TW202042291A - Semiconductor device structures - Google Patents

Semiconductor device structures Download PDF

Info

Publication number
TW202042291A
TW202042291A TW108115496A TW108115496A TW202042291A TW 202042291 A TW202042291 A TW 202042291A TW 108115496 A TW108115496 A TW 108115496A TW 108115496 A TW108115496 A TW 108115496A TW 202042291 A TW202042291 A TW 202042291A
Authority
TW
Taiwan
Prior art keywords
source
drain
conductive element
semiconductor device
device structure
Prior art date
Application number
TW108115496A
Other languages
Chinese (zh)
Other versions
TWI716865B (en
Inventor
李建興
黃紹璋
林志軒
王裕凱
卡魯納 尼迪
邱華琦
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108115496A priority Critical patent/TWI716865B/en
Publication of TW202042291A publication Critical patent/TW202042291A/en
Application granted granted Critical
Publication of TWI716865B publication Critical patent/TWI716865B/en

Links

Images

Abstract

The present disclosure provides a semiconductor device structure. The semiconductor device structure includes a semiconductor substrate and a gate disposed on it. The semiconductor device structure also includes a source doped region and a drain doped region on two opposite sides of the gate. The semiconductor device structure further includes a source protective circuit and a drain protective circuit. From a side perspective view, a first source conductive element of the source protective circuit partially overlaps a first drain conductive element of the drain protective circuit.

Description

半導體裝置結構Semiconductor device structure

本揭露係有關於半導體裝置結構,且特別係有關於一種具有靜電保護電路的半導體裝置結構。The present disclosure relates to the structure of a semiconductor device, and particularly relates to a structure of a semiconductor device with an electrostatic protection circuit.

傳統的積體電路中,半導體裝置易於受到高壓靜電放電損傷,主要是因為電晶體的閘極氧化層結構較靠近汲極端,且離源極/體擴散區較遠,導致當靜電放電(Electrical Static Discharge)電流自汲極端流入時,其能量傾向朝著閘極介電層分佈,而非流向源極、汲體摻雜區,致使閘極介電層被永久性地擊穿(Zapped)。In traditional integrated circuits, semiconductor devices are susceptible to high-voltage electrostatic discharge damage. The main reason is that the gate oxide layer structure of the transistor is closer to the drain terminal and far away from the source/body diffusion area. Discharge) When the current flows from the drain terminal, its energy tends to be distributed toward the gate dielectric layer instead of flowing to the source and drain doped regions, causing the gate dielectric layer to be permanently Zapped.

在傳統的半導體裝置中,往往利用其他額外的靜電保護元件避免電晶體元件被擊穿,然而,額外的ESD保護元件增加整體積體電路的佔據空間,且增加製程的複雜度,導致高的製造成本。有鑑於此,需要一種改良式的半導體裝置結構,使其具良好的靜電放電防護能力。In traditional semiconductor devices, other additional electrostatic protection components are often used to prevent the transistor components from being broken down. However, the additional ESD protection components increase the space occupied by the entire volume circuit and increase the complexity of the manufacturing process, resulting in high manufacturing cost. In view of this, there is a need for an improved semiconductor device structure that has good electrostatic discharge protection capabilities.

本揭露實施例提供一種半導體裝置結構。上述半導體裝置結構包含半導體基板及閘極,設置於半導體基板上;源極摻雜區,設置於半導體基板內;汲極摻雜區,設置於該半導體基板內,其中源極摻雜區與汲極摻雜區位於閘極相對兩側;源極保護電路,其包含:複數個源極接觸窗,設置於源極摻雜區上;以及複數個第一源極導電元件,設置於源極接觸窗上,每一個第一源極導電元件電性連接至少一個源極接觸窗;汲極保護電路,其包含:複數個汲極接觸窗,設置於汲極摻雜區上;以及複數個第一汲極導電元件,設置於汲極接觸窗上,每一個第一汲極導電元件電性連接至少一個汲極接觸窗,其中從側面透視圖觀看,第一汲極導電元件與第一源極導電元件部分重疊。The disclosed embodiment provides a semiconductor device structure. The above-mentioned semiconductor device structure includes a semiconductor substrate and a gate electrode, which are arranged on the semiconductor substrate; a source doped region is arranged in the semiconductor substrate; a drain doped region is arranged in the semiconductor substrate, wherein the source doped region and the drain The doped region is located on opposite sides of the gate; the source protection circuit includes: a plurality of source contact windows arranged on the source doped region; and a plurality of first source conductive elements arranged on the source contact On the window, each first source conductive element is electrically connected to at least one source contact window; a drain protection circuit, which includes: a plurality of drain contact windows arranged on the drain doped region; and a plurality of first The drain conductive element is disposed on the drain contact window, and each first drain conductive element is electrically connected to at least one drain contact window. When viewed from a side perspective view, the first drain conductive element is conductive with the first source The components partially overlap.

本揭露之一些實施例提供一種半導體裝置結構。上述半導體裝置結構包含半導體基板;一閘極,設置於半導體基板上,沿第一方向延伸;源極摻雜區,設置於半導體基板內,沿第一方向延伸;汲極摻雜區,設置於半導體基板內,沿第一方向延伸,其中源極摻雜區與汲極摻雜區位於閘極相對兩側;複數個源極接觸窗,設置於源極摻雜區上,沿第一方向排列;複數個汲極接觸窗,設置於汲極摻雜區上,沿第一方向排列;以及第一源極導電元件,設置於源極接觸窗上,並電性連接至少一個源極接觸窗,第一源極導電元件沿第一方向延伸。Some embodiments of the present disclosure provide a semiconductor device structure. The above-mentioned semiconductor device structure includes a semiconductor substrate; a gate electrode disposed on the semiconductor substrate and extending along a first direction; a source doped region disposed in the semiconductor substrate and extending along the first direction; a drain doped region disposed on The semiconductor substrate extends in a first direction, wherein the source doped region and the drain doped region are located on opposite sides of the gate; a plurality of source contact windows are arranged on the source doped region and are arranged along the first direction A plurality of drain contact windows are arranged on the drain doped region and arranged along the first direction; and the first source conductive element is arranged on the source contact window and is electrically connected to at least one source contact window, The first source conductive element extends along the first direction.

為讓本揭露實施例之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the features and advantages of the embodiments of the present disclosure more comprehensible, preferred embodiments are listed below in conjunction with the accompanying drawings, which are described in detail as follows.

以下揭露提供了許多的實施例或範例,用於實施所提供的半導體裝置之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many embodiments or examples for implementing different components of the provided semiconductor device. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not intended to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment in which the first and second elements are in direct contact, or may include additional elements formed between the first and second elements , So that they do not directly touch the embodiment. In addition, the embodiment of the present invention may repeat reference numbers and/or letters in different examples. Such repetition is for conciseness and clarity, and is not used to express the relationship between the different embodiments discussed.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標明相似的元件。可以理解的是,半導體裝置結構可以包含額外的元件,且一些敘述的元件可為了該結構的其他實施例被取代或刪除。Some changes of the embodiment are described below. In the different drawings and illustrated embodiments, similar component symbols are used to identify similar components. It is understood that the semiconductor device structure may include additional elements, and some of the described elements may be replaced or deleted for other embodiments of the structure.

本發明的實施例係揭露半導體裝置結構之實施例,且上述實施例可被包含於例如微處理器、記憶元件及/或其他元件之積體電路(integrated circuit, IC)中。上述積體電路也可包含不同的被動和主動微電子元件,例如薄膜電阻器(thin-film resistor)、其他類型電容器例如,金屬-絕緣體-金屬電容(metal-insulator-metal capacitor, MIMCAP)、電感、二極體、金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor field-effect transistors, MOSFETs)、互補式MOS電晶體、雙載子接面電晶體(bipolar junction transistors, BJTs)、橫向擴散型MOS電晶體、高功率MOS電晶體或其他類型的電晶體。在本發明所屬技術領域中具有通常知識者可以了解也可將半導體裝置使用於包含其他類型的半導體元件於積體電路之中。The embodiments of the present invention disclose embodiments of the semiconductor device structure, and the above-mentioned embodiments can be included in integrated circuits (ICs) such as microprocessors, memory devices, and/or other devices. The above-mentioned integrated circuit may also include different passive and active microelectronic components, such as thin-film resistors, other types of capacitors, such as metal-insulator-metal capacitors (MIMCAP), inductors , Diodes, Metal-Oxide-Semiconductor field-effect transistors (MOSFETs), complementary MOS transistors, bipolar junction transistors (BJTs), lateral diffusion Type MOS transistors, high-power MOS transistors or other types of transistors. Those with ordinary knowledge in the technical field of the present invention can understand that semiconductor devices can also be used to include other types of semiconductor components in integrated circuits.

參閱第1圖,第1圖為根據本揭露的一些實施例之半導體裝置結構100的剖面示意圖。如第1圖所示,半導體裝置結構100包含半導體基板110。半導體基板110可為塊材(bulk)半導體、絕緣上覆半導體(semiconductor-on-insulation, SOI)基底。半導體基板110可以是晶圓,例如為矽晶圓。一般而言,絕緣上覆半導體基底包含形成在絕緣層上的一層半導體材料。絕緣層可例如為埋置氧化(buried oxide, BOX)層、氧化矽層或類似的材料。提供絕緣層在基底上,一般基底為矽或玻璃基底。其他的基底則可使用例如為多重層或梯度(gradient)基底。在一些實施例,半導體基板110可為半導體材料,其可包含矽、鍺;半導體基板110亦可為化合物半導體,其包含碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦;半導體基板110亦可為合金半導體,其包含SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP及/或GaInAsP或上述組合。在一些實施例,半導體基板110具有第一導電形態,例如為P型。Referring to FIG. 1, FIG. 1 is a schematic cross-sectional view of a semiconductor device structure 100 according to some embodiments of the disclosure. As shown in FIG. 1, the semiconductor device structure 100 includes a semiconductor substrate 110. The semiconductor substrate 110 may be a bulk semiconductor or a semiconductor-on-insulation (SOI) substrate. The semiconductor substrate 110 may be a wafer, such as a silicon wafer. Generally speaking, an insulating overlying semiconductor substrate includes a layer of semiconductor material formed on an insulating layer. The insulating layer can be, for example, a buried oxide (BOX) layer, a silicon oxide layer or similar materials. Provide an insulating layer on the substrate, which is generally a silicon or glass substrate. Other substrates can be used, for example, multi-layer or gradient substrates. In some embodiments, the semiconductor substrate 110 may be a semiconductor material, which may include silicon and germanium; the semiconductor substrate 110 may also be a compound semiconductor, which includes silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and /Or indium antimonide; the semiconductor substrate 110 may also be an alloy semiconductor, which includes SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP or a combination of the above. In some embodiments, the semiconductor substrate 110 has a first conductive form, for example, a P-type.

另外,半導體裝置結構100可包含磊晶層(未繪示),其可形成於半導體基板110上。上述磊晶層可包含矽、鍺、矽與鍺、III-V族化合物或上述之組合。上述磊晶層可藉由磊晶成長(epitaxial growth)製程形成,例如金屬有機物化學氣相沉積法(metal-organic chemical vapor deposition, MOCVD)、金屬有機物化學氣相磊晶法(metal-organic vapor phase epitaxy, MOVPE)、電漿增強型化學氣相沉積法(plasma-enhanced chemical vapor deposition, PECVD)、遙控電漿化學氣相沉積法(remote plasma chemical vapor deposition, RPCVD)、分子束磊晶法(molecular beam epitaxy, MBE)、氫化物氣相磊晶法(hydride vapor phase Epitaxy, HVPE)、液相磊晶法(liquid phase epitaxy, LPE)、氯化物氣相磊晶法(chloride vapor phase epitaxy, Cl-VPE)或類似的方法形成。在一些實施例,上述磊晶層可具有第一導電型態,例如為P型。In addition, the semiconductor device structure 100 may include an epitaxial layer (not shown), which may be formed on the semiconductor substrate 110. The above-mentioned epitaxial layer may include silicon, germanium, silicon and germanium, III-V compounds, or a combination of the above. The above-mentioned epitaxial layer can be formed by an epitaxial growth process, such as metal-organic chemical vapor deposition (MOCVD), metal-organic chemical vapor deposition (MOCVD), and metal-organic chemical vapor deposition (MOCVD). epitaxy (MOVPE), plasma-enhanced chemical vapor deposition (PECVD), remote plasma chemical vapor deposition (RPCVD), molecular beam epitaxy (molecular) beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), liquid phase epitaxy (LPE), chloride vapor phase epitaxy (Cl- VPE) or similar methods. In some embodiments, the above-mentioned epitaxial layer may have a first conductivity type, for example, a P-type.

如第1圖所示,半導體裝置結構100包含井區120,其形成在半導體基板110內。或者,井區120可形成在上述磊晶層內。在一些實施例,井區120具有第一導電型態,例如為P型。井區120的摻雜濃度可介於約1012 atoms/cm3 至約1017 atoms/cm3 的範圍間。As shown in FIG. 1, the semiconductor device structure 100 includes a well region 120 formed in the semiconductor substrate 110. Alternatively, the well region 120 may be formed in the above-mentioned epitaxial layer. In some embodiments, the well region 120 has a first conductivity type, for example, a P type. The doping concentration of the well region 120 may be in the range of about 10 12 atoms/cm 3 to about 10 17 atoms/cm 3 .

如第1圖所示,半導體裝置結構100包含複數個隔離區130。在一些實施例,隔離區130可為淺溝槽隔離區。可藉由微影製程及蝕刻製程圖案化半導體基板110,以形成多個開口,之後再藉由沉積製程將介電材料填入開口內,以形成隔離區130。在其他實施例,隔離區130可為藉由矽氧化所形成之場氧化(field oxide)區。上述微影製程包含光阻塗佈(例如,自旋塗佈)、軟烤、遮罩對準、曝光、曝光後烤、光阻顯影、清洗、乾燥(例如,硬烤)、其他適合製程或其組合來形成。微影製程也可藉由無遮罩微影、電子束寫入、離子束寫入或分子壓印(molecular imprint)替代。上述蝕刻製程包含乾蝕刻、濕蝕刻或其他蝕刻方法(例如,反應式離子蝕刻)。蝕刻製程也可以是純化學蝕刻(電漿蝕刻)、純物理蝕刻(離子研磨)或其組合。上述沉積製程包含化學氣相沉積、化學氣相沉積、原子層沉積或其他沉積方法。As shown in FIG. 1, the semiconductor device structure 100 includes a plurality of isolation regions 130. In some embodiments, the isolation region 130 may be a shallow trench isolation region. The semiconductor substrate 110 can be patterned by a photolithography process and an etching process to form a plurality of openings, and then a dielectric material can be filled into the openings by a deposition process to form the isolation region 130. In other embodiments, the isolation region 130 may be a field oxide region formed by silicon oxidation. The above lithography process includes photoresist coating (for example, spin coating), soft baking, mask alignment, exposure, post-exposure baking, photoresist development, cleaning, drying (for example, hard baking), other suitable processes or The combination to form. The lithography process can also be replaced by maskless lithography, electron beam writing, ion beam writing or molecular imprint. The above-mentioned etching process includes dry etching, wet etching or other etching methods (for example, reactive ion etching). The etching process can also be pure chemical etching (plasma etching), pure physical etching (ion milling) or a combination thereof. The above-mentioned deposition process includes chemical vapor deposition, chemical vapor deposition, atomic layer deposition or other deposition methods.

如第1圖所示,半導體裝置結構100包含源極摻雜區140、汲極摻雜區150及閘極160。源極摻雜區140及汲極摻雜區150位於閘極160的相對兩側。在一些實施例,源極摻雜區140和汲極摻雜區150具有與第一摻雜型態不同的第二摻雜型態,例如為N型。源極摻雜區140和汲極摻雜區150的摻雜濃度可介於約1019 atoms/cm3 至約1021 atoms/cm3 的範圍間。源極摻雜區140及汲極摻雜區150可用如離子植入或擴散之方法來形成,並藉由快速熱退火(rapid thermal annealing, RTA)製程來活化被植入的摻雜質。As shown in FIG. 1, the semiconductor device structure 100 includes a source doped region 140, a drain doped region 150 and a gate 160. The source doped region 140 and the drain doped region 150 are located on opposite sides of the gate 160. In some embodiments, the source doped region 140 and the drain doped region 150 have a second doping type different from the first doping type, such as N-type. The doping concentration of the source doped region 140 and the drain doped region 150 may be in the range of about 10 19 atoms/cm 3 to about 10 21 atoms/cm 3 . The source doped region 140 and the drain doped region 150 can be formed by a method such as ion implantation or diffusion, and the implanted dopants are activated by a rapid thermal annealing (RTA) process.

如第1圖所示,閘極160包含閘極介電層162及閘極電極164。閘極介電層162可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)介電材料、或其它任何適合之介電材料、或上述之組合。此高介電常數介電材料之材料可為金屬氧化物、金屬氮化物、金屬矽化物、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽化物、金屬的氮氧化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽。例如,此高介電常數(high-k)介電材料可為LaO、AlO、ZrO、TiO、Ta2 O5 、Y2 O3 、SrTiO3 (STO)、BaTiO3 (BTO)、BaZrO、HfO2 、HfO3 、HfZrO、HfLaO、HfSiO、HfSiON、LaSiO、AlSiO、HfTaO、HfTiO、HfTaTiO、HfAlON、(Ba,Sr)TiO3 (BST)、Al2 O3 、其它適當材料之其它高介電常數介電材料、或上述組合。閘極介電層162可藉由化學氣相沉積法(CVD)或旋轉塗佈法形成,此化學氣相沉積法例如可為低壓化學氣相沉積法(low pressure chemical vapor deposition,LPCVD)、低溫化學氣相沉積法(low temperature chemical vapor deposition,LTCVD)、快速升溫化學氣相沉積法(rapid thermal chemical vapor deposition,RTCVD)、電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition,PECVD)、原子層化學氣相沉積法之原子層沉積法(atomic layer deposition,ALD)或其它常用的方法。As shown in FIG. 1, the gate 160 includes a gate dielectric layer 162 and a gate electrode 164. The gate dielectric layer 162 can be silicon oxide, silicon nitride, silicon oxynitride, high-k dielectric material, or any other suitable dielectric material, or a combination of the foregoing. The material of this high-k dielectric material can be metal oxide, metal nitride, metal silicide, transition metal oxide, transition metal nitride, transition metal silicide, metal oxynitride, metal aluminate, Zirconium silicate, zirconium aluminate. For example, the high-k dielectric material can be LaO, AlO, ZrO, TiO, Ta 2 O 5 , Y 2 O 3 , SrTiO 3 (STO), BaTiO 3 (BTO), BaZrO, HfO 2. HfO 3 , HfZrO, HfLaO, HfSiO, HfSiON, LaSiO, AlSiO, HfTaO, HfTiO, HfTaTiO, HfAlON, (Ba,Sr)TiO 3 (BST), Al 2 O 3 , other high dielectric constants of other suitable materials Dielectric material, or a combination of the above. The gate dielectric layer 162 may be formed by chemical vapor deposition (CVD) or spin coating. The chemical vapor deposition method may be, for example, low pressure chemical vapor deposition (LPCVD), low temperature Chemical vapor deposition (low temperature chemical vapor deposition, LTCVD), rapid thermal chemical vapor deposition (RTCVD), plasma-assisted chemical vapor deposition (PECVD), Atomic layer deposition (ALD) or other commonly used methods.

在一些實施例,閘極電極164可為多晶矽。在一些實施例,閘極電極164可為一或多種金屬、金屬氮化物、導電金屬氧化物、或上述之組合。上述金屬可包括但不限於鉬(molybdenum)、鎢(tungsten)、鈦(titanium)、鉭(tantalum)、鉑(platinum)或鉿(hafnium)。上述金屬氮化物可包括但不限於氮化鉬(molybdenum nitride)、氮化鎢(tungsten nitride)、氮化鈦(titanium nitride)以及氮化鉭(tantalum nitride)。上述導電金屬氧化物可包括但不限於釕金屬氧化物(ruthenium oxide)以及銦錫金屬氧化物(indium tin oxide)。此閘極電極164可藉由化學氣相沉積法、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法、或其它任何適合的沈積方式形成。In some embodiments, the gate electrode 164 may be polysilicon. In some embodiments, the gate electrode 164 may be one or more metals, metal nitrides, conductive metal oxides, or a combination of the foregoing. The aforementioned metals may include, but are not limited to, molybdenum, tungsten, titanium, tantalum, platinum, or hafnium. The aforementioned metal nitrides may include, but are not limited to, molybdenum nitride, tungsten nitride, titanium nitride, and tantalum nitride. The aforementioned conductive metal oxide may include, but is not limited to, ruthenium oxide and indium tin oxide. The gate electrode 164 can be formed by chemical vapor deposition, sputtering, resistance heating evaporation, electron beam evaporation, or any other suitable deposition method.

在一些實施例,半導體裝置結構100包含主體區170。主體區170具有第一摻雜型態,且摻雜濃度介於約1019 atoms/cm3 至約1021 atoms/cm3 的範圍間。如第1圖所示,源極摻雜區140與主體區170可藉由隔離區130隔開。此外,汲極摻雜區150、源極摻雜區140、閘極160及主體區170可個別連接至一外加電壓D、S、G、B,但本揭露不以此為限。In some embodiments, the semiconductor device structure 100 includes a body region 170. The body region 170 has the first doping type, and the doping concentration is in the range of about 10 19 atoms/cm 3 to about 10 21 atoms/cm 3 . As shown in FIG. 1, the source doped region 140 and the body region 170 can be separated by an isolation region 130. In addition, the drain doped region 150, the source doped region 140, the gate 160 and the body region 170 can be connected to an applied voltage D, S, G, B, but the disclosure is not limited thereto.

參閱第2A圖,第2A圖為根據本揭露的一些實施例之半導體裝置結構200A的佈局之上視圖。值得注意的是,第2A圖為了清楚繪示源極區和汲極區的導電元件、摻雜區、導通孔的佈局,而省略一些元件。Referring to FIG. 2A, FIG. 2A is a top view of the layout of the semiconductor device structure 200A according to some embodiments of the disclosure. It is worth noting that in Figure 2A, in order to clearly illustrate the layout of the conductive elements, doped regions, and vias in the source and drain regions, some elements are omitted.

如第2A圖所示,半導體裝置結構200A包含閘極210、源極摻雜區220及汲極摻雜區230。閘極210、源極摻雜區220及汲極摻雜區230可個別對應至第1圖的閘極160、源極摻雜區140及汲極摻雜區150,在此不再重複敘述。閘極210、源極摻雜區220及汲極摻雜區230沿第一方向(例如Y軸方向)延伸。更詳細而言,閘極210、源極摻雜區220及汲極摻雜區230的長邊方向大抵上與第一方向平行。另外,雖然第2A圖未繪示,半導體裝置結構200A可包含多個閘極210、源極摻雜區220及汲極摻雜區230,上述多個閘極210、源極摻雜區220及汲極摻雜區230可沿第二方向(例如X軸方向)排列。半導體裝置結構200A亦可包含主體區(未繪示)。主體區可圍住上述多個閘極210、源極摻雜區220及汲極摻雜區230。As shown in FIG. 2A, the semiconductor device structure 200A includes a gate 210, a source doped region 220, and a drain doped region 230. The gate 210, the source doped region 220, and the drain doped region 230 can respectively correspond to the gate 160, the source doped region 140, and the drain doped region 150 of FIG. 1, and the description will not be repeated here. The gate 210, the source doped region 220, and the drain doped region 230 extend along a first direction (for example, the Y-axis direction). In more detail, the long side directions of the gate 210, the source doped region 220, and the drain doped region 230 are substantially parallel to the first direction. In addition, although not shown in FIG. 2A, the semiconductor device structure 200A may include a plurality of gates 210, a source doped region 220, and a drain doped region 230. The above-mentioned plurality of gates 210, source doped regions 220 and The drain doped regions 230 may be arranged along the second direction (for example, the X-axis direction). The semiconductor device structure 200A may also include a body region (not shown). The body region may surround the plurality of gates 210, source doped regions 220 and drain doped regions 230.

接下來,如第2A圖所示,半導體裝置結構200A包含源極保護電路250a及汲極保護電路260a。可先參閱第2B圖,第2B圖為第2A圖所示的半導體裝置結構200A沿C-C線段的剖面示意圖。半導體裝置結構200A包含半導體基板240。半導體基板240可與半導體基板110相同或相似,在此不再重複敘述。如第2B圖所示,半導體裝置結構200A包含層間介電層242、244、246及248,其位於半導體基板240上。在一些實施例,層間介電層242、244、246及248是藉由流動式化學氣相沉積形成的可流動的薄膜。在一些實施例,層間介電層242、244、246及248由介電材料形成,例如磷酸矽酸鹽玻璃(Phospho-Silicate Glass, PSG)、硼矽酸鹽玻璃(Boro-Silicate Glass, BSG)、硼摻雜磷酸矽酸鹽玻璃(Boron-Doped Phospho-Silicate Glass, BPSG)、未摻雜的矽酸鹽玻璃(undoped Silicate Glass, USG)或類似材料,且可藉由任意適合的方法沉積,例如化學氣相沉積、旋轉塗佈、電漿增強化學氣相沉積或上述組合。Next, as shown in FIG. 2A, the semiconductor device structure 200A includes a source protection circuit 250a and a drain protection circuit 260a. Please refer to FIG. 2B first. FIG. 2B is a schematic cross-sectional view of the semiconductor device structure 200A shown in FIG. 2A along the line C-C. The semiconductor device structure 200A includes a semiconductor substrate 240. The semiconductor substrate 240 may be the same or similar to the semiconductor substrate 110, and the description will not be repeated here. As shown in FIG. 2B, the semiconductor device structure 200A includes interlayer dielectric layers 242, 244, 246, and 248, which are located on the semiconductor substrate 240. In some embodiments, the interlayer dielectric layers 242, 244, 246, and 248 are flowable films formed by flow chemical vapor deposition. In some embodiments, the interlayer dielectric layers 242, 244, 246, and 248 are formed of dielectric materials, such as phosphate silicate glass (Phospho-Silicate Glass, PSG), borosilicate glass (Boro-Silicate Glass, BSG) , Boron-Doped Phospho-Silicate Glass (BPSG), undoped Silicate Glass (USG) or similar materials, and can be deposited by any suitable method, For example, chemical vapor deposition, spin coating, plasma enhanced chemical vapor deposition or a combination of the above.

如第2A、2B圖所示,在一些實施例,源極保護電路250a包含複數個源極接觸窗222、源極導通孔224、第一源極導電元件226。另外,半導體裝置結構200可包含一矽化物層(未繪示),其設置於源極摻雜區220與源極接觸窗222之間。在一些實施例,可沉積金屬材料於半導體基板240上方後,執行退火製程。接下來,金屬材料與半導體基板240表面反應,以形成矽化物層於半導體基板240的表面上。形成矽化物層後,移除金屬材料剩下未與半導體基板240表面反應的部分。金屬材料剩下未反應的部分可藉由蝕刻製程移除,例如濕蝕刻製程、乾蝕刻製程、一或多個其他適合的製程,或上述組合。As shown in FIGS. 2A and 2B, in some embodiments, the source protection circuit 250a includes a plurality of source contact windows 222, source vias 224, and first source conductive elements 226. In addition, the semiconductor device structure 200 may include a silicide layer (not shown) disposed between the source doped region 220 and the source contact 222. In some embodiments, a metal material may be deposited on the semiconductor substrate 240 and then an annealing process may be performed. Next, the metal material reacts with the surface of the semiconductor substrate 240 to form a silicide layer on the surface of the semiconductor substrate 240. After the silicide layer is formed, the metal material is removed to leave the unreacted portion of the semiconductor substrate 240 surface. The remaining unreacted part of the metal material can be removed by an etching process, such as a wet etching process, a dry etching process, one or more other suitable processes, or a combination thereof.

在一些實施例,源極接觸窗222設置在半導體基板240上。源極接觸窗222電性連接至源極摻雜區220。源極接觸窗222可包含阻障層和導電層。阻障層可包含鈦、氮化鈦、鉭、氮化鉭或類似材料。導電層的材料可為銅、銅合金、銀、金、鎢、鋁、鎳、鈷或類似材料。In some embodiments, the source contact 222 is provided on the semiconductor substrate 240. The source contact 222 is electrically connected to the source doped region 220. The source contact 222 may include a barrier layer and a conductive layer. The barrier layer may include titanium, titanium nitride, tantalum, tantalum nitride, or similar materials. The material of the conductive layer may be copper, copper alloy, silver, gold, tungsten, aluminum, nickel, cobalt or similar materials.

如第2B圖所示,第一源極導電元件226設置在源極接觸窗222上方,並且物理接觸源極接觸窗222。第一源極導電元件226電性連接至源極摻雜區220。第一源極導電元件226可包含銅、鈦、鈷、鎢、鎳或其他適合的金屬材料。此外,第一源極導電元件226亦可包含阻障層。可藉由使用PVD製程(例如為濺鍍製程)、CVD製程、旋轉塗佈製程,其他適合的製程或上述組合形成第一源極導電元件226。如第2A及2B圖所示,在一些實施例,第一源極導電元件226沿第一方向(例如Y軸方向)延伸。更詳細而言,第一源極導電元件226的長邊方向大抵上與第一方向平行。在一些實施例,第一源極導電元件226可物理接觸至少兩個源極接觸窗222。As shown in FIG. 2B, the first source conductive element 226 is disposed above the source contact 222 and physically contacts the source contact 222. The first source conductive element 226 is electrically connected to the source doped region 220. The first source conductive element 226 may include copper, titanium, cobalt, tungsten, nickel or other suitable metal materials. In addition, the first source conductive element 226 may also include a barrier layer. The first source conductive element 226 can be formed by using a PVD process (for example, a sputtering process), a CVD process, a spin coating process, other suitable processes, or a combination of the foregoing. As shown in FIGS. 2A and 2B, in some embodiments, the first source conductive element 226 extends along a first direction (for example, the Y-axis direction). In more detail, the longitudinal direction of the first source conductive element 226 is substantially parallel to the first direction. In some embodiments, the first source conductive element 226 may physically contact at least two source contact windows 222.

如第2B圖所示,源極導通孔224設置在第一源極導電元件226上,並且物理接觸源極摻雜區220。源極導通孔224的材料可與源極接觸窗222相同或相似,在此不再重複敘述。如第2A圖所示,從上視圖觀看,源極導通孔224與源極接觸窗222並未重疊。更具體而言,源極導通孔224投影至半導體基板240的區域與源極接觸窗222投影至半導體基板240的區域並未重疊。在此實施例,每一個第一源極導電元件226物理接觸兩個源極接觸窗222及一個源極導通孔224。As shown in FIG. 2B, the source via 224 is provided on the first source conductive element 226 and physically contacts the source doped region 220. The material of the source via 224 can be the same as or similar to the source contact 222, and the description will not be repeated here. As shown in FIG. 2A, from the top view, the source via 224 and the source contact 222 do not overlap. More specifically, the area where the source via 224 is projected to the semiconductor substrate 240 and the area where the source contact window 222 is projected to the semiconductor substrate 240 do not overlap. In this embodiment, each first source conductive element 226 physically contacts two source contact windows 222 and one source via 224.

如第2A、2B圖所示,源極保護電路250a更包含第二源極導電元件228。第二源極導電元件228設置在源極導通孔224上方。第二源極導電元件228的材料可與第一源極導電元件226相同或相似,在此不再重複敘述。在一些實施例,第二源極導電元件228沿第一方向延伸。更詳細而言,第二源極導電元件228的長邊方大抵上與第一方向平行。在一些實施例,第二源極導電元件228可覆蓋多個第一源極導電元件226。As shown in FIGS. 2A and 2B, the source protection circuit 250a further includes a second source conductive element 228. The second source conductive element 228 is disposed above the source via 224. The material of the second source conductive element 228 can be the same as or similar to the first source conductive element 226, and the description will not be repeated here. In some embodiments, the second source conductive element 228 extends along the first direction. In more detail, the long side of the second source conductive element 228 is substantially parallel to the first direction. In some embodiments, the second source conductive element 228 may cover the plurality of first source conductive elements 226.

參閱第2C圖,第2C圖為第2A圖所示的半導體裝置結構200A沿D-D線段的剖面示意圖。如第2A、2C圖所示,在一些實施例,半導體裝置結構200包含複數個汲極接觸窗232、汲極導通孔234、第一汲極導電元件236。另外,半導體裝置結構200可包含一矽化物層(未繪示),其設置於汲極摻雜區230與汲極接觸窗232之間。Referring to FIG. 2C, FIG. 2C is a schematic cross-sectional view of the semiconductor device structure 200A shown in FIG. 2A along the line D-D. As shown in FIGS. 2A and 2C, in some embodiments, the semiconductor device structure 200 includes a plurality of drain contact windows 232, a drain via 234, and a first drain conductive element 236. In addition, the semiconductor device structure 200 may include a silicide layer (not shown) disposed between the drain doped region 230 and the drain contact 232.

在一些實施例,汲極接觸窗232設置在半導體基板240上。汲極接觸窗232電性連接至汲極摻雜區230。汲極接觸窗232可包含阻障層和導電層。阻障層可包含鈦、氮化鈦、鉭、氮化鉭或類似材料。導電層的材料可為銅、銅合金、銀、金、鎢、鋁、鎳、鈷或類似材料。In some embodiments, the drain contact 232 is provided on the semiconductor substrate 240. The drain contact 232 is electrically connected to the drain doped region 230. The drain contact 232 may include a barrier layer and a conductive layer. The barrier layer may include titanium, titanium nitride, tantalum, tantalum nitride, or similar materials. The material of the conductive layer may be copper, copper alloy, silver, gold, tungsten, aluminum, nickel, cobalt or similar materials.

如第2C圖所示,第一汲極導電元件236設置在汲極接觸窗232上方,並且物理接觸汲極接觸窗232。第一汲極導電元件236電性連接至汲極摻雜區230。第一汲極導電元件236可包含銅、鈦、鈷、鎢、鎳或其他適合的金屬材料。此外,第一汲極導電元件236亦可包含阻障層。第一汲極導電元件236可藉由使用PVD製程(例如為濺鍍製程)、CVD製程、旋轉塗佈製程,其他適合的製程或上述組合形成。如第2A及2C圖所示,在一些實施例,第一汲極導電元件236沿第一方向延伸。更詳細而言,第一汲極導電元件236的長邊方向大抵上與第一方向平行。在一些實施例,第一汲極導電元件236可物理接觸至少兩個汲極接觸窗232。As shown in FIG. 2C, the first drain conductive element 236 is disposed above the drain contact window 232 and physically contacts the drain contact window 232. The first drain conductive element 236 is electrically connected to the drain doped region 230. The first drain conductive element 236 may include copper, titanium, cobalt, tungsten, nickel, or other suitable metal materials. In addition, the first drain conductive element 236 may also include a barrier layer. The first drain conductive element 236 can be formed by using a PVD process (for example, a sputtering process), a CVD process, a spin coating process, other suitable processes, or a combination of the foregoing. As shown in FIGS. 2A and 2C, in some embodiments, the first drain conductive element 236 extends along the first direction. In more detail, the longitudinal direction of the first drain conductive element 236 is substantially parallel to the first direction. In some embodiments, the first drain conductive element 236 may physically contact at least two drain contact windows 232.

如第2C圖所示,汲極導通孔234設置在第一汲極導電元件236上,並且物理接觸汲極摻雜區230。汲極導通孔234的材料可與汲極接觸窗232相同或相似,在此不再重複敘述。如第2A圖所示,從上視圖觀看,汲極導通孔234與汲極接觸窗232並未重疊。更具體而言,汲極導通孔234投影至半導體基板240的區域與汲極接觸窗232投影至半導體基板240的區域並未重疊。在此實施例,每一個第一汲極導電元件236物理接觸兩個汲極接觸窗232及一個汲極導通孔234。As shown in FIG. 2C, the drain via 234 is disposed on the first drain conductive element 236 and physically contacts the drain doped region 230. The material of the drain via 234 can be the same as or similar to the drain contact 232, and the description will not be repeated here. As shown in FIG. 2A, from the top view, the drain via 234 and the drain contact 232 do not overlap. More specifically, the area where the drain via 234 is projected to the semiconductor substrate 240 and the area where the drain contact 232 is projected to the semiconductor substrate 240 do not overlap. In this embodiment, each first drain conductive element 236 physically contacts two drain contact windows 232 and one drain via 234.

如第2A、2C圖所示,第二汲極導電元件238設置在汲極導通孔234上方。第二汲極導電元件238的材料可與第一汲極導電元件236相同或相似,在此不再重複敘述。在一些實施例,第二汲極導電元件238沿第一方向延伸。更詳細而言,第二汲極導電元件238的長邊方向大抵上與第一方向平行。在一些實施例,第二汲極導電元件238可覆蓋多個第一汲極導電元件236。As shown in FIGS. 2A and 2C, the second drain conductive element 238 is disposed above the drain via 234. The material of the second drain conductive element 238 can be the same as or similar to the first drain conductive element 236, and the description will not be repeated here. In some embodiments, the second drain conductive element 238 extends along the first direction. In more detail, the longitudinal direction of the second drain conductive element 238 is substantially parallel to the first direction. In some embodiments, the second drain conductive element 238 may cover a plurality of first drain conductive elements 236.

在一些實施例,如第2A圖所示,源極保護電路250a的第一源極導電元件226並未延伸至汲極摻雜區230的正上方。亦即,第一源極導電元件226投影至半導體基板240的表面上的區域與汲極摻雜區230不重疊。汲極保護電路260a的第一汲極導電元件236並未延伸至源極摻雜區220的正上方。亦即,第一汲極導電元件236投影至半導體基板240的表面上的區域與源極摻雜區220不重疊。藉由這樣的佈局,可降低製程難易度,藉此提升製造半導體裝置結構200A的良率。In some embodiments, as shown in FIG. 2A, the first source conductive element 226 of the source protection circuit 250a does not extend to directly above the drain doped region 230. That is, the area where the first source conductive element 226 is projected onto the surface of the semiconductor substrate 240 and the drain doped region 230 do not overlap. The first drain conductive element 236 of the drain protection circuit 260 a does not extend to directly above the source doped region 220. That is, the area where the first drain conductive element 236 is projected onto the surface of the semiconductor substrate 240 does not overlap with the source doped region 220. With such a layout, the difficulty of the manufacturing process can be reduced, thereby improving the yield of manufacturing the semiconductor device structure 200A.

如第2A圖所示,在一些實施例,源極保護電路250a的源極接觸窗222與汲極保護電路260a的汲極接觸窗232並未對齊。更詳細而言, 源極接觸窗222的排列與汲極接觸窗232的排列錯開。若有一沿第二方向的假想線,則此假象線不會同時通過源極接觸窗222及汲極接觸窗232。As shown in FIG. 2A, in some embodiments, the source contact 222 of the source protection circuit 250a is not aligned with the drain contact 232 of the drain protection circuit 260a. In more detail, the arrangement of the source contact windows 222 and the arrangement of the drain contact windows 232 are staggered. If there is an imaginary line along the second direction, the imaginary line will not pass through the source contact 222 and the drain contact 232 at the same time.

在一些實施例,源極保護電路250a的源極導通孔224與汲極保護電路260a的汲極導通孔234並未對齊。更詳細而言,源極導通孔224的排列與汲極導通孔234的排列錯開。若有一沿第二方向的假想線,則此假象線不會同時通過源極導通孔224及汲極導通孔234。In some embodiments, the source via 224 of the source protection circuit 250a is not aligned with the drain via 234 of the drain protection circuit 260a. In more detail, the arrangement of the source via 224 and the arrangement of the drain via 234 are staggered. If there is an imaginary line along the second direction, the imaginary line will not pass through the source via 224 and the drain via 234 at the same time.

在一些實施例,源極保護電路250a的第一源極導電元件226與汲極保護電路260a的第一汲極導電元件236並未對齊。例如,第一源極導電元件226的短邊與相鄰的第一汲極導電元件236的短邊在沿著第一方向上,具有一距離。亦即,第一源極導電元件226的短邊與相鄰的第一汲極導電元件236的短邊並未對齊。在一些實施例,源極保護電路250a的第二源極導電元件228可與汲極保護電路260a的第二汲極導電元件238對齊。例如,第二源極導電元件228的短邊與相鄰的第二汲極導電元件238的短邊對齊。另外,第一源極導電元件226與第一汲極導電元件236隔開,且電性不連接。第二源極導電元件228與第二汲極導電元件238隔開,且電性不連接。In some embodiments, the first source conductive element 226 of the source protection circuit 250a and the first drain conductive element 236 of the drain protection circuit 260a are not aligned. For example, the short side of the first source conductive element 226 and the short side of the adjacent first drain conductive element 236 have a distance along the first direction. That is, the short sides of the first source conductive element 226 and the short sides of the adjacent first drain conductive element 236 are not aligned. In some embodiments, the second source conductive element 228 of the source protection circuit 250a may be aligned with the second drain conductive element 238 of the drain protection circuit 260a. For example, the short side of the second source conductive element 228 is aligned with the short side of the adjacent second drain conductive element 238. In addition, the first source conductive element 226 is separated from the first drain conductive element 236 and is not electrically connected. The second source conductive element 228 is separated from the second drain conductive element 238 and is not electrically connected.

參閱第2D圖,第2D圖為第2A圖所示的半導體裝置結構200A沿A-A線段的剖面示意圖。如第2D圖所示,源極摻雜區220與汲極摻雜區230位於閘極210的相對兩側。閘極210包含閘極介電層212及閘極電極214。閘極介電層212及閘極電極214可個別與閘極介電層162及閘極電極164相同或相似,在此不再重複敘述。在一些實施例,在對應有源極接觸窗222的剖面上,汲極摻雜區230上方並未設置汲極接觸窗232。在一些實施例,在對應有汲極導通孔234的剖面上,第一源極導電元件226上方並未設置源極導通孔224。在一些實施例,源極接觸窗222與汲極導通孔234可位於同一剖面。Referring to FIG. 2D, FIG. 2D is a schematic cross-sectional view of the semiconductor device structure 200A shown in FIG. 2A along the line A-A. As shown in FIG. 2D, the source doped region 220 and the drain doped region 230 are located on opposite sides of the gate 210. The gate 210 includes a gate dielectric layer 212 and a gate electrode 214. The gate dielectric layer 212 and the gate electrode 214 may be the same as or similar to the gate dielectric layer 162 and the gate electrode 164, respectively, and the description will not be repeated here. In some embodiments, in the cross section corresponding to the source contact 222, the drain contact 232 is not provided above the drain doped region 230. In some embodiments, in the cross section corresponding to the drain via 234, the source via 224 is not provided above the first source conductive element 226. In some embodiments, the source contact 222 and the drain via 234 may be located in the same cross section.

此外,如第2D圖所示,第一源極導電元件226與第一汲極導電元件236位於同一水平層。更詳細而言,第一源極導電元件226與第一汲極導電元件236設置於層間介電層242上。第二源極導電元件228與第二汲極導電元件238位於同一水平層。更詳細而言,第二源極導電元件228與第二汲極導電元件238設置於層間介電層246上。In addition, as shown in FIG. 2D, the first source conductive element 226 and the first drain conductive element 236 are located in the same horizontal layer. In more detail, the first source conductive element 226 and the first drain conductive element 236 are disposed on the interlayer dielectric layer 242. The second source conductive element 228 and the second drain conductive element 238 are located in the same horizontal layer. In more detail, the second source conductive element 228 and the second drain conductive element 238 are disposed on the interlayer dielectric layer 246.

參閱第2E圖,第2E圖為第2A圖所示的半導體裝置結構200A沿B-B線段的剖面示意圖。在一些實施例,在對應有汲極接觸窗232的剖面上,源極摻雜區220上方並未設置源極接觸窗222。在一些實施例,在對應有源極導通孔224的剖面上,第一汲極導電元件236上方並未設置汲極導通孔234。在一些實施例,汲極接觸窗232與源極導通孔224可位於同一剖面。Referring to FIG. 2E, FIG. 2E is a schematic cross-sectional view of the semiconductor device structure 200A shown in FIG. 2A along the line B-B. In some embodiments, in the cross section corresponding to the drain contact 232, the source contact 222 is not provided above the source doped region 220. In some embodiments, on the cross section corresponding to the source via 224, the drain via 234 is not provided above the first drain conductive element 236. In some embodiments, the drain contact 232 and the source via 224 may be located in the same cross section.

參閱第3圖,第3圖為根據本揭露的一些實施例之如第2A圖所示的半導體裝置結構200A的剖面透視圖。更詳細而言,第3圖是第2B與2C圖兩個剖面重疊後的圖式。值得注意的是,用實線繪示的是第2B圖的元件,用虛線繪示的是第2C圖的元件。如第3圖所示,源極接觸窗222及汲極接觸窗232並未重疊。源極導通孔224及汲極導通孔234並未重疊。在一些實施例,第一源極導電元件226與第一汲極導電元件236部分重疊。在一些實施例,第一源極導電元件226與第一汲極導電元件236未完全重疊。源極導通孔224及汲極導通孔234設置在此重疊的區域上。Please refer to FIG. 3, which is a cross-sectional perspective view of the semiconductor device structure 200A shown in FIG. 2A according to some embodiments of the present disclosure. In more detail, FIG. 3 is a diagram in which two cross-sections of FIGS. 2B and 2C are superimposed. It is worth noting that the components shown in Figure 2B are drawn in solid lines, and components in Figure 2C are drawn in broken lines. As shown in FIG. 3, the source contact 222 and the drain contact 232 do not overlap. The source via 224 and the drain via 234 do not overlap. In some embodiments, the first source conductive element 226 and the first drain conductive element 236 partially overlap. In some embodiments, the first source conductive element 226 and the first drain conductive element 236 do not completely overlap. The source via 224 and the drain via 234 are arranged on the overlapping area.

可在本揭露的實施例作各種變化及調整。在一些實施例,保護電路的佈局可具有其他態樣。參閱第4A及4B圖。第4A圖為根據本揭露的一些實施例之半導體裝置結構200B的佈局之上視圖。第4B圖為根據本揭露的一些實施例之如第4A圖所示沿E-E線段的剖面圖。如第4A圖所示,半導體裝置結構200B包含源極保護電路250b與汲極保護電路260b。源極保護電路250b包含源極接觸窗222、源極導通孔224、第一源極導電元件226及第二源極導電元件228。汲極保護電路260b包含汲極接觸窗232、汲極導通孔234、第一汲極導電元件236及第二汲極導電元件238。在一些實施例,源極保護電路250b的每一個第一源極導電元件226可物理接觸一個源極接觸窗222及兩個源極導通孔224。在一些實施例,汲極保護電路260b的每一個第一汲極導電元件236可接觸一個汲極接觸窗232及兩個汲極導通孔234。Various changes and adjustments can be made in the disclosed embodiments. In some embodiments, the layout of the protection circuit may have other aspects. See figures 4A and 4B. FIG. 4A is a top view of the layout of the semiconductor device structure 200B according to some embodiments of the disclosure. FIG. 4B is a cross-sectional view along the line E-E as shown in FIG. 4A according to some embodiments of the present disclosure. As shown in FIG. 4A, the semiconductor device structure 200B includes a source protection circuit 250b and a drain protection circuit 260b. The source protection circuit 250b includes a source contact 222, a source via 224, a first source conductive element 226, and a second source conductive element 228. The drain protection circuit 260b includes a drain contact 232, a drain via 234, a first drain conductive element 236, and a second drain conductive element 238. In some embodiments, each first source conductive element 226 of the source protection circuit 250 b can physically contact one source contact window 222 and two source vias 224. In some embodiments, each first drain conductive element 236 of the drain protection circuit 260 b can contact one drain contact window 232 and two drain vias 234.

可在本揭露的實施例作各種變化及調整。參閱第5A及5B圖。第5A圖為根據本揭露的一些實施例之半導體裝置結構200C的佈局之上視圖。第5B圖為根據本揭露的一些實施例之如第5A圖所示沿F-F線段的剖面圖。如第5A圖所示,半導體裝置結構200C包含源極保護電路250c與汲極保護電路260c。源極保護電路250c包含源極接觸窗222、源極導通孔224、第一源極導電元件226及第二源極導電元件228。汲極保護電路260c包含汲極接觸窗232、汲極導通孔234、第一汲極導電元件236及第二汲極導電元件238。在一些實施例,源極保護電路250c的每一個第一源極導電元件226可物理接觸三個源極接觸窗222及兩個源極導通孔224。在一些實施例,汲極保護電路260c的每一個第一汲極導電元件236可接觸三個汲極接觸窗232及兩個汲極導通孔234。在一些實施例,第一源極導電元件226接觸的源極接觸窗222的數量與接觸的源極導通孔224的數量不同。在一些實施例,第一汲極導電元件236接觸的汲極接觸窗232的數量與接觸的汲極導通孔234的數量不同。Various changes and adjustments can be made in the disclosed embodiments. See Figures 5A and 5B. FIG. 5A is a top view of the layout of the semiconductor device structure 200C according to some embodiments of the disclosure. FIG. 5B is a cross-sectional view along the line F-F as shown in FIG. 5A according to some embodiments of the present disclosure. As shown in FIG. 5A, the semiconductor device structure 200C includes a source protection circuit 250c and a drain protection circuit 260c. The source protection circuit 250c includes a source contact 222, a source via 224, a first source conductive element 226, and a second source conductive element 228. The drain protection circuit 260 c includes a drain contact window 232, a drain via 234, a first drain conductive element 236 and a second drain conductive element 238. In some embodiments, each first source conductive element 226 of the source protection circuit 250 c can physically contact three source contact windows 222 and two source vias 224. In some embodiments, each first drain conductive element 236 of the drain protection circuit 260 c can contact three drain contact windows 232 and two drain vias 234. In some embodiments, the number of source contacts 222 contacted by the first source conductive element 226 is different from the number of source vias 224 contacted. In some embodiments, the number of drain contact windows 232 contacted by the first drain conductive element 236 is different from the number of drain vias 234 contacted.

值得注意的是,上述圖式所示的源極導電元件物理接觸的源極接觸窗或源極導通孔的數目,或汲極導電元件物理接觸的汲極接觸窗或汲極導通孔的數目僅為舉例。在其他實施例,可具有其他的態樣。另外,第一源極導電元件226與第一汲極導電元件236又可稱為第一金屬層;第二源極導電元件228與第二汲極導電元件238又可稱為第二金屬層。It is worth noting that the number of source contacts or source vias that the source conductive element physically contacts, or the number of drain contacts or drain vias that the drain conductive element physically contacts is only For example. In other embodiments, there may be other aspects. In addition, the first source conductive element 226 and the first drain conductive element 236 may also be called a first metal layer; the second source conductive element 228 and the second drain conductive element 238 may also be called a second metal layer.

雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露一些實施例之揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露一些實施例使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。Although the embodiments and advantages of the present disclosure have been disclosed as above, it should be understood that any person with ordinary knowledge in the relevant technical field can make changes, substitutions and modifications without departing from the spirit and scope of the present disclosure. In addition, the protection scope of the present disclosure is not limited to the manufacturing process, machinery, manufacturing, material composition, device, method, and steps in the specific embodiments described in the specification. Anyone with ordinary knowledge in the technical field can implement some implementations from this disclosure. The disclosed content of the examples understands the current or future developed processes, machines, manufacturing, material composition, devices, methods, and steps, as long as they can implement substantially the same functions or obtain substantially the same results in the embodiments described herein. The present disclosure uses some embodiments. Therefore, the protection scope of this disclosure includes the above-mentioned manufacturing processes, machines, manufacturing, material composition, devices, methods and steps. In addition, each patent application scope constitutes an individual embodiment, and the protection scope of the present disclosure also includes each patent application scope and a combination of embodiments.

100:半導體裝置結構110:半導體基板120:井區130:隔離區140:源極摻雜區150:汲極摻雜區160:閘極162:閘極介電層164:閘極電極170:主體區200A:半導體裝置結構200B:半導體裝置結構200C:半導體裝置結構210:閘極212:閘極介電層214:閘極電極220:源極摻雜區222:源極接觸窗224:源極導通孔226:第一源極導電元件228:第二源極導電元件230:汲極摻雜區232:汲極接觸窗234:汲極導通孔236:第一汲極導電元件238:第二汲極導電元件240:半導體基板242:層間介電層244:層間介電層246:層間介電層248:層間介電層250a、250b、250c:源極保護電路260a、260b、260c:汲極保護電路B、D、S、G:外加電壓100: semiconductor device structure 110: semiconductor substrate 120: well area 130: isolation area 140: source doped area 150: drain doped area 160: gate 162: gate dielectric layer 164: gate electrode 170: body Zone 200A: semiconductor device structure 200B: semiconductor device structure 200C: semiconductor device structure 210: gate 212: gate dielectric layer 214: gate electrode 220: source doped area 222: source contact window 224: source conduction Hole 226: first source conductive element 228: second source conductive element 230: drain doped region 232: drain contact window 234: drain via 236: first drain conductive element 238: second drain Conductive element 240: semiconductor substrate 242: interlayer dielectric layer 244: interlayer dielectric layer 246: interlayer dielectric layer 248: interlayer dielectric layer 250a, 250b, 250c: source protection circuit 260a, 260b, 260c: drain protection circuit B, D, S, G: applied voltage

第1圖為根據本揭露的一些實施例之半導體裝置結構的剖面示意圖; 第2A圖為根據本揭露的一些實施例之半導體裝置結構的佈局之上視圖; 第2B、2C、2D、2E圖為根據本揭露的一些實施例之如第2A圖所示的半導體裝置結構的剖面圖; 第3圖為根據本揭露的一些實施例之如第2A圖所示的半導體裝置結構的剖面透視圖; 第4A圖為根據本揭露的一些實施例之半導體裝置結構的佈局之上視圖; 第4B圖為根據本揭露的一些實施例之如第4A圖所示的半導體裝置結構的剖面圖; 第5A圖為根據本揭露的一些實施例之半導體裝置結構的佈局之上視圖; 第5B圖為根據本揭露的一些實施例之如第5A圖所示的半導體裝置結構的剖面圖;Figure 1 is a schematic cross-sectional view of a semiconductor device structure according to some embodiments of the present disclosure; Figure 2A is a top view of a layout of a semiconductor device structure according to some embodiments of the present disclosure; Figures 2B, 2C, 2D, and 2E are A cross-sectional view of the semiconductor device structure shown in FIG. 2A according to some embodiments of the present disclosure; FIG. 3 is a cross-sectional perspective view of the semiconductor device structure shown in FIG. 2A according to some embodiments of the present disclosure; 4A is a top view of the layout of the semiconductor device structure according to some embodiments of the present disclosure; FIG. 4B is a cross-sectional view of the semiconductor device structure shown in FIG. 4A according to some embodiments of the present disclosure; FIG. 5A is The top view of the layout of the semiconductor device structure according to some embodiments of the present disclosure; FIG. 5B is a cross-sectional view of the semiconductor device structure shown in FIG. 5A according to some embodiments of the present disclosure;

200A:半導體裝置結構 200A: Semiconductor device structure

210:閘極 210: Gate

220:源極摻雜區 220: source doped area

222:源極接觸窗 222: source contact window

224:源極導通孔 224: Source via

226:第一源極導電元件 226: first source conductive element

228:第二源極導電元件 228: second source conductive element

230:汲極摻雜區 230: Drain doped region

232:汲極接觸窗 232: Drain contact window

234:汲極導通孔 234: Drain via

236:第一汲極導電元件 236: first drain conductive element

238:第二汲極導電元件 238: second drain conductive element

250a:源極保護電路 250a: Source protection circuit

260a:汲極保護電路 260a: Drain protection circuit

Claims (20)

一種半導體裝置結構,包括: 一半導體基板; 一閘極,設置於該半導體基板上; 一源極摻雜區,設置於該半導體基板內; 一汲極摻雜區,設置於該半導體基板內,其中該源極摻雜區與該汲極摻雜區位於該閘極相對兩側; 一源極保護電路,包括: 複數個源極接觸窗,設置於該源極摻雜區上;以及 複數個第一源極導電元件,設置於該些源極接觸窗上,每一個第一源極導電元件電性連接至少一個源極接觸窗;以及 一汲極保護電路,包括: 複數個汲極接觸窗,設置於該汲極摻雜區上;以及 複數個第一汲極導電元件,設置於該些汲極接觸窗上,每一個第一汲極導電元件電性連接至少一個汲極接觸窗; 其中從側面透視圖觀看,該些第一汲極導電元件與該些第一源極導電元件部分重疊。A semiconductor device structure includes: a semiconductor substrate; a gate electrode arranged on the semiconductor substrate; a source doped region arranged in the semiconductor substrate; a drain doped region arranged in the semiconductor substrate, The source doped region and the drain doped region are located on opposite sides of the gate; a source protection circuit includes: a plurality of source contact windows arranged on the source doped region; and a plurality of The first source conductive element is disposed on the source contact windows, and each first source conductive element is electrically connected to at least one source contact window; and a drain protection circuit, including: a plurality of drain contact windows , Arranged on the drain doped region; and a plurality of first drain conductive elements are arranged on the drain contact windows, each first drain conductive element is electrically connected to at least one drain contact window; wherein From the side perspective view, the first drain conductive elements and the first source conductive elements partially overlap. 如申請專利範圍第1項所述之半導體裝置結構,其中該些第一源極導電元件與該些第一汲極導電元件隔開。In the semiconductor device structure described in claim 1, wherein the first source conductive elements are separated from the first drain conductive elements. 如申請專利範圍第1項所述之半導體裝置結構,其中至少一個第一源極導電元件物理接觸至少兩個源極接觸窗。According to the semiconductor device structure described in claim 1, wherein at least one first source conductive element physically contacts at least two source contact windows. 如申請專利範圍第1項所述之半導體裝置結構,其中該源極保護電路更包括: 複數個源極導通孔,設置於該些第一源極導電元件上,並與該源極摻雜區電性連接; 其中從上視圖觀看,該些源極導通孔與該些源極接觸窗並未重疊。According to the semiconductor device structure described in claim 1, wherein the source protection circuit further comprises: a plurality of source vias are provided on the first source conductive elements and are connected to the source doped region Electrical connection; Wherein from the top view, the source vias and the source contact windows do not overlap. 如申請專利範圍第4項所述之半導體裝置結構,其中至少一個第一源極導電元件物理接觸至少兩個源極導通孔。According to the semiconductor device structure described in claim 4, at least one first source conductive element physically contacts at least two source vias. 如申請專利範圍第4項所述之半導體裝置結構,其中,一個第一源極導電元件所接觸的源極接觸窗與所接觸的源極導通孔的數目不同。According to the semiconductor device structure described in claim 4, the number of source contact windows and source vias contacted by a first source conductive element is different. 如申請專利範圍第1項所述之半導體裝置結構,其中該源極保護電路更包括: 一第二源極導電元件,覆蓋該些第一源極導電元件。According to the semiconductor device structure described in claim 1, wherein the source protection circuit further includes: a second source conductive element covering the first source conductive elements. 如申請專利範圍第1項所述之半導體裝置結構,其中該源極保護電路並未延伸至該汲極摻雜區的正上方。In the semiconductor device structure described in claim 1, wherein the source protection circuit does not extend to directly above the drain doped region. 如申請專利範圍第1項所述之半導體裝置結構,其中該些第一源極導電元件並未延伸至該汲極摻雜區上方。In the semiconductor device structure described in claim 1, wherein the first source conductive elements do not extend above the drain doped region. 如申請專利範圍第1項所述之半導體裝置結構,其中從側面透視圖觀看,該些源極接觸窗與該些汲極接觸窗並未重疊。In the semiconductor device structure described in the first item of the scope of the patent application, when viewed from a side perspective view, the source contact windows and the drain contact windows do not overlap. 一種半導體裝置結構,包括: 一半導體基板; 一閘極,設置於該半導體基板上,沿一第一方向延伸; 一源極摻雜區,設置於該半導體基板內,沿該第一方向延伸; 一汲極摻雜區,設置於該半導體基板內,沿該第一方向延伸,其中該源極摻雜區與該汲極摻雜區位於該閘極相對兩側; 複數個源極接觸窗,設置於該源極摻雜區上,沿該第一方向排列; 複數個汲極接觸窗,設置於該汲極摻雜區上,沿該第一方向排列;以及 一第一源極導電元件,設置於該些源極接觸窗上,並電性連接該源極摻雜區,該第一源極導電元件沿該第一方向延伸。A semiconductor device structure includes: a semiconductor substrate; a gate electrode arranged on the semiconductor substrate and extending along a first direction; a source doped region arranged in the semiconductor substrate and extending along the first direction; A drain doped region disposed in the semiconductor substrate and extends along the first direction, wherein the source doped region and the drain doped region are located on opposite sides of the gate; a plurality of source contact windows, Arranged on the source doped region and arranged along the first direction; a plurality of drain contact windows arranged on the drain doped region and arranged along the first direction; and a first source conductive element, It is arranged on the source contact windows and electrically connected to the source doped region, and the first source conductive element extends along the first direction. 如申請專利範圍第11項所述之半導體裝置結構,其中該些汲極接觸窗與該些源極接觸窗錯開。In the semiconductor device structure described in claim 11, the drain contact windows are staggered from the source contact windows. 如申請專利範圍第11項所述之半導體裝置結構,更包括: 一第一汲極導電元件,設置於該些汲極接觸窗上,且與該汲極摻雜區電性連接,該第一汲極導電元件沿該第一方向延伸。The semiconductor device structure described in claim 11 further includes: a first drain conductive element disposed on the drain contact windows and electrically connected to the drain doped region, the first The drain conductive element extends along the first direction. 如申請專利範圍第13項所述之半導體裝置結構,其中從上視圖觀看,該第一源極導電元件與該第一汲極導電元件在該第一方向部分重疊。According to the semiconductor device structure described in the scope of the patent application, when viewed from a top view, the first source conductive element and the first drain conductive element partially overlap in the first direction. 如申請專利範圍第13項所述之半導體裝置結構,其中該第一源極導電元件與該第一汲極導電元件錯開。In the semiconductor device structure described in claim 13, wherein the first source conductive element and the first drain conductive element are staggered. 如申請專利範圍第11項所述之半導體裝置結構,其中該第一源極導電元件物理接觸至少兩個源極接觸窗。The semiconductor device structure described in claim 11, wherein the first source conductive element physically contacts at least two source contact windows. 如申請專利範圍第11項所述之半導體裝置結構,更包括: 複數個源極導通孔,設置於該第一源極導電元件上;以及 複數個汲極導通孔,設置於該第一汲極導電元件上,其中該些源極導通孔與該些汲極導通孔錯開。The semiconductor device structure described in claim 11 further includes: a plurality of source vias arranged on the first source conductive element; and a plurality of drain vias arranged on the first drain On the conductive element, the source vias and the drain vias are staggered. 如申請專利範圍第17項所述之半導體裝置結構,其中該些源極導通孔與該些源極接觸窗錯開。In the semiconductor device structure described in claim 17, wherein the source vias and the source contact windows are staggered. 如申請專利範圍第17項所述之半導體裝置結構,其中該第一源極導電元件物理接觸至少兩個源極導通孔。According to the semiconductor device structure described in claim 17, wherein the first source conductive element physically contacts at least two source vias. 如申請專利範圍第11項所述之半導體裝置結構,更包括: 一第二源極導電元件,覆蓋該第一源極導電元件,且沿該第一方向延伸。The semiconductor device structure described in claim 11 further includes: a second source conductive element covering the first source conductive element and extending along the first direction.
TW108115496A 2019-05-06 2019-05-06 Semiconductor device structures TWI716865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108115496A TWI716865B (en) 2019-05-06 2019-05-06 Semiconductor device structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108115496A TWI716865B (en) 2019-05-06 2019-05-06 Semiconductor device structures

Publications (2)

Publication Number Publication Date
TW202042291A true TW202042291A (en) 2020-11-16
TWI716865B TWI716865B (en) 2021-01-21

Family

ID=74201531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108115496A TWI716865B (en) 2019-05-06 2019-05-06 Semiconductor device structures

Country Status (1)

Country Link
TW (1) TWI716865B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826190B (en) * 2022-12-16 2023-12-11 力晶積成電子製造股份有限公司 High frequency transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020258B4 (en) * 2007-04-30 2018-06-28 Globalfoundries Inc. Technique for improving the transistor conduction behavior by a transistor-specific contact design
JP5280716B2 (en) * 2007-06-11 2013-09-04 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US10115718B2 (en) * 2016-04-21 2018-10-30 Globalfoundries Inc. Method, apparatus, and system for metal-oxide-semiconductor field-effect transistor (MOSFET) with electrostatic discharge (ESD) protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826190B (en) * 2022-12-16 2023-12-11 力晶積成電子製造股份有限公司 High frequency transistor

Also Published As

Publication number Publication date
TWI716865B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US9006072B2 (en) Method of forming metal silicide layer
US9111906B2 (en) Method for fabricating semiconductor device having spacer elements
CN103123930B (en) For reducing (110) surface orientation that the fermi level between height-k dielectric layer and III-V compound semiconductor device pins down
TWI683437B (en) High voltage semiconductor device
US11637099B2 (en) Forming ESD devices using multi-gate compatible processes
US11810872B2 (en) Semiconductor device structure comprising source and drain protective circuits against electrostatic discharge (ESD)
TWI716865B (en) Semiconductor device structures
CN106887463B (en) Semiconductor device and method for manufacturing the same
TWI706536B (en) Semiconductor device structures
TWI658501B (en) High-voltage semiconductor devices and methods for manufacturing the same
TWI618241B (en) High voltage semiconductor device and method of manufacturing the same
TWI658590B (en) High-voltage semiconductor devices and methods for manufacturing the same
US11404410B2 (en) Semiconductor device having different voltage regions
US11715770B2 (en) Forming semiconductor structures with semimetal features
CN107799595B (en) High voltage semiconductor device
CN111987090A (en) Semiconductor device structure
US11201146B2 (en) Semiconductor device structures
US20240006417A1 (en) Semiconductor structure
US20200176600A1 (en) High-voltage semiconductor devices and methods for manufacturing the same
CN112289844A (en) Semiconductor device structure
CN110444582B (en) High voltage semiconductor device and method of forming the same
US20230395648A1 (en) Capacitor and method for forming the same
US9853145B1 (en) High-voltage semiconductor device and method of manufacturing the same
TWI581316B (en) Method of forming metal silicide layer
TW202023032A (en) Memory structure and manufacturing method thereof