TW202044146A - 用於管理庫存置放的電腦實施的系統以及方法 - Google Patents

用於管理庫存置放的電腦實施的系統以及方法 Download PDF

Info

Publication number
TW202044146A
TW202044146A TW109112007A TW109112007A TW202044146A TW 202044146 A TW202044146 A TW 202044146A TW 109112007 A TW109112007 A TW 109112007A TW 109112007 A TW109112007 A TW 109112007A TW 202044146 A TW202044146 A TW 202044146A
Authority
TW
Taiwan
Prior art keywords
product
fulfillment center
label
database
temperature
Prior art date
Application number
TW109112007A
Other languages
English (en)
Other versions
TWI731647B (zh
Inventor
時新
Original Assignee
南韓商韓領有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商韓領有限公司 filed Critical 南韓商韓領有限公司
Publication of TW202044146A publication Critical patent/TW202044146A/zh
Application granted granted Critical
Publication of TWI731647B publication Critical patent/TWI731647B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G06Q10/0875Itemisation or classification of parts, supplies or services, e.g. bill of materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • G06F16/252Integrating or interfacing systems involving database management systems between a Database Management System and a front-end application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0838Historical data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0204Market segmentation
    • G06Q30/0205Location or geographical consideration

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Educational Administration (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本揭露的實施例提供用於管理庫存置放的系統及方法,所述系統及方法包括儲存指令的記憶體及被配置以執行指令的至少一個處理器。所述處理器可被配置以接收產品的辨識符以用於庫存置放,且基於儲存於資料庫中的歷史運送資料來確定對產品具有最高顧客需求的區。所述處理器可至少基於與對產品具有最高顧客需求的區相關聯的溫度使用機器學習演算法來預測與產品相關聯的產品標籤。所述處理器可進一步調整資料庫以向產品辨識符分派產品標籤,且分派產品來置放於履行中心中。履行中心可與對應於分派至產品的產品標籤的履行中心標籤相關聯。

Description

機器學習協助庫存置放之系統以及方法
本揭露大體而言是有關於用於管理庫存置放的電腦化系統及方法。具體而言,本揭露的實施例是有關於與基於產品標籤及履行中心標籤使用一或多種機器學習演算法來最佳化庫存置放相關的創新性且非常規的系統。
早已認識到提供快速遞送服務及降低顧客運送費用的能力對參與電子商務的工業至關重要。當產生顧客訂單時,訂單必須傳送至一或多個履行中心,以使所述訂單以後可傳送至一或多個服務區域。為使運送成本及遞送時間最小化,將訂單置放於距顧客最終運送位址最近的履行中心中將為理想的。然而,當今大部分顧客訂單是自世界各地遠端地產生。因此,由於履行中心數目有限,確定應指派每種產品在何處進行庫存置放變得更具挑戰性。
儘管普遍認為應將庫存置放成靠近顧客以使運送費用及遞送時間最小化,然而尚無一種高效的方法來最佳化庫存置放。舉例而言,即使在當今,一些公司仍將冬季羽絨服及雪地鞋儲存於位於亞利桑那的倉庫中,此為低效的,乃因在亞利桑那消費者對羽絨服及雪地鞋的需求將較不可能為高的。因此,當顧客訂購冬季羽絨服及雪地鞋時,產品將較有可能需要走較長的距離,從而增加遞送時間及顧客的運送成本。
已嘗試提供減少遞送時間的用於管理庫存置放的系統及方法。舉例而言,美國專利第7,987,107號闡述了用於端至端履行及供應鏈管理的系統及方法,所述系統及方法有能力在遞送時間框架內將物品遞送至顧客。為確保物品在遞送時間框架內遞送,系統確定與顧客相關聯的地理位置,並將物品置放於距顧客地理位置最近的運送倉庫中。
然而,該些常規的系統及方法是耗時的,乃因必須為每一顧客訂單確定顧客運送位置。因此,在接收產品的顧客訂單之前,不可能將該些產品置放於一或多個履行中心中。此外,諸多履行中心具有僅容許特定產品儲存於該些履行中心中的限制。因此,可能難以找到既滿足每種產品的要求又距顧客運送位置最近的履行中心。
因此,需要用於管理庫存置放的改進的系統及方法。具體而言,需要用於管理庫存置放的改進的系統及方法,所述系統及方法有能力使遞送時間及運送費用最小化、同時不再需要在分派產品在履行中心中進行庫存置放之前確定每種產品的顧客運送位置。
本揭露的一個態樣是有關於一種用於管理庫存置放的電腦實施的系統。所述系統可包括儲存指令的記憶體及被配置以執行所述指令的至少一個處理器。所述至少一個處理器可被配置以執行所述指令以:自遠端系統接收產品的辨識符(identifier,ID)以用於庫存置放;以及基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區。所述至少一個處理器可進一步至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用機器學習演算法來預測與所述產品相關聯的產品標籤。所述至少一個處理器可進一步調整所述資料庫以向所述產品辨識符分派所述產品標籤;以及分派所述產品來置放於履行中心中。所述履行中心可與對應於分派至所述產品的所述產品標籤的履行中心標籤相關聯。在一些實施例中,所述履行中心標籤可與所述產品標籤匹配。
在一些實施例中,所述履行中心標籤可指示與所述履行中心的位置相關聯的溫度。在一些實施例中,所述產品標籤可能夠基於與所述區相關聯的所述溫度以及運送日期來動態地調節。在其他實施例中,所述履行中心標籤可能夠基於與所述履行中心的所述位置相關聯的所述溫度來動態地調節。
在一些實施例中,所述至少一個處理器可被進一步配置以:基於與所述履行中心的位置相關聯的溫度、與所述履行中心的服務區域相關聯的溫度或與所述履行中心相關聯的參數中的至少一者,調整所述資料庫以使用所述機器學習演算法向履行中心分派履行中心標籤。與所述履行中心相關聯的所述參數可包括最大容量、建築限制、所述履行中心與所述服務區域之間的距離或服務區域的數目中的至少一者。
在一些實施例中,所述至少一個處理器可被進一步配置以:將與所述產品相關聯的資訊儲存於所述資料庫中;以及訓練所述機器學習演算法,以基於儲存於所述資料庫中的所述資訊自動地向新的產品分派產品標籤。與所述產品相關聯的所述資訊可包括分派至所述產品的所述產品標籤。在一些實施例中,所述機器學習演算法可包括分類模型。
在再一實施例中,所述至少一個處理器可被進一步配置以週期性地評價所述產品標籤或所述履行中心標籤中的至少一者。評價所述產品標籤或所述履行中心標籤中的至少一者可包括:確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度;確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度;計算所述溫度與所述實際溫度之間的差值;以及當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
本揭露的另一態樣是有關於一種用於管理庫存置放的電腦實施的方法。所述方法可包括:自遠端系統接收產品的辨識符以用於庫存置放;以及基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區。所述方法可更包括至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用機器學習演算法來預測與所述產品相關聯的產品標籤。所述方法可更包括:調整所述資料庫以向所述產品辨識符分派所述產品標籤;以及分派所述產品來置放於履行中心中。所述履行中心可與對應於分派至所述產品的所述產品標籤的履行中心標籤相關聯。
在一些實施例中,所述履行中心標籤可指示與所述履行中心的位置相關聯的溫度。在一些實施例中,所述產品標籤可能夠基於與所述區相關聯的所述溫度以及運送日期來動態地調節。在其他實施例中,所述履行中心標籤可能夠基於與所述履行中心的所述位置相關聯的所述溫度來動態地調節。
在一些實施例中,所述方法可更包括:基於與所述履行中心的位置相關聯的溫度、與所述履行中心的服務區域相關聯的溫度或與所述履行中心相關聯的參數中的至少一者,調整所述資料庫以使用所述機器學習演算法向履行中心分派履行中心標籤。與所述履行中心相關聯的所述參數可包括最大容量、建築限制、所述履行中心與所述服務區域之間的距離或服務區域的數目中的至少一者。
在一些實施例中,所述方法可更包括:將與所述產品相關聯的資訊儲存於所述資料庫中;以及訓練所述機器學習演算法,以基於儲存於所述資料庫中的所述資訊自動地向新的產品分派產品標籤。與所述產品相關聯的所述資訊可包括分派至所述產品的所述產品標籤。在一些實施例中,所述機器學習演算法可包括分類模型。
在再一實施例中,所述方法可更包括週期性地評價所述產品標籤或所述履行中心標籤中的至少一者。評價所述產品標籤或所述履行中心標籤中的至少一者可包括:確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度;確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度;計算所述溫度與所述實際溫度之間的差值;以及當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
本揭露的再一態樣是有關於一種用於管理庫存置放的電腦實施的系統。所述系統可包括儲存指令的記憶體及被配置以執行所述指令的至少一個處理器。所述至少一個處理器可被配置以執行所述指令以:自遠端系統接收產品的辨識符以用於庫存置放;以及基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區。所述至少一個處理器可進一步至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用分類模型來預測與所述產品相關聯的產品標籤。所述至少一個處理器可進一步:調整所述資料庫以向所述產品辨識符分派所述產品標籤;以及將與所述產品相關聯的資訊儲存於所述資料庫中。與所述產品相關聯的所述資訊可包括分派至所述產品的所述產品標籤以及所述產品辨識符。所述至少一個處理器可進一步基於儲存於所述資料庫中的所述資訊來訓練所述分類模型以自動地向新的產品分派產品標籤。所述至少一個處理器可進一步:辨識與和所述產品標籤匹配的履行中心標籤相關聯的履行中心;以及調整所述資料庫以分派所述產品來置放於所辨識的所述履行中心中。所述履行中心標籤可指示與所述履行中心的位置相關聯的溫度,且辨識所述履行中心可包括確定與所述履行中心相關聯的最大容量或建築限制中的至少一者。所述至少一個處理器可進一步週期性地評價所述產品標籤或所述履行中心標籤中的至少一者。評價所述產品標籤或所述履行中心標籤中的至少一者可包括:確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度;確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度;計算所述溫度與所述實際溫度之間的差值;以及當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
本文中亦論述其他系統、方法及電腦可讀取媒體。
以下詳細說明參照附圖。在圖式及以下說明中盡可能使用相同的參考編號來指代相同或相似的部件。儘管本文中闡述了若干例示性實施例,然而可具有各種調整、修改及其他實施方式。舉例而言,可對圖中示出的組件及步驟進行替換、添加或調整,且可藉由對所揭露方法的步驟進行替換、重新排序、移除或添加來調整本文中闡述的例示性方法。因此,以下詳細說明並非僅限於所揭露實施例及實例。相反,本發明的正確範圍由隨附的專利申請範圍來界定。
本揭露的實施例是有關於被配置用以使用遺傳演算法(genetic algorithm)來模擬出站流及最佳化產品分配的系統及方法。
參照圖1A,示出示意性方塊圖100,其示出包括用於能夠進行通訊的運送、運輸及物流操作的電腦化系統的系統的示例性實施例。如圖1A中所示,系統100可包括各種系統,所述各種系統中的每一者可藉由一或多個網路彼此連接。所述系統亦可藉由直接連接(例如使用纜線)彼此連接。所繪示的系統包括運送授權技術(shipment authority technology,SAT)系統101、外部前端系統103、內部前端系統105、運輸系統107、行動裝置107A、107B及107C、賣方入口109、運送及訂單追蹤(shipment and order tracking,SOT)系統111、履行最佳化(fulfillment optimization,FO)系統113、履行訊息傳遞閘道(fulfillment messaging gateway,FMG)115、供應鏈管理(supply chain management,SCM)系統117、倉庫管理系統(warehouse management system,WMS)119、行動裝置119A、119B及119C(被繪示為位於履行中心(FC)200內部)、第三方履行(3rd party fulfillment,3PL)系統121A、121B及121C、履行中心授權系統(fulfillment center authorization system,FC Auth)123及勞資管理系統(labor management system,LMS)125。
在一些實施例中,SAT系統101可實施為監控訂單狀態及遞送狀態的電腦系統。舉例而言,SAT系統101可判斷訂單是否超過其承諾遞送日期(Promised Delivery Date,PDD),且可採取包括發起新訂單、重新運送未遞送訂單中的物品、取消未遞送訂單、發起與訂購顧客的聯繫等在內的適當行動。SAT系統101亦可監控包括輸出(例如在特定時間週期期間運送的包裝的數目)及輸入(例如被接收用於運送的空紙盒的數目)在內的其他資料。SAT系統101亦可充當系統100中不同裝置之間的閘道,使得能夠在例如外部前端系統103及FO系統113等裝置之間達成通訊(例如,使用儲存及轉送(store-and-forward)或其他技術)。
在一些實施例中,外部前端系統103可被實施為使得外部使用者能夠與系統100中的一或多個系統交互的電腦系統。舉例而言,在系統100能夠呈現系統以使使用者能夠對物品下訂單的實施例中,外部前端系統103可被實施為接收搜尋請求、呈現物品頁面及懇求支付資訊的網路伺服器。舉例而言,外部前端系統103可被實施為運行例如阿帕奇超文件傳送協定(Hypertext Transfer Protocol,HTTP)伺服器、微軟網際網路資訊服務(Internet Information Services,IIS)、引擎X(NGINX)等軟體的一或多個電腦。在其他實施例中,外部前端系統103可運行定製網路伺服器軟體,定製網路伺服器軟體被設計成接收及處理來自外部裝置(例如,行動裝置102A或電腦102B)的請求,基於該些請求自資料庫及其他資料儲存器獲取資訊,且基於所獲取的資訊提供對所接收請求的響應。
在一些實施例中,外部前端系統103可包括網路快取系統、資料庫、搜尋系統或支付系統中的一或多者。在一個態樣中,外部前端系統103可包括該些系統中的一或多者,而在另一態樣中,外部前端系統103可包括連接至該些系統中的一或多者的介面(例如,伺服器至伺服器、資料庫至資料庫或其他網路連接)。
由圖1B、圖1C、圖1D及圖1E所示的一組例示性步驟將有助於闡述外部前端系統103的一些操作。外部前端系統103可自系統100中的系統或裝置接收資訊,以供呈現及/或顯示。舉例而言,外部前端系統103可代管(host)或提供一或多個網頁,包括搜尋結果頁面(SRP)(例如,圖1B)、單一細節頁面(Single Detail Page,SDP)(例如,圖1C)、購物車頁面(例如,圖1D)或訂單頁面(例如,圖1E)。使用者裝置(例如,使用行動裝置102A或電腦102B)可導航至外部前端系統103,且藉由在搜尋框中輸入資訊來請求搜尋。外部前端系統103可自系統100中的一或多個系統請求資訊。舉例而言,外部前端系統103可自FO系統113請求滿足搜尋請求的資訊。外部前端系統103亦可請求及接收(自FO系統113)搜尋結果中所包括的每種產品的承諾遞送日期或「PDD」。在一些實施例中,PDD可表示對以下的估計:容納產品的包裝將何時到達使用者所期望的位置,或者若在特定時間週期(例如在一天結束(午後11:59)之前)內訂購則產品被承諾遞送至使用者所期望的位置的日期。(下文參照FO系統113進一步論述PDD。)
外部前端系統103可基於所述資訊準備SRP(例如,圖1B)。SRP可包括滿足搜尋請求的資訊。舉例而言,此可包括滿足搜尋請求的產品的圖片。SRP亦可包括每種產品的相應價格,或者與每種產品的增強遞送選項、PDD、重量、尺寸、優惠、折扣等相關的資訊。外部前端系統103可向發出請求的使用者裝置發送SRP(例如,經由網路)。
使用者裝置然後可例如藉由點擊或輕敲使用者介面(或使用另一輸入裝置)以選擇在SRP上表現的產品而自SRP選擇產品。使用者裝置可製定對所選擇產品的資訊的請求,且將其發送至外部前端系統103。作為響應,外部前端系統103可請求與所選擇產品相關的資訊。舉例而言,所述資訊亦可包括除在相應的SRP上針對產品呈現的資訊之外的額外資訊。此額外資訊可包括例如儲架壽命(shelf life)、原產國、重量、尺寸、包裝中物品的數目、操作說明(handling instructions)或關於產品的其他資訊。所述資訊亦可包括對相似產品的推薦(例如,基於購買此產品及至少一種其他產品的顧客的巨量資料及/或機器學習分析)、對常問問題的回答、來自顧客的評論、製造商資訊、圖片等。
外部前端系統103可基於所接收的產品資訊來準備單一細節頁面(SDP)(例如,圖1C)。SDP亦可包括例如「立即購買(Buy Now)」按鈕、「添加至購物車(Add to Cart)」按鈕、數量欄、物品圖片等其他交互式元素。SDP可更包括提供所述產品的賣方的列表。所述列表可基於每一賣方提供的價格來排序,使得提出以最低價格售賣產品的賣方可被列於頂部。所述列表亦可基於賣方排名來排序,使得排名最高的賣方可被列於頂部。賣方排名可基於包括例如賣方滿足所承諾PDD的過往追蹤記錄在內的多種因素來製定。外部前端系統103可將SDP遞送至發出請求的使用者裝置(例如,經由網路)。
發出請求的使用者裝置可接收列出產品資訊的SDP。在接收到SDP後,使用者裝置然後可與SDP交互。舉例而言,發出請求的使用者裝置的使用者可點擊SDP上的「放入購物車中」按鈕或以其他方式與SDP上的「放入購物車中」按鈕交互。此會將產品添加至與使用者相關聯的購物車。使用者裝置可向外部前端系統103傳輸此種將產品添加至購物車的請求。
外部前端系統103可產生購物車頁面(例如,圖1D)。在一些實施例中,購物車頁面列出已被使用者添加至虛擬「購物車」的產品。使用者裝置可藉由點擊SRP、SDP或其他頁面上的圖標或以其他方式與SRP、SDP或其他頁面上的圖標交互來請求購物車頁面。在一些實施例中,購物車頁面可列出已被使用者添加至購物車的所有產品,以及關於購物車中的產品的資訊,例如每種產品的數量、每種產品的單價、每種產品的基於相關數量的價格、關於PDD的資訊、遞送方法、運送成本、用於調整購物車中的產品的使用者介面元素(例如,數量的刪除或調整)、用於訂購其他產品或設置產品的定期遞送的選項、用於設置利息支付的選項、用於繼續購買的使用者介面元素等。使用者裝置處的使用者可點擊使用者介面元素(例如,讀為「立即購買」的按鈕)或以其他方式與使用者介面元素(例如,讀為「立即購買」的按鈕)交互,以發起對購物車中的產品的購買。在這樣做時,使用者裝置可向外部前端系統103傳輸此種發起購買的請求。
外部前端系統103可因應於接收到發起購買的請求而產生訂單頁面(例如,圖1E)。在一些實施例中,訂單頁面重新列出來自購物車的物品,且請求輸入支付及運送資訊。舉例而言,訂單頁面可包括請求關於購物車中物品的購買者的資訊(例如,姓名、位址、電子郵件位址、電話號碼)、關於接收者的資訊(例如,姓名、位址、電話號碼、遞送資訊)、運送資訊(例如,遞送及/或收取的速度/方法)、支付資訊(例如,信用卡、銀行轉帳、支票、賒帳(stored credit))、請求現金收據(例如,出於稅務目的)的使用者介面元素等的部分。外部前端系統103可向使用者裝置發送訂單頁面。
使用者裝置可在訂單頁面上輸入資訊,且點擊向外部前端系統103發送所述資訊的使用者介面元素或以其他方式與向外部前端系統103發送所述資訊的使用者介面元素交互。外部前端系統103可自使用者介面元素將資訊發送至系統100中的不同系統,以使得能夠用購物車中的產品創建及處理新訂單。
在一些實施例中,外部前端系統103可進一步被配置以使得賣方能夠傳輸及接收與訂單相關的資訊。
在一些實施例中,內部前端系統105可被實施為使得內部使用者(例如,擁有、營運或租賃系統100的組織的員工)能夠與系統100中的一或多個系統交互的電腦系統。舉例而言,在網路101能夠呈現系統以使使用者能夠對物品下訂單的實施例中,內部前端系統105可被實施為網路伺服器,網路伺服器使得內部使用者能夠查看關於訂單的診斷及統計資訊、調整物品資訊或者查核與訂單相關的統計量。舉例而言,內部前端系統105可被實施為運行例如阿帕奇HTTP伺服器、微軟網際網路資訊服務(IIS)、NGINX等軟體的一或多個電腦。在其他實施例中,內部前端系統105可運行定製網路伺服器軟體,定製網路伺服器軟體被設計成接收及處理來自繪示於系統100中的系統或裝置(以及未繪示的其他裝置)的請求,基於該些請求自資料庫及其他資料儲存器獲取資訊,且基於所獲取的資訊提供對所接收請求的響應。
在一些實施例中,內部前端系統105可包括網路快取系統、資料庫、搜尋系統、支付系統、分析系統、訂單監控系統等中的一或多者。在一個態樣中,內部前端系統105可包括該些系統中的一或多者,而在另一態樣中,內部前端系統105可包括連接至該些系統中的一或多者的介面(例如,伺服器至伺服器、資料庫至資料庫或其他網路連接)。
在一些實施例中,運輸系統107可被實施為電腦系統,所述電腦系統使得能夠在系統100中的系統或裝置與行動裝置107A-107C之間達成通訊。在一些實施例中,運輸系統107可自一或多個行動裝置107A-107C(例如,行動電話、智慧型電話、個人數位助理(personal digital assistant,PDA)等)接收資訊。舉例而言,在一些實施例中,行動裝置107A-107C可包括由遞送工人操作的裝置。遞送工人(其可為永久的、臨時的或輪班的員工)可利用行動裝置107A-107C來達成對容納由使用者訂購的產品的包裝的遞送。舉例而言,為遞送包裝,遞送工人可在行動裝置上接收指示遞送哪一包裝以及在何處遞送的通知。在到達遞送位置時,遞送工人可使用行動裝置來定位包裝(例如,在卡車的後部或包裝的板條箱中)、掃描或以其他方式捕獲與包裝上的辨識符(例如,條形碼、影像、正文字串(text string)、射頻辨識(radio frequency identification,RFID)標籤等)相關聯的資料以及遞送包裝(例如,藉由將包裝留在前門、將其留給保全警衛、將其交給接收者等)。在一些實施例中,遞送工人可使用行動裝置捕獲包裝的照片及/或可使用行動裝置獲得簽名。行動裝置可向運輸系統107發送包括關於遞送的資訊在內的資訊,所述關於遞送的資訊包括例如時間、日期、全球定位系統(Global Positioning System,GPS)位置、照片、與遞送工人相關聯的辨識符、與行動裝置相關聯的辨識符等。運輸系統107可將此資訊儲存於資料庫(未畫出)中,以供系統100中的其他系統存取。在一些實施例中,運輸系統107可使用此資訊來準備追蹤資料並將追蹤資料發送至指示特定包裝位置的其他系統。
在一些實施例中,某些使用者可使用一種種類的行動裝置(例如,永久工人可使用具有例如條形碼掃描器、觸控筆(stylus)及其他裝置等定製硬體的專用PDA),而其他使用者可使用其他種類的行動裝置(例如,臨時或輪班工人可利用現成的行動電話及/或智慧型電話)。
在一些實施例中,運輸系統107可將使用者與每一裝置相關聯。舉例而言,運輸系統107可儲存使用者(由例如使用者辨識符、員工辨識符或電話號碼表示)與行動裝置(由例如國際行動設備辨識(International Mobile Equipment Identity,IMEI)、國際行動訂用辨識符(International Mobile Subscription Identifier,IMSI)、電話號碼、通用唯一辨識符(Universal Unique Identifier,UUID)或全球唯一辨識符(Globally Unique Identifier,GUID)表示)之間的關聯。運輸系統107可結合在遞送時接收的資料使用此種關聯來分析儲存於資料庫中的資料,以便除其他資訊以外亦確定工人的位置、工人的效率或工人的速度。
在一些實施例中,賣方入口109可被實施為電腦系統,所述電腦系統使得賣方或其他外部實體能夠與系統100中的一或多個系統進行電子通訊。舉例而言,賣方可利用電腦系統(未畫出)來針對賣方希望使用賣方入口109藉由系統100來售賣的產品上載或提供產品資訊、訂單資訊、聯繫資訊等。
在一些實施例中,運送及訂單追蹤系統111可被實施為電腦系統,所述電腦系統接收、儲存及轉送關於容納由顧客(例如,由使用裝置102A-102B的使用者)訂購的產品的包裝的位置的資訊。在一些實施例中,運送及訂單追蹤系統111可自由運送公司操作的網路伺服器(未畫出)請求或儲存資訊,運送公司遞送容納由顧客訂購的產品的包裝。
在一些實施例中,運送及訂單追蹤系統111可自系統100中所繪示的系統請求及儲存資訊。舉例而言,運送及訂單追蹤系統111可自運輸系統107請求資訊。如以上所論述,運輸系統107可自與使用者(例如,遞送工人)或車輛(例如,遞送卡車)中的一或多者相關聯的一或多個行動裝置107A-107C(例如,行動電話、智慧型電話、PDA等)接收資訊。在一些實施例中,運送及訂單追蹤系統111亦可自倉庫管理系統(WMS)119請求資訊,以確定各別產品在履行中心(例如,履行中心200)內部的位置。運送及訂單追蹤系統111可自運輸系統107或WMS 119中的一或多者請求資料,對其進行處理,且根據請求將其呈現至裝置(例如,使用者裝置102A及102B)。
在一些實施例中,履行最佳化(FO)系統113可被實施為電腦系統,所述電腦系統儲存來自其他系統(例如,外部前端系統103及/或運送及訂單追蹤系統111)的顧客訂單的資訊。FO系統113亦可儲存闡述特定物品被保存或儲存於何處的資訊。舉例而言,某些物品可能僅儲存於一個履行中心中,而某些其他物品可能儲存於多個履行中心中。在又一些其他實施例中,某些履行中心可被設計成僅儲存特定的一組物品(例如,新鮮農產品或冷凍產品)。FO系統113儲存此種資訊以及相關資訊(例如,數量、尺寸、接收日期、過期日期等)。
FO系統113亦可為每種產品計算對應的承諾遞送日期(PDD)。在一些實施例中,PDD可基於一或多種因素。舉例而言,FO系統113可基於產品的過往需求(例如,在一段時間週期期間此產品被訂購過多少次)、產品的預期需求(例如,預測在即將到來的一段時間週期期間有多少顧客會訂購所述產品)、指示在一段時間週期期間訂購過多少產品的全網路過往需求、指示在即將到來的時間週期期間預期會訂購多少產品的全網路預期需求、儲存於每一履行中心200中的產品的一或多個計數、每種產品由哪一履行中心儲存、此產品的預期或當前訂單等來為產品計算PDD。
在一些實施例中,FO系統113可週期性地(例如,每小時)確定每種產品的PDD,且將其儲存於資料庫中,以供擷取或發送至其他系統(例如,外部前端系統103、SAT系統101、運送及訂單追蹤系統111)。在其他實施例中,FO系統113可自一或多個系統(例如,外部前端系統103、SAT系統101、運送及訂單追蹤系統111)接收電子請求,且按需計算PDD。
在一些實施例中,履行訊息傳遞閘道(FMG)115可被實施為電腦系統,所述電腦系統自系統100中的一或多個系統(例如FO系統113)接收呈一種格式或協定的請求或響應,將其轉換成另一種格式或協定,且以所轉換的格式或協定將其轉送至例如WMS 119或第三方履行系統121A、121B或121C等其他系統,反之亦然。
在一些實施例中,供應鏈管理(SCM)系統117可實施為實行預測功能的電腦系統。舉例而言,SCM系統117可基於,例如基於產品的過往需求、產品的預期需求、全網路過往需求、全網路預期需求、儲存於每一履行中心200中的計數產品、每種產品的預期或當前訂單等來預測特定產品的需求水準。因應於此種所預測水準及所有履行中心的每種產品的數量,SCM系統117可產生一或多個購買訂單,以購買及貯存足夠的數量來滿足特定產品的預測需求。
在一些實施例中,倉庫管理系統(WMS)119可實施為監控工作流的電腦系統。舉例而言,WMS 119可自指示離散事件的各別裝置(例如,裝置107A-107C或119A-119C)接收事件資料。舉例而言,WMS 119可接收指示使用該些裝置中的一者來掃描包裝的事件資料。如下文參照履行中心200及圖2所論述,在履行過程期間,包裝辨識符(例如,條形碼或RFID標籤資料)可在特定階段由機器(例如,自動或手持條形碼掃描器、RFID讀取器、高速照相機、例如平板電腦(tablet)119A、行動裝置/PDA 119B、電腦119C等裝置或者類似裝置)掃描或讀取。WMS 119可將指示包裝辨識符的掃描或讀取的每一事件連同包裝辨識符、時間、日期、位置、使用者辨識符或其他資訊一起儲存於對應的資料庫(未畫出)中,且可將此資訊提供至其他系統(例如,運送及訂單追蹤系統111)。
在一些實施例中,WMS 119可儲存將一或多個裝置(例如,裝置107A-107C或119A-119C)與和系統100相關聯的一或多個使用者相關聯的資訊。舉例而言,在一些情況下,使用者(例如兼職或全職員工)與行動裝置的關聯可在於使用者擁有行動裝置(例如,行動裝置是智慧型電話)。在其他情況下,使用者與行動裝置的關聯可在於使用者臨時保管行動裝置(例如,使用者在一天開始時登記借出行動裝置,將在一天中使用行動裝置,且將在一天結束時歸還行動裝置)。
在一些實施例中,WMS 119可為與系統100相關聯的每一使用者維護工作日誌。舉例而言,WMS 119可儲存與每一員工相關聯的資訊,包括任何所分派的過程(例如,卸載卡車、自揀選區揀選物品、分撥牆工作(rebin wall work)、包裝物品)、使用者辨識符、位置(例如,履行中心200中的樓層或區)、員工在系統中移動的單元的數目(例如,所揀選的物品的數目、所包裝的物品的數目)、與裝置(例如,裝置119A-119C)相關聯的辨識符等。在一些實施例中,WMS 119可自例如在裝置119A-119C上操作的計時系統等計時系統接收簽入(check-in)及簽出(check-out)資訊。
在一些實施例中,第三方履行(3PL)系統121A-121C表示與物流及產品的第三方提供商相關聯的電腦系統。舉例而言,儘管一些產品被儲存於履行中心200中(如下文針對圖2所論述),然而其他產品可被儲存於場外、可按需生產或者可在其他情況下不可儲存於履行中心200中。3PL系統121A-121C可被配置以自FO系統113(例如,藉由FMG 115)接收訂單,且可直接向顧客提供產品及/或服務(例如,遞送或安裝)。在一些實施例中,3PL系統121A-121C中的一或多者可為系統100的一部分,而在其他實施例中,3PL系統121A-121C中的一或多者可在系統100之外(例如,由第三方提供商擁有或操作)。
在一些實施例中,履行中心授權系統(FC Auth)123可被實施為具有各種功能的電腦系統。舉例而言,在一些實施例中,FC Auth 123可充當系統100中的一或多個其他系統的單一登入(single-sign on,SSO)服務。舉例而言,FC Auth 123可使使用者能夠藉由內部前端系統105登錄,確定使用者具有存取運送及訂單追蹤系統111處的資源的相似特權,且使使用者能夠存取該些特權而不需要第二次登錄過程。在其他實施例中,FC Auth 123可使使用者(例如,員工)能夠將其自身與特定任務相關聯。舉例而言,一些員工可能不具有電子裝置(例如裝置119A-119C),而是可作為替代在一天的過程期間於履行中心200內在各任務之間及各區之間移動。FC Auth 123可被配置以使該些員工能夠指示他們正在實行什麼任務以及他們在一天的不同時間處於什麼區。
在一些實施例中,勞資管理系統(LMS)125可被實施為儲存員工(包括全職及兼職員工)的出勤及加班資訊的電腦系統。舉例而言,LMS 125可自FC Auth 123、WMA 119、裝置119A-119C、運輸系統107及/或裝置107A-107C接收資訊。
圖1A中繪示的特定配置僅為實例。舉例而言,儘管圖1A繪示FC Auth系統123連接至FO系統113,然而並非所有實施例均需要此種特定配置。實際上,在一些實施例中,系統100中的系統可藉由包括網際網路、內部網路(Intranet)、廣域網路(Wide-Area Network,WAN)、都會區域網路(Metropolitan-Area Network,MAN)、符合電機電子工程師學會(Institute of Electrical and Electronic Engineers,IEEE)802.11a/b/g/n標準的無線網路、租用線路(leased line)等的一或多種公共或私有網路彼此連接。在一些實施例中,系統100中的系統中的一或多者可被實施為在資料中心、伺服器場(server farm)等處實施的一或多個虛擬伺服器。
圖2繪示履行中心200。履行中心200是儲存訂購時運送至顧客的物品的物理位置的實例。履行中心(FC)200可被劃分成多個區,所述多個區中的每一者繪示於圖2中。在一些實施例中,該些「區」可被視為接收物品、儲存物品、擷取物品及運送物品的過程的不同階段之間的虛擬劃分。因此,儘管在圖2中繪示「區」,然而亦可存在區的其他劃分,且在一些實施例中,圖2中的區可被省略、複製或調整。
入站區203表示FC 200的自希望使用來自圖1A的系統100售賣產品的賣方接收物品的區域。舉例而言,賣方可使用卡車201遞送物品202A及202B。物品202A可表示足夠大以佔用其自己的運送托板的單一物品,而物品202B可表示在同一托板上堆疊於一起以節省空間的一組物品。
工人將在入站區203中接收物品,且可使用電腦系統(未畫出)可選地檢查物品的損壞及正確性。舉例而言,工人可使用電腦系統將物品202A及202B的數量與訂購的物品數量進行比較。若數量不匹配,則此工人可拒絕物品202A或202B中的一或多者。若數量匹配,則工人可將該些物品(使用例如推車、手推車、堆高機,或者手動地)移動至緩衝區(buffer zone)205。緩衝區205可為當前在揀選區中所不需要的物品(例如,由於在揀選區中存在足夠高數量的此物品來滿足預測需求)的臨時儲存區域。在一些實施例中,堆高機206進行操作以在緩衝區205中四處移動物品以及在入站區203與卸貨區207之間移動物品。若在揀選區中需要物品202A或202B(例如,由於預測需求),堆高機可將物品202A或202B移動至卸貨區207。
卸貨區207可為FC 200的在物品被移動至揀選區209之前儲存所述物品的區域。被分派揀選任務的工人(「揀選者」)可接近揀選區中的物品202A及202B,使用行動裝置(例如,裝置119B)掃描揀選區的條形碼,且掃描與物品202A及202B相關聯的條形碼。揀選者然後可將物品帶至揀選區209(例如,藉由將物品放入搬運車(cart)上或者搬運物品)。
揀選區209可為FC 200的其中在儲存單元210上儲存物品208的區域。在一些實施例中,儲存單元210可包括物理排架(physical shelving)、書架、盒、運送箱、冰箱、冰櫃、冷藏庫等中的一或多者。在一些實施例中,揀選區209可被組織成多個樓層。在一些實施例中,工人或機器可以包括例如堆高機、升降機、傳送帶、搬運車、手推車、推車、自動機器人或裝置或者手動方式在內的多種方式將物品移動至揀選區209中。舉例而言,揀選者可將物品202A及202B放入卸貨區207中的手推車或搬運車上,且步行將物品202A及202B送至揀選區209。
揀選者可接收將物品放入(或「堆置(stow)」於)揀選區209中的特定地點(例如儲存單元210上的特定空間)的指令。舉例而言,揀選者可使用行動裝置(例如,裝置119B)掃描物品202A。所述裝置可例如使用指示過道、儲架及位置的系統來指示揀選者應將物品202A堆置於何處。然後,在將物品202A堆置於此位置之前,所述裝置可提示揀選者掃描此位置處的條形碼。所述裝置可向電腦系統(例如圖1A中的WMS 119)發送(例如,經由無線網路)資料來指示物品202A已由使用裝置119B的使用者堆置於所述位置處。
一旦使用者下訂單,揀選者便可在裝置119B上接收指令,以自儲存單元210擷取一或多個物品208。揀選者可擷取物品208,掃描物品208上的條形碼,且將其放入運輸機構214上。儘管運輸機構214被表示為滑動件,然而在一些實施例中,運輸機構可被實施為傳送帶、升降機、搬運車、堆高機、手推車、推車、搬運車等中的一或多者。物品208然後可到達包裝區211。
包裝區211可為FC 200的自揀選區209接收物品且將物品包裝至盒或袋中以便最終運送至顧客的區域。在包裝區211中,被分派接收物品的工人(「分撥工人(rebin worker)」)將自揀選區209接收物品208,且確定物品208對應於什麼訂單。舉例而言,分撥工人可使用例如電腦119C等裝置來掃描物品208上的條形碼。電腦119C可以可視方式指示物品208與哪一訂單相關聯。舉例而言,此可包括牆216上的對應於訂單的空間或「單元格(cell)」。一旦訂單完成(例如,由於單元格容納訂單的所有物品),分撥工人可向包裝工人(或「包裝者(packer)」)指示訂單完成。包裝者可自單元格擷取物品,且將其放入盒或袋中進行運送。然後,包裝者可例如藉由堆高機、搬運車、推車、手推車、傳送帶、手動方式或其他方式將盒或袋發送至中樞區(hub zone)213。
中樞區213可為FC 200的自包裝區211接收所有盒或袋(「包裝」)的區域。中樞區213中的工人及/或機器可擷取包裝218,且確定每一包裝旨在去往遞送區域的哪一部分,且將包裝路由至適當的營地區(camp zone)215。舉例而言,若遞送區域具有兩個較小的子區域,則包裝將去往兩個營地區215中的一者。在一些實施例中,工人或機器可掃描包裝(例如,使用裝置119A-119C中的一者)以確定其最終目的地。將包裝路由至營地區215可包括例如確定作為包裝的目的地的地理區域的一部分(例如,基於郵政編碼),以及確定與所述地理區域的所述部分相關聯的營地區215。
在一些實施例中,營地區215可包括一或多個建築物、一或多個物理空間或者一或多個區域,其中的包裝是自中樞區213接收以分選至路線及/或子路線中。在一些實施例中,營地區215在物理上與FC 200分離,而在其他實施例中,營地區215可形成FC 200的一部分。
營地區215中的工人及/或機器可例如基於目的地與現有路線及/或子路線的比較、對每一路線及/或子路線的工作負荷的計算、一天中的時間、運送方法、運送包裝220的成本、與包裝220中的物品相關聯的PDD等來確定包裝220應與哪一路線及/或子路線相關聯。在一些實施例中,工人或機器可掃描包裝(例如,使用裝置119A-119C中的一者)以確定其最終目的地。一旦包裝220被分派至特定路線及/或子路線,工人及/或機器可移動待運送的包裝220。在示例性圖2中,營地區215包括卡車222、汽車226以及遞送工人224A及224B。在一些實施例中,卡車222可由遞送工人224A駕駛,其中遞送工人224A是為FC 200遞送包裝的全職員工,且卡車222由擁有、租賃或營運FC 200的同一公司擁有、租賃或營運。在一些實施例中,汽車226可由遞送工人224B駕駛,其中遞送工人224B是根據需要(例如,季節性地)進行遞送的「彈性(flex)」或不定期工人(occasional worker)。汽車226可由遞送工人224B擁有、租賃或營運。
參照圖3,示意性方塊圖300示出包括用於管理產品庫存置放的智慧型庫存置放系統301的系統的示例性實施例。智慧型庫存置放301可與圖1A所示系統100中的一或多個系統相關聯。舉例而言,智慧型庫存置放系統301可實施為SCM系統117的一部分。在一些實施例中,智慧型庫存置放系統301可被實施為儲存庫存資訊以及每一FC 200的資訊及來自其他系統(例如,外部前端系統103、運送及訂單追蹤系統111及/或FO系統113)的顧客訂單的資訊的電腦系統。舉例而言,智慧型庫存置放系統301可包括一或多個處理器305,所述一或多個處理器305可儲存與新產品相關聯的資訊,例如產品辨識符以及分派至每種產品的產品標籤。智慧型庫存置放301的一或多個處理器305亦可儲存與一或多個FC 200相關聯的資訊,包括但不限於與每一FC 200相關聯的FC標籤、與每一FC 200的位置相關聯的溫度、與每一FC 200的一或多個服務區域相關聯的溫度、每一FC 200的服務區域的數目、每一FC 200與其一或多個服務區域之間的距離、與每一FC 200相關聯的建築限制、每一FC 200的最大容量及/或其任意組合。智慧型庫存置放系統301的一或多個處理器305亦可儲存被分派用於在每一FC 200處進行庫存置放的產品的產品辨識符的列表。一或多個處理器305可儲存或擷取與每一FC 200相關聯的資訊以及與產品相關聯的資訊,以便管理產品庫存置放。標籤(例如產品標籤及FC標籤)可包括闡述每種產品及/或每一FC 200的詮釋資料(metadata)。因此,一或多個處理器305可藉由在資料庫304中搜尋對應標籤來找到每種產品及/或每一FC 200。標籤可包括詞語、影像或其他辨識標記形式的詮釋資料。
在其他實施例中,與每一FC 200及/或用於庫存置放的每種產品相關聯的前述資訊中的每一者可儲存於資料庫304中。因此,智慧型庫存置放系統301可經由網路302自資料庫304擷取資訊。資料庫304可包括儲存資訊且經由網路302進行存取的一或多個記憶體裝置。舉例而言,資料庫304可包括甲骨文TM (OracleTM )資料庫、賽貝斯TM (SybaseTM )資料庫或者例如海杜普(Hadoop)序列檔案、海杜普資料庫(Hadoop Database,HBase)或卡珊卓(Cassandra)等其他關係資料庫或非關係資料庫。儘管資料庫304被示為包括於系統300中,然而作為另一選擇,資料庫304可遠離系統300而定位。在其他實施例中,資料庫304可被合併至智慧型庫存置放系統301中。資料庫304可包括計算組件(例如,資料庫管理系統、資料庫伺服器等),所述計算組件被配置以接收及處理對儲存於資料庫304的記憶體裝置中的資料的請求,並提供來自資料庫304的資料。
系統300亦可包括網路302及伺服器303。智慧型庫存置放系統301、伺服器303及資料庫304可被連接,且能夠經由網路302彼此進行通訊。網路302可為無線網路、有線網路或無線網路與有線網路的任意組合中的一或多者。舉例而言,網路302可包括光纖網路、被動光學網路、纜線網路、網際網路網路(Internet network)、衛星網路、無線區域網路(wireless local area network,wirelss LAN)、全球行動通訊系統(「Global System for Mobile Communication,GSM」)、個人通訊服務(「Personal Communication Service,PCS」)、個人區域網路(「Personal Area Network,PAN」)、數位先進行動電話服務(digital advanced mobile phone service,D-AMPS)、無線保真(Wireless Fidelity,Wi-Fi)、固定無線資料(Fixed Wireless Data)、電氣及電子工程師學會(Institute of Electrical and Electronic Engineers,IEEE)802.11b、802.15.1、802.11n及802.11g或用於傳輸及接收資料的任何其他有線或無線網路中的一或多者。
此外,網路302可包括但不限於電話線、光纖、IEEE乙太網路902.3、廣域網路(「wide area network,WAN」)、區域網路(「LAN」)或例如網際網路等全球網路。此外,網路302可支援網際網路網路、無線通訊網路、蜂巢網路等或其任意組合。網路302可更包括一個網路或者作為獨立網路而運作或彼此協同運作的任何數目的上述示例性類型的網路。網路302可利用與其通訊耦合的一或多個網路元件的一或多種協定。網路302可轉化成其他協定,或者自其他協定轉化成網路裝置的一或多種協定。儘管網路302被繪示為單一網路,然而應理解,根據一或多個實施例,網路302可包括多個互連的網路,例如(舉例而言)網際網路、服務提供商網路、纜線電視網路、公司網路及家庭網路。
伺服器303可為網路伺服器。舉例而言,伺服器303可包括遞送可由例如使用者經由例如網際網路等網路(例如,網路302)存取的網路內容的硬體(例如,包括處理器、儲存體及輸入/輸出裝置的一或多個電腦)及/或軟體(例如,一或多個應用)。伺服器303可使用例如超文件傳送協定(HTTP或安全超文件傳送協定(secure HTTP,s HTTP))來與使用者進行通訊。遞送至使用者的網頁可包括例如超文件標記語言(Hypertext Markup Language,HTML)文件,HTML文件可除正文內容以外亦包括影像、式樣單(style sheet)及腳本。
例如(舉例而言)網路瀏覽器、網路爬蟲或本地行動應用等使用者程式可藉由使用HTTP對特定資源進行請求來發起通訊,且若無法這樣做,則伺服器303可用此資源的內容或錯誤訊息來進行響應。伺服器303亦可使得能夠或便於自使用者接收內容,因而使用者可能夠例如提交網路表單(web form),包括上載檔案。伺服器303亦可使用例如主動伺服器頁面(Active Server Pages,ASP)、個人主頁(personal home page,PHP)或其他腳本處理語言來支援伺服器側腳本處理。因此,伺服器303的行為可在單獨的檔案中進行腳本處理,而實際的伺服器軟體保持不變。
在其他實施例中,伺服器303可為應用伺服器,其可包括專用於高效執行用於支援其所應用的應用的程序(例如,程式、常式、腳本)的硬體及/或軟體。伺服器303可包括一或多個應用伺服器框架,包括例如爪哇(Java)應用伺服器(例如,Java平台企業版(Java platform, Enterprise Edition,Java EE))、來自微軟®的.NET框架、PHP應用伺服器等)。各種應用伺服器框架可包含全面服務層模型。伺服器303可充當例如實施系統100的實體可經由平台本身定義的應用程式介面(application program interface,API)存取的一組組件。
智慧型庫存置放系統301亦可經由網路302與一或多個FC 200進行通訊。舉例而言,當一或多個產品被分派用於在一或多個FC 200中進行庫存置放時,智慧型庫存置放系統301的一或多個處理器305可經由網路302通知FC 200。在一些實施例中,一或多個處理器305可更新每一FC 200處的資料庫(未示出),以記錄與分派至每一FC 200以用於庫存置放的產品相關聯的資訊。因此,每一FC 200可維護其自己的資料庫,所述資料庫包括分派至每一FC 200的產品的列表。
如下文所詳細論述的,智慧型庫存置放系統301的一或多個處理器305可實施一或多個機器學習演算法來管理產品庫存置放。在一些實施例中,智慧型庫存置放系統301的一或多個處理器305可實施二或更多個機器學習演算法的組合來管理產品庫存置放。機器學習演算法可包括例如整體學習方法(例如隨機森林)、人工神經網路、支援向量機或用於分類及迴歸分析的任何其他機器學習演算法或模型。
在一些實施例中,一或多個處理器305可基於不同的地理位置使用人工智慧(artificial intelligence,AI)及機器學習演算法來辨識未來售賣產品,且針對未來顧客訂單批量地分派產品來置放於適當的FC 200中。在一些實施例中,一或多個處理器305可確定對產品具有最高顧客需求的一或多個地理區,例如郵政編碼、州、市、區或其他政治或地理分區。然後,一或多個處理器305可確定與對產品具有最高顧客需求的所述一或多個地理區相關聯的溫度。基於所述溫度,一或多個處理器305可分派產品來在適當的FC 200中進行庫存置放。在一些實施例中,適當的FC 200可位於溫度相似於與對產品具有最高顧客需求的所述一或多個地理區相關聯的溫度的地理區中。在其他實施例中,適當的FC 200可具有溫度相似於與對產品具有最高顧客需求的所述一或多個地理區相關聯的溫度的一或多個服務區域。
在另一實施例中,一或多個處理器305可能夠在資料庫304中向一或多個產品及/或一或多個FC 200分派標籤(例如溫度標籤),以便管理產品庫存置放。舉例而言,智慧型庫存置放系統301的一或多個處理器305可至少基於每一FC 200的位置處的季節性天氣及與每一FC 200的服務區域相關聯的天氣來為每一FC 200分派標籤。標籤可被動態地調節,且可基於天氣被週期性地評價。舉例而言,FC 200中的一者可位於亞利桑那,且一或多個處理器305可在資料庫304中向位於亞利桑那的FC 200分派「HOT(熱)」溫度標籤。當一或多個處理器305接收產品以置放於FC 200中時,一或多個處理器305可確定對產品具有最高顧客需求的地理區,例如郵政編碼、州、市、區或其他政治或地理分區。在一些實施例中,基於歷史運送資料,一或多個處理器305可確定與產品相關聯的頻繁運送位址及/或位置位於阿拉斯加。然後,一或多個處理器305可至少基於對產品具有最高顧客需求的區處的天氣來向產品分派標籤。若對產品具有最高顧客需求的區是阿拉斯加,一或多個處理器305可向產品分派例如「COLD(冷)」標籤。一或多個處理器305可向具有與分派至產品的標籤匹配的標籤的FC 200(例如具有「COLD」標籤的FC 200)分派產品。一或多個處理器305可將與產品及FC 200相關聯的資訊儲存於資料庫304中,並使用所儲存的資訊來訓練機器學習演算法。因此,一或多個處理器305可使用機器學習演算法來自動地標記新產品並自動地分派新產品來置放於適當的FC 200中。利用溫度標籤,一或多個處理器305可判斷特定的FC 200是否將適於儲存特定的產品。在以上實例中,舉例而言,一或多個處理器305可確定位於亞利桑那的具有「HOT」標籤的FC 200將不適於儲存具有「COLD」標籤的產品。
在再一實施例中,一或多個處理器305可能夠實施機器學習演算法的一或多個參數,以管理產品庫存置放。在一些實施例中,一或多個參數可與一或多個FC 200相關聯。與FC 200相關聯的參數可包括例如每一FC 200的最大容量、與每一FC 200相關聯的物品相容性、與FC 200相關聯的成本、與每一FC 200相關聯的建築限制、與每一FC 200相關聯的服務區域或其任意組合。每一FC 200的最大容量可包括與每一FC 200處可儲存多少產品相關聯的資訊。與每一FC 200相關聯的物品相容性可包括與某些物品相關聯的資訊,所述物品由於所述物品的尺寸、物品的重量、製冷需求或與所述物品相關聯的其他要求而可能無法保存於某些FC 200處。亦可能存在與每一FC 200相關聯的建築限制,其容許某些物品保存於每一FC 200處,且防止某些物品保存於每一FC 200中。與每一FC 200相關聯的成本可包括FC至FC轉移成本(FC-to-FC transfer cost)、跨叢集運送成本(cross-cluster shipment cost)(例如,自多個FC 200運送物品所產生的運送成本)、在FC 200之間交叉貯存物品所產生的運送成本、與在一個FC 200中具有所有貯存計量單位(stock keeping unit,SKU)相關聯的單元/包裹(unit per parcel,UPP)成本或其任意組合。與每一FC 200相關聯的服務區域可包括與每一FC 200相關聯的服務區域的數目、每一FC 200的服務區域的地理位置、每一FC 200的服務區域中的每一者的天氣及/或溫度及/或每一FC 200的服務區域與FC 200之間的距離。
在一些實施例中,一或多個處理器305可實施與FC 200及每一FC 200的位置處的天氣相關聯的前述參數中的一或多者,以便在資料庫304中向每一FC 200分派標籤。一或多個處理器305亦可實施儲存於資料庫304中的歷史運送資料,以便向每種產品分派標籤以用於庫存置放。舉例而言,歷史運送資料可包含先前遞送每種產品的運送位址的列表。因此,一或多個處理器305可能夠基於歷史運送資料來確定對特定產品具有最高客戶需求的地理區,例如郵政編碼、州、市、區或其他政治或地理分區。因此,基於歷史運送資料,一或多個處理器305可向每種產品分派標籤以用於庫存置放。一或多個處理器305可能夠儲存與每一FC 200相關聯的屬性及與每種產品相關聯的屬性,且訓練機器學習演算法來自動地為每種新產品預測及分派標籤以用於庫存置放。在一些實施例中,機器學習演算法可包括分類模型,所述分類模型可向一或多個FC 200分派每種新產品以用於庫存置放。舉例而言,機器學習演算法可包括整體學習方法(例如隨機森林)、人工神經網路、支援向量機或用於分類及迴歸分析的任何其他機器學習演算法或模型。
圖4A示出與FC 200相關聯的資訊,所述資訊可儲存於示例性資料庫304的表中。如以上所論述,一或多個處理器305可將與每一FC 200相關聯的一或多個參數儲存於資料庫304中。一或多個處理器305亦可向每一FC 200分派標籤,並將標籤資訊儲存於資料庫304中。一或多個處理器305可將儲存於資料庫304中的資訊傳輸至系統100中的一或多個系統。舉例而言,一或多個處理器305可將儲存於資料庫304中的資訊傳輸至內部前端系統105以顯示結果。圖4A中示出儲存與每一FC 200相關聯的資訊的示例性資料庫304。如在圖4A中看出,一或多個處理器305可確定每一FC 200的地理位置,並將所述地理位置儲存於資料庫304中(例如,「FC位置」)。一或多個處理器305可進一步調整資料庫304,以向每一FC 200分派一或多個標籤(例如溫度標籤)。標籤可基於每一FC 200的位置處的溫度來分派。
如在圖4A中看出,一或多個處理器305可基於每一FC 200的位置處的季節性天氣來分派溫度標籤。即,一或多個處理器305可考慮由於季節性變化導致的溫度差異。因此,一或多個處理器305可基於12月與2月、3月與5月、6月與8月以及9月與11月之間每一FC 200的位置處的平均溫度來向每一FC 200分派溫度標籤。儘管在圖4A中,一或多個處理器305每3個月向每一FC 200分派溫度標籤以說明季節性變化,然而一或多個處理器305可每月、每2個月、每5個月、每10個月、每年等向每一FC 200分派溫度標籤。舉例而言,一或多個處理器305可計算每一FC 200的位置處的平均年溫度,並基於平均年溫度分派溫度標籤。
資料庫304中分派至每一FC 200的溫度標籤可基於各種溫度值範圍。舉例而言,若特定FC 200的位置處的平均溫度小於約32華氏度,則可分派「FROZEN(冰凍)」溫度標籤。若特定FC 200的位置處的平均溫度在約32華氏度至約45華氏度之間,則可分派「COLD」溫度標籤。若特定FC 200的位置處的平均溫度在約45華氏度至約65華氏度之間,則可分派「COOL(涼)」溫度標籤。若特定FC 200的位置處的平均溫度在約65華氏度至約80華氏度之間,則可分派「WARM(暖)」溫度標籤。若特定FC 200的位置處的平均溫度大於約80華氏度,則可分派「HOT」溫度標籤。其他範圍及標籤說明是可能的,且以上範圍及說明僅為示例性的。
圖4B示出與產品相關聯的資訊,所述資訊可儲存於示例性資料庫304的表中。如以上所論述,一或多個處理器305可將與每種產品相關聯的資訊儲存於資料庫304中。一或多個處理器305亦可向每種產品分派標籤,並將標籤資訊儲存於資料庫304中。一或多個處理器305可將儲存於資料庫304中的資訊傳輸至系統100中的一或多個系統。舉例而言,一或多個處理器305可將儲存於資料庫304中的資訊傳輸至內部前端系統105以顯示結果。圖4B中示出儲存與每種產品相關聯的資訊的示例性資料庫304。如在圖4B中看出,一或多個處理器305可自遠端系統接收一或多個產品以用於庫存置放。舉例而言,一或多個處理器305可接收與每種產品相關聯的產品辨識符(ID)以用於庫存置放。舉例而言,產品ID可包括辨識產品或產品類別的貯存計量單位(SKU),例如圖1C中的「物品編號」。
在一些實施例中,一或多個處理器305可在資料庫304中查找與產品ID相關聯的歷史運送資料,以確定對每種產品具有最高顧客需求的區。舉例而言,儲存於資料庫304中的歷史運送資料可包括運送位址、運送位置、運送日期或與每種產品的先前顧客訂單相關聯的其他運送資訊。基於儲存於資料庫304中的歷史運送資料,一或多個處理器305可確定對每種產品具有最高顧客需求的區。舉例而言,具有最高顧客需求的區可為先前向其運送最大數目的每種產品的運送位置。一或多個處理器305可將對每種產品具有最高顧客需求的所確定區儲存於資料庫304中(例如,「區A」、「區B」、「區C」等)。
如在圖4B中看出,一或多個處理器305亦可確定每種產品的預期運送日期。預期運送日期可基於儲存於資料庫304中的歷史運送資料。舉例而言,一或多個處理器305可基於歷史運送資料來確定先前運送最大數目的每種產品的時間框架及/或日期。在其他實施例中,舉例而言,當一或多個處理器305接收每種產品的產品辨識符以用於庫存置放時,一或多個處理器305可接收每種產品的預期運送日期。即,當一或多個處理器305接收所述一或多個產品辨識符以用於庫存置放時,可預先確定預期日期。
一或多個處理器305亦可確定在預期運送日期對每種產品具有最高顧客需求的區處的溫度。舉例而言,一或多個處理器305可基於特定區中的天氣預測資料、歷史天氣資料或天氣趨勢來預測預期運送日期的溫度。基於在預期運送日期對每種產品具有最高顧客需求的區處的溫度,一或多個處理器305可調整資料庫304以向每種產品分派溫度標籤。資料庫304中分派至每種產品的溫度標籤可基於各種溫度值範圍。舉例而言,若對每種產品具有最高顧客需求的區處的平均溫度小於約32華氏度,則可分派「FROZEN」溫度標籤。若對每種產品具有最高顧客需求的區處的平均溫度在約32華氏度至約45華氏度之間,則可分派「COLD」溫度標籤。若對每種產品具有最高顧客需求的區處的平均溫度在約45華氏度至約65華氏度之間,則可分派「COOL」溫度標籤。若對每種產品具有最高顧客需求的區處的平均溫度在約65華氏度至約80華氏度之間,則可分派「WARM」溫度標籤。若對每種產品具有最高顧客需求的區處的平均溫度大於約80華氏度,則可分派「HOT」溫度標籤。
圖5是示出用於管理產品庫存置放的示例性方法500的流程圖。此示例性方法是藉由舉例來提供。圖5中所示的方法500可由各種系統的一或多種組合來執行或以其他方式實行。舉例而言,如下所述的方法500可由如圖3中所示的智慧型庫存置放系統301來施行,且在闡釋圖5所示的方法時參考此系統的各種元件。圖5中所示的每一方塊表示示例性方法500中的一或多個過程、方法或子常式。參照圖5,示例性方法500可在方塊501處開始。
在方塊501處,一或多個處理器305可接收與產品相關聯的產品辨識符以用於庫存置放。在一些實施例中,一或多個處理器305可自例如圖1A所示系統100中的一或多個系統等遠端系統接收產品辨識符。一或多個處理器305可將與產品相關聯的產品辨識符儲存於資料庫304中。在一些實施例中,產品辨識符可包括產品的貯存計量單位(SKU)。SKU可辨識特定的產品或一類產品。舉例而言,SKU對於每種產品而言可為特定的,且因此可指示製造商、材料、顏色、包裝類型、重量或與每種對應產品相關聯的任何其他特性。
一旦接收到產品辨識符以用於庫存置放,則方法500可前進至方塊502。在方塊502處,一或多個處理器305可確定對產品具有最高顧客需求的區。舉例而言,一或多個處理器305可搜遍儲存於資料庫304中的歷史運送資料,以確定與產品相關聯的運送歷史。如以上所論述,儲存於資料庫304中的歷史運送資料可包括先前遞送產品的運送位址的列表、先前購買產品的顧客的列表、每一顧客購買的產品的數量或者與產品購買歷史相關的任何其他資訊。基於歷史運送資料,一或多個處理器305可能夠確定對特定產品具有最高顧客需求的地理區。舉例而言,一或多個處理器305可基於先前遞送產品的運送位址的列表來確定對產品具有最高顧客需求的地理區,例如郵政編碼、州、市、區或其他政治或地理分區。
一旦確定對產品具有最高顧客需求的區,則方法500可前進至方塊503。在方塊503處,一或多個處理器305可確定在產品的預期運送日期對產品具有最高顧客需求的區處的溫度。如以上參照圖4B所論述,一或多個處理器305可確定對每種產品具有最高顧客需求的區處的溫度,並將與產品相關聯的溫度資訊儲存於資料庫304中。一或多個處理器305可確定產品的預期運送日期,並確定在預期運送日期與對產品具有最高顧客需求的區相關聯的溫度。可基於與產品相關聯的歷史運送資料來確定預期運送日期。在其他實施例中,當一或多個處理器305接收與產品相關聯的產品辨識符以用於庫存置放時,可由遠端系統提供預期運送日期。
在方塊504處,一或多個處理器305可基於在預期運送日期對產品具有最高顧客需求的區處的溫度來預測與產品相關聯的產品標籤。在一些實施例中,一或多個處理器305可使用機器學習演算法來自動地預測與產品相關聯的產品標籤。在一些實施例中,機器學習演算法可包括分類模型。舉例而言,機器學習演算法可包括整體學習方法(例如隨機森林)、人工神經網路、支援向量機或用於分類及迴歸分析的任何其他機器學習演算法或模型。如下文所進一步詳細論述,機器學習演算法可使用儲存於資料庫304中的與產品及FC相關聯的歷史運送資料(例如,如圖4A及圖4B中所示)來自動地預測產品標籤並向每種新產品分派所述產品標籤以用於庫存置放。
一旦預測出與產品相關聯的產品標籤,則方法500可前進至方塊505。在方塊505處,一或多個處理器305可調整資料庫304以向產品分派所預測的產品標籤。分派至產品的產品標籤可儲存於資料庫304中。在資料庫304中,分派至產品的產品標籤亦可與產品的產品辨識符相關聯。
方法500可前進至方塊506,在方塊506處,一或多個處理器305可分派產品來置放於FC中。FC可與對應於分派至產品的產品標籤的FC標籤相關聯。舉例而言,一或多個處理器305可分派產品來置放於具有與分派至產品的產品標籤匹配的FC標籤的FC中。如在圖4A中看出,資料庫304可儲存FC及其對應的FC標籤(例如,溫度標籤)的列表。因此,FC標籤可指示與FC的位置相關聯的溫度。在方塊506處,一或多個處理器305可在資料庫304中辨識具有與分派至產品的產品標籤匹配的FC標籤的FC,並分派產品來置放於所述FC中。舉例而言,產品可被分派「WARM」產品標籤。一或多個處理器305可在資料庫304中辨識在產品的預期運送日期具有「WARM」FC標籤的FC,並分派產品來置放於所述FC中。
若存在多於一個具有與分派至產品的產品標籤匹配的FC標籤的FC(例如,五個具有「WARM」FC標籤的FC),則一或多個處理器305可辨識與所述一或多個FC相關聯的其他參數,並為產品選擇最佳FC。舉例而言,除其他參數以外,一或多個處理器305可確定每一FC的服務區域的數目、每一FC的服務區域的位置、在預期運送日期每一FC的服務區域處的溫度、FC與服務區域之間的距離、每一FC的最大容量、與每一FC相關聯的建築限制或其任意組合。一或多個處理器305可基於前述參數中的一或多者來為產品選擇最佳FC。在一些實施例中,最佳FC可具有最靠近對產品具有最高需求的區而定位的一或多個服務區域。在其他實施例中,最佳FC可具有與和由分派至產品的產品標籤所指示的溫度最接近的溫度相關聯的一或多個服務區域。在再一實施例中,最佳FC可具有最大的容量及靈活的建築限制,以適應儲存產品的要求。舉例而言,若產品必須保持冰凍,最佳FC必須有能力儲存及維持冰凍產品。
圖6是示出用於管理庫存置放的方法600的流程圖。此示例性方法是藉由舉例來提供。圖6中所示的方法600可由各種系統的一或多種組合來執行或以其他方式實行。舉例而言,如下所述的方法600可由如圖3中所示的智慧型庫存置放系統301來施行,且在闡釋圖6所示的方法時參考智慧型庫存置放系統301的一或多個元件。圖6中所示的每一方塊表示示例性方法600中的一或多個過程、方法或子常式。參照圖6,示例性方法600可在方塊601處開始。
在方塊601處,一或多個處理器305可基於儲存於資料庫304中的歷史運送資料來訓練一或多個機器學習演算法。舉例而言,一或多個處理器305可在預先確定的時間週期內將與產品及FC相關聯的資訊儲存於資料庫中,且所儲存的資訊可用於訓練機器學習演算法以自動地向新產品分派產品標籤。所儲存的資訊亦可用於訓練機器學習演算法,以自動地向一或多個FC分派FC標籤。所述資訊可包括分派至產品的產品標籤、產品的產品辨識符、分派至FC的FC標籤以及以上參照圖4A及圖4B闡述的資訊中的任一者。在一些實施例中,輸入並儲存於資料庫304中的資訊可包括與產品相關聯的資訊,包括但不限於與分派至產品的產品標籤相關聯的位置及郵政編碼、產品屬性以及與每種產品相關聯的歷史運送資料。產品屬性可包括例如品牌資訊、製造商資訊、產品材料、產品包裝、產品重量及/或產品尺寸。歷史運送資料可包括例如每種產品的銷售歷史、與每種產品相關聯的過往運送位址及/或先前購買的每種產品的數量。一或多個處理器305亦可藉由實施一或多種商業規則來訓練機器學習演算法。商業規則可包括與一或多個FC相關聯的參數,包括但不限於每一FC的服務區域的數目、每一FC的服務區域的位置、在預期運送日期每一FC的服務區域處的溫度、FC與服務區域之間的距離、每一FC的最大容量、與每一FC相關聯的建築限制或其任意組合。此外,可將機器學習演算法訓練為基於各種因素自動地向一或多個FC分派FC標籤,所述因素包括FC的位置、FC位置處的溫度、與FC相關聯的一或多個服務區域處的溫度或其任意組合。因此,可將與產品及FC相關聯的前述資訊、因素及/或參數中的一或多者輸入至機器學習演算法中,以訓練機器學習演算法來自動地向新產品分派產品標籤並向FC分派FC標籤。
在一些實施例中,機器學習演算法可基於輸入至機器學習演算法中的資訊來計算和每種產品相關聯的資訊與和每種產品相關聯的產品標籤之間的關係。舉例而言,機器學習演算法可基於輸入至機器學習演算法中的資訊來預測對產品具有最高顧客需求的區以及所述區處的溫度。因此,機器學習演算法可生成和每種產品相關聯的資訊與對產品具有最高顧客需求的區處的溫度之間的相關性。相似地,可將機器學習演算法配置以基於儲存於資料庫304中與FC相關聯的歷史資料來辨識與FC相關聯的一或多個參數。基於與FC相關聯的所述一或多個參數,機器學習演算法可用於自動地向FC分派FC標籤。
一旦機器學習演算法得到訓練,方法600可前進至方塊602。在方塊602處,一或多個處理器305可基於由機器學習演算法生成的相關性來自動地向新產品分派產品標籤。即,基於由機器學習演算法生成的相關性,一或多個處理器305可使用所述相關性來基於與每種新產品相關聯的一或多個資訊自動地向新產品分派產品標籤。在方塊603處,一或多個處理器305亦可使用機器學習演算法向FC分派FC標籤。如以上所論述,一或多個處理器305可獲得儲存於資料庫304中的與FC相關聯的資訊及/或參數。基於與FC相關聯的資訊及/或參數,一或多個處理器305可使用機器學習演算法來自動地向一或多個FC分派FC標籤。
一旦產品標籤被分派至新產品,且FC標籤被分派至FC,方法600可前進至方塊604。在方塊604處,一或多個處理器305可評價FC標籤及/或產品標籤。在一些實施例中,一或多個處理器305可週期性地重新評價FC標籤及/或產品標籤,例如每天兩次、每天一次、每週一次、每月一次等。一或多個處理器305可視評價的結果來動態地調節FC標籤及/或產品標籤。
在一些實施例中,評價FC標籤可包括確定與FC標籤相關聯的溫度。舉例而言,重新參照圖4A,評價FC 1的FC標籤可包括確定與FC標籤相關聯的溫度全年是「FROZEN」。一旦確定與FC標籤相關聯的溫度,則一或多個處理器305可確定FC的位置處的實際溫度。舉例而言,再次參照圖4A,一或多個處理器305可確定FC 1所位於的「位置1」處的實際溫度。一或多個處理器305可基於常規的天氣預測系統來確定實際溫度。然後,一或多個處理器305可計算資料庫304中和FC標籤相關聯的溫度與FC的位置處的實際溫度之間的差值。若所述兩種溫度之間的差值超過預先確定的臨限值,則一或多個處理器305可用新FC標籤替代分派至FC的FC標籤。一或多個處理器305可調整資料庫304以向FC分派新FC標籤。舉例而言,再次參照圖4A,一或多個處理器305可確定與分派至FC 1的「FROZEN」溫度標籤相關聯的溫度是30華氏度。一或多個處理器305亦可確定「位置1」處的實際溫度是40華氏度。一或多個處理器305可確定10華氏度的差值超過預先確定的臨限值,且因此可調整資料庫304以用「COLD」標籤替代分派至FC 1的「FROZEN」標籤。在一些實施例中,一或多個處理器305可在用新FC標籤替代所述FC標籤之前,以預先確定的次數重新評價資料庫304中和FC標籤相關聯的溫度與FC的位置處的實際溫度之間的差值。舉例而言,在用新FC標籤替代所述FC標籤之前,一或多個處理器305可在2天的週期內每天2次地重新評價所述差值以確認所述差值確實超過預先確定的臨限值。若所述差值未超過預先確定的臨限值,則一或多個處理器305可維持分派至所述FC的原始FC標籤。
相似地,一或多個處理器305可週期性地評價產品標籤,並根據需要動態地調節產品標籤。評價產品標籤可包括確定與產品標籤相關聯的溫度。舉例而言,重新參照圖4B,評價產品ID 1的產品標籤可包括確定在預期運送日期與產品標籤相關聯的溫度是「WARM」。一旦確定與產品標籤相關聯的溫度,則一或多個處理器305可確定對產品具有最高顧客需求的區處的實際溫度。舉例而言,再次參照圖4B,一或多個處理器305可確定對產品ID 1存在最高需求的「區A」處的實際溫度。一或多個處理器305可基於常規的天氣預測系統來確定實際溫度。然後,一或多個處理器305可計算資料庫304中和產品標籤相關聯的溫度與對產品具有最高顧客需求的區處的實際溫度之間的差值。若所述兩種溫度之間的差值超過預先確定的臨限值,則一或多個處理器305可用新產品標籤替代分派至產品的產品標籤。一或多個處理器305可調整資料庫304以向產品分派新產品標籤。舉例而言,再次參照圖4B,一或多個處理器305可確定與分派至產品ID 1的「WARM」溫度標籤相關聯的溫度是70華氏度。一或多個處理器305亦可確定「區A」處的實際溫度是90華氏度。一或多個處理器305可確定20華氏度的差值超過預先確定的臨限值,且因此可調整資料庫304以用「HOT」標籤替代分派至產品ID 1的「WARM」標籤。在一些實施例中,在用新產品標籤替代產品標籤之前,一或多個處理器305可以預先確定的次數重新評價資料庫304中和產品標籤相關聯的溫度與具有最高顧客需求的區處的實際溫度之間的差值。舉例而言,在用新產品標籤替代產品標籤之前,一或多個處理器305可在兩天的週期內每天兩次地重新評價所述差值以確認所述差值確實超過預先確定的臨限值。若所述差值未超過預先確定的臨限值,則一或多個處理器305可維持分派至產品的原始產品標籤。
在一些實施例中,機器學習演算法可為所產生的相關性計算權重。舉例而言,機器學習演算法可接收與產品相關聯的產品屬性,例如產品的品牌、產品的材料及產品的包裝尺寸。如以上所論述,機器學習演算法可產生每一產品屬性與和產品相關聯的產品標籤之間的相關性的組合,例如品牌-產品標籤相關性、材料-產品標籤相關性及包裝尺寸-產品標籤相關性。可基於每種產品屬性可能影響產品在一或多個FC 200處的置放的程度以不同的方式對所產生的相關性中的每一者進行加權。舉例而言,包裝尺寸-產品標籤相關性的加權可大於品牌-產品標籤相關性,乃因產品的包裝尺寸可能較產品的品牌更有可能由於與FC 200相關聯的建築限制而影響產品在一或多個FC 200處的置放。一或多個處理器305可基於所確定的相關性權重來確定產品置放規則。舉例而言,若被分派用於在特定FC 200處進行庫存置放的產品多於特定FC 200中的可用空間量,則一或多個處理器305可能需要基於產品置放規則來確定哪些產品應優先於具有相同產品標籤的其他產品。在一些實施例中,一或多個處理器305可優先考慮相關性權重高於相關性權重較低的其他產品的產品,即使所述產品可被分派相同的產品標籤。
一旦已週期性地重新評價FC標籤及/或產品標籤,方法600可前進至方塊605。在方塊605處,相似於圖5中的方塊506,一或多個處理器305可分派產品來置放於與對應於分派至產品的產品標籤的FC標籤相關聯的FC中。舉例而言,一或多個處理器305可分派產品來置放於具有與分派至產品的產品標籤匹配的FC標籤的FC中。如在圖4A中看出,資料庫304可儲存FC及其對應的FC標籤(例如,溫度標籤)的列表。因此,FC標籤可指示與FC的位置相關聯的溫度。在方塊605處,一或多個處理器305可在資料庫304中辨識具有與分派至產品的產品標籤匹配的FC標籤的FC,並分派產品來置放於所述FC中。舉例而言,產品可被分派「WARM」產品標籤。一或多個處理器305可在資料庫304中辨識在產品的預期運送日期具有「WARM」FC標籤的FC,並分派產品來置放於所述FC中。
若存在多於一個具有與分派至產品的產品標籤匹配的FC標籤的FC(例如,五個具有「WARM」FC標籤的FC),則一或多個處理器305可辨識與所述一或多個FC相關聯的其他參數,並為產品選擇最佳FC。舉例而言,除其他參數以外,一或多個處理器305可確定每一FC的服務區域的數目、每一FC的服務區域的位置、在預期運送日期每一FC的服務區域處的溫度、FC與服務區域之間的距離、每一FC的最大容量、與每一FC相關聯的建築限制或其任意組合。一或多個處理器305可基於前述參數中的一或多者來為產品選擇最佳FC。在一些實施例中,最佳FC可具有最靠近對產品具有最高需求的區而定位的一或多個服務區域。在其他實施例中,最佳FC可具有與和由分派至產品的產品標籤所指示的溫度最接近的溫度相關聯的一或多個服務區域。在再一實施例中,最佳FC可具有最大的容量及靈活的建築限制,以適應儲存產品的要求。舉例而言,若產品必須保持冰凍,最佳FC必須有能力儲存及維持冰凍產品。
方法600可繼續至方塊606,在方塊606處,一或多個處理器305可自顧客接收針對特定產品的顧客訂單。舉例而言,外部前端系統103可自圖1A中的裝置102A或裝置102B接收訂單。一旦接收到顧客訂單,則一或多個處理器305可諮詢資料庫304以確定特定產品被置放於哪一FC 200處進行庫存。舉例而言,由於FC 200的一或多個位置處的季節性變化,因此可分派特定產品全年在不同的FC 200處進行庫存置放,因此,一或多個處理器305可辨識顧客訂單中的特定產品所置放於的FC 200。在一些實施例中,一或多個處理器305亦可確定特定產品在具有所述特定產品的FC 200處的可用數量。
一旦一或多個處理器305辨識出特定產品所置放於的FC 200,則方法600可前進至方塊607。在方塊607處,一或多個處理器305可自所辨識的FC 200獲得特定產品,以遞送至顧客。藉由基於對每種產品具有最高顧客需求的區處的溫度及每一FC 200的位置處的溫度分派產品來在一或多個FC 200處進行庫存置放,一或多個處理器305可能夠高效地獲得來自顧客訂單的產品,從而降低運送成本、處理器負載及遞送時間。
儘管已參照本揭露的具體實施例示出並闡述了本揭露,然而應理解,本揭露可不加調整地實踐於其他環境中。上述說明是出於例示目的而呈現。以上說明並非詳盡性的且並非僅限於所揭露的精確形式或實施例。藉由考量對所揭露的實施例的說明及實踐,各種調整及修改對於熟習此項技術者而言將顯而易見。另外,儘管所揭露的實施例的態樣被闡述為儲存於記憶體中,然而熟習此項技術者應理解,該些態樣亦可儲存於其他類型的電腦可讀取媒體上,例如輔助儲存裝置(例如硬碟或光碟唯讀記憶體(compact disc ROM,CD ROM))或者其他形式的隨機存取記憶體(random access memory,RAM)或唯讀記憶體(read-only memory,ROM)、通用序列匯流排(universal serial bus,USB)媒體、數位影音光碟(digital versatile disc,DVD)、藍光(Blu-ray)或其他光驅動媒體上。
基於書面說明及所揭露的方法的電腦程式處於有經驗的開發者的技能範圍內。可使用熟習此項技術者已知的任何技術來創建各種程式或程式模組,或者可結合既有的軟體來設計各種程式或程式模組。舉例而言,可採用或借助.Net Framework、.Net Compact Framework(以及相關語言,如Visual Basic、C等)、Java、C++、Objective-C、HTML、HTML/AJAX組合、XML或包括Java小程式的HTML來設計程式區段或程式模組。
另外,儘管本文中已闡述了例示性實施例,然而熟習此項技術者基於本揭露將理解具有等效元素、調整形式、省略、組合(例如,各種實施例之間的態樣的組合)、修改及/或變更的任何及所有實施例的範圍。申請專利範圍中的限制應基於申請專利範圍中採用的語言進行廣義解釋,而並非僅限於本說明書中闡述的實例或在申請的過程期間闡述的實例。所述實例應被視為非排他性的。此外,所揭露的方法的步驟可以任何方式進行調整,包括藉由對步驟進行重新排序及/或插入或刪除步驟。因此,旨在使本說明書及實例僅被認為是例示性的,真正的範圍及精神由以下申請專利範圍及其等效內容的全部範圍來指示。
100:示意性方塊圖/系統 101:網路/運送授權技術(SAT)系統 102A:裝置/使用者裝置/行動裝置 102B:裝置/使用者裝置/電腦 103:外部前端系統 105:內部前端系統 107:運輸系統 107A、107B、107C:裝置/行動裝置 109:賣方入口 111:運送及訂單追蹤(SOT)系統 113:履行最佳化(FO)系統 115:履行訊息傳遞閘道(FMG) 117:供應鏈管理(SCM)系統 119:倉庫管理系統(WMS) 119A:裝置/行動裝置/計算裝置/平板電腦 119B:裝置/行動裝置/計算裝置/PDA 119C:裝置/行動裝置/計算裝置/電腦 121A、121B、121C:第三方履行(3PL)系統 123:履行中心授權系統(FC Auth) 125:勞資管理系統(LMS) 200:履行中心(FC) 201、222:卡車 202A、202B、208:物品 203:入站區 205:緩衝區 206:堆高機 207:卸貨區 209:揀選區 210:儲存單元 211:包裝區 213:中樞區 214:運輸機構 215:營地區 216:牆 218、220:包裝 224A、224B:遞送工人 226:汽車 300:示意性方塊圖/系統 301:智慧型庫存置放系統 302:網路 303:伺服器 304:資料庫 305:處理器 500、600:方法 501、502、503、504、505、506、601、602、603、604、605、606、607:步驟
圖1A是示出符合所揭露實施例的網路的示例性實施例的示意性方塊圖,所述網路包括用於能夠進行通訊的運送(shipping)、運輸(transportation)及物流操作的電腦化系統。
圖1B繪示符合所揭露實施例的樣本搜尋結果頁面(Search Result Page,SRP),其包括滿足搜尋請求的一或多個搜尋結果以及交互式使用者介面元素。
圖1C繪示符合所揭露實施例的樣本單一顯示頁面(Single Display Page,SDP),其包括產品及關於產品的資訊以及交互式使用者介面元素。
圖1D繪示符合所揭露實施例的樣本購物車頁面(Cart page),其包括虛擬購物車中的物品以及交互式使用者介面元素。
圖1E繪示符合所揭露實施例的樣本訂單頁面(Order page),其包括來自虛擬購物車的物品以及關於購買及運送的資訊以及交互式使用者介面元素。
圖2是符合所揭露實施例的被配置以利用所揭露電腦化系統的示例性履行中心(fulfillment center,FC)的圖例。
圖3是示出包括用於管理產品庫存置放的智慧型庫存置放系統的系統的示例性實施例的示意性方塊圖。
圖4A是包括與履行中心相關聯的資訊的示例性資料庫的圖。
圖4B是包括與產品相關聯的資訊的示例性資料庫的圖。
圖5是示出用於管理產品庫存置放的方法的示例性實施例的流程圖。
圖6是示出用於管理產品庫存置放的方法的另一示例性實施例的流程圖。
200:履行中心(FC)
300:示意性方塊圖/系統
301:智慧型庫存置放系統
302:網路
303:伺服器
304:資料庫
305:處理器

Claims (20)

  1. 一種用於管理庫存置放的電腦實施的系統,所述系統包括: 記憶體,儲存指令;以及 至少一個處理器,被配置以執行所述指令以: 自遠端系統接收產品的辨識符以用於庫存置放; 基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區; 至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用機器學習演算法來預測與所述產品相關聯的產品標籤; 調整所述資料庫以向所述產品辨識符分派所述產品標籤;以及 分派所述產品來置放於履行中心中,其中所述履行中心與對應於所述產品標籤的履行中心標籤相關聯。
  2. 如請求項1所述的系統,其中所述履行中心標籤指示與所述履行中心的位置相關聯的溫度。
  3. 如請求項1所述的系統,其中所述產品標籤能夠基於與所述區相關聯的所述溫度以及運送日期來動態地調節。
  4. 如請求項2所述的系統,其中所述履行中心標籤能夠基於與所述履行中心的所述位置相關聯的所述溫度來動態地調節。
  5. 如請求項1所述的系統,其中所述至少一個處理器被進一步配置以執行所述指令以: 基於與所述履行中心的位置相關聯的溫度、與所述履行中心的服務區域相關聯的溫度或與所述履行中心相關聯的參數中的至少一者,調整所述資料庫以使用所述機器學習演算法向履行中心分派履行中心標籤。
  6. 如請求項5所述的系統,其中與所述履行中心相關聯的所述參數包括最大容量、建築限制、所述履行中心與所述服務區域之間的距離或服務區域的數目中的至少一者。
  7. 如請求項1所述的系統,其中所述至少一個處理器被進一步配置以執行所述指令以: 將與所述產品相關聯的資訊儲存於所述資料庫中,其中所述資訊包括分派至所述產品的所述產品標籤;以及 訓練所述機器學習演算法,以基於儲存於所述資料庫中的所述資訊自動地向新的產品分派產品標籤。
  8. 如請求項1所述的系統,其中所述履行中心標籤與所述產品標籤匹配。
  9. 如請求項1所述的系統,其中所述機器學習演算法包括分類模型。
  10. 如請求項1所述的系統,其中所述至少一個處理器被進一步配置以執行所述指令以: 週期性地評價所述產品標籤或所述履行中心標籤中的至少一者,其中評價所述產品標籤或所述履行中心標籤中的至少一者包括: 確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度; 確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度; 計算所述溫度與所述實際溫度之間的差值;以及 當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
  11. 一種用於管理庫存置放的電腦實施的方法,所述方法包括: 自遠端系統接收產品的辨識符以用於庫存置放; 基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區; 至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用機器學習演算法來預測與所述產品相關聯的產品標籤; 調整所述資料庫以向所述產品辨識符分派所述產品標籤;以及 分派所述產品來置放於履行中心中,其中所述履行中心與對應於所述產品標籤的履行中心標籤相關聯。
  12. 如請求項11所述的方法,其中所述履行中心標籤指示與所述履行中心的位置相關聯的溫度。
  13. 如請求項11所述的方法,其中所述產品標籤能夠基於與所述區相關聯的所述溫度以及運送日期來動態地調節。
  14. 如請求項12所述的方法,其中所述履行中心標籤能夠基於與所述履行中心的所述位置相關聯的所述溫度來動態地調節。
  15. 如請求項11所述的方法,更包括: 基於與所述履行中心的位置相關聯的溫度、與所述履行中心的服務區域相關聯的溫度或與所述履行中心相關聯的參數中的至少一者,調整所述資料庫以使用所述機器學習演算法向履行中心分派履行中心標籤。
  16. 如請求項15所述的方法,其中與所述履行中心相關聯的所述參數包括最大容量、建築限制、所述履行中心與所述服務區域之間的距離或服務區域的數目中的至少一者。
  17. 如請求項11所述的方法,更包括: 將與所述產品相關聯的資訊儲存於所述資料庫中,其中所述資訊包括分派至所述產品的所述產品標籤;以及 訓練所述機器學習演算法,以基於儲存於所述資料庫中的所述資訊自動地向新的產品分派產品標籤。
  18. 如請求項11所述的方法,其中所述機器學習演算法包括分類模型。
  19. 如請求項11所述的方法,更包括: 週期性地評價所述產品標籤或所述履行中心標籤中的至少一者,其中評價所述產品標籤或所述履行中心標籤中的至少一者包括: 確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度; 確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度; 計算所述溫度與所述實際溫度之間的差值;以及 當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
  20. 一種用於管理庫存置放的電腦實施的系統,所述系統包括: 記憶體,儲存指令;以及 至少一個處理器,被配置以執行所述指令以: 自遠端系統接收產品的辨識符以用於庫存置放; 基於儲存於資料庫中的歷史運送資料來確定對所述產品具有所述最高顧客需求的區; 至少基於與對所述產品具有所述最高顧客需求的所述區相關聯的溫度使用分類模型來預測與所述產品相關聯的產品標籤; 調整所述資料庫以向所述產品辨識符分派所述產品標籤; 將與所述產品相關聯的資訊儲存於所述資料庫中,所述資訊包括分派至所述產品的所述產品標籤以及所述產品辨識符; 基於儲存於所述資料庫中的所述資訊來訓練所述分類模型以自動地向新的產品分派產品標籤; 辨識與和所述產品標籤匹配的履行中心標籤相關聯的履行中心,其中: 所述履行中心標籤指示與所述履行中心的位置相關聯的溫度;並且 辨識所述履行中心包括確定與所述履行中心相關聯的最大容量或建築限制中的至少一者; 調整所述資料庫以分派所述產品來置放於所辨識的所述履行中心中;以及 週期性地評價所述產品標籤或所述履行中心標籤中的至少一者,其中評價所述產品標籤或所述履行中心標籤中的至少一者包括: 確定與所述產品標籤或所述履行中心標籤中的至少一者相關聯的所述溫度; 確定與對所述產品具有所述最高顧客需求的所述區或所述履行中心的所述位置中的至少一者相關聯的實際溫度; 計算所述溫度與所述實際溫度之間的差值;以及 當所述差值超過預先確定的臨限值時,用新的標籤替代所述產品標籤或所述履行中心標籤中的至少一者。
TW109112007A 2019-04-10 2020-04-09 用於管理庫存置放的電腦實施的系統以及方法 TWI731647B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/380,239 US10504061B1 (en) 2019-04-10 2019-04-10 Systems and methods for machine-learning assisted inventory placement
US16/380,239 2019-04-10

Publications (2)

Publication Number Publication Date
TW202044146A true TW202044146A (zh) 2020-12-01
TWI731647B TWI731647B (zh) 2021-06-21

Family

ID=68766231

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110117694A TWI764719B (zh) 2019-04-10 2020-04-09 用於管理庫存置放的電腦實施的系統以及方法
TW109112007A TWI731647B (zh) 2019-04-10 2020-04-09 用於管理庫存置放的電腦實施的系統以及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110117694A TWI764719B (zh) 2019-04-10 2020-04-09 用於管理庫存置放的電腦實施的系統以及方法

Country Status (9)

Country Link
US (2) US10504061B1 (zh)
JP (2) JP6957759B2 (zh)
KR (2) KR102451779B1 (zh)
CN (1) CN110766359B (zh)
AU (1) AU2020265680A1 (zh)
PH (1) PH12020551831A1 (zh)
SG (1) SG11202011560SA (zh)
TW (2) TWI764719B (zh)
WO (1) WO2020208469A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10504061B1 (en) * 2019-04-10 2019-12-10 Coupang, Corporation Systems and methods for machine-learning assisted inventory placement
US10796278B1 (en) * 2019-11-19 2020-10-06 Lineage Logistics, LLC Optimizing pallet location in a warehouse
US20210182770A1 (en) * 2019-12-13 2021-06-17 Coupang, Corp. Systems and methods for automated delivery worker scheduling
US10754916B1 (en) * 2020-01-02 2020-08-25 Coupang, Corp. Systems and methods for generating dynamic websites with hypermedia elements
US10796279B1 (en) * 2020-04-07 2020-10-06 Coupang Corp. Systems and methods for automated outbound profile generation
US11250380B2 (en) 2020-07-17 2022-02-15 Coupang Corp. Computer-implemented systems and methods for optimization of a product inventory by intelligent distribution of inbound products using product assignment validation
CN112633793B (zh) * 2020-12-15 2024-05-14 嘉兴蓝匠仓储系统软件有限公司 自动化立体库通过大数据分析优化货位入库分配的方法
KR102284677B1 (ko) * 2020-12-16 2021-08-03 쿠팡 주식회사 물류 정보 관리 방법 및 이를 수행하는 전자 장치
US11087278B1 (en) * 2021-01-29 2021-08-10 Coupang Corp. Computerized systems and methods for managing inventory by grading returned products
US11989685B2 (en) * 2021-04-07 2024-05-21 Ebay Inc. Intelligent computer functionality and visualization for inventory item placement
KR102340810B1 (ko) * 2021-04-26 2021-12-20 쿠팡 주식회사 발주와 관련된 정보를 제공하는 전자 장치의 동작 방법 및 이를 지원하는 전자 장치
US12033114B2 (en) * 2021-07-06 2024-07-09 Ebay Inc. System and method for providing warehousing service
WO2023008627A1 (ko) * 2021-07-30 2023-02-02 쿠팡 주식회사 아이템 재고 관리 방법 및 그 장치
US20230105019A1 (en) * 2021-10-04 2023-04-06 International Business Machines Corporation Using a predictive machine learning to determine storage spaces to store items in a storage infrastructure
US12094031B2 (en) * 2022-03-11 2024-09-17 International Business Machines Corporation Mixed reality based contextual evaluation of object dimensions
CN117670187B (zh) * 2023-11-10 2024-08-13 翼瀚齐创科技(杭州)有限公司 一种用于智能物流的仓储分品类关联管理系统

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811516B1 (en) * 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
EP1297477A2 (en) 2000-06-29 2003-04-02 United Parcel Service Of America, Inc. Systems and methods for end-to-end fulfillment and supply chain management
NO20020585L (no) * 2002-02-05 2003-08-06 Zopa As System og fremgangsmate for a overfore produkter fra et oppbevaringsomrade til et utleveringsomrade
WO2005008609A1 (en) * 2003-03-20 2005-01-27 Powers International, Inc. Systems, methods and computer program products for monitoring transport containers
WO2005006110A2 (en) 2003-04-09 2005-01-20 Savi Technology, Inc. Continuous security state tracking for intermodal containers transported through a global supply chain
JP4188924B2 (ja) * 2004-03-05 2008-12-03 株式会社エヌ・ティ・ティ・ドコモ 場の管理装置および場の管理方法
US7721959B2 (en) * 2004-07-19 2010-05-25 I2 Technologies Us, Inc. Optimizing inventory in accordance with a constrained network
US8315887B2 (en) * 2005-10-18 2012-11-20 Walgreen Co. System for separating and distributing pharmacy order processing for specialty medication
US20070221727A1 (en) 2006-03-21 2007-09-27 Siemens Corporate Research, Inc. System and Method For Determining Product Shelf Life
KR20080089540A (ko) * 2007-02-26 2008-10-07 (주)데일리시스템 식자재 유통 시스템 및 재고 관리 방법
US9189768B2 (en) * 2007-05-31 2015-11-17 Amazon Technologies, Inc. Method and apparatus for providing fulfillment services
US8425173B2 (en) * 2009-04-10 2013-04-23 Symbotic Llc Autonomous transports for storage and retrieval systems
US8620727B2 (en) 2010-08-18 2013-12-31 Terence V. Pageler Business performance segmentation model
WO2012047031A2 (ko) * 2010-10-06 2012-04-12 한국식품연구원 식품 품질 모니터링 방법 및 시스템
US8620707B1 (en) * 2011-06-29 2013-12-31 Amazon Technologies, Inc. Systems and methods for allocating inventory in a fulfillment network
US9710779B1 (en) * 2011-12-27 2017-07-18 Grubhub Holdings, Inc. System, method and apparatus for receiving bids from diners for expedited food delivery
CN104487965A (zh) * 2012-06-12 2015-04-01 安迪工作室 为移动通信终端提供相关信息的装置及共享相关信息的系统
US11030571B2 (en) 2013-12-20 2021-06-08 Ebay Inc. Managed inventory
US9652784B2 (en) * 2014-04-18 2017-05-16 Level 3 Communications, Llc Systems and methods for generating network intelligence through real-time analytics
KR101553329B1 (ko) * 2014-10-20 2015-09-16 서형원 판매 수익의 2배 적립에 의한 현금결제 연동방법 및 이의 연동 시스템
KR20160081636A (ko) * 2014-12-31 2016-07-08 (주) 케이솔버 리워드 모바일 광고 애플리케이션을 이용한 가상 공간 경제 활동 보상 시스템
US9489852B1 (en) * 2015-01-22 2016-11-08 Zipline International Inc. Unmanned aerial vehicle management system
US9488979B1 (en) * 2015-04-14 2016-11-08 Zipline International Inc. System and method for human operator intervention in autonomous vehicle operations
US10438163B2 (en) 2015-07-02 2019-10-08 Walmart Apollo, Llc System and method for affinity-based optimal assortment selection for inventory deployment
TWM512735U (zh) 2015-09-03 2015-11-21 Hsiau-Wen Lin 農產品產銷標籤建置系統
US10242338B2 (en) 2016-03-18 2019-03-26 Walmart Apollo, Llc Systems and methods for managing an inventory of products purchased by customers from a retailer
KR102113901B1 (ko) * 2016-04-08 2020-05-22 엔에이치엔페이코 주식회사 어플리케이션 리스트를 통해 타겟 정보를 제공하는 방법 및 시스템
KR20170118297A (ko) * 2016-04-14 2017-10-25 주식회사 나우드림 기상 정보에 기반한 상품 추천 방법
US10423923B2 (en) 2016-09-13 2019-09-24 International Business Machines Corporation Allocating a product inventory to an omnichannel distribution supply chain
JP6323787B1 (ja) * 2017-04-10 2018-05-16 株式会社オープンロジ 倉庫管理サーバ及び倉庫管理方法
US10504061B1 (en) * 2019-04-10 2019-12-10 Coupang, Corporation Systems and methods for machine-learning assisted inventory placement

Also Published As

Publication number Publication date
PH12020551831A1 (en) 2021-06-28
KR20200119687A (ko) 2020-10-20
WO2020208469A1 (en) 2020-10-15
JP2022003574A (ja) 2022-01-11
SG11202011560SA (en) 2020-12-30
JP2021515288A (ja) 2021-06-17
JP7203925B2 (ja) 2023-01-13
TWI764719B (zh) 2022-05-11
US10504061B1 (en) 2019-12-10
KR102451779B1 (ko) 2022-10-06
CN110766359B (zh) 2023-11-24
AU2020265680A1 (en) 2020-12-10
US20200327485A1 (en) 2020-10-15
TWI731647B (zh) 2021-06-21
JP6957759B2 (ja) 2021-11-02
KR102548938B1 (ko) 2023-06-29
TW202134970A (zh) 2021-09-16
US11282030B2 (en) 2022-03-22
KR20220139268A (ko) 2022-10-14
CN110766359A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
TWI731647B (zh) 用於管理庫存置放的電腦實施的系統以及方法
TW202111623A (zh) 用於接收入站貨物的電腦實施的系統以及方法
TWI759825B (zh) 用於出站預測之電腦實施系統以及電腦實施方法
TWI741570B (zh) 用於提供多個補貨通知的電腦實施的系統以及方法
TWI759823B (zh) 使用入站裝載模式於出站預測之電腦實施系統以及電腦實施方法
TW202123114A (zh) 用於智能化分配產品的電腦實施系統及電腦實施方法
TW202127331A (zh) 用於智能化分配產品的電腦實施系統以及方法
TW202110724A (zh) 用於裝載貨物的系統及方法
TWI743944B (zh) 用於出站預測的電腦實施的系統以及方法
TWI743936B (zh) 用於出站預測的電腦實施的系統以及方法
TWI731618B (zh) 電腦實施系統及電腦實施方法
TW202121279A (zh) 自動遞送工作者指配的電腦化系統、電腦化方法及系統
TWI729795B (zh) 為定製履行中心確定物件的系統以及方法
TWI857275B (zh) 用於出站預測之電腦實施方法及其電腦實施系統