TW202040623A - 用於帶電粒子裝置的分束器 - Google Patents

用於帶電粒子裝置的分束器 Download PDF

Info

Publication number
TW202040623A
TW202040623A TW109109321A TW109109321A TW202040623A TW 202040623 A TW202040623 A TW 202040623A TW 109109321 A TW109109321 A TW 109109321A TW 109109321 A TW109109321 A TW 109109321A TW 202040623 A TW202040623 A TW 202040623A
Authority
TW
Taiwan
Prior art keywords
low
level
beam splitter
deflector
charged particle
Prior art date
Application number
TW109109321A
Other languages
English (en)
Other versions
TWI748379B (zh
Inventor
迪特 溫克勒
班傑明約翰 庫克
Original Assignee
德商Ict積體電路測試股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商Ict積體電路測試股份有限公司 filed Critical 德商Ict積體電路測試股份有限公司
Publication of TW202040623A publication Critical patent/TW202040623A/zh
Application granted granted Critical
Publication of TWI748379B publication Critical patent/TWI748379B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • H01J2237/0437Semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

茲揭露一種用於從帶電粒子源產生複數個帶電粒子射束之分束器。分束器包括複數個射束偏轉器,各個射束偏轉器沿著光學軸通過一射束。各個射束偏轉器包括低階元件及相對應的高階元件。各個低階元件具有比各個相對應的高階元件更少的電極;且各個低階元件為複數個低階元件之一者;且各個相對應的高階元件為複數個高階元件之一者。

Description

用於帶電粒子裝置的分束器
此處所述的實施例關於帶電粒子束裝置,例如配置成檢測諸如晶圓或其他基板的樣品的掃描電子顯微鏡,例如用以偵測圖案缺陷。此處所述的實施例關於帶電粒子束裝置,其經配置以利用例如複數個電子射束的多重帶電粒子束,特別用於檢測系統應用,測試系統應用,缺陷檢視或關鍵尺寸應用,表面成像應用或類似者。實施例進一步關於用於產生多個射束的分束器。
對於奈米或甚至次奈米規模的樣品結構化及探測具有很高的要求,特別是在電子工業中。微米及奈米規模處理控制、檢測或結構化通常以帶電粒子束,例如電子束來完成,而此等在諸如電子顯微鏡的帶電粒子束裝置中產生、塑形、偏轉及聚焦。為了檢測之目的,帶電粒子束相較於許多光學方法提供高的空間解析度,因為電子波長可比光學束的波長顯著地更短。
使用帶電粒子束的檢測裝置,例如掃描電子顯微鏡(SEM),在工業領域中具有許多功能,包括但非限於電子電路的檢測、微影蝕刻暴露系統、偵測裝置、缺陷檢測工具及積體電路測試系統。在帶電粒子束系統中,可使用具有高電流密度的細探針。
在帶電粒子裝置中使用多個束(此處稱為射束)為具吸引力的,以例如能夠增加諸如積體電路的大規模樣本檢測的產量。產生、引導、掃描、偏轉、塑形、修正及/或聚焦射束可為技術上具挑戰性的,特別當樣本結構需以奈米規模解析度以高產量而快速的方式掃描及檢測。
此處揭露一種用於從帶電粒子源產生複數個帶電粒子射束的分束器。分束器包括複數個射束偏轉器,其各者通過一射束。具有用於通過第一射束的第一偏轉器及用於通過第二射束的第二偏轉器。各個射束偏轉器包括低階元件及相對應的高階元件。各個低階元件具有比各個相對應的高階元件更少的電極。各個低階元件為複數個低階元件之一者。各個相對應的高階元件為複數個高階元件之一者。
此處揭露一種帶電粒子束裝置,包括從帶電粒子源產生帶電粒子射束的分束器。分束器包括複數個射束偏轉器,其各者通過一射束。具有用於通過第一射束的第一偏轉器及用於通過第二射束的第二偏轉器。各個射束偏轉器包括低階元件及相對應的高階元件。各個低階元件具有比各個相對應的高階元件更少的電極。各個低階元件為複數個低階元件之一者。各個相對應的高階元件為複數個高階元件之一者。帶電粒子束裝置經配置成以複數個帶電粒子射束檢測樣本。裝置包括帶電粒子源,其次為準直透鏡及以上所述的分束器。裝置亦包括偏轉器,用於偏轉藉由分束器產生的射束,偏轉器引導射束依序通過第二分束器、及掃描器及接物鏡。接物鏡經配置以在放置於帶電粒子束裝置的可移動平台上的樣本上聚焦射束,及收集訊號帶電粒子。第二分束器引導收集的訊號帶電粒子至偵測器。帶電粒子束裝置進一步包括控制器,此控制器經通訊耦合至掃描器、偏轉器、偵測器及分束器。
此處揭露一種產生複數個帶電粒子射束之方法。方法包括將帶電粒子的單一束引導通過分束器的步驟。分束器包括複數個射束偏轉器,其各者通過一射束。具有用於通過第一射束的第一偏轉器及用於通過第二射束的第二偏轉器。各個射束偏轉器包括低階元件及相對應的高階元件。各個低階元件具有比各個相對應的高階元件更少的電極。各個低階元件為複數個低階元件之一者。各個相對應的高階元件為複數個高階元件之一者。以低階靜電元件施加低階電場至帶電粒子,以偏轉帶電粒子。以高階靜電元件施加高階電場至帶電粒子以修正像差。隨著帶電粒子通過與各個射束偏轉器的中心對齊的孔洞而產生帶電粒子射束。
此處使用例如低及高的相對詞彙,例如代表束偏轉元件的多極階,例如,用以影響帶電粒子的形狀及/或軌跡,特別為束或射束的形式。「高」及「低」的相對詞彙的使用意圖傳達相對的意義,在某種意義上低階元件經配置以提供比相對應的高階元件更低階的多極。此可表現在低階或高階元件的電極數量上。
在可與此處所揭露的每個實施例相結合的實施例中,低階元件具有比高階元件更少的電極,以便低階元件產生比高階元件更低階的多極場。如一實例,低階元件可以產生偶極的一對電極作成;且高階元件可以產生八極的八個電極作成。類似地,高強度及低強度的相對詞彙為意圖傳達相對的意義的相對詞彙。舉例而言,高強度低階多極可比低強度高階多極具有更高的強度及更少的多極。
此處,使用「沿著光學軸」一詞,例如傳達帶電粒子射束的束路徑。詞彙中使用「沿著」意圖傳達路徑實質上平行於光學軸,然而亦可能具有某些分歧或趨近。射束的分別路徑可從完全平行於帶電粒子裝置的光學軸偏離,例如當(或立即在此之後)射束通過此處所揭露的分束器時。
此處,說明多極束偏轉器,意圖代表偶極束偏轉器產生電場而良好地描述為偶極場,然而可能存在更高多極的小擾動或類似者。類似地,四極可產生電場而良好地藉由不超過四極場來描述,然而可能存在更高多極的小擾動或類似者。進一步推展此概念,八極產生場而良好地藉由不超過八極場來描述;且依此類推。
此處,可交替地使用樣本及樣品。此處,一個基板與另一者的附接可透過使用黏著劑,例如基於矽的黏著劑。如此處所述,附接基板在一起的步驟可包括在基板上對齊各別的結構之步驟,特別為射束偏轉器的孔洞、電極及/或元件。
第1圖根據此處所述的實施例,圖示帶電粒子束裝置。帶電粒子束裝置100可為掃描電子顯微鏡。帶電粒子束裝置100包括帶電粒子源5。準直透鏡40可引導帶電粒子的束朝向分束器50。或者,準直透鏡40可定位於距離源在分束器50的另一側上。分束器50通過複數個射束。在第1圖中,標記第一射束10及第二射束20。可具有超過兩個的射束。射束可沿著光學軸0傳播。射束可經安排成陣列。
特別考量沿著在光學軸上置中的環安排的複數個射束。從單一帶電粒子源5形成多個束射束可能是有利的,但目前仍有技術障礙。舉例而言,使用單行及單一帶電粒子源的帶電粒子束裝置100可比使用多列及多個源者更緊密。
帶電粒子源5可為電子源,經配置以產生電子束。或者,束源可為離子源,經配置以產生離子束。在一些實施例中,束源105可包括冷場發射器(CFE)、肖特基發射器、熱場發射器(TFE)或另一高電流電子束源之至少一者,以便增加產量。高電流經考量為在100 mrad或更高中的10 μA,例如高達5 mA,例如在100 mrad中的30 μA至在100 mrad中的1 mA。根據典型實施,電流本質上均勻地分佈,例如具有±10%的偏差。根據可與此處所述的其他實施例結合的一些實施例,束源可具有約5 mrad或更高的發射半角,例如50 mrad至200 mrad。在一些實施例中,束源可具有2 nm或更大及/或40 nm或更小的虛擬源尺寸。舉例而言,若束源為肖特基發射器,則源可具有從10 nm至40 nm的虛擬源尺寸。舉例而言,若束源為冷場發射器(CFE),則源可具有從2 nm至20 nm的虛擬源尺寸。
根據可與此處所述的其他實施例結合的實施例,能夠提供大束電源的TFE或另一高降低亮度的源為源,其中當增加發射角度時亮度不會下落超過最大值的20%,以提供10 μA-100 μA的最大值。
射束10、20可朝向樣本8傳播通過沿著光學軸0的行。射束可藉由例如一或更多偏轉器、束修正器、透鏡裝置、孔洞、束彎曲器及/或束分離器的元件操作。第1圖顯示可用以偏轉各個射束10、20的束路徑的偏轉器6。偏轉器6可改變各個射束的路徑,以使其呈現各個射束10、20從不同的源定向。掃描器12可在輻射樣本8的同時掃描各個射束10、20,例如在成像及/或訊號採集期間。射束10、20可藉由接物鏡80聚焦在樣本8上。各個射束10、20可聚焦在不同點上,以便形成陣列。樣本8例如藉由平台7(例如,可平移平台)的動作而為可移動的。能夠具有大量的射束為有利的,特別為具有許多高密度射束的能力。
接物鏡系統109可包括結合的磁性靜電接物鏡,包括磁性透鏡部分及靜電透鏡部分。在一些實施例中,可提供場減緩裝置,其經配置以降低帶電粒子在樣品上的降落能量。舉例而言,場減緩電極可經安排在樣品的上游。接物鏡80亦可收集訊號帶電粒子,且將其引導至第二分束器33。第二分束器33可引導訊號帶電粒子朝向偵測器17。訊號帶電粒子可為次要電子及/或背向散射的電子。
控制器可通訊耦合至部件,例如分束器50、偵測器17、平台7及掃描器12。控制器可提供功率至透鏡元件及類似者,例如靜電透鏡的電極。
偵測器17可包括偵測器元件,其可經配置用於產生量測訊號,例如相對應於偵測的訊號電子的電子訊號。控制器可接收藉由裝置產生的資料,例如藉由偵測器所產生者。
存在許多與多個射束的產生及控制相關聯的技術挑戰。此處所述的分束器50可用以從帶電粒子源及/或單個帶電粒子束產生多個射束。分束器50,特別為此處所述者,可由單片製成,例如由矽或SOI晶圓(絕緣體上矽)的單一片製成。為了形成分束器50,可在基板上及/或中形成各種結構,例如電極、導線、通孔等等,基板例如單塊矽晶圓,或SOI晶圓。
第2圖根據此處所述的實施例,顯示分束器50。分束器50包括複數個射束偏轉器70。各個射束偏轉器通過一射束。射束偏轉器可經安排在基板或超過一個的基板上。單片矽及/或另一現成構造,例如具有內建絕緣層的矽,例如SOI晶圓(例如,矽及氧化矽)可為基板。SOI可為具有約100 µm的Si層,其次為2 µm的絕緣氧化物層,且接著為>100 µm的矽層的晶圓。分束器50可具有在相同的基板上的所有的射束偏轉器70。
分束器50具有光學軸0,其可實質上垂直於分束器50的平面,具體為至少一個基板350的平面。第2圖顯示第一偏轉器1及第二偏轉器2;可具有超過兩個偏轉器。
第3圖根據此處所述的實施例,顯示分束器50。在第3圖中顯示複數個射束偏轉器70(見第2圖)的第一偏轉器1及第二偏轉器2。各個偏轉器1、2包括低階元件110、120及高階元件210、220。換句話說,第一偏轉器1包括第一低階元件110及第一高階元件210;第二偏轉器2包括第二低階元件120及第二高階元件220。第一偏轉器1包括與第一高階元件210對齊的第一低階元件110;第二偏轉器2包括與第二高階元件220對齊的第二低階元件120。
在第3及4圖中,複數個低階元件150經顯示成與複數個高階元件250在基板350的相對表面上。或者,低階及高階元件可在附接在一起的不同基板上。基板可附接在一起,使得低階及高階元件對齊平行於光學軸0。或者,低階及高階元件可在相同的基板的相對側上。
低階元件可為高電壓元件,且高階元件可為低電壓元件。低階元件例如藉由施加強的(例如,相對高的強度的)低階多極,可經配置用於對射束施加大的偏轉。高階元件例如藉由施加弱的(例如,相對低的強度的)高階多極,可經配置用於施加像差修正。
舉例而言,各個低階元件可為偶極元件。各個高階元件經配置以產生比相對應低階元件更高的多極。舉例而言,高階元件之各者產生八極,例如靜電八極,至各別的射束,且低階元件產生較低階的多極場,例如偶極或四極。
第4圖根據此處所述的實施例,圖示分束器50。在第4圖中,標記複數個低階元件150及複數個高階元件250。舉例而言,第一偏轉器1包括複數個低階元件150之一者及複數個高階元件250之相對應的一者。如第4圖中描繪,複數個低階元件及複數個相對應的高階元件可在相同基板350的相對側上。或者,複數個低階元件及複數個相對應的高階元件可在可附接在一起的不同基板上。
第5圖根據此處所述的實施例,顯示分束器50。複數個低階元件150之各者可在基板350上,且複數個相對應的高階元件250之各者可在相對應的基板351上,例如另一基板。基板可連接在一起,例如緊固在一起。
射束偏轉器70可具有用於面向帶電粒子源的表面,此表面可以例如金屬膜的導電材料塗佈,以降低充電效應。具有用於面向帶電粒子源的表面的基板350可在相對表面上具有低階元件150或高階元件250。
如第5圖中可見,低階元件110及相對應的高階元件210與光學軸0平行定向(各個低階元件及高階元件110、120之一者可直接與光學軸對齊)。各個射束的傳播方向330大約沿著(即,大約平行於)光學軸0。各個低階元件及其相對應的高階元件,及此等各別的孔洞,可與光學軸0平行定向,以便將射束通過此等各者。基板350可具有與各個射束偏轉器70的中心對齊的複數個孔洞。在第5圖中,高階元件210經顯示成具有孔洞215,其可與低階元件1210的相對應的孔洞(在第5圖中不可見)對齊。當高階及低階元件110、120共享基板(例如,元件110、120在相同基板的相對側上)時,各個低階元件及其相對應的高階元件亦可共享孔洞。
各個低階元件,包括第5圖中描繪的第一低階元件110,可具有比相對應的高階元件210更少的電極。各個低階元件150可為靜電元件,且各個高階元件250可為靜電元件。低階元件150可經配置以對射束施加大的偏轉(例如,藉由施加高強度低階多極);且高階元件250可經配置以修正像差(例如,藉由施加低強度高階多極)。各個低階元件可為高電壓元件,且各個相對應的高階元件可為低電壓元件。
在垂直於光學軸的平面中各個射束偏轉器70的足跡可小於4 mm2 、3 mm2 、2.25 mm2 、2 mm2 、1 mm2 、900 µm2 、800 µm2 或700 µm2 ,或大約625 µm2 。小的足跡可為所欲的,用於允許來自相同分束器50的高密度的射束偏轉器70。各個射束偏轉器70的足跡可從25 µm × 25 µm至2 mm × 2 mm;或從30 µm × 30 µm至1.5 mm × 1.5 mm。高密度的射束偏轉器70可導致高密度的射束,其可為所欲的,例如用於對大量的高電流帶電粒子射束有效地使用源能量。具有分離、良好分散的射束而在相鄰射束之間具有少的交叉亦為所欲的。產生高空間密度射束而以具有可管理(例如,可忽略)的射束-射束交叉的方式而良好分散可為技術上具挑戰性的。射束偏轉器70的電極的足跡可小於10 µm2 、8 µm2 、5 µm2 、4 µm2 或2 µm2
如第5圖中所顯示,低階元件150沿著光學軸0可比高階元件250更長。在光學軸的方向上,包括第一低階元件110的低階元件150相對長的延伸(特別與高階元件250相比較)能夠對各個射束10、20產生更大的偏轉。能夠以低階元件150使用高電壓,例如當各個低階元件110、120的低階電極190在光學軸0的方向上具有大的長度時,例如以更進一步增加射束偏轉的強度。
特別考量具有一實施例,其中沿著光學軸,低階元件的長度從約10 µm至約2 mm;且高階元件的長度小於200 µm。
在可與任何其他實施例結合的實施例中,於垂直於光學軸的方向上射束偏轉器70之間的中心-中心間距可為小於 5mm、2 mm、1 mm、0.5 mm或0.25 mm。
如此處所揭露,藉由分開分束器50的功能,能夠維持各個射束偏轉器1、2小的足跡,而從帶電粒子源5產生複數個射束10、20至大部分負責用於偏轉射束的低階分量中,及大部分負責用於修正射束的像差的高階分量中。如此處所揭露,複數個低階元件可為用於偏轉的高電壓元件,且複數個相對應的高階元件可為用於像差修正的低電壓元件。
可選地可具有複數個第三偏轉元件,例如用於精確調整、像差修正及/或散光修正。添加至各個低階元件150及相對應的高階元件250的分別的第三偏轉元件可為例如四極、十極或十四極。此複數個第三偏轉器元件特別設想與偶極低階元件結合;再者在此實施例中,高階元件之各者可為八極。各個第三偏轉元件亦可具有與低階及高階元件分別的孔洞對齊的孔洞。複數個第三偏轉元件可定位在另一基板上,而基板可附接至(例如固定對齊)低階及高階元件。
第6圖根據此處所述的實施例,顯示低階元件110、120。低階元件110可在基板的表面上。低階元件110具有至少兩個低階電極190,用於施加至少偶極場至可通過孔洞115的射束。低階電極190可彼此面對,而具有孔洞115在之間。在一實施例中,各個低階元件110、120為偶極元件,且各個低階元件的電極之一者接地。
低階元件110可用於產生偶極場,例如用於產生實質上偶極的電場,而與偶極場相比較具有例如可忽略的相比較小的更高階場分量。低階電極190之各者可具有環片段的形狀。如第6圖中描繪,環片段的較小弧形可鄰接孔洞。如第6及7圖中描繪,低階電極190可為大約90°環片段。低階電極190及/或高階電極290可經塑形及/或安排,以便最小化更高階像差。電極之各者可大致經塑形類似於環的片段。在類比於第6圖中所顯示的雙電極安排中,可能為大約120°環片段的電極。
第6圖根據此處所述的實施例,亦顯示連接至低階元件的各個低階電極190的高電壓導線301。複數個高電壓導線301可分別連接至各個低階元件110、120。
第7圖根據此處所述的實施例,顯示低階元件110、120。低階元件110可具有四個低階電極190,用於施加至少偶極場至可通過孔洞115的射束。低階電極190可環繞射束可通過的孔洞115。低階元件110可用於產生偶極,例如用於產生幾乎排他性的偶極電場。
在一實施例中,各個低階元件110、120具有四個電極190,其中兩個接地電極彼此面對而具有孔洞在之間。可存在連接接地電極至接地的導線(在第7圖中未顯示)。
第8圖根據此處所述的實施例,圖示高階元件210。高階元件210可具有多個高階電極290,用於施加多極場至可通過孔洞215的射束。高階電極290可環繞射束可通過的孔洞215。高階元件210可用於產生四極、八極(如所描繪)或更高N 極。
第8圖根據此處所述的實施例,亦顯示連接至高階元件210的高階電極290的低電壓導線302。複數個低電壓導線302可分別連接至各個高階元件210、220。
第6-8圖之各者顯示可存在於各別的基板的表面上的導線。
控制器可連接至低及高電壓導線。
在可與此處所述的任何其他實施例結合的實施例中,各個高電壓導線301的剖面大於各個低電壓導線302的剖面。低電壓導線302的相對小的剖面可允許在基板表面上更高的導線密度。更高的導線密度能夠解決及/或控制更多電極。更高的導線密度可允許更高階多極用於低階元件,而可主要用於像差修正,及/或其可提供用於更高密度的高階元件本身,意味著帶電粒子射束的更大面積的密度。
藉由將分束器50的功能劃分成i)低階偏轉(以低階元件150),而可能需要相對高的電壓而可限制高電壓導線301的面積數量密度,及ii)高階像差修正(以高階元件250),而因為能夠使用較低電壓所以可部署低電壓導線302更高的面積數量密度,能夠增加產生的帶電粒子射束的面積數量密度。換句話說,介於相鄰射束偏轉器70之間的間距可減少。
如第6、7及8圖中可見,各個低階及高階元件的各別的孔洞可在各個元件的各別的複數個電極之中置中。亦應理解介於鄰接低階電極190之間的間距可大於介於鄰接高階電極290之間的間距。
在第9圖中,根據此處所述的實施例,顯示一種產生複數個帶電粒子射束之方法。方法500可包括將帶電粒子的單一束引導至分束器510的步驟。可以低階元件施加低階電場至帶電粒子,以偏轉帶電粒子520。可以高階元件施加高階電場至帶電粒子,以修正像差530。隨著帶電粒子通過與各個射束偏轉器540的中心對齊的複數個孔洞,可產生複數個帶電粒子射束。
本揭露案意圖包括以下列舉的實施例,其中提及參考的元件符號及/或圖式以幫助理解,而並非意圖以元件符號或圖式作為限制:
列舉的實施例1:一種用於從帶電粒子源(5)產生複數個帶電粒子射束(10、20)的分束器(50),包含:複數個射束偏轉器(70),各個射束偏轉器沿著光學軸通過射束(10、20),其中包括用於通過第一射束(10)的第一偏轉器(1)及用於通過第二射束(20)的第二偏轉器(2);其中各個射束偏轉器(1、2)包括低階元件(150;110、120)及相對應的高階元件(250;210、220);其中各個低階元件具有比各個相對應的高階元件更少的電極;及各個低階元件(150)為複數個低階元件之一者;及各個相對應的高階元件(210、220)為複數個高階元件之一者。
列舉的實施例2:如實施例1之分束器,其中:各個低階元件為高電壓元件,且各個相對應的高階元件為低電壓元件。
列舉的實施例3:如任何前述列舉的實施例之分束器,其中:此些低階元件經安排在基板(350)上,基板在垂直於光學軸的平面中具有與各個射束偏轉器的中心對齊的複數個孔洞;及此些高階元件經安排在相對應的基板或基板的相對側上(在平面中);其中分束器可選地從單一基板形成,例如矽或SOI(例如,各個低階/高階對的元件可共享孔洞)。
列舉的實施例4:如任何前述列舉的實施例之分束器,其中:各個低階元件具有一孔洞對齊至各個相對應的高階元件的相對應的孔洞(孔洞及相對應的孔洞沿著光學軸延伸)。
列舉的實施例5:如任何前述列舉的實施例之分束器,其中:各個低階元件(150)及各個高階元件為靜電元件。
列舉的實施例6:如任何前述列舉的實施例之分束器,其中:第一偏轉器(1)包括與第一高階偏轉器元件對齊的第一低階元件;及第二偏轉器(2)包括與第二高階元件對齊的第二低階元件。
列舉的實施例7:如任何前述列舉的實施例之分束器,其中:各個低階元件經配置以對各個分別的射束施加大的偏轉(藉由施加強的低階多極);及各個高階元件經配置以修正各個分別的射束的像差(藉由施加弱的高階多極)。
列舉的實施例8:如任何前述列舉的實施例之分束器,其中:各個低階元件為偶極元件;及各個高階元件經配置以產生大於偶極的多極(例如,八極或更高)。
列舉的實施例9:如任何前述列舉的實施例之分束器,進一步包含:複數個高電壓導線(302),分別連接至各個低階元件;及複數個低電壓導線(301),分別連接至各個高階元件。
列舉的實施例10:如列舉的實施例9之分束器,其中:高電壓導線具有比低電壓導線更大的剖面。
列舉的實施例11:如列舉的實施例10之分束器,其中: 在垂直於光學軸的平面中各個射束偏轉器(70)的足跡小於4 mm2
列舉的實施例12:如任何前述列舉的實施例之分束器,其中:各個低階元件(150)沿著光學軸比各個相對應的高階元件(250)更長。
列舉的實施例13:如任何前述列舉的實施例之分束器,其中:沿著光學軸,各個低階元件的長度大於100 µm,及各個相對應的高階元件的長度小於200 µm。
列舉的實施例14:如任何前述列舉的實施例之分束器,其中:在垂直於光學軸的方向中射束偏轉器之間的中心至中心間距小於2 mm(例如,低至0.25 mm)。
列舉的實施例15:如任何前述列舉的實施例之分束器,其中:各個低階元件為偶極元件,且各個低階元件的電極之一者接地,此些電極彼此面對而具有孔洞在之間;或低階元件具有四個電極,包括兩個接地電極彼此面對而具有一孔洞在之間。
列舉的實施例16:如任何前述列舉的實施例之分束器,其中:各個低階電極為一對偶極電極之一者,且經塑形用於最小化更高階像差。
列舉的實施例17:如任何前述列舉的實施例之分束器,進一步包含:金屬膜,塗佈在分束器的一側,用於面向帶電粒子源。
列舉的實施例18:如任何前述列舉的實施例之分束器,其中:各個射束偏轉器(70)進一步包含: 複數個第三偏轉元件(例如四極(例如,精確調整、散光修正)或十極或十四極);其中各個高階元件為八極。
列舉的實施例19:如任何前述列舉的實施例之分束器,其中:分束器由矽或SOI的單一基板形成,且各個低階元件及各個相對應的高階元件共享通過此基板的相對應孔洞。
列舉的實施例20:一種帶電粒子束裝置,用於以複數個帶電粒子射束檢測樣本,此帶電粒子束裝置包含:帶電粒子源,其次為準直透鏡及根據列舉的實施例1之分束器,偏轉器,用於偏轉藉由分束器產生的射束,偏轉器引導射束依序通過第二分束器、及掃描器及接物鏡,其中接物鏡經配置以:在放置於帶電粒子束裝置的可移動平台上的樣本上聚焦此些射束,及收集訊號帶電粒子,及第二分束器引導收集的訊號帶電粒子至偵測器;帶電粒子束裝置進一步包括:控制器,經通訊耦合至掃描器、偏轉器、偵測器及分束器。
列舉的實施例21:一種產生複數個帶電粒子射束之方法,包含以下步驟: 將帶電粒子的單一束引導至根據列舉的實施例1之分束器;以低階元件施加低階電場至帶電粒子,以偏轉帶電粒子;以高階元件施加高階電場至帶電粒子以修正像差;及隨著帶電粒子通過複數個孔洞而產生複數個帶電粒子射束,複數個孔洞與各個射束偏轉器的中心對齊。
以上已說明本發明的各種實施例。應理解此等僅藉由圖示及範例的方式呈現,且並非限制。對相關領域中技藝人士而言可作成在形式及細節中的各種改變而不會悖離本發明的精神及範疇為顯而易見的。因此,本發明的幅度及範疇不應藉由任何以上所述的範例實施例限制,但僅應根據隨附申請專利範圍及其均等而界定。亦應理解此處所論述的各個實施例之各個特徵可與任何其他實施例的特徵結合使用。再者,無意圖藉由前述技術領域、背景技術、發明內容或實施方式的任何表達或暗示的理論作為界線。
0:光學軸 1:第一偏轉器 2:第二偏轉器 5:帶電粒子源 6:偏轉器 7:平台 8:樣本 10:射束 12:掃描器 17:偵測器 20:射束 33:第二分束器 40:準直透鏡 50:分束器 70:射束偏轉器 80:接物鏡 100:帶電粒子束裝置 110:低階元件 115:孔洞 120:低階元件 150:低階元件 190:低階電極 210:高階元件 215:孔洞 220:高階元件 250:高階元件 290:高階電極 301:高電壓導線 302:低電壓導線 330:傳播方向 350:基板 351:相對應的基板
由此方式可詳細理解以上所載之特徵,以上簡要概述的更具體說明可藉由參考實施例而獲得。隨附圖式關於實施例且在以下說明:
第1圖根據此處所述的實施例,圖示帶電粒子束裝置;
第2圖根據此處所述的實施例,圖示分束器;
第3圖根據此處所述的實施例,圖示分束器;
第4圖根據此處所述的實施例,圖示分束器;
第5圖根據此處所述的實施例,圖示分束器;
第6圖根據此處所述的實施例,圖示低階元件及導線;
第7圖根據此處所述的實施例,圖示低階元件及導線;
第8圖根據此處所述的實施例,圖示高階元件及導線;
第9圖根據此處所述的實施例,圖示產生複數個帶電粒子射束之方法。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
1:第一偏轉器
2:第二偏轉器
50:分束器
150:低階元件
250:高階元件
350:基板

Claims (21)

  1. 一種用於從一帶電粒子源產生複數個帶電粒子射束的分束器,包含: 複數個射束偏轉器,各個射束偏轉器沿著一光學軸通過一射束,其中包括用於通過一第一射束的一第一偏轉器及用於通過一第二射束的一第二偏轉器;其中 各個射束偏轉器包括一低階元件及相對應的一高階元件;其中 各個低階元件具有比各個相對應的高階元件更少的電極;及各個低階元件為複數個低階元件之一者;及各個相對應的高階元件為複數個高階元件之一者。
  2. 如請求項1所述之分束器,其中: 各個低階元件為一高電壓元件,且各個相對應的高階元件為一低電壓元件。
  3. 如請求項1所述之分束器,其中: 該些低階元件經安排在一基板上,該基板在垂直於該光學軸的一平面中具有與各個射束偏轉器的中心對齊的複數個孔洞;以及 該些高階元件經安排在一相對應的基板或該基板的相對側上。
  4. 如請求項1所述之分束器,其中: 各個低階元件具有一孔洞對齊至各個相對應的高階元件的一相對應的孔洞。
  5. 如請求項1所述之分束器,其中: 各個低階元件及各個高階元件為一靜電元件。
  6. 如請求項1所述之分束器,其中: 該第一偏轉器包括與一第一高階偏轉器元件對齊的一第一低階元件;以及 該第二偏轉器包括與一第二高階元件對齊的一第二低階元件。
  7. 如請求項1所述之分束器,其中: 各個低階元件經配置以對各個分別的射束施加一大的偏轉;以及 各個高階元件經配置以修正各個分別的射束的像差。
  8. 如請求項1所述之分束器,其中: 各個低階元件為一偶極元件;以及 各個高階元件經配置以產生大於一偶極的一多極。
  9. 如請求項1所述之分束器,進一步包含: 複數個高電壓導線,分別連接至各個低階元件;以及 複數個低電壓導線,分別連接至各個高階元件。
  10. 如請求項9所述之分束器,其中: 該高電壓導線具有比該低電壓導線更大的一剖面。
  11. 如請求項10所述之分束器,其中: 在垂直於該光學軸的一平面中各個射束偏轉器的一足跡小於4 mm2
  12. 如請求項1所述之分束器,其中: 各個低階元件沿著該光學軸比各個相對應的高階元件更長。
  13. 如請求項1所述之分束器,其中: 沿著該光學軸,各個低階元件的長度大於100 µm,及 各個相對應的高階元件的長度小於200 µm。
  14. 如請求項1所述之分束器,其中: 在垂直於該光學軸的一方向中該等射束偏轉器之間的一中心至中心間距小於2 mm。
  15. 如請求項1所述之分束器,其中: 各個低階元件為一偶極元件,且各個低階元件的該等電極之一者接地,該等電極彼此面對而具有該孔洞在之間;或 該低階元件具有四個電極,包括兩個接地電極彼此面對而具有一孔洞在之間。
  16. 如請求項1所述之分束器,其中: 各個低階電極為一對偶極電極之一者,且經塑形用於最小化更高階像差。
  17. 如請求項1所述之分束器,進一步包含: 一金屬膜,塗佈在該分束器的一側,用於面向該帶電粒子源。
  18. 如請求項1所述之分束器,其中: 各個射束偏轉器進一步包含: 複數個第三偏轉元件;其中 各個高階元件為八極。
  19. 如請求項3所述之分束器,其中: 該分束器由矽或SOI的一單一基板形成,且各個低階元件及各個相對應的高階元件共享穿過該基板的一相對應孔洞。
  20. 一種帶電粒子束裝置,用於以複數個帶電粒子射束檢測樣本,該帶電粒子束裝置包含: 一帶電粒子源,其次為 一準直透鏡及根據請求項1所述之一分束器, 一偏轉器,用於偏轉藉由該分束器產生的該等射束,該偏轉器引導該等射束依序通過一第二分束器、及一掃描器及一接物鏡,其中 該接物鏡經配置以: 在放置於該帶電粒子束裝置的一可移動平台上的一樣本上聚焦該等射束,及 收集訊號帶電粒子,及 該第二分束器引導收集的該等訊號帶電粒子至一偵測器;該帶電粒子束裝置進一步包括: 一控制器,通訊耦合至該掃描器、該偏轉器、該偵測器及該分束器。
  21. 一種產生複數個帶電粒子射束之方法,包含以下步驟: 將帶電粒子的一單一束引導至根據請求項1所述之一分束器; 以該低階元件施加一低階電場至該等帶電粒子,以偏轉該等帶電粒子; 以該高階元件施加一高階電場至該等帶電粒子以修正像差;以及 隨著該等帶電粒子通過複數個孔洞而產生複數個帶電粒子射束,該些孔洞與各個射束偏轉器的中心對齊。
TW109109321A 2019-03-20 2020-03-20 用於帶電粒子裝置的分束器及產生帶電粒子射束之方法 TWI748379B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/359,831 US20200303156A1 (en) 2019-03-20 2019-03-20 Beam splitter for a charged particle device
US16/359,831 2019-03-20

Publications (2)

Publication Number Publication Date
TW202040623A true TW202040623A (zh) 2020-11-01
TWI748379B TWI748379B (zh) 2021-12-01

Family

ID=69810869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109321A TWI748379B (zh) 2019-03-20 2020-03-20 用於帶電粒子裝置的分束器及產生帶電粒子射束之方法

Country Status (6)

Country Link
US (1) US20200303156A1 (zh)
JP (1) JP7265641B2 (zh)
KR (1) KR102650480B1 (zh)
CN (1) CN113412530A (zh)
TW (1) TWI748379B (zh)
WO (1) WO2020187696A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821802B (zh) * 2020-12-15 2023-11-11 日商紐富來科技股份有限公司 像差修正器
TWI846063B (zh) * 2021-09-27 2024-06-21 荷蘭商Asml荷蘭公司 帶電粒子裝置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165076A (ja) * 2002-11-15 2004-06-10 Advantest Corp 偏向器の製造方法、偏向器、及び露光装置
US7394071B2 (en) * 2004-12-20 2008-07-01 Electronics And Telecommunications Research Institute Micro column electron beam apparatus formed in low temperature co-fired ceramic substrate
DE602005006967D1 (de) * 2005-03-17 2008-07-03 Integrated Circuit Testing Analyse-System und Teilchenstrahlgerät
EP2019415B1 (en) * 2007-07-24 2016-05-11 IMS Nanofabrication AG Multi-beam source
EP2251893B1 (en) * 2009-05-14 2014-10-29 IMS Nanofabrication AG Multi-beam deflector array means with bonded electrodes
NL2006868C2 (en) * 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP6554288B2 (ja) * 2015-01-26 2019-07-31 株式会社日立ハイテクノロジーズ 荷電粒子線装置
US10446361B2 (en) * 2015-07-01 2019-10-15 Hitachi High-Technologies Corporation Aberration correction method, aberration correction system, and charged particle beam apparatus
US9620328B1 (en) * 2015-11-20 2017-04-11 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electrostatic multipole device, electrostatic multipole arrangement, charged particle beam device, and method of operating an electrostatic multipole device
US10176965B1 (en) * 2017-07-05 2019-01-08 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Aberration-corrected multibeam source, charged particle beam device and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
US10249472B2 (en) * 2017-07-13 2019-04-02 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
US20190066972A1 (en) * 2017-08-29 2019-02-28 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, aperture arrangement for a charged particle beam device, and method for operating a charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821802B (zh) * 2020-12-15 2023-11-11 日商紐富來科技股份有限公司 像差修正器
TWI846063B (zh) * 2021-09-27 2024-06-21 荷蘭商Asml荷蘭公司 帶電粒子裝置及方法

Also Published As

Publication number Publication date
KR20210137207A (ko) 2021-11-17
JP7265641B2 (ja) 2023-04-26
CN113412530A (zh) 2021-09-17
WO2020187696A1 (en) 2020-09-24
KR102650480B1 (ko) 2024-03-25
TWI748379B (zh) 2021-12-01
US20200303156A1 (en) 2020-09-24
JP2022524058A (ja) 2022-04-27

Similar Documents

Publication Publication Date Title
TWI751556B (zh) 用於以初級帶電粒子小束陣列檢查樣本的帶電粒子束裝置
TWI713883B (zh) 帶電粒子束裝置、用於帶電粒子束裝置的孔佈置和用於操作帶電粒子束裝置的方法
TWI691998B (zh) 靜電多極元件、靜電多極裝置及製造靜電多極元件的方法
TWI694480B (zh) 帶電粒子束裝置、帶電粒子束支配裝置和操作帶電粒子束裝置的方法
TW201833968A (zh) 用於檢查試樣之方法以及帶電粒子多束裝置
US9620329B1 (en) Electrostatic multipole device, electrostatic multipole arrangement, charged particle beam device, and method of manufacturing an electrostatic multipole device
JP2011187447A (ja) ツインビーム荷電粒子ビームコラム及びその作動方法
TWI783596B (zh) 使用帶電粒子束之設備
TW202020917A (zh) 帶電粒子束裝置、用於帶電粒子束裝置的多束消隱器,以及用於操作帶電粒子束裝置的方法
TWI748379B (zh) 用於帶電粒子裝置的分束器及產生帶電粒子射束之方法
US9620328B1 (en) Electrostatic multipole device, electrostatic multipole arrangement, charged particle beam device, and method of operating an electrostatic multipole device
CN115223831B (zh) 带电粒子束设备、多子束组件和检查样本的方法
TWI819505B (zh) 影響帶電粒子束的方法,多極裝置,及帶電粒子束設備
TWI830168B (zh) 溢流柱及帶電粒子裝置
JP2024523820A (ja) 電極歪の影響を補償する方法、評価システム
TW202336794A (zh) 帶電粒子束設備中之射束操縱器
CN115335949A (zh) 泛射柱、带电粒子工具以及用于对样品的带电粒子泛射的方法