0.020%以下。Ti: 0.005% or more and 0.020% or less As a precipitation strengthening element, Ti contributes to the increase in strength of the steel sheet. For this effect, it is preferable to add 0.005% or more of Ti. On the other hand, if Ti is added in a large amount, the anisotropy of the steel sheet becomes too large, so the amount of Ti is preferably set to 0.020% or less.

Nb:0.005%以上且0.020%以下 Nb作為析出強化元素,有助於鋼板的高強度化。為了該效果,較佳為添加0.005%以上的Nb。另一方面,若大量添加Nb,則鋼板的各向異性過大,因此較佳為設為0.02%以下。Nb: 0.005% or more and 0.020% or less Nb, as a precipitation strengthening element, contributes to the increase in strength of the steel sheet. For this effect, it is preferable to add 0.005% or more of Nb. On the other hand, if Nb is added in a large amount, the anisotropy of the steel sheet becomes too large, so it is preferably 0.02% or less.

Mo:0.01%以上且0.05%以下 Mo作為析出強化元素發揮作用,另外藉由使組織細粒化,有助於鋼板的高強度化。為了該效果,較佳為添加0.01%以上的Mo。但是,即便大量添加Mo,效果亦會飽和,因此Mo量較佳為設為0.05%以下。Mo: 0.01% or more and 0.05% or less Mo functions as a precipitation strengthening element, and by making the structure finer, it contributes to high strength of the steel sheet. For this effect, it is preferable to add 0.01% or more of Mo. However, even if Mo is added in a large amount, the effect is saturated, so the amount of Mo is preferably set to 0.05% or less.

Cr:0.04%以上且0.10%以下 Cr作為析出強化元素,有助於鋼板的高強度化。為了該效果,較佳為添加0.04%以上的Cr。於大量添加Cr的情況下,成為粗大的析出物,高強度化的效果飽和,因此Cr量較佳為設為0.10%以下。Cr: 0.04% or more and 0.10% or less As a precipitation strengthening element, Cr contributes to the increase in strength of the steel sheet. For this effect, it is preferable to add 0.04% or more of Cr. When Cr is added in a large amount, it becomes a coarse precipitate and the effect of increasing the strength is saturated. Therefore, the amount of Cr is preferably set to 0.10% or less.

B:0.0005%以上且0.0060%以下 B藉由細粒化,有助於鋼板的高強度化。為了該效果,較佳為添加0.0005%以上的B。即便大量添加B,效果亦會飽和,而且鋼板的r值的面內各向異性Δr的絕對值會變大,因此B量較佳為設為0.0060%以下。B: 0.0005% or more and 0.0060% or less B contributes to the increase in strength of the steel plate by refining it. For this effect, it is preferable to add 0.0005% or more of B. Even if B is added in a large amount, the effect is saturated, and the absolute value of the in-plane anisotropy Δr of the r value of the steel sheet becomes larger, so the amount of B is preferably set to 0.0060% or less.

Ca:0.0010%以上且0.01%以下 Ca具有使硫化物微細化而提高熱延性的效果。另外,Ca具有以下效果:藉由Ca與S結合,而使生成化合物MnS的Mn的量減少,同時使有助於固溶強化的Mn量的比例增加,從而有助於鋼板的高強度化。因此,較佳為添加0.0010%以上的Ca。即便大量添加Ca,效果亦會飽和,而且有時會成為粗大的夾雜物而使拉深成形性劣化。因此,Ca量較佳為設為0.01%以下。Ca: 0.0010% or more and 0.01% or less Ca has the effect of making sulfides finer and improving hot ductility. In addition, Ca has the effect of reducing the amount of Mn forming the compound MnS due to the combination of Ca and S, and increasing the ratio of the amount of Mn that contributes to solid solution strengthening, thereby contributing to the increase in strength of the steel sheet. Therefore, it is preferable to add 0.0010% or more of Ca. Even if Ca is added in a large amount, the effect is saturated, and it may become a coarse inclusion and deteriorate the drawing formability. Therefore, the amount of Ca is preferably set to 0.01% or less.

Ni:0.05%以上且0.15%以下 Ni藉由固溶強化及細粒化,有助於鋼板的高強度化。為了該效果,較佳為添加0.05%以上的Ni。於大量添加Ni的情況下,表面性狀的劣化變得顯著,因此Ni量較佳為設為0.15%以下。Ni: 0.05% or more and 0.15% or less Ni contributes to the enhancement of the strength of the steel sheet by solid solution strengthening and fine graining. For this effect, it is preferable to add 0.05% or more of Ni. When a large amount of Ni is added, the deterioration of the surface properties becomes remarkable, so the amount of Ni is preferably set to 0.15% or less.

Cu:0.05%以上且0.20%以下 Cu藉由固溶強化及細粒化,有助於鋼板的高強度化。為了該效果,較佳為添加0.05%以上的Cu。於大量添加的情況下,表面性狀的劣化變得顯著,因此Cu量較佳為設為0.20%以下,更佳為設為0.15%以下。Cu: 0.05% or more and 0.20% or less Cu contributes to the enhancement of the strength of the steel sheet by solid solution strengthening and granulation. For this effect, it is preferable to add 0.05% or more of Cu. In the case of adding a large amount, the deterioration of the surface properties becomes significant, so the amount of Cu is preferably set to 0.20% or less, more preferably set to 0.15% or less.

接下來,對本發明的罐用鋼板的材質特性進行說明。 r值的面內各向異性Δr:-0.3以上且0.3以下 為了在良好的拉深成形性的基礎上成形DRD罐體或瓶蓋,作為r值的面內各向異性的指標的Δr需要為-0.3以上且0.3以下。此處,Δr由Δr=(r0 +r90 -2·r45 )/2的式子所表示。Δr越偏離所述範圍,r值的各向異性越大,拉深成形時凸緣部的所謂的「耳」越大,因此無法獲得良好的形狀。即,若Δr偏離所述範圍,則拉深成形後的凸緣部的寬度的變動變大,因此於罐用鋼板中無法實現可獲得均勻的凸緣寬度的形狀的正常的拉深成形。 Δr較佳為-0.25以上且0.25以下。Next, the material properties of the steel sheet for cans of the present invention will be described. In-plane anisotropy of r value Δr: -0.3 or more and less than 0.3 In order to form DRD cans or caps on the basis of good drawing formability, Δr, which is an index of in-plane anisotropy of r value, needs to be -0.3 or more and 0.3 or less. Here, Δr is expressed by the formula of Δr=(r 0 +r 90 -2·r 45 )/2. The more Δr deviates from the above range, the greater the anisotropy of the r value, and the larger the so-called "ears" of the flange portion at the time of deep drawing, so that a good shape cannot be obtained. That is, if Δr deviates from the above range, the variation in the width of the flange portion after deep drawing becomes large, and therefore, normal deep drawing with a uniform flange width shape cannot be achieved in the steel plate for cans. Δr is preferably -0.25 or more and 0.25 or less.

時效處理後的軋製方向的拉伸強度:650 MPa以上 為了確保DRD罐體或瓶蓋的耐壓強度,較佳為使鋼板的軋製方向的拉伸強度為650 MPa以上。藉由使拉伸強度為650 MPa以上,即便鋼板薄壁化亦可確保充分的耐壓強度。於DR材的情況下,一般而言與軋製垂直方向相比,軋製方向上拉伸強度低,因此本說明書中以軋製方向的拉伸強度進行評價。另外,罐用鋼板大多會進行燒印塗裝來使用,因此本說明書中,根據相當於燒印塗裝的210℃、10 min的時效處理後的特性進行評價。於使板厚特別薄的情況下,較佳為使鋼板的軋製方向的拉伸強度為680 MPa以上。另一方面,於過度高強度化的情況下,成形時褶皺等成形不良的發生變得顯著,因此較佳為使拉伸強度為800 MPa以下。Tensile strength in rolling direction after aging treatment: 650 MPa or more In order to ensure the compressive strength of the DRD can body or bottle cap, it is preferable that the tensile strength of the steel sheet in the rolling direction be 650 MPa or more. By setting the tensile strength to 650 MPa or more, sufficient compressive strength can be ensured even if the steel plate is thinned. In the case of the DR material, the tensile strength in the rolling direction is generally lower than that in the rolling direction. Therefore, the tensile strength in the rolling direction is evaluated in this specification. In addition, many steel sheets for cans are used after burn-in coating. Therefore, in this specification, the evaluation is based on the characteristics after aging treatment at 210°C for 10 min, which is equivalent to burn-in coating. When making the sheet thickness particularly thin, it is preferable to make the tensile strength of the steel sheet in the rolling direction of 680 MPa or more. On the other hand, in the case of excessively increasing the strength, the occurrence of forming defects such as wrinkles during forming becomes significant, so it is preferable to make the tensile strength 800 MPa or less.

接下來,對本發明的罐用鋼板的製造方法進行說明。 本發明的罐用鋼板可經過以下步驟來製造:將具有所述成分組成的板坯加熱至1180℃以上的步驟;對經加熱的板坯以精加工溫度820℃以上進行熱軋的步驟;將經熱軋的熱軋板以超過640℃且700℃以下捲繞的步驟;對經捲繞的熱軋板以85%以上的軋製率進行一次冷軋的步驟;對經一次冷軋的冷軋板以620℃以上且690℃以下進行退火的步驟;以及對經退火的退火板以軋製率超過20%且40%以下進行二次冷軋的步驟。Next, the manufacturing method of the steel plate for cans of this invention is demonstrated. The steel sheet for cans of the present invention can be manufactured through the following steps: a step of heating a slab with the composition to 1180°C or higher; a step of hot rolling the heated slab at a finishing temperature of 820°C or higher; The hot-rolled hot-rolled sheet is coiled at a temperature exceeding 640°C and 700°C or less; the coiled hot-rolled sheet is subjected to a cold rolling step with a rolling rate of 85% or more; The step of annealing the rolled sheet at 620° C. or higher and 690° C. or lower; and the step of performing secondary cold rolling on the annealed sheet with a rolling rate exceeding 20% and 40% or less.

加熱溫度:1180℃以上 若熱軋前的板坯的加熱溫度過低,則AlN的一部分未熔解,固溶N量降低,拉伸強度降低。因此,於加熱板坯的步驟中,需要1180℃以上的加熱溫度。較佳的加熱溫度為1200℃以上。加熱溫度的上限並無特別規定,但若為1300℃以下,則容易避免鏽皮(scale)引起的表面缺陷,因此上限較佳為設為1300℃。Heating temperature: above 1180℃ If the heating temperature of the slab before hot rolling is too low, part of AlN is not melted, the amount of solid solution N decreases, and the tensile strength decreases. Therefore, in the step of heating the slab, a heating temperature of 1180°C or higher is required. The preferred heating temperature is 1200°C or higher. The upper limit of the heating temperature is not particularly specified, but if it is 1300°C or lower, surface defects caused by scale are easily avoided, so the upper limit is preferably set to 1300°C.

精加工溫度:820℃以上 若熱軋步驟中的精加工溫度小於820℃,則所述Δr成為規定範圍外的值,拉深成形性惡化。因此,精加工溫度需要設為820℃以上。較佳的精加工溫度為860℃以上。精加工溫度的上限並無特別限定,但若為930℃以下,則可獲得粒徑更微細的鋼板,因此較佳。Finishing temperature: above 820℃ If the finishing temperature in the hot rolling step is less than 820°C, the Δr becomes a value outside the predetermined range, and the drawing formability deteriorates. Therefore, the finishing temperature needs to be 820°C or higher. The preferred finishing temperature is 860°C or higher. The upper limit of the finishing temperature is not particularly limited, but if it is 930°C or less, a steel sheet with a finer grain size can be obtained, which is preferable.

捲繞溫度:超過640℃且700℃以下 捲繞步驟中的捲繞溫度為640℃以下時,鋼中的雪明碳鐵(cementite)的生成不充分,在固溶C過剩的狀態下實施下一步驟的一次冷軋,因此所述Δr成為規定範圍外的值,拉深成形性惡化。因此,捲繞溫度需要設為超過640℃。較佳的捲繞溫度為650℃以上。另一方面,若捲繞溫度超過700℃,則熱軋板的粒徑變粗大,因此最終的鋼板的粒徑亦變粗大,拉伸強度降低。因此,捲繞溫度需要設為700℃以下。較佳的捲繞溫度為680℃以下。Winding temperature: over 640℃ and below 700℃ When the winding temperature in the winding step is 640°C or lower, the formation of cementite in the steel is insufficient, and the first cold rolling of the next step is performed in a state where solid solution C is excessive, so the Δr If the value is outside the specified range, the drawing formability deteriorates. Therefore, the winding temperature needs to exceed 640°C. The preferred winding temperature is 650°C or higher. On the other hand, if the winding temperature exceeds 700°C, the grain size of the hot-rolled sheet becomes coarse, so the grain size of the final steel sheet also becomes coarse, and the tensile strength decreases. Therefore, the winding temperature needs to be 700°C or lower. The preferred winding temperature is 680°C or less.

此處,於冷軋之前,可根據需要進行酸洗。再者,酸洗條件並無特別規定,只要可除去熱軋板的表層鏽皮即可。因此,只要依照常規方法進行酸洗即可。Here, before cold rolling, pickling may be performed as needed. Furthermore, the pickling conditions are not specifically defined, as long as the surface rust of the hot-rolled sheet can be removed. Therefore, as long as the pickling is carried out according to the conventional method.

一次冷軋率:85%以上 為了使退火後的肥粒鐵粒徑微細化,提高拉伸強度,一次冷軋步驟中的軋製率需要設為85%以上。該軋製率較佳為86%以上。另一方面,若軋製率為91.4%以下,則容易將所述Δr控制得小,因此較佳。進而佳為將一次冷軋、以及後述的二次冷軋的軋製率合計所得的總冷軋率設為90.5%以下,更佳為設為90.0%以下。One-time cold rolling rate: over 85% In order to refine the grain size of the ferrous iron after annealing and increase the tensile strength, the rolling rate in the primary cold rolling step needs to be 85% or more. The rolling rate is preferably 86% or more. On the other hand, if the rolling ratio is 91.4% or less, the Δr can be easily controlled to be small, which is preferable. It is more preferable to set the total cold rolling ratio obtained by the total rolling ratio of the primary cold rolling and the secondary cold rolling described later to 90.5% or less, and more preferably to 90.0% or less.

退火溫度:620℃以上且690℃以下 為了確保拉深成形性,退火中需要充分再結晶。為此,於對一次冷軋步驟中獲得的冷軋版進行退火的步驟中,退火溫度需要設為620℃以上。另一方面,若退火溫度過高,則肥粒鐵粒徑粗大化,拉伸強度降低。因此,退火溫度需要設為690℃以下。退火溫度較佳為640℃以上,且較佳為680℃以下,更佳為640℃~680℃。再者,退火時間較佳為設為10 s以上。另外,退火方法並無限定,就材質的均勻性的觀點而言較佳為設為連續退火法。進而,退火後的冷卻條件並無特別限定,就藉由固溶C的作用而高強度化的觀點而言,進而佳為於退火後,在500℃至300℃的溫度範圍以50℃/s以上的冷卻速度進行冷卻。Annealing temperature: above 620℃ and below 690℃ In order to ensure the drawing formability, sufficient recrystallization is required during annealing. For this reason, in the step of annealing the cold rolled plate obtained in the primary cold rolling step, the annealing temperature needs to be 620°C or higher. On the other hand, if the annealing temperature is too high, the grain iron particle size will be coarsened and the tensile strength will decrease. Therefore, the annealing temperature needs to be 690°C or lower. The annealing temperature is preferably 640°C or higher, preferably 680°C or lower, and more preferably 640°C to 680°C. Furthermore, the annealing time is preferably set to 10 s or more. In addition, the annealing method is not limited, and it is preferable to use the continuous annealing method from the viewpoint of the uniformity of the material. Furthermore, the cooling conditions after annealing are not particularly limited. From the viewpoint of increasing the strength due to the action of solid solution C, it is more preferable to set 50°C/s in the temperature range of 500°C to 300°C after annealing. The above cooling rate performs cooling.

二次冷軋率:超過20%且40%以下 所述退火後得到的退火板藉由二次冷軋而高強度化,精加工為板厚薄的鋼板。為了使時效處理後的鋼板的軋製方向的拉伸強度為650 MPa以上,需要將二次冷軋步驟中的軋製率設為超過20%。較佳的軋製率為22%以上。另一方面,若二次冷軋率過高,則拉深成形性惡化。因此,軋製率需要設為40%以下。特別是於要求高拉深成形性的情況下,較佳為將軋製率設為35%以下。Secondary cold rolling rate: more than 20% and less than 40% The annealed sheet obtained after the annealing is increased in strength by secondary cold rolling, and is finished into a thin steel sheet. In order to make the tensile strength of the steel sheet after the aging treatment in the rolling direction of 650 MPa or more, the rolling rate in the secondary cold rolling step needs to be more than 20%. The preferable rolling rate is 22% or more. On the other hand, if the secondary cold rolling rate is too high, the drawing formability deteriorates. Therefore, the rolling rate needs to be 40% or less. In particular, when high drawing formability is required, it is preferable to set the rolling ratio to 35% or less.

藉由以上,獲得本發明的罐用鋼板。即便對此處所獲得的鋼板進行鍍敷或化學轉化處理等表面處理,亦不會失去發明的效果。 [實施例]Through the above, the steel sheet for cans of the present invention is obtained. Even if the steel sheet obtained here is subjected to surface treatment such as plating or chemical conversion treatment, the effect of the invention will not be lost. [Example]

熔煉含有表1所示的鋼符號A~V的成分、剩餘部分包含不可避免的雜質及Fe的鋼,獲得鋼坯。對所獲得的鋼坯,於表2所示的條件下加熱後,進行熱軋、捲繞,利用酸洗除去鏽皮後,進行一次冷軋,於連續退火爐中以各退火溫度進行退火。對所獲得的退火板,以各二次冷軋率進行二次冷軋,獲得板厚0.12 mm~0.22 mm的鋼板(鋼板符號1~29)。The steel containing the components of the steel symbols A to V shown in Table 1 and the remainder containing inevitable impurities and Fe was smelted to obtain a steel slab. The obtained steel slabs were heated under the conditions shown in Table 2, followed by hot rolling, coiling, pickling to remove the scale, cold rolling once, and annealing at each annealing temperature in a continuous annealing furnace. The obtained annealed sheets were subjected to secondary cold rolling at each secondary cold rolling rate to obtain steel sheets with a thickness of 0.12 mm to 0.22 mm (steel plates 1 to 29).

[表1] 鋼符號 C Si Mn P S Al N 其他 備註 A 0.032 0.01 0.25 0.011 0.011 0.016 0.0151 - 發明例 B 0.020 0.02 0.30 0.014 0.012 0.016 0.0139 - 發明例 C 0.039 0.01 0.14 0.009 0.013 0.010 0.0163 - 發明例 D 0.040 0.01 0.50 0.013 0.010 0.018 0.0121 - 發明例 E 0.026 0.01 0.70 0.009 0.008 0.008 0.0175 - 發明例 F 0.080 0.01 0.38 0.010 0.009 0.019 0.0136 - 發明例 G 0.012 0.01 0.23 0.013 0.010 0.014 0.0152 - 發明例 H 0.046 0.01 0.24 0.014 0.011 0.016 0.0136 - 發明例 I 0.023 0.01 0.63 0.014 0.009 0.018 0.0157 - 發明例 J 0.033 0.01 0.52 0.011 0.010 0.016 0.0158 - 發明例 K 0.084 0.01 0.36 0.013 0.012 0.014 0.0142 - 比較例 L 0.005 0.01 0.23 0.014 0.011 0.015 0.0147 - 比較例 M 0.033 0.01 0.23 0.008 0.012 0.013 0.0191 - 比較例 N 0.035 0.01 0.36 0.010 0.008 0.080 0.0032 - 比較例 O 0.032 0.01 0.23 0.012 0.011 0.018 0.0156 Ti:0.009 發明例 P 0.035 0.01 0.23 0.016 0.011 0.014 0.0150 Nb:0.014 發明例 Q 0.029 0.01 0.25 0.016 0.013 0.016 0.0147 Mo:0.03 發明例 R 0.030 0.01 0.25 0.012 0.012 0.019 0.0153 Cr:0.08 發明例 S 0.033 0.01 0.25 0.013 0.010 0.009 0.0142 B:0.0024 發明例 T 0.030 0.01 0.33 0.015 0.012 0.015 0.0161 Ca:0.0034 發明例 U 0.028 0.01 0.31 0.019 0.010 0.016 0.0155 Ni:0.09 發明例 V 0.034 0.01 0.30 0.011 0.011 0.017 0.0141 Cu:0.11 發明例 (質量%) [Table 1] Steel symbol C Si Mn P S Al N other Remarks A 0.032 0.01 0.25 0.011 0.011 0.016 0.0151 - Invention Examples B 0.020 0.02 0.30 0.014 0.012 0.016 0.0139 - Invention Examples C 0.039 0.01 0.14 0.009 0.013 0.010 0.0163 - Invention Examples D 0.040 0.01 0.50 0.013 0.010 0.018 0.0121 - Invention Examples E 0.026 0.01 0.70 0.009 0.008 0.008 0.0175 - Invention Examples F 0.080 0.01 0.38 0.010 0.009 0.019 0.0136 - Invention Examples G 0.012 0.01 0.23 0.013 0.010 0.014 0.0152 - Invention Examples H 0.046 0.01 0.24 0.014 0.011 0.016 0.0136 - Invention Examples I 0.023 0.01 0.63 0.014 0.009 0.018 0.0157 - Invention Examples J 0.033 0.01 0.52 0.011 0.010 0.016 0.0158 - Invention Examples K 0.084 0.01 0.36 0.013 0.012 0.014 0.0142 - Comparative example L 0.005 0.01 0.23 0.014 0.011 0.015 0.0147 - Comparative example M 0.033 0.01 0.23 0.008 0.012 0.013 0.0191 - Comparative example N 0.035 0.01 0.36 0.010 0.008 0.080 0.0032 - Comparative example O 0.032 0.01 0.23 0.012 0.011 0.018 0.0156 Ti: 0.009 Invention Examples P 0.035 0.01 0.23 0.016 0.011 0.014 0.0150 Nb: 0.014 Invention Examples Q 0.029 0.01 0.25 0.016 0.013 0.016 0.0147 Mo: 0.03 Invention Examples R 0.030 0.01 0.25 0.012 0.012 0.019 0.0153 Cr: 0.08 Invention Examples S 0.033 0.01 0.25 0.013 0.010 0.009 0.0142 B: 0.0024 Invention Examples T 0.030 0.01 0.33 0.015 0.012 0.015 0.0161 Ca: 0.0034 Invention Examples U 0.028 0.01 0.31 0.019 0.010 0.016 0.0155 Ni: 0.09 Invention Examples V 0.034 0.01 0.30 0.011 0.011 0.017 0.0141 Cu: 0.11 Invention Examples (quality%)

[表2] 鋼板 符號 鋼符號 加熱溫度(℃) 精加工 溫度(℃) 捲繞 溫度(℃) 熱軋厚度(mm) 一次冷軋率 (%) 退火溫度 (℃) 冷卻速度 (℃/s) 二次冷軋率(%) 板厚 (mm) 總冷軋率(%) 備註 1 A 1230 870 650 1.9 87.9 650 110 22 0.18 90.5 發明例 2 B 1230 920 680 2.0 86.7 620 100 25 0.20 90.0 發明例 3 C 1200 900 670 1.9 85.4 670 110 35 0.18 90.5 發明例 4 D 1180 820 660 2.0 85.0 650 90 30 0.21 89.5 發明例 5 E 1260 860 660 1.6 86.1 640 120 28 0.16 90.0 發明例 6 F 1250 900 650 2.0 92.2 690 150 23 0.12 94.0 發明例 7 A 1230 870 650 1.9 87.9 650 40 22 0.18 90.5 發明例 8 A 1220 790 650 1.6 86.7 650 110 25 0.16 90.0 比較例 9 B 1220 860 670 1.8 86.7 530 90 25 0.18 90.0 比較例 10 B 1210 900 650 1.9 81.1 630 100 50 0.18 90.5 比較例 11 G 1190 880 660 1.6 86.0 680 120 24 0.17 89.4 發明例 12 H 1200 900 650 1.6 85.7 650 120 30 0.16 90.0 發明例 13 I 1230 910 650 1.8 85.7 660 120 30 0.18 90.0 發明例 14 J 1220 880 650 1.5 86.3 650 115 27 0.15 90.0 發明例 15 K 1250 860 670 1.8 86.8 680 90 24 0.18 90.0 比較例 16 L 1200 870 670 1.5 86.8 650 120 24 0.15 90.0 比較例 17 M 1230 850 680 2.0 83.8 660 100 35 0.21 89.5 比較例 18 N 1260 860 680 1.5 88.0 650 130 22 0.14 90.7 比較例 19 O 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 20 P 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 21 Q 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 22 R 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 23 S 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 24 T 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 25 U 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 26 V 1240 880 660 1.8 85.4 650 110 24 0.20 88.9 發明例 27 A 1230 870 630 1.9 87.9 650 110 22 0.18 90.5 比較例 28 G 1230 930 690 1.6 85.0 670 110 25 0.18 88.8 發明例 29 L 1240 920 680 1.7 85.3 700 110 28 0.18 89.4 比較例 [Table 2] Steel plate symbol Steel symbol Heating temperature (℃) Finishing temperature (℃) Winding temperature (℃) Hot rolled thickness (mm) One-time cold rolling rate (%) Annealing temperature (℃) Cooling rate (℃/s) Secondary cold rolling rate (%) Board thickness (mm) Total cold rolling rate (%) Remarks 1 A 1230 870 650 1.9 87.9 650 110 twenty two 0.18 90.5 Invention Examples 2 B 1230 920 680 2.0 86.7 620 100 25 0.20 90.0 Invention Examples 3 C 1200 900 670 1.9 85.4 670 110 35 0.18 90.5 Invention Examples 4 D 1180 820 660 2.0 85.0 650 90 30 0.21 89.5 Invention Examples 5 E 1260 860 660 1.6 86.1 640 120 28 0.16 90.0 Invention Examples 6 F 1250 900 650 2.0 92.2 690 150 twenty three 0.12 94.0 Invention Examples 7 A 1230 870 650 1.9 87.9 650 40 twenty two 0.18 90.5 Invention Examples 8 A 1220 790 650 1.6 86.7 650 110 25 0.16 90.0 Comparative example 9 B 1220 860 670 1.8 86.7 530 90 25 0.18 90.0 Comparative example 10 B 1210 900 650 1.9 81.1 630 100 50 0.18 90.5 Comparative example 11 G 1190 880 660 1.6 86.0 680 120 twenty four 0.17 89.4 Invention Examples 12 H 1200 900 650 1.6 85.7 650 120 30 0.16 90.0 Invention Examples 13 I 1230 910 650 1.8 85.7 660 120 30 0.18 90.0 Invention Examples 14 J 1220 880 650 1.5 86.3 650 115 27 0.15 90.0 Invention Examples 15 K 1250 860 670 1.8 86.8 680 90 twenty four 0.18 90.0 Comparative example 16 L 1200 870 670 1.5 86.8 650 120 twenty four 0.15 90.0 Comparative example 17 M 1230 850 680 2.0 83.8 660 100 35 0.21 89.5 Comparative example 18 N 1260 860 680 1.5 88.0 650 130 twenty two 0.14 90.7 Comparative example 19 O 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples 20 P 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples twenty one Q 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples twenty two R 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples twenty three S 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples twenty four T 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples 25 U 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples 26 V 1240 880 660 1.8 85.4 650 110 twenty four 0.20 88.9 Invention Examples 27 A 1230 870 630 1.9 87.9 650 110 twenty two 0.18 90.5 Comparative example 28 G 1230 930 690 1.6 85.0 670 110 25 0.18 88.8 Invention Examples 29 L 1240 920 680 1.7 85.3 700 110 28 0.18 89.4 Comparative example

時效處理後的軋製方向的拉伸強度 進行210℃、10分鐘的相當於燒印塗裝的時效處理後,以拉伸方向為軋製方向的方式採取日本工業標準(Japanese Industrial Standards,JIS)Z 2241所規定的5號拉伸試驗,依照JIS Z2241,評價拉伸強度。Tensile strength in rolling direction after aging treatment After an aging treatment equivalent to burn-in coating at 210°C for 10 minutes, a tensile test No. 5 specified by the Japanese Industrial Standards (JIS) Z 2241 was taken with the tensile direction as the rolling direction. According to JIS Z2241, the tensile strength was evaluated.

r值的面內各向異性Δr 利用美國試驗材料學會(American Society for Testing Material,ASTM)A623M中記載的固有振動法(模組r)來測定、評價r值的面內各向異性Δr。In-plane anisotropy of r value Δr The in-plane anisotropy Δr of the r value was measured and evaluated by the natural vibration method (module r) described in the American Society for Testing Material (ASTM) A623M.

拉深成形性 自所獲得的鋼板以直徑160 mm衝壓坯料,藉由拉深-再拉深成形,製作直徑82.8 mm、高度45.5 mm的罐體。進而對罐底實施直徑70 mm及40 mm的焊珠(bead)加工(深度0.5 mm、曲率半徑1 mm)。對於所獲得的罐體,以15度的間距對其凸緣寬度進行整周測定。若凸緣寬度的最大值與最小值之差為1.5 mm以下,則視為拉深成形性良好而評價為◎,若超過1.5 mm且為2 mm以下則視為拉深成形性能夠容許而評價為○,若超過2 mm則視為拉深成形性差而評價為×。 該試驗的詳細條件記於以下。 潤滑條件:於鋼板兩面塗佈潤滑油 第一拉深的拉深比:1.52 第二拉深的拉深比:1.26 各個拉深中褶皺抑制壓力:0.3 MPa 第一拉深時模具的肩半徑:2.5 mm 第二拉深時模具的肩半徑:2.5 mmDrawing formability From the obtained steel plate, a blank was punched with a diameter of 160 mm, and then formed by drawing and then drawing to form a can body with a diameter of 82.8 mm and a height of 45.5 mm. Furthermore, the bottom of the tank is processed with bead diameters of 70 mm and 40 mm (depth 0.5 mm, curvature radius 1 mm). With respect to the obtained can body, the flange width was measured at an interval of 15 degrees over the entire circumference. If the difference between the maximum value and the minimum value of the flange width is 1.5 mm or less, the drawing formability is considered to be good and evaluated as ◎, if it exceeds 1.5 mm and less than 2 mm, the drawing formability is considered acceptable and evaluated It is ○, and if it exceeds 2 mm, it is regarded as poor in deep drawing formability and evaluated as ×. The detailed conditions of this test are described below. Lubrication conditions: apply lubricant on both sides of the steel plate The drawing ratio of the first drawing: 1.52 The drawing ratio of the second drawing: 1.26 Wrinkle suppression pressure in each drawing: 0.3 MPa The shoulder radius of the mold during the first drawing: 2.5 mm The shoulder radius of the mold during the second drawing: 2.5 mm

耐壓強度 對所述罐體捲緊蓋子,自蓋側開孔並於密封下送入空氣,測定罐底部彎曲(buckling)的壓力,若為0.18 MPa以上則評價為○,若小於0.18 MPa則評價為×。Compressive strength Tighten the lid of the can body, open a hole from the lid side and send air under the seal, and measure the buckling pressure at the bottom of the can. If it is 0.18 MPa or more, it is evaluated as ○, and if it is less than 0.18 MPa, it is evaluated as × .

將試驗結果示於表3中。本發明例均為r值的面內各向異性Δr為-0.3以上且0.3以下,拉深成形性與耐壓強度優異。另一方面,比較例中,所述特性的任一者以上差。The test results are shown in Table 3. In all the examples of the present invention, the in-plane anisotropy Δr of the r value is -0.3 or more and 0.3 or less, and the drawing formability and compressive strength are excellent. On the other hand, in the comparative example, any one of the above-mentioned characteristics is inferior.

[表3] 鋼板 符號 鋼符號 拉伸強度(MPa) Δr 拉深成形性 ※1 耐壓強度 ※2 備註 1 A 710 -0.18 發明例 2 B 725 -0.06 發明例 3 C 800 -0.21 發明例 4 D 780 -0.12 發明例 5 E 770 -0.10 發明例 6 F 760 -0.30 發明例 7 A 660 -0.23 發明例 8 A 720 -0.42 × 比較例 9 B 730 -0.53 × 比較例 10 B 840 -0.56 × 比較例 11 G 700 0.16 發明例 12 H 750 -0.22 發明例 13 I 760 -0.26 發明例 14 J 720 -0.24 發明例 15 K 750 -0.59 × 比較例 16 L 590 0.41 × × 比較例 17 M 810 -0.44 × 比較例 18 N 640 -0.25 × 比較例 19 O 740 -0.16 發明例 20 P 746 -0.17 發明例 21 Q 737 -0.11 發明例 22 R 735 -0.12 發明例 23 S 731 -0.24 發明例 24 T 730 -0.09 發明例 25 U 734 -0.14 發明例 26 V 738 -0.18 發明例 27 A 732 -0.31 × 比較例 28 G 695 0.30 發明例 29 L 592 0.32 × × 比較例 ※1 拉深成形性 ◎:1.5 mm以下 ○:超過1.5 mm且2.0 mm以下 ×:超過2.0 mm ※2 耐壓強度 ○:0.18 MPa以上 ×:小於0.18 MPa [table 3] Steel plate symbol Steel symbol Tensile strength (MPa) Δr Deep drawing formability※1 Compressive strength※2 Remarks 1 A 710 -0.18 Invention Examples 2 B 725 -0.06 Invention Examples 3 C 800 -0.21 Invention Examples 4 D 780 -0.12 Invention Examples 5 E 770 -0.10 Invention Examples 6 F 760 -0.30 Invention Examples 7 A 660 -0.23 Invention Examples 8 A 720 -0.42 × Comparative example 9 B 730 -0.53 × Comparative example 10 B 840 -0.56 × Comparative example 11 G 700 0.16 Invention Examples 12 H 750 -0.22 Invention Examples 13 I 760 -0.26 Invention Examples 14 J 720 -0.24 Invention Examples 15 K 750 -0.59 × Comparative example 16 L 590 0.41 × × Comparative example 17 M 810 -0.44 × Comparative example 18 N 640 -0.25 × Comparative example 19 O 740 -0.16 Invention Examples 20 P 746 -0.17 Invention Examples twenty one Q 737 -0.11 Invention Examples twenty two R 735 -0.12 Invention Examples twenty three S 731 -0.24 Invention Examples twenty four T 730 -0.09 Invention Examples 25 U 734 -0.14 Invention Examples 26 V 738 -0.18 Invention Examples 27 A 732 -0.31 × Comparative example 28 G 695 0.30 Invention Examples 29 L 592 0.32 × × Comparative example ※1 Drawing formability ◎: 1.5 mm or less ○: More than 1.5 mm and 2.0 mm or less ×: more than 2.0 mm ※2 Compressive strength ○: 0.18 MPa or more ×: less than 0.18 MPa

no

no

Claims (3)

一種罐用鋼板,具有以質量%計,含有 C:0.010%以上且0.080%以下、 Si:0.05%以下、 Mn:0.10%以上且0.70%以下、 P:0.03%以下、 S:0.020%以下、 Al:0.005%以上且0.020%以下、 及N:0.0120%以上且0.0180%以下,且 剩餘部分為Fe及不可避免的雜質的成分組成, r值的面內各向異性Δr為-0.3以上且0.3以下。A steel plate for cans, with mass%, containing C: 0.010% or more and 0.080% or less, Si: 0.05% or less, Mn: 0.10% or more and 0.70% or less, P: 0.03% or less, S: 0.020% or less, Al: 0.005% or more and 0.020% or less, And N: 0.0120% or more and 0.0180% or less, and The remainder is the composition of Fe and inevitable impurities, The in-plane anisotropy Δr of the r value is -0.3 or more and 0.3 or less. 如請求項1所述的罐用鋼板,其中除所述成分組成以外,亦含有以質量%計, Ti:0.005%以上且0.020%以下、 Nb:0.005%以上且0.020%以下、 Mo:0.01%以上且0.05%以下、 Cr:0.04%以上且0.10%以下、 B:0.0005%以上0.0060%以下、 Ca:0.0010%以上且0.01%以下、 Ni:0.05%以上且0.15%以下、及 Cu:0.05%以上且0.20%以下 中的一種以上。The steel plate for cans according to claim 1, which, in addition to the composition, also contains in mass%, Ti: 0.005% or more and 0.020% or less, Nb: 0.005% or more and 0.020% or less, Mo: 0.01% or more and 0.05% or less, Cr: 0.04% or more and 0.10% or less, B: 0.0005% or more and 0.0060% or less, Ca: 0.0010% or more and 0.01% or less, Ni: 0.05% or more and 0.15% or less, and Cu: 0.05% or more and 0.20% or less More than one of them. 一種罐用鋼板的製造方法,包括: 將具有如請求項1或請求項2所述的成分組成的板坯加熱至1180℃以上的步驟; 對經加熱的所述板坯以精加工溫度820℃以上進行熱軋的步驟; 將經熱軋的熱軋板以超過640℃且700℃以下捲繞的步驟; 對經捲繞的所述熱軋板以85%以上的軋製率進行一次冷軋的步驟; 對經一次冷軋的冷軋板以620℃以上且690℃以下進行退火的步驟;以及 對經退火的退火板以軋製率超過20%且40%以下進行二次冷軋的步驟。A manufacturing method of steel plate for tanks, including: The step of heating the slab with the composition described in claim 1 or claim 2 to 1180°C or higher; The step of performing hot rolling on the heated slab at a finishing temperature of 820°C or higher; The step of winding the hot-rolled hot-rolled sheet at a temperature exceeding 640°C and below 700°C; Performing a cold rolling step on the coiled hot-rolled sheet at a rolling rate of over 85%; The step of annealing the cold-rolled sheet once cold-rolled at a temperature above 620°C and below 690°C; and The annealed annealed sheet is subjected to a secondary cold rolling step with a rolling rate exceeding 20% and 40% or less.
TW109110111A 2019-03-29 2020-03-26 Steel plate for tank and manufacturing method thereof TWI728760B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067971 2019-03-29
JP2019067971 2019-03-29

Publications (2)

Publication Number Publication Date
TW202100759A true TW202100759A (en) 2021-01-01
TWI728760B TWI728760B (en) 2021-05-21

Family

ID=72668408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110111A TWI728760B (en) 2019-03-29 2020-03-26 Steel plate for tank and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6822617B1 (en)
CN (2) CN116657048A (en)
TW (1) TWI728760B (en)
WO (1) WO2020203052A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761594B2 (en) * 1989-07-03 1998-06-04 東洋鋼鈑 株式会社 Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy
JPH09316543A (en) * 1996-05-29 1997-12-09 Kawasaki Steel Corp Production of steel sheet for can, excellent in formability
JP5794004B2 (en) * 2011-07-12 2015-10-14 Jfeスチール株式会社 Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
TWI472624B (en) * 2012-07-09 2015-02-11 China Steel Corp Method for manufacturing low carbon steel material
JP6052220B2 (en) * 2014-03-31 2016-12-27 Jfeスチール株式会社 High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
MY191191A (en) * 2014-04-30 2022-06-07 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP6052474B1 (en) * 2015-02-26 2016-12-27 Jfeスチール株式会社 Crown steel sheet, crown steel sheet manufacturing method and crown

Also Published As

Publication number Publication date
JP6822617B1 (en) 2021-01-27
CN113490760B (en) 2024-01-16
TWI728760B (en) 2021-05-21
CN113490760A (en) 2021-10-08
WO2020203052A1 (en) 2020-10-08
JPWO2020203052A1 (en) 2021-04-30
CN116657048A (en) 2023-08-29
KR20210141612A (en) 2021-11-23

Similar Documents

Publication Publication Date Title
TWI493053B (en) Three-piece can and method for manufacturing same
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
KR101264537B1 (en) Method for manufacturing steel plate for can-making
WO2011068231A1 (en) Steel sheet for cans and method for producing same
TWI479031B (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
TW202024353A (en) Steel plate for can and method for producing same
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
TWI728760B (en) Steel plate for tank and manufacturing method thereof
TWI601830B (en) Crown cover plate and its manufacturing method and crown cover
KR102677317B1 (en) Steel plate for cans and its manufacturing method
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
CN115135795B (en) High-strength tin-plated original plate and manufacturing method thereof
TWI729852B (en) Steel plate for tank and manufacturing method thereof
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
CN110462089B (en) Method for manufacturing steel sheet
CN110506135B (en) Steel sheet, method for producing same, bottle cap, and DRD can
KR20170104586A (en) Steel sheet for crown caps, method for producing steel sheet for crown caps, and crown cap
JPH01184252A (en) Steel sheet for di can excellent in stretch-flange formability