TW202037210A - Sidelink synchronization methods for v2x in nr - Google Patents

Sidelink synchronization methods for v2x in nr Download PDF

Info

Publication number
TW202037210A
TW202037210A TW108134812A TW108134812A TW202037210A TW 202037210 A TW202037210 A TW 202037210A TW 108134812 A TW108134812 A TW 108134812A TW 108134812 A TW108134812 A TW 108134812A TW 202037210 A TW202037210 A TW 202037210A
Authority
TW
Taiwan
Prior art keywords
synchronization
wtru
synchronization source
hop count
team
Prior art date
Application number
TW108134812A
Other languages
Chinese (zh)
Inventor
俊霖 潘
辛方俊
春暄 葉
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202037210A publication Critical patent/TW202037210A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods for sidelink synchronization may be used by a wireless transmit/receive unit (WTRU) that wants to a join a group of WTRUs, such as a vehicle platoon. The WTRU may receive configuration information for sidelink communications including measurement thresholds. The WTRU may monitor a sidelink channel for signals from synchronization sources. The WTRU may perform a sidelink measurements and determine synchronization source type and hop number for the synchronization sources. The WTRU may compile a list of synchronization sources with sidelink measurement above a first threshold and select a platoon leader type. If there is no platoon leader in the list, the WTRU may select the synchronization source with hop number below a hop threshold. Otherwise, the WTRU may select the synchronization source for which the value of the sidelink measurement is greater than a second sidelink measurement threshold. The WTRU may establish a link with the selected synchronization source.

Description

NR中V2X側鏈同步方法V2X side chain synchronization method in NR

相關申請案的交叉引用Cross references to related applications

本申請要求保護2018年9月26日提交的美國臨時申請No. 62/736,795的權益,其內容藉由引用而被併入本文。This application claims to protect the rights and interests of U.S. Provisional Application No. 62/736,795 filed on September 26, 2018, the content of which is incorporated herein by reference.

最近的第三代合作夥伴計畫(3GPP)標準討論定義了若干部署場景,諸如室內熱點、密集的城市、鄉村、城市巨集和高速。基於國際電信聯盟無線通訊部(ITU-R)、下一代行動網路(NGMN)和3GPP提出的一般要求,新興的5G系統的用例可被寬泛地分類為增強行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠和低潛時通信(URLLC)。這些用例集中於滿足不同的性能要求,例如較高的資料速率、較高的頻譜效率、低功率和較高的能量效率、和/或較低的潛時和較高的可靠性。此外,對於各種部署情形,考慮範圍從700 MHz到80 GHz的寬範圍的頻譜帶。The recent 3rd Generation Partnership Project (3GPP) standards discussion defined several deployment scenarios, such as indoor hotspots, dense cities, villages, urban macros, and high speeds. Based on the general requirements of the International Telecommunication Union (ITU-R), Next Generation Mobile Network (NGMN) and 3GPP, the use cases of emerging 5G systems can be broadly classified as enhanced mobile broadband (eMBB) and large-scale machines Type communication (mMTC) and ultra-reliable and low-latency communication (URLLC). These use cases focus on meeting different performance requirements, such as higher data rates, higher spectral efficiency, low power and higher energy efficiency, and/or lower latency and higher reliability. In addition, for various deployment scenarios, consider a wide range of spectrum bands ranging from 700 MHz to 80 GHz.

用於側鏈同步的方法可由想要加入諸如車輛隊伍的WTRU群組的無線傳輸/接收單元(WTRU)使用,並且可用於新無線電(NR)中的車聯網(V2X)。WTRU可以接收用於側鏈通信的配置資訊,其中該配置資訊包括測量臨界值。WTRU可以針對來自複數同步源的信號監視側鏈通道。WTRU可以對來自複數同步源中的每一個同步源的側鏈同步信號執行側鏈測量,並且基於在相應的側鏈同步信號中攜帶的資訊來確定用於複數同步源中的每一個同步源的同步源類型和跳數。WTRU可以編排該複數同步源(側鏈測量值對其大於第一側鏈測量臨界值)的同步源的列表。WTRU可以選擇同步源類型為隊伍引領者類型的同步源。如果該列表中沒有同步源是隊伍引領者同步源類型,則WTRU可以選擇具有小於第一跳數臨界值的跳數的同步源。如果同步源列表中沒有同步源具有小於第一跳數臨界值的跳數,則WTRU可以選擇側鏈測量的值大於第二側鏈測量臨界值所針對的同步源。WTRU可以與所選擇的同步源建立鏈路。The method for side-chain synchronization can be used by wireless transmission/reception units (WTRU) that want to join a WTRU group such as a fleet of vehicles, and can be used for the Internet of Vehicles (V2X) in New Radio (NR). The WTRU may receive configuration information for side-chain communication, where the configuration information includes measurement thresholds. The WTRU may monitor the side-chain channel for signals from multiple synchronization sources. The WTRU may perform side-chain measurement on the side-chain synchronization signal from each of the complex synchronization sources, and determine the value for each of the complex synchronization sources based on the information carried in the corresponding side-chain synchronization signal Synchronization source type and hop count. The WTRU may compile a list of synchronization sources for the plurality of synchronization sources (for which the side-chain measurement value is greater than the first side-chain measurement threshold). The WTRU may select a synchronization source whose synchronization source type is the team leader type. If no synchronization source in the list is of the team leader synchronization source type, the WTRU may select a synchronization source with a hop count less than the first hop count threshold. If no synchronization source in the synchronization source list has a hop count less than the first hop count threshold, the WTRU may select a synchronization source whose side-chain measurement value is greater than the second side-chain measurement threshold. The WTRU may establish a link with the selected synchronization source.

圖1A是示出了實施一個或複數所揭露的實施例所在的範例通信系統100的圖式。該通信系統100可以是將諸如語音、資料、視訊、消息發送、廣播等的內容提供給複數無線使用者的多重存取系統。該通信系統100可以藉由系統資源(包括無線頻寬)的共用使得複數無線使用者能夠存取這些內容。例如,該通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT-擴展 OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM、濾波器組多載波(FBMC)等等。FIG. 1A is a diagram showing an exemplary communication system 100 in which one or more of the disclosed embodiments are implemented. The communication system 100 may be a multiple access system that provides content such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communication system 100 can enable multiple wireless users to access these contents by sharing system resources (including wireless bandwidth). For example, the communication system 100 may use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA) , Single carrier FDMA (SC-FDMA), zero-tail unique word DFT-extended OFDM (ZT UW DTS-s OFDM), unique word OFDM (UW-OFDM), resource block filtering OFDM, filter bank multi-carrier (FBMC), etc. Wait.

如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN106/115、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但應理解的是所揭露的實施例涵蓋任意數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置成在無線環境中運行和/或通信的任何類型的裝置。作為範例,WTRU 102a、102b、102c、102d中的任一者可以被稱為“站”和/或“STA”,其可以被配置成傳送和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於用戶的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、可擕式電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如,在工業和/或自動處理鏈環境中操作的機器人和/或其他無線裝置)、消費電子裝置,在商業和/或工業無線網路上運行的裝置等等。WTRU 102a、102b、102c、和102d中的任一者可以可互換地稱為UE。As shown in FIG. 1A, the communication system 100 may include wireless transmission/reception units (WTRU) 102a, 102b, 102c, 102d, RAN 104/113, CN106/115, public switched telephone network (PSTN) 108, and the Internet 110 And other networks 112, but it should be understood that the disclosed embodiments encompass any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. As an example, any of the WTRUs 102a, 102b, 102c, 102d may be referred to as a "station" and/or "STA", which may be configured to transmit and/or receive wireless signals, and may include user equipment ( UE), mobile station, fixed or mobile user unit, user-based unit, pager, mobile phone, personal digital assistant (PDA), smart phone, portable computer, small laptop, personal computer, wireless sensor , Hotspots or Mi-Fi devices, Internet of Things (IoT) devices, watches or other wearable devices, head-mounted displays (HMD), vehicles, drones, medical devices and applications (such as remote surgery), industrial devices and applications (For example, robots and/or other wireless devices operating in an industrial and/or automated processing chain environment), consumer electronics devices, devices operating on commercial and/or industrial wireless networks, etc. Any of the WTRUs 102a, 102b, 102c, and 102d may be referred to interchangeably as UE.

通信系統100還可以包括基地台114a和/或基地台114b。基地台114a、114b中的每一個可以是被配置成與WTRU 102a、102b、102c、102d中的至少一者有無線介面,以便於存取一個或複數通信網路(例如,CN 106/115、網際網路110和/或網路112)。作為範例,基地台114a、114b可以是基地台收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、網站控制器、存取點(AP)、無線路由器等。儘管基地台114a、114b每個均被描述為單個元件,但應當理解的是基地台114a、114b可以包括任何數量的互聯基地台和/或網路元件。The communication system 100 may also include a base station 114a and/or a base station 114b. Each of the base stations 114a, 114b may be configured to have a wireless interface with at least one of the WTRU 102a, 102b, 102c, 102d to facilitate access to one or more communication networks (for example, CN 106/115, Internet 110 and/or network 112). As an example, the base stations 114a, 114b may be base station transceiver stations (BTS), node B, e node B, local node B, local e node B, gNB, NR node B, website controller, access point (AP) , Wireless router, etc. Although the base stations 114a, 114b are each described as a single element, it should be understood that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104/113的一部分,其還可以包括諸如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等的其他基地台和/或網路元件(未示出)。基地台114a和/或基地台114b可以被配置成在一個或複數載波頻率上傳送和/或接收無線信號,其可以被稱為胞元(未示出)。這些頻率可在許可頻譜、未經許可頻譜、或許可頻譜和未經許可頻譜的組合中。胞元可以將無線服務的覆蓋範圍提供給可相對固定或可隨時間而改變的特定地理區域。胞元還可以被劃分成胞元扇區。例如,與基地台114a相關聯的胞元可以被劃分成三個扇區。由此,在一種實施例中,基地台114a可以包括三個收發器,例如針對該胞元的每個扇區有一個。在一種實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以使用針對胞元的每個扇區的複數收發器。例如,波束成形可以用於在期望的空間方向上傳送和/或接收信號。The base station 114a may be part of the RAN 104/113, and it may also include other base stations and/or network elements (not shown) such as a base station controller (BSC), a radio network controller (RNC), a relay node, etc. Shows). The base station 114a and/or the base station 114b may be configured to transmit and/or receive wireless signals on one or more carrier frequencies, which may be referred to as a cell (not shown). These frequencies can be in licensed spectrum, unlicensed spectrum, or a combination of licensed spectrum and unlicensed spectrum. Cells can provide wireless service coverage to specific geographic areas that can be relatively fixed or change over time. Cells can also be divided into cell sectors. For example, the cell associated with the base station 114a may be divided into three sectors. Therefore, in an embodiment, the base station 114a may include three transceivers, for example, one for each sector of the cell. In an embodiment, the base station 114a may use multiple input multiple output (MIMO) technology, and may use a complex transceiver for each sector of the cell. For example, beamforming can be used to transmit and/or receive signals in a desired spatial direction.

基地台114a、114b可以藉由空中介面116與WTRU 102a、102b、102c、102d中的一者或多者通信,該空中介面116可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等)。空中介面116可以使用任何合適的無線電存取技術(RAT)來建立。The base stations 114a, 114b can communicate with one or more of the WTRUs 102a, 102b, 102c, 102d through an air interface 116, which can be any suitable wireless communication link (for example, radio frequency (RF), Microwave, centimeter wave, micro wave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 can be established using any suitable radio access technology (RAT).

更特別地,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,在RAN 104/113中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速UL封包存取(HSUPA)。More specifically, as described above, the communication system 100 may be a multiple access system, and may use one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, the base station 114a and WTRU 102a, 102b, 102c in the RAN 104/113 may implement radio technologies such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use wideband CDMA (WCDMA) To build the air interface 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include high-speed downlink (DL) packet access (HSDPA) and/or high-speed UL packet access (HSUPA).

在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)和/或高級LTE(LTE-A)和/或專業版高級LTE(LTE-A Pro)來建立空中介面116。In one embodiment, the base station 114a and the WTRU 102a, 102b, 102c may implement radio technologies such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE Advanced (LTE-A) and/or Professional LTE Advanced (LTE-A Pro) to establish the air interface 116.

在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其可以使用新無線電(NR)來建立空中介面116。In one embodiment, the base station 114a and the WTRU 102a, 102b, 102c may implement radio technologies such as NR radio access, which may use New Radio (NR) to establish the air interface 116.

在一種實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以例如使用雙連接(DC)原理來將LTE無線電存取和NR無線電存取一起實施。因此,WTRU 102a、102b、102c所使用的空中介面可以由多種類型的無線電存取技術和/或發送到/自多種類型的基地台(例如,eNB和gNB)的傳輸為特徵。In one embodiment, the base station 114a and the WTRU 102a, 102b, 102c may implement multiple radio access technologies. For example, the base station 114a and the WTRUs 102a, 102b, 102c may, for example, use dual connectivity (DC) principles to implement LTE radio access and NR radio access together. Therefore, the air interface used by the WTRU 102a, 102b, 102c may be characterized by multiple types of radio access technologies and/or transmissions to/from multiple types of base stations (e.g., eNBs and gNBs).

在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.11(即,無線保真度(WiFi)、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。In other embodiments, the base station 114a and the WTRU 102a, 102b, 102c may implement IEEE 802.11 (i.e., wireless fidelity (WiFi), IEEE 802.16 (i.e., Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000, etc. 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate GSM Evolution (EDGE) ), GSM EDGE (GERAN) and other radio technologies.

圖1A中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或者存取點,並且可以使用任何合適的RAT,以用於促進在諸如商業區、家庭、車輛、校園、工業設施、空中走廊(例如,供無人機使用)、道路之類的局部區域的無線連接。在一種實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在一種實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術以建立無線個人區域網路(WPAN)。在又一種實施例中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)以建立微微胞元(picocell)或毫微微胞元(femtocell)。如圖1A所示,基地台114b可以具有至網際網路110的直接連接。由此,基地台114b可不需要經由CN 106/115來存取網際網路110。The base station 114b in FIG. 1A can be, for example, a wireless router, a local node B, a local eNode B, or an access point, and any suitable RAT can be used to facilitate the use of mobile devices such as commercial areas, homes, vehicles, campuses, and industrial Wireless connection of local areas such as facilities, air corridors (for example, for drones), roads, etc. In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement radio technologies such as IEEE 802.11 to establish a wireless local area network (WLAN). In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement radio technologies such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, the base station 114b and the WTRU 102c, 102d may use a cellular-based RAT (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, LTE-A Pro, NR, etc.) to establish a pico cell ( picocell) or femtocell (femtocell). As shown in FIG. 1A, the base station 114b may have a direct connection to the Internet 110. Therefore, the base station 114b does not need to access the Internet 110 via the CN 106/115.

RAN 104/113可以與CN 106/115通信,該CN 106/115可以是被配置成將語音、資料、應用和/或網際網路協定語音(VoIP)服務提供到WTRU 102a、102b、102c、102d中的一者或多者的任何類型的網路。資料可以具有不同的服務品質(QoS)要求,例如不同的輸送量要求、潛時要求、容錯要求、可靠性要求、資料輸送量要求,行動性要求等。CN 106/115可以提供呼叫控制、帳單服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分配等,和/或執行高級安全性功能,例如使用者認證。儘管圖1A中未示出,但應理解的是RAN 104/113和/或CN 106/115可以直接或間接地與其他RAN進行通信,這些其他RAN使用與RAN 104/113相同的RAT或者不同的RAT。例如,除了連接到可以採用NR無線電技術的RAN 104/113,CN 106/115也可以與使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA、或者WiFi無線電技術的另一RAN(未示出)通信。The RAN 104/113 may communicate with CN 106/115, which may be configured to provide voice, data, applications, and/or Voice over Internet Protocol (VoIP) services to the WTRU 102a, 102b, 102c, 102d Any type of network of one or more of them. Data can have different quality of service (QoS) requirements, such as different throughput requirements, latency requirements, fault tolerance requirements, reliability requirements, data throughput requirements, mobility requirements, etc. CN 106/115 can provide call control, billing services, mobile location-based services, prepaid calls, Internet connections, video distribution, etc., and/or perform advanced security functions, such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 104/113 and/or CN 106/115 can directly or indirectly communicate with other RANs, which use the same RAT as the RAN 104/113 or different RAT. For example, in addition to connecting to RAN 104/113 that can use NR radio technology, CN 106/115 can also communicate with another RAN (not shown) that uses GSM, UMTS, CDMA2000, WiMAX, E-UTRA, or WiFi radio technology .

CN 106/115也可以用作WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用共同通信協定的互聯電腦網路及裝置的全球系統,該共同通信協定例如是傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件中的TCP、使用者資料報協定(UDP)和/或IP。網路112可以包括由其他服務提供方擁有和/或操作的無線和/或有線通信網路。例如,網路112可以包括連接到一個或複數RAN的另一CN,該一個或複數RAN可以使用與RAN 104/113相同的RAT或者不同的RAT。CN 106/115 can also be used as a gateway for WTRU 102a, 102b, 102c, 102d to access PSTN 108, Internet 110, and/or other networks 112. PSTN 108 may include a circuit-switched telephone network that provides plain old telephone service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use a common communication protocol, such as the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite TCP, User Datagram Protocol (UDP) and/or IP. The network 112 may include wireless and/or wired communication networks owned and/or operated by other service providers. For example, the network 112 may include another CN connected to one or a plurality of RANs, which may use the same RAT as the RAN 104/113 or a different RAT.

通信系統100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力(例如WTRU 102a、102b、102c、102d可以包括用於藉由不同的無線鏈路與不同的無線網路進行通信的複數收發器)。例如,圖1A中顯示的WTRU 102c可以被配置成與可使用基於蜂巢的無線電技術的基地台114a進行通信,並且與可使用IEEE 802無線電技術的基地台114b進行通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities (for example, WTRUs 102a, 102b, 102c, 102d may include different wireless links and different wireless networks. Multiple transceivers for communication). For example, the WTRU 102c shown in FIG. 1A may be configured to communicate with a base station 114a that can use cellular-based radio technology, and to communicate with a base station 114b that can use IEEE 802 radio technology.

圖1B是示出範例WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138等。應該理解的是,在保持與實施例一致的情況下,WTRU 102可以包括上述元件的任何子組合。FIG. 1B is a system diagram illustrating an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmission/reception element 122, a speaker/microphone 124, a keypad 126, a display/touch pad 128, a non-removable memory 130, and a removable memory Body 132, power supply 134, global positioning system (GPS) chipset 136 and/or other peripheral devices 138, etc. It should be understood that the WTRU 102 may include any sub-combination of the above-mentioned elements while remaining consistent with the embodiment.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、任何其它類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或使得WTRU 102能夠操作在無線環境中的其他任何功能。處理器118可以耦合到收發器120,該收發器120可以耦合到傳輸/接收元件122。儘管圖1B中將處理器118和收發器120描述為各別的組件,但是應當理解的是處理器118和收發器120可以被一起整合到電子封裝或者晶片中。The processor 118 may be a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller, Dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. The processor 118 may perform signal encoding, data processing, power control, input/output processing, and/or any other functions that enable the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to a transceiver 120, which may be coupled to the transmission/reception element 122. Although the processor 118 and the transceiver 120 are described as separate components in FIG. 1B, it should be understood that the processor 118 and the transceiver 120 may be integrated into an electronic package or a chip together.

傳輸/接收元件122可以被配置成藉由空中介面116將信號傳送到基地台(例如,基地台114a),或者從基地台(例如,基地台114a)接收信號。例如,在一種實施例中,傳輸/接收元件122可以是被配置成傳送和/或接收RF信號的天線。例如,在一種實施例中,傳輸/接收元件122可以是被配置成傳送和/或接收例如IR、UV或者可見光信號的發射器/偵測器。在又一種實施例中,傳輸/接收元件122可以被配置成傳送和/或接收RF信號和光信號兩者。應當理解,傳輸/接收元件122可以被配置成傳送和/或接收無線信號的任意組合。The transmission/reception element 122 may be configured to transmit signals to a base station (for example, base station 114a) or receive signals from a base station (for example, base station 114a) through the air interface 116. For example, in one embodiment, the transmission/reception element 122 may be an antenna configured to transmit and/or receive RF signals. For example, in one embodiment, the transmission/reception element 122 may be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In yet another embodiment, the transmission/reception element 122 may be configured to transmit and/or receive both RF signals and optical signals. It should be understood that the transmission/reception element 122 may be configured to transmit and/or receive any combination of wireless signals.

此外,儘管傳輸/接收元件122在圖1B中被描述為單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。由此,在一種實施例中,WTRU 102可以包括兩個或更多個傳輸/接收元件122(例如,複數天線)以用於藉由空中介面116傳送和/或接收無線信號。In addition, although the transmission/reception element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmission/reception elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in an embodiment, the WTRU 102 may include two or more transmission/reception elements 122 (eg, multiple antennas) for transmitting and/or receiving wireless signals through the air interface 116.

收發器120可以被配置成對將由傳輸/接收元件122傳送的信號進行調變,並且被配置成對由傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。由此,收發器120可以包括複數收發器以使得WTRU 102能夠經由複數RAT進行通信,例如NR和IEEE 802.11。The transceiver 120 may be configured to modulate the signal to be transmitted by the transmission/reception element 122 and be configured to demodulate the signal received by the transmission/reception element 122. As mentioned above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 may include multiple transceivers to enable the WTRU 102 to communicate via multiple RATs, such as NR and IEEE 802.11.

WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如,液晶顯示(LCD)顯示單元或者有機發光二極體(OLED)顯示單元),並且可以從揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如,液晶顯示(LCD)顯示單元或者有機發光二極體(OLED)顯示單元)接收使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126、和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自任何類型的合適的記憶體的資訊,以及在該任何類型的合適的記憶體中儲存資料,該記憶體例如可以是非可移記憶體130和/或可移記憶體132。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或者任何其他類型的記憶體儲存裝置。可移記憶體132可以包括用戶身分模組(SIM)卡、記憶條、安全數位(SD)記憶卡等。在其他實施例中,處理器118可以存取來自實體上未位於WTRU 102上(例如位於伺服器或者家用電腦(未示出)上)的記憶體的資訊,以及在該記憶體中儲存資料。The processor 118 of the WTRU 102 may be coupled to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (for example, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), In addition, user input data may be received from the speaker/microphone 124, the keypad 126, and/or the display/touch panel 128 (for example, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit). The processor 118 can also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128. In addition, the processor 118 can access information from any type of suitable memory, and store data in any type of suitable memory. The memory may be, for example, non-removable memory 130 and/or removable memory.体132. The non-removable memory 130 may include random access memory (RAM), read-only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from memory that is not physically located on the WTRU 102 (such as on a server or a home computer (not shown)), and store data in the memory.

處理器118可以從電源134接收電能,並且可以被配置成將該電能分配給WTRU 102中的其他組件和/或對在WTRU 102中的其他組件的電能進行控制。電源134可以是任何用於給WTRU 102供電的適當裝置。例如,電源134可以包括一個或複數乾電池組(例如,鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。The processor 118 may receive power from the power source 134 and may be configured to distribute the power to other components in the WTRU 102 and/or to control the power of other components in the WTRU 102. The power source 134 may be any suitable device for powering the WTRU 102. For example, the power source 134 may include one or more dry battery packs (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like.

處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的目前位置的位置資訊(例如,經度和緯度)。WTRU 102可以藉由空中介面116從基地台(例如,基地台114a、114b)接收加上或取代GPS晶片組136資訊之位置資訊,和/或基於從兩個或更多個相鄰基地台接收到的信號的時序來確定其位置。應當理解,在與實施例保持一致的同時,WTRU 102可以藉由任何合適的位置確定方法來獲取位置資訊。The processor 118 may also be coupled to a GPS chipset 136, which may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. The WTRU 102 may receive location information in addition to or in place of the GPS chipset 136 information from base stations (eg, base stations 114a, 114b) through the air interface 116, and/or based on receiving from two or more adjacent base stations The timing of the received signal determines its location. It should be understood that while being consistent with the embodiment, the WTRU 102 may obtain location information by any suitable location determination method.

處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括提供附加特徵、功能和/或無線或有線連接的一個或複數軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強實境(VR/AR)裝置,活動追蹤器等等。週邊設備138可以包括一個或複數感測器,感測器可以是以下中的一者或多者:陀螺儀、加速計、霍爾效應感測器、磁力計、方位感測器、接近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物感測器、和/或濕度感測器。The processor 118 may also be coupled to other peripheral devices 138, which may include one or more software and/or hardware modules that provide additional features, functions, and/or wireless or wired connections. For example, the peripheral device 138 may include an accelerometer, an electronic compass (e-compass), a satellite transceiver, a digital camera (for photos and/or video), a universal serial bus (USB) port, a vibration device, a TV transceiver, Hands-free headsets, Bluetooth® modules, frequency modulation (FM) radio units, digital music players, media players, video game console modules, Internet browsers, virtual reality and/or augmented reality (VR/AR) ) Devices, activity trackers, etc. The peripheral device 138 may include one or more sensors, and the sensors may be one or more of the following: gyroscope, accelerometer, Hall effect sensor, magnetometer, orientation sensor, proximity sensor Sensor, temperature sensor, time sensor, geographic location sensor, altimeter, light sensor, touch sensor, magnetometer, barometer, gesture sensor, biosensor, and/or Humidity sensor.

WTRU 102可以包括全雙工無線電,對於該全雙工無線電,一些或全部信號(例如,與用於UL(例如,用於傳輸)和下鏈(例如用於接收)兩者的特別子訊框相關聯)的傳輸和接收可以是並行和/或同時的。全雙工無線電可以包括干擾管理單元139,以藉由硬體(例如扼流圈)或經由處理器(例如,各別的處理器(未示出)或者經由處理器118)的信號處理來減少和/或實質上消除自干擾。在一種實施例中,WRTU 102可以包括一些或全部信號的傳輸和接收(例如,與用於UL(例如,用於傳輸)或下鏈(例如,用於接收)的特別子訊框相關聯)的半雙工無線電。The WTRU 102 may include a full-duplex radio, for which some or all of the signals (eg, with special subframes for both UL (eg, for transmission) and downlink (eg, for reception)) Related) transmission and reception can be parallel and/or simultaneous. The full-duplex radio may include an interference management unit 139 to reduce signal processing by hardware (such as a choke coil) or through a processor (such as a separate processor (not shown) or through the processor 118). And/or substantially eliminate self-interference. In one embodiment, WRTU 102 may include the transmission and reception of some or all of the signals (for example, associated with special subframes for UL (for example, for transmission) or downlink (for example, for reception)) Half-duplex radio.

圖1C是示出了根據一種實施例的RAN 104及CN 106的系統圖。如上所述,RAN 104可使用E-UTRA無線電技術藉由空中介面116與WTRU 102a、102b和102c通信。RAN 104還可以與CN 106進行通信。FIG. 1C is a system diagram showing the RAN 104 and the CN 106 according to an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, and 102c over the air interface 116 using E-UTRA radio technology. The RAN 104 can also communicate with the CN 106.

RAN 104可包括e節點B 160a、160b、160c,但應當理解的是在與實施例保持一致的同時,RAN 104可以包括任意數量的e節點B。e節點B 160a、160b、160c每一者均可包括一個或複數用於藉由空中介面116與WTRU 102a、102b、102c通信的收發器。在一種實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,e節點B 160a例如可以使用複數天線來向WTRU 102a傳送無線信號和/或從它接收無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, but it should be understood that the RAN 104 may include any number of eNodeBs while being consistent with the embodiment. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers for communicating with the WTRU 102a, 102b, 102c via the air interface 116. In an embodiment, the eNodeB 160a, 160b, 160c may implement MIMO technology. Therefore, the eNodeB 160a may, for example, use multiple antennas to transmit wireless signals to and/or receive wireless signals from the WTRU 102a.

e節點B 160a、160b、160c的每一個可與特別的胞元(未示出)相關聯,並且可被配置為處理無線電資源管理決定、交接決定、排程在UL和/或DL中的使用者等。如圖1C所示,e節點B 160a、160b、160c可透過X2介面互相通信。Each of the eNodeBs 160a, 160b, 160c can be associated with a special cell (not shown), and can be configured to handle radio resource management decisions, handover decisions, scheduling use in UL and/or DL者 etc. As shown in Figure 1C, eNodeBs 160a, 160b, and 160c can communicate with each other through the X2 interface.

圖1C中示出的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164和封包資料網路(PDN)閘道(或者PGW)166。儘管前述每一個元件被描述為CN 106的一部分,但應理解這些元件的任何一個可以由除CN操作者之外的實體所擁有和/或操作。The CN 106 shown in FIG. 1C may include a mobility management entity (MME) 162, a service gateway (SGW) 164, and a packet data network (PDN) gateway (or PGW) 166. Although each of the foregoing elements is described as part of CN 106, it should be understood that any of these elements may be owned and/or operated by entities other than the CN operator.

MME 162可藉由S1介面與RAN 104中的e節點B 162a、162b、162c的每一個相連接,並且可作為控制節點。例如,MME 162可負責認證WTRU 102a、102b、102c的使用者、承載啟動/去啟動、在WTRU 102a、102b、102c初始附著期間選取特別的服務閘道等。MME 162可提供用於在RAN 104和採用諸如GSM和/或WCDMA這樣的其他無線電技術的其他RAN(未示出)之間切換的控制平面功能。The MME 162 can be connected to each of the eNodeBs 162a, 162b, and 162c in the RAN 104 through the S1 interface, and can serve as a control node. For example, the MME 162 may be responsible for authenticating users of WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a special service gateway during the initial attachment of WTRUs 102a, 102b, 102c, and so on. The MME 162 may provide control plane functions for switching between the RAN 104 and other RANs (not shown) that employ other radio technologies such as GSM and/or WCDMA.

SGW 164可藉由S1介面與RAN 104中的e節點B 160a、160b、160c的每一個相連接。SGW 164通常可路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在e節點B間交接期間錨定使用者平面、當DL資料對WTRU 102a、102b、102c可用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等。The SGW 164 can be connected to each of the eNodeBs 160a, 160b, and 160c in the RAN 104 through the S1 interface. The SGW 164 can generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The SGW 164 may also perform other functions, such as anchoring the user plane during the handover between eNodeBs, triggering paging when DL data is available to the WTRUs 102a, 102b, and 102c, managing and storing the context of the WTRUs 102a, 102b, and 102c, and so on.

SGW 164可與PGW 166相連接,其可向WTRU 102a、102b、102c提供到諸如網際網路110這樣的封包交換網路的存取,以便於WTRU 102a、102b、102c和IP賦能裝置之間的通信。SGW 164 can be connected to PGW 166, which can provide WTRU 102a, 102b, 102c with access to a packet-switched network such as the Internet 110 to facilitate communication between WTRU 102a, 102b, 102c and IP-enabled devices Communication.

CN 106可便於與其他網路的通信。例如,CN 106可向WTRU 102a、102b、102c提供到諸如PSTN 108這樣的電路切換式網路的存取,以便於WTRU 102a、102b、102c和傳統陸線通信裝置之間的通信。例如,CN 106可包括作為CN 106和PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)或與該IP閘道通信。此外,CN 106可向WTRU 102a、102b、102c提供到其他網路112的存取,該其他網路112可包括由其他服務提供者擁有和/或操作的其他有線或無線網路。CN 106 can facilitate communication with other networks. For example, the CN 106 may provide the WTRUs 102a, 102b, 102c with access to a circuit-switched network such as the PSTN 108 to facilitate communication between the WTRUs 102a, 102b, 102c and traditional landline communication devices. For example, the CN 106 may include or communicate with an IP gateway (such as an IP Multimedia Subsystem (IMS) server) as an interface between the CN 106 and the PSTN 108. Additionally, the CN 106 may provide the WTRUs 102a, 102b, 102c with access to other networks 112, which may include other wired or wireless networks owned and/or operated by other service providers.

儘管WTRU在圖1A至圖1D中被描述為無線終端,但是可以預期的是,在某些代表性的實施例中,這樣的終端可(例如,臨時地或永久地)使用與通信網路的有線通信介面。Although the WTRU is described as a wireless terminal in FIGS. 1A to 1D, it is expected that in certain representative embodiments, such a terminal may (e.g., temporarily or permanently) use the communication network Wired communication interface.

在代表性實施例中,其他網路112可以是WLAN。In a representative embodiment, the other network 112 may be a WLAN.

基礎設施基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。AP可以具有對分散式系統(DS)或其他類型的有線/無線網路的存取或介面,其將訊務傳入和/或傳出BSS。源於BSS外部到STA的訊務可藉由AP到達,並可被遞送到STA。源於STA往BSS之外的目的地的訊務可以被發送到AP以遞送到分別目的地。BSS內的STA之間的訊務可以藉由AP發送,例如,其中源STA可以將訊務發送到AP並且AP可以將訊務遞送到目的地STA。BSS內的STA之間的訊務可以被視為和/或被稱為對等訊務。對等訊務可以使用直接鏈路建立(DLS)在源STA和目的STA之間(例如,直接在它們之間)發送。在某些代表性實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式有時可以被稱為 “特定(ad-hoc)”通信模式。A WLAN in an infrastructure basic service set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STA) associated with the AP. APs may have access or interfaces to distributed systems (DS) or other types of wired/wireless networks, which pass traffic into and/or out of the BSS. The traffic from outside the BSS to the STA can be reached by the AP and can be delivered to the STA. Traffic originating from the STA to destinations other than the BSS can be sent to the AP for delivery to the respective destinations. The traffic between STAs in the BSS can be sent by the AP, for example, the source STA can send the traffic to the AP and the AP can deliver the traffic to the destination STA. The traffic between STAs in the BSS can be considered and/or referred to as peer-to-peer traffic. Peer-to-peer traffic can be sent between the source STA and the destination STA (for example, directly between them) using direct link establishment (DLS). In some representative embodiments, DLS may use 802.11e DLS or 802.11z tunneled DLS (TDLS). A WLAN using an independent BSS (IBSS) mode may not have an AP, and STAs within or using IBSS (for example, all STAs) can directly communicate with each other. The IBSS communication mode can sometimes be referred to as an "ad-hoc" communication mode.

當使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。主通道可以是固定寬度(例如,20MHz寬頻寬)或經由傳訊動態設定寬度。主通道可以是BSS的操作通道並且可以由STA用來建立與AP的連接。在某些代表性實施例中,可以例如在802.11系統中實施具有衝突避免的載波偵聽多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如,每個STA)可以感測主通道。如果主通道被特別STA感測/偵測到和/或被確定為繁忙,則該特別STA可退移(back off)。一個STA(例如,僅一個站)可以在給定的BSS中的任何給定時間傳送。When using the 802.11ac infrastructure operating mode or a similar operating mode, the AP can transmit beacons on a fixed channel (such as the main channel). The main channel can have a fixed width (for example, 20MHz wide bandwidth) or dynamically set the width through transmission. The main channel can be the operating channel of the BSS and can be used by the STA to establish a connection with the AP. In some representative embodiments, Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) may be implemented, for example, in an 802.11 system. For CSMA/CA, STAs including APs (for example, each STA) can sense the main channel. If the main channel is sensed/detected by a special STA and/or is determined to be busy, the special STA may back off. One STA (for example, only one station) can transmit at any given time in a given BSS.

高輸送量(HT)STA可以使用40MHz寬的通道進行通信,例如,藉由將主20MHz通道與相鄰或不相鄰的20MHz通道組合以形成40MHz寬通道。High throughput (HT) STAs can communicate using 40MHz wide channels, for example, by combining the main 20MHz channel with adjacent or non-adjacent 20MHz channels to form a 40MHz wide channel.

超高輸送量(VHT)STA可支援20MHz、40MHz、80MHz和/或160MHz寬通道。40MHz和/或80MHz通道可以藉由組合連續的20MHz通道來形成。可以藉由組合8個連續的20MHz通道或藉由組合兩個不連續的80MHz通道(其可以被稱為80 + 80配置)來形成160MHz通道。對於80 + 80配置,在通道編碼之後,資料可以藉由可將資料劃分為兩個流的分段解析器。逆快速傅立葉轉換(IFFT)處理和時域處理可以各別在每個流上完成。這些流可以被映射到兩個80MHz通道上,並且資料可以由傳送STA來傳送。在接收STA的接收器處,用於80 + 80配置的上述操作可以逆向,並且可以將組合資料發送到媒體存取控制(MAC)。VHT STA can support 20MHz, 40MHz, 80MHz and/or 160MHz wide channels. 40MHz and/or 80MHz channels can be formed by combining continuous 20MHz channels. A 160MHz channel can be formed by combining 8 continuous 20MHz channels or by combining two discontinuous 80MHz channels (which can be called an 80+80 configuration). For the 80 + 80 configuration, after the channel is encoded, the data can be divided into two streams by a segmented parser. Inverse Fast Fourier Transform (IFFT) processing and time domain processing can be done separately on each stream. These streams can be mapped to two 80MHz channels, and the data can be transmitted by the transmitting STA. At the receiver of the receiving STA, the above operations for the 80+80 configuration can be reversed, and the combined data can be sent to the media access control (MAC).

子1 GHz操作模式由802.11af和802.11ah支援。802.11af和802.11ah中的通道操作頻寬和載波相對於802.11n和802.11ac中所使用的有所減少。802.11af支援在電視白空間(TVWS)頻譜中的5 MHz、10 MHz、和20 MHz頻寬,以及802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。根據代表性實施例,802.11ah可以支援諸如巨集覆蓋區域中的MTC裝置的儀表類型控制/機器類型通信。MTC裝置可以具有某些能力,例如,有限的能力包括支援(例如,僅支持)某些和/或有限的頻寬。MTC裝置可包括具有高於臨界值的電池壽命的電池(例如,以保持非常長的電池壽命)。The sub-1 GHz operating mode is supported by 802.11af and 802.11ah. The channel operating bandwidth and carrier in 802.11af and 802.11ah are reduced compared to those used in 802.11n and 802.11ac. 802.11af supports 5 MHz, 10 MHz, and 20 MHz bandwidths in the TV White Space (TVWS) spectrum, and 802.11ah supports 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths using non-TVWS spectrum . According to a representative embodiment, 802.11ah can support meter type control/machine type communication such as MTC devices in a macro coverage area. The MTC device may have certain capabilities, for example, limited capabilities include supporting (eg, only supporting) certain and/or limited bandwidth. The MTC device may include a battery with a battery life above a critical value (eg, to maintain a very long battery life).

可支援複數通道和通道頻寬(諸如802.11n、802.11ac、802.11af、和802.11ah)的WLAN系統包括可被指定為主通道的通道。主通道可以具有等於BSS中所有STA支援的最大共同操作頻寬的頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA來設定和/或限制。在802.11ah的範例中,即使BBS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz、和/或其它通道頻寬操作模式,對於支援(例如,僅支援)1MHz模式的STA(例如,MTC類型裝置),主通道可以是1MHz寬。載波感測和/或網路分配向量(NAV)設定可取決於主通道的狀態。如果主通道例如由於STA(其僅支援1MHz工作模式)向AP傳送而繁忙,則即使大部分頻帶保持空閒且可用,也可認為整個可用頻帶繁忙。WLAN systems that can support multiple channels and channel bandwidths (such as 802.11n, 802.11ac, 802.11af, and 802.11ah) include channels that can be designated as primary channels. The main channel may have a bandwidth equal to the maximum common operating bandwidth supported by all STAs in the BSS. The bandwidth of the main channel may be set and/or limited by STAs among all STAs operating in the BSS supporting the minimum bandwidth operation mode. In the 802.11ah example, even if the AP and other STAs in the BBS support 2MHz, 4MHz, 8MHz, 16MHz, and/or other channel bandwidth operation modes, for STAs that support (for example, only support) 1MHz mode (for example, MTC) Type device), the main channel can be 1MHz wide. Carrier sensing and/or network allocation vector (NAV) settings may depend on the status of the main channel. If the main channel is busy, for example, due to the STA (which only supports the 1MHz operating mode) transmitting to the AP, even if most of the frequency band remains free and available, the entire available frequency band can be considered busy.

在美國,可由802.11ah使用的可用頻段從902MHz到928MHz。在韓國,可用頻段從917.5 MHz到923.5 MHz。在日本,可用頻段從916.5 MHz到927.5 MHz。根據國家代碼,802.11ah可用的總頻寬為6 MHz至26 MHz。In the United States, the available frequency bands that can be used by 802.11ah range from 902MHz to 928MHz. In South Korea, the available frequency band ranges from 917.5 MHz to 923.5 MHz. In Japan, the available frequency band ranges from 916.5 MHz to 927.5 MHz. According to the country code, the total bandwidth available for 802.11ah is 6 MHz to 26 MHz.

圖1D是示出了根據實施例的RAN 113和CN 115的系統圖。如上所述,RAN 113可以採用NR無線電技術藉由空中介面116與WTRU 102a、102b、102c通信。RAN 113也可以與CN 115通信。FIG. 1D is a system diagram showing the RAN 113 and the CN 115 according to the embodiment. As described above, the RAN 113 can communicate with the WTRUs 102a, 102b, 102c through the air interface 116 using NR radio technology. RAN 113 can also communicate with CN 115.

RAN 113可以包括gNB 180a、180b、180c,但是應該理解的是RAN 113可以包括任意數量的gNB,同時保持與實施例一致。每個gNB 180a、180b、180c可以包括一個或複數收發器以用於與WTRU 102a、102b、102c藉由空中介面116進行通信。在一種實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、108b可以利用波束成形來向gNB 180a、180b、180c傳送信號和/或從gNB 180a、180b、180c接收信號。因此,gNB 180a例如可以使用複數天線來傳送無線信號到WTRU 102a和/或接收來自WTRU 102a的無線信號。在一種實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送複數分量載波(未示出)。這些分量載波的子集可以在未經許可的頻譜上,而其餘的分量載波可以在經許可的頻譜上。在一種實施例中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a和gNB 180b(和/或gNB 180c)接收協調傳輸。The RAN 113 may include gNB 180a, 180b, and 180c, but it should be understood that the RAN 113 may include any number of gNBs while remaining consistent with the embodiment. Each gNB 180a, 180b, 180c may include one or a plurality of transceivers for communicating with the WTRU 102a, 102b, 102c through the air interface 116. In an embodiment, gNB 180a, 180b, and 180c may implement MIMO technology. For example, gNB 180a, 108b may utilize beamforming to transmit signals to and/or receive signals from gNB 180a, 180b, 180c. Therefore, gNB 180a may, for example, use multiple antennas to transmit wireless signals to and/or receive wireless signals from WTRU 102a. In an embodiment, gNB 180a, 180b, and 180c may implement carrier aggregation technology. For example, gNB 180a may transmit complex component carriers (not shown) to WTRU 102a. A subset of these component carriers can be on the unlicensed spectrum, while the remaining component carriers can be on the licensed spectrum. In an embodiment, the gNB 180a, 180b, and 180c may implement coordinated multipoint (CoMP) technology. For example, the WTRU 102a may receive coordinated transmissions from gNB 180a and gNB 180b (and/or gNB 180c).

WTRU 102a、102b、102c可以使用與可縮放參數配置相關聯的傳輸與gNB 180a、180b、180c通信。例如,對於不同的傳輸、不同的胞元、和/或無線傳輸頻譜的不同部分,OFDM符號間距和/或OFDM子載波間距可以變化。WTRU 102a、102b、102c可以使用各種或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如,含有不同數量的OFDM符號和/或持續改變絕對時間的長度)與gNB 180a、180b、180c通信。The WTRU 102a, 102b, 102c may communicate with gNB 180a, 180b, 180c using transmissions associated with the scalable parameter configuration. For example, for different transmissions, different cells, and/or different parts of the wireless transmission spectrum, the OFDM symbol spacing and/or OFDM subcarrier spacing may vary. The WTRU 102a, 102b, 102c may use sub-frames or transmission time intervals (TTIs) of various or scalable lengths (for example, contain different numbers of OFDM symbols and/or continuously change the length of the absolute time) and gNB 180a, 180b, 180c Communication.

gNB 180a、180b、180c可以被配置為以分立配置和/或非分立配置與 WTRU 102a、102b、102c通信。在分立配置中,WTRU102a、102b、102c可以與gNB180a、180b、180c進行通信,而無需也存取其他RAN(例如,諸如e節點B 160a、160b、160c)。在分立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c 中的一者或多者作為行動錨點。在分立配置中,WTRU 102a、102b、102c可以使用未經許可頻帶中的信號與gNB 180a、180b、180c進行通信。在非分立配置中,WTRU 102a、102b、102c可以與 gNB 180a、180b、180c通信/連接到 gNB 180a、180b、180c,同時還與另一RAN(例如,e節點B 160a、160b、160c)通信/連接。例如,WTRU 102a、102b、102c可以實施DC原理以與一個或複數gNB 180a、180b、180c和一個或複數e節點B160a、160b、160c實質上同時通信。在非分立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動性錨,以及gNB 180a、180b、180c可以為服務WTRU 102a、102b、102c提供額外的覆蓋和/或輸送量。The gNB 180a, 180b, 180c may be configured to communicate with the WTRU 102a, 102b, 102c in a discrete configuration and/or a non-discrete configuration. In a discrete configuration, the WTRU 102a, 102b, 102c can communicate with gNB 180a, 180b, 180c without also accessing other RANs (such as eNodeB 160a, 160b, 160c, for example). In a discrete configuration, the WTRU 102a, 102b, 102c may use one or more of the gNB 180a, 180b, 180c as the anchor point of action. In a discrete configuration, the WTRU 102a, 102b, 102c may use signals in the unlicensed frequency band to communicate with the gNB 180a, 180b, 180c. In a non-discrete configuration, the WTRU 102a, 102b, 102c can communicate with/connect to gNB 180a, 180b, 180c with gNB 180a, 180b, 180c, while also communicating with another RAN (for example, eNodeB 160a, 160b, 160c) /connection. For example, the WTRU 102a, 102b, 102c may implement the DC principle to communicate with one or more gNBs 180a, 180b, 180c and one or more eNodeBs 160a, 160b, 160c substantially simultaneously. In a non-discrete configuration, the eNodeB 160a, 160b, 160c may act as the mobility anchor for the WTRU 102a, 102b, 102c, and the gNB 180a, 180b, 180c may provide additional coverage and/or for the serving WTRU 102a, 102b, 102c Delivery volume.

gNB 180a、180b、180c中的每一個可以與特別胞元(未示出)相關聯,並且可以被配置為處理無線電資源管理決定、交接決定、UL和/或DL中使用者的排程、網路截割支援、雙重連線性、NR與E-UTRA之間的互通、使用者平面資料向使用者平面功能(UPF)184a、184b的路由,控制平面資訊向存取及移動性管理功能(AMF)182a、182b的路由等。如圖1D所示,gNB 180a、180b、180c可以藉由Xn介面彼此通信。Each of gNB 180a, 180b, 180c can be associated with a special cell (not shown), and can be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and/or DL, and network Road cutting support, dual connectivity, intercommunication between NR and E-UTRA, routing of user plane data to user plane functions (UPF) 184a, 184b, control plane information access and mobility management functions ( AMF) routing of 182a, 182b, etc. As shown in Figure 1D, gNB 180a, 180b, and 180c can communicate with each other through the Xn interface.

在圖1D中所示的CN 115可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,以及可能的資料網路(DN)185a、185b。雖然前述的每個元件都被描述為 CN 115的一部分,但是應當理解的是,任何這些元件可以由除了CN操作者之外的實體擁有和/操作。The CN 115 shown in FIG. 1D may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and possibly data networks (DN) 185a, 185b. Although each of the aforementioned elements is described as part of the CN 115, it should be understood that any of these elements can be owned and/operated by entities other than the CN operator.

AMF 182a、182b可以經由N2介面連接到RAN 113中的一個或複數gNB 180a、180b、180c,並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者,支援網路截割(例如,處理具有不同要求的不同PDU對話),選擇特別SMF 183a、183b,管理註冊區域,NAS傳訊的終止,行動性管理等。網路截割可以由AMF 182a、182b使用,以基於WTRU 102a、102b、102c正利用的服務類型為WTRU 102a、102b、102c定制CN支持。例如,可以為不同的用例建立不同的網路截割,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、用於機器類型通信(MTC)存取的服務,和/或類似的服務。該AMF 162可以為在RAN 113和使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro,和/或例如WiFi的非3GPP存取技術)的其他RAN(未示出)之間的切換提供控制平面功能。The AMF 182a, 182b can be connected to one or a plurality of gNBs 180a, 180b, 180c in the RAN 113 via the N2 interface, and can act as a control node. For example, AMF 182a, 182b can be responsible for authenticating users of WTRU 102a, 102b, 102c, supporting network interception (for example, processing different PDU conversations with different requirements), selecting special SMF 183a, 183b, managing registration areas, and NAS messaging Termination, mobility management, etc. Network cutting can be used by AMF 182a, 182b to customize CN support for WTRU 102a, 102b, 102c based on the type of service being utilized by WTRU 102a, 102b, 102c. For example, you can create different network cuts for different use cases, such as services that rely on ultra-reliable low-latency (URLLC) access, services that rely on enhanced large-scale mobile broadband (eMBB) access, and machine Type of communication (MTC) access services, and/or similar services. The AMF 162 may be an interface between the RAN 113 and other RANs (not shown) that use other radio technologies (for example, LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi) The switch provides control plane functions.

SMF 183a、183b可以經由N11介面連接到在CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到在CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並配置藉由UPF 184a、184b的訊務的路由。SMF 183a、183b可以執行其他功能,例如管理和分配WTRU IP位址、管理PDU對話、控制策略實施和QoS、提供下鏈資料通知等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。The SMF 183a, 183b can be connected to the AMF 182a, 182b in the CN 115 via the N11 interface. SMF 183a, 183b can also be connected to UPF 184a, 184b in CN 115 via N4 interface. SMF 183a, 183b can select and control UPF 184a, 184b, and configure the routing of traffic through UPF 184a, 184b. SMF 183a, 183b can perform other functions, such as managing and assigning WTRU IP address, managing PDU dialogue, controlling policy implementation and QoS, and providing notification of downlink data. The PDU dialog type can be IP-based, non-IP-based, Ethernet-based, and so on.

UPF 184a、184b可以經由N3介面連接到RAN 113中的一個或複數gNB 180a、180b、180c,其可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。UPF 184a、184b可以執行其他功能,例如路由和轉發封包、執行使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝下鏈封包、提供行動性錨定等。UPF 184a, 184b can be connected to one or a plurality of gNBs 180a, 180b, 180c in RAN 113 via N3 interface, which can provide WTRU 102a, 102b, 102c with access to a packet switching network (such as Internet 110), To facilitate communication between the WTRU 102a, 102b, 102c and the IP-enabled device. UPF 184a, 184b can perform other functions, such as routing and forwarding packets, implementing user plane policies, supporting multi-homed PDU dialogue, handling user plane QoS, buffering downstream packets, and providing mobility anchors.

CN 115可以促進與其他網路的通信。例如,CN 115可以包括IP閘道,或者可與之通信(例如,IP多媒體子系統(IMS)伺服器),其用作CN 115和PSTN 108之間的介面。另外,CN 115可以向WTRU 102a、102b、102c提供對其他網路112的存取,其他網路112可以包括由其他服務提供者擁有和/或操作的其他有線和/或無線網路。在一種實施例中,WTRU 102a、102b、102c可以經由到UPF 184a、184b的N3介面以及UPF 184a、184b與本地資料網路(DN)185a、185b之間的N6介面藉由UPF184a、184b連接到DN 185a、185b。CN 115 can facilitate communication with other networks. For example, the CN 115 may include an IP gateway, or may communicate with it (for example, an IP Multimedia Subsystem (IMS) server), which serves as an interface between the CN 115 and the PSTN 108. Additionally, the CN 115 may provide the WTRUs 102a, 102b, 102c with access to other networks 112, which may include other wired and/or wireless networks owned and/or operated by other service providers. In one embodiment, the WTRU 102a, 102b, 102c can be connected to the UPF 184a, 184b through the N3 interface and the UPF 184a, 184b and the local data network (DN) 185a, 185b through the N6 interface through the UPF 184a, 184b. DN 185a, 185b.

參考圖1A至圖1D以及圖1A至圖1D的相應描述,對於以下中的一者或多者這裡描述的一種或多種或所有功能可以由一個或複數模擬裝置(未示出)執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b,和/或本文描述的任何其他裝置。模擬裝置可以是被配置為模擬本文描述的一個或複數或所有功能的一個或複數裝置。例如,模擬裝置可以用於測試其他裝置和/或模擬網路和/或WTRU功能。With reference to FIGS. 1A to 1D and the corresponding descriptions of FIGS. 1A to 1D, one or more or all of the functions described herein for one or more of the following may be performed by one or more analog devices (not shown): WTRU 102a -d, base station 114a-b, eNodeB 160a-c, MME 162, SGW 164, PGW 166, gNB 180a-c, AMF 182a-b, UPF 184a-b, SMF 183a-b, DN 185a-b, And/or any other devices described herein. The simulation device may be one or a plurality of devices configured to simulate one or more or all of the functions described herein. For example, the simulation device can be used to test other devices and/or simulate network and/or WTRU functions.

模擬裝置可以被設計為實施實驗室環境中和/或操作者網路環境中的其他裝置的一個或複數測試。例如,一個或複數模擬裝置可在完全或部分地作為有線和/或無線通訊網路的一部分實施和/或部署的同時執行一個或複數或所有功能,以測試通信網路內的其他裝置。一個或複數模擬裝置可以在作為有線和/或無線通訊網路的一部分臨時實施/部署的同時執行一個或複數或所有功能。模擬裝置可以為了測試的目的直接耦合到另一個裝置和/或可以使用空中無線通訊執行測試。The simulation device can be designed to perform one or more tests of other devices in the laboratory environment and/or the operator's network environment. For example, one or a plurality of analog devices may be implemented and/or deployed as part of a wired and/or wireless communication network while performing one or a plurality or all of the functions to test other devices in the communication network. One or more analog devices can perform one or more or all functions while temporarily implemented/deployed as part of a wired and/or wireless communication network. The simulation device can be directly coupled to another device for testing purposes and/or can use air wireless communication to perform testing.

一個或複數模擬裝置可以執行包括所有功能的一個或複數功能,而不是作為有線和/或無線通訊網路的一部分來實施/部署。例如,模擬裝置可以在測試實驗室和/或非部署(例如,測試)有線和或無線通訊網路中的測試場景被利用以實施一個或複數組件的測試。一個或複數模擬裝置可以是測試設備。模擬裝置可以使用經由RF電路(例如,其可以包括一個或複數天線)的直接RF耦合和/或無線通訊來傳送和/或接收資料。One or plural analog devices can perform one or plural functions including all functions, rather than being implemented/deployed as part of a wired and/or wireless communication network. For example, the simulation device can be utilized in test laboratories and/or non-deployed (for example, testing) wired and or wireless communication network test scenarios to implement testing of one or more components. One or more simulation devices can be test equipment. The analog device may use direct RF coupling and/or wireless communication via an RF circuit (for example, it may include one or multiple antennas) to transmit and/or receive data.

在無線通訊中,隨著載波頻率的增加,嚴重的路徑損耗可能成為保證足夠覆蓋的關鍵限制。毫米波(mmW)系統中的傳輸可能另外遭受非視線損耗,例如繞射損耗、穿透損耗、氧氣吸收損耗和/或葉片損耗。在初始存取期間,基地台和WTRU可能需要克服這些高路徑損耗並互相發現。利用幾十甚至幾百個天線元件來產生波束成形信號是一種藉由提供顯著的波束成形增益來補償嚴重路徑損耗的有效方式。波束成形技術可以包括數位波束成形、類比波束成形和混合波束成形。In wireless communications, as the carrier frequency increases, severe path loss may become a key limitation to ensure adequate coverage. Transmission in millimeter wave (mmW) systems may additionally suffer from non-line-of-sight losses, such as diffraction loss, penetration loss, oxygen absorption loss, and/or blade loss. During the initial access, the base station and the WTRU may need to overcome these high path losses and discover each other. Using dozens or even hundreds of antenna elements to generate beamforming signals is an effective way to compensate for severe path loss by providing significant beamforming gain. Beamforming techniques may include digital beamforming, analog beamforming, and hybrid beamforming.

在3GPP車聯網(V2X)標準化過程中,考慮了若干用例,這其中包括以下用例組:車輛隊伍化(vehicle platooning)、擴展感測器、高級駕駛和遠端駕駛。每個用例組可以具有不同的潛時、可靠性和資料速率要求,例如表1中總結的範例。 用例組 端到端潛時 (ms) 可靠性 (%) 資料速率(Mbps) 車輛隊伍化 10 99.99 65 高級駕駛 3 99.999 53 擴展感測器 3 99.999 1000 遠程駕駛 5 99.999 UL: 25, DL: 1 表1:V2X用例組的範例潛時、可靠性和資料速率要求In the 3GPP Internet of Vehicles (V2X) standardization process, several use cases were considered, including the following use case groups: vehicle platooning, extended sensors, advanced driving, and remote driving. Each use case group can have different latency, reliability, and data rate requirements, such as the examples summarized in Table 1. Use case group End-to-end dive time (ms) reliability(%) Data rate (Mbps) Vehicle fleet 10 99.99 65 Advanced driving 3 99.999 53 Extended sensor 3 99.999 1000 Remote driving 5 99.999 UL: 25, DL: 1 Table 1: Sample latency, reliability and data rate requirements of the V2X use case group

每個用例組內的用例可以具有不同的潛時、可靠性和/或資料速率要求。例如,視訊共用場景中的較低自動化程度(其可以是擴展感測器用例組的一部分)可以具有50 ms的潛時要求、90%的可靠性要求和10 Mbps的資料速率要求。在另一範例中,在支援V2X應用的WTRU之間共用感測器資訊的較高自動化程度(其也可以是擴展感測器用例組的一部分)可具有3 ms潛時要求、99.999%可靠性要求和25 Mbps資料速率要求。The use cases within each use case group can have different latency, reliability, and/or data rate requirements. For example, a lower degree of automation in a video sharing scenario (which can be part of an extended sensor use case set) may have a latency requirement of 50 ms, a reliability requirement of 90%, and a data rate requirement of 10 Mbps. In another example, a higher degree of automation in sharing sensor information between WTRUs supporting V2X applications (which can also be part of an extended sensor set) can have a 3 ms latency requirement and 99.999% reliability Requirements and 25 Mbps data rate requirements.

在3GPP V2X中,車輛可以處於傳輸模式3(即,模式3使用者)或者可以處於傳輸模式4(即,模式4使用者)。模式3使用者可以直接使用基地台分配的資源用於車輛之間或車輛與行人之間的側鏈(SL)通信。模式4使用者可以獲得基地台分配的候選資源列表,並在該候選資源中選擇資源用於其SL通信。在此,使用者、UE、WTRU和車輛WTRU可以等同地且可互換地指代車輛。In 3GPP V2X, the vehicle can be in transmission mode 3 (ie, mode 3 user) or can be in transmission mode 4 (ie, mode 4 user). Mode 3 users can directly use the resources allocated by the base station for side-chain (SL) communication between vehicles or between vehicles and pedestrians. Mode 4 users can obtain a list of candidate resources allocated by the base station, and select resources from the candidate resources for their SL communication. Here, user, UE, WTRU, and vehicle WTRU may equally and interchangeably refer to vehicle.

圖2是例如根據5G NR V2X和/或LTE V2X的用於V2X側鏈傳輸的(車輛)WTRU 201和gNB和/或eNB 202之間的通信的範例側鏈WTRU資訊交換過程200的傳訊圖。一旦WTRU 201駐紮在與gNB/eNB 202相關聯的胞元上,WTRU 201就可以接收系統資訊區塊(SIB)類型21(SIB21)204,其可以包含V2X側鏈通信配置。例如,SIB21 204可以包括SL-V2X-ConfigCommon 資訊元素(IE),其可以包括但不限於包括分量v2x-CommRxPoolv2x-CommTxPoolNormalCommonv2-CommTxPoolExceptional 和/或v2x-InterFreqInfoListv2x-InterFreqInfoList 可以是關於用於V2X側鏈通信的相鄰頻率(例如,多達七個相鄰頻率)的列表。WTRU 201可以在一個或複數消息中向gNB/eNB 202發送側鏈WTRU資訊206。例如,作為側鏈WTRU資訊206的一部分,車輛WTRU 201可以發送消息(一個或複數)到gNB/eNB 202,該消息向gNB/eNB 202指示WTRU 201對接收V2X側鏈通信和/或請求指派和/或釋放用於V2X側鏈通信的傳輸資源感興趣(或不感興趣)。WTRU 201和gNB/eNB 202可以交換一個或複數RRCConnectionReconfiguration(RRC連接重配置)消息208,其可以包括SL-V2X-ConfigDedicated IE。例如,該SL-V2X-ConfigDedicated IE可包括但不限於commTxResources 和/或V2x-InterFreqInfoList2 is a signaling diagram of an exemplary side-chain WTRU information exchange process 200 for communication between a (vehicle) WTRU 201 and gNB and/or eNB 202 for V2X side-chain transmission, for example, according to 5G NR V2X and/or LTE V2X. Once the WTRU 201 is camped on the cell associated with the gNB/eNB 202, the WTRU 201 may receive System Information Block (SIB) type 21 (SIB21) 204, which may include a V2X side chain communication configuration. For example, SIB21 204 may include SL-V2X-ConfigCommon information element (IE), which may include but is not limited to including components v2x-CommRxPool , v2x-CommTxPoolNormalCommon , v2-CommTxPoolExceptional and/or v2x-InterFreqInfoList . v2x-InterFreqInfoList may be a list about adjacent frequencies (for example, up to seven adjacent frequencies) used for V2X side chain communication. The WTRU 201 may send the side chain WTRU information 206 to the gNB/eNB 202 in one or multiple messages. For example, as part of the side chain WTRU information 206, the vehicle WTRU 201 may send a message (one or more) to the gNB/eNB 202, which indicates to the gNB/eNB 202 that the WTRU 201 is willing to receive V2X side chain communications and/or request assignment and / Or are interested (or not interested) in releasing the transmission resources used for V2X side chain communication. The WTRU 201 and the gNB/eNB 202 may exchange one or more RRCConnectionReconfiguration messages 208, which may include the SL-V2X-ConfigDedicated IE. For example, the SL-V2X-ConfigDedicated IE may include but is not limited to commTxResources and/or V2x-InterFreqInfoList .

關於NR V2X的研究項目考慮基於Uu的側鏈資源分配/重配置,以識別關於LTE Uu介面和NR Uu介面的增強,以控制來自蜂巢網路的NR側鏈,以及識別NR Uu介面的增強,以控制來自蜂巢網路的LTE側鏈通信。在LTE V2X同步的上下文中,當WTRU連接到eNB時,WTRU可能已經具有胞元時序。如果WTRU不在eNB的覆蓋範圍內,則WTRU可以使用全球導航衛星系統(GNSS)來進行時序同步。當WTRU不能從eNB或GNSS找到時序時,WTRU可以依賴於側鏈WTRU來用於時序資訊。GNSS衛星具有提供穩定和精確的時間參考的原子振盪器。GNSS接收器可追蹤來自複數衛星的信號,且檢索用於全球定位系統(GPS)接收器的具有小於1μs的絕對誤差的本地時間參考。對於協調多點傳輸,使用GPS的殘差可以是大約10 ns。GNSS可藉由將本地振盪器鎖相到傳入信號且穩定載波頻率而用於頻率同步。對於配備有GNSS接收器的現代車輛,用於同步的GNSS解決方案可以用於V2X。The research project on NR V2X considers Uu-based side chain resource allocation/reconfiguration to identify enhancements to the LTE Uu interface and NR Uu interface, to control the NR side chain from the cellular network, and to identify the enhancement of the NR Uu interface, To control the LTE side chain communication from the cellular network. In the context of LTE V2X synchronization, when the WTRU connects to the eNB, the WTRU may already have cell timing. If the WTRU is not within the coverage of the eNB, the WTRU may use the Global Navigation Satellite System (GNSS) for timing synchronization. When the WTRU cannot find the timing from the eNB or GNSS, the WTRU may rely on the side chain WTRU for timing information. GNSS satellites have atomic oscillators that provide a stable and accurate time reference. The GNSS receiver can track signals from a plurality of satellites and retrieve a local time reference for the global positioning system (GPS) receiver with an absolute error of less than 1 μs. For coordinated multipoint transmission, the residual using GPS can be about 10 ns. GNSS can be used for frequency synchronization by phase-locking the local oscillator to the incoming signal and stabilizing the carrier frequency. For modern vehicles equipped with GNSS receivers, GNSS solutions for synchronization can be used for V2X.

例如,對於V2X中的同步,WTRU可以在側鏈上從其他WTRU接收側鏈同步信號(SLSS)。該SLSS可以包括主側鏈同步信號(PSSS)、輔側鏈同步信號(SSSS)和/或實體側鏈廣播通道(PSBCH)信號,其可以進一步包括同步資訊。WTRU可以使用SLSS中攜帶的資訊來獲得時序資訊。用於同步測量的臨界值(例如,同步臨界值)可以在RRC傳訊(例如,v2x-SyncConfig 和/或SL-V2X-Preconfiguration IE)中接收。For example, for synchronization in V2X, a WTRU may receive side-chain synchronization signals (SLSS) from other WTRUs on the side-chain. The SLSS may include a primary side chain synchronization signal (PSSS), a secondary side chain synchronization signal (SSSS), and/or a physical side chain broadcast channel (PSBCH) signal, which may further include synchronization information. The WTRU can use the information carried in the SLSS to obtain timing information. Thresholds used for synchronization measurement (for example, synchronization thresholds) can be received in RRC messaging (for example, v2x-SyncConfig and/or SL-V2X-Preconfiguration IE).

該SLSS可以包括但不限於以下範例信號中的任何一者或多者:PSSS、SSSS、PSBCH、和/或用於解調該PSBCH的解調參考信號(DMRS)。例如,PSSS和SSSS可以在相同子訊框中的相鄰時隙中被傳輸。側鏈-ID(SID)可以被分成兩組。例如,範圍{0,1, ...,167}中的SID可以被保留用於覆蓋內WTRU(即,可以接收足夠強的信號以與關聯於eNB的胞元連接的WTRU),並且範圍{168,169,…,335}中的SID可以用於覆蓋外WTRU。用作無線電資源以傳輸SLSS和PSBCH的子訊框可以由較高層配置The SLSS may include, but is not limited to, any one or more of the following example signals: PSSS, SSSS, PSBCH, and/or demodulation reference signal (DMRS) for demodulating the PSBCH. For example, PSSS and SSSS can be transmitted in adjacent time slots in the same subframe. Side chain-ID (SID) can be divided into two groups. For example, the SID in the range {0, 1, ..., 167} may be reserved for the in-coverage WTRU (ie, a WTRU that can receive a signal strong enough to connect with the cell associated with the eNB), and the range { The SIDs in 168,169,...,335} can be used to cover the outer WTRU. The subframes used as radio resources to transmit SLSS and PSBCH can be configured by higher layers

NR V2X要求可不同於LTE V2X要求。例如,對於NR V2X服務,為了能夠支援車輛和使用者的較高頻寬、可靠性和較高密度,現有LTE SLSS可能是不夠的。側鏈通道的容量可能需要增加。例如,LTE V2X可不包括以波束為中心的設計,因此可使用定向波束來針對NR V2X增強LTE SLSS。對於某些用例,例如車輛隊伍化,可以使用不同處理以進行同步時序參考和覆蓋。因此,可實施對NR同步的修改以便對NR V2X應用NR同步。NR V2X requirements can be different from LTE V2X requirements. For example, for NR V2X services, in order to be able to support higher bandwidth, reliability and higher density of vehicles and users, the existing LTE SLSS may not be sufficient. The capacity of the side chain channel may need to be increased. For example, LTE V2X may not include a beam-centric design, so directional beams can be used to enhance LTE SLSS for NR V2X. For some use cases, such as vehicle fleet formation, different processes can be used for synchronization timing reference and coverage. Therefore, modifications to NR synchronization can be implemented to apply NR synchronization to NR V2X.

隊伍可以包括一組WTRU,並且該組中的WTRU中的一個WTRU可以被配置、指派或選擇為隊伍引領者,而其他WTRU可以被稱為隊伍追隨者。該隊伍引領者可負責管理該隊伍中的其他WTRU。例如,隊伍引領者可以為隊伍追隨者中的一者或多者提供以下功能中的任何功能:複數WTRU(隊伍追隨者)之間的協調;統一同步時序參考;和/或其它WTRU的資源排程。該隊伍引領者可以是隊伍管理者。圖3是範例隊伍300的網路圖,其包括隊伍引領者(PL)WTRU 302(跳0)、隊伍追隨者WTRU 304(跳1,因為它是PL WTRU 302的鄰居)、隊伍追隨者WTRU306(跳2,因為它與PL WTRU 302相距兩個鏈路)、以及想要加入該車輛隊伍300的WTRU 301。如下面進一步描述的,WTRU 301可以使用基於所接收的SL同步信號PL SL-SYNC 310、H1 SL-SYNC 312和H2 SL-SYNC 314的資訊(例如參考信號接收功率(RSRP)、作為引領者者或追隨者的同步源類型、跳數、一個或複數臨界值、和/或優先順序規則)來從隊伍成員WTRU 302、304和306中選擇同步源以便連接到該車輛隊伍300。本文揭露的方法被描述為用於車輛隊伍的應用作為範例;任何方法可類似地應用於涉及WTRU群組(例如網狀網路、中繼網路或任何其它WTRU群組形成)的任何應用或用例。A team may include a group of WTRUs, and one of the WTRUs in the group may be configured, assigned, or selected as the team leader, and the other WTRUs may be called team followers. The team leader may be responsible for managing other WTRUs in the team. For example, the team leader can provide one or more of the team followers with any of the following functions: coordination between multiple WTRUs (team followers); unified synchronization timing reference; and/or resource scheduling of other WTRUs Cheng. The team leader can be the team manager. Figure 3 is a network diagram of an example team 300, which includes team leader (PL) WTRU 302 (jump 0), team follower WTRU 304 (jump 1, because it is a neighbor of PL WTRU 302), and team follower WTRU 306 ( Skip 2 because it is two links away from the PL WTRU 302) and the WTRU 301 that wants to join the vehicle fleet 300. As described further below, the WTRU 301 may use information based on the received SL synchronization signals PL SL-SYNC 310, H1 SL-SYNC 312, and H2 SL-SYNC 314 (such as reference signal received power (RSRP), as a leader Or follower's synchronization source type, hop count, one or plural thresholds, and/or priority order rules) to select the synchronization source from the team members WTRUs 302, 304, and 306 to connect to the vehicle team 300. The method disclosed herein is described as an application for vehicle fleets; any method can be similarly applied to any application involving WTRU groups (such as mesh networks, relay networks, or any other WTRU group formation) or Example.

本文揭露的側鏈同步方法可用於NR V2X中,用於諸如車輛隊伍化的用例,並且還可用於其它NR用例。本文該的任何同步方法、存取方法和/或傳訊機制可由WTRU使用以與車輛隊伍同步,以便成為該車輛隊伍的成員。The side-chain synchronization method disclosed in this article can be used in NR V2X for use cases such as vehicle teaming, and can also be used for other NR use cases. Any synchronization method, access method, and/or messaging mechanism described herein can be used by the WTRU to synchronize with the vehicle team in order to become a member of the vehicle team.

在範例中,側鏈同步的方法可以基於測量、測量類型和/或同步源類型。WTRU可以與車輛隊伍中的同步源之一同步。例如,WTRU可以首先嘗試與隊伍引領者同步。在一個範例中,WTRU可能無法與隊伍引領者同步(例如,因為WTRU沒有從隊伍引領者接收SLSS,或者來自隊伍引領者的SLSS對於WTRU來說太弱而不能正確解碼)。如果WTRU未能與隊伍引領者者同步,則WTRU可以與隊伍追隨者之一同步。在一個範例中,WTRU可以使用一個或複數信號測量來決定該WTRU可以與之同步的源。例如,如果來自同步源(例如,該隊伍中的WTRU)的信號測量結果高於臨界值,則WTRU可以與該同步源同步。否則,WTRU可以選擇與另一個同步源同步。在一個範例中,當複數同步源具有高於臨界值的信號測量時,WTRU可以選擇具有最高測量值的同步源。In an example, the method of side chain synchronization can be based on measurement, measurement type, and/or synchronization source type. The WTRU can synchronize with one of the synchronization sources in the vehicle fleet. For example, the WTRU may first try to synchronize with the team leader. In one example, the WTRU may not be able to synchronize with the team leader (for example, because the WTRU did not receive the SLSS from the team leader, or the SLSS from the team leader is too weak for the WTRU to decode correctly). If the WTRU fails to synchronize with the team leader, the WTRU may synchronize with one of the team followers. In one example, the WTRU may use one or multiple signal measurements to determine the source with which the WTRU can synchronize. For example, if the signal measurement result from a synchronization source (eg, a WTRU in the team) is higher than a critical value, the WTRU may synchronize with the synchronization source. Otherwise, the WTRU may choose to synchronize with another synchronization source. In one example, when the complex synchronization source has signal measurements above the threshold, the WTRU may select the synchronization source with the highest measurement value.

在本文描述的範例方法中,可以從eNB和/或從另一WTRU(例如在側鏈上)接收用於側鏈通信的配置資訊。例如,可以在SIB中從eNB接收用於側鏈通信的該配置資訊。在這裡描述的任何範例方法中,WTRU可以藉由針對來自同步源(例如車輛隊伍成員)的信號監視側鏈通道(一個或複數)來藉由同步源進行搜尋。例如,WTRU藉由監視側鏈通道(一個或複數)並接收側鏈信號(例如任何SLSS)來藉由同步源進行搜尋。在這裡描述的任何範例方法中,WTRU可以對其接收的相同信號執行測量以藉由同步源進行搜尋,或者對不同的側鏈信號執行測量。In the example method described herein, configuration information for side-chain communication may be received from an eNB and/or from another WTRU (eg, on a side-chain). For example, the configuration information for side-chain communication can be received from the eNB in the SIB. In any of the example methods described here, the WTRU can search for the synchronization source by monitoring the side-chain channel (one or more) for signals from the synchronization source (for example, vehicle team members). For example, the WTRU searches for the synchronization source by monitoring the side-chain channels (one or more) and receiving side-chain signals (such as any SLSS). In any of the example methods described here, the WTRU can perform measurements on the same signal it receives to search for a synchronization source, or perform measurements on different side-chain signals.

在本文描述的任何範例方法中,可以由WTRU執行的用於側鏈同步的測量類型可以包括但不限於包括以下測量中的任何一者或多者:RSRP(等效地,側鏈RSRP(S-RSRP))、參考信號接收品質(RSRQ)(等效地,側鏈RSRQ(S-RSRQ))、接收信號強度指示(RSSI)(等效地,側鏈RSSI(S-RSSI))、訊噪比(SNR)、相關性(等效地,SL相關性)和/或訊擾雜比(SINR)。同步源選擇可以基於對從同步源(例如,隊伍引領者和/或一個或複數隊伍追隨者)接收的信號進行的不同類型的測量中的任何一者或多者。在這裡描述的任何範例方法中,WTRU可以對從同步源接收的信號執行測量,例如SLSS(例如,包括當藉由同步源進行搜尋時它接收的相同信號和/或不同信號)。在本文描述的任何範例方法中,SLSS可以包括側鏈同步信號塊(SL-SSB)(使得WTRU可以執行測量(例如RSRP))以及該SL-SSB的任何一個或複數部分。例如,該SL-SSB可以包括以下部分中的任何部分:PSSS、SSSS和/或PSBCH信號。在這種情況下,WTRU可以對PSSS、SSSS和/或PSBCH信號中的任何一者或多者執行測量。在另一範例中,該SLSS可以包括參考信號,諸如通道狀態資訊參考信號(CSI-RS)和/或PSBCH解調參考信號(DMRS)。在這種情況下,WTRU可以對在SLSS中從一個或複數同步源接收的CSI-RS和/或PSBCH DMRS中的任何一者或多者執行測量。在本文描述的任何範例方法中,可以獨立於使用SL-SSB的測量或者搭配SL-SSB或結合SL-SSB的測量而執行使用CSI-RS和/或PSBCH DMRS的測量。In any of the example methods described herein, the types of measurements that can be performed by the WTRU for side chain synchronization can include, but are not limited to, include any one or more of the following measurements: RSRP (equivalently, side chain RSRP (S -RSRP)), reference signal reception quality (RSRQ) (equivalently, side-chain RSRQ (S-RSRQ)), received signal strength indicator (RSSI) (equivalently, side-chain RSSI (S-RSSI)), signal Noise ratio (SNR), correlation (equivalently, SL correlation) and/or signal to interference ratio (SINR). The synchronization source selection may be based on any one or more of the different types of measurements made on the signals received from the synchronization source (eg, the team leader and/or one or more team followers). In any of the example methods described herein, the WTRU may perform measurements on signals received from a synchronization source, such as SLSS (for example, including the same signal and/or different signals it receives when searching by the synchronization source). In any of the example methods described herein, the SLSS may include a side-chain synchronization signal block (SL-SSB) (allowing the WTRU to perform measurements (eg RSRP)) and any one or plural parts of the SL-SSB. For example, the SL-SSB may include any of the following parts: PSSS, SSSS, and/or PSBCH signals. In this case, the WTRU may perform measurements on any one or more of the PSSS, SSSS, and/or PSBCH signals. In another example, the SLSS may include a reference signal, such as a channel state information reference signal (CSI-RS) and/or a PSBCH demodulation reference signal (DMRS). In this case, the WTRU may perform measurements on any one or more of the CSI-RS and/or PSBCH DMRS received from one or multiple synchronization sources in the SLSS. In any of the example methods described herein, measurement using CSI-RS and/or PSBCH DMRS can be performed independently of measurement using SL-SSB or in conjunction with SL-SSB or in combination with SL-SSB measurement.

在這裡描述的任何範例方法中,該同步源類型可以是隊伍引領者(和/或在多於一個WTRU可以是隊伍引領者的情況下是隊伍共同引領者)或隊伍追隨者中的一者。在本文描述的任何範例方法中,WTRU可以基於從同步源接收的(側鏈)信號中攜帶的資訊來確定同步源的同步源類型。例如,WTRU可以從上述任何SLSS中攜帶的資訊確定同步源類型,並且該同步源類型可以被隱式或顯式地用信號通知。WTRU可以從在用於測量(和/或用於藉由同步源進行搜尋)的任何SLSS中攜帶的資訊和/或從同步源接收的其他SLSS來確定同步源類型。例如,該SLSS(例如,在PSSS、SSSS和/或PSBCH信號中)可以攜帶關於源類型的顯式指示(例如,位元,其中“1”指示隊伍引領者,位元“0”指示隊伍追隨者)。在另一個範例中,該SLSS(例如,在PSSS、SSSS和/或PSBCH信號中)可以攜帶與同步源相關聯的跳數(例如,跳數等於0指示隊伍引領者,跳數大於0指示隊伍追隨者並且等於到隊伍引領者的鏈路的最小數量),使得WTRU可以從SL-SSB中攜帶的跳數資訊來隱式地確定同步源類型。可以使用SL-SSB來廣播該跳數。例如,可以在PSBCH中廣播該跳數。該跳數可以被包括在PSBCH信號中的資訊元素中,或者被攜帶在PSBCH信號的酬載中。在這種情況下,WTRU可以從在PSBCH中廣播的跳數來隱式地確定同步源類型。在另一範例中,該跳數可以被嵌入DMRS中,DMRS可以在PSBCH上攜帶。WTRU可以從PSBCH的DMRS中攜帶的跳數資訊中隱式地確定同步源類型。在另一個範例中,該跳數可以在SPSS和/或SSSS中攜帶,並且可以在SLSS中的SPSS和/或SSSS中廣播。在這種情況下,WTRU可以從在SPSS和/或SSSS中攜帶的跳數資訊來隱式地確定同步源類型。可以使用PSBCH、DMRS、SPSS和/或SSSS(或其它同步信號)的任意組合來廣播該跳數。In any of the example methods described herein, the synchronization source type may be one of the team leader (and/or the team co-leader if more than one WTRU may be the team leader) or the team follower. In any of the example methods described herein, the WTRU may determine the synchronization source type based on the information carried in the (side-chain) signal received from the synchronization source. For example, the WTRU may determine the synchronization source type from the information carried in any of the above-mentioned SLSSs, and the synchronization source type may be implicitly or explicitly signaled. The WTRU may determine the synchronization source type from the information carried in any SLSS used for measurement (and/or for searching by the synchronization source) and/or other SLSS received from the synchronization source. For example, the SLSS (for example, in the PSSS, SSSS, and/or PSBCH signal) may carry an explicit indication of the source type (for example, a bit, where "1" indicates the team leader, and the bit "0" indicates that the team follows By). In another example, the SLSS (for example, in PSSS, SSSS, and/or PSBCH signals) may carry the number of hops associated with the synchronization source (for example, the number of hops equal to 0 indicates the team leader, and the number of hops greater than 0 indicates the team Followers are equal to the minimum number of links to the team leader), so that the WTRU can implicitly determine the synchronization source type from the hop count information carried in the SL-SSB. You can use SL-SSB to broadcast the hop count. For example, the number of hops can be broadcast in PSBCH. The number of hops can be included in the information element in the PSBCH signal or carried in the PSBCH signal payload. In this case, the WTRU can implicitly determine the synchronization source type from the number of hops broadcast in the PSBCH. In another example, the hop count can be embedded in the DMRS, and the DMRS can be carried on the PSBCH. The WTRU can implicitly determine the synchronization source type from the hop count information carried in the DMRS of the PSBCH. In another example, the hop count can be carried in SPSS and/or SSSS, and can be broadcast in SPSS and/or SSSS in SLSS. In this case, the WTRU can implicitly determine the synchronization source type from the hop count information carried in the SPSS and/or SSSS. Any combination of PSBCH, DMRS, SPSS, and/or SSSS (or other synchronization signals) can be used to broadcast the hop count.

在一個範例中,僅基於S-RSRP的同步源選擇不考慮同步源類型。例如,如果比起隊伍引領者,WTRU更靠近隊伍追隨者,則來自隊伍追隨者的S-RSRP可以高於來自隊伍引領者的S-RSRP。如果S-RSRP是同步源選擇的唯一標準,則WTRU在某些情況下可以選擇隊伍追隨者,而不是隊伍引領者。在一個範例中,該同步源類型也可被認為是同步源的選擇標準的一部分。例如,隊伍引領者可以具有比隊伍追隨者更高的優先順序。在一個範例中,當來自隊伍引領者和隊伍追隨者的S-RSRP測量都高於臨界值時,即使隊伍追隨者的S-RSRP高於隊伍引領者的S-RSRP,WTRU也可以選擇隊伍引領者而不是隊伍追隨者。因此,同步源選擇可以取決於同步源類型和測量或測量類型(例如,S-RSRP),並且可以基於同步源類型和測量或測量類型之間的優先順序。In one example, the synchronization source selection based only on S-RSRP does not consider the synchronization source type. For example, if the WTRU is closer to the team follower than the team leader, the S-RSRP from the team follower may be higher than the S-RSRP from the team leader. If S-RSRP is the only criterion for synchronization source selection, the WTRU may choose team followers instead of team leaders in some cases. In one example, the synchronization source type can also be considered as part of the synchronization source selection criteria. For example, the team leader may have a higher priority than the team follower. In one example, when the S-RSRP measurements from the team leader and team follower are higher than the threshold, even if the S-RSRP of the team follower is higher than the S-RSRP of the team leader, the WTRU can choose the team leader Rather than team followers. Therefore, the synchronization source selection may depend on the synchronization source type and the measurement or measurement type (for example, S-RSRP), and may be based on the priority order between the synchronization source type and the measurement or measurement type.

在範例中,該同步源選擇可以基於以下標準中的任何一者:從隊伍引領者或追隨者測量的測量或測量類型(例如,S-RSRP);同步源類型(例如,隊伍引領者類型、隊伍追隨者類型);和/或優先順序和優先順序規則。圖4是基於測量、測量類型和同步源類型的範例同步源選擇方法400的流程圖。該範例同步源選擇方法400可由想要加入車輛隊伍的(車輛)WTRU來執行。在該範例同步源選擇方法400中,該同步源類型優先於測量(例如RSRP)值。In the example, the synchronization source selection can be based on any one of the following criteria: the measurement or measurement type measured from the team leader or follower (for example, S-RSRP); the synchronization source type (for example, the team leader type, Team follower type); and/or priority and priority rules. 4 is a flowchart of an exemplary synchronization source selection method 400 based on measurement, measurement type, and synchronization source type. The exemplary synchronization source selection method 400 may be executed by a (vehicle) WTRU that wants to join a vehicle team. In this exemplary synchronization source selection method 400, the synchronization source type takes precedence over the measured (eg RSRP) value.

在402,WTRU可以接收用於側鏈通信的配置資訊,該配置資訊可以至少包括側鏈測量臨界值。例如,可以在SIB中從eNB接收該配置資訊。在404,WTRU可以藉由同步源進行搜尋(例如藉由監視側鏈以搜尋來自同步源的信號和/或成功地接收來自同步源的側鏈信號,例如SLSS)。在406,WTRU可以對從同步源接收的信號(例如SLSS)執行測量(例如側鏈RSRP、側鏈相關性)。在408,WTRU可以編排同步源列表(來自WTRU進行測量所在的“候選”同步源),該列表內的同步源具有大於該側鏈測量臨界值的測量值(一個或複數)(例如,測量的RSRP)。在410,對於該列表中的每個同步源,WTRU可檢查同步源類型(例如隊伍引領者或隊伍追隨者)。如上所述,該同步源類型可以基於WTRU接收的SLSS中攜帶的隱式資訊(例如跳數)和/或顯式資訊(源類型指示)來確定。At 402, the WTRU may receive configuration information for side-chain communication, and the configuration information may include at least a side-chain measurement threshold. For example, the configuration information can be received from the eNB in the SIB. At 404, the WTRU may search by the synchronization source (for example, by monitoring the side chain to search for the signal from the synchronization source and/or successfully receive the side chain signal from the synchronization source, such as SLSS). At 406, the WTRU may perform measurements (eg, side-chain RSRP, side-chain correlation) on the signal (eg, SLSS) received from the synchronization source. At 408, the WTRU may compile a list of synchronization sources (from the "candidate" synchronization sources from which the WTRU is making measurements), the synchronization sources in the list having measurement values (one or more) greater than the side chain measurement threshold (for example, measured RSRP). At 410, for each synchronization source in the list, the WTRU may check the synchronization source type (eg, team leader or team follower). As described above, the synchronization source type may be determined based on implicit information (such as hop count) and/or explicit information (source type indication) carried in the SLSS received by the WTRU.

如果同步源類型是隊伍引領者,則在412,WTRU可以選擇該隊伍引領者作為同步源,並且在414,建立與該隊伍引領者的(側)鏈路,以便WTRU可以從該隊伍引領者獲得時序資訊。否則,如果該列表中沒有隊伍引領者類型的同步源(即,列表中的所有同步源都是隊伍追隨者),則在416,WTRU可以選擇該列表中具有最高測量值(例如,最高RSRP)的同步源。在這種情況下,在418,WTRU可以與所選擇的隊伍追隨者建立通信(側)鏈路,以便WTRU可以從該隊伍追隨者獲得時序資訊。If the synchronization source type is the team leader, then at 412, the WTRU may select the team leader as the synchronization source, and at 414, establish a (side) link with the team leader so that the WTRU can obtain from the team leader Timing information. Otherwise, if there is no synchronization source of the team leader type in the list (ie, all synchronization sources in the list are team followers), then at 416, the WTRU may select the list with the highest measurement value (for example, the highest RSRP) Synchronization source. In this case, at 418, the WTRU may establish a communication (side) link with the selected team follower so that the WTRU can obtain timing information from the team follower.

圖5是基於絕對和相對測量、測量類型和同步源類型的範例同步源選擇方法500的流程圖。該範例同步源選擇方法500可由想要加入車輛隊伍的(車輛)WTRU來執行。在該範例同步源選擇方法500中,該同步源類型優先於測量(例如RSRP)值。然而,如果測量值(例如RSRP)非常強(即,高於比第一臨界值高的第二臨界值),則該同步源類型的優先順序可以被降級,並且可以選擇具有最高測量值(例如,最高RSRP)的同步源。5 is a flowchart of an exemplary synchronization source selection method 500 based on absolute and relative measurements, measurement types, and synchronization source types. This exemplary synchronization source selection method 500 can be executed by a (vehicle) WTRU that wants to join a vehicle team. In the exemplary synchronization source selection method 500, the synchronization source type takes precedence over the measured (eg RSRP) value. However, if the measurement value (such as RSRP) is very strong (ie, higher than the second critical value higher than the first critical value), the priority of the synchronization source type can be downgraded, and the highest measurement value (such as , The highest RSRP) synchronization source.

在502,WTRU可以接收用於側鏈通信的配置資訊,其包括一個或複數側鏈測量臨界值。例如,該一個或複數側鏈測量臨界值可包括第一側鏈測量臨界值和第二側鏈測量臨界值。在504,WTRU可以藉由同步源進行搜尋。在506,WTRU可以對從同步源接收的信號(例如,SLSS)執行測量(例如,RSRP、相關性)。在508,WTRU可以編排關於具有大於第一側鏈測量臨界值的測量值(例如,測量的RSRP)的同步源的第一列表(來自WTRU進行測量所在的同步源之間),以及關於具有大於第二側鏈測量臨界值的測量值(例如,測量的RSRP)的同步源的第二列表,其中該第二臨界值大於該第一臨界值。At 502, the WTRU may receive configuration information for side-chain communication, which includes one or more side-chain measurement thresholds. For example, the one or more side chain measurement thresholds may include the first side chain measurement threshold and the second side chain measurement threshold. At 504, the WTRU may search by the synchronization source. At 506, the WTRU may perform measurements (eg, RSRP, correlation) on the signal received from the synchronization source (eg, SLSS). At 508, the WTRU may compile a first list of synchronization sources (from synchronization sources where the WTRU is making measurements) that have a measurement value greater than the first side-chain measurement threshold (eg, measured RSRP), and information about A second list of synchronization sources of measurement values (for example, measured RSRP) of the second side chain measurement threshold, wherein the second threshold is greater than the first threshold.

在510,對於該第一第二列表中的每個同步源,WTRU可檢查同步源類型(例如隊伍引領者或隊伍追隨者)。如果同步源類型是隊伍引領者,則在512,WTRU可以進一步檢查來自隊伍引領者的測量值(例如,測量的RSRP)是高於還是低於第二側鏈測量臨界值(即,隊伍引領者是否在第二列表中)。如果隊伍引領者的測量值高於第二側鏈測量臨界值,則在514,WTRU可以選擇隊伍引領者作為同步源,並且在516,建立與該隊伍引領者的通信(側)鏈路(以便WTRU可以從該隊伍引領者獲得時序資訊)。如果該隊伍引領者的測量值低於該第二側鏈測量臨界值,則在518,WTRU可以進一步檢查隊伍追隨者的測量值是高於還是低於第二側鏈測量臨界值(即,第二列表中是否有隊伍追隨者)。如果所有隊伍追隨者的測量值均低於第二側鏈測量臨界值,則返回到514,WTRU可以選擇隊伍引領者作為同步源,並且在516,建立與該隊伍引領者的通信(側)鏈路。如果隊伍追隨者的測量值高於第二側鏈測量臨界值(即,在第二列表上存在隊伍追隨者),則在520,WTRU可以選擇具有最高測量值(例如最高RSRP)的隊伍追隨者作為同步源,並且在522,與所選擇的隊伍追隨者建立通信(側)鏈路(以便WTRU可以從該隊伍追隨者獲得時序資訊)。At 510, for each synchronization source in the first and second lists, the WTRU may check the synchronization source type (eg, team leader or team follower). If the synchronization source type is the team leader, then at 512, the WTRU may further check whether the measurement value from the team leader (for example, the measured RSRP) is higher or lower than the second side chain measurement threshold (ie, the team leader) Is it in the second list). If the team leader’s measurement value is higher than the second side chain measurement threshold, then at 514, the WTRU may select the team leader as the synchronization source, and at 516, establish a communication (side) link with the team leader (to The WTRU can obtain timing information from the team leader). If the measurement value of the team leader is lower than the second side chain measurement threshold, then at 518, the WTRU may further check whether the measurement value of the team follower is higher or lower than the second side chain measurement threshold (ie, the second side chain measurement threshold). 2. Whether there are team followers in the list). If the measurement values of all team followers are lower than the second side chain measurement threshold, return to 514, and the WTRU can select the team leader as the synchronization source, and at 516, establish a communication (side) chain with the team leader road. If the team follower's measurement value is higher than the second sidechain measurement threshold (ie, there is a team follower on the second list), then at 520, the WTRU may select the team follower with the highest measurement value (for example, the highest RSRP) As a synchronization source, and at 522, a communication (side) link is established with the selected team follower (so that the WTRU can obtain timing information from the team follower).

在一個範例中,用於隊伍引領者的第一側鏈測量臨界值和第二側鏈測量臨界值可以與用於隊伍追隨者的第一側鏈測量臨界值和第二側鏈測量臨界值相同或不同。該臨界值可以被半靜態地或動態地配置、預定或指示。例如,該臨界值可以被包括在該配置資訊中,502。In one example, the first side chain measurement threshold and the second side chain measurement threshold for the team leader may be the same as the first side chain measurement threshold and the second side chain measurement threshold for the team follower Or different. The critical value can be configured, predetermined or indicated semi-statically or dynamically. For example, the threshold may be included in the configuration information, 502.

另一範例同步源選擇方法可以基於測量類型、同步源類型和/或跳數。在基於來自隊伍引領者的側鏈信號而測量的測量值(例如,S-RSRP)低於臨界值,基於一個或複數隊伍追隨者而測量的測量值(例如,S-RSRP)高於臨界值的情況下,則WTRU可以確定選擇哪個隊伍追隨者作為同步源。如果隊伍追隨者中的一者具有比其他一個或複數隊伍追隨者更好的測量值(例如,S-RSRP),則WTRU可以選擇具有最高測量值或S-RSRP的隊伍追隨者(例如,隊伍追隨者可以都是相同的同步源類型)。然而,與具有較高測量值但更遠離隊伍引領者(即,具有更大的跳數)的另一隊伍追隨者相比,更靠近隊伍引領者(即,具有更低的跳數)且即使具有較低測量值(S-RSRP)的隊伍追隨者也可以被選擇為同步源。因此,在該範例中,同步源選擇可以取決於從同步源(例如,在所選擇的同步源是隊伍追隨者的情況下)到隊伍引領者的跳數。如果一個隊伍追隨者具有到隊伍引領者的較少跳(例如,一跳),而其他隊伍追隨者具有到引領者的較多跳(例如,兩跳或更多),則即使測量值較低(但是高於可接受的臨界值),WTRU也可以選擇具有較少跳的隊伍追隨者。因此,除了測量或測量類型和/或同步源類型之外,同步源選擇可以取決於從同步源(或隊伍追隨者)到隊伍引領者的跳數。Another example synchronization source selection method may be based on measurement type, synchronization source type and/or hop count. When the measured value based on the side chain signal from the team leader (for example, S-RSRP) is lower than the critical value, the measured value based on one or more team followers (for example, S-RSRP) is higher than the critical value In the case of, the WTRU may determine which team follower is selected as the synchronization source. If one of the team followers has a better measurement than the other or multiple team followers (e.g., S-RSRP), the WTRU may select the team follower with the highest measurement or S-RSRP (e.g., team Followers can all be the same sync source type). However, compared to another team follower who has a higher measurement value but is farther away from the team leader (ie, has a larger number of hops), is closer to the team leader (ie, has a lower number of hops) and even Team followers with lower measurement values (S-RSRP) can also be selected as the synchronization source. Therefore, in this example, the synchronization source selection may depend on the number of hops from the synchronization source (for example, in the case where the selected synchronization source is a team follower) to the team leader. If one team follower has fewer hops to the team leader (e.g., one hop) and other team followers have more hops to the leader (e.g., two hops or more), then even the measured value is lower (But above the acceptable threshold), the WTRU may also choose team followers with fewer jumps. Therefore, in addition to measurement or measurement type and/or synchronization source type, the synchronization source selection may depend on the number of hops from the synchronization source (or team follower) to the team leader.

因此,用於同步源選擇的範例方法可以基於以下:從隊伍引領者或隊伍追隨者測量的測量或測量類型;同步源類型;和/或同步源(或隊伍追隨者)與隊伍引領者之間的跳數。Therefore, the exemplary method for synchronization source selection can be based on the following: measurement or measurement type measured from the team leader or team follower; synchronization source type; and/or synchronization source (or team follower) and team leader The number of hops.

圖6是基於測量、測量類型、同步源類型和跳數的範例同步源選擇方法600的流程圖。該範例同步源選擇方法600可以由想要加入車輛隊伍的(車輛)WTRU來執行。在該範例同步源選擇方法600中,該同步源類型可以具有比測量或測量類型(例如,RSRP或S-RSRP)更高的優先順序。該跳數可以具有比測量或測量類型更高的優先順序。可以使用其它優先順序。FIG. 6 is a flowchart of an exemplary synchronization source selection method 600 based on measurement, measurement type, synchronization source type, and hop count. This exemplary synchronization source selection method 600 can be executed by a (vehicle) WTRU that wants to join a vehicle team. In the exemplary synchronization source selection method 600, the synchronization source type may have a higher priority than the measurement or measurement type (for example, RSRP or S-RSRP). The number of hops may have a higher priority order than measurement or measurement type. Other priority orders can be used.

在602,WTRU可以接收用於側鏈通信的配置資訊,該配置資訊包括一個或複數側鏈測量臨界值。例如,該一個或複數側鏈測量臨界值可以包括側鏈測量臨界值T1、第一跳數臨界值H1和/或第二跳臨界值H2。在其他範例中,任何臨界值可以在WTRU處被預配置或經由其他傳訊被接收。在604,WTRU可以藉由同步源進行搜尋。在606,WTRU可以對從同步源接收的信號(例如SLSS)執行測量(例如RSRP、相關性)。在608,WTRU可以編排關於測量和/或測量類型(例如,測量的RSRP或S-RSRP)大於測量臨界值T1和/或跳數小於該第一跳臨界值H1的同步源的列表(例如,這可以是組合列表、或基於測量的第一列表和基於跳數的第二列表)。例如,該跳數可以對同步源和隊伍引領者之間的跳進行計數,其中該隊伍引領者作為參考點。例如,如果該同步源是隊伍引領者,則該跳數可以是零。如果同步源是隊伍追隨者,則該跳數可以是1或大於1,其對應於同步源和隊伍引領者之間的鏈路的最小數量。At 602, the WTRU may receive configuration information for side-chain communication, the configuration information including one or more side-chain measurement thresholds. For example, the one or more side chain measurement thresholds may include the side chain measurement threshold T1, the first hop count threshold H1, and/or the second hop threshold H2. In other examples, any threshold may be pre-configured at the WTRU or received via other messaging. At 604, the WTRU may search by the synchronization source. At 606, the WTRU may perform measurements (eg, RSRP, correlation) on the signal (eg, SLSS) received from the synchronization source. At 608, the WTRU may compile a list of synchronization sources whose measurement and/or measurement type (e.g., measured RSRP or S-RSRP) is greater than the measurement threshold T1 and/or the number of hops is less than the first hop threshold H1 (e.g., This can be a combined list, or a first list based on measurement and a second list based on hop count). For example, the number of hops can count the jumps between the synchronization source and the team leader, where the team leader serves as a reference point. For example, if the synchronization source is the team leader, the hop count can be zero. If the synchronization source is a team follower, the number of hops can be 1 or greater than 1, which corresponds to the minimum number of links between the synchronization source and the team leader.

在610,WTRU可以檢查該列表中同步源的同步源類型。如果同步源的類型是隊伍引領者,則在612,WTRU可以選擇該隊伍引領者作為同步源,並且在614,建立與該隊伍引領者的通信(側)鏈路(以便WTRU可以從該隊伍引領者獲得時序資訊)。否則,如果該列表中沒有隊伍引領者類型的同步源(即,列表中的所有同步源都是隊伍追隨者),則在616,WTRU可以進一步在該同步源之間比較測量值和/或測量類型(例如RSRP或S-RSRP)以及跳數。在618,WTRU可以為列表中的每個同步源確定跳數(即到隊伍引領者的鏈路的數量)是否小於第二跳臨界值H2。如果一個或複數同步源(隊伍追隨者)的跳數小於第二跳臨界值H2,則在624,WTRU可以在具有跳數小於第二跳臨界值H2的同步源中選擇具有最高測量值(RSRP或S-RSRP)的同步源(例如隊伍追隨者),並且在626,建立與所選擇的同步源的鏈路。如果對於隊伍追隨者之間的所有同步源,跳數大於第二跳臨界值H2,則在620,WTRU可以在具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源中選擇具有最高測量值(例如最高RSRP)的任何同步源(例如任何隊伍追隨者),並且在622,在具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源間與具有最高測量的所選同步源建立鏈路。At 610, the WTRU may check the synchronization source type of the synchronization source in the list. If the type of synchronization source is the team leader, then at 612, the WTRU may select the team leader as the synchronization source, and at 614, establish a communication (side) link with the team leader (so that the WTRU can lead from the team Get timing information). Otherwise, if there is no synchronization source of the team leader type in the list (ie, all synchronization sources in the list are team followers), then at 616, the WTRU may further compare the measurement values and/or measurements between the synchronization sources Type (such as RSRP or S-RSRP) and hop count. At 618, the WTRU may determine for each synchronization source in the list whether the number of hops (ie, the number of links to the team leader) is less than the second hop threshold H2. If the hop count of one or more synchronization sources (team followers) is less than the second hop threshold H2, then at 624, the WTRU may select the synchronization source with the hop count less than the second hop threshold H2 with the highest measured value (RSRP Or S-RSRP) synchronization source (such as a team follower), and at 626, a link with the selected synchronization source is established. If for all synchronization sources between team followers, the number of hops is greater than the second hop threshold H2, then at 620, the WTRU may perform a hop that is less than the first hop threshold H1 (but not less than the second hop threshold H2). Select any synchronization source (such as any team follower) with the highest measurement value (such as the highest RSRP) from the number of synchronization sources, and at 622, it is less than the first hop threshold H1 (but not less than the second hop threshold H2). ) The synchronization source with the number of hops establishes a link with the selected synchronization source with the highest measurement.

在另一範例中,用於側鏈同步源選擇的方法可以基於同步源類型、跳數、測量類型和/或鏈路容量。例如,如果隊伍追隨者具有較少的跳(到隊伍引領者),但是隊伍追隨者和隊伍引領者之間的(一個或複數)鏈路弱,則即使從來自該隊伍追隨者的信號測量的測量值(例如,S-RSRP)高,也可能不選擇該隊伍追隨者。在這種情況下,可以選擇一同步源,其具有較低測量值(例如,S-RSRP)但有該隊伍追隨者和隊伍引領者之間的具有較高測量的鏈路(例如,S-RSRP)。因此,在範例中,除了從隊伍追隨者測量的鏈路的測量和/或測量類型之外,該同步源選擇方法可以取決於隊伍追隨者和隊伍引領者之間的鏈路的測量和/或測量類型。例如,除了該WTRU和同步源(隊伍追隨者)之間的鏈路的測量和/或同步源類型之外,該同步源選擇方法可以取決於從同步源(例如隊伍追隨者)到隊伍引領者的跳數以及與同步源和隊伍引領者之間的跳/鏈路相關聯的相關測量和/或測量類型(例如S-RSRP)。In another example, the method used for side chain synchronization source selection may be based on synchronization source type, hop count, measurement type, and/or link capacity. For example, if a team follower has fewer hops (to the team leader), but the link (one or more) between the team follower and the team leader is weak, even if measured from the signal from the team follower The measurement value (for example, S-RSRP) is high, and the team followers may not be selected. In this case, you can select a synchronization source that has a lower measurement value (for example, S-RSRP) but has a higher measurement link between the team follower and the team leader (for example, S-RSRP). RSRP). Therefore, in the example, in addition to the measurement and/or measurement type of the link measured from the team follower, the synchronization source selection method may depend on the measurement and/or measurement of the link between the team follower and the team leader Measurement type. For example, in addition to the measurement of the link between the WTRU and the synchronization source (team follower) and/or the synchronization source type, the synchronization source selection method may depend on the synchronization source (eg team follower) to the team leader The number of hops and related measurements and/or measurement types (such as S-RSRP) associated with the hop/link between the synchronization source and the team leader.

範例同步源選擇方法可以基於以下標準中的任何一者或多者:從隊伍引領者或追隨者測量的測量和/或測量類型(例如,S-RSRP);同步源類型(例如隊伍引領者、隊伍追隨者);同步源(或隊伍追隨者)和隊伍引領者之間的跳數;和/或與同步源(例如,隊伍追隨者)和隊伍引領者之間的跳相關聯的測量和/或測量類型(例如,S-RSRP)。The example synchronization source selection method can be based on any one or more of the following criteria: the measurement and/or measurement type (for example, S-RSRP) measured from the team leader or follower; the synchronization source type (for example, the team leader, Team follower); the number of hops between the synchronization source (or team follower) and the team leader; and/or measurements associated with the jumps between the synchronization source (for example, the team follower) and the team leader and/ Or measurement type (for example, S-RSRP).

圖7是基於測量、測量類型和同步源類型、跳數和鏈路容量的範例同步源選擇方法700的流程圖。該範例同步源選擇方法700可由想要加入車輛隊伍的(車輛)WTRU來執行。在該範例同步源選擇方法700中,同步源類型可以具有比測量或測量類型(例如,S-RSRP)更高的優先順序。跳數可以具有比測量或測量類型更高的優先順序。鏈路容量還可以具有比測量或測量類型更高的優先順序。可以使用其他優先順序。FIG. 7 is a flowchart of an exemplary synchronization source selection method 700 based on measurement, measurement type, synchronization source type, hop count, and link capacity. This exemplary synchronization source selection method 700 can be executed by a (vehicle) WTRU that wants to join a vehicle team. In this exemplary synchronization source selection method 700, the synchronization source type may have a higher priority order than the measurement or measurement type (for example, S-RSRP). The number of hops can have a higher priority than the measurement or measurement type. The link capacity can also have a higher priority than the measurement or measurement type. Other priorities can be used.

在702,WTRU可以接收用於側鏈通信的配置資訊,其可以包括一個或複數側鏈測量臨界值、一個或複數跳數臨界值和/或一個或複數鏈路容量臨界值。例如,該一個或複數側鏈測量臨界值可以包括側鏈測量臨界值T1、第一跳數臨界值H1、第二跳臨界值H2和/或鏈路容量臨界值C。在704,WTRU可以藉由同步源進行搜尋。在706,WTRU可以對從同步源接收的信號(例如,對PSSS、SSSS和/或PSBSCH信號,其可以作為SLSS的一部分被接收)執行測量(例如,RSRP、相關性)。在708,WTRU可以編排關於具有大於側鏈測量臨界值T1的測量(例如,測量的RSRP或S-RSRP)和/或小於第一跳臨界值H1的跳數和/或大於容量臨界值C的鏈路容量的同步源的列表(例如,這可以是組合列表或各別列表,例如基於測量的第一列表,基於跳數的第二列表以及基於鏈路容量的第三列表)。該鏈路容量可以與同步源和隊伍引領者之間的跳或鏈路相關聯。該跳數可以是同步源與隊伍引領者之間的跳,其中隊伍引領者具有等於零的跳數,並且隊伍追隨者具有大於零的跳數。在範例中,具有包括到隊伍引領者的一個或複數鏈路的路徑的隊伍追隨者的鏈路容量可以被計算為以下範例容量計算中的任何一者:個別鏈路容量(例如,路徑中具有最低容量的鏈路的容量,其形成瓶頸);路徑中所有鏈路上的平均鏈路容量;或者總容量,其加總了與同步源和隊伍引領者之間的跳的路徑相關聯的所有鏈路的容量。At 702, the WTRU may receive configuration information for side chain communication, which may include one or more side chain measurement thresholds, one or more hop thresholds, and/or one or more link capacity thresholds. For example, the one or more side chain measurement thresholds may include a side chain measurement threshold T1, a first hop count threshold H1, a second hop threshold H2, and/or a link capacity threshold C. At 704, the WTRU may search by the synchronization source. At 706, the WTRU may perform measurements (eg, RSRP, correlation) on signals received from a synchronization source (eg, PSSS, SSSS, and/or PSBSCH signals, which may be received as part of SLSS). At 708, the WTRU may schedule measurements with greater than side chain measurement threshold T1 (eg, measured RSRP or S-RSRP) and/or hop counts less than the first hop threshold H1 and/or greater than the capacity threshold C A list of synchronization sources for link capacity (for example, this can be a combined list or a separate list, such as a first list based on measurement, a second list based on hop count, and a third list based on link capacity). The link capacity can be associated with the hop or link between the synchronization source and the team leader. The hop count may be a jump between the synchronization source and the team leader, where the team leader has a hop count equal to zero, and the team follower has a hop count greater than zero. In an example, the link capacity of a team follower with a path including one or more links to the team leader can be calculated as any of the following example capacity calculations: individual link capacity (for example, the path has The capacity of the link with the lowest capacity, which forms the bottleneck); the average link capacity of all links in the path; or the total capacity, which adds up all the links associated with the hop path between the synchronization source and the team leader The capacity of the road.

在710,WTRU可以檢查該列表中同步源的同步源類型。如果同步源的類型是隊伍引領者,則在712,WTRU可以選擇該隊伍引領者作為同步源,並且在714,建立與該隊伍引領者的通信(側)鏈路(以便WTRU可以從該隊伍引領者獲得時序資訊)。否則,如果該列表中沒有隊伍引領者類型的同步源(即,該列表中的所有同步源都是隊伍追隨者),則在716,WTRU可以進一步比較同步源之間的測量值和/或測量類型(例如RSRP或S-RSRP)以及跳數。在718,WTRU可以為該列表中的每個同步源確定跳數(即,到隊伍引領者的鏈路的數量)是否小於第二跳臨界值H2。如果一個或複數同步源(隊伍追隨者)的跳數小於第二跳臨界值H2,則在724,WTRU可以在具有跳數小於的第二跳臨界值H2的同步源中以最高測量值(RSRP或S-RSRP)選擇同步源(例如隊伍追隨者),並且在726,建立與所選擇的同步源的鏈路。如果對於隊伍追隨者之間的所有同步源,跳數大於第二跳臨界值H2,則在720,WTRU可以選擇具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源中具有最高鏈路容量的任何同步源(例如,任何隊伍追隨者),並且在722,與在具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源中具有最高鏈路容量的所選同步源建立鏈路。At 710, the WTRU may check the synchronization source type of the synchronization source in the list. If the type of synchronization source is the team leader, then at 712, the WTRU may select the team leader as the synchronization source, and at 714, establish a communication (side) link with the team leader (so that the WTRU can lead from the team Get timing information). Otherwise, if there is no synchronization source of the team leader type in the list (ie, all synchronization sources in the list are team followers), then at 716, the WTRU may further compare the measurements and/or measurements between the synchronization sources Type (such as RSRP or S-RSRP) and hop count. At 718, the WTRU may determine whether the hop count (ie, the number of links to the team leader) is less than the second hop threshold H2 for each synchronization source in the list. If the hop count of one or more synchronization sources (team followers) is less than the second hop threshold H2, then at 724, the WTRU can use the highest measured value (RSRP) among the synchronization sources with the hop count less than the second hop threshold H2. Or S-RSRP) select a synchronization source (for example, a team follower), and in 726, establish a link with the selected synchronization source. If for all synchronization sources between team followers, the number of hops is greater than the second hop threshold H2, then at 720, the WTRU may choose a hop that is less than the first hop threshold H1 (but not less than the second hop threshold H2) Any synchronization source with the highest link capacity among the number of synchronization sources (for example, any team follower), and at 722, and at 722, it is the same as the hop that is less than the first hop threshold H1 (but not less than the second hop threshold H2) The selected synchronization source with the highest link capacity among the number of synchronization sources establishes a link.

在另一範例中,同步源選擇方法可以基於同步源類型、跳數、測量類型、鏈路容量和/或與到隊伍引領者的鏈路相關聯的訊務負載。例如,用於同步源選擇的方法可以基於以下:從隊伍引領者和/或隊伍追隨者測量的測量或測量類型(例如,S-RSRP);同步源類型(例如,隊伍引領者類型、隊伍追隨者類型);同步源和隊伍引領者之間的跳數;與同步源和隊伍引領者之間的鏈路相關聯的測量和/或測量類型;與同步源和隊伍引領者之間的鏈路相關聯的平均測量(例如,平均RSRP);與同步源和隊伍引領者之間的鏈路相關聯的鏈路容量;和/或與同步源和隊伍引領者之間的鏈路相關聯的訊務負載。In another example, the synchronization source selection method may be based on the synchronization source type, number of hops, measurement type, link capacity, and/or traffic load associated with the link to the team leader. For example, the method used for synchronization source selection may be based on the following: measurement or measurement type (e.g., S-RSRP) measured from the team leader and/or team follower; synchronization source type (e.g., team leader type, team following Type); the number of hops between the synchronization source and the team leader; the measurement and/or measurement type associated with the link between the synchronization source and the team leader; the link between the synchronization source and the team leader The associated average measurement (for example, the average RSRP); the link capacity associated with the link between the synchronization source and the team leader; and/or the information associated with the link between the synchronization source and the team leader务 load.

圖8是基於測量、測量類型、同步源類型、跳數、鏈路容量和訊務負載的範例同步源選擇方法800的流程圖。該範例同步源選擇方法800可由想要加入車輛隊伍的(車輛)WTRU來執行。在該範例同步源選擇方法800中,同步源類型可以具有比測量或測量類型(例如,S-RSRP)更高的優先順序。跳數可以具有比測量或測量類型更高的優先順序。鏈路容量和/或訊務負載可以具有比測量或測量類型更高的優先順序。可以使用其它優先順序。FIG. 8 is a flowchart of an exemplary synchronization source selection method 800 based on measurement, measurement type, synchronization source type, number of hops, link capacity, and traffic load. This exemplary synchronization source selection method 800 can be executed by a (vehicle) WTRU that wants to join a vehicle team. In this exemplary synchronization source selection method 800, the synchronization source type may have a higher priority order than the measurement or measurement type (for example, S-RSRP). The number of hops can have a higher priority than the measurement or measurement type. Link capacity and/or traffic load may have a higher priority order than measurement or measurement type. Other priority orders can be used.

在802,WTRU可以接收用於側鏈通信的配置資訊,其可以包括一個或複數側鏈測量臨界值、一個或複數跳數臨界值和/或一個或複數鏈路容量臨界值。例如,該一個或複數側鏈測量臨界值可以包括側鏈測量臨界值T1、第一跳數臨界值H1、第二跳臨界值H2和/或鏈路容量臨界值C。在804,WTRU可以藉由同步源進行搜尋。在806,WTRU可以對從同步源接收的信號(例如,對PSSS、SSSS和/或PSBSCH信號,其可以作為SLSS的一部分被接收)執行測量(例如,RSRP、相關性)。在808,WTRU可以編排關於具有大於側鏈測量臨界值T1的測量(例如,測量的RSRP或S-RSRP)和/或小於第一跳臨界值H1的跳數和/或大於容量臨界值C的鏈路容量的同步源的列表(例如,這可以是組合列表或各別列表,例如基於測量的第一列表,基於跳數的第二列表以及基於鏈路容量的第三列表)。該鏈路容量可以與同步源和隊伍引領者之間的跳或鏈路相關聯。跳數可以是同步源與隊伍引領者之間的跳,其中該隊伍引領者具有等於零的跳數,並且隊伍追隨者具有大於零的跳數。在範例中,具有包括到隊伍引領者的一個或複數鏈路的路徑的隊伍追隨者的鏈路容量可以被計算為以下範例容量計算中的任何一者:個別鏈路容量(例如,路徑中具有最低容量的鏈路的容量,其形成了瓶頸);路徑中所有鏈路上的平均鏈路容量;或者總容量,其加總了與同步源和隊伍引領者之間的跳的路徑相關聯的所有鏈路的容量。在範例中,可以在同步源和隊伍引領者之間的鏈路上計算該訊務負載。At 802, the WTRU may receive configuration information for side chain communication, which may include one or more side chain measurement thresholds, one or more hop thresholds, and/or one or more link capacity thresholds. For example, the one or more side chain measurement thresholds may include a side chain measurement threshold T1, a first hop count threshold H1, a second hop threshold H2, and/or a link capacity threshold C. At 804, the WTRU may search by the synchronization source. At 806, the WTRU may perform measurements (eg, RSRP, correlation) on signals received from a synchronization source (eg, PSSS, SSSS, and/or PSBSCH signals, which may be received as part of SLSS). At 808, the WTRU may schedule measurements with greater than the side chain measurement threshold T1 (eg, measured RSRP or S-RSRP) and/or hop counts less than the first hop threshold H1 and/or greater than the capacity threshold C A list of synchronization sources for link capacity (for example, this can be a combined list or a separate list, such as a first list based on measurement, a second list based on hop count, and a third list based on link capacity). The link capacity can be associated with the hop or link between the synchronization source and the team leader. The hop count may be a jump between the synchronization source and the team leader, where the team leader has a hop count equal to zero, and the team follower has a hop count greater than zero. In an example, the link capacity of a team follower with a path including one or more links to the team leader can be calculated as any of the following example capacity calculations: individual link capacity (for example, the path has The capacity of the link with the lowest capacity, which forms the bottleneck); the average link capacity on all links in the path; or the total capacity, which adds up all the links associated with the hop path between the synchronization source and the team leader The capacity of the link. In the example, the traffic load can be calculated on the link between the synchronization source and the team leader.

在810,該WTRU可檢查該列表中同步源的同步源類型。如果同步源的類型是隊伍引領者,則在712,WTRU可以選擇該隊伍引領者作為同步源,並且在714,建立與該隊伍引領者的通信(側)鏈路(以便WTRU可以從該隊伍引領者獲得時序資訊)。否則,如果該列表中沒有隊伍引領者類型的同步源(即,該列表中的所有同步源都是隊伍追隨者),則在816,WTRU可以進一步比較該同步源之間的信號測量值(例如RSRP)以及與跳/鏈路相關聯的跳數(和/或鏈路容量和/或訊務負載)。在818,WTRU可以為該列表中的每個同步源確定跳數(即,到隊伍引領者的鏈路的數量)是否小於第二跳臨界值H2。如果該跳數小於第二跳臨界值H2,則在824,WTRU可以在同步源中選擇具有小於第二跳臨界值H2的跳數和最低訊務負載的同步源(例如隊伍追隨者),並且在826,建立與所選擇的同步源的鏈路。如果對於隊伍追隨者中的所有同步源,跳數大於第二跳臨界值H2,則在820,WTRU可以在具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源中選擇具有最高鏈路容量的任何同步源(例如,任何隊伍追隨者),並且在822,與在具有小於第一跳臨界值H1(但不小於第二跳臨界值H2)的跳數的同步源中具有最高鏈路容量的所選同步源建立鏈路。At 810, the WTRU may check the synchronization source type of the synchronization source in the list. If the type of synchronization source is the team leader, then at 712, the WTRU may select the team leader as the synchronization source, and at 714, establish a communication (side) link with the team leader (so that the WTRU can lead from the team Get timing information). Otherwise, if there is no synchronization source of the team leader type in the list (ie, all synchronization sources in the list are team followers), then at 816, the WTRU may further compare the signal measurements between the synchronization sources (eg RSRP) and the number of hops (and/or link capacity and/or traffic load) associated with the hop/link. At 818, the WTRU may determine for each synchronization source in the list whether the hop count (ie, the number of links to the team leader) is less than the second hop threshold H2. If the number of hops is less than the second hop threshold H2, then at 824, the WTRU may select a synchronization source (such as a team follower) with a hop number less than the second hop threshold H2 and the lowest traffic load among the synchronization sources, and At 826, a link with the selected synchronization source is established. If for all synchronization sources in the team’s followers, the number of hops is greater than the second hop threshold H2, then at 820, the WTRU may have a hop number less than the first hop threshold H1 (but not less than the second hop threshold H2) Select any synchronization source with the highest link capacity (for example, any team follower) among the synchronization sources, and at 822, and in the hop with less than the first hop threshold H1 (but not less than the second hop threshold H2) The selected synchronization source with the highest link capacity among the number of synchronization sources establishes a link.

圖9是基於測量、測量類型和同步源類型以及跳數的範例同步源選擇方法900的流程圖。該範例同步源選擇方法900可由想要加入車輛隊伍的(車輛)WTRU來執行。在902,WTRU可以接收用於側鏈通信的配置資訊,其可以包括一個或複數側鏈測量臨界值、跳數臨界值和/或鏈路容量臨界值。例如,該側鏈配置資訊可以包括第一側鏈測量臨界值T1、第二側鏈測量臨界值T2、以及跳計數(跳數)臨界值H。在範例中,該第二側鏈測量臨界值T2大於該第一側鏈測量臨界值T1。9 is a flowchart of an exemplary synchronization source selection method 900 based on measurement, measurement type, synchronization source type, and hop count. This exemplary synchronization source selection method 900 can be executed by a (vehicle) WTRU that wants to join a vehicle team. In 902, the WTRU may receive configuration information for side-chain communication, which may include one or more side-chain measurement thresholds, hop count thresholds, and/or link capacity thresholds. For example, the side chain configuration information may include a first side chain measurement threshold T1, a second side chain measurement threshold T2, and a hop count (hop count) threshold H. In an example, the second side chain measurement threshold T2 is greater than the first side chain measurement threshold T1.

在904,WTRU可以藉由同步源進行搜尋。在906,WTRU可以對從同步源接收的信號(例如SLSS)執行測量(例如RSRP、相關性)。在908,WTRU可以確定每個同步源的同步源類型,並且在909,WTRU可以確定每個同步源的跳數。在一個範例中,WTRU可以基於從分別同步源接收的SLSS中攜帶的資訊,例如基於SPSS、SSSS和/或PSBCH信號中攜帶的資訊,確定每個同步源的同步源類型和/或跳數。在一個範例中,該SPSS、SSSS和/或PSBCH信號可以攜帶同步源類型指示符,其顯式地向WTRU指示該同步源類型(例如隊伍引領者類型或隊伍追隨者類型)。在一個範例中,該SPSS、SSSS和/或PSBCH信號可以攜帶跳數欄位,其向WTRU指示同步源和隊伍引領者之間的跳或鏈路的數量。在一個範例中,該SLSS可以不包括同步源類型指示符,並且WTRU可以基於在該SLSS中接收到的跳數欄位來確定每個同步源的同步源類型(例如,跳數等於0指示隊伍引領者,跳數大於0指示隊伍追隨者)。At 904, the WTRU may search by the synchronization source. At 906, the WTRU may perform measurements (eg, RSRP, correlation) on the signal (eg, SLSS) received from the synchronization source. At 908, the WTRU may determine the synchronization source type for each synchronization source, and at 909, the WTRU may determine the number of hops for each synchronization source. In one example, the WTRU may determine the synchronization source type and/or the number of hops for each synchronization source based on the information carried in the SLSS received from the respective synchronization sources, for example, based on the information carried in the SPSS, SSSS, and/or PSBCH signals. In one example, the SPSS, SSSS, and/or PSBCH signal may carry a synchronization source type indicator, which explicitly indicates the synchronization source type (for example, team leader type or team follower type) to the WTRU. In one example, the SPSS, SSSS, and/or PSBCH signal may carry a hop count field, which indicates to the WTRU the number of hops or links between the synchronization source and the team leader. In one example, the SLSS may not include the synchronization source type indicator, and the WTRU may determine the synchronization source type of each synchronization source based on the hop count field received in the SLSS (for example, the hop count equals 0 to indicate the team Leader, hop count greater than 0 indicates team follower).

在910,WTRU可以編排同步源列表(來自WTRU進行測量所在的同步源),該列表內的同步源具有大於第一側鏈測量臨界值T1的測量值(例如,測量的RSRP)。在912,WTRU可以考慮該列表中同步源的同步源類型。如果同步源的類型是隊伍引領者,則在914,WTRU可以選擇該隊伍引領者作為同步源,並且在916,建立與該隊伍引領者的通信(側)鏈路(以便WTRU可以從該隊伍引領者獲得時序資訊)。否則,如果該列表中沒有隊伍引領者類型的同步源(即,列表中的所有同步源都是隊伍追隨者),則在918,WTRU可以進一步比較同步源的跳數。在920,WTRU可以為該列表中的每個同步源確定跳數(即,到隊伍引領者的鏈路的數量)是否小於跳臨界值H。如果該跳數小於跳臨界值H,則在924,WTRU可以在跳數小於跳臨界值H的同步源中選擇同步源(例如隊伍追隨者),並且在916,建立與所選同步源(在這種情況下,隊伍追隨者)的鏈路。如果對於隊伍追隨者之間的所有同步源,跳數大於該跳臨界值H,則在922,WTRU可以選擇測量值(例如,測量的RSRP)大於第二測量臨界值T2的同步源(隊伍追隨者),並且在916,建立與所選擇的同步源(在這種情況下,隊伍追隨者)的鏈路。At 910, the WTRU may compile a synchronization source list (from the synchronization source from which the WTRU is making measurements), the synchronization sources in the list having a measurement value (eg, measured RSRP) greater than the first side chain measurement threshold T1. At 912, the WTRU may consider the synchronization source type of the synchronization source in the list. If the type of synchronization source is the team leader, then at 914, the WTRU may select the team leader as the synchronization source, and at 916, establish a communication (side) link with the team leader (so that the WTRU can lead from the team Get timing information). Otherwise, if there is no synchronization source of the team leader type in the list (ie, all synchronization sources in the list are team followers), then at 918, the WTRU may further compare the hop count of the synchronization source. At 920, the WTRU may determine whether the number of hops (ie, the number of links to the team leader) is less than the hop threshold H for each synchronization source in the list. If the hop count is less than the hop threshold H, then at 924, the WTRU may select a synchronization source (such as a team follower) among the synchronization sources whose hop count is less than the hop threshold H, and at 916, establish a synchronization source with the selected synchronization source (at In this case, team followers) link. If for all synchronization sources between team followers, the number of hops is greater than the hop threshold H, then at 922, the WTRU may select a synchronization source whose measurement value (for example, measured RSRP) is greater than the second measurement threshold T2 (team follower ), and at 916, a link with the selected synchronization source (in this case, the team follower) is established.

在另一個範例中,用於側鏈同步和源選擇的方法可以基於以下一者或多者:源類型、跳數、參數配置(例如,子載波間距(SCS)、循環前綴(CP))、頻寬部分(BWP)、鏈路容量和/或訊務負載(與同步源和隊伍引領者之間的跳相關聯)。WTRU可以接收側鏈配置資訊,該側鏈配置資訊可以包括與測量、跳數、鏈路容量和/或訊務負載相對應的一個或複數臨界值。用於側鏈同步和源選擇的方法可以基於以下標準中的任何一者:從隊伍引領者或追隨者測量的測量和/或測量類型(例如,S-RSRP或RSRP);同步源類型(例如,隊伍引領者類型、隊伍追隨者類型);同步源或隊伍追隨者與隊伍引領者之間的跳數;與同步源或隊伍追隨者和隊伍引領者之間的跳或跳的路徑相關聯的測量和/或測量類型(例如,S-RSRP);與同步源或隊伍追隨者和隊伍引領者之間的跳相關聯的平均測量(例如,平均S-RSRP);與同步源或隊伍追隨者和隊伍引領者之間的跳和/或跳的路徑相關聯的鏈路容量;與同步源或隊伍追隨者和隊伍引領者之間的跳和/或跳的路徑相關聯的訊務負載;與同步源或隊伍追隨者與隊伍引領者之間的跳和/或跳的路徑相關聯的頻寬;與同步源或隊伍追隨者與隊伍引領者之間的跳和/或跳的路徑相關聯的參數配置;與同步源或隊伍追隨者與隊伍引領者之間的跳和/或跳的路徑相關聯的資源塊的數量;和/或與同步源或隊伍追隨者和隊伍引領者之間的跳和/或跳的路徑相關聯的頻寬部分(BWP)的數量。選擇標準的不同組合和/或優先順序可應用於上述資訊或參數以最佳化同步,其包括V2X的側鏈同步。In another example, the method for side chain synchronization and source selection may be based on one or more of the following: source type, hop count, parameter configuration (for example, subcarrier spacing (SCS), cyclic prefix (CP)), Bandwidth part (BWP), link capacity and/or traffic load (associated with the jump between the synchronization source and the team leader). The WTRU may receive side-chain configuration information. The side-chain configuration information may include one or more thresholds corresponding to measurement, hop count, link capacity, and/or traffic load. The method used for side-chain synchronization and source selection can be based on any of the following criteria: measurement and/or measurement type (e.g., S-RSRP or RSRP) measured from team leader or follower; synchronization source type (e.g. , Team leader type, team follower type); synchronization source or the number of jumps between the team follower and the team leader; related to the synchronization source or the jump or jump path between the team follower and the team leader Measurement and/or measurement type (for example, S-RSRP); average measurement associated with synchronization source or jump between team follower and team leader (for example, average S-RSRP); with synchronization source or team follower The link capacity associated with the jump and/or jump path between the team leader; the traffic load associated with the synchronization source or the jump and/or jump path between the team follower and the team leader; and The bandwidth associated with the jump and/or jump path between the synchronization source or the team follower and the team leader; the bandwidth associated with the jump and/or jump path between the synchronization source or the team follower and the team leader Parameter configuration; the number of resource blocks associated with the synchronization source or the jump and/or jump path between the team follower and the team leader; and/or the synchronization source or the jump between the team follower and the team leader The number of bandwidth parts (BWP) associated with the hopped path. Different combinations of selection criteria and/or priority order can be applied to the above information or parameters to optimize synchronization, including V2X side chain synchronization.

方法可以用於側鏈同步輔助資訊通信。同步輔助資訊可以包括以下資訊中的任何一者或多者:該測量和/或測量類型;同步源類型;跳數或跳順序:與跳或跳的路徑相關聯的平均或總測量(例如,S-RSRP);與跳或跳的路徑相關聯的鏈路容量;和/或與跳或跳的路徑相關聯的訊務負載。例如,WTRU可以收集以下資訊中的任何資訊或以下資訊中的任何資訊可被用信號通知給WTRU:從隊伍引領者或隊伍追隨者測量的測量和/或測量類型(例如,S-RSRP或RSRP);同步源類型(例如,隊伍引領者類型、隊伍追隨者類型);同步源和隊伍引領者之間的跳數;與同步源和隊伍引領者之間的跳和/或跳的路徑相關聯的測量和/或測量類型(例如,S-RSRP);與同步源(例如隊伍追隨者)和隊伍引領者之間的跳和/或跳的路徑相關聯的平均和/或總測量和/或測量類型(例如S-RSRP);與同步源和隊伍引領者之間的跳和/或跳的路徑相關聯的容量;和/或與同步源和隊伍引領者之間的跳和/或跳的路徑相關聯的負載。The method can be used for side chain synchronization to assist information communication. The synchronization assistance information may include any one or more of the following information: the measurement and/or measurement type; synchronization source type; hop count or hop sequence: average or total measurement associated with the hop or the path of the hop (for example, S-RSRP); the link capacity associated with the hop or hop path; and/or the traffic load associated with the hop or hop path. For example, the WTRU may collect any of the following information or any of the following information may be signaled to the WTRU: Measurements and/or measurement types (e.g., S-RSRP or RSRP) measured from the team leader or team follower ); synchronization source type (for example, team leader type, team follower type); the number of hops between the synchronization source and the team leader; related to the jump and/or jump path between the synchronization source and the team leader The measurement and/or measurement type (for example, S-RSRP); the average and/or total measurement and/or associated with the jump and/or jump path between the synchronization source (for example, the team follower) and the team leader Measurement type (such as S-RSRP); capacity associated with the jump and/or jump path between the synchronization source and the team leader; and/or the jump and/or jump between the synchronization source and the team leader The load associated with the path.

在一範例中,可廣播或傳達下列資訊至WTRU以供V2X側鏈同步源選擇:測量和/或測量類型(例如,S-RSRP);從同步源到隊伍引領者的跳數或跳順序;與該跳的路徑相關聯的容量;與該跳的路徑相關聯的訊務負載;與該跳的路徑相關聯的參數配置;與該跳的路徑相關聯的BWP資訊;和/或包括同步源優先順序的優先順序。例如,該跳數、同步源類型和/或同步源優先順序可以從一個WTRU廣播到其他WTRU。該WTRU可以基於跳數、同步源類型和/或同步源優先順序中的任何一者或多者來確定和選擇同步源。In one example, the following information can be broadcast or communicated to the WTRU for the selection of the V2X side chain synchronization source: measurement and/or measurement type (for example, S-RSRP); hop count or hop sequence from synchronization source to team leader; The capacity associated with the hop's path; the traffic load associated with the hop's path; the parameter configuration associated with the hop's path; the BWP information associated with the hop's path; and/or include the synchronization source Priority order of priority. For example, the hop count, synchronization source type, and/or synchronization source priority order may be broadcast from one WTRU to other WTRUs. The WTRU may determine and select a synchronization source based on any one or more of the number of hops, synchronization source type, and/or synchronization source priority.

隊伍引領者(或包括隊伍追隨者的任何WTRU)可以將同步輔助資訊傳達到WTRU。例如,隊伍引領者可以將同步輔助資訊廣播、組播或單播到一個、複數或所有WTRU。WTRU可以向隊伍引領者報告與同步輔助資訊相關的資訊。該隊伍引領者可聚集從WTRU報告的所有資訊,並將所接收的資訊轉換為一組同步輔助資訊,並將更新的同步輔助資訊傳達回WTRU。The team leader (or any WTRU including team followers) may communicate the synchronization assistance information to the WTRU. For example, the team leader can broadcast, multicast, or unicast synchronized auxiliary information to one, plural, or all WTRUs. The WTRU may report information related to the synchronized auxiliary information to the team leader. The team leader can gather all the information reported from the WTRU, convert the received information into a set of synchronized auxiliary information, and convey the updated synchronized auxiliary information back to the WTRU.

範例方法可用於將該同步輔助資訊傳達至WTRU。例如,NR實體側鏈控制通道(NR-PSCCH)可用於向WTRU傳達同步輔助資訊。在另一範例中,SLSS或PSBCH可用於向WTRU發送該同步輔助資訊。在另一個範例中,可以是實體下鏈控制通道(PDCCH)的側鏈群組共同控制通道(例如,SL-GC-PDCCH)可以用於向WTRU發送同步輔助資訊。在另一個範例中,群組共同控制實體側鏈控制通道(GC-SL-PSCCH或GC-PSCCH)或群組共同控制實體側鏈共用通道(GC-SL-PSSCH或GC-PSSCH)可被使用,並且可被組播、單播或廣播或按需傳輸。Example methods can be used to communicate the synchronization assistance information to the WTRU. For example, the NR physical side chain control channel (NR-PSCCH) can be used to convey synchronization assistance information to the WTRU. In another example, SLSS or PSBCH can be used to send the synchronization assistance information to the WTRU. In another example, a side-chain group common control channel (for example, SL-GC-PDCCH), which can be a physical downlink control channel (PDCCH), can be used to send synchronization assistance information to the WTRU. In another example, the group common control entity side chain control channel (GC-SL-PSCCH or GC-PSCCH) or the group common control entity side chain common channel (GC-SL-PSSCH or GC-PSSCH) can be used , And can be multicast, unicast or broadcast or transmitted on demand.

在另一個範例中,可以使用側鏈系統資訊。側鏈系統資訊可以包括側鏈剩餘最小系統資訊(SL-RMSI)和/或側鏈其他系統資訊(SL-OSI),其可被廣播、組播、單播或按需傳輸。在另一個範例中,可以使用側鏈隨機存取通道(SL-RACH)。SL-RACH可以包括兩步或四步RACH方法。例如,側鏈消息1(SL-MSG1)和/或消息2(SL-MSG2)可用於兩步RACH方法。另外,側鏈消息3(SL-MSG3)和/或消息4(SL-MSG4)可在四步RACH方法中使用。SL-RACH可以用於請求同步輔助資訊,以用於廣播、組播、單播或按需而用於同步輔助資訊。SL-RACH可用於經由廣播、組播、單播或按需來發送該同步輔助資訊。In another example, side chain system information can be used. The side chain system information may include side chain residual minimum system information (SL-RMSI) and/or side chain other system information (SL-OSI), which can be broadcast, multicast, unicast, or transmitted on demand. In another example, a side-chain random access channel (SL-RACH) can be used. SL-RACH can include a two-step or four-step RACH method. For example, side chain message 1 (SL-MSG1) and/or message 2 (SL-MSG2) can be used in the two-step RACH method. In addition, side chain message 3 (SL-MSG3) and/or message 4 (SL-MSG4) can be used in the four-step RACH method. SL-RACH can be used to request synchronization of auxiliary information for broadcast, multicast, unicast, or on-demand for synchronization of auxiliary information. SL-RACH can be used to send the synchronization auxiliary information via broadcast, multicast, unicast or on-demand.

在一個範例中,同步資訊可以被劃分成兩個(或更多個)組,例如第一同步輔助資訊和第二同步輔助資訊。該第二同步輔助資訊可以具有比該第一同步輔助資訊更高的優先順序。可以將附加的優先順序規則應用於每組同步輔助資訊。例如,一組優先順序規則可以在該第一同步輔助資訊內使用。另一組優先順序規則可以用於第二同步輔助資訊。In one example, the synchronization information can be divided into two (or more) groups, such as the first synchronization auxiliary information and the second synchronization auxiliary information. The second synchronization assistance information may have a higher priority order than the first synchronization assistance information. Additional priority rules can be applied to each set of synchronized auxiliary information. For example, a set of priority rules can be used in the first synchronized auxiliary information. Another set of priority rules can be used for the second synchronization auxiliary information.

該第一同步輔助資訊可以以半靜態或動態方式遞送,並且該第二同步輔助資訊可以以動態方式(或半靜態方式)遞送。在範例中,該第二同步輔助資訊可以置換(override)該第一同步輔助資訊。可以在該同步輔助資訊中攜帶置換指示符。例如,可以在該第二同步輔助資訊中攜帶置換指示符。當WTRU接收到第二同步輔助資訊時,WTRU可以檢查該置換指示符。如果該置換指示符指示置換或“開啟”,則WTRU可以用第二同步輔助資訊替換第一同步輔助資訊。WTRU可以使用第二同步輔助信息用於同步源選擇。如果置換指示符指示“非置換”或“關閉”,則WTRU可以將第二同步輔助資訊附加到第一同步輔助資訊。在這種情況下,WTRU可以使用第一同步輔助資訊和第二同步輔助資訊這二者來輔助同步源選擇。The first synchronization assistance information may be delivered in a semi-static or dynamic manner, and the second synchronization assistance information may be delivered in a dynamic manner (or a semi-static manner). In an example, the second synchronization assistance information can override the first synchronization assistance information. The replacement indicator can be carried in the synchronization auxiliary information. For example, the replacement indicator can be carried in the second synchronization auxiliary information. When the WTRU receives the second synchronization assistance information, the WTRU may check the replacement indicator. If the replacement indicator indicates replacement or "on", the WTRU may replace the first synchronization assistance information with the second synchronization assistance information. The WTRU may use the second synchronization assistance information for synchronization source selection. If the replacement indicator indicates "non-replacement" or "off," the WTRU may append the second synchronization assistance information to the first synchronization assistance information. In this case, the WTRU may use both the first synchronization assistance information and the second synchronization assistance information to assist in synchronization source selection.

該第一同步輔助資訊和該第二同步輔助資訊可在不同週期、資源中和/或經由不同信號或通道來遞送。例如,該第一同步輔助資訊可以較不頻繁地(例如,以較大週期)遞送,而第二同步輔助資訊可以較頻繁地(例如,以較小週期)遞送。該第一同步輔助資訊可以使用NR-PSCCH來遞送,而第二同步輔助資訊可以使用SL-GC-PDCCH來遞送。在另一範例中,可使用PSSS、SSSS和/或PSBCH來遞送該第一同步輔助資訊,而可使用PSCCH或SL-GC-PDCCH來遞送該第二同步輔助資訊。該第一同步輔助資訊可以以週期性方式遞送,而該第二同步輔助資訊可以以非週期性方式或事件觸發方式遞送。上述不同組合可以用於最佳化V2X側鏈同步。The first synchronization assistance information and the second synchronization assistance information may be delivered in different cycles, resources, and/or via different signals or channels. For example, the first synchronization assistance information may be delivered less frequently (for example, in a larger period), and the second synchronization assistance information may be delivered more frequently (for example, in a smaller period). The first synchronization assistance information can be delivered using NR-PSCCH, and the second synchronization assistance information can be delivered using SL-GC-PDCCH. In another example, PSSS, SSSS, and/or PSBCH may be used to deliver the first synchronization assistance information, and PSCCH or SL-GC-PDCCH may be used to deliver the second synchronization assistance information. The first synchronization assistance information may be delivered in a periodic manner, and the second synchronization assistance information may be delivered in a non-periodical manner or an event-triggered manner. The above different combinations can be used to optimize V2X side chain synchronization.

圖10是用於NR V2X側鏈的範例同步輔助資訊方法1000的流程圖,其可由作為車輛隊伍成員的WTRU執行。在1002,WTRU可以接收側鏈同步配置。在1004,WTRU可以接收該第一側鏈同步輔助資訊。在1006,WTRU可以接收用於該第一側鏈同步參數的優先順序規則。在1008,WTRU可以接收該第二側鏈同步輔助資訊。在1010,WTRU可以接收用於該第二側鏈同步參數的優先順序規則。在1012,WTRU可以基於該同步輔助資訊以及與該第一同步輔助資訊和第二同步輔助資訊相關聯的優先順序規則來選擇同步源。用於V2X側鏈的同步方法和同步源選擇方法可基於本文該方法和技術的子組件的任何組合、子集。FIG. 10 is a flowchart of an exemplary method 1000 for synchronizing auxiliary information for NR V2X side chains, which can be executed by a WTRU as a member of a vehicle team. At 1002, the WTRU may receive the side chain synchronization configuration. At 1004, the WTRU may receive the first side chain synchronization assistance information. At 1006, the WTRU may receive a priority order rule for the first side chain synchronization parameter. At 1008, the WTRU may receive the second side chain synchronization assistance information. At 1010, the WTRU may receive a priority order rule for the second side chain synchronization parameter. At 1012, the WTRU may select a synchronization source based on the synchronization assistance information and the priority rules associated with the first synchronization assistance information and the second synchronization assistance information. The synchronization method and synchronization source selection method for the V2X side chain can be based on any combination or subset of the sub-components of the method and technology herein.

雖然在上文中描述了採用特定組合或順序的特徵和元件,但是本領域普通技術人員將會認識到,每一個特徵或元件既可以單獨使用,也可以與其他特徵和元件進行任何組合來使用。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。電腦可讀媒體的範例包括電信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、諸如內部硬碟和可移硬碟之類的磁媒體、磁光媒體、以及諸如CD-ROM硬碟和數位多用途硬碟(DVD)的光媒體。與軟體關聯的處理器可以用於實施在WTRU、WTRU、終端、基地台、RNC或任何主機電腦中供使用的射頻收發器。Although the features and elements in a specific combination or order are described above, those of ordinary skill in the art will recognize that each feature or element can be used alone or in any combination with other features and elements. In addition, the method described herein can be implemented in a computer program, software, or firmware introduced into a computer-readable medium for a computer or a processor to run. Examples of computer-readable media include electrical signals (transmitted via wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, read-only memory (ROM), random access memory (RAM), register, cache, semiconductor memory devices, such as internal hard drives and removable hard drives Magnetic media such as discs, magneto-optical media, and optical media such as CD-ROM hard drives and digital versatile hard drives (DVDs). The processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, WTRU, terminal, base station, RNC, or any host computer.

C:鏈路容量臨界值 H1:第一跳數臨界值 H2:第二跳臨界值 N2、N3、N4、N6、N11、S1、X2、Xn:介面 PSBCH:實體側鏈廣播通道 SL:側鏈 SSSS:輔側鏈同步信號 T1:側鏈測量臨界值 RSRP:參考信號接收功率 100:通信系統 102、102a、102b、102c、102d、201、301:無線傳輸/接收單元(WTRU) 104/113:無線電存取網路(RAN) 106/115:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:移動性管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(或者PGW) 180a、180b、180c:gNB 182a、182b:存取及移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 200:範例側鏈WTRU資訊交換過程 202:gNB/eNB 204:系統資訊區塊(SIB)類型21(SIB21) 206:側鏈WTRU資訊 208:RRCConnectionReconfiguration(RRC連接重配置)消息 300:車輛隊伍 302、304、306:隊伍引領者(PL)WTRU 310:PL SL-SYNC 312:H1 SL-SYNC 314:H2 SL-SYNC 400、500、600、700、800、900:範例同步源選擇方法 602、604、606、608、610、612、614、616、618、620、622、624、626:流程 1000:範例同步輔助資訊方法C: Link capacity threshold H1: The critical value of the first hop H2: Second jump threshold N2, N3, N4, N6, N11, S1, X2, Xn: Interface PSBCH: physical side chain broadcast channel SL: side chain SSSS: auxiliary side chain synchronization signal T1: Side chain measurement threshold RSRP: Reference signal received power 100: Communication system 102, 102a, 102b, 102c, 102d, 201, 301: wireless transmission/reception unit (WTRU) 104/113: Radio Access Network (RAN) 106/115: Core Network (CN) 108: Public Switched Telephone Network (PSTN) 110: Internet 112: other networks 114a, 114b: base station 116: Air Interface 118: processor 120: Transceiver 122: transmission/reception element 124: speaker/microphone 126: Small keyboard 128: display/touchpad 130: non-removable memory 132: removable memory 134: Power 136: Global Positioning System (GPS) Chipset 138: Peripheral Equipment 160a, 160b, 160c: eNodeB 162: Mobility Management Entity (MME) 164: Service Gateway (SGW) 166: Packet Data Network (PDN) Gateway (or PGW) 180a, 180b, 180c: gNB 182a, 182b: Access and mobility management function (AMF) 183a, 183b: Conversation Management Function (SMF) 184a, 184b: User Plane Function (UPF) 185a, 185b: data network (DN) 200: Example side chain WTRU information exchange process 202: gNB/eNB 204: System Information Block (SIB) Type 21 (SIB21) 206: Sidechain WTRU Information 208: RRCConnectionReconfiguration (RRC connection reconfiguration) message 300: Vehicle Team 302, 304, 306: Team Leader (PL) WTRU 310:PL SL-SYNC 312: H1 SL-SYNC 314: H2 SL-SYNC 400, 500, 600, 700, 800, 900: Example synchronization source selection method 602, 604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626: process 1000: Example synchronization method of auxiliary information

從以下結合附圖以範例方式給出的描述中可以獲得更詳細的理解,其中附圖中相同的附圖標記表示相同的元件,並且其中: 圖1A是示出了可實施一個或複數揭露的實施例所在的範例通信系統的系統圖。 圖1B是示出了根據一種實施例可在圖1A所示的通信系統內使用的範例無線傳輸/接收單元(WTRU)的系統圖。 圖1C是示出了根據一種實施例可在圖1A所示的通信系統內使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖。 圖1D是示出了根據一種實施例可在圖1A所示的通信系統內使用的另一範例RAN和另一範例CN的系統圖。 圖2是用於車輛對所有事物(V2X)側鏈傳輸的(車輛)WTRU和eNB之間的通信的範例側鏈WTRU資訊交換過程的傳訊圖; 圖3是包括隊伍引領者和隊伍追隨者的範例車輛隊伍的網路圖; 圖4是基於測量、測量類型和同步源類型的範例同步源選擇方法的流程圖; 圖5是基於絕對和相對測量、測量類型和同步源類型的範例同步源選擇方法的流程圖; 圖6是基於測量、測量類型、同步源類型和跳數的範例同步源選擇方法的流程圖; 圖7是基於測量、測量類型和同步源類型、跳數和鏈路容量的範例同步源選擇方法的流程圖; 圖8是基於測量、測量類型、同步源類型、跳數、鏈路容量和訊務負載的範例同步源選擇方法的流程圖; 圖9是基於測量、測量類型和同步源類型以及跳數的範例同步源選擇方法的流程圖;以及 圖10是用於NR V2X側鏈的範例同步輔助資訊方法的流程圖,該方法可由作為車輛隊伍成員的WTRU執行。A more detailed understanding can be obtained from the following description given by way of example in conjunction with the drawings, in which the same reference numerals in the drawings denote the same elements, and in which: Figure 1A is a system diagram illustrating an exemplary communication system in which one or more of the disclosed embodiments may be implemented. FIG. 1B is a system diagram showing an exemplary wireless transmission/reception unit (WTRU) that may be used in the communication system shown in FIG. 1A according to an embodiment. FIG. 1C is a system diagram showing an example radio access network (RAN) and an example core network (CN) that can be used in the communication system shown in FIG. 1A according to an embodiment. FIG. 1D is a system diagram showing another example RAN and another example CN that can be used in the communication system shown in FIG. 1A according to an embodiment. Figure 2 is a signaling diagram of an exemplary side-chain WTRU information exchange process for communication between a (vehicle) WTRU and an eNB for vehicle-to-everything (V2X) side-chain transmission; Figure 3 is a network diagram of an example vehicle team including team leaders and team followers; Figure 4 is a flowchart of an exemplary synchronization source selection method based on measurement, measurement type, and synchronization source type; Figure 5 is a flowchart of an exemplary synchronization source selection method based on absolute and relative measurement, measurement type, and synchronization source type; Figure 6 is a flowchart of an exemplary synchronization source selection method based on measurement, measurement type, synchronization source type, and hop count; Figure 7 is a flowchart of an exemplary synchronization source selection method based on measurement, measurement type, synchronization source type, hop count, and link capacity; Figure 8 is a flowchart of an exemplary synchronization source selection method based on measurement, measurement type, synchronization source type, hop count, link capacity, and traffic load; Figure 9 is a flowchart of an exemplary synchronization source selection method based on measurement, measurement type, synchronization source type, and hop count; and Figure 10 is a flowchart of an exemplary method of synchronizing auxiliary information for NR V2X sidechains, which can be executed by a WTRU as a member of a vehicle team.

H1:第一跳數臨界值 H1: The critical value of the first hop

H2:第二跳臨界值 H2: Second jump threshold

RSRP:參考信號接收功率 RSRP: Reference signal received power

T1:側鏈測量臨界值 T1: Side chain measurement threshold

600:範例同步源選擇方法 600: Example synchronization source selection method

602、604、606、608、610、612、614、616、618、620、622、624、626:流程 602, 604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626: process

Claims (20)

一種被配置成選擇一車輛隊伍中的一同步源的無線傳輸/接收單元(WTRU),該WTRU包括: 一收發器;以及 一處理器,其中 該收發器被配置為接收用於側鏈通信的配置資訊,其中該配置資訊至少包括一第一側鏈測量臨界值、一第二側鏈測量臨界值和一第一跳數臨界值; 該收發器被配置成針對來自複數同步源的信號而監視至少一個側鏈通道,其中該同步源是該車輛隊伍中的WTRU; 該收發器被配置為對來自該複數同步源中的每一個的一側鏈同步信號執行一側鏈測量; 該處理器被配置為基於在該分別側鏈同步信號中攜帶的資訊來確定該複數同步源中的每個的同步源類型和跳數; 該處理器被配置為編排來自該複數同步源的同步源之一列表,該側鏈測量的一值對其大於該第一側鏈測量臨界值; 該處理器被配置為,在同步源之該列表中的一同步源是一隊伍引領者同步源類型的一情況下,選擇具有隊伍引領者類型的該同步源; 該處理器被配置為,在同步源之該列表中沒有同步源是一隊伍引領者同步源類型的一情況下: 在同步源之該列表中的一同步源具有小於該第一跳數臨界值的一跳數的情況下,選擇具有小於該第一跳數臨界值的跳數的該同步源; 在同步源之該列表中沒有同步源具有小於該第一跳數臨界值的一跳數的一情況下,選擇該側鏈測量的該值大於該第二側鏈測量臨界值的該同步源;以及 該收發器被配置為建立與該所選擇的同步源的一鏈路。A wireless transmission/reception unit (WTRU) configured to select a synchronization source in a fleet of vehicles, the WTRU including: A transceiver; and A processor, where The transceiver is configured to receive configuration information for side-chain communication, where the configuration information includes at least a first side-chain measurement threshold, a second side-chain measurement threshold, and a first hop count threshold; The transceiver is configured to monitor at least one side chain channel for signals from a plurality of synchronization sources, where the synchronization source is a WTRU in the vehicle fleet; The transceiver is configured to perform side-chain measurements on side-chain synchronization signals from each of the complex synchronization sources; The processor is configured to determine the synchronization source type and hop count of each of the plurality of synchronization sources based on the information carried in the respective side chain synchronization signals; The processor is configured to compile a list of one of the synchronization sources from the plurality of synchronization sources, and a value measured by the side chain is greater than the first side chain measurement threshold; The processor is configured to select the synchronization source with the team leader type when a synchronization source in the list of synchronization sources is a team leader synchronization source type; The processor is configured to, in the case that no synchronization source in the list of synchronization sources is a team leader synchronization source type: In the case that a synchronization source in the list of synchronization sources has a hop count less than the first hop count threshold, select the synchronization source that has a hop count less than the first hop count threshold; In a case where there is no synchronization source in the list of synchronization sources that has a hop count less than the first hop count threshold, select the synchronization source whose value measured by the side chain is greater than the second side chain measurement threshold; as well as The transceiver is configured to establish a link with the selected synchronization source. 如請求項1所述的WTRU,其中該配置資訊是在來自一演進型節點B(eNB)的一系統資訊區塊(SIB)中接收的。The WTRU according to claim 1, wherein the configuration information is received in a system information block (SIB) from an evolved node B (eNB). 如請求項1所述的WTRU,其中該配置資訊還包括一第一鏈路容量臨界值。The WTRU according to claim 1, wherein the configuration information further includes a first link capacity threshold. 如請求項1所述的WTRU,其中該收發器被配置成根據以下中的至少一者來執行側鏈測量:參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、訊噪比(SNR)、訊擾雜比(SINR)或相關性。The WTRU of claim 1, wherein the transceiver is configured to perform side chain measurements according to at least one of the following: reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-noise ratio (SNR) ), signal to interference ratio (SINR) or correlation. 如請求項1所述的WTRU,其中在該側鏈同步信號中攜帶的該資訊包括指示一隊伍引領者類型和一隊伍追隨者類型中的一者的一同步源類型指示符,並且該處理器被配置成基於該同步源類型指示符來確定該複數同步源中的每一個同步源的該同步源類型。The WTRU according to claim 1, wherein the information carried in the side chain synchronization signal includes a synchronization source type indicator indicating one of a team leader type and a team follower type, and the processor It is configured to determine the synchronization source type of each of the plurality of synchronization sources based on the synchronization source type indicator. 如請求項1所述的WTRU,其中在該側鏈同步信號中攜帶的該資訊包括一跳數欄位,該跳數欄位指示該同步源和一隊伍引領者之間的鏈路的一數量,並且該處理器被配置成基於該跳數欄位來確定該複數同步源中的每一個同步源的該跳數。The WTRU according to claim 1, wherein the information carried in the side-chain synchronization signal includes a hop count field, the hop count field indicating a number of links between the synchronization source and a team leader , And the processor is configured to determine the hop count of each of the plurality of synchronization sources based on the hop count field. 如請求項6所述的WTRU,其中該處理器被配置成基於該跳數欄位來確定該複數同步源中的每一個同步源的該同步源類型,以使得0的一跳數指示一隊伍引領者類型,而大於零的一跳數指示一隊伍追隨者類型。The WTRU according to claim 6, wherein the processor is configured to determine the synchronization source type of each of the plurality of synchronization sources based on the hop count field, such that a hop count of 0 indicates a team Leader type, and a hop count greater than zero indicates a team follower type. 如請求項1所述的WTRU,其中該側鏈同步信號包括以下信號中的至少一者:一主側鏈同步信號(PSSS)、一輔側鏈同步信號(SSSS)、在一實體側鏈廣播通道(PSBCH)上攜帶的一信號、一側鏈同步信號塊(SL-SSB)、一通道狀態資訊參考信號(CSI-RS)、或PSBCH解調參考信號(PSBCH-DMRS)。The WTRU according to claim 1, wherein the side chain synchronization signal includes at least one of the following signals: a primary side chain synchronization signal (PSSS), a secondary side chain synchronization signal (SSSS), and a physical side chain broadcast A signal carried on the channel (PSBCH), a side chain synchronization signal block (SL-SSB), a channel status information reference signal (CSI-RS), or a PSBCH demodulation reference signal (PSBCH-DMRS). 如請求項1所述的WTRU,其中該收發器還被配置成從該所選擇的同步源接收包括時序資訊的信號。The WTRU of claim 1, wherein the transceiver is further configured to receive a signal including timing information from the selected synchronization source. 如請求項1所述的WTRU,該WTRU被配置為一車輛WTRU。For the WTRU described in claim 1, the WTRU is configured as a vehicle WTRU. 一種由無線傳輸/接收單元(WTRU)執行的用於在一車輛隊伍中選擇一同步源的方法,該方法包括: 接收用於側鏈通信的配置資訊,其中該配置資訊至少包括一第一側鏈測量臨界值、一第二側鏈測量臨界值和一第一跳數臨界值; 針對來自複數同步源的信號而監視至少一個側鏈通道,其中該同步源是該車輛隊伍中的WTRU; 對來自該複數同步源中的每一個同步源的一側鏈同步信號執行側鏈測量; 基於在該分別側鏈同步信號中攜帶的資訊來確定用於該複數同步源中的每個同步源的同步源類型和跳數; 編排來自該複數同步源的同步源之一列表,該側鏈測量的一值對其大於該第一側鏈測量臨界值; 在同步源之該列表中的一同步源為隊伍引領者同步源類型的一情況下,選擇具有隊伍引領者類型的該同步源; 在同步源之該列表中沒有同步源是一隊伍引領者同步源類型的一情況下: 在同步源之該列表中的一同步源具有小於該第一跳數臨界值的一跳數的一情況下,選擇具有小於該第一跳數臨界值的跳數的該同步源; 在同步源之該列表中沒有同步源具有小於該第一跳數臨界值的一跳數的情況下,選擇該側鏈測量的該值大於該第二側鏈測量臨界值的同該步源;以及 建立與該所選擇的同步源的一鏈路。A method for selecting a synchronization source in a vehicle fleet executed by a wireless transmission/reception unit (WTRU), the method includes: Receiving configuration information for side-chain communication, where the configuration information includes at least a first side-chain measurement threshold, a second side-chain measurement threshold, and a first hop count threshold; Monitor at least one side chain channel for signals from a plurality of synchronization sources, where the synchronization source is a WTRU in the vehicle fleet; Perform side-chain measurement on the side-chain synchronization signal from each of the complex synchronization sources; Determine the synchronization source type and the number of hops for each of the complex synchronization sources based on the information carried in the respective side chain synchronization signals; Compiling a list of one of the synchronization sources from the plurality of synchronization sources, and a value measured by the side chain is greater than the first side chain measurement threshold; In a case where a synchronization source in the list of synchronization sources is the team leader synchronization source type, select the synchronization source with the team leader type; In the case that no synchronization source in the list of synchronization sources is a team leader synchronization source type: In a case in which a synchronization source in the list of synchronization sources has a hop count less than the first hop count threshold, select the synchronization source that has a hop count less than the first hop count threshold; In the case that no synchronization source in the list of synchronization sources has a hop count less than the first hop count threshold, select the same step source whose value measured by the side chain is greater than the second side chain measurement threshold; as well as A link with the selected synchronization source is established. 如請求項11所述的方法,其中該配置資訊是在來一自演進型節點B(eNB)的一系統資訊區塊(SIB)中接收的。The method according to claim 11, wherein the configuration information is received in a system information block (SIB) from an evolved node B (eNB). 如請求項11所述的方法,其中該配置資訊還包括一第一鏈路容量臨界值。The method according to claim 11, wherein the configuration information further includes a first link capacity threshold. 如請求項11所述的方法,其中該執行側鏈測量是根據以下中的至少一者:參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、訊噪比(SNR)、訊擾雜比(SINR)或相關性。The method according to claim 11, wherein the execution of the side chain measurement is based on at least one of the following: reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-noise ratio (SNR), signal interference Ratio (SINR) or correlation. 如請求項11所述的方法,其中,該側鏈同步信號中攜帶的該資訊包括指示一隊伍引領者類型和一隊伍追隨者類型中的一者的一同步源類型指示符,並且該確定該複數同步源中的每個同步源的該同步源類型是基於該同步源類型指示符。The method according to claim 11, wherein the information carried in the side-chain synchronization signal includes a synchronization source type indicator indicating one of a team leader type and a team follower type, and the determination is The synchronization source type of each synchronization source in the plural synchronization sources is based on the synchronization source type indicator. 如請求項11所述的方法,其中該側鏈同步信號中攜帶的該資訊包括一跳數欄位,該跳數欄位指示該同步源與一隊伍引領者之間的鏈路的一數量,並且該確定該複數同步源中的每一個同步源的該跳數是基於該跳數欄位。The method according to claim 11, wherein the information carried in the side-chain synchronization signal includes a hop count field, and the hop count field indicates a number of links between the synchronization source and a team leader, And the determination of the hop count of each of the plurality of synchronization sources is based on the hop count field. 如請求項16所述的方法,其中該確定該複數同步源中的每一個同步源的該同步源類型是基於該跳數欄位,以使得0的一跳數指示隊伍引領者類型,而大於零的一跳數指示一隊伍追隨者類型。The method according to claim 16, wherein the determination of the synchronization source type of each of the plurality of synchronization sources is based on the hop count field, so that a hop count of 0 indicates the team leader type, and is greater than A hop count of zero indicates a team follower type. 如請求項11所述的方法,其中該側鏈同步信號包括以下信號中的至少一者:一主側鏈同步信號(PSSS)、一輔側鏈同步信號(SSSS)、在一實體側鏈廣播通道(PSBCH)上攜帶的一信號、一側鏈同步信號塊(SL-SSB)、一通道狀態資訊參考信號(CSI-RS)、或PSBCH解調參考信號(PSBCH-DMRS)。The method according to claim 11, wherein the side chain synchronization signal includes at least one of the following signals: a primary side chain synchronization signal (PSSS), a secondary side chain synchronization signal (SSSS), and a physical side chain broadcast A signal carried on the channel (PSBCH), a side chain synchronization signal block (SL-SSB), a channel status information reference signal (CSI-RS), or a PSBCH demodulation reference signal (PSBCH-DMRS). 如請求項11所述的方法,還包括: 從該所選擇的同步源接收包括時序資訊的信號。The method according to claim 11, further including: A signal including timing information is received from the selected synchronization source. 如請求項11所述的方法,其中該WTRU是一車輛WTRU。The method of claim 11, wherein the WTRU is a vehicle WTRU.
TW108134812A 2018-09-26 2019-09-26 Sidelink synchronization methods for v2x in nr TW202037210A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862736795P 2018-09-26 2018-09-26
US62/736795 2018-09-26

Publications (1)

Publication Number Publication Date
TW202037210A true TW202037210A (en) 2020-10-01

Family

ID=68172287

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134812A TW202037210A (en) 2018-09-26 2019-09-26 Sidelink synchronization methods for v2x in nr

Country Status (2)

Country Link
TW (1) TW202037210A (en)
WO (1) WO2020069182A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3864908A4 (en) * 2018-10-11 2022-05-25 Lenovo (Beijing) Limited Method and apparatus for synchronization reference source selection
US11570732B2 (en) * 2020-09-25 2023-01-31 Intel Corporation Methods to mitigate denial of service attacks on time synchronization using link redundancy for industrial/autonomous systems
US20240056997A1 (en) * 2021-01-12 2024-02-15 Interdigital Patent Holdings, Inc. Methods and apparatuses for sidelink positioning
US11617205B2 (en) 2021-04-15 2023-03-28 Qualcomm Incorporated Channel sensing for full-duplex sidelink communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371233B (en) * 2016-05-12 2020-10-09 财团法人工业技术研究院 Synchronization signal transmitting/receiving method and wireless communication device

Also Published As

Publication number Publication date
WO2020069182A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US20240163971A1 (en) Uu interface enhancement for nr v2x
KR102401700B1 (en) New wireless LAN access in beamforming system
KR102462737B1 (en) Procedures and Mechanisms for Narrowband Multi-Channel Transmission to Wakeup Radios
KR20220006043A (en) NR SL PSFCH transmission and monitoring
JP2020191688A (en) Handling interference in multi-rat wtru
TW201843950A (en) Beam-based pdcch transmission in nr
JP7469326B2 (en) Sidelink transmission-reception distance determination method
WO2020033628A1 (en) Sidelink resource selection and control
TW202123747A (en) Apparatus and methods for new radio sidelink channel state information acquisition
WO2019160973A1 (en) Methods for v2x autonomous directional resource selection
TW201933817A (en) Apparatus and systems for paging and L1 mobility in NR
TW201937973A (en) Physical random access
TW202025657A (en) Reliable sidelink data transmission
JP2022504484A (en) Multi transmission / reception point transmission method and device
TWI739084B (en) Method and apparatus for collision mitigation and complexity reduction for noma
US11412446B2 (en) Network energy efficiency
TW202037210A (en) Sidelink synchronization methods for v2x in nr
WO2020033562A1 (en) Methods and apparatuses for synchronization in wireless system
KR20220164045A (en) Enhancements of physical channels in multiple TRPs
TW201907686A (en) Synchronization signal multiplexing and mappings in nr
TW202142037A (en) Improving coverage in a high frequency range
CN115804076A (en) Method for supporting end-to-end QOS
CN113853825A (en) Method for supporting BSS edge user transmission
JP2024502443A (en) Methods, apparatus, and systems for reduced bandwidth for reduced capacity WTRUs
WO2020033513A1 (en) Control information transmission and sensing in wireless systems