TW201933817A - Apparatus and systems for paging and L1 mobility in NR - Google Patents

Apparatus and systems for paging and L1 mobility in NR Download PDF

Info

Publication number
TW201933817A
TW201933817A TW107140569A TW107140569A TW201933817A TW 201933817 A TW201933817 A TW 201933817A TW 107140569 A TW107140569 A TW 107140569A TW 107140569 A TW107140569 A TW 107140569A TW 201933817 A TW201933817 A TW 201933817A
Authority
TW
Taiwan
Prior art keywords
paging
wtru
coreset
time slot
ssb
Prior art date
Application number
TW107140569A
Other languages
Chinese (zh)
Inventor
俊霖 潘
尼拉夫B 夏
辛方俊
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201933817A publication Critical patent/TW201933817A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and systems for paging monitoring, which may be performed by wireless transmit/receive unit (WTRU) that supports multi-beam communications, are disclosed herein. A WTRU may receive a configuration for enhanced paging. The WTRU may determine a first subcarrier spacing (SCS) for a synchronization signal block (SSB) and a second SCS for a paging reception. The WTRU may determine a paging multiplexing type (PMT) based on the first SCS and second SCS, where the PMT is of a first type if the first and second SCS are different and a second type if the first and second SCS are the same. The WTRU may determine a beam, time and frequency relationship among a paging control resource set (CORESET), a paging message, and/or the SSB based on the determined PMT. The WTRU may monitor a paging occasion (PO) in one or more beams based on the determined beam, time and frequency relationship.

Description

在NR中傳呼及L1行動裝置及系統Paging and L1 mobile devices and systems in NR

相關申請案的交叉引用Cross-reference to related applications

本申請案主張2017年11月15日申請的美國臨時申請案No. 62/586,513以及2018年4月4日申請的美國臨時申請案No. 62/652,809的權益,所述申請案的內容在這裡被引入以作為參考。The present application claims the benefit of U.S. Provisional Application No. 62/586, 513, filed on Nov. 15, the,,,,,,,,,, It was introduced as a reference.

近期的第三代合作夥伴計畫(3GPP)標準討論定義了若干種部署方案,例如室內熱點、密集城市、鄉村、城市巨集胞元以及高速。基於下一代行動網路(NGMN)、3GPP以及國際電信聯盟無線電通信部門(ITU-R)提出的一般要求,新興的第五代(5G)系統用例的粗略分類可以分成增強型行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠低潛時通信(URLLC)。這些用例著重於滿足不同的性能要求,例如更高資料速率、更高頻譜效率、低功率以及更高能效、及/或更低的潛時以及更高的可靠性。此外,各種部署方案考慮了範圍從700 MHz到80 GHz的廣闊頻譜範圍。The recent 3rd Generation Partnership Project (3GPP) standards discussion defines several deployment scenarios, such as indoor hotspots, dense cities, rural, urban macro cells, and high speed. Based on the general requirements of the Next Generation Mobile Network (NGMN), 3GPP, and the International Telecommunications Union Radiocommunication Sector (ITU-R), the rough classification of emerging fifth-generation (5G) system use cases can be divided into Enhanced Mobile Broadband (eMBB) Large-scale machine type communication (mMTC) and ultra-reliable low-latency communication (URLLC). These use cases focus on meeting different performance requirements, such as higher data rates, higher spectral efficiency, lower power and higher energy efficiency, and/or lower latency and higher reliability. In addition, various deployment scenarios take into account the broad spectrum range from 700 MHz to 80 GHz.

在無線通訊中,隨著載波頻率增加,嚴重的路徑損耗有可能會成為保證足夠覆蓋的關鍵性限制。毫米波(mmW)系統中的傳輸還有可能遭遇到非視線損耗,例如繞射損耗、穿透損耗、氧吸收損失及/或葉片損失。在初始存取期間,基地台以及WTRU可能需要克服這些高路徑損耗並發現彼此。使用數十乃至數百個天線元件來產生波束成形信號是一種藉由提供顯著的波束成形增益來補償嚴重路徑損耗的有效方式。波束成形技術可以包括數位、類比及混合波束成形。In wireless communication, as the carrier frequency increases, severe path loss may become a critical constraint to ensure adequate coverage. Transmissions in millimeter wave (mmW) systems are also likely to suffer from non-line-of-sight losses such as diffraction loss, penetration loss, oxygen absorption loss, and/or blade loss. During initial access, the base station and the WTRU may need to overcome these high path losses and discover each other. Using tens or even hundreds of antenna elements to generate a beamformed signal is an effective way to compensate for severe path loss by providing significant beamforming gain. Beamforming techniques can include digital, analog, and hybrid beamforming.

這裡揭露了可以由支援多波束通信的無線傳輸/接收單元(WTRU)執行的用於傳呼監控的方法及系統。WTRU可以接收用於增強型傳呼的配置。WTRU可以確定用於同步信號塊(SSB)的第一子載波間隔(SCS)以及用於傳呼接收的第二SCS。WTRU可以基於第一SCS以及第二SCS來確定傳呼多工類型(PMT),使得在第一SCS與第二SCS不同的條件下確定PMT是第一類型,以及在第一SCS與第二SCS相同的條件下確定PMT是第二類型。WTRU可以基於所確定的PMT來確定傳呼控制資源集合(CORESET)、傳呼訊息及/或SSB之間的波束、時間及頻率關係。WTRU可以基於所確定的波束、時間及頻率關係而在傳呼時機(PO)的一個或多個波束中監控該PO,以發現傳呼訊息。Methods and systems for paging monitoring that can be performed by a wireless transmit/receive unit (WTRU) that supports multi-beam communications are disclosed herein. The WTRU may receive a configuration for enhanced paging. The WTRU may determine a first subcarrier spacing (SCS) for a synchronization signal block (SSB) and a second SCS for paging reception. The WTRU may determine a paging multiplex type (PMT) based on the first SCS and the second SCS such that the PMT is determined to be the first type under the condition that the first SCS is different from the second SCS, and the first SCS is the same as the second SCS Under the conditions, the PMT is determined to be the second type. The WTRU may determine beam, time, and frequency relationships between the paging control resource set (CORESET), the paging message, and/or the SSB based on the determined PMT. The WTRU may monitor the PO in one or more beams of a paging occasion (PO) based on the determined beam, time, and frequency relationship to discover a paging message.

第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統100的圖式。該通信系統100可以是為多個無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。FIG. 1A is a diagram showing an exemplary communication system 100 in which one or more of the disclosed embodiments may be implemented. The communication system 100 can be a multiple access system that provides content for a plurality of wireless users, such as voice, data, video, messaging, broadcast, and the like. The communication system 100 can enable multiple wireless users to access such content via sharing system resources including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). ), single carrier FDMA (SC-FDMA), zero tail unique word DFT extended OFDM (ZT UW DTS-s OFDM), unique word OFDM (UW-OFDM), resource block filtered OFDM, and filter bank multi-carrier (FBMC) Wait.

如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例涵蓋了任何數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d中的任一者都可被稱為“站”及/或“STA”,其可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置及應用(例如遠端手術)、工業裝置及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c及102d中的任一者可被可交換地稱為UE。As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, RAN 104/113, CN 106/115, public switched telephone network (PSTN) 108, the Internet. Path 110 and other networks 112, however, it should be understood that the disclosed embodiments encompass any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, any of the WTRUs 102a, 102b, 102c, 102d may be referred to as "station" and/or "STA", which may be configured to transmit and/or receive wireless signals, and may include a user Equipment (UE), mobile station, fixed or mobile subscriber unit, subscription-based unit, pager, mobile phone, personal digital assistant (PDA), smart phone, laptop, laptop, PC, wireless Sensors, hotspots or Mi-Fi devices, Internet of Things (IoT) devices, watches or other wearable devices, head mounted displays (HMD), vehicles, drones, medical devices and applications (eg remote surgery), industrial devices And applications (such as robotics and/or other wireless devices operating in industrial and/or automated processing chain environments), consumer electronic devices, and devices operating on commercial and/or industrial wireless networks, and the like. Any of the WTRUs 102a, 102b, 102c, and 102d may be referred to interchangeably as UEs.

通信系統100還可以包括基地台114a及/或基地台114b。基地台114a及/或基地台114b的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接以促使其存取一個或多個通信網路(例如CN106/115、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。Communication system 100 may also include base station 114a and/or base station 114b. Each of the base stations 114a and/or the base stations 114b can be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to cause them to access one or more communication networks (eg, Any type of device of CN 106/115, Internet 110, and/or other network 112). For example, the base stations 114a, 114b may be a base transceiver station (BTS), a Node B, an eNodeB, a local Node B, a local eNodeB, a gNB, an NR Node B, a website controller, an access point (AP), and Wireless routers and more. While each of the base stations 114a, 114b is depicted as a single component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104/113的一部分,並且該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一個或多個載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個扇區。在一實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用多個收發器。例如,使用波束成形可以在期望的空間方向上傳輸及/或接收信號。The base station 114a may be part of the RAN 104/113, and the RAN 104/113 may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller ( RNC), relay nodes, and more. Base station 114a and/or base station 114b can be configured to transmit and/or receive wireless signals on one or more carrier frequencies known as cells (not shown). These frequencies can be in the licensed spectrum, the unlicensed spectrum, or a combination of authorized and unlicensed spectrum. Cells may provide wireless service coverage for a particular geographic area that is relatively fixed or that may change over time. Cells can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, that is, each transceiver corresponds to one sector of a cell. In an embodiment, base station 114a may use multiple input multiple output (MIMO) technology and may use multiple transceivers for each sector of the cell. For example, beamforming can be used to transmit and/or receive signals in a desired spatial direction.

基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the null plane 116, where the null plane may be any suitable wireless communication link (e.g., radio frequency (RF), Microwave, centimeter wave, millimeter wave, infrared (IR), ultraviolet (UV), visible light, etc.). The empty intermediaries 116 can be established using any suitable radio access technology (RAT).

更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其中所述技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, and SC-FDMA, to name a few. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104/113 may implement radio technologies, such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), where the techniques may use Wideband CDMA (WCDMA) To establish an empty intermediary plane 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink (DL) Packet Access (HSDPA) and/or High Speed UL Packet Access (HSUPA).

在一實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中所述技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Or an advanced LTE (LTE-A) and/or an advanced LTE Pro (LTE-A Pro) to establish an empty inter-plane 116.

在一實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如NR無線電存取之類的無線電技術,其中所述無線電技術可以使用新型無線電(NR)建立空中介面116。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as NR radio access, where the radio technology may establish an empty intermediation plane 116 using a new radio (NR).

在一實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以經由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如eNB及gNB)發送的傳輸來表徵。In an embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a variety of radio access technologies. For example, base station 114a and WTRUs 102a, 102b, 102c may implement LTE radio access and NR radio access together (e.g., using a dual connectivity (DC) principle). Thus, the null intermediaries used by the WTRUs 102a, 102b, 102c may be characterized via multiple types of radio access technologies and/or transmissions to/from multiple types of base stations (e.g., eNBs and gNBs).

在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等的無線電技術。In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement, for example, IEEE 802.11 (ie, Wireless High Fidelity (WiFi)), IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000. EV-DO, Provisional Standard 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate (EDGE) for GSM Evolution And radio technology such as GSM EDGE (GERAN).

第1A圖中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促進局部區域中的無線連接,所述局部區域例如是營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在一實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可以使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以具有與網際網路110的直接連接。因此,基地台114b不需要經由CN 106/115來存取網際網路110。The base station 114b in FIG. 1A may be, for example, a wireless router, a local Node B, a local eNodeB or an access point, and may use any suitable RAT to facilitate wireless connectivity in a local area, such as a business Locations, homes, vehicles, campuses, industrial facilities, air corridors (eg for drone use), roads, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In an embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In still another embodiment, the base station 114b and the WTRUs 102c, 102d may use a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, LTE-A Pro, NR, etc.) to establish picocells or Femtocell. As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Therefore, the base station 114b does not need to access the Internet 110 via the CN 106/115.

RAN 104/113可以與CN 106/115進行通信,該CN106/115可以是被配置為向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、潛時需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行例如使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地與其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。The RAN 104/113 may be in communication with a CN 106/115, which may be configured to provide voice, data, applications, and/or the Internet to one or more of the WTRUs 102a, 102b, 102c, 102d Any type of network for Voice over Voice (VoIP) services. The data can have different quality of service (QoS) requirements, such as different throughput requirements, latency requirements, fault tolerance requirements, reliability requirements, data throughput requirements, and mobility requirements. The CN 106/115 may provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or may perform high level security functions such as user authentication. Although not shown in FIG. 1A, it should be appreciated that the RAN 104/113 and/or CN 106/115 may communicate directly or indirectly with other RANs that use the same RAT or different RATs as the RAN 104/113. For example, in addition to being connected to the RAN 104/113 using NR radio technology, the CN 106/115 can also communicate with another RAN (not shown) using GSM, UMTS, CDMA 2000, WiMAX, E-UTRA or WiFi radio technology. .

CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定(例如傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務提供者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一個或多個RAN相連的另一CN,其中該一個或多個RAN可以與RAN 104/113使用相同RAT或不同RAT。The CN 106/115 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). Internet 110 may include global use of public communication protocols such as TCP in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol suite, User Datagram Protocol (UDP), and/or IP. Sexually interconnected computer network device system. Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another CN connected to one or more RANs, where the one or more RANs may use the same RAT or a different RAT as RAN 104/113.

通信系統100中的WTRU 102a、102b、102c、102d中的一些或所有可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities (e.g., the WTRUs 102a, 102b, 102c, 102d may include multiple communications with different wireless networks over different wireless links) transceiver). For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cellular-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.

第1B圖是示出了範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。FIG. 1B is a system diagram showing an exemplary WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/trackpad 128, a non-removable memory 130, and a removable Memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned elements while remaining consistent with the embodiments.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118以及收發器120描述為單獨元件,然而應該瞭解,處理器118以及收發器120也可以一起集成在電子元件或晶片中。The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuits, any other type of integrated circuit (IC), state machine, and so on. The processor 118 can perform signal encoding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts the processor 118 and the transceiver 120 as separate components, it should be understood that the processor 118 and the transceiver 120 can also be integrated together in an electronic component or wafer.

傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)或從基地台(例如基地台114a)接收信號。例如,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在另一實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸以及接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。The transmit/receive element 122 can be configured to transmit signals to or from a base station (e.g., base station 114a) via the null plane 116. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. For example, in another embodiment, the transmit/receive element 122 can be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and receive RF as well as optical signals. It should be appreciated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.

雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸以及接收無線信號的兩個或更多個傳輸/接收元件122(例如多個天線)。Although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) that transmit and receive wireless signals via the null intermediate plane 116.

收發器120可被配置為對傳輸/接收元件122所要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如NR以及IEEE 802.11)來進行通信的多個收發器。The transceiver 120 can be configured to modulate signals to be transmitted by the transmission/reception element 122 and to demodulate signals received by the transmission/reception element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, transceiver 120 may include multiple transceivers that enable WTRU 102 to communicate via multiple RATs, such as NR and IEEE 802.11.

WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當類型的記憶體中存取訊號、以及將資訊儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶體儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取訊號、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may Receive user input from these components. The processor 118 can also output user profiles to the speaker/microphone 124, keypad 126, and/or display/trackpad 128. In addition, processor 118 can access signals from any suitable type of memory, such as non-removable memory 130 and/or removable memory 132, and store information to such memory. Non-removable memory 130 may include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access signals from the memory that are not physically located in the WTRU 102 and store the data to the memory. For example, such memory may be located on a server or a home computer (not shown). .

處理器118可以接收來自電源134的電力、並且可被配置為分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。The processor 118 can receive power from the power source 134 and can be configured to distribute and/or control power for other elements in the WTRU 102. Power source 134 may be any suitable device that powers WTRU 102. For example, the power source 134 may include one or more dry battery packs (such as nickel-cadmium (Ni-Cd), nickel-zinc (Ni-Zn), nickel-hydrogen (NiMH), lithium-ion (Li-ion), etc.), solar cells, and Fuel cells and more.

處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。The processor 118 can also be coupled to a GPS chipset 136 that can be configured to provide location information (e.g., longitude and latitude) related to the current location of the WTRU 102. Additionally or alternatively to the information from the GPS chipset 136, the WTRU 102 may receive location information from a base station (e.g., base station 114a, 114b) via the null plane 116 and/or receive from two or more nearby base stations. Signal timing to determine its position. It should be appreciated that the WTRU 102 may obtain location information using any suitable positioning method while remaining consistent with the embodiments.

處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊裝置138可以包括一個或多個感測器,該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器及/或濕度感測器。The processor 118 can also be coupled to other peripheral devices 138, where the peripheral devices can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo and video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, a Bluetooth® mode. Group, FM radio unit, digital music player, media player, video game console module, internet browser, virtual reality and/or augmented reality (VR/AR) device, and activity tracker, etc. Wait. The peripheral device 138 can include one or more sensors, which can be one or more of the following: a gyroscope, an accelerometer, a Hall effect sensor, a magnetometer, an orientation sensor, proximity Sensors, temperature sensors, time sensors, geolocation sensors, altimeters, light sensors, touch sensors, magnetometers, barometers, gesture sensors, biometric sensors and/or Or humidity sensor.

WTRU 102可以包括全雙工無線電裝置,其中對於該全雙工無線電裝置,一些或所有信號(例如與用於UL(例如對傳輸而言)以及下鏈(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流線圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元139。在實施例中,WTRU 102可以包括傳輸或接收一些或所有信號(例如與用於UL(例如用於傳輸)或下鏈(例如用於接收)的特定子訊框相關聯)的半雙工無線電裝置。The WTRU 102 may include a full-duplex radio for which some or all of the signals (e.g., specific sub-messages for UL (e.g., for transmission) and downlink (e.g., for reception) The reception or transmission of the box association may be parallel and/or simultaneous. Full-duplex radios may include reduced and/or substantially eliminated self-processing via hardware (eg, choke coils) or via signal processing by a processor (eg, a separate processor (not shown) or via processor 118) Interference interference management unit 139. In an embodiment, the WTRU 102 may include a half-duplex radio that transmits or receives some or all of the signals (e.g., associated with a particular subframe for UL (e.g., for transmission) or downlink (e.g., for reception). Device.

第1C圖是示出了根據一實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以經由空中介面116以使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。1C is a system diagram showing RAN 104 and CN 106, in accordance with an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the null plane 116 to use the E-UTRA radio technology. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一者都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, however it should be appreciated that the RAN 104 may include any number of eNodeBs while remaining consistent with the embodiments. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers that communicate with the WTRUs 102a, 102b, 102c via the null intermediaries 116. In one embodiment, the eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and/or receive wireless signals from, WTRU 102a.

e節點B 160a、160b、160c的每一者都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、上鏈(UL)及/或下鏈(DL)中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c可以經由X2介面彼此通信。Each of the eNodeBs 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, uplink (UL), and/or downlink (DL) User scheduling in ) and so on. As shown in FIG. 1C, the eNodeBs 160a, 160b, 160c can communicate with each other via the X2 interface.

第1C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN運營者之外的實體擁有及/或操作。The CN 106 shown in FIG. 1C may include a Mobility Management Entity (MME) 162, a Serving Gateway (SGW) 164, and a Packet Data Network (PDN) Gateway (or PGW) 166. While each of the foregoing elements is described as being part of CN 106, it should be understood that any of these elements can be owned and/or operated by entities other than the CN operator.

MME 162可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c中的每一個、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162還可以提供用於在RAN 104與使用其他無線電技術(例如GSM或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may act as a control node. For example, the MME 162 may be responsible for verifying the users of the WTRUs 102a, 102b, 102c, performing bearer activation/deactivation, and selecting a particular service gateway during the initial connection of the WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality for switching between the RAN 104 and other RANs (not shown) that use other radio technologies, such as GSM or WCDMA.

SGW 164可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由及轉發使用者資料封包至WTRU 102a、102b、102c/路由及轉發來自WTRU 102a、102b、102c的使用者資料封包。SGW 164可以執行其他功能,例如在eNB間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。SGW 164 may be connected to each of eNodeBs 160a, 160b, 160c in RAN 104 via an S1 interface. The SGW 164 can generally route and forward user data packets to the WTRUs 102a, 102b, 102c/route and forward user data packets from the WTRUs 102a, 102b, 102c. SGW 164 may perform other functions, such as anchoring the user plane during handover between eNBs, triggering paging when DL data is available to WTRUs 102a, 102b, 102c, and managing and storing the context of WTRUs 102a, 102b, 102c, etc. .

SGW 164可以連接到PGW 166,該PGW可以為WTRU 102a、102b、102c提供至封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。The SGW 164 can be coupled to the PGW 166, which can provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate the WTRUs 102a, 102b, 102c and IP enabled devices. Communication between.

CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供至電路切換式網路(例如PSTN 108)的存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務提供者擁有及/或操作的其他有線或無線網路。The CN 106 can facilitate communication with other networks. For example, CN 106 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, CN 106 may include or communicate with an IP gateway (eg, an IP Multimedia Subsystem (IMS) server), and the IP gateway may act as an interface between CN 106 and PSTN 108. In addition, CN 106 may provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks that other service providers own and/or operate.

雖然在第1A圖至第1D圖中將WTRU描述為無線WTRU,然而應該想到的是,在某些典型實施例中,此類WTRU可以(例如臨時地或永久地)使用與通信網路的有線通信介面。Although the WTRU is described as a wireless WTRU in Figures 1A through 1D, it is contemplated that in certain exemplary embodiments such a WTRU may (e.g., temporarily or permanently) use a wired connection to a communication network. Communication interface.

在典型的實施例中,其他網路112可以是WLAN。In a typical embodiment, the other network 112 can be a WLAN.

採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是介接至分散式系統(DS)或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以被遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如,其中源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。A WLAN employing an Infrastructure Basic Service Set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STAs) associated with the AP. The AP can access or interface to a distributed system (DS) or another type of wired/wireless network that carries traffic and/or carries the BSS. Traffic originating outside the BSS and to the STA may arrive via the AP and be delivered to the STA. Traffic originating from the STA and destined to a destination outside the BSS can be sent to the AP to be delivered to the respective destination. Traffic between STAs within the BSS may be sent via the AP, for example, where the source STA may send traffic to the AP and the AP may deliver the traffic to the destination STA. Traffic between STAs within a BSS can be considered and/or referred to as point-to-point traffic. The point-to-point traffic can be sent between the source and destination STAs (eg, directly between them) with direct link setup (DLS). In some exemplary embodiments, the DLS may use 802.11e DLS or 802.11z Tunneled DLS (TDLS). A WLAN using an Independent BSS (IBSS) mode may not have an AP, and STAs (eg, all STAs) within the IBSS or using the IBSS may communicate directly with each other. Here, the IBSS communication mode may sometimes be referred to as an "ad-hoc" communication mode.

在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,可以實施具有衝突避免的載波感測多重存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在給定的BSS中,一個STA(例如只有一個站)可以在任何給定時間進行傳輸。When using the 802.11ac infrastructure operating mode or a similar mode of operation, the AP can transmit beacons on fixed channels (eg, primary channels). The main channel can have a fixed width (eg, a bandwidth of 20 MHz) or a dynamically set width via messaging. The primary channel may be the operational channel of the BSS and may be used by the STA to establish a connection with the AP. In some exemplary embodiments, carrier sense multiple access with collision avoidance (CSMA/CA) may be implemented (eg, in an 802.11 system). For CSMA/CA, STAs including APs (eg, each STA) can sense the primary channel. If a particular STA senses/detects and/or determines that the primary channel is busy, then that particular STA may fall back. In a given BSS, one STA (eg, only one station) can transmit at any given time.

高輸送量(HT)STA可以使用40 MHz寬的通道來進行通信(例如經由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道進行組合以形成40 MHz寬的通道)。High throughput (HT) STAs can communicate using a 40 MHz wide channel (eg, by combining a 20 MHz wide main channel with a 20 MHz wide adjacent or non-adjacent channel to form a 40 MHz wide channel).

甚高輸送量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)而被形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。Very high throughput (VHT) STAs can support channels of 20 MHz, 40 MHz, 80 MHz and/or 160 MHz wide. A 40 MHz and/or 80 MHz channel can be formed by combining successive 20 MHz channels. A 160 MHz channel can be formed by combining eight consecutive 20 MHz channels or by combining two discrete 80 MHz channels (this combination can be referred to as an 80+80 configuration). For the 80+80 configuration, after channel encoding, the data can be passed through the segmentation parser, which splits the data into two streams. Inverse Fast Fourier Transform (IFFT) processing and time domain processing can be performed separately on each stream. This stream can be mapped on two 80 MHz channels and the data can be transmitted by a transmitting STA. At the receiver of a receiving STA, the above operations for the 80+80 configuration may be reversed and the combined material may be sent to the Media Access Control (MAC).

802.11af及802.11ah支援次1 GHz的操作模式。與802.11n以及802.11ac中使用的通道操作頻寬及載波相較,在802.11af以及802.11ah中使用通道操作頻寬及載波減少。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz及16 MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(例如巨集覆蓋區域中的MTC裝置)。MTC可以具有某種能力,例如包括支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。802.11af and 802.11ah support the next 1 GHz mode of operation. The channel operation bandwidth and carrier reduction are used in 802.11af and 802.11ah compared to the channel operation bandwidth and carrier used in 802.11n and 802.11ac. 802.11af supports 5 MHz, 10 MHz, and 20 MHz bandwidth in the TV White Space (TVWS) spectrum, and 802.11ah supports 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths using non-TVWS spectrum. In accordance with an exemplary embodiment, 802.11ah can support meter type control/machine type communication (eg, MTC devices in a macro coverage area). The MTC may have certain capabilities, including, for example, support (e.g., support only) certain and/or limited bandwidth limited capabilities. The MTC device can include a battery and the battery life of the battery is above a threshold (eg, to maintain a very long battery life).

可以支援多個通道以及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括可被指定為主通道的通道。該主通道可以具有的頻寬等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由支援最小頻寬操作模式的BSS中操作的所有STA中的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。WLAN systems that support multiple channels and channel bandwidths (such as 802.11n, 802.11ac, 802.11af, and 802.11ah) include channels that can be designated as primary channels. The primary channel may have a bandwidth equal to the maximum common operating bandwidth supported by all STAs in the BSS. The bandwidth of the primary channel can be set and/or limited by STAs in all STAs operating in the BSS supporting the minimum bandwidth mode of operation. In the 802.11ah example, even if the AP and other STAs in the BSS support 2 MHz, 4 MHz, 8 MHz, 16 MHz, and/or other channel bandwidth modes of operation, support (eg, only support) 1 MHz mode STAs (For example, an MTC type device), the main channel can be 1 MHz wide. Carrier sensing and/or network allocation vector (NAV) settings may depend on the state of the primary channel. If the primary channel is busy (for example, because the STA (which only supports 1 MHz mode of operation) transmits the AP), then the entire available frequency band can be considered busy even though most of the frequency bands remain idle and available for use.

在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5 MHz到923.5 MHz。在日本,可用頻帶是916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。In the United States, the available frequency band available for 802.11ah is 902 MHz to 928 MHz. In Korea, the available frequency band is 917.5 MHz to 923.5 MHz. In Japan, the available frequency band is 916.5 MHz to 927.5 MHz. The total bandwidth available for 802.11ah is 6 MHz to 26 MHz, depending on the country code.

第1D圖是示出了根據一實施例的RAN 113以及CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術以經由空中介面116而與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。FIG. 1D is a system diagram showing RAN 113 and CN 115, in accordance with an embodiment. As described above, the RAN 113 may use NR radio technology to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. The RAN 113 can also communicate with the CN 115.

RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c每一者可以包括一個或多個收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形以向gNB 180a、180b、180c傳輸信號及/或從gNB 180a、180b、180c接收信號。因此,舉例來說,gNB 180a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或從WTRU 102a接收無線信號。在一實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送多個分量載波(未示出)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在一實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。The RAN 113 may include gNBs 180a, 180b, 180c, but it should be appreciated that the RAN 113 may include any number of gNBs while remaining consistent with the embodiments. Each gNB 180a, 180b, 180c may each include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. In one embodiment, gNBs 180a, 180b, 180c may implement MIMO technology. For example, gNBs 180a, 180b may use beamforming to transmit signals to and/or receive signals from gNBs 180a, 180b, 180c. Thus, for example, gNB 180a may use multiple antennas to transmit wireless signals to, and/or receive wireless signals from, WTRU 102a. In an embodiment, gNBs 180a, 180b, 180c may implement carrier aggregation techniques. For example, gNB 180a may transmit multiple component carriers (not shown) to WTRU 102a. A subset of these component carriers may be on the unlicensed spectrum, while the remaining component carriers may be on the licensed spectrum. In an embodiment, gNBs 180a, 180b, 180c may implement Cooperative Multipoint (CoMP) technology. For example, the WTRU 102a may receive coordinated transmissions from the gNBs 180a and the gNBs 180b (and/or the gNBs 180c).

WTRU 102a、102b、102c可以使用與可縮放參數配置(numerology)相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間隔及/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包括不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。The WTRUs 102a, 102b, 102c may communicate with the gNBs 180a, 180b, 180c using transmissions associated with a scalable parameter numerology. For example, the OFDM symbol spacing and/or the OFDM subcarrier spacing may be different for different transmissions, different cells, and/or different portions of the wireless transmission spectrum. The WTRUs 102a, 102b, 102c may use subframes or transmission time intervals (TTIs) having different or scalable lengths (eg, including different numbers of OFDM symbols and/or continuing different absolute time lengths) to interact with the gNBs 180a, 180b, 180c communicates.

gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c可在與另一RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而基本上同時地與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或輸送量,以服務WTRU 102a、102b、102c。The gNBs 180a, 180b, 180c can be configured to communicate with the WTRUs 102a, 102b, 102c that employ independent and/or non-independent configurations. In a standalone configuration, the WTRUs 102a, 102b, 102c may communicate with the gNBs 180a, 180b, 180c without accessing other RANs (e.g., eNodeBs 160a, 160b, 160c). In a standalone configuration, the WTRUs 102a, 102b, 102c may use one or more of the gNBs 180a, 180b, 180c as mobility anchors. In a standalone configuration, the WTRUs 102a, 102b, 102c may use signals in the unlicensed band to communicate with the gNBs 180a, 180b, 180c. In a non-independent configuration, the WTRUs 102a, 102b, 102c may communicate/connect with the gNBs 180a, 180b, 180c while communicating/connecting with another RAN (e.g., eNodeBs 160a, 160b, 160c). For example, the WTRUs 102a, 102b, 102c may implement the DC principles to communicate substantially simultaneously with one or more gNBs 180a, 180b, 180c and one or more eNodeBs 160a, 160b, 160c. In a non-independent configuration, the eNodeBs 160a, 160b, 160c may act as mobility anchors for the WTRUs 102a, 102b, 102c, and the gNBs 180a, 180b, 180c may provide additional coverage and/or throughput to serve the WTRU 102a, 102b, 102c.

gNB 180a、180b、180c的每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、實施雙連接性、NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取及行動性管理功能(AMF)182a、182b等等。如第1D圖所示,gNB 180a、180b、180c可以經由Xn介面彼此通信。Each of gNBs 180a, 180b, 180c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and/or DL, support network Road cutting, implementation of dual connectivity, interworking between NR and E-UTRA, routing of user plane data to user plane functions (UPF) 184a, 184b, and routing control plane information to access and mobility management functions ( AMF) 182a, 182b, etc. As shown in FIG. 1D, the gNBs 180a, 180b, 180c can communicate with each other via the Xn interface.

第1D圖所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述為CN 115的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN運營者之外的其他實體擁有及/或操作。The CN 115 shown in FIG. 1D may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and possibly a data network (DN) 185a, 185b. While each of the foregoing elements is described as being part of CN 115, it should be understood that any of these elements can be owned and/or operated by other entities than the CN operator.

AMF 182a、182b可以經由N2介面被連接到RAN 113中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及行動性管理等等。AMF 182a、182b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。The AMFs 182a, 182b may be connected to one or more of the gNBs 180a, 180b, 180c in the RAN 113 via the N2 interface and may act as a control node. For example, AMFs 182a, 182b may be responsible for authenticating users of WTRUs 102a, 102b, 102c, supporting network cuts (eg, handling different PDU conversations with different needs), selecting specific SMFs 183a, 183b, managing registration areas, terminating NAS Communication, and mobility management, etc. The AMFs 182a, 182b may use network cuts to tailor the CN support provided for the WTRUs 102a, 102b, 102c based on the type of service used by the WTRUs 102a, 102b, 102c. For example, different network slices may be established for different use cases, such as services that rely on ultra-reliable low latency (URLLC) access, services that rely on enhanced large-scale mobile broadband (eMBB) access, and/or Services for machine type communication (MTC) access, and the like. AMF 162 may provide for switching between RAN 113 and other RANs (not shown) that use other radio technologies (eg, LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi) Control plane function.

SMF 183a、183b可以經由N11介面被連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面被連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理以及分配UE IP位址、管理PDU對話、控制策略實施以及QoS、以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。The SMFs 183a, 183b can be connected to the AMFs 182a, 182b in the CN 115 via the N11 interface. The SMFs 183a, 183b may also be connected to the UPFs 184a, 184b in the CN 115 via the N4 interface. The SMFs 183a, 183b can select and control the UPFs 184a, 184b, and can configure traffic routing via the UPFs 184a, 184b. The SMFs 183a, 183b may perform other functions such as managing and allocating UE IP addresses, managing PDU conversations, controlling policy enforcement and QoS, and providing downlink information notifications and the like. The PDU conversation type can be IP based, non IP based, Ethernet based and so on.

UPF 184a、184b可以經由N3介面被連接到RAN 113中的gNB 180a、180b、180c的一者或多者,這可以為WTRU 102a、102b、102c提供至封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取下鏈封包、以及提供行動性錨定處理等等。The UPFs 184a, 184b may be connected to one or more of the gNBs 180a, 180b, 180c in the RAN 113 via an N3 interface, which may provide the WTRUs 102a, 102b, 102c to a packet switched network (e.g., the Internet 110). Access to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices, the UPFs 184, 184b may perform other functions, such as routing and forwarding packets, implementing user plane policies, supporting multi-homed PDU conversations, Handling user plane QoS, caching downlink packets, and providing mobility anchoring and more.

CN 115可以促進與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與CN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該網路112以包括其他服務提供者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由介接到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b被連接到本地資料網路(DN)185a、185b。The CN 115 can facilitate communication with other networks. For example, CN 115 may include or may be in communication with an IP gateway (eg, an IP Multimedia Subsystem (IMS) server) that acts as an interface between CN 115 and CN 108. In addition, CN 115 may provide WTRUs 102a, 102b, 102c with access to other networks 112 that include other wired and/or wireless networks that are owned and/or operated by other service providers. In one embodiment, the WTRUs 102a, 102b, 102c may be connected to the N3 interface between the UPFs 184a, 184b and the DNs 185a, 185b via the N3 interface between the UPFs 184a, 184b and via the UPFs 184a, 184b Local Data Network (DN) 185a, 185b.

鑒於第1A圖至第1D圖以及第1A圖至第1D圖的對應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b及/或這裡描述的任何其他裝置(一個或多個)。這些仿真裝置可以是被配置為仿真這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或類比網路及/或WTRU功能。In view of the corresponding description of FIGS. 1A-1D and 1A through 1D, one or more or all of the functions described herein in relation to one or more of the following may be performed by one or more emulation devices (not shown) To perform: WTRUs 102a-d, base stations 114a-b, eNodeBs 160a-c, MME 162, SGW 164, PGW 166, gNBs 180a-c, AMFs 182a-b, UPFs 184a-b, SMFs 183a-b, DN185 ab and/or any other device(s) described herein. These emulation devices may be one or more devices configured to emulate one or more or all of the functions herein. For example, these emulation devices can be used to test other devices and/or analog network and/or WTRU functions.

仿真裝置可被設計為在實驗室環境及/或營運商網路環境中實施其他裝置的一項或多項測試。例如,該一個或多個仿真裝置可以在被完全或部分地實施及/或部署為有線及/或無線通訊網路一部分的同時執行一個或多個或所有功能,以測試通信網路內的其他裝置。該一個或多個仿真裝置可以在被臨時地實施/部署為有線及/或無線通訊網路的一部分的同時執行一個或多個或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試,及/或可以使用空中無線通訊來執行測試。The emulation device can be designed to implement one or more tests of other devices in a laboratory environment and/or an operator network environment. For example, the one or more emulation devices may perform one or more or all of the functions while being fully or partially implemented and/or deployed as part of a wired and/or wireless communication network to test other devices within the communication network . The one or more emulation devices may perform one or more or all of the functions while being temporarily implemented/deployed as part of a wired and/or wireless communication network. The emulation device can be directly coupled to another device to perform the test, and/or can perform the test using over-the-air wireless communication.

一個或多個仿真裝置可以在未被實施/部署為有線及/或無線通訊網路一部分的同時執行包括所有功能在內的一個或多個功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或多個元件的測試。該一個或多個仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一個或多個天線)的無線通訊來傳輸及/或接收資料。One or more emulation devices may perform one or more functions including all functions while not being implemented/deployed as part of a wired and/or wireless communication network. For example, the emulation device can be used in a test lab and/or in a test scenario of a wired and/or wireless communication network that is not deployed (eg, tested) to perform testing of one or more components. The one or more simulation devices can be test devices. The emulation device can transmit and/or receive data using direct RF coupling and/or wireless communication via an RF circuit (eg, the circuit can include one or more antennas).

在無線通訊系統中,胞元搜尋可以是指供WTRU獲取與胞元的時間以及頻率同步、以及偵測胞元的胞元識別(胞元ID)的程序。在一範例中,LTE同步信號可以由基地台(例如eNB、gNB)在每一個無線電訊框的第0及5個子訊框中傳送、並且在初始化期間可以被用於時間以及頻率同步。作為系統獲取過程的一部分,WTRU可以基於同步信號依序地同步到OFDM符號、時槽、子訊框、半訊框及/或無線電訊框。該同步信號可以包括主同步信號(PSS)以及輔同步信號(SSS)。PSS可以用於獲得時槽、子訊框及/或半訊框邊界。PSS可以提供胞元識別碼群組內的實體層胞元識別碼(PCI)。SSS可以用於獲得無線電訊框邊界。該SSS能使WTRU確定胞元識別碼群組,其範圍可以是從0到167。In a wireless communication system, cell search may refer to a procedure for the WTRU to acquire time and frequency synchronization with cells, and to detect cell identity (cell ID) of cells. In an example, the LTE synchronization signal may be transmitted by the base station (e.g., eNB, gNB) in the 0th and 5th subframes of each radio frame, and may be used for time and frequency synchronization during initialization. As part of the system acquisition process, the WTRU may sequentially synchronize to OFDM symbols, time slots, subframes, subframes, and/or radio frames based on the synchronization signals. The synchronization signal may include a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). PSS can be used to obtain time slots, sub-frames, and/or half frame boundaries. The PSS can provide a physical layer cell identification code (PCI) within the cell identification code group. SSS can be used to obtain radio frame boundaries. The SSS enables the WTRU to determine a group of cell identifiers, which may range from 0 to 167.

在成功同步以及PCI獲取之後,WTRU可以解碼實體廣播通道(PBCH)(例如使用胞元特定參考信號(CRS))以及獲取與系統頻寬、系統訊框號(SFN)及/或實體混合自動重傳請求(HARQ)指示符通道(PHICH)配置相關的主資訊塊(MIB)資訊。LTE同步信號及/或PBCH可以依照標準化的週期而被週期性傳送。After successful synchronization and PCI acquisition, the WTRU may decode a Physical Broadcast Channel (PBCH) (eg, using Cell Specific Reference Signals (CRS)) and acquire automatic weighting with system bandwidth, system frame number (SFN), and/or entity mix. The Request to Send (HARQ) Indicator Channel (PHICH) configures the relevant Master Information Block (MIB) information. The LTE synchronization signal and/or PBCH may be periodically transmitted in accordance with a standardized period.

當WTRU處於RRC_空閒(RRC_IDLE)模式時,傳呼可被用於針對WTRU的網路發起的連接建立。在LTE中,傳呼可以與下鏈共用通道(DL-SCH)上的下鏈資料傳輸類似地操作,並且WTRU可以針對與傳呼相關的下鏈排程指配來監控層1及層2(L1/L2)控制傳訊。由於WTRU的位置在胞元級未必是已知的,因此有可能會在限定的追蹤區域中跨越多個胞元來傳送傳呼訊息。傳呼還可以用於向處於RRC_IDLE及/或RRC_連接(RRC_CONNECTED)的WTRU告知系統資訊或緊急資訊的變化。When the WTRU is in RRC_IDLE mode, the paging can be used for network initiated connection establishment for the WTRU. In LTE, the paging can operate similarly to the downlink data transmission on the downlink shared channel (DL-SCH), and the WTRU can monitor Layer 1 and Layer 2 for the downlink scheduling assignment associated with the paging (L1/ L2) Control communication. Since the location of the WTRU is not necessarily known at the cell level, it is possible to transmit paging messages across multiple cells in a defined tracking area. The paging can also be used to inform the WTRU in RRC_IDLE and/or RRC_CONNECTED (RRC_CONNECTED) of changes in system information or emergency information.

有效的傳呼程序可以允許WTRU(例如處於空閒(IDLE)模式或RRC無活動模式)休眠,其中在大多數時間無接收器處理,並且在預先定義的時間間隔短時間地喚醒接收器,以監控來自網路的傳呼資訊。因此,可以定義傳呼週期以允許WTRU在大多數時間休眠、以及只在短的時間喚醒,以監控L1/L2控制傳訊。當WTRU喚醒時,如果其偵測用於傳呼的群組識別碼(例如藉由使用代表傳呼指示的傳呼無線電網路臨時識別符(P-RNTI)來加擾下鏈控制資訊(DCI)的循環冗餘檢查(CRC)),那麼WTRU可以處理在傳呼通道(PCH)上傳送的對應下鏈傳呼訊息。該傳呼訊息可以包括被傳呼的WTRU(一個或多個)的識別碼,並且在傳呼訊息中沒有找到其識別碼的WTRU可以丟棄在該傳呼訊息中的接收資訊、以及依照不連續接收(DRX)週期進行休眠。A valid paging procedure may allow the WTRU to sleep (eg, in idle (IDLE) mode or RRC inactive mode), where no receiver is processed most of the time, and the receiver is woken up for a short time at a predefined time interval to monitor for The paging information of the network. Thus, a paging period can be defined to allow the WTRU to sleep most of the time and only wake up in a short amount of time to monitor L1/L2 control communications. When the WTRU wakes up, if it detects the group identity code for paging (eg, by using the paging radio network temporary identifier (P-RNTI) on behalf of the paging indication to scramble the downlink control information (DCI) cycle Redundancy Check (CRC)), then the WTRU may process the corresponding downlink paging message transmitted on the paging channel (PCH). The paging message may include an identification code of the WTRU(s) being paged, and the WTRU whose identification code is not found in the paging message may discard the received information in the paging message and according to discontinuous reception (DRX). The cycle is dormant.

網路可以配置WTRU應喚醒並偵聽用於傳呼的通道的子訊框。子訊框配置可以是胞元特定的、並且可以與或不與WTRU特定配置結合使用。於其中給定WTRU應喚醒並且在實體下鏈控制通道(PDCCH)上搜尋P-RNTI的訊框可以藉由一個以該WTRU的識別碼、胞元特定傳呼週期及/或WTRU特定傳呼週期作為輸入的等式來確定。例如,WTRU的傳呼週期範圍可以是從每256訊框一次到每32訊框一次。在訊框內的用於監控傳呼的子訊框可以從與蜂巢服務訂用連結的國際行動使用者以及識別碼(IMSI)中導出。由於不同的WTRU具有不同的IMSI,因此,WTRU可以計算不同的傳呼實例。因此,從網路的角度來看,傳送傳呼的頻繁程度有可能高於每32訊框一次(或其他傳呼週期),但是,並不是所有WTRU都會在所有的傳呼時機被傳呼,因為它們是分佈在可能的傳呼實例上的。The network can configure the subframe where the WTRU should wake up and listen for the channel used for paging. The subframe configuration may be cell-specific and may or may not be used in conjunction with a WTRU-specific configuration. A frame in which a given WTRU should wake up and search for a P-RNTI on a physical downlink control channel (PDCCH) may be input by an identifier of the WTRU, a cell-specific paging period, and/or a WTRU-specific paging period. The equation to determine. For example, the WTRU's paging period may range from once every 256 frames to once every 32 frames. The subframes used to monitor the paging within the frame may be derived from an International Mobile User and Identification Code (IMSI) that is subscribed to the cellular service subscription. Since different WTRUs have different IMSIs, the WTRU can calculate different paging instances. Therefore, from a network perspective, the frequency of paging transmissions may be higher than once every 32 frames (or other paging periods), but not all WTRUs will be paged at all paging occasions because they are distributed. On the possible paging instances.

傳呼訊息有可能只在訊框內的子訊框子集中被傳送。例如,在傳呼週期中,在每訊框一到四個子訊框中可以發送傳呼訊息。從網路的角度來看,短傳呼週期的成本有可能是最低的,因為未被用於傳呼的資源可以用於資料或其他傳輸、而不會浪費。然而,從WTRU的角度來看,短傳呼週期增加了WTRU的功率消耗,因為WTRU需要更頻繁喚醒以監控傳呼時刻。The paging message may only be transmitted in the subset of subframes within the frame. For example, in the paging period, a paging message can be sent in one to four subframes per frame. From a network perspective, the cost of a short paging period is likely to be the lowest, because resources that are not used for paging can be used for data or other transmissions without wasting. However, from the WTRU's perspective, the short paging period increases the WTRU's power consumption because the WTRU needs to wake up more frequently to monitor the paging moment.

在一範例中,傳呼排程DCI以及傳呼訊息可以在相同時槽中被發送。在LTE中已顯示出傳呼訊息跟隨在傳呼DCI之後的方法是非常有效的、並且因此預計其在NR中對於單波束系統也是強健的。然而,在多波束系統中(其中可以在不同的物理方向上形成類比波束),gNB以及WTRU可能必須掃描所有傳輸及/或接收(TX/RX)波束的集合(例如用於確定在哪一個波束上接收傳呼)。在一範例中,如果gNB使用了多達64個波束或方向來傳送傳呼信號,並且如果WTRU掃描4個RX波束,那麼gNB有可能需要將傳呼信號朝著64個波束/方向中的每一個波束/方向傳送四次或者總共進行256次傳輸。因此,這種用於通過多波束進行傳呼的方法會造成用於傳呼的大量信號及波束掃描開銷。處於IDLE模式的WTRU不知道最好接收哪一個TX波束(例如在信號雜訊比(SNR)或WTRU解碼TX波束集合中的某個TX上的信號的能力方面)。接收所有TX波束可能會增加WTRU的處理延遲及功率消耗。傳呼信號與同步信號塊(SSB)的準共置(QCL)可以幫助WTRU預先識別要接收的適當TX波束。在這裡描述了用於減小傳呼開銷的範例。In an example, the paging schedule DCI and paging messages can be sent in the same time slot. It has been shown in LTE that the method of paging messages following the paging DCI is very efficient and is therefore expected to be robust to the single beam system in the NR. However, in multi-beam systems where analog beams can be formed in different physical directions, the gNB and the WTRU may have to scan a set of all transmit and/or receive (TX/RX) beams (eg, to determine which beam) Receive paging on). In an example, if the gNB uses up to 64 beams or directions to transmit the paging signal, and if the WTRU scans 4 RX beams, then the gNB may need to direct the paging signal toward each of the 64 beams/directions. / Direction is transmitted four times or a total of 256 transmissions. Therefore, this method for paging through multiple beams can result in a large amount of signal and beam scanning overhead for paging. A WTRU in IDLE mode is unaware of which TX beam is best received (e.g., in terms of signal to noise ratio (SNR) or the ability of the WTRU to decode signals on a TX in a set of TX beams). Receiving all TX beams may increase the processing delay and power consumption of the WTRU. The quasi-co-location (QCL) of the paging signal and the synchronization signal block (SSB) can help the WTRU to pre-identify the appropriate TX beam to receive. An example for reducing paging overhead is described herein.

在一範例中,傳呼信號可以在時間及/或頻率上與其他信號進行多工。傳呼訊息可以藉由NR-PDCCH攜帶的DCI來排程,使得WTRU可以在預先配置的搜尋空間內解碼攜帶了用於傳呼訊息的DCI的NR-PDCCH。舉例來說,網路可以提供用於傳呼接收的控制資源集合(CORESET)以及控制通道搜尋空間。WTRU可被配置成為用於傳呼接收的CORESET。由於傳呼的經配置的CORESET及/或搜尋空間可以是相同的、或者可以從用於剩餘最小系統資訊(RMSI)接收的所配置的CORESET及/或搜尋空間導出。用於傳呼時機(PO)的參數或參數集合可被顯性地傳訊至WTRU。用於PO的參數可以包括但不限於包括供WTRU監控傳呼排程DCI的週期。在範例中,PO可以與SSB進行頻率多工及/或時間多工。在另一個範例中,PO可以與配置資訊或CORESET進行頻率多工及/或時間多工。在另一個範例中,多個PO可被頻率多工及/或時間多工在一起。PO、CORESET及/或搜尋空間可以是WTRU ID的函數。In one example, the paging signal can be multiplexed with other signals in time and/or frequency. The paging message can be scheduled by the DCI carried by the NR-PDCCH, so that the WTRU can decode the NR-PDCCH carrying the DCI for the paging message in the pre-configured search space. For example, the network can provide a set of control resources (CORESET) for paging reception and control channel search space. The WTRU may be configured as a CORESET for paging reception. The configured CORESET and/or search space may be the same or may be derived from the configured CORESET and/or search space for the remaining minimum system information (RMSI) reception. The parameters or set of parameters for the paging occasion (PO) may be explicitly communicated to the WTRU. The parameters for the PO may include, but are not limited to, including a period for the WTRU to monitor the paging schedule DCI. In an example, the PO can perform frequency multiplexing and/or time multiplexing with the SSB. In another example, the PO can perform frequency multiplexing and/or time multiplexing with configuration information or CORESET. In another example, multiple POs can be frequency multiplexed and/or time multiplexed together. The PO, CORESET, and/or search space may be a function of the WTRU ID.

在一範例中,可以使用分頻多工(FDM)以用SSB來多工該傳呼DCI以及傳呼訊息。NR-PSS、NR-SSS、NR-PBCH中的每一者都可以佔用每OFDM符號中的各自的資源塊(RB)數量。例如,NR-PSS可以佔用K1個RB,NR-SSS可以佔用K2個RB,並且NR-PBCH可以佔用K3、K4以及K5個RB。在一範例中,K1及K2可以是12個RB,K3及K5可以是20個RB,並且K4可以是8個RB。帶有NR-PSS的OFDM符號可以具有可攜帶更多資料的一些RB。這些可以攜帶更多資料的RB可被用於攜帶該傳呼DCI及/或傳呼訊息(其也可以在傳送SSB的波束中被傳送)。傳呼DCI可以在帶有SSB的CORESET(例如在非重疊的CORESET中)中被排程、並且可以表明攜帶該傳呼訊息的實體資源塊(PRB)(即資源塊)。在同步信號或廣播通道(例如NR-PSS、NR-SSS、NR-PBCH)中可以包括表明將會藉由FDM來多工該傳呼DCI及/或傳呼訊息的指示。在傳呼DCI及/或傳呼訊息可以被多工的SSB內的一個或多個預設OFDM符號可以是預先定義的。In one example, Frequency Division Multiplexing (FDM) can be used to multiplex the paging DCI and paging messages with the SSB. Each of NR-PSS, NR-SSS, NR-PBCH can occupy the respective number of resource blocks (RBs) per OFDM symbol. For example, NR-PSS can occupy K1 RBs, NR-SSS can occupy K2 RBs, and NR-PBCH can occupy K3, K4, and K5 RBs. In an example, K1 and K2 may be 12 RBs, K3 and K5 may be 20 RBs, and K4 may be 8 RBs. An OFDM symbol with NR-PSS may have some RBs that carry more data. These RBs, which can carry more data, can be used to carry the paging DCI and/or paging messages (which can also be transmitted in the beam transmitting the SSB). The paging DCI may be scheduled in a CORESET with an SSB (eg, in a non-overlapping CORESET) and may indicate a physical resource block (PRB) (ie, a resource block) carrying the paging message. An indication indicating that the paging DCI and/or paging message will be multiplexed by the FDM may be included in the synchronization signal or broadcast channel (e.g., NR-PSS, NR-SSS, NR-PBCH). The one or more preset OFDM symbols within the SSB where the paging DCI and/or paging message may be multiplexed may be predefined.

傳呼DCI CORESET可以與SSB進行FDM(分頻多工)。在CORESET中(例如在與SSB的非重疊CORESET中)可以排程攜帶傳呼DCI的NR-PDCCH。傳呼DCI可以表明該傳呼訊息在處於相同時槽或不同時槽中的NR-PDSCH中的位置。如果在SSB上出現CORESET重疊,那麼攜帶傳呼DCI的NR-PDCCH可以在SSB佔用的資源元素(RE)周圍被速率匹配(例如,這些RE會在速率匹配過程期間被穿孔)。例如,速率匹配可以藉由下列來確定:NR-PDCCH候選、搜尋空間或搜尋空間集合;或是可能為WTRU所知的SSB的位置。PO可以在頻率或組合的頻率/時間中被定義。The paging DCI CORESET can be FDM (frequency division multiplexing) with the SSB. The NR-PDCCH carrying the paging DCI may be scheduled to be carried in the CORESET (eg, in a non-overlapping CORESET with the SSB). The paging DCI may indicate the location of the paging message in the NR-PDSCH in the same time slot or in different time slots. If a CORESET overlap occurs on the SSB, the NR-PDCCH carrying the paging DCI may be rate matched around the resource elements (RE) occupied by the SSB (eg, these REs will be punctured during the rate matching process). For example, rate matching can be determined by: NR-PDCCH candidate, search space or set of search spaces; or location of an SSB that may be known to the WTRU. The PO can be defined in frequency or combined frequency/time.

第2圖是包括被FDM的傳呼DCI以及SSB的範例性時槽格式200的方塊圖。時槽格式200可以藉由多個波束(例如波束201以及波束203)來傳送。時槽格式200可以包括彼此與SSB 208(例如在PSS上)進行FDM的傳呼DCI 204以及206,以及彼此與SSB 216(例如在PSS上)進行FDM的傳呼DCI 212以及214。時槽格式200還可以包括PBCH 210以及218。不同的PO 221-224可以用在不同的PRB中的相同OFDM符號中的傳呼DCI 204、206、212以及214來定義。在第2圖的範例中,在PO 221-224中傳送的傳呼訊息被顯示為對於不同的PO 221-224而言是被TDM的,並且對於時槽格式200內的不同PO 221-224來說,傳呼DCI 204、206、212、214可以被FDM或混合FDM/TDM。Figure 2 is a block diagram of an exemplary time slot format 200 that includes the paging DCI and SSB of the FDM. The time slot format 200 can be transmitted by multiple beams (e.g., beam 201 and beam 203). Time slot format 200 may include paging DCIs 204 and 206 for FDM with SSB 208 (e.g., on the PSS), and paging DCIs 212 and 214 for FDM with each other with SSB 216 (e.g., on the PSS). Time slot format 200 may also include PBCHs 210 and 218. Different POs 221-224 may be defined with paging DCIs 204, 206, 212, and 214 in the same OFDM symbol in different PRBs. In the example of Figure 2, the paging messages transmitted in PO 221-224 are shown as being TDM for different POs 221-224, and for different POs 221-224 within time slot format 200 The paging DCIs 204, 206, 212, 214 may be FDM or hybrid FDM/TDM.

PO可以是在頻率或混合頻率/時間中定義的。在一範例中,用於不同PO的傳呼訊息可以被FDM或混合FDM/TDM。傳呼訊息可被配置在時槽中的任何位置。能與SSB進行FDM的傳呼DCI的數量有可能受到限制、或可能不受限制。第3圖是包括被FDM的傳呼DCI以及SSB的範例性時槽格式300的方塊圖。時槽格式300可以藉由多個波束(例如波束301以及波束303)來傳送。在第3圖中,四個傳呼DCI 304、306、308、310可以與SSB 312(例如在PSS上)進行FDM,同樣,四個傳呼DCI 316、318、320、322可以與SSB 324(例如在PSS上)進行FDM。時槽格式300還可以包括PBCH 314以及326。在時槽格式300中,PO 331-338的傳呼訊息可以被FDM、TDM或混合TDM/FDM,並且在第3圖中被顯示為是被混合TDM/FDM的。The PO can be defined in frequency or mixed frequency/time. In an example, paging messages for different POs can be FDM or hybrid FDM/TDM. The paging message can be configured anywhere in the time slot. The number of DCIs that can be advertised with the SSB for FDM may be limited or may be unrestricted. Figure 3 is a block diagram of an exemplary time slot format 300 that includes the paging DCI and SSB of the FDM. The time slot format 300 can be transmitted by multiple beams (e.g., beam 301 and beam 303). In FIG. 3, four paging DCIs 304, 306, 308, 310 may be FDM with SSB 312 (eg, on the PSS), and similarly, four paging DCIs 316, 318, 320, 322 may be associated with SSB 324 (eg, On the PSS) perform FDM. Time slot format 300 may also include PBCHs 314 and 326. In the time slot format 300, the paging messages of the PO 331-338 may be FDM, TDM or hybrid TDM/FDM, and are shown in Figure 3 as being mixed TDM/FDM.

在以上範例中,用於PO的CORESET以及搜尋空間可以是預先定義的、或者在系統資訊(例如RMSI)被表明。PO可以依照SSB而被定義。例如,PO可以是依照SSB群組、依照所傳送的SSB或是為最大數量的SSB(傳送或未傳送)而被定義。例如,PO可以是依照波束群組、依照波束子集或是為所有波束而被定義。In the above example, the CORESET for the PO and the search space may be predefined or indicated in the system information (eg, RMSI). The PO can be defined in accordance with the SSB. For example, the PO may be defined in accordance with the SSB group, in accordance with the transmitted SSB, or for the maximum number of SSBs (transmitted or untransmitted). For example, the PO may be defined in accordance with a beam group, in accordance with a beam subset, or for all beams.

在一範例中,SSB以及傳呼DCI CORESET可以被TDM(分時多工)。攜帶傳呼DCI的NR-PDCCH可以與SSB進行TDM。攜帶傳呼DCI的NR-PDCCH可被排程,使得可以使用排程限制而使其不與SSB重疊。對於TDM來說,傳呼DCI CORESET相對於SSB的時間偏移可以是預定的(例如固定或者為WTRU所知),或者對於不同的PO而言可以是不同的(其中該PO可以是WTRU ID的函數)。該時間偏移可以在系統資訊(例如NR-PBCH)、RMSI或其他系統資訊(OSI)中被表明,並且該時間偏移可以是WTRU ID的函數或者基於WTRU ID來計算。In an example, the SSB and the paging DCI CORESET can be TDM (time division multiplexing). The NR-PDCCH carrying the paging DCI can perform TDM with the SSB. The NR-PDCCH carrying the paging DCI can be scheduled so that the scheduling restriction can be used so that it does not overlap with the SSB. For TDM, the time offset of the paging DCI CORESET relative to the SSB may be predetermined (eg, fixed or known to the WTRU) or may be different for different POs (where the PO may be a function of the WTRU ID) ). The time offset may be indicated in system information (eg, NR-PBCH), RMSI, or other system information (OSI), and the time offset may be a function of the WTRU ID or calculated based on the WTRU ID.

第4圖是包括與SSB進行TDM的PO的另一個範例性時槽格式400的方塊圖。時槽格式400可以藉由多個波束(例如波束401以及波束403)而被傳送。時槽格式400還可以包括PSS 402、SSS 406以及PBCH 404以及408。Figure 4 is a block diagram of another exemplary time slot format 400 that includes a PO for TDM with the SSB. The time slot format 400 can be transmitted by multiple beams (e.g., beam 401 and beam 403). Time slot format 400 may also include PSS 402, SSS 406, and PBCHs 404 and 408.

在第4圖的範例中,時槽格式400具有14個OFDM符號持續時間,並且微時槽具有兩個OFDM符號持續時間(其他大小也是可以使用的,例如4或7個OFDM符號)。在第4圖的範例中,可以使用同時槽排程,但是跨時槽排程也是可以使用的。傳呼DCI以及傳呼訊息(PM)可以是同一個微時槽的一部分(採用非時槽格式)。PO 421-424可以出現在時槽400的不同OFDM符號中。In the example of FIG. 4, the time slot format 400 has 14 OFDM symbol durations, and the micro time slot has two OFDM symbol durations (other sizes are also usable, such as 4 or 7 OFDM symbols). In the example of Figure 4, simultaneous slot scheduling can be used, but inter-slot scheduling can also be used. The paging DCI and the paging message (PM) can be part of the same micro time slot (in a non-time slot format). PO 421-424 may appear in different OFDM symbols of time slot 400.

第5圖是包括與SSB進行TDM的DCI以及PO的另一個範例性時槽格式500的方塊圖。時槽格式500可以藉由多個波束(例如波束501以及波束503)而被傳送。時槽格式500可以包括PSS 510、SSS 514以及PBCH 512以及516。在第5圖的範例中,傳呼DCI 502、504、506、508可以在傳呼訊息之前被傳送、並且可以與SSB進行TDM(在PSS 510以及SSS 514上)。在不喪失一般性的情況下,同時槽排程以及跨時槽排程都是可以使用的。用於所有傳呼DCI 502、504、506、508的CORESET或搜尋空間彼此可以進行FDM(也就說,包括DCI 502、504、506、508的第一OFDM符號可以是一個符號的CORESET)。PO 521-524可以出現在時槽500的不同OFDM符號中。Figure 5 is a block diagram of another exemplary time slot format 500 that includes DCI and PO for TDM with the SSB. The time slot format 500 can be transmitted by multiple beams (e.g., beam 501 and beam 503). Time slot format 500 may include PSS 510, SSS 514, and PBCH 512 and 516. In the example of FIG. 5, paging DCIs 502, 504, 506, 508 may be transmitted prior to the paging message and may be TDM (on PSS 510 and SSS 514) with the SSB. Both the slot schedule and the inter-slot schedule can be used without loss of generality. The CORESET or search space for all paging DCIs 502, 504, 506, 508 may be FDM with each other (that is, the first OFDM symbol including DCI 502, 504, 506, 508 may be a symbolic CORESET). PO 521-524 may appear in different OFDM symbols of time slot 500.

第6圖是包括利用跳頻以與SSB進行TDM的DCI以及PO的另一個範例性時槽格式600的方塊圖。時槽格式600可以藉由多個波束(例如波束601以及波束603)而被傳送。時槽格式600可以包括PSS 610、SSS 614以及PBCH 612以及616。不同的傳呼DCI 602、604、606可以被TDM(也就是在不同的OFDM符號中被發送),並且PO 621-623的頻率位置可以是不同的。這些CORESET、搜尋空間或傳呼DCI 602、604、606的頻率位置可以是固定的,其可以在系統資訊(例如RMSI)中被表明、及/或可以是WTRU ID的函數(例如使用取模運算)或者基於WTRU ID而被計算。PO DCI 602、604、606的頻率位置對於波束重複圖樣而言可以是不同或相同的(例如,對於波束601以及波束603來說可以是相同或不同的)。傳呼DCI 602、604、606的頻率位置可以被盲解碼。Figure 6 is a block diagram of another exemplary time slot format 600 including DCI and PO for hopping with SSB for TDM. Time slot format 600 can be transmitted by multiple beams, such as beam 601 and beam 603. Time slot format 600 may include PSS 610, SSS 614, and PBCH 612 and 616. Different paging DCIs 602, 604, 606 may be TDM (ie, transmitted in different OFDM symbols), and the frequency locations of PO 621-623 may be different. The frequency locations of these CORESET, search space or paging DCIs 602, 604, 606 may be fixed, may be indicated in system information (eg, RMSI), and/or may be a function of the WTRU ID (eg, using modulo operations) Or calculated based on the WTRU ID. The frequency locations of the PO DCIs 602, 604, 606 may be different or the same for the beam repeat pattern (eg, may be the same or different for beam 601 and beam 603). The frequency locations of the paging DCIs 602, 604, 606 can be blindly decoded.

針對上述情況,用於PO的CORESET以及搜尋空間可以是預先定義的、在RMSI中表明、或是從RMSI中導出。針對上述情況,從WTRU的角度來看,每一個PO(例如第6圖中的PO 621-623)可以是依照波束群組或是針對所有波束而被定義(例如作為波束子集或群組、或是所有波束的組合)。In response to the above, the CORESET and search space for the PO can be predefined, indicated in the RMSI, or derived from the RMSI. In view of the above, from the perspective of the WTRU, each PO (eg, PO 621-623 in FIG. 6) may be defined in accordance with a beam group or for all beams (eg, as a beam subset or group, Or a combination of all beams).

WTRU可以監控PO以及與對應PO相關聯的波束,以便能夠接收針對該WTRU的傳呼訊息。例如,WTRU可以在與PO相關聯的波束群組中監控PO、或是針對PO來監控所有波束。WTRU可以監控PO以及與對應PO相關聯的SSB。例如,WTRU可以在與PO相關聯的SSB群組中監控PO、或者針對PO來監控所有SSB。WTRU可以監控多個PO(例如一個以上的PO)以及與對應PO相關聯的波束。WTRU可以監控多個PO(例如一個以上PO)以及與對應PO相關聯的SSB。WTRU可以在與實際傳送的不同SSB相關聯的每一個傳輸波束中監控從WTRU_ID中導出的PO。The WTRU may monitor the PO and the beam associated with the corresponding PO to be able to receive paging messages for the WTRU. For example, the WTRU may monitor the PO in a beam group associated with the PO or monitor all beams for the PO. The WTRU may monitor the PO and the SSB associated with the corresponding PO. For example, the WTRU may monitor the POs in an SSB group associated with the PO, or monitor all SSBs for the PO. A WTRU may monitor multiple POs (eg, more than one PO) and beams associated with corresponding POs. The WTRU may monitor multiple POs (eg, more than one PO) and SSBs associated with the corresponding POs. The WTRU may monitor the POs derived from the WTRU_ID in each of the transmission beams associated with the different SSBs actually transmitted.

可以支援TDM以及FDM以用於SSB以及傳呼DCI CORESET。傳呼DCI CORESET可被配置為以非重疊方式而與SSB進行FDM(例如在大頻寬傳輸的情況下)。傳呼DCI CORESET可被配置為以重疊方式來與SSB進行FDM(例如在小頻寬傳輸的情況下)。搜尋空間可以與SSB重疊、或者可以不與SSB重疊。如果CORESET與SSB重疊,那麼可以執行以下任何一個或多個操作:在SSB周圍可以執行速率匹配,因此NR-PDCCH可以或者不可以被解碼;及/或針對重疊區域的傳呼DCI可被丟棄,其可以包括在下一個PO中傳送DCI以及訊息,使得NR-PDCCH可以被解碼或者不被解碼。TDM and FDM can be supported for SSB and paging DCI CORESET. The paging DCI CORESET can be configured to perform FDM with the SSB in a non-overlapping manner (eg, in the case of large bandwidth transmissions). The paging DCI CORESET can be configured to perform FDM with the SSB in an overlapping manner (eg, in the case of small bandwidth transmissions). The search space may overlap with the SSB or may not overlap with the SSB. If the CORESET overlaps with the SSB, any one or more of the following operations may be performed: rate matching may be performed around the SSB, so the NR-PDCCH may or may not be decoded; and/or the paging DCI for the overlapping region may be discarded, The DCI and the message may be included in the next PO such that the NR-PDCCH may or may not be decoded.

FDM以及TDM這兩種不同的模式可以用於傳呼DCI以及一個或多個傳呼訊息的多工,並且可以提供1位元指示以在這些模式之間切換。該指示可以在系統資訊(例如RMSI及/或OSI)中被攜帶。在一範例中,一些傳呼DCI CORESET可以被TDM,而其他傳呼DCI CORESET則可以利用動態選擇而被FDM。該動態選擇可以增加排程靈活性。用於目前的一個或多個傳呼CORESET的配置的TDM或FDM可以使用一個或多個位元而被表明。該指示可以在系統資訊(例如RMSI及/或OSI)中被攜帶。如果沒有表明模式(例如FDM或TDM),那麼WTRU可以對傳呼CORESET的FDM或TDM進行盲偵測。在一範例中,FDM可被用於較大的頻寬(例如超過6 GHz),並且TDM可被用於較小的頻寬(例如低於6 GHz)。Two different modes, FDM and TDM, can be used to page DCI and multiplex of one or more paging messages, and can provide a 1-bit indication to switch between these modes. This indication can be carried in system information such as RMSI and/or OSI. In one example, some paging DCI CORESETs can be TDM, while other paging DCI CORESETs can be FDM using dynamic selection. This dynamic selection increases scheduling flexibility. The TDM or FDM for the configuration of the current one or more paging CORESETs may be indicated using one or more bits. This indication can be carried in system information such as RMSI and/or OSI. If no mode is indicated (eg, FDM or TDM), the WTRU may blindly detect the FDM or TDM of the paging CORESET. In an example, FDM can be used for larger bandwidths (eg, over 6 GHz), and TDM can be used for smaller bandwidths (eg, below 6 GHz).

在一範例中,PO可被配置為具有基於波束的設計。WTRU可以在空閒模式中使用不連續接收(DRX),以降低功率消耗。一個PO是可以具有在定址傳呼訊息的PDCCH上傳送的P-RNTI的單元。一個傳呼訊框(PF)可以是可以包含一個或多個PO的一個無線電訊框。在DRX被使用時,WTRU可以在每DRX週期中只監控一個PO。處於RRC_IDLE以及RRC_不活動(RRC_INACTIVE)狀態的WTRU可以在每一個DRX週期中監控傳呼。DRX週期的長度可以是可配置的。預設的DRX週期長度可以在系統資訊(例如NR-PBCH、RMSI或OSI)中被提供。WTRU特定的DTX週期長度可以經由專用傳訊而被提供給WTRU。WTRU可以被特別地配置有PO、時槽及/或微時槽(採用非時槽格式),以監控傳呼信號。DRX週期中的PO的數量可以是可配置的、並且可以在系統資訊(例如NR-PBCH、RMSI或OSI)中被提供。如果網路在DRX週期中配置了多個PO,那麼可以基於WTRU ID(例如IMSI或系統架構演進(SAE)-臨時行動用戶識別碼(s-TMSI))而將WTRU分發到這些PO。In an example, the PO can be configured to have a beam based design. The WTRU may use discontinuous reception (DRX) in idle mode to reduce power consumption. A PO is a unit that can have a P-RNTI transmitted on a PDCCH that addresses a paging message. A paging frame (PF) can be a radio frame that can contain one or more POs. When DRX is used, the WTRU can monitor only one PO per DRX cycle. A WTRU in the RRC_IDLE and RRC_INACTIVE states may monitor the paging in each DRX cycle. The length of the DRX cycle can be configurable. The preset DRX cycle length can be provided in system information such as NR-PBCH, RMSI or OSI. The WTRU-specific DTX cycle length may be provided to the WTRU via dedicated messaging. The WTRU may be specifically configured with a PO, time slot, and/or micro time slot (in a non-time slot format) to monitor the paging signal. The number of POs in the DRX cycle may be configurable and may be provided in system information such as NR-PBCH, RMSI or OSI. If the network is configured with multiple POs in the DRX cycle, the WTRU may be distributed to these POs based on the WTRU ID (eg, IMSI or System Architecture Evolution (SAE) - Temporary Action User Identity (s-TMSI)).

在不同的方向上可以使用(類比)波束掃描來傳送傳呼。該傳呼DCI可以使用波束掃描、並且傳呼訊息(PM)可以使用與該傳呼DCI準共置的相同波束。傳呼DCI以及傳呼訊息可以使用單獨的波束掃描。為該傳呼DCI以及傳呼訊息使用不同波束的範例性條件包括、但不限於下列條件:傳呼DCI以及傳呼訊息可能需要不同的波束或波束寬度;及/或傳呼DCI波束可能因為傳呼訊息而過時(例如因為跨時槽排程)。The (analog) beam scan can be used to transmit the paging in different directions. The paging DCI can use beam scanning, and the paging message (PM) can use the same beam that is co-located with the paging DCI. The paging DCI and paging messages can be scanned using separate beams. Exemplary conditions for using different beams for the paging DCI and paging messages include, but are not limited to, the following conditions: paging DCI and paging messages may require different beams or beamwidths; and/or paging DCI beams may be obsolete due to paging messages (eg, Because of the time slot schedule).

PO可以包括時槽、非時槽(例如微時槽)、子訊框及/或OFDM符號的任何集合、子集或組合。多個時槽、非時槽(例如微時槽)、子訊框及/或OFDM符號可在每一個時槽、非時槽(例如微時槽)、子訊框或OFDM符號中使用一個或多個下鏈TX波束的不同集合以賦能傳輸傳呼、或者可以賦能TX/RX波束重複。PO中的時槽、非時槽(例如微時槽)、子訊框及/或OFDM符號的數量(例如每一個非時槽2、4或7個OFDM符號)可以在系統資訊(例如NR-PBCH、RMSI或OSI)中被提供。The PO may include any set, subset, or combination of time slots, non-time slots (eg, micro time slots), subframes, and/or OFDM symbols. Multiple time slots, non-time slots (eg, micro time slots), subframes, and/or OFDM symbols may be used in each time slot, non-time slot (eg, micro time slot), subframe, or OFDM symbol. Different sets of multiple downlink TX beams are enabled to transmit paging, or can be enabled for TX/RX beam repetition. The number of time slots, non-time slots (eg, micro time slots), subframes, and/or OFDM symbols in the PO (eg, each non-time slot 2, 4, or 7 OFDM symbols) may be in system information (eg, NR- Provided in PBCH, RMSI or OSI).

WTRU可被分組以監控特定PO。WTRU特定及/或胞元特定參數可被用於確定或推導PF及/或PO。WTRU特定參數的範例可以包括、但不限於包括WTRU ID、S-TMSI或IMSI。胞元特定參數的範例可以包括、但不限於包括胞元ID、胞元時序資訊、SSB索引(SSBI)、半無線電訊框號或SFN。The WTRU may be grouped to monitor a particular PO. The WTRU-specific and/or cell-specific parameters may be used to determine or derive PF and/or PO. Examples of WTRU specific parameters may include, but are not limited to, including a WTRU ID, S-TMSI, or IMSI. Examples of cell-specific parameters may include, but are not limited to, cell ID, cell timing information, SSB index (SSBI), semi-radio frame number, or SFN.

在基於波束的設計的情況中,PO的定義可以被擴展。例如,PO的定義可以取決於是在整個時槽用一個波束、還是在每一個非時槽用一個波束來執行波束掃描。如果在每一個時槽用一個波束來執行波束掃描,那麼可以基於時槽來定義PO,並且WTRU可以監控訊框中的特定時槽。如果在每一個非時槽(例如微時槽)用一個波束來執行波束掃描,那麼波束可能針對每一個非時槽(例如微時槽)而變化(或是被重複)。在這種情況下,PO可以是基於存在微時槽的時槽而被定義,或者PO可以是基於微時槽而被定義。這些方法可能受到實際傳送的SSB或波束的數量、及/或SSB或波束的最大數量的影響。In the case of beam-based design, the definition of PO can be extended. For example, the definition of PO may depend on whether beam scanning is performed with one beam for the entire time slot or with one beam for each time slot. If beam scanning is performed with one beam at each time slot, the PO can be defined based on the time slot and the WTRU can monitor a particular time slot in the frame. If beam scanning is performed with one beam in each non-time slot (eg, micro time slot), the beam may change (or be repeated) for each non-time slot (eg, micro time slot). In this case, the PO may be defined based on the time slot in which the micro time slot is present, or the PO may be defined based on the micro time slot. These methods may be affected by the number of SSBs or beams actually transmitted, and/or the maximum number of SSBs or beams.

例如,PO可以是基於時槽被定義的。在這種情況下,PO可以基於時槽而在沒有任何偏移下被定義。WTRU可以計算其PO,該PO可以是存在微時槽的時槽。WTRU可以嘗試解碼所有微時槽,以獲得該傳呼DCI以及找到針對該WTRU的傳呼。WTRU能夠使用與其波束或傳呼位置的QCL或是最新歷史關聯來識別出被指配給該WTRU的微時槽。在被執行波束掃描的PO佔用了多個時槽的情況下,PO可以是波束掃描開始的時槽或微時槽。第7圖是用於例示的傳呼排程的資源格式700,其中PO是經由微時槽大小為2個符號的四個波束710、712、714、716的掃描而被定義。PO 701以及702可以是針對微時槽(非時槽格式)而被定義,其分別包括時槽X以及X+1中的OFDM符號的子集。如第7圖所示,PM可以使用相同的波束、並且可以與傳呼DCI(P-DCI)準共置。For example, a PO can be defined based on a time slot. In this case, the PO can be defined based on the time slot without any offset. The WTRU may calculate its PO, which may be a time slot in which a micro time slot exists. The WTRU may attempt to decode all of the micro time slots to obtain the paging DCI and find a paging for the WTRU. The WTRU can use the QCL or its most recent historical association with its beam or paging location to identify the micro time slot assigned to the WTRU. In the case where the PO that performs beam scanning occupies a plurality of time slots, the PO may be a time slot or a micro time slot at which beam scanning starts. Figure 7 is a resource format 700 for the illustrated paging schedule, where PO is defined by scanning of four beams 710, 712, 714, 716 with a microslot size of 2 symbols. POs 701 and 702 may be defined for micro time slots (non-time slot format), which include subsets of OFDM symbols in time slots X and X+1, respectively. As shown in Figure 7, the PM can use the same beam and can be co-located with the paging DCI (P-DCI).

在另一個範例中,PO可以基於帶有用於微時槽的偏移的時槽而被定義。該方案可以使用SSBI作為指向用於該PO的微時槽的指標(例如使用關聯)。依照WTRU正在操作的頻帶,可能有不同的情況,而這轉而表明了SSBI的最大數量或波束的最大數量。在表1中顯示了用一次波束重複來完成掃描的時槽數量的範例,其中nsSym是每一個非時槽中的OFDM符號的數量,L是SSB的最大數量。這種情況可被看作是一種配置。 表1:用來完成波束掃描的時槽的數量 In another example, the PO can be defined based on a time slot with an offset for the micro time slot. The scheme can use SSBI as an indicator to point to the micro time slot for the PO (eg, using associations). Depending on the frequency band in which the WTRU is operating, there may be different situations, and this in turn indicates the maximum number of SSBIs or the maximum number of beams. An example of the number of time slots used to complete a scan with one beam repeat is shown in Table 1, where nsSym is the number of OFDM symbols in each non-time slot and L is the maximum number of SSBs. This situation can be seen as a configuration. Table 1: Number of time slots used to complete beam scanning

在使用多個波束(實際傳送的波束)並且知悉完成掃描(所有方向上的傳輸)所需要的時槽數量下,WTRU可以計算用於監控傳呼DCI的實際微時槽位置。依照服務類型,可以定義表1中定義的配置的一個子集。URLLC或其他任何需要低潛時的配置都可以使用微時槽中的少量符號(例如1或2個OFDM符號)。mMTC或極大規模的部署則有可能會使用微時槽中的更多數量的符號(例如7或14個OFDM符號)。The WTRU may calculate the actual micro-slot location for monitoring the paging DCI when multiple beams (actually transmitted beams) are used and the number of time slots required to complete the scan (transmissions in all directions) is known. Depending on the type of service, a subset of the configurations defined in Table 1 can be defined. URLLC or any other configuration that requires low latency can use a small number of symbols in the micro time slot (eg 1 or 2 OFDM symbols). mMTC or very large scale deployments may use a greater number of symbols (eg, 7 or 14 OFDM symbols) in the micro time slot.

如上所述,PO可以基於微時槽而被定義。WTRU可以在用於PO的特定非時槽上喚醒,其中該時槽可以在RMSI中被配置。該非時槽可以包括用於傳呼DCI及傳呼訊息的CORESET。在掃描傳呼訊息之前掃描傳呼DCI的情況中,WTRU可以在傳呼DCI掃描的傳輸期間喚醒。第8圖是用於例示的傳呼排程的資源格式800,其中PO 801以及802是經由具有分別由2個OFDM符號810/812、814/816、818/820以及822/824組成的四個波束的掃描而被定義。As mentioned above, PO can be defined based on micro time slots. The WTRU may wake up on a particular time slot for the PO, where the time slot may be configured in the RMSI. The non-time slot can include a CORESET for paging DCI and paging messages. In the case of scanning the paging DCI before scanning the paging message, the WTRU may wake up during the transmission of the paging DCI scan. Figure 8 is a resource format 800 for the illustrated paging schedule, where PO 801 and 802 are via four beams having two OFDM symbols 810/812, 814/816, 818/820, and 822/824, respectively. The scan is defined.

如上所述,在以上的任何情況中,WTRU都可以計算自己的PF及/或PO。在基於波束的傳呼設計中,用於計算PF及/或PO的計算處理可以基於DRX週期、每DRX週期的PO數量、所用格式是基於時槽的還是基於非時槽的、時槽或微時槽的數量(基於非時槽的格式)、SSB的數量(例如實際傳送的SSB或最大SSB)及/或波束配置。表2給出了用於計算PF及/或PO的範例性參數。 表2:用於基於波束的傳呼配置及計算PF及/或PO的範例性參數 As noted above, in any of the above cases, the WTRU may calculate its own PF and/or PO. In a beam-based paging design, the computational process for calculating PF and/or PO can be based on the DRX cycle, the number of POs per DRX cycle, whether the format used is slot-based or non-time slot based, time slot or micro time The number of slots (based on the format of the non-time slot), the number of SSBs (eg, the actual transmitted SSB or maximum SSB) and/or beam configuration. Table 2 gives exemplary parameters for calculating PF and/or PO. Table 2: Example parameters for beam-based paging configuration and calculation of PF and/or PO

在一範例中,可以使用一程序來計算PF。PF可以被定義為是無線電訊框,WTRU在該無線電訊框中尋找PM。PF可以在一個或多個波束上包含一個或多個PO。以下的範例性等式可以用於計算PF: PF = SFN mod T= (T div N_b)*(WTRU_ID mod N_b) 等式(1) 更概括地說,PF可以被計算為PF = f (SFN, T, N, L, WTRU_ID),其中f()是任何函數或線性組合。在另一範例中,PF可以是預先定義或預先配置的。In an example, a program can be used to calculate the PF. The PF can be defined as a radio frame in which the WTRU looks for a PM. The PF may include one or more POs on one or more beams. The following example equation can be used to calculate the PF: PF = SFN mod T = (T div N_b) * (WTRU_ID mod N_b) Equation (1) More generally, PF can be calculated as PF = f (SFN, T, N, L, WTRU_ID), where f() is any function or linear combination. In another example, the PF can be pre-defined or pre-configured.

在一範例中,可以用一程序來計算一個或多個PO。PO可以是時槽及/或時槽內的微時槽(非時槽),其中P-RNTI可以在定址用於WTRU的PM的PDCCH上傳送。在DRX週期中,每一個WTRU可以有一個或多個PO。In one example, a program can be used to calculate one or more POs. The PO may be a time slot and/or a time slot (time slot) within the time slot, where the P-RNTI may be transmitted on the PDCCH addressed to the WTRU's PM. Each WTRU may have one or more POs during the DRX cycle.

用於計算PO的函數可以基於參數(例如子訊框數量Ns及/或指向PO的索引i_s)而被定義。可以針對用於傳呼DCI及/或PM的同時槽或跨時槽排程定義不同的函數。以下的範例性等式可以用於計算PO: PO = (i_s *La + SSBI) * nsSym 等式(2) PO = (i_s *La + SSBI) * nsSym + Offset(i_s) 等式(3) 因此,所有的PO可以是連續定位的、或可以不是連續定位的,並且其中Offset()函數可以是能混洗(shuffle)不同PO的順序的圖樣。Offset()函數可以用於非連續地分配PO。如第9圖所示,等式(2)及(3)中的函數也可以假設在針對第一PO的波束掃描之後跟隨有針對第二PO的波束掃描、以及針對第三PO的波束掃描等等。第9圖是用於範例傳呼排程的資源格式900,其中PO 901、902、903被一起掃描(例如,對第一PO 901進行波束掃描(在所有方向上被傳送),然後對第二PO 902進行波束掃描,然後對第三PO 903進行波束掃描)。例如,WTRU可以監控作為與PO 901相關聯的波束群組(例如波束910、912、914、916)的一部分的PO 901、在與PO 902相關聯的波束群組(例如波束910、912、914、916)中監控PO 902、以及在與PO 903相關聯的波束群組(例如波束910、912、914、916)中監控PO 903。The function for calculating the PO may be defined based on parameters such as the number of subframes Ns and/or the index i_s pointing to the PO. Different functions can be defined for simultaneous slot or span time slot scheduling for paging DCI and/or PM. The following example equation can be used to calculate PO: PO = (i_s *La + SSBI) * nsSym Equation (2) PO = (i_s *La + SSBI) * nsSym + Offset(i_s) Equation (3) All POs may be contiguously positioned or may not be contiguously positioned, and wherein the Offset() function may be a pattern that shuffles the order of different POs. The Offset() function can be used to assign POs discontinuously. As shown in FIG. 9, the functions in equations (2) and (3) may also assume that beam scanning for the first PO is followed by beam scanning for the second PO, beam scanning for the third PO, and the like. Wait. Figure 9 is a resource format 900 for an example paging schedule in which POs 901, 902, 903 are scanned together (e.g., beam scanning of the first PO 901 (transmitted in all directions), then to the second PO 902 performs beam scanning and then performs beam scanning on the third PO 903). For example, a WTRU may monitor a PO 901 that is part of a beam group (eg, beams 910, 912, 914, 916) associated with PO 901, a beam group associated with PO 902 (eg, beams 910, 912, 914) The PO 902 is monitored, 916), and the PO 903 is monitored in a beam group (e.g., beams 910, 912, 914, 916) associated with the PO 903.

在另一範例中,WTRU可以在所有波束中監控每一個PO。在另一範例中,針對每一個波束,可以組合多個PO,並且可以如第10圖所示的那樣跨波束掃描PO集合。第10圖是用於範例性傳呼排程的資源格式1000。在第10圖的範例中,針對每一個波束1011、1012以及1013,可以組合PO 1001、1002、1003、1004。In another example, the WTRU may monitor each PO in all beams. In another example, for each beam, multiple POs can be combined, and the PO set can be scanned across the beam as shown in FIG. Figure 10 is a resource format 1000 for an exemplary paging schedule. In the example of FIG. 10, PO 1001, 1002, 1003, 1004 may be combined for each of the beams 1011, 1012, and 1013.

在一範例中,在預先定義的表格中可以用i_s以及傳送PO的相應時槽(或微時槽)號來定義指向(或關聯於)來自子訊框圖樣的PO的索引i_s。在另一範例中,索引i_s可以用以下的範例性等式來推導: i_s = floor(WTRU_ID/N) mod Ns 等式(4) 如果沒有假設QCL,那麼可以假設將SSBI定義在0到L-1的範圍上,其中L是訊框中的SSB的最大數量。在這種情況下,L個波束可以被掃描以用於傳送傳呼的處理。在另一個實施例中,PO表格可被定義為是i_s與可以傳送PO的時槽之間的關聯。針對用於傳呼DCI/PM的同時槽或跨時槽排程,可以定義(在i_s及/或傳呼DCI及/或PM的時槽之間)不同的表格(或關聯)集合。In an example, i_s and the corresponding time slot (or micro time slot) number of the transmitted PO may be used in a predefined table to define an index i_s pointing to (or associated with) the PO from the subframe. In another example, the index i_s can be derived using the following exemplary equation: i_s = floor(WTRU_ID/N) mod Ns Equation (4) If QCL is not assumed, then it can be assumed that SSBI is defined between 0 and L- In the range of 1, where L is the maximum number of SSBs in the frame. In this case, the L beams can be scanned for the process of transmitting the paging. In another embodiment, the PO table can be defined as the association between i_s and the time slot in which the PO can be transmitted. For simultaneous slot or inter-slot scheduling for paging DCI/PM, a different set of tables (or associations) (between i_s and/or paging time slots of the DCI and/or PM) may be defined.

在一範例中,WTRU可被喚醒,以在傳呼週期內監控特定時槽或非時槽中的PO。傳呼週期可在系統資訊或控制傳訊(例如NR-PBCH、RMSI或OSI)中被配置。為了傳輸傳呼DCI以及傳呼訊息,可以為WTRU配置不同的模式。範例模式包括基於時槽、基於非時槽或基於混合時槽及非時槽的傳呼傳輸模式。該傳輸模式可以在系統資訊或控制傳訊(例如NR-PBCH、RMSI或OSI)中被配置。In an example, the WTRU may be woken up to monitor POs in a particular time slot or non-time slot during a paging period. The paging period can be configured in system information or control communication (eg NR-PBCH, RMSI or OSI). In order to transmit paging DCI and paging messages, different modes can be configured for the WTRU. The sample mode includes a time slot based, non-time slot based or hybrid time slot based and non time slot based paging transmission mode. This transmission mode can be configured in system information or control communication (eg NR-PBCH, RMSI or OSI).

在基於時槽的傳呼的範例中,基於時槽的傳呼DCI之後可以跟隨有基於時槽的傳呼訊息。在基於非時槽的傳呼的範例中,基於非時槽的傳呼DCI之後可以跟隨有基於非時槽的傳呼訊息。在混合傳呼的範例中,基於非時槽的傳呼DCI之後可以跟隨有基於時槽的傳呼訊息,或者基於時槽的傳呼DCI之後可以跟隨有基於非時槽的傳呼訊息。In the example of time slot based paging, the time slot based paging DCI may be followed by a time slot based paging message. In the example of non-time slot based paging, the non-time slot based paging DCI may be followed by a non-time slot based paging message. In the hybrid paging example, the non-time slot based paging DCI may be followed by a time slot based paging message, or the time slot based paging DCI may be followed by a non-time slot based paging message.

關於參數配置(numerology)的範例可以包括、但不限於包括子載波間隔(SCS)以及循環前綴(CP)。用於傳呼的參數配置可以包括用於該傳呼DCI以及該傳呼訊息的參數配置。用於傳呼的參數配置可以與系統資訊(例如RMSI)相同、或者可以從該系統資訊中導出,其可以在系統資訊(例如在NR-PBCH)中被表明。該傳呼DCI以及該傳呼訊息可以具有或不具有相同的參數配置,並且傳呼參數配置可以與其他訊息(例如隨機存取通道(RACH)訊息2以及訊息4)的參數配置相同或不同。Examples of parameter numerology may include, but are not limited to, including subcarrier spacing (SCS) and cyclic prefix (CP). The parameter configuration for paging can include parameter configurations for the paging DCI and the paging message. The parameter configuration for paging can be the same as, or can be derived from, system information (eg, RMSI), which can be indicated in system information (eg, in NR-PBCH). The paging DCI and the paging message may or may not have the same parameter configuration, and the paging parameter configuration may be the same as or different from the parameter configuration of other messages, such as random access channel (RACH) message 2 and message 4.

PO可以基於下列參數中的任一個或多個參數而被定義或推導:FDM PO的數量;TDM PO的數量;WTRU ID;SSBI;每波束群組或所有波束;每SSB群組或所有SSB;前序碼索引;RACH資源索引;時槽索引或非時槽索引;OFDM符號索引;搜尋空間索引;搜尋空間集合索引;CORESET索引;頻寬部分(BWP)索引;載波索引;胞元索引或胞元ID;及/或傳輸以及接收點(TRP)索引。例如,PO可以基於傳呼DCI以及傳呼訊息的組合而被定義或推導,其中傳呼DCI以及傳呼訊息可以處於相同或不同的時槽、微時槽或非時槽。在另一範例中,PO可以基於以下任何的一項或多項而被定義或推導:搜尋空間、搜尋空間群組、搜尋空間集合、搜尋空間集合群組,CORESET、CORESET群組、BWP及/或BWP群組。The PO may be defined or derived based on any one or more of the following parameters: number of FDM POs; number of TDM POs; WTRU ID; SSBI; per beam group or all beams; per SSB group or all SSBs; Preamble index; RACH resource index; time slot index or non-time slot index; OFDM symbol index; search space index; search space set index; CORESET index; bandwidth part (BWP) index; carrier index; cell index or cell Meta ID; and/or transmission and reception point (TRP) index. For example, the PO may be defined or derived based on a combination of paging DCI and paging messages, where the paging DCI and paging messages may be in the same or different time slots, micro time slots, or non-time slots. In another example, the PO may be defined or derived based on any one or more of the following: search space, search space group, search space set, search space collection group, CORESET, CORESET group, BWP, and/or BWP group.

上述技術可以用於減少在波束掃描系統中監控傳呼所需要的波束數量以及時間。在一範例中,用於確定要被監控傳呼的波束以及波束掃描的程序可以藉由傳呼CORESET、傳呼訊息及/或SSB之間的關係來定義。在一範例中,傳呼多工類型(PMT)可以基於傳呼CORESET、傳呼訊息及/或SSB之間的關係來定義,以確定用於傳呼的波束。第11圖是可以由WTRU執行的範例性傳呼波束選擇程序1100的流程圖。在1102,WTRU可以(例如經由系統資訊(例如RMSI))接收用於傳呼的配置資訊(例如參數配置、波束SCS、DRX週期)。在1104,WTRU可以確定用於傳呼的參數配置(例如SCS、CP)以及用於傳呼波束的SSB、並且可以確定用於SSB以及傳呼DCI/訊息中的每一者的SCS。在1106,確定用於SSB以及傳呼接收的SCS是相同還是不同的。如果用於SSB以及傳呼接收的SCS不同,那麼在1108,確定PMT是第一類型的PMT(PMT A)。如果用於SSB以及傳呼接收的SCS相同,那麼在1110,確定PMT是第二類型的PMT(PMT B)。在1112,基於所確定的PMT(PMT A或PMT B),可以確定一傳呼CORESET、一傳呼訊息與一SSB之間的波束、時間及頻率關係。在一範例中,對於用於SSB以及傳呼接收的SCS不同的PMT A來說,該傳呼CORESET可以與傳呼訊息進行TDM(例如使用重複波束),傳呼訊息可與SSB時間對準(在相同的時槽中),以及傳呼訊息可以是與SSB進行FDM。在一範例中,對於用於SSB以及傳呼接收的SCS相同的PMT B來說,傳呼CORESET可以與傳呼訊息進行TDM(例如在沒有使用重複波束的情況下),該傳呼CORESET以及傳呼訊息可以與SSB時間對準(例如在相同時槽)並且可以與SSB進行FDM。在1114,WTRU可以基於所確定的波束、時間及頻率關係而在PO的一個或多個波束中監控該PO。The above techniques can be used to reduce the number of beams and time required to monitor paging in a beam scanning system. In an example, the procedure for determining the beam to be monitored for paging and beam scanning can be defined by the relationship between paging CORESET, paging messages, and/or SSB. In an example, the paging multiplex type (PMT) can be defined based on the relationship between the paging CORESET, the paging message, and/or the SSB to determine the beam for paging. 11 is a flow diagram of an exemplary paging beam selection procedure 1100 that may be performed by a WTRU. At 1102, the WTRU may receive configuration information (eg, parameter configuration, beam SCS, DRX cycle) for paging (eg, via system information (eg, RMSI)). At 1104, the WTRU may determine a parameter configuration (eg, SCS, CP) for paging and an SSB for paging the beam, and may determine an SCS for each of the SSB and the paging DCI/message. At 1106, it is determined whether the SCS for SSB and paging reception is the same or different. If the SCS for the SSB and paging reception is different, then at 1108, it is determined that the PMT is the first type of PMT (PMT A). If the SCS for the SSB and paging reception is the same, then at 1110, it is determined that the PMT is the second type of PMT (PMT B). At 1112, based on the determined PMT (PMT A or PMT B), a beam, time, and frequency relationship between a paging CORESET, a paging message, and an SSB can be determined. In an example, for a different PMT A for SSB and paging reception, the paging CORESET can be TDM with the paging message (eg, using a repeating beam), and the paging message can be time aligned with the SSB (at the same time) In the slot, and the paging message can be FDM with the SSB. In an example, for the same PMT B for SSB and paging received SCS, the paging CORESET can be TDM with the paging message (eg, without using a repeating beam), the paging CORESET and paging messages can be associated with the SSB Time alignment (eg at the same time slot) and FDM with the SSB. At 1114, the WTRU may monitor the PO in one or more beams of the PO based on the determined beam, time, and frequency relationships.

第12圖是在PO 1210期間用於PMT A的範例性傳呼多工格式1200的訊息傳送圖,其中在傳呼訊息1206與SSB 1208之間存在不同的SCS。在第12圖的範例中,在每一個PO 1210,2L個波束被重複以用於傳呼CORESET 1204以及傳呼訊息1206/SSB 1208。換句話說,波束12021 ...1202L 中的每一者都會在PO 1210中重複一次(在PO 1210中,每波束總共兩次傳輸)。傳呼CORESET 1204以及傳呼訊息1206可以在每個波束12021 ...1202L 上被TDM(也就是跨越每一個波束12021 ...1202L 上的兩次傳輸)。對於每一個波束12021 ...1202L ,SSB 1208可以與第二次傳輸上的傳呼訊息1206進行FDM。Figure 12 is a message transfer diagram of an exemplary paging multiplex format 1200 for PMT A during PO 1210, where there is a different SCS between paging message 1206 and SSB 1208. In the example of FIG. 12, at each PO 1210, 2L beams are repeated for paging CORESET 1204 and paging message 1206/SSB 1208. In other words, each of the beams 1202 1 ... 1202 L will be repeated once in the PO 1210 (in PO 1210, a total of two transmissions per beam). The paging CORESET 1204 and the paging message 1206 can be TDM on each of the beams 1202 1 ... 1202 L (ie, two transmissions across each of the beams 1202 1 ... 1202 L ). For each beam 1202 1 ... 1202 L , the SSB 1208 can be FDM with the paging message 1206 on the second transmission.

第13圖是在PO 1310期間用於PMT B的範例性傳呼多工格式1300的訊息傳送圖,其中在傳呼訊息1306與SSB 1308之間存在相同的SCS。在第13圖的範例中,針對每一個PO 1310,L個波束13021 ...1302L 被傳送以用於該傳呼CORESET 1304以及於該傳呼訊息1306/SSB 1308。波束13021 ...1302L 在PO 1310中被傳送一次。傳呼CORESET 1304以及傳呼訊息1306可以在每一個波束13021 ...1302L 上被TDM(在相同波束傳輸內)。對於每一個波束13021 ...1302L ,SSB 1308可以與CORESET 1304以及傳呼訊息1306進行FDM。Figure 13 is a message transfer diagram of an exemplary paging multiplex format 1300 for PMT B during PO 1310, where the same SCS exists between paging message 1306 and SSB 1308. In the example of FIG. 13, for each PO 1310, L beams 1302 1 ... 1302 L are transmitted for the paging CORESET 1304 and for the paging message 1306 / SSB 1308. Beams 1302 1 ... 1302 L are transmitted once in PO 1310. The paging CORESET 1304 and paging message 1306 can be TDM (within the same beam transmission) on each of the beams 1302 1 ... 1302 L. For each of the beams 1302 1 ... 1302 L , the SSB 1308 can be FDM with the CORESET 1304 and the paging message 1306.

在這裡描述了用於PO的配置的範例。以及可被分別定義為是CORESET的SFN以及時槽索引,以用於以傳呼CORESET的SCS為基礎的傳呼。如果WTRU處於SFN=並且時槽=,那麼WTRU可以使用傳呼配置(例如在RMSI中)及/或WTRU自己的WTRU_ID來確定用於包括了傳呼搜尋空間的CORESET的連續資源塊的數量及/或連續符號的數量。An example of a configuration for a PO is described herein. as well as The SFN and time slot index, which can be defined as CORESET, respectively, are used for paging based on the SCS of the paging CORESET. If the WTRU is at SFN= And time slot = The WTRU may then use the paging configuration (eg, in the RMSI) and/or the WTRU's own WTRU_ID to determine the number of consecutive resource blocks and/or the number of consecutive symbols for the CORESET that includes the paging search space.

WTRU可被配置有由較高層參數所配置的傳呼搜尋空間。例如,使用PDCCH候選、控制通道元素(CCE)聚合等級及/或已知的P-RNTI,WTRU能夠盲解碼該傳呼DCI。所配置的傳呼搜尋空間可以是多個(例如在有可能存在不同的CORESET中),並且WTRU可以基於其WTRU_ID來選擇其中一個傳呼搜尋空間。如果沒有為WTRU提供關於傳呼搜尋空間的一個或多個更高層參數,那麼用於傳呼搜尋空間的監控時機與SS/PBCH塊索引之間的關聯可以與用於RMSI的監控時機的關聯相同。在所有時機中,用於PDCCH傳呼搜尋空間的SCS以及CP長度可以與用於RMSI的搜尋空間的相同。The WTRU may be configured with a paging search space configured by higher layer parameters. For example, using a PDCCH candidate, a Control Channel Element (CCE) aggregation level, and/or a known P-RNTI, the WTRU can blindly decode the paging DCI. The configured paging search space may be multiple (eg, where there may be different CORESETs), and the WTRU may select one of the paging search spaces based on its WTRU_ID. If the WTRU is not provided with one or more higher layer parameters for the paging search space, the association between the monitoring opportunity for the paging search space and the SS/PBCH block index may be the same as the association for the monitoring opportunity for the RMSI. At all times, the SCS and CP length for the PDCCH paging search space may be the same as the search space for the RMSI.

一個或多個傳呼CORESET可以與SSB進行TDM或FDM。這可以基於用於SSB以及RMSI CORESET的多工圖樣。可以使用用於不同WTRU群組的PO的不同多工方案。用於不同WTRU群組的不同PO(例如基於WTRU_ID)可以被TDM或FDM。在基於波束的系統中,經FDM的PO可以減小用於傳呼的波束掃描開銷。經TDM的PO可以依照有可能存在傳呼DCI的不同時槽來定義。多個PO的FDM可以依照有可能存在傳呼DCI的多個BWP、CORESET及/或搜尋空間來執行。然而,二維多工(即TDM以及FDM)可以提供附加的靈活性。One or more paging CORESETs can be TDM or FDM with the SSB. This can be based on multiplexed patterns for SSB and RMSI CORESET. Different multiplex schemes for POs of different WTRU groups can be used. Different POs for different WTRU groups (eg, based on WTRU_ID) may be TDM or FDM. In a beam-based system, the FDM-based PO can reduce the beam scanning overhead for paging. POs via TDM can be defined in terms of different time slots where paging DCI is likely to exist. The FDM of multiple POs may be performed in accordance with a plurality of BWPs, CORESETs, and/or search spaces where there may be paging DCIs. However, two-dimensional multiplexing (ie TDM and FDM) can provide additional flexibility.

SSB與包含傳呼DCI的PDCCH的監控視窗之間的預設關聯可以和SSB與其RMSI監控視窗之間的關聯相同。在一範例中,RMSI在最大限度上可以每160 ms被傳送一次。然而,傳呼可以基於為特定WTRU配置的DRX週期來傳送。基於該DRX週期,WTRU能夠識別用於PO的訊框。如果在被FDM的PO中傳呼多個WTRU,那麼可以修改用於計算該傳呼訊框的公式。WTRU的DRX週期內的傳呼訊框的數量N以及傳呼訊框內的用於傳呼的子訊框的數量Ns可以基於被FDM的PO的數量(nFDMp)來修改。而這轉而可以修改WTRU基於nFDMp而針對傳呼對其進行監控的SFN的計算。The preset association between the SSB and the monitoring window of the PDCCH containing the paging DCI may be the same as the association between the SSB and its RMSI monitoring window. In one example, the RMSI can be transmitted once every 160 ms to the maximum. However, the paging can be transmitted based on the DRX cycle configured for the particular WTRU. Based on the DRX cycle, the WTRU is able to identify the frame for the PO. If multiple WTRUs are paged in the PDM's PO, the formula used to calculate the paging frame can be modified. The number N of paging frames in the WTRU's DRX cycle and the number Ns of subframes used for paging within the paging frame may be modified based on the number of POs (nFDMp) being FDM. This, in turn, can modify the calculation of the SFN that the WTRU monitors for paging based on nFDMp.

在一範例中,用於傳呼的SFN可以基於WTRU_ID、為WTRU配置的DRX週期T以及被FDM的PO的數量來計算。如果以TDM的方式來傳送所有PO,那麼可以將nFDMp設定為1。T可以是WTRU的DRX週期(範例性值包括32、64、128、256)。nB可以是每DRX週期的PO數量(範例性值包括T、2T、T、T/2、T/4、T/8、T/16、T/32、T/64、T/128及T/256)。nFDMp可以是被FDM的PO的數量(例如搜尋空間/BWP或不同的CORESET)。N可以是WTRU的DRX週期內的傳呼訊框的數量(範例性值可以包括Min(T,nB/nFDMp)或[T,T/2,T/4,T/8,T/16,T/32,T/64,T/128及T/256]/nFDMp)。Ns可以是傳呼訊框內用於傳呼的子訊框的數量(範例性公式可以是Ns= Max (1, nB/ (nFDMp *T)): (16,8,4,2,1)/nFDMp)。為了計算用於傳呼的SFN(SFNpaging mod T),傳呼可以在SFN mod T等於(T div N )*(WTRU_ID mod N)的訊框中被發送。In an example, the SFN for paging may be calculated based on the WTRU_ID, the DRX period T configured for the WTRU, and the number of POs that are FDM. If all POs are transmitted in TDM, nFDMp can be set to 1. T may be the WTRU's DRX cycle (exemplary values include 32, 64, 128, 256). nB can be the number of POs per DRX cycle (exemplary values include T, 2T, T, T/2, T/4, T/8, T/16, T/32, T/64, T/128, and T/ 256). nFDMp can be the number of POs that are FDM (eg, search space/BWP or different CORESET). N may be the number of paging frames within the WTRU's DRX cycle (exemplary values may include Min(T, nB/nFDMp) or [T, T/2, T/4, T/8, T/16, T/ 32, T/64, T/128 and T/256]/nFDMp). Ns can be the number of subframes used for paging in the paging frame (the exemplary formula can be Ns = Max (1, nB/ (nFDMp *T)): (16,8,4,2,1)/nFDMp ). In order to calculate the SFN (SFNpaging mod T) for paging, the paging may be sent in a frame with SFN mod T equal to (T div N )* (WTRU_ID mod N).

用於多工多個PO的不同實體資源可以被定義。例如,實體資源可以基於搜尋空間、CORESET、BWP及/或時槽(或小時槽)來定義。基於時槽(或微時槽)的多工PO、被TDM的PO以及搜尋空間、基於CORESET以及BWP的多工PO以及被FDM的PO可以被考慮。如果使用不同的時槽來賦能PO的TDM,那麼可以計算與參考點的時槽偏移。例如,參考點可以是5毫秒邊界、系統訊框開端、關於Type0-PDCCH的所計算的CORESET位置(例如由NR-PBCH配置)或不同(例如固定或是被配置的)週期。時槽偏移可以根據WTRU的WTRU_ID的函數來計算。如果使用不同的BWP以賦能PO的FDM,那麼可以由gNB來配置用於傳呼DCI的BWP,或者該BWP可以是WTRU_ID的函數。如果BWP是WTRU_ID的函數,那麼WTRU可以計算用於傳呼的BWP來定位所要監控的PO。Different physical resources for multiplexing multiple POs can be defined. For example, physical resources can be defined based on search space, CORESET, BWP, and/or time slots (or hour slots). Multiplex POs based on time slots (or micro time slots), POs by TDM, and search spaces, multiplexed POs based on CORESET and BWP, and POs by FDM can be considered. If a different time slot is used to enable the TDM of the PO, then the time slot offset from the reference point can be calculated. For example, the reference point may be a 5 millisecond boundary, a system frame start, a calculated CORESET position for the Type 0-PDCCH (eg, configured by NR-PBCH), or a different (eg, fixed or configured) period. The time slot offset may be calculated as a function of the WTRU's WTRU_ID. If a different BWP is used to enable the FDM of the PO, the BWP for paging DCI may be configured by the gNB, or the BWP may be a function of the WTRU_ID. If the BWP is a function of WTRU_ID, the WTRU may calculate a BWP for paging to locate the PO to be monitored.

如果使用不同的CORESET以賦能PO的FDM,那麼可以由gNB來配置用於傳呼DCI的CORESET索引。CORESET索引可以是搜尋空間配置的一部分。如果攜帶PO的CORESET是WTRU_ID的函數,那麼CORESET可以被反映在搜尋空間ID(SearchSpace_ID)中。對應的搜尋空間可以與攜帶PO的CORESET相關聯。如果使用不同的搜尋空間以賦能PO的多個FDM,那麼可以由gNB來配置傳呼DCI的搜尋空間索引,或者該索引可以由WTRU使用WTRU_ID來計算。在波束掃描期間,BWP、CORESET及/或搜尋空間中的任何一個的組合可以用於多工不同PO。為了完全的靈活性,可以在不同的PO之間使用TDM、FDM或混合TDM/FDM。在這裡定義了用於這些場景的PO。If a different CORESET is used to enable the FDM of the PO, the CORESET index for paging DCI can be configured by the gNB. The CORESET index can be part of the search space configuration. If the CORESET carrying the PO is a function of the WTRU_ID, the CORESET can be reflected in the search space ID (SearchSpace_ID). The corresponding search space can be associated with a CORESET carrying a PO. If different search spaces are used to enable multiple FDMs for the PO, the lookup spatial index of the paging DCI may be configured by the gNB, or the index may be calculated by the WTRU using the WTRU_ID. During beam scanning, a combination of any of BWP, CORESET, and/or search space can be used to multiplex different POs. For complete flexibility, TDM, FDM or hybrid TDM/FDM can be used between different POs. The POs used for these scenarios are defined here.

在多工圖樣(“多工圖樣1”)的範例中,PO配置可以使得RMSI CORESET與SS/PBCH塊進行TDM,並且用於傳呼監控的預設關聯與RMSI監控視窗可以是相同的。在多工圖樣1的PO配置的範例中,TDM可被用於不同的PO。PO可被定義為是和與PO相關聯的RMSI CORESET具有不同時槽偏移的波束掃描週期。RMSI也可以被波束掃描。用於每一個PO的時間偏移可以是固定的、被配置的或是基於WTRU_ID的。該時間偏移可以依照時槽或非時槽(微時槽)來定義(例如2、4、7個OFDM符號時槽)。監控PO的頻率可以取決於DRX週期及/或用於傳呼所要監控的SFN,並且其可以由WTRU來計算。對於實際與SSBIi 一起傳送的SS/PBCH塊,WTRU可以使用函數來確定傳呼訊框內的傳呼監控時槽(或微時槽)的索引。傳呼監控時槽(或微時槽)可以是WTRU_ID及/或用於RMSI CORESET(其可以在NR-PBCH中被配置)的O、M值(例如,O及M可以是在用於監控Type0-PDCCH公共搜尋空間的WTRU程序中被預先定義)的函數。在這種情況下,被FDM的PO的數量(nFDMp=1)可以是1。不同的時槽偏移可以基於PO i_s的索引來計算,其中該索引可以使用WTRU_ID、WTRU DRX週期內的傳呼訊框數量(N)及/或傳呼訊框內部的用於傳呼的子訊框數量(Ns)來計算。此時槽偏移可以被製成表、或者可以是基於不同變數的函數(例如i_s及/或用於傳呼PDCCH的SCS)。In the example of a multiplexed pattern ("Multiplex Pattern 1"), the PO configuration may cause the RMSI CORESET to be TDM with the SS/PBCH block, and the preset association for paging monitoring may be the same as the RMSI monitoring window. In the example of PO configuration of multiplexed pattern 1, TDM can be used for different POs. The PO can be defined as a beam scanning period with different time slot offsets for the RMSI CORESET associated with the PO. The RMSI can also be scanned by the beam. The time offset for each PO can be fixed, configured, or based on WTRU_ID. The time offset can be defined in terms of time slots or non-time slots (micro time slots) (eg, 2, 4, 7 OFDM symbol time slots). The frequency of monitoring the PO may depend on the DRX cycle and/or the SFN to be monitored for paging, and it may be calculated by the WTRU. For SS/PBCH blocks that are actually transmitted with SSBI i , the WTRU may use a function to determine the paging monitoring time slot (or micro time slot) within the paging frame. index of. Paging monitoring time slot (or micro time slot) It may be a WTRU_ID and/or an O, M value for RMSI CORESET (which may be configured in the NR-PBCH) (eg, O and M may be pre-in the WTRU procedure for monitoring the Type0-PDCCH common search space) Defined) function. In this case, the number of POs (nFDMp = 1) of the FDM may be 1. Different time slot offsets may be calculated based on the index of PO i_s, where the index may use WTRU_ID, the number of paging frames (N) in the WTRU DRX cycle, and/or the number of subframes used for paging within the paging frame (Ns) to calculate. The slot offset may now be tabulated or may be a function based on different variables (eg, i_s and/or SCS for paging PDCCH).

以下是使用WTRU_ID來計算包含PO的時槽的範例性等式:等式(5) 其中是將索引i_s關聯於傳呼時槽號的表、函數(例如散列函數)或其他關聯,以及i_s = floor(WTRU_ID/N) mod Ns(根據WTRU_ID的PO)。在等式(5)中,O及M是為RMSI CORESET定義的。時槽偏移的計算也可以取決於SCS()。如果執行基於微時槽的掃描,那麼可以修改關於的計算,但是概括性的概念會保持相同。對於整個波束掃描來說(例如在大於6GHz下,i = 0-63,在小於6GHz下,i=0-7,或者更一般地說,取決於實際傳送的SSB的數量),PO可以藉由用於整個波束掃描的來定義。[1] The following is the use of WTRU_ID to calculate the time slot containing PO Exemplary equation: Equation (5) where , Is a table, function (eg, hash function) or other association that associates index i_s with the slot number of the paging, and i_s = floor(WTRU_ID/N) mod Ns (PO according to WTRU_ID). In equation (5), O and M are defined for RMSI CORESET. The calculation of the time slot offset can also depend on the SCS ( ). If you perform a micro-slot-based scan, you can modify about The calculations, but the general concepts will remain the same. For the entire beam scan (eg, at greater than 6 GHz, i = 0-63, at less than 6 GHz, i = 0-7, or, more generally, depending on the number of SSBs actually delivered), PO can be For the entire beam scan To define. [1]

在另一範例中,可以使用與RMSI CORESET相同的等式來計算包含了使用WTRU_ID的PO的時槽:等式(6)等式(7) 其中是PDCCH監控偏移,其可以藉由用於傳呼的搜尋空間的參數monitoringSlotPeriodicityAndOffset 而被配置,並且是將索引i_s關聯於傳呼時槽號的表、函數(例如散列函數)或其他關聯。在中,s可以是用於傳呼的搜尋空間集合索引,並且p=0,其是RMSI CORESET的索引。發生傳呼的時槽可以取決於SCS。In another example, the same equation as RMSI CORESET can be used to calculate the time slot containing the PO using WTRU_ID: Equation (6) Equation (7) where Is a PDCCH monitoring offset, which can be configured by the parameter monitoringSlotPeriodicityAndOffset of the search space for paging, and Is a table, function (such as a hash function), or other association that associates the index i_s with the slot number of the paging. in Where s can be the search space set index for paging, and p=0, which is the index of the RMSI CORESET. The time slot in which the paging occurs can depend on the SCS.

傳呼CORESET的持續時間可以由頂級參數CORESET-time-duration-paging來定義、或可以與RMSI CORESET相同。用於傳呼CORESET的資源塊集合可以由頂級參數CORESET-freq-dom-paging定義、或可以與RMSI CORESET相同。 在一範例中,傳呼可以在一個或多個相同時槽中以交錯的方式而於每一個BWP中被傳送。如果用交錯方式,那麼可以使用BWP_ID來計算包含PO的時槽。針對PO的多次掃描可以是基於微時槽的,以減小掃描開銷。The duration of the paging CORESET can be defined by the top-level parameter CORESET-time-duration-paging or can be the same as the RMSI CORESET. The set of resource blocks used to page CORESET may be defined by the top level parameter CORESET-freq-dom-paging or may be the same as RMSI CORESET. In an example, the paging may be transmitted in each BWP in an interleaved manner in one or more of the same time slots. If you use interleaving, you can use BWP_ID to calculate the PO-containing Time slot. Multiple scans for PO can be based on micro time slots to reduce scan overhead.

第14圖是用於PO配置1400的範例性多工圖樣1,其中該傳呼CORESET與SS/PBCH塊進行TDM。S是OFDM符號編號,並且時槽包括14個符號。在此範例中,時槽1413包括OFDM符號28-41。箭頭指示的是被準共置且在相同波束上傳送的OFDM符號。時槽(4,1)包括用於與波束1444及1455相關聯的波束的PO 1401。在符號中,第一索引x是SSBI(與時槽相關聯),第二索引y是PO的ID(po_id)。在此範例中,M=0.5(並且如上所述可以是預先定義的),這意味著兩個SSB 1404及1405可以分別與時槽以及相關聯,因此包含兩個傳呼CORESET。同步到SSBI 1404的WTRU可以在SSBI 1404表明的後續時槽中接收對應位置,以發現該傳呼CORESET或傳呼DCI。在這種情況下,時槽以及可以是相同的。時槽可以包括用於與波束1444及1445相關聯的波束的PO 1402。在第14圖的範例中,每一個PO 1401及1402都可以在其自己的波束掃描中被發送。此方法可能具有更高的潛時,但是通過減少用於傳呼的波束數量而大幅簡化了實施。WTRU可以被配置(隱性或顯性地)為基於WTRU_ID以僅監控與不同波束1444及1445中的PO 1401及/或1402對應的一個搜尋空間1421,以接收傳呼訊息1431及/或1432。Figure 14 is an exemplary multiplex pattern 1 for a PO configuration 1400 in which the paging CORESET is TDM with the SS/PBCH block. S is an OFDM symbol number, and the time slot includes 14 symbols. In this example, time slot 1413 includes OFDM symbols 28-41. The arrows indicate OFDM symbols that are quasi-co-located and transmitted on the same beam. Time slot (4,1) A PO 1401 is included for the beams associated with beams 1444 and 1455. At symbol In the first index x is SSBI (with time slot) Associated), the second index y is the ID (po_id) of the PO. In this example, M = 0.5 (and can be predefined as described above), which means that the two SSBs 1404 and 1405 can be associated with the time slot, respectively. as well as Associated, so it contains two paging CORESETs. The WTRU synchronized to SSBI 1404 may receive the corresponding location in the subsequent time slot indicated by SSBI 1404 to discover the paging CORESET or paging DCI. In this case, the time slot as well as Can be the same. Time slot A PO 1402 for beams associated with beams 1444 and 1445 can be included. In the example of Figure 14, each of the POs 1401 and 1402 can be transmitted in its own beam scan. This approach may have a higher latency, but greatly simplifies implementation by reducing the number of beams used for paging. The WTRU may be configured (recessively or explicitly) to monitor only one of the search spaces 1421 corresponding to the POs 1401 and/or 1402 of the different beams 1444 and 1445 based on the WTRU_ID to receive the paging messages 1431 and/or 1432.

在另一個範例中,不同的(TDM)PO有可能以相同的SSB週期發生。舉例來說,如果在時槽T1、T2、T3、T4處傳送SSB,那麼可以在時槽T1+K處傳送PO1,可以在時槽T2+K處傳送PO2,依此類推,其中K是偏移。偏移K的值可以是0或大於0的任何值。在這種情況下,在TDM模式中,相同的傳呼DCI以及傳呼訊息可以在所有BWP中用定義了SS/PBCH塊的胞元傳送。在一範例中,傳呼DCI以及傳呼訊息可以在WTRU的初始活動BWP被傳送,並且因此可以在每一個BWP中傳送不同的傳呼訊息,這可以取決於駐留在該BWP上的不同WTRU。gNB可以向定義了SS/PBCH塊的胞元註冊初始活動BWP。在一範例中,可以為WTRU定義一種用於向gNB表明其胞元定義的SS/PBCH塊的機制。In another example, different (TDM) POs may occur in the same SSB cycle. For example, if the SSB is transmitted at time slots T1, T2, T3, T4, then PO1 can be transmitted at time slot T1+K, PO2 can be transmitted at time slot T2+K, and so on, where K is partial shift. The value of the offset K can be 0 or any value greater than zero. In this case, in TDM mode, the same paging DCI and paging message can be transmitted in all BWPs with cells defining the SS/PBCH block. In an example, the paging DCI and paging message may be transmitted at the WTRU's initial active BWP, and thus different paging messages may be transmitted in each BWP, which may depend on the different WTRUs residing on the BWP. The gNB can register the initial active BWP with the cell that defines the SS/PBCH block. In an example, a mechanism for the WTRU to indicate the SS/PBCH block of its cell definition to the gNB may be defined.

在這裡描述了由WTRU執行的用於確定被TDM的PO的配置的範例性程序。WTRU可以與PSS/SSS同步及/或從PBCH接收MIB。WTRU可以從MIB中發現用於RMSI的CORESET、並且可以為類型0-PDCCH(Type0-PDCCH)執行盲解碼。WTRU可以從Type0-PDCCH表明的PDSCH接收SIB1。WTRU可以發現傳呼配置、並且可以配置DRX週期以及傳呼搜尋空間。WTRU可以使用DRX週期以及WTRU_ID來計算。WTRU可以基於DRX週期以及WTRU_ID來計算索引i_s。使用i_s,WTRU可以從RMSI CORESET中計算出關於PO的偏移。Exemplary procedures for determining the configuration of POs that are TDMs performed by the WTRU are described herein. The WTRU may synchronize with the PSS/SSS and/or receive the MIB from the PBCH. The WTRU may discover a CORESET for the RMSI from the MIB and may perform blind decoding for the Type 0-PDCCH (Type 0-PDCCH). The WTRU may receive SIB1 from the PDSCH indicated by Type0-PDCCH. The WTRU may discover the paging configuration and may configure the DRX cycle as well as the paging search space. The WTRU may use the DRX cycle and the WTRU_ID to calculate . The WTRU may calculate an index i_s based on the DRX cycle and the WTRU_ID. Using i_s, the WTRU can calculate the offset for the PO from the RMSI CORESET.

WTRU可以找到其應該監控傳呼的一個或多個時槽、一個或多個非時槽或一個或多個微時槽(例如針對每一個波束)。SS/PBCH塊以及相關聯的傳呼搜尋空間可以被準共置。因此,WTRU可以為每一個時槽使用相關聯的波束。如果實際傳送的SSB不同於所定義的SSB,那麼可以用SS/PBCH塊的邏輯索引或實體索引(或SSBI)來執行傳呼搜尋空間之間的關聯。如果沒有關於WTRU的更進一步的操作,那麼WTRU可以進入空閒_模式(IDLE_MODE)。The WTRU may find one or more time slots, one or more time slots, or one or more time slots (eg, for each beam) that it should monitor for paging. The SS/PBCH block and associated paging search space can be quasi-co-located. Thus, the WTRU can use the associated beam for each time slot. If the actually transmitted SSB is different from the defined SSB, the association between the paging search spaces can be performed using the logical index or entity index (or SSBI) of the SS/PBCH block. The WTRU may enter the idle_mode (IDLE_MODE) if there is no further operation with respect to the WTRU.

WTRU可以在根據所計算的SFN以及與最後註冊的最強波束相關聯的時槽中喚醒。如果WTRU被配置用於掃描波束,那麼WTRU可以在第一波束中喚醒、並且可以在與用於該WTRU的PO相關聯的時槽中掃描所有波束。WTRU可以使用例如在上文中描述的時槽或微時槽計算。使用用於傳呼的搜尋空間定義,WTRU可以發現該傳呼CORESET。如果沒有定義CORESET,那麼WTRU可以使用CORESET 0(例如用於RMSI的CORESET)。WTRU可以使用搜尋空間表以對使用P-RNTI的類型2-PDCCH(Type2-PDCCH)進行盲解碼。如果WTRU發現了Type2-PDCCH,那麼WTRU接收由PDCCH表明的PDSCH來確定該WTRU是否被傳呼。如果WTRU被傳呼,那麼該WTRU可以與gNB建立連接。如果該WTRU未被傳呼,那麼該WTRU可以恢復到IDLE_MODE。The WTRU may wake up in a time slot that is based on the calculated SFN and the last strongest beam registered. If the WTRU is configured to scan for a beam, the WTRU may wake up in the first beam and may scan all beams in a time slot associated with the PO for the WTRU. The WTRU may use time slot or micro time slot calculations such as those described above. Using the search space definition for paging, the WTRU may discover the paging CORESET. If no CORESET is defined, the WTRU may use CORESET 0 (eg, CORESET for RMSI). The WTRU may use the search space table to blindly decode the Type 2-PDCCH (Type 2-PDCCH) using the P-RNTI. If the WTRU finds a Type2-PDCCH, the WTRU receives the PDSCH indicated by the PDCCH to determine if the WTRU is paged. If the WTRU is paged, the WTRU may establish a connection with the gNB. If the WTRU is not paging, the WTRU may revert to IDLE_MODE.

在用於多工圖樣1的PO配置的另一範例中,FDM可被用於不同的PO。在一個範例中,PO可以只在WTRU的初始活動BWP(也就是WTRU最先同步的BWP)上傳送PO。在這種情況下,WTRU可以從目前活動的BWP切換到用於其PO的初始活動BWP,以檢查其是否被傳呼。傳呼訊息可被假設成是與傳呼(指示符)DCI在相同的BWP中傳送的。如果數量大到不成比例的WTRU具有與其初始活動BWP相同的BWP,那麼對於gNB來說,負載平衡將會是一個挑戰。在這種情況下,用於不同WTRU的PO可以基於WTRU_ID而被分佈在不同的BWP之間。In another example of PO configuration for multiplexed pattern 1, FDM can be used for different POs. In one example, the PO may transmit the PO only on the WTRU's initial active BWP (ie, the WTRU's first synchronized BWP). In this case, the WTRU may switch from the currently active BWP to the initial active BWP for its PO to check if it is paged. The paging message can be assumed to be transmitted in the same BWP as the paging (indicator) DCI. If a large number of disproportionate WTRUs have the same BWP as their initial active BWP, load balancing will be a challenge for gNBs. In this case, POs for different WTRUs may be distributed between different BWPs based on the WTRU_ID.

在這種情況下,PO可被定義為是與PO相關聯的RMSI CORESET的波束掃描週期。所有PO可以在沒有偏移下在相同時槽中被一起FDM。PO可以在不同的搜尋空間、並且可以在相同時槽的相同或不同CORESET中。供WTRU監控Type2-PDCCH的搜尋空間(以及相關聯的CORESET)可以取決於WTRU_ID。供WTRU監控PO的頻率可以取決於DRX,並且供WTRU監控傳呼的SFN可以由WTRU來計算。對於RMSI來說,傳呼時槽計算可以是相同的。In this case, the PO can be defined as the beam scanning period of the RMSI CORESET associated with the PO. All POs can be FDM together in the same time slot without offset. POs can be in different search spaces and can be in the same or different CORESETs of the same time slot. The search space (and associated CORESET) for the WTRU to monitor the Type2-PDCCH may depend on the WTRU_ID. The frequency at which the WTRU monitors the PO may depend on the DRX, and the SFN for the WTRU to monitor the paging may be calculated by the WTRU. For RMSI, the paging time slot calculation can be the same.

不同的PO可以在所有BWP上傳送、或可以在BWP上被多工。如果PO在不同的BWP中被多工,那麼用於監控WTRU的BWP可以由gNB配置或是由WTRU計算、並且可以取決於WTRU_ID。舉例來說,如果總共有4個被FDM的PO,並且存在其上PO被多工的2個BWP,那麼每一個BWP可以包含2個PO。這種分佈可以是WTRU_ID的函數。相同BWP中的2個PO可以在相同或不同的CORESET。Different POs can be transmitted on all BWPs or can be multiplexed on the BWP. If the PO is multiplexed in a different BWP, the BWP used to monitor the WTRU may be configured by the gNB or calculated by the WTRU and may depend on the WTRU_ID. For example, if there are 4 POs that are FDM in total, and there are 2 BWPs on which the PO is multiplexed, then each BWP can contain 2 POs. This distribution can be a function of the WTRU_ID. Two POs in the same BWP can be in the same or different CORESET.

在每一個BWP中,PO可被指配到不同的搜尋空間。這些搜尋空間可以與相同的CORESET或不同的CORESET相關聯。如果這些搜尋空間與不同的CORESET相關聯,那麼WTRU監控的CORESET可以是為WTRU_ID預先定義或是基於WTRU_ID的。舉例來說,如果BWP中有4個PO,並且存在於其上PC被多工的2個CORESET,那麼每一個CORESET可以在兩個搜尋空間中包含2個PO。此分佈可以是WTRU_ID的函數。WTRU可以使用WTRU_ID來計算具有CORESET-ID的搜尋空間。如果CORESET-ID不是WTRU使用WTRU_ID計算的,那麼gNB可以在配置傳呼搜尋空間的時候表明相關聯的傳呼CORESET。處於相同CORESET的PO有可能位於不同的搜尋空間。這些搜尋空間可以被預先配置給WTRU群組,或者WTRU能夠使用WTRU_ID來計算用於監控該WTRU的PO的公共搜尋空間。為使WTRU計算用於監控PO的時槽,用於RMSI的相同公式可以被使用。WTRU所要監控的BWP、CORESET及/或搜尋空間可以是WTRU_ID的函數。該BWP、CORESET及/或搜尋空間可以是以下的任何一個或多個參數的函數:PO總數;BWP中的FDM PO的數量(nFDMp_bwp);CORESET中的FDM PO的數量(nFDMp_coreset);搜尋空間中的FDM PO的數量(nFDMp_ss);在沒有對PO進行TDM的情況下,nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss];WTRU的DRX週期內的傳呼訊框的數量;及/或傳呼訊框內供傳呼使用的時槽的數量。In each BWP, POs can be assigned to different search spaces. These search spaces can be associated with the same CORESET or a different CORESET. If these search spaces are associated with different CORESETs, the WTRU monitored CORESET may be pre-defined for WTRU_ID or based on WTRU_ID. For example, if there are 4 POs in the BWP and there are 2 CORESETs on which the PC is multiplexed, then each CORESET can contain 2 POs in both search spaces. This distribution can be a function of the WTRU_ID. The WTRU may use the WTRU_ID to calculate a search space with a CORESET-ID. If the CORESET-ID is not calculated by the WTRU using the WTRU_ID, then the gNB may indicate the associated paging CORESET when configuring the paging search space. POs that are in the same CORESET may be located in different search spaces. These search spaces may be pre-configured to the WTRU group, or the WTRU may use the WTRU_ID to calculate a common search space for monitoring the WTRU's PO. In order for the WTRU to calculate the time slot for monitoring the PO, the same formula for the RMSI can be used. The BWP, CORESET, and/or seek space that the WTRU is to monitor may be a function of the WTRU_ID. The BWP, CORESET, and/or search space may be a function of any one or more of the following parameters: the total number of POs; the number of FDM POs in the BWP (nFDMp_bwp); the number of FDM POs in the CORESET (nFDMp_coreset); Number of FDM POs (nFDMp_ss); in the absence of TDM for POs, nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]; number of paging frames within the WTRU's DRX cycle; and/or paging within the paging frame The number of time slots used.

在下文中描述了PO計算的範例。包含PO的時槽可以使用以下等式來計算:等式(8) 在實際傳送的SSB數量不同的情況中,SSB的邏輯索引可以與用於該傳呼掃描的時槽相關聯。所要監控的BWP以及所要監控的搜尋空間可以是於上述及的每一個維度(例如BWP、CORESET、搜尋空間)中的PO索引及/或FDM PO總數的函數。與每一個搜尋空間相關聯的CORESET可被包括在搜尋空間配置中、並且因此不必被顯性提及。An example of PO calculation is described below. The time slot containing the PO can be calculated using the following equation: Equation (8) In the case where the number of SSBs actually transmitted is different, the logical index of the SSB can be associated with the time slot for the paging scan. The BWP to be monitored and the search space to be monitored may be a function of the PO index and/or the total number of FDM POs in each of the above dimensions (eg, BWP, CORESET, search space). The CORESET associated with each search space can be included in the search space configuration and therefore does not have to be explicitly mentioned.

在這個範例中,BWP的ID可以依照BWP_id = f (PO_id, nFDMp)來計算,並且搜尋空間的ID可以依照SearchSpace_id = f (PO_id, nFDMp)來計算,其中PO_id可以是PO的索引。FDM PO的數量可以依照nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]來計算,其中nFDMp_bwp是BWP中的FDM PO的數量,nFDMp_coreset是CORESET中的FDM PO的數量,nFDMp_ss是SS中的FDM PO的數量。如果BWP中的FDM PO的數量是nFDMp_bwp=1,那麼這有可能意味著PO沒有在BWP上被多工,或者PO是在所配置的不同BWP上被傳送。如果CORESET中的FDM PO的數量是nFDMp_coreset=1,那麼這有可能意味著PO沒有在CORESET上被多工。PO的索引(PO_id)可以使用WTRU_ID以及取模(mod)函數來計算,例如PO_id = floor(WTRU_ID/N) mod Ns。在此範例性場景中,如果傳呼CORESET與RMSI-CORESET不同,那麼gNB排程器可以避免該傳呼CORESET與RMSI-CORESET的重疊。在一範例中,多個RNTI可以用於相同的公共搜尋空間上的傳呼。多個不同的RNTI可(例如基於WTRU_ID)被指配給不同的WTRU群組。如果使用多個RNTI(或一系列的RNTI)來進行傳呼,那麼WTRU能夠基於其WTRU_ID識別其自己的RNTI、並且能夠發現包括其傳呼DCI的PDCCH。該多個RNTI可以是從一系列的傳呼RNTI(PG-RNTI)中選擇的。In this example, the ID of the BWP can be calculated according to BWP_id = f (PO_id, nFDMp), and the ID of the search space can be calculated according to SearchSpace_id = f (PO_id, nFDMp), where PO_id can be an index of the PO. The number of FDM POs can be calculated according to nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss], where nFDMp_bwp is the number of FDM POs in the BWP, nFDMp_coreset is the number of FDM POs in the CORESET, and nFDMp_ss is the number of FDM POs in the SS. If the number of FDM POs in the BWP is nFDMp_bwp=1, then this may mean that the PO is not multiplexed on the BWP, or the PO is transmitted on the different BWPs configured. If the number of FDM POs in the CORESET is nFDMp_coreset=1, then this may mean that the PO is not multiplexed on the CORESET. The PO's index (PO_id) can be calculated using the WTRU_ID and modulo (mod) function, such as PO_id = floor(WTRU_ID/N) mod Ns. In this exemplary scenario, if the paging CORESET is different from the RMSI-CORESET, the gNB scheduler can avoid the overlap of the paging CORESET and the RMSI-CORESET. In an example, multiple RNTIs can be used for paging on the same common search space. A plurality of different RNTIs may be assigned to different WTRU groups (eg, based on WTRU_ID). If multiple RNTIs (or a series of RNTIs) are used for paging, the WTRU can identify its own RNTI based on its WTRU_ID and can discover the PDCCH including its paging DCI. The plurality of RNTIs may be selected from a series of paging RNTIs (PG-RNTIs).

第15圖是用於PO配置1500的另一個範例性多工圖樣1,其中該傳呼CORESET與SS/PBCH塊進行TDM。在第15圖中,假設SCS是與SS/PBCH塊圖樣對應的120 kHz。S是OFDM符號編號,以及時槽包括14個符號。在此範例中,時槽1513包括OFDM符號28-41(例如與SS/PBCH塊圖樣中的第3個時槽對應)。在第15圖的範例中,M=0.5(並且如上所述可以是預定義的)。因此,具有SSBI 1504以及1505的兩個波束可以分別與包含了用於具有SSBI 1504以及1505的兩個不同波束的時槽中的兩個不同傳呼CORESET(每一個都具有4個OFDM微時槽)的相同時槽1513相關聯。OFDM符號S=32、33、34、35可以在一個方向上被傳送,並且OFDM符號36、37、38、39可以在另一個方向上傳送(也就是在不同波束上)。這兩個CORESET可以包括處於4個不同搜尋空間(SSp)1521-1524中的PO 1541-1544。WTRU可以使用其WTRU_ID來找到與該WTRU相關聯的傳呼搜尋空間1521-1524,使得該WTRU可以從1541-1544中找到其自己的PO、以及定位傳呼訊息1531-1534。Figure 15 is another exemplary multiplex pattern 1 for PO configuration 1500 in which the paging CORESET is TDM with the SS/PBCH block. In Fig. 15, it is assumed that the SCS is 120 kHz corresponding to the SS/PBCH block pattern. S is the OFDM symbol number, and the time slot includes 14 symbols. In this example, time slot 1513 includes OFDM symbols 28-41 (e.g., corresponding to the third time slot in the SS/PBCH block pattern). In the example of Figure 15, M = 0.5 (and may be predefined as described above). Therefore, two beams with SSBI 1504 and 1505 can respectively contain time slots for two different beams with SSBI 1504 and 1505. The same time slot 1513 of two different paging CORESETs (each having 4 OFDM micro time slots) is associated. The OFDM symbols S = 32, 33, 34, 35 can be transmitted in one direction, and the OFDM symbols 36, 37, 38, 39 can be transmitted in the other direction (i.e., on different beams). These two CORESETs can include PO 1541-1544 in 4 different search spaces (SSp) 1521-1524. The WTRU may use its WTRU_ID to find the paging search space 1521-1524 associated with the WTRU such that the WTRU may find its own PO from 1541-1544, as well as locate paging messages 1531-1534.

第16圖是用於PO配置1600的另一個範例性多工圖樣1,其中傳呼CORESET與SS/PBCH塊進行TDM。在第16圖的範例中,具有SSBI 1604以及1605的兩個波束與包含四個不同傳呼CORESET的相同時槽1613相關聯(與SSBI 1604相關聯的兩個傳呼CORESET具有4個OFDM符號微時槽,並且與SSBI 1605相關聯的兩個傳呼CORESET具有3個OFDM符號微時槽)。時槽中的每個波束(總共兩個波束)與兩個CORESET相關聯,其中每一個CORESET都具有兩個搜尋空間:分別是搜尋空間1631以及1632以及搜尋空間1633以及1634。WTRU可以取決於WTRU_ID來發現其傳呼搜尋空間以及CORESET(例如與關聯於SSBI 1604及1605的各自的波束相關聯的搜尋空間1621以及1622會組合以產生CORESET)、並且可以發現其自身的PO(例如PO 1641、1642、1643或1644)。Figure 16 is another exemplary multiplex pattern 1 for PO configuration 1600 in which the paging CORESET and the SS/PBCH block are TDM. In the example of Figure 16, two beams with SSBI 1604 and 1605 are associated with the same time slot 1613 containing four different paging CORESETs (two paging CORESETs associated with SSBI 1604 have 4 OFDM symbol micro time slots) And the two paging CORESETs associated with SSBI 1605 have 3 OFDM symbol micro time slots). Time slot Each of the beams (two beams in total) is associated with two CORESETs, each of which has two search spaces: search spaces 1631 and 1632 and search spaces 1633 and 1634, respectively. The WTRU may discover its paging search space and CORESET depending on the WTRU_ID (eg, the search spaces 1621 and 1622 associated with respective beams associated with SSBI 1604 and 1605 may combine to generate CORESET), and may discover its own PO (eg, PO 1641, 1642, 1643 or 1644).

第17圖是用於PO配置1700的另一個範例性多工圖樣1,其中傳呼CORESET與SS/PBCH塊進行TDM。在第17圖的範例中,具有SSBI 1704、1705、1706以及1707的四個波束與同一個時槽1713相關聯,該時槽可以包含四個不同的傳呼CORESET。每一個波束(例如符號S=32、33、34、35是在一個方向上被傳送的,且符號36、37、38、39是在不同波束上的另一個方向被傳送)與一個CORESET相關聯,其中每一個CORESET具有四個搜尋空間SS 1721-1724。WTRU可以基於其WTRU_ID來找到傳呼搜尋空間(例如SSp 1721、1722、1723及/或1724,取決於WTRU同步到哪一個SSBI 1704、1705、1706或1707)以及CORESET、並且基於WTRU同步到的SS/PBCH塊1704、1705、1706或1707來找到其自己的PO。傳呼時槽可以包括在每一個波束中被FDM以及在四個波束中被傳送的4個PO。Figure 17 is another exemplary multiplex pattern 1 for PO configuration 1700 in which the paging CORESET and the SS/PBCH block are TDM. In the example of Figure 17, four beams with SSBIs 1704, 1705, 1706, and 1707 are associated with the same time slot 1713, which may contain four different paging CORESETs. Each beam (eg, symbols S=32, 33, 34, 35 are transmitted in one direction, and symbols 36, 37, 38, 39 are transmitted in the other direction on different beams) associated with a CORESET Each of the CORESETs has four search spaces SS 1721-1724. The WTRU may find a paging search space based on its WTRU_ID (eg, SSp 1721, 1722, 1723, and/or 1724, depending on which SSBI 1704, 1705, 1706, or 1707 the WTRU is synchronized to) and CORESET, and based on the SS/s that the WTRU is synchronized to. PBCH block 1704, 1705, 1706 or 1707 finds its own PO. Paging time slot It may include 4 POs that are transmitted by FDM in each beam and in four beams.

在上述範例中,該傳呼DCI(例如PDCCH)以及傳呼訊息(例如PDSCH)可以處於相同的時槽。然而,PDCCH可以在不同時槽排程PDSCH(例如跨時槽排程)。PO可以包括用於整個波束掃描的傳呼DCI與傳呼訊息的配對。在跨時槽排程的情況下,PPO可以包括與該傳呼訊息以及傳呼DCI處於相同時槽的基於時槽的排程不同及/或更多的時槽。在這裡描述的範例中,不同的公共搜尋空間可被指配給不同的WTRU群組,以進行傳呼。在這種情況下,群組公共搜尋空間可被用於目的FDM PO。In the above example, the paging DCI (eg, PDCCH) and the paging message (eg, PDSCH) may be in the same time slot. However, the PDCCH may schedule PDSCH (eg, time slot scheduling) at different time slots. The PO may include a pairing of paging DCIs and paging messages for the entire beam scan. In the case of a time slot schedule, the PPO may include a time slot-based schedule that is different from the paging time and the paging DCI in the same time slot and/or more time slots. In the example described herein, different common search spaces may be assigned to different groups of WTRUs for paging. In this case, the group common search space can be used for the destination FDM PO.

在這裡描述了由WTRU執行的用於確定被FDM的PO的配置的範例性程序。根據該範例性程序,WTRU可以與PSS/SSS同步、並且可以從PBCH接收MIB。WTRU可以從MIB中找到用於RMSI的CORESET,並且可以為Type0-PDCCH執行盲解碼。WTRU可以從Type0-PDCCH指向的PDSCH接收SIB1。WTRU可以發現包括DRX週期、傳呼搜尋空間以及nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]的傳呼配置。WTRU可以使用DRX週期、WTRU_ID及/或FDM PO的數量來計算。WTRU可以基於DRX週期、WTRU_ID及/或FDM PO的數量來計算PO_id。使用PO_id及/或nFDMp,WTRU可以計算BWP_id及/或搜尋空間_id(SearchSpace_id)。CORESET_id可以與SearchSpace_id相關聯。因此,使用不同的CORESET可被反映在不同的SearchSpace_id中。Exemplary procedures performed by the WTRU to determine the configuration of the PO of the FDM are described herein. According to this exemplary procedure, the WTRU may synchronize with the PSS/SSS and may receive the MIB from the PBCH. The WTRU may find a CORESET for the RMSI from the MIB and may perform blind decoding for the Type 0-PDCCH. The WTRU may receive SIB1 from the PDSCH pointed to by the Type 0-PDCCH. The WTRU may discover a paging configuration including a DRX cycle, a paging search space, and nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]. The WTRU may calculate using the number of DRX cycles, WTRU_IDs, and/or FDM POs. . The WTRU may calculate the PO_id based on the number of DRX cycles, WTRU_IDs, and/or FDM POs. Using PO_id and/or nFDMp, the WTRU may calculate BWP_id and/or search space _id (SearchSpace_id). CORESET_id can be associated with SearchSpace_id. Therefore, using different CORESETs can be reflected in different SearchSpace_ids.

WTRU可以找到其應該監控SearchSpace_id以及BWP_id的一個或多個時槽或微時槽(例如針對一些或所有波束)。SS/PBCH塊與相關聯的傳呼搜尋空間可以被準共置。因此,WTRU可以為每一個時槽使用相關聯的波束。傳呼搜尋空間可以是群組公共搜尋空間。如果實際傳送的SSB與定義的SSB不同,那麼可以用SS/PBCH塊的邏輯索引或實體索引(或SSBI)來執行傳呼搜尋空間之間的關聯。WTRU可以使用公共搜尋空間的資源塊0(RB0)(具有針對每一個WTRU群組的不同RB偏移的相同searchSpace_id)並且可以使用WTRU_ID來計算每一個群組的偏移。如果WTRU沒有還要完成的操作,那麼WTRU可以進入IDLE_MODE。The WTRU may find one or more time slots or micro time slots (eg, for some or all of the beams) that it should monitor for SearchSpace_id and BWP_id. The SS/PBCH block and associated paging search space can be quasi-co-located. Thus, the WTRU can use the associated beam for each time slot. The paging search space can be a group common search space. If the actually transmitted SSB is different from the defined SSB, the association between the paging search spaces can be performed using the logical index or entity index (or SSBI) of the SS/PBCH block. The WTRU may use Resource Block 0 (RB0) of the Common Search Space (with the same searchSpace_id for different RB offsets for each WTRU group) and may use WTRU_ID to calculate the offset for each group. If the WTRU does not have an operation to complete, the WTRU may enter IDLE_MODE.

WTRU在與最後記錄的最強波束相關聯的計算得到的SFN時槽(或微時槽)中喚醒。如果WTRU被配置用於掃描波束,那麼WTRU可以在第一波束中喚醒,並且可以在與用於該WTRU的PO相關聯的時槽中掃描所有波束。WTRU可以使用時槽或微時槽計算(例如用如上所述的方式)。使用用於傳呼的搜尋空間定義,WTRU可以在預先計算的BWP_id中找到傳呼CORESET。WTRU可以使用搜尋空間表來盲解碼使用P-RNTI的Type2-PDCCH。如果從傳呼RNTI(PG-RNTI)群組中指配了多個RNTI,那麼WTRU可以使用供其自己的群組使用的RNTI。用於該WTRU的RNTI可以使用WTRU_ID而被導出、或者可以使用(例如WTRU特定的)RRC傳訊而被指配給WTRU。如果WTRU發現Type2-PDCCH,那麼WTRU會接收該PDCCH表明的PDSCH,以確定該WTRU是否被傳呼。如果該WTRU被傳呼,那麼該WTRU可以與gNB建立連接。如果該WTRU未被傳呼,那麼該WTRU可以恢復到IDLE_MODE。The WTRU wakes up in the calculated SFN time slot (or micro time slot) associated with the last recorded strongest beam. If the WTRU is configured to scan for a beam, the WTRU may wake up in the first beam and may scan all beams in a time slot associated with the PO for that WTRU. The WTRU may calculate using time slots or micro time slots (e.g., as described above). Using the search space definition for paging, the WTRU may find a paging CORESET in the pre-computed BWP_id. The WTRU may use the search space table to blindly decode the Type2-PDCCH using the P-RNTI. If multiple RNTIs are assigned from a paging RNTI (PG-RNTI) group, the WTRU may use the RNTI for its own group. The RNTI for the WTRU may be derived using the WTRU_ID or may be assigned to the WTRU using (e.g., WTRU-specific) RRC messaging. If the WTRU finds a Type2-PDCCH, the WTRU receives the PDSCH indicated by the PDCCH to determine if the WTRU is paged. If the WTRU is paged, the WTRU may establish a connection with the gNB. If the WTRU is not paging, the WTRU may revert to IDLE_MODE.

在用於多工圖樣1的PO配置的範例中,混合的TDM以及FDM可以被用於不同的PO。用於上文描述的TDM以及FDM的任一方法的組合可以用於混合的TDM以及FDM、並且在為不同使用者排程PO方面是完全靈活的。通過使用混合的TDM以及FDM,可以依照時間以及頻率來分佈PO。監控PO的頻率可以取決於DRX。WTRU可以計算要被監控傳呼的SFN(例如用如上所述的方式)。PO中的每一個波束都可以與不同的SS/PBCH塊相關聯。依照一個或多個時槽(或一個或多個微時槽)的時間偏移可被應用於計算PO。該時間偏移可以是預先配置的、或者可以基於WTRU_ID。In the example of PO configuration for multiplexed pattern 1, mixed TDM and FDM can be used for different POs. The combination of any of the methods described above for TDM and FDM can be used for mixed TDM as well as FDM, and is completely flexible in scheduling PO for different users. By using mixed TDM and FDM, PO can be distributed in terms of time and frequency. The frequency at which the PO is monitored can depend on the DRX. The WTRU may calculate the SFN to be monitored for paging (e.g., as described above). Each beam in the PO can be associated with a different SS/PBCH block. A time offset in accordance with one or more time slots (or one or more micro time slots) can be applied to calculate the PO. The time offset may be pre-configured or may be based on the WTRU_ID.

不同的PO可以存在於所有BWP上、或者可以在BWP上被多工。如果在不同的BWP上多工不同的PO,那麼該WTRU要監控的BWP可以由gNB配置或是由該WTRU計算、並且可以取決於WTRU_ID。在一個範例中,如果總共有4個PO,那麼2個PO可以被FDM在一時槽中,而其他2個PO則可以在不同時槽中被TDM。每一個BWP可以包含每時槽2個PO。此分佈可以是WTRU_ID的函數。Different POs may exist on all BWPs or may be multiplexed on the BWP. If different POs are multiplexed on different BWPs, the BWP to be monitored by the WTRU may be configured by the gNB or calculated by the WTRU and may depend on the WTRU_ID. In one example, if there are a total of 4 POs, then 2 POs can be FDM in one time slot, while the other 2 POs can be TDM in different time slots. Each BWP can contain 2 POs per slot. This distribution can be a function of the WTRU_ID.

在每一個BWP中,PO可以被指配至不同時槽中的不同搜尋空間。該搜尋空間可以與相同的CORESET或不同的CORESET相關聯。如果搜尋空間與不同的CORESET相關聯,那麼WTRU監控的CORESET可以是預先定義或是基於WTRU_ID的。在一範例中,如果BWP中有4個PO,可能有於其上PO被多工的2個CORESET,並且每一個CORESET可以將1個PO包含在兩個不同的時槽中。時槽以及CORESET的這種分佈可以是WTRU_ID的函數。In each BWP, POs can be assigned to different search spaces in different time slots. This search space can be associated with the same CORESET or a different CORESET. If the search space is associated with a different CORESET, the CORESET monitored by the WTRU may be predefined or based on the WTRU_ID. In an example, if there are 4 POs in the BWP, there may be 2 CORESETs on which the PO is multiplexed, and each CORESET can include 1 PO in two different time slots. This distribution of time slots and CORESET can be a function of the WTRU_ID.

如果搜尋空間與相同的CORESET相關聯,那麼WTRU所要監控的搜尋空間可以是預先定義或是基於WTRU_ID的。在一個範例中,如果BWP中有4個PO,並且有於其上PO被多工的兩個搜尋空間,那麼每一個搜尋空間都可以將一個PO包含在兩個不同的時槽中。時槽以及搜尋空間的這種分佈可以是WTRU_ID的函數。同樣,在多個時槽中,在存在於不同BWP中的不同CORESET的不同搜尋空間上有可能會有PO的多維映射。因此,群組公共搜尋空間可以是用於FDM PO的。If the search space is associated with the same CORESET, the search space that the WTRU is to monitor may be predefined or based on the WTRU_ID. In one example, if there are 4 POs in the BWP and there are two search spaces on which the PO is multiplexed, then each search space can include one PO in two different time slots. This distribution of time slots and search spaces can be a function of the WTRU_ID. Also, in multiple time slots, there may be multi-dimensional mapping of POs on different search spaces of different CORESETs present in different BWPs. Therefore, the group common search space can be used for FDM PO.

PO的時槽編號可以使用與RMSI類似的公式來計算、但是有可能包括偏移。因此,時間偏移BWP_id、SearchSpace_id及/或CORESET_id可以是WTRU_ID的函數。時間偏移BWP_id、SearchSpace_id及/或CORESET_id也可以是下參數中任一個或多個參數的函數:PO的總數;TDM PO的總數(nTDMp);BWP中的FDM PO的數量(nFDMp_bwp);CORESET中的FDM PO的數量(nFDMp_coreset);搜尋空間中的FDM PO的數量(nFDMp_ss);nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss];WTRU DRX週期內的傳呼訊框的數量;及/或傳呼訊框內用於傳呼的子訊框的數量。[2] PO slot number A formula similar to RMSI can be used to calculate, but it is possible to include an offset. Thus, the time offset BWP_id, SearchSpace_id, and/or CORESET_id may be a function of the WTRU_ID. The time offset BWP_id, SearchSpace_id, and/or CORESET_id may also be a function of any one or more of the following parameters: the total number of POs; the total number of TDM POs (nTDMp); the number of FDM POs in the BWP (nFDMp_bwp); Number of FDM POs (nFDMp_coreset); number of FDM POs in the search space (nFDMp_ss); nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]; number of paging frames in the WTRU DRX cycle; and/or use in paging The number of sub-frames for paging. [2]

對於每一個SSBI i,有可能存在用於傳呼的準共置位置。對於PO,所有i值(或整個波束掃描)都可以被包括在用於計算用於PO的時槽編號的等式中。在以下等式中給出了關於此類計算的一個範例:等式(9) 如果實際傳送的SSB的數量不同,那麼SSB的邏輯索引可以與用於傳呼掃描的時槽相關聯。For each SSBI i, there may be a quasi-co-location location for paging. For PO, all i values (or the entire beam scan) can be included in the time slot number used to calculate the PO In the equation. An example of such a calculation is given in the following equation: Equation (9) If the number of SSBs actually transmitted is different, the logical index of the SSB can be associated with the time slot used for paging scanning.

在一範例中,以下參數可以是PO_id、nTDMp及/或nFDMp的函數:,BWP_id及/或SearchSpace_id。換句話說,[, BWP_id, SearchSpace_id] = f(PO_id, nTDMp, nFDMp),其中可以是發生傳呼的時槽,BWP_id可以是發現傳呼的BWP,SearchSpace_id可以是可以發現傳呼DCI的搜尋空間。如果TDM PO的總數nTDMp=1,這有可能意味著所有PO都是在同一時槽中用FDM被傳送的。如果TDM PO的總數nTDMp等於PO的總數,這有可能意味著所有PO是在不同時槽中被傳送的、並且沒有被FDM。在這種情況下,BWP、CORESET及/或搜尋空間可以是相同的。FDM PO的數量nFDMp可以是(nFDMp_bwp, nFDMp_coreset, nFDMp_ss)的函數。如果BWP中的FDM PO的數量nFDMp_bwp=1,這有可能意味著PO在BWP上未被多工,或者在所配置的不同BWP上傳送相同的PO。如果CORESET中的FDM PO的數量nFDMp_coreset=1,這有可能意味著PO在CORESET上未被多工。PO的索引(PO_id)可以使用WTRU_ID以及取模函數(例如PO_id = floor(WTRU_ID/N) mod Ns)來計算。在這種情況下,函數f()可以是循環(round robin)分佈函數或複雜散列函數、及/或可以基於In an example, the following parameters can be functions of PO_id, nTDMp, and/or nFDMp: , BWP_id and / or SearchSpace_id. in other words,[ , BWP_id, SearchSpace_id] = f(PO_id, nTDMp, nFDMp), where It may be a time slot in which paging occurs, BWP_id may be a BWP that discovers paging, and SearchSpace_id may be a search space in which paging DCI can be found. If the total number of TDM POs is nTDMp = 1, this may mean that all POs are transmitted in FDM in the same time slot. If the total number of TDM POs, nTDMp, is equal to the total number of POs, this may mean that all POs are transmitted in different time slots and are not FDM. In this case, the BWP, CORESET, and/or search space may be the same. The number of FDM POs nFDMp can be a function of (nFDMp_bwp, nFDMp_coreset, nFDMp_ss). If the number of FDM POs in the BWP is nFDMp_bwp=1, this may mean that the PO is not multiplexed on the BWP or the same PO is transmitted on the different BWPs configured. If the number of FDM POs in CORESET is nFDMp_coreset=1, this may mean that the PO is not multiplexed on CORESET. The PO's index (PO_id) can be calculated using the WTRU_ID and a modulo function (eg, PO_id = floor(WTRU_ID/N) mod Ns). In this case, the function f() may be a round robin distribution function or a complex hash function, and/or may be based on .

在這裡描述了由WTRU執行的用於確定PO配置(該配置可以是混合FDM以及TDM)的範例性程序。根據該範例性程序,WTRU可以與PSS/SSS同步並從PBCH接收MIB。WTRU從MIB找到用於RMSI的CORESET、並且可以為Type0-PDCCH執行盲解碼。WTRU可以從Type0-PDCCH表明的PDSCH接收SIB1。WTRU可以從SIB1發現傳呼配置,例如,包括DRX週期、傳呼搜尋空間、nTDMp及/或nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]。WTRU可以使用DRX週期、WTRU_ID及/或FDM PO的數量來計算。WTRU可以基於DRX週期、WTRU_ID及/或FDM PO的數量來計算PO_id。使用PO_id、nFDMp及/或nTDMp,WTRU可以計算時槽(或微時槽)偏移()、BWP_id及/或SearchSpace_id(以及與SearchSpace_id相關聯的CORESET_id)。該時槽偏移可以取決於SCS。SS/PBCH塊以及相關聯的傳呼搜尋空間可以是被準共置的。因此,WTRU可以為每一個時槽使用相關聯的波束。如果實際傳送的SSB與所定義的SSB不同,那麼可以利用SS/PBCH塊的邏輯索引、或實體索引(或SSBI)來執行傳呼搜尋空間之間的關聯。該傳呼搜尋空間可以是群組公共搜尋空間。WTRU可以使用公共搜尋空間的RB0(具有用於每一個群組的不同RB偏移的相同searchSpace_id)、並且可以使用WTRU_ID來計算每一個群組的偏移。WTRU可以發現應該供其監控searchSpace_id以及BWP_id的一個或多個時槽、一個或多個非時槽或微時槽(例如針對所有波束)。WTRU可以進入IDLE_MODE。Exemplary procedures performed by the WTRU for determining PO configuration (which may be hybrid FDM and TDM) are described herein. According to this exemplary procedure, the WTRU may synchronize with the PSS/SSS and receive the MIB from the PBCH. The WTRU finds a CORESET for the RMSI from the MIB and can perform blind decoding for the TypeO-PDCCH. The WTRU may receive SIB1 from the PDSCH indicated by Type0-PDCCH. The WTRU may discover the paging configuration from SIB1, for example, including DRX cycle, paging search space, nTDMp, and/or nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]. The WTRU may calculate using the number of DRX cycles, WTRU_IDs, and/or FDM POs. . The WTRU may calculate the PO_id based on the number of DRX cycles, WTRU_IDs, and/or FDM POs. Using PO_id, nFDMp, and/or nTDMp, the WTRU can calculate the time slot (or micro time slot) offset ( ), BWP_id and/or SearchSpace_id (and CORESET_id associated with SearchSpace_id). This time slot offset can depend on the SCS. The SS/PBCH block and associated paging search space may be quasi-co-located. Thus, the WTRU can use the associated beam for each time slot. If the actually transmitted SSB is different from the defined SSB, the association between the paging search spaces can be performed using the logical index of the SS/PBCH block, or the entity index (or SSBI). The paging search space can be a group common search space. The WTRU may use RB0 of the common search space (with the same searchSpace_id for different RB offsets for each group) and may use WTRU_ID to calculate the offset for each group. The WTRU may discover one or more time slots, one or more time slots or micro time slots (eg, for all beams) that should be used by it to monitor searchSpace_id and BWP_id. The WTRU may enter IDLE_MODE.

WTRU可以在與最後記錄的最強波束相關聯的所計算的SFN時槽(或微時槽)中喚醒。如果WTRU被配置用於掃描波束,那麼WTRU可以在第一波束中喚醒、並且可以在與WTRU的PO相關聯的時槽中掃描所有波束。WTRU可以使用如上所述的時槽或微時槽計算。WTRU可以使用PO的時槽偏移來找到其時槽(或微時槽)。使用傳呼搜尋空間定義,WTRU可以在先前發現的時槽中發現預先計算的BWP_id中的該傳呼CORESET、並且可以使用搜尋空間表來盲解碼使用了P-RNTI的Type2-PDCCH。如果從傳呼RNTI(PG-RNTI)群組指配多個RNTI,那麼WTRU可以使用供其自己的群組使用的RNTI。該RNTI可以使用WTRU_ID而被導出、或者可以使用WTRU特定(例如RRC)傳訊被指配給WTRU。WTRU可以找到Type2-PDCCH,該WTRU接收PDCCH表明的PDSCH,以確定該WTRU是否被傳呼。如果其被傳呼,那麼其與gNB建立連接。如果該WTRU被傳呼,那麼該WTRU可以與gNB建立連接。如果該WTRU沒有被傳呼,那麼該WTRU可以恢復到IDLE_MODE。 The WTRU may wake up in the calculated SFN time slot (or micro time slot) associated with the last recorded strongest beam. If the WTRU is configured to scan for beams, the WTRU may wake up in the first beam and may scan all beams in a time slot associated with the PO of the WTRU. The WTRU may use time slot or micro time slot calculations as described above. The WTRU can use the time slot offset of the PO or To find its time slot (or micro time slot). Using the paging search space definition, the WTRU may discover the paging CORESET in the pre-computed BWP_id in the previously discovered time slot and may use the search space table to blindly decode the Type2-PDCCH using the P-RNTI. If multiple RNTIs are assigned from a paging RNTI (PG-RNTI) group, the WTRU may use the RNTI for its own group. The RNTI may be derived using the WTRU_ID or may be assigned to the WTRU using WTRU-specific (eg, RRC) messaging. The WTRU may find a Type2-PDCCH that receives the PDSCH indicated by the PDCCH to determine if the WTRU is paged. If it is paged, it establishes a connection with the gNB. If the WTRU is paged, the WTRU may establish a connection with the gNB. If the WTRU is not paged, the WTRU may revert to IDLE_MODE.

在用於如上所述(使用TDM、FDM、或混合TDM以及FDM)的多工圖樣1的PO配置的範例中,用於RMSI CORESET的等式可以與為每一個搜尋空間配置的偏移一起使用。例如,PO的時槽編號可以使用以下等式來計算:等式(10) 如果實際傳送的SSB數量不同,那麼SSB的邏輯索引可以與用於傳呼掃描的時槽相關聯。In an example of a PO configuration for multiplexed pattern 1 as described above (using TDM, FDM, or hybrid TDM and FDM), the equation for RMSI CORESET can be used with the offset configured for each search space. . For example, the time slot number of the PO It can be calculated using the following equation: Equation (10) If the number of SSBs actually transmitted is different, the logical index of the SSB can be associated with the time slot used for paging scanning.

此外,偏移,其中可被定義為PDCCH監控偏移,並且可以藉由參數monitoringSlotPeriodicityAndOffset 而被配置為用於傳呼的搜尋空間。如上所述,發生傳呼的時槽= function(PO_id, nTDMp, nFDMp)。在中,s可以是用於傳呼的搜尋空間集合索引,並且p = 0,其是用於RMSI CORESET的索引。如果時間偏移是依據微時槽的,那麼的計算可以是類似的。In addition, offset ,among them It can be defined as a PDCCH monitoring offset and can be configured as a search space for paging by the parameter monitoringSlotPeriodicityAndOffset . As mentioned above, the time slot in which the paging occurs = function(PO_id, nTDMp, nFDMp). in Medium, s can be used for The paging search space collection index, and p = 0, which is the index for the RMSI CORESET. If the time offset is based on the micro time slot, then The calculations can be similar.

在用於多工圖樣1的PO配置的另一個範例中,簡單FDM可被用於整個波束掃描。舉例來說,多個FDM PO可被定義用於個波束掃描。在這種情況下,在用於所有PO的傳呼波束掃描之後可以跟隨有SS/PBCH塊掃描。每一個SS/PBCH塊可以與傳呼波束掃描的時槽(或微時槽)相關聯。如果實際傳送的SSB的數量不同,那麼SSB的邏輯索引可以與用於傳呼掃描的時槽相關聯。多個PO可以基於WTRU_ID、並且可以在不同的BWP、不同的CORESET及/或不同的搜尋空間中被FDM。供WTRU監控PO的頻率可以取決於DRX,並且將被WTRU監控傳呼的SFN可以由該WTRU計算。基於最佳SS/PBCH塊的SSBI,WTRU可以計算與SS/PBCH塊或其他別的已知參考時間點(例如5毫秒或半訊框邊界(或是5毫秒的倍數,例如,其可以經由RMSI PDCCH而被配置)的時槽(或微時槽)偏移。該時槽偏移可以取決於SCS、並且可以在SCS增大的情況下減小。gNB可以配置或者WTRU可以基於WTRU_ID計算BWP、CORESET及/或搜尋空間。In another example of a PO configuration for multiplexed pattern 1, a simple FDM can be used for the entire beam scan. For example, multiple FDM POs can be defined for individual beam scanning. In this case, the SS/PBCH block scan can be followed after the paging beam scan for all POs. Each SS/PBCH block can be associated with a time slot (or micro time slot) for paging beam scanning. If the number of SSBs actually transmitted is different, the logical index of the SSB can be associated with the time slot used for paging scanning. Multiple POs may be based on the WTRU_ID and may be FDM in different BWPs, different CORESETs, and/or different search spaces. The frequency at which the WTRU monitors the PO may depend on the DRX, and the SFN to be monitored by the WTRU for paging may be calculated by the WTRU. Based on the SSBI of the best SS/PBCH block, the WTRU may calculate an SS/PBCH block or other known reference time point (eg, 5 milliseconds or a half frame boundary (or a multiple of 5 milliseconds, eg, it may be via RMSI) The time slot (or micro time slot) of the PDCCH is configured to be offset. The time slot offset may be dependent on the SCS and may be reduced if the SCS is increased. The gNB may be configured or the WTRU may calculate the BWP based on the WTRU_ID, CORESET and / or search space.

在用於上述多工圖樣1的PO配置的任何範例(TDM、FDM、混合TDM以及FDM、跨越波束掃描的簡單FDM)中,在用於傳呼的位置與SS/PBCH塊的位置之間有可能發生衝突及/或重疊。在範例性場景中,當在該時槽與被排程時槽之間存在重疊時,gNB可以在排程時槽之後的時槽中傳送傳呼。此時槽偏移可以是預先定義的、由gNB基於規則所配置的、及/或由WTRU計算的。在另一個範例性場景中,gNB能夠配置CORESET,使得其處於與SS/PBCH塊不同的PRB中。PRB偏移可以是預先確定的、由gNB基於規則所配置的、及/或由WTRU計算的。在另一個範例性場景中,WTRU可以假設在用於監控傳呼CORESET的資源元素(RE)中沒有傳送SS/PBCH塊。In any of the examples of PO configuration for the multiplexed pattern 1 described above (TDM, FDM, hybrid TDM, and FDM, simple FDM across beam scanning), there is a possibility between the location for paging and the location of the SS/PBCH block. Conflicts and/or overlaps. In an exemplary scenario, when there is an overlap between the time slot and the scheduled slot, the gNB can transmit a page in the time slot after the scheduled slot. The slot offset may now be predefined, configured by the gNB based on rules, and/or calculated by the WTRU. In another exemplary scenario, the gNB can configure the CORESET such that it is in a different PRB than the SS/PBCH block. The PRB offset may be predetermined, configured by the gNB based on rules, and/or calculated by the WTRU. In another exemplary scenario, the WTRU may assume that no SS/PBCH block is transmitted in the resource element (RE) used to monitor the paging CORESET.

在多工圖樣(“多工圖樣2/3”)的範例中,PPO配置會使該傳呼CORESET可以與SSB進行FDM。在範例中,多工圖樣2/3可以在大於6GHz的頻率中使用。如上所述,使用WTRU_ID、nFDMp、N、Ns來計算BWP及/或CORESET及/或搜尋空間的基於公式的方法也可以用於多工圖樣2/3,其中RMSI以及SSB是被FDM的。In the example of a multiplexed pattern ("Multiplex Pattern 2/3"), the PPO configuration would cause the paging CORESET to be FDM with the SSB. In an example, the multiplex pattern 2/3 can be used at frequencies greater than 6 GHz. As described above, a formula-based method of calculating BWP and/or CORESET and/or search space using WTRU_ID, nFDMp, N, Ns can also be used for multiplexed pattern 2/3, where RMSI and SSB are FDM.

被WTRU監控的BWP以及被WTRU監控的搜尋空間可以是在以上描述的每一個維度(例如BWP、CORESET、搜尋空間)中的PO索引及/或FDM PO總數的函數。與每一個搜尋空間相關聯的CORESET可被包括在搜尋空間配置中、且因此不必被顯性述及。The BWP monitored by the WTRU and the search space monitored by the WTRU may be a function of the PO index and/or the total number of FDM POs in each of the dimensions (e.g., BWP, CORESET, search space) described above. The CORESET associated with each search space can be included in the search space configuration and therefore does not have to be explicitly mentioned.

在這個範例中,BWP的ID可以被計算為BWP_id = f (PO_id, nFDMp),並且搜尋空間ID可以被計算為SearchSpace_id = f (PO_id, nFDMp),其中PO_id可以是PO的索引。FDM PO的數量可以被計算為nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]。如果BWP中的FDM PO的數量是nFDMp_bwp=1,那麼有可能意味著PO在BWP上未被多工,或者PO在是所配置的不同BWP上傳送的。如果CORESET中的FDM PO數量是nFDMp_coreset=1,那麼有可能意味著PO在CORESET上未被多工。PO的索引(PO_id)可以使用WTRU_ID以及取模函數來計算,例如PO_id = floor(WTRU_ID/N) mod Ns。在這種情況下,函數f()可以是循環(round robin)分佈函數或複雜散列函數、及/或可以基於In this example, the ID of the BWP can be calculated as BWP_id = f (PO_id, nFDMp), and the search space ID can be calculated as SearchSpace_id = f (PO_id, nFDMp), where PO_id can be an index of the PO. The number of FDM POs can be calculated as nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]. If the number of FDM POs in the BWP is nFDMp_bwp=1, then it is possible that the PO is not multiplexed on the BWP, or the PO is transmitted on a different BWP that is configured. If the number of FDM POs in CORESET is nFDMp_coreset=1, then it is possible that the PO is not multiplexed on CORESET. The PO's index (PO_id) can be calculated using the WTRU_ID and the modulo function, such as PO_id = floor(WTRU_ID/N) mod Ns. In this case, the function f() may be a round robin distribution function or a complex hash function, and/or may be based on .

第18圖是用於PO配置1800的範例性多工圖樣3,其中傳呼CORESET與SS/PBCH塊進行FDM。帶有SS/PBCH的時槽1813包括用於與SSBI 1804以及1805相關聯的波束的CORESET。CORESET 1851以及1852中的每一者都可以包括4個傳呼搜尋空間1821-1824(在PO 1841-1844中)。CORESET 1851以及1852中的傳呼DCI表明的傳呼訊息1831-1834可以與SS/PBCH塊(攜帶具有SSBI 1804以及1805的SSB)進行FDM。Figure 18 is an exemplary multiplex pattern 3 for a PO configuration 1800 in which the paging CORESET and the SS/PBCH block are FDM. The time slot 1813 with SS/PBCH includes a CORESET for the beams associated with SSBI 1804 and 1805. Each of CORESET 1851 and 1852 can include 4 paging search spaces 1821-1824 (in PO 1841-1844). The paging messages 1831-1834 indicated by the paging DCI in CORESET 1851 and 1852 can be FDM with the SS/PBCH block (carrying the SSB with SSBI 1804 and 1805).

第19圖是用於PO配置1900的範例性多工圖樣3,其中該傳呼CORESET與SS/PBCH塊進行FDM。具有SS/PBCH的時槽1913可以包括用於與SSBI 1904以及1905相關聯的波束的CORESET 1951以及1952。CORESET 1951以及1952中的每一者都可以包括4個傳呼搜尋空間1921-1924。傳呼DCI表明的傳呼訊息1931-1934可以在不同的時槽1913+N中。在該傳呼DCI中可以表明時槽偏移N(其可以位於搜尋空間1921-1924中)。第18圖以及第19圖中的範例顯示了多工圖樣3。在多工圖樣2中CORESET可以存在於SS/PBCH之前的OFDM符號中、及/或傳呼訊息可以存在於與SS/PBCH進行FDM的PDSCH中,該多工圖樣2可以與多工圖樣3類似。Figure 19 is an exemplary multiplex pattern 3 for PO configuration 1900 in which the paging CORESET is FDM with the SS/PBCH block. The time slot 1913 with SS/PBCH may include CORESETs 1951 and 1952 for beams associated with SSBI 1904 and 1905. Each of CORESET 1951 and 1952 can include 4 paging search spaces 1921-1924. The paging messages 1931-1934 indicated by the paging DCI may be in different time slots 1913+N. A time slot offset N (which may be located in the search space 1921-1924) may be indicated in the paging DCI. The example in Fig. 18 and Fig. 19 shows the multiplex pattern 3. In the multiplex pattern 2, the CORESET may exist in the OFDM symbol before the SS/PBCH, and/or the paging message may exist in the PDSCH that performs FDM with the SS/PBCH, and the multiplex pattern 2 may be similar to the multiplex pattern 3.

在這裡描述了由WTRU執行的用於確定用於多工圖樣2/3的PO配置的範例性程序。根據該範例性程序,WTRU可以與PSS/SSS同步、並且可以從PBCH接收MIB。WTRU可以從MIB中發現用於RMSI的CORESET、並且可以對Type0-PDCCH執行盲解碼。WTRU可以從Type0-PDCCH表明的PDSCH中接收SIB1。WTRU可以找到包括DRX週期、傳呼搜尋空間以及nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]的傳呼配置。WTRU可以使用DRX週期、WTRU_ID及/或FDM PO的數量來計算。WTRU可以基於DRX週期、WTRU_ID及/或FDM PO的數量來計算PO_id。使用PO_id及/或nFDMp,WTRU可以計算BWP_id及/或SearchSpace_id。CORESET_id可以與SearchSpace_id相關聯。因此,使用不同的CORESET可能會被反映在不同的SearchSpace_id中。Exemplary procedures performed by the WTRU for determining PO configurations for multiplexed graphics 2/3 are described herein. According to this exemplary procedure, the WTRU may synchronize with the PSS/SSS and may receive the MIB from the PBCH. The WTRU may discover a CORESET for the RMSI from the MIB and may perform blind decoding on the Type0-PDCCH. The WTRU may receive SIB1 from the PDSCH indicated by Type0-PDCCH. The WTRU may find a paging configuration including a DRX cycle, a paging search space, and nFDMp = [nFDMp_bwp, nFDMp_coreset, nFDMp_ss]. The WTRU may calculate using the number of DRX cycles, WTRU_IDs, and/or FDM POs. . The WTRU may calculate the PO_id based on the number of DRX cycles, WTRU_IDs, and/or FDM POs. Using PO_id and/or nFDMp, the WTRU may calculate BWP_id and/or SearchSpace_id. CORESET_id can be associated with SearchSpace_id. Therefore, using a different CORESET may be reflected in a different SearchSpace_id.

WTRU可以使用公共搜尋空間的RB0(具有用於每一個群組的不同RB偏移的相同searchSpace_id)。WTRU可以發現於其中應該監控searchSpace_id以及BWP_id的一個或多個時槽、一個或多個非時槽或微時槽(例如針對所有波束)。SS/PBCH塊與相關聯的傳呼搜尋空間可以在相同時槽中、並且可以被準共置。如果實際傳送的SSB不同於所定義的SSB,那麼傳呼搜尋空間可以與實際傳送的SSB進行FDM。如果WTRU沒有進一步的操作,那麼WTRU可以進入IDLE_MODE。The WTRU may use RB0 of the common search space (with the same searchSpace_id for different RB offsets for each group). The WTRU may discover one or more time slots, one or more time slots or micro time slots (eg, for all beams) in which searchSpace_id and BWP_id should be monitored. The SS/PBCH block and associated paging search space may be in the same time slot and may be co-located. If the actually transmitted SSB is different from the defined SSB, the paging search space can be FDM with the actually transmitted SSB. If the WTRU has no further operations, the WTRU may enter IDLE_MODE.

WTRU可以在依據所計算的SFN並與最後記錄的最強波束相關聯的時槽、非時槽(或微時槽)中喚醒。如果WTRU被配置用於掃描波束,那麼WTRU可以在第一波束中喚醒、並且可以掃描與WTRU的PO相關聯的時槽中的所有波束。使用用於傳呼的搜尋空間定義,WTRU可以在預先計算的BWP_id中找到傳呼CORESET。WTRU可以使用搜尋空間表來對使用P-RNTI的Type2-PDCCH進行盲解碼。如果從傳呼RNTI(PG-RNTI)群組中分配了多個RNTI,那麼WTRU可以使用用於其自己的群組的RNTI。該RNTI可以使用WTRU_ID而被導出、或者使用WTRU特定(例如RRC)傳訊而被指配給該WTRU。如果WTRU發現Type2-PDCCH,那麼WTRU接收該PDCCH指示的PDSCH,以確定該WTRU是否被傳呼。如果WTRU被傳呼,那麼WTRU可以與gNB建立連接。如果該WTRU沒有被傳呼,那麼該WTRU可以恢復到IDLE_MODE。The WTRU may wake up in a time slot, a non-time slot (or a micro time slot) that is associated with the calculated SFN and associated with the last recorded strongest beam. If the WTRU is configured to scan for beams, the WTRU may wake up in the first beam and may scan all beams in the time slot associated with the PO of the WTRU. Using the search space definition for paging, the WTRU may find a paging CORESET in the pre-computed BWP_id. The WTRU may use the search space table to blindly decode the Type2-PDCCH using the P-RNTI. If multiple RNTIs are allocated from a paging RNTI (PG-RNTI) group, the WTRU may use the RNTI for its own group. The RNTI may be derived using the WTRU_ID or assigned to the WTRU using WTRU-specific (eg, RRC) messaging. If the WTRU finds a Type2-PDCCH, the WTRU receives the PDSCH indicated by the PDCCH to determine if the WTRU is paged. If the WTRU is paged, the WTRU may establish a connection with the gNB. If the WTRU is not paged, the WTRU may revert to IDLE_MODE.

在一範例中,傳呼DCI可以在沒有傳呼訊息下被使用。例如,短傳呼訊息可被壓縮到傳呼DCI中。短傳呼訊息的範例可以包括、但不限於包括以下的任何一個:用於單一WTRU的傳呼訊息;系統資訊更新或修改;及/或用於公共安全(例如公共警報系統(PWS)、商業行動警報系統(CMAS)、地震以及海嘯預警系統(ETWS))的緊急資訊或指示。在沒有傳呼PDSCH(即沒有單獨的傳呼訊息)下,可以為基於傳呼DCI的傳呼定義DCI格式。該DCI格式可以具有更長的格式以容納傳呼訊息。該DCI格式可以包括、但不限於包括以下的任何資訊:控制資訊欄位;及/或訊息欄位。控制資訊欄位可以包括、但不限於包括以下的任一資訊:針對傳呼訊息的資源配置;及/或用於表明傳呼訊息或系統資訊的旗標。該旗標可以是用於識別短訊息特性的X個位元的欄位(例如,X可以是一個很小的數字,比方說2或3)。該旗標可以是Y個位元的位元映像(例如,Y可以是2X ,例如4或8位元)。訊息欄位可以包括傳呼訊息。如果控制資訊欄位表明其是用於單一WTRU的傳呼訊息,那麼訊息欄位可以包括被傳呼的WTRU_ID(例如IMSI或WTRU_ID的壓縮形式)。訊息欄位可以包括系統資訊(SI)及/或變化通知。SI可以包括緊急系統資訊或短系統資訊訊息。SI變化通知可以覆蓋傳呼訊息。DCI可以用雷德穆勒(RM)碼或極化碼而被編碼。該DCI可以依照酬載以用兩種不同的編碼方案而被編碼。例如,系統訊息可以用RM碼編碼。單一使用者傳呼可以用具有預先定義的碼率的極化碼或RM碼而被編碼。In one example, the paging DCI can be used without a paging message. For example, a short page message can be compressed into a paging DCI. Examples of short paging messages may include, but are not limited to, any of the following: paging messages for a single WTRU; system information updates or modifications; and/or for public safety (eg, public alert system (PWS), commercial action alerts) Emergency information or instructions for the System (CMAS), Earthquake and Tsunami Warning System (ETWS). The DCI format can be defined for paging based DCI-based paging without paging PDSCH (ie, no separate paging messages). The DCI format can have a longer format to accommodate paging messages. The DCI format may include, but is not limited to, any of the following information: control information fields; and/or message fields. The control information field may include, but is not limited to, any of the following information: a resource configuration for the paging message; and/or a flag for indicating the paging message or system information. The flag may be a field of X bits used to identify the characteristics of the short message (eg, X may be a small number, say 2 or 3). The flag can be a bitmap of Y bits (eg, Y can be 2 X , such as 4 or 8 bits). The message field can include a paging message. If the control information field indicates that it is a paging message for a single WTRU, the message field may include the WTRU_ID being paged (eg, a compressed form of IMSI or WTRU_ID). The message field can include system information (SI) and/or change notifications. The SI can include emergency system information or short system information messages. The SI change notification can override the paging message. The DCI can be encoded with a Reed Muller (RM) code or a polarization code. The DCI can be encoded in accordance with the payload using two different coding schemes. For example, system messages can be encoded in RM code. A single user page can be encoded with a polarization code or RM code with a predefined code rate.

SSB以及傳呼DCI/傳呼訊息可以是關聯的。NR可以具有長DRX週期。一種用於搜尋最佳gNB-TX/WTRU-RX波束對(例如在接收器上具有最高的SNR)的快速方法可以使用SSB中的同步信號(例如PSS,SSS)。如果gNB確保用於發送傳呼(傳呼DCI及/或傳呼訊息)以及同步信號的天線埠是相同的(例如被準共置),那麼WTRU可以使用相同的TX/RX波束對以如接收SSB那樣接收傳呼DCI。TX/RX波束對的使用可以被隱性或顯性地假定或表明(例如OSI或RMSI)。SSB與傳呼之間的預先定義的一個或多個時頻關聯規則可以促使WTRU快速檢查傳呼DCI/傳呼訊息的位置。在以下描述中,與傳呼訊息的QCL可以暗示用於傳呼訊息的NR-PDSCH的DMRS與傳呼DCI準共置,及/或NR-PDCCH的DMRS是在用於傳呼DCI的CORESET中被傳送的。在某些情況下,這種QCL假設有可能是無效或不準確的。The SSB and paging DCI/Paging messages can be associated. The NR can have a long DRX cycle. A fast method for searching for the best gNB-TX/WTRU-RX beam pair (e.g., having the highest SNR at the receiver) may use a synchronization signal (e.g., PSS, SSS) in the SSB. If the gNB ensures that the antennas used to send the paging (paging DCI and/or paging messages) and the synchronization signal are the same (eg, quasi-co-located), the WTRU may use the same TX/RX beam pair to receive as received SSB Paging DCI. The use of TX/RX beam pairs can be implicitly or explicitly assumed or indicated (eg, OSI or RMSI). The predefined one or more time-frequency association rules between the SSB and the paging may cause the WTRU to quickly check the location of the paging DCI/Paging message. In the following description, the QCL with the paging message may imply that the DMRS of the NR-PDSCH for the paging message is quasi-co-located with the paging DCI, and/or the DMRS of the NR-PDCCH is transmitted in the CORESET for paging the DCI. In some cases, this QCL assumption may be invalid or inaccurate.

範例性方法可以用於SSB及傳呼DCI/訊息的關聯。傳呼DCI及/或傳呼訊息可以與SSB準共置。範例性模式可以包括預設模式(QCL模式)以及非預設模式(非QCL模式)。旗標(例如在RMSI或OSI中)可以用於表明正在使用何種模式(預設模式還是非預設模式),及/或關於模式的隱性規則有可能在WTRU上是已知的。An exemplary method can be used for association of SSBs and paging DCI/messages. The paging DCI and/or paging message can be co-located with the SSB. Exemplary modes may include a preset mode (QCL mode) and a non-preset mode (non-QCL mode). A flag (eg, in RMSI or OSI) can be used to indicate which mode is being used (preset mode or non-preset mode), and/or implicit rules regarding the mode are likely to be known on the WTRU.

在預設模式(QCL模式)中,WTRU可以基於SSB及傳呼DCI/訊息的關聯規則來假設傳呼DCI及/或傳呼訊息與偵測到的SSB準共置。在非預設模式(非QCL模式)中,如果傳呼DCI及/或傳呼訊息不與偵測到的SSB準共置,那麼WTRU將會接收到指示。如果SSB及傳呼DCI及/或訊息沒有及時關閉,那麼將不會假設QCL。例如,gNB可以在SSB與傳呼DCI/訊息之間使用不同波束、或是具有不同波束寬度的相同波束。In the default mode (QCL mode), the WTRU may assume that the paging DCI and/or paging message is co-located with the detected SSB based on the association rules of the SSB and the paging DCI/message. In the non-preset mode (non-QCL mode), if the paging DCI and/or paging message is not co-located with the detected SSB, the WTRU will receive an indication. If the SSB and paging DCI and/or messages are not closed in time, then QCL will not be assumed. For example, the gNB can use different beams or the same beam with different beamwidths between the SSB and the paging DCI/message.

時間臨界值可以用於SSB與傳呼DCI/訊息的關聯。在一範例中,令T是為給定WTRU偵測到的SSB與PO之間的時間。如果T小於時間臨界值,那麼可以假設SSB與傳呼DCI/訊息之間的QCL。否則將不會假設QCL。時間臨界值可以與QCL旗標組合使用。例如,如果T小於時間臨界值,那麼可以假設QCL,另外,如果旗標被設定為QCL(例如將一個位元設定為“1”),那麼可以假設QCL,否則將不會假設QCL。基於參考信號接收功率(RSRP)的臨界值也是可以使用的,並且該臨界值可以是絕對或相對的。例如,絕對臨界值可被設置為預先定義的固定數量。相對臨界值(例如相對於先前選擇的SSB)可以取決於下列範例性條件中的任一個或多個範例性條件:WTRU行動性;都卜勒;方位;及/或相對RSRP。可以用一個函數來計算該臨界值。The time threshold can be used to correlate the SSB with the paging DCI/message. In an example, let T be the time between the SSB and the PO detected for a given WTRU. If T is less than the time threshold, then the QCL between the SSB and the paging DCI/message can be assumed. Otherwise the QCL will not be assumed. The time threshold can be used in combination with the QCL flag. For example, if T is less than the time threshold, QCL can be assumed, and if the flag is set to QCL (eg, setting a bit to "1"), then QCL can be assumed, otherwise QCL will not be assumed. A threshold based on Reference Signal Received Power (RSRP) may also be used, and the threshold may be absolute or relative. For example, the absolute threshold can be set to a predefined fixed amount. The relative threshold (eg, relative to the previously selected SSB) may depend on any one or more of the following exemplary conditions: WTRU mobility; Doppler; azimuth; and/or relative RSRP. A function can be used to calculate the threshold.

QCL假設可被應用於該傳呼DCI/訊息的子集、並且可以為該子集使用固定方法或指示方法。在固定方法中,QCL可被應用於傳呼DCI/訊息的固定子集。在動態/半靜態方法中,QCL可以應用於可被表明(例如由gNB)的傳呼DCI/訊息的子集。在該子集內,WTRU可以基於SSB及傳呼DCI/訊息的關聯規則來假設傳呼DCI及/或傳呼訊息與偵測到的SSB準共置。The QCL hypothesis can be applied to a subset of the paging DCI/message and a fixed method or indication method can be used for the subset. In the fixed method, the QCL can be applied to a fixed subset of paging DCI/messages. In a dynamic/semi-static approach, the QCL can be applied to a subset of paging DCI/messages that can be indicated (eg, by gNB). Within the subset, the WTRU may assume that the paging DCI and/or paging message is co-located with the detected SSB based on the association rules of the SSB and paging DCI/message.

傳呼DCI及傳呼訊息與SSB可以在空間上QCL(例如針對窄波束的類比波束掃描)。換句話說,PDCCH以及用於包含了傳呼DCI的PDCCH的DMRS可以在空間上與SSB準共置(例如標準中定義的QCL類型A+D,使得QCL類型可以取決於都卜勒頻移、都卜勒擴展、平均延遲、延遲擴展或其他參數)。同樣,用於包含了傳呼訊息的PDSCH的DMRS可以在空間上與SSB準共置(例如QCL類型A+D)。在另一個範例中,傳呼通道與SSB可以以非空間的方式(non-spatially)QCL(例如用於全向或寬波束傳輸)。在這種情況下,在平均延遲、都卜勒頻移、延遲擴展及/或都卜勒擴展估計方面,傳呼DCI以及傳呼訊息與SSB可以在空間上QCL(例如QCL類型A)。The paging DCI and paging messages and SSBs can be spatially QCL (eg analog beam scanning for narrow beams). In other words, the PDCCH and the DMRS for the PDCCH containing the paging DCI may be spatially co-located with the SSB (eg, the QCL type A+D defined in the standard, such that the QCL type may depend on the Doppler shift, both Buller extensions, average delays, delay spreads, or other parameters). Similarly, the DMRS for the PDSCH containing the paging message may be spatially co-located with the SSB (eg, QCL type A+D). In another example, the paging channel and the SSB can be non-spatially QCL (eg, for omnidirectional or wide beam transmission). In this case, the paging DCI and the paging message and the SSB may be spatially QCL (eg, QCL Type A) in terms of average delay, Doppler shift, delay spread, and/or Doppler spread estimation.

關聯規則可以用於SSB以及傳呼DCI/訊息的關聯。在SSB與傳呼DCI/訊息子集之間可能存在關聯。WTRU可以將下列範例中的任一或多個範例用於CL關聯:QCL與SS/PBCH塊的關聯;一個SS/PBCH塊與一個傳呼DCI/訊息之間的一對一關聯;一個SS/PBCH塊與多個傳呼DCI/訊息(例如傳呼訊息子集或所有傳呼訊息)之間的一對多關聯;及/或多個SS/PBCH塊與一個傳呼DCI/訊息之間的多對一關聯(例如SSB的子集)。與RMSI的QCL關聯可以被定義。RMSI塊索引可被定義為類似於SS塊索引。RMSI塊索引(RMSI ID)可被包括在RMSI中、並且可以是隱性或顯性的。在RMSI可以與SS塊相關聯的情況中,可以假設RMSI塊索引(RMSI ID)與SSBI相同。在一個RMSI塊與傳呼DCI/訊息之間可以存在一對一關聯。在一個RMSI塊與多個傳呼DCI/訊息(傳呼訊息子集)之間可以存在一對多關聯。在多個RMSI塊與一個傳呼DCI/訊息(SSB子集)之間有可能存在多對一關聯。Association rules can be used for associations between SSBs and paging DCI/messages. There may be an association between the SSB and the paging DCI/message subset. The WTRU may use any one or more of the following examples for CL association: association of QCL with SS/PBCH block; one-to-one association between one SS/PBCH block and one paging DCI/message; one SS/PBCH a one-to-many association between a block and multiple paging DCI/messages (eg, a subset of paging messages or all paging messages); and/or a many-to-one association between multiple SS/PBCH blocks and a paging DCI/message ( For example, a subset of SSB). The QCL association with RMSI can be defined. The RMSI block index can be defined to be similar to the SS block index. The RMSI block index (RMSI ID) can be included in the RMSI and can be implicit or explicit. In the case where the RMSI can be associated with an SS block, it can be assumed that the RMSI block index (RMSI ID) is the same as the SSBI. There may be a one-to-one association between an RMSI block and a paging DCI/message. There may be a one-to-many association between one RMSI block and multiple paging DCI/messages (a subset of paging messages). There may be many-to-one associations between multiple RMSI blocks and one paging DCI/message (SSB subset).

QCL與OSI的關聯可以被定義。OSI塊索引可被定義為類似於SS塊索引。OSI塊索引(OSI ID)可以被包括在OSI中,並且可以是隱性或顯性的。在OSI可以與SS塊相關聯的情況中,那麼可以假設OSI塊索引(OSI ID)與SSBI相同。在一個OSI塊與一個傳呼DCI/訊息之間可以存在一對一關聯。在一個OSI塊與多個傳呼DCI/訊息(例如傳呼訊息子集或所有傳呼訊息)之間可以存在一對多關聯。在多個OSI塊與一個傳呼DCI/訊息(例如SSB子集或所有SSB)之間可以存在多對一關聯。對於寬頻分量載波(CC),QCL關聯可以跨BWP。多對一關聯可以涉及與傳呼DCI/訊息相關聯的不同BWP SSB。對於一對多關聯,一個BWP SSB可以與不同的傳呼DCI/訊息相關聯。對於一對一關聯,一個BWP SSB可以與一個傳呼DCI/訊息相關聯。用於傳呼訊息關聯的QCL以及WTRU行為可以基於下列範例性標準中的任一或多個範例性標準:QCL與傳呼DCI的關聯;傳呼DCI與傳呼訊息之間的一對一關聯;QCL與SS/PBCH塊的關聯;QCL與RMSI的關聯;及/或QCL與OSI的關聯。The association of QCL with OSI can be defined. The OSI block index can be defined to be similar to the SS block index. The OSI Block Index (OSI ID) may be included in the OSI and may be implicit or explicit. In the case where the OSI can be associated with an SS block, then it can be assumed that the OSI block index (OSI ID) is the same as the SSBI. There may be a one-to-one association between an OSI block and a paging DCI/message. There may be a one-to-many association between an OSI block and multiple paging DCI/messages (eg, a paging message subset or all paging messages). There may be a many-to-one association between multiple OSI blocks and one paging DCI/message (eg, an SSB subset or all SSBs). For wideband component carriers (CC), the QCL association can span the BWP. A many-to-one association may involve different BWP SSBs associated with paging DCI/messages. For a one-to-many association, one BWP SSB can be associated with a different paging DCI/message. For a one-to-one association, a BWP SSB can be associated with a paging DCI/message. The QCL and WTRU behavior for paging message associations may be based on any one or more of the following exemplary criteria: association of QCL with paging DCI; one-to-one association between paging DCI and paging messages; QCL and SS Association of /PBCH blocks; association of QCL with RMSI; and/or association of QCL with OSI.

WTRU可以基於SS/PBCH塊、RMSI及/或OSI藉由預設以假設QCL。WTRU可以基於顯性方法或隱性方法以使用不同的QCL或是覆蓋預設QCL。依照顯性方法,關聯可以由網路來配置。WTRU可被提供關於遵從哪一個關聯的指示(例如來自gNB):SS/PBCH、RMSI或OSI關聯。位元映像可以用於表明傳呼DCI/訊息與SS/PBCH、RMSI或OSI中的任何一者的關聯。該位元映像可被包括在RMSI或OSI中。該位元映像可以在WTRU特定的(例如RRC)傳訊中被傳送。依照隱性方法,可以基於WTRU計算的用於該WTRU的PPO與偵測到或被解碼的SS/PBCH塊、RMSI或OSI之間的最短時間跨度來假設關聯。P是DRX週期中的PO的編號,PO可以與在SS叢發設定週期中實際傳送的SSB相關聯(藉由SSB與傳呼DCI/訊息資源關聯規則)。P可以大於、等於或小於在SS叢發集合中實際傳送的SSB的數量。The WTRU may be preset to assume QCL based on the SS/PBCH block, RMSI, and/or OSI. The WTRU may use a different QCL or override the preset QCL based on an explicit or implicit approach. According to the explicit approach, associations can be configured by the network. The WTRU may be provided with an indication of which association to follow (eg, from gNB): SS/PBCH, RMSI, or OSI association. The bit map can be used to indicate the association of the paging DCI/message with any of the SS/PBCH, RMSI or OSI. This bit map can be included in the RMSI or OSI. This bit map can be transmitted in WTRU-specific (eg, RRC) messaging. In accordance with the implicit approach, the association may be assumed based on the shortest time span between the WTRU's calculated PPO for the WTRU and the detected or decoded SS/PBCH block, RMSI, or OSI. P is the number of the PO in the DRX cycle, and the PO can be associated with the SSB actually transmitted during the SS burst setup period (by SSB and paging DCI/message resource association rules). P may be greater than, equal to, or less than the number of SSBs actually transmitted in the SS burst set.

傳呼傳遞可以是基於時槽及/或基於非時槽的。用於PDCCH以及PDSCH的時槽及非時槽配置的組合會導致下列選項中任一個或多個選項。例如,基於時槽的傳呼可以包括基於時槽的傳呼DCI,其後跟隨的是基於時槽的傳呼訊息。在這種情況下,波束掃描可以是基於時槽的。對於每一個波束,傳呼DCI以及傳呼訊息可以位於相同的時槽。傳呼DCI及傳呼訊息可以與可被波束掃描的其他符號多工,該其他符號包括、但不限於資料、控制、SSB、RMSI及/或OSI。跨時槽排程可以被使用。在跨時槽排程的情況中,傳呼DCI可以指向用於與該傳呼DCI的時槽不同的時槽中的傳呼訊息的PRB。時槽之間的偏移可以是已知的、或可以被表明(例如由gNB)。每一個時槽都可以掃描在不同方向中的一個或多個波束,或者波束可以被重複(例如在傳呼DCI以及傳呼訊息是在不同時槽的情況下在不同的時槽中重複)。Paging delivery can be based on time slots and/or based on non-time slots. The combination of time slot and non-time slot configurations for PDCCH and PDSCH results in either or more of the following options. For example, time slot based paging may include a time slot based paging DCI followed by a time slot based paging message. In this case, the beam scan can be time slot based. For each beam, the paging DCI and paging messages can be in the same time slot. The paging DCI and paging messages may be multiplexed with other symbols that may be scanned by the beam, including but not limited to data, control, SSB, RMSI, and/or OSI. Intertemporal slot scheduling can be used. In the case of a time slot schedule, the paging DCI may point to a PRB for a paging message in a time slot that is different from the time slot of the paging DCI. The offset between time slots can be known or can be indicated (eg, by gNB). Each time slot can scan one or more beams in different directions, or the beam can be repeated (eg, in the case of paging DCI and paging messages being repeated in different time slots in different time slots).

基於非時槽的傳呼可以包括基於非時槽的傳呼DCI,其後跟隨的是基於非時槽的傳呼訊息。使用基於非時槽的傳呼可以減小時槽引起的掃描開銷。在此配置中,波束掃描可以基於非時槽來完成。非時槽符號可以包含傳呼CORESET及/或傳呼訊息。非時槽符號可以與可被排程以及被波束掃描的其他符號多工,該其他符號包括、但不限於資料及/或控制資訊。在一範例中,在對用於傳呼DCI的非時槽進行了波束掃描之後,可以對用於傳呼訊息的非時槽進行波束掃描。在不同的PO中,訊息(例如傳呼、控制資料)的酬載可以是不同的。在不同的PO中,用於傳呼訊息的OFDM符號的數量可以是不同的。為了促進基於非時槽的傳呼,可以使用時槽格式指示符(SFI)。在一範例中,可以執行跨時槽排程。The non-time slot based paging may include a non-time slot based paging DCI followed by a non-time slot based paging message. Using non-time slot based paging can reduce the scan overhead caused by time slots. In this configuration, beam scanning can be done based on non-time slots. The non-time slot symbol may contain a paging CORESET and/or paging message. The non-time slot symbols may be multiplexed with other symbols that may be scheduled and scanned by the beam, including but not limited to data and/or control information. In an example, after beam scanning is performed on the non-time slot for paging DCI, beam scanning may be performed on the non-time slot for paging messages. In different POs, the payload of messages (such as paging, control data) can be different. The number of OFDM symbols used for paging messages may be different in different POs. To facilitate non-time slot based paging, a Time Slot Format Indicator (SFI) can be used. In an example, an intertemporal slot schedule can be performed.

在混合傳呼方法的範例(“混合傳呼I”)中,在基於非時槽的傳呼DCI之後可以跟隨有基於時槽的傳呼訊息。在此配置中,使用非時槽格式,可以快速執行傳呼DCI掃描。在執行了DCI掃描之後可以執行以攜帶傳呼訊息的時槽為基礎的波束掃描。傳呼訊息可以與可被波束掃描的其他資訊(例如資料、控制、SSB、RMSI及/或OSI)多工。在混合傳呼方法的另一個範例(“混合傳呼II”)中,在基於時槽的傳呼DCI之後可以跟隨有基於非時槽的傳呼訊息。在此配置中,傳呼DCI掃描可以與可被波束掃描的其他資訊(例如資料、控制、SSB、RMSI及/或OSI)多工。在執行了DCI掃描之後可以執行基於攜帶了傳呼訊息的非時槽的快速波束掃描。依照這種混合傳呼方法,傳呼DCI可以接近於SSB或其他任何波束掃描符號,並且因此可以與SSB或其他波束掃描符號準共置。In an example of a hybrid paging method ("hybrid paging I"), a time slot based paging message may be followed by a non-time slot based paging DCI. In this configuration, the paging DCI scan can be performed quickly using the non-time slot format. A beam scan based on a time slot carrying a paging message can be performed after the DCI scan is performed. The paging message can be multiplexed with other information that can be scanned by the beam (eg, data, control, SSB, RMSI, and/or OSI). In another example of a hybrid paging method ("Mixed Page II"), a time slot based paging DCI may be followed by a non-time slot based paging message. In this configuration, the paging DCI scan can be multiplexed with other information that can be scanned by the beam (eg, data, control, SSB, RMSI, and/or OSI). A fast beam scan based on a non-time slot carrying a paging message may be performed after the DCI scan is performed. In accordance with this hybrid paging method, the paging DCI can be close to the SSB or any other beam scanning symbol and can therefore be co-located with the SSB or other beam scanning symbols.

在上述範例性方法中,WTRU可以被配置用於使用同時槽排程或跨時槽排程的傳呼。WTRU可以接收指示或遵循預先定義的規則,以基於時槽或非時槽排程及/或傳輸格式來適應動態變化。該動態變化可以包括、但不限於包括:改變用於傳呼DCI的被監控的起始OFDM符號、確定OFDM符號數量(該傳呼DCI與傳呼訊息之間的距離)、及/或確定用於傳呼訊息的OFDM符號的數量。In the exemplary method described above, the WTRU may be configured to use a paging of a simultaneous slot schedule or a time slot schedule. The WTRU may receive indications or follow pre-defined rules to accommodate dynamic changes based on time slot or non-time slot scheduling and/or transport formats. The dynamic change may include, but is not limited to, changing the monitored starting OFDM symbol for paging DCI, determining the number of OFDM symbols (the distance between the paging DCI and the paging message), and/or determining the paging message. The number of OFDM symbols.

傳呼傳遞可以是基於非時槽的。例如,PDSCH可以是基於非時槽的。針對傳呼PDSCH,可以使用K個OFDM符號持續時間(例如K=1、2、4或7)。用於表明基於非時槽的PDSCH的格式的不同選項是可以使用的。例如,可以使用針對基於非時槽的格式的顯性指示。對於顯性指示,PO大小可以基於不同非時槽大小的使用而改變,而這轉而可以取決於在PO中被一起傳呼的使用者(WTRU)的數量。採用波束掃描的一個PO(例如具有2、4、7個符號)可用於同時被傳呼的不同數量的使用者。在該傳呼DCI中可以表明符號的數量。在掃描該傳呼訊息之前,可以執行針對傳呼DCI的波束掃描。波束掃描可以依照波束的數量而佔用一個時槽或多個時槽。WTRU可以被配置為監控佔用了傳呼DCI的時槽,針對每一個WTRU自己的PO(以及與SSB具有QCL的波束)。第20圖是包括PO 2001及2002的範例性PO配置2000的傳訊圖。在第20圖中,與PO 2001相比,PO 2002包括了用於較大數量的使用者(WTRU)的傳呼訊息,因此包括了更多用於傳呼訊息的OFDM符號。在第20圖中,該傳呼DCI是在四個波束中傳送的,並且該傳呼訊息(PM)是在四個波束中傳送的,因此,傳呼DCI及PM是在單獨的波束掃描中。PO 2001及2002中的每一者都被用於傳呼四個群組(WTRU)。Paging delivery can be based on non-time slots. For example, the PDSCH can be based on non-time slot. For paging PDSCH, K OFDM symbol durations (eg, K = 1, 2, 4, or 7) may be used. Different options for indicating the format of the non-time slot based PDSCH are available. For example, a dominant indication for a non-time slot based format can be used. For explicit indications, the PO size may vary based on the use of different time slot sizes, which in turn may depend on the number of users (WTRUs) that are paged together in the PO. A PO that uses beam scanning (eg, with 2, 4, 7 symbols) can be used for different numbers of users that are simultaneously paged. The number of symbols can be indicated in the paging DCI. Beam scanning for paging DCI can be performed before scanning the paging message. Beam scanning can occupy one time slot or multiple time slots depending on the number of beams. The WTRU may be configured to monitor the time slot occupying the paging DCI for each WTRU's own PO (and the beam with the QCL with the SSB). Figure 20 is a communication diagram of an exemplary PO configuration 2000 including PO 2001 and 2002. In Figure 20, PO 2002 includes paging messages for a larger number of users (WTRUs) than PO 2001, thus including more OFDM symbols for paging messages. In Fig. 20, the paging DCI is transmitted in four beams, and the paging message (PM) is transmitted in four beams, and therefore, the paging DCI and PM are in separate beam scanning. Each of PO 2001 and 2002 is used to page four groups (WTRUs).

DCI可以是非時槽傳呼訊息的一部分。第21圖是包括PO 2101及2102的範例性PO配置2100的傳訊圖。第21圖的範例顯示了具有在非時槽中的自包含的傳呼DCI(p-DCI)的不同大小的PO(與PO 2101相比,PO 2102具有較大的頻寬)。在第21圖中,傳呼DCI是在四個波束中傳送的,並且傳呼訊息(PM)是在相同的波束掃描中傳送的。 傳呼訊息(PM)可以圍繞該傳呼DCI而被速率匹配。在SFI中可以表明用於傳呼的格式。在傳呼DCI中表明的資訊可以包括下列指示中的任一個或多個指示:基於時槽或非基於時槽的傳呼PDSCH的指示;若基於非時槽的傳呼被表明下的非時槽大小的指示;用於一個或多個傳呼訊息的同時槽或跨時槽排程的指示;若為傳呼訊息表明了跨時槽排程下的時間偏移的指示(例如在OFDM符號、微時槽或時槽方面);及/或傳呼排程DCI中用於表明是否存在對應的傳呼PDSCH的旗標。The DCI can be part of a non-time slot paging message. Figure 21 is a communication diagram of an exemplary PO configuration 2100 including POs 2101 and 2102. The example of Figure 21 shows POs of different sizes with self-contained paging DCI (p-DCI) in non-time slots (PO 2102 has a larger bandwidth than PO 2101). In Figure 21, the paging DCI is transmitted in four beams, and the paging message (PM) is transmitted in the same beam scan. The paging message (PM) can be rate matched around the paging DCI. The format used for paging can be indicated in SFI. The information indicated in the paging DCI may include any one or more of the following indications: an indication of a time slot based or non-time slot based paging PDSCH; if the non-time slot based paging is indicated by a non-time slot size An indication of a simultaneous or inter-slot scheduling for one or more paging messages; if the paging message indicates an indication of a time offset across the time slot schedule (eg, in an OFDM symbol, a micro time slot, or And (or time slot aspect); and/or a flag in the paging schedule DCI for indicating whether there is a corresponding paging PDSCH.

在另一個範例中,PDCCH可以是基於非時槽的。基於非時槽的傳呼遞送可以實現更快及/或更靈活的傳呼訊息遞送(例如在波束掃描模式中)。如果支援基於非時槽的傳呼PDSCH傳輸,但是不支援基於非時槽的傳呼PDCCH傳輸,那麼將是沒有意義的。WTRU可以監控可藉由該傳呼CORESET所配置的用於PO的非時槽PDCCH(例如,在監控PO的PDCCH可位於時槽中間的情況下的基於非時槽的PDCCH傳輸)。在一範例中,基於非時槽的PDSCH傳輸可以具有2、4或7個OFDM符號持續時間。在這種情況下,從PDCCH的角度來看,基於非時槽的傳輸/排程可以與小於一個時槽的CORESET監控週期相關聯。基於非時槽的PDCCH傳輸可以支援1、2、4、7個OFDM符號持續時間。為了減小波束掃描潛時,在每一個非時槽可以支援數量較少的OFDM符號(例如,對於沒有PDSCH的基於PDCCH的傳呼,可以支援1個符號)。PDCCH可被傳送以用於傳呼DCI、並且可以在相同的OFDM符號中傳送用於傳呼訊息的PDSCH,使得該傳呼DCI以及傳呼訊息可以在掃描中在相同波束中被傳送。In another example, the PDCCH may be based on non-time slot. Non-time slot based paging delivery may enable faster and/or more flexible paging message delivery (eg, in beam scanning mode). If non-time slot based paging PDSCH transmission is supported, but non-time slot based paging PDCCH transmission is not supported, then it would be meaningless. The WTRU may monitor a non-time slot PDCCH for the PO that may be configured by the paging CORESET (eg, non-time slot based PDCCH transmission if the PDCCH monitoring the PO may be in the middle of the time slot). In an example, the non-time slot based PDSCH transmission may have 2, 4 or 7 OFDM symbol durations. In this case, from a PDCCH perspective, non-time slot based transmission/scheduling can be associated with a CORESET monitoring period of less than one time slot. The non-time slot based PDCCH transmission can support 1, 2, 4, 7 OFDM symbol durations. In order to reduce the beam scanning latency, a smaller number of OFDM symbols can be supported in each non-time slot (eg, for a PDCCH-based paging without a PDSCH, one symbol can be supported). The PDCCH may be transmitted for paging DCI, and the PDSCH for paging messages may be transmitted in the same OFDM symbol such that the paging DCI and paging messages may be transmitted in the same beam in the scan.

在一範例中,對於跨時槽排程,在掃描傳呼訊息之前可以對用於傳呼DCI的PDCCH進行掃描。為了實現用於傳呼DCI/訊息遞送的有效掃描機制,針對傳呼PDCCH,基於非時槽的排程可以被支援。對於用於傳呼DCI的PDCCH,OFDM符號數量可以減少到1。在一範例中,對用於符號[2,4,7]的PDSCH的基於非時槽的PDCCH,用於該傳呼CORESET的[X,Y,Z]OFDM符號持續時間(參考微時槽的大小)可以是固定的。[X,Y,Z]的不同值可以被支援(例如,[X, Y, Z] = [1, 1, 2] 或 [1, 2, 2])。In an example, for a time slot schedule, the PDCCH for paging DCI may be scanned prior to scanning the paging message. In order to implement an efficient scanning mechanism for paging DCI/message delivery, non-time slot based scheduling may be supported for paging PDCCH. For PDCCHs used for paging DCI, the number of OFDM symbols can be reduced to one. In an example, for a non-time slot based PDCCH for a PDSCH of symbols [2, 4, 7], the [X, Y, Z] OFDM symbol duration for the paging CORESET (refer to the size of the microslot) ) can be fixed. Different values of [X, Y, Z] can be supported (for example, [X, Y, Z] = [1, 1, 2] or [1, 2, 2]).

傳呼遞送可以基於跨時槽排程。在偵測到傳呼DCI之後,WTRU可以使用下列範例性規則中的任一或多個範例性規則來解碼傳呼訊息。根據一範例性規則,WTRU可以在接收到下列元素中的任一個或多個元素之後解碼傳呼訊息:P個OFDM符號;P個微時槽(在基於非時槽的系統中);P個時槽;P個子訊框;及/或P個訊框。例如,WTRU可以在P1個非時槽以及P2個OFDM符號之後解碼傳呼訊息。在一範例性場景中,P可以是固定的、並且可以為WTRU所知。例如,P可以與用於PDCCH以及PDSCH的波束數量及/或時槽/非時槽格式相關聯。在另一個範例中,預先定義的表可以用於找到N。在另一個範例性場景中,可以向WTRU表明P。這可以藉由傳呼排程DCI而以顯性地執行。例如,傳呼排程DCI可以攜帶偏移N,這樣可以允許憑藉輕微的開銷而具有更大的靈活性。傳呼排程DCI可以包括P的單元(例如OFDM符號、微時槽、時槽、子訊框、訊框或是其組合)。P可以由WTRU使用下列範例性參數中任一個或多個範例性參數來隱性計算:所要掃描的波束的數量;基於時槽或非時槽的PDCCH;基於時槽或非時槽的PDSCH;及/或用於傳呼DCI的PDCCH掃描末端與用於傳呼訊息的PDSCH掃描之間的固定或被指示偏移。Page delivery can be based on a time slot schedule. After detecting the paging DCI, the WTRU may use any one or more of the following exemplary rules to decode the paging message. According to an exemplary rule, a WTRU may decode a paging message after receiving any one or more of the following elements: P OFDM symbols; P micro time slots (in a non-time slot based system); P time Slot; P sub-frames; and/or P frames. For example, the WTRU may decode the paging message after P1 non-time slots and P2 OFDM symbols. In an exemplary scenario, P may be fixed and may be known to the WTRU. For example, P may be associated with a number of beams for the PDCCH and the PDSCH and/or a slot/non-time slot format. In another example, a predefined table can be used to find N. In another exemplary scenario, P may be indicated to the WTRU. This can be performed explicitly by paging the scheduling DCI. For example, the paging schedule DCI can carry an offset of N, which allows for greater flexibility with a slight overhead. The paging schedule DCI may include units of P (eg, OFDM symbols, micro time slots, time slots, subframes, frames, or a combination thereof). P may be implicitly calculated by the WTRU using any one or more of the following exemplary parameters: number of beams to be scanned; PDCCH based on time slot or non-time slot; PDSCH based on time slot or time slot; And/or a fixed or indicated offset between the PDCCH scan end for paging DCI and the PDSCH scan for paging messages.

程序可以使用PO持續時間或間隔。PO可以由P個OFDM符號、時槽、非時槽、子訊框或訊框(或是其組合)組成。PO的持續時間或間隔可被用於為TX以及RX波束賦能以下各項:TX波束掃描;TX波束重複;RX波束掃描;及/或RX波束重複。The program can use PO duration or interval. The PO may be composed of P OFDM symbols, time slots, non-time slots, subframes, or frames (or a combination thereof). The duration or interval of the PO can be used to energize the TX and RX beams with the following: TX beam scanning; TX beam repetition; RX beam scanning; and/or RX beam repetition.

在WTRU上,PO中的元素數量N可以用以下任何的一種或多種範例性方法來確定:基於實際傳送的SSB(例如,其可以在RMSI或RRC中表明);基於可以藉由頻率範圍確定的SSB的最大數量;基於指示或配置;基於掃描配置資訊(例如M1次TX波束掃描,M2次RX波束掃描);及/或基於重複配置資訊(例如K1次TX波束重複,K2次RX波束重複)。用於PO中的元素數量的指示符P可以表明下列範例性資訊中的任一個或多個範例性資訊:波束掃描操作模式;波束重複操作模式;或混合波束掃描/重複操作模式。On the WTRU, the number N of elements in the PO may be determined by one or more of the following exemplary methods: based on the actual transmitted SSB (eg, it may be indicated in RMSI or RRC); based on the range that can be determined by the frequency range Maximum number of SSBs; based on indication or configuration; based on scan configuration information (eg, M1 TX beam scan, M2 RX beam scan); and/or based on repeated configuration information (eg K1 TX beam repeat, K2 RX beam repeat) . The indicator P for the number of elements in the PO may indicate any one or more of the following exemplary information: beam scan mode of operation; beam repeat mode of operation; or hybrid beam scan/repetition mode of operation.

一些方法可以用於進階的傳呼遞送。傳呼訊息可以由NR-PDCCH中攜帶的傳呼DCI排程、並且可以在相關聯的NR-PDSCH中傳送。傳呼遞送系統可被設計為用於在所有方向上為所有WTRU掃描傳呼DCI以及傳呼訊息的情形。如果適當地喚醒WTRU、並且縮短WTRU監控一個或多個傳呼群組指示符的時間(這樣可以減小WTRU電池電量消耗),那麼將是非常理想的。為了實現更精細的WTRU分組粒度,可以使用大量的波束來進行掃描,以發現傳呼。Some methods can be used for advanced paging delivery. The paging message may be scheduled by the paging DCI carried in the NR-PDCCH and may be transmitted in the associated NR-PDSCH. The paging delivery system can be designed to scan all WTRUs for paging DPI and paging messages in all directions. It would be highly desirable if the WTRU is properly woken up and the time at which the WTRU monitors one or more paging group indicators (which may reduce the WTRU battery power consumption). In order to achieve finer WTRU packet granularity, a large number of beams can be used for scanning to discover paging.

進階傳呼遞送可以用第二級分組來實施。在這種情況下,傳呼遞送(例如基本傳呼)可以跟隨在傳呼訊息之後。在這種情況下,WTRU可以在沒有回饋或WTRU波束報告下被分組。WTRU群組可以被同時傳呼(例如使用傳呼群組指示符)。群組的位元映像可以在由P-RNTI掩蔽的傳呼群組指示符DCI中傳送。該傳呼群組指示符可以指示所表明的WTRU群組中的WTRU執行下列範例性功能中的任一個或多個範例性功能:接收傳呼排程DCI(依照基本傳呼);及/或傳送回饋訊息(例如專用PRACH前序碼(帶有回饋的進階傳呼))。這種進階傳呼方法可以減少WTRU的喚醒處理,並且可以為未被傳呼為群組一部分的WTRU節省功率。Advanced paging delivery can be implemented with a second level of grouping. In this case, paging delivery (eg, basic paging) can follow the paging message. In this case, the WTRU may be grouped without feedback or WTRU beam reporting. The WTRU group can be paged simultaneously (e.g., using a paging group indicator). The bitmap of the group may be transmitted in a paging group indicator DCI masked by the P-RNTI. The paging group indicator may indicate that the WTRU in the indicated group of WTRUs performs any one or more of the following exemplary functions: receiving a paging schedule DCI (according to a basic paging); and/or transmitting a feedback message (eg dedicated PRACH preamble (advanced paging with feedback)). This advanced paging method can reduce the WTRU's wake-up process and can save power for WTRUs that are not part of the group.

進階傳呼遞送可以包括回饋。在此方法中,來自WTRU的回饋可被添加到如上所述的用於進階傳呼遞送方法中。舉例來說,回饋可以包括傳呼DCI及/或傳呼群組指示符。傳呼群組指示符可以被發送或者可以作為被P-RNTI或傳呼訊息遮罩的傳呼DCI的一部分。傳呼DCI及/或傳呼群組指示符可以作為群組的位元映像而被發送。在一範例中,傳呼指示可以觸發WTRU波束報告(如果支援的話)。舉例來說,傳呼指示可以處於傳呼DCI或非排程實體通道中。在另一個範例中,傳呼群組指示符可以表明WTRU是否需要傳送專用PRACH前序碼。作為群組一部分的WTRU可以發送RACH以作為回饋,並且該回饋會被gNB在一個或多個特定波束中被接收,這表明該一個或多個波束的方向上該WTRU的存在性。在與所接收的專用PRACH前序碼對應的DL方向上可以傳送傳呼DCI,之後則是傳呼訊息。藉由傳送專用PRACH實施的DL波束報告可以重新使用用於專用波束恢復請求及/或按需OSI請求的機制。其他增強可以包括:用於傳呼回應的專用RACH資源。不同的RACH前序碼可以被定義用於每一個群組(K個群組)。為前序碼定義的覆蓋碼可以是不同的。覆蓋碼可以包括、但不限於包括M序列、正交覆蓋碼(OCC)及/或正弦波形。RACH前序碼可以用WTRU特定(例如RRC)訊息傳遞處理而被指配。gNB可以基於針對高級傳呼的回饋來改變分組。這種分組修改可以藉由WTRU特定(例如RRC)傳訊而被傳訊。Advanced paging delivery can include feedback. In this method, feedback from the WTRU may be added to the advanced paging delivery method as described above. For example, the feedback can include a paging DCI and/or a paging group indicator. The paging group indicator can be sent or can be part of the paging DCI masked by the P-RNTI or paging message. The paging DCI and/or paging group indicator can be sent as a bitmap of the group. In an example, the paging indication can trigger a WTRU beam report (if supported). For example, the paging indication can be in a paging DCI or a non-scheduled physical channel. In another example, the paging group indicator may indicate whether the WTRU needs to transmit a dedicated PRACH preamble. A WTRU that is part of a group may send a RACH as a feedback, and the feedback may be received by the gNB in one or more particular beams, indicating the presence of the WTRU in the direction of the one or more beams. The paging DCI may be transmitted in the DL direction corresponding to the received dedicated PRACH preamble, followed by the paging message. The mechanism for dedicated beam recovery requests and/or on-demand OSI requests can be reused by transmitting a dedicated PRACH implemented DL beam report. Other enhancements may include: dedicated RACH resources for paging responses. Different RACH preambles can be defined for each group (K groups). The overlay code defined for the preamble can be different. The overlay code may include, but is not limited to, an M sequence, an orthogonal cover code (OCC), and/or a sinusoidal waveform. The RACH preamble may be assigned with a WTRU-specific (e.g., RRC) messaging process. The gNB can change the packet based on feedback for advanced paging. Such packet modification can be signaled by WTRU-specific (e.g., RRC) messaging.

BWP可被用於進階傳呼中的回饋。在一範例中,UL BWP k1可以與DL BWP k2連結。如果WTRU在DL BWP k2上接收傳呼指示,那麼在預設情況下,WTRU可以使用UL BWP k1來傳送回饋。k1可以與k2相同、或可以是不同的。關於BWP連結的其他配置也可用於傳呼。BWP can be used for feedback in advanced paging. In an example, UL BWP k1 can be linked to DL BWP k2. If the WTRU receives a paging indication on DL BWP k2, then in a preset case, the WTRU may use UL BWP k1 to transmit feedback. K1 may be the same as k2 or may be different. Other configurations for BWP links can also be used for paging.

可以為BWP指配及/或BWP連結使用不同的配置。在相同配置中,k1=k2。WTRU可以將與該WTRU接收其傳呼指示的DL-BWP相同的BWP用於上鏈。在一對一的映射配置中,一個DL BWP可以恰好連結於一個UL BWP。WTRU可被配置為具有以及可以在DL BWP k上接收傳呼指示、並且可以被配置有UL BWP k1=f(k2),其中f(k)是去重函數(unique function)。此函數f()可以為WTRU知悉。因此,WTRU可以將UL-BWP用於回饋,其可以與WTRU接收到傳呼指示的DL BWP連結。在一對多的映射配置中,一個DL BWP可以連結多個UL BWP;也就是說,兩個WTRU可被配置為使得DL BWP k2可以被配置為具有任何UL BWP(舉個例子,對於WTRU1,k2=f1(k1),並且對於WTRU2,k2=f2(k1))。例如,從系統的角度來看,如果一個DL BWP可供兩個不同WTRU接收傳呼指示,那麼該DL BWP可被映射到可供該WTRU提供波束資訊回饋的兩個UL BWP。在這種情況下,函數f()可以是基於取模的函數、及/或可以取決於WTRU_ID及/或傳呼群組ID。對用於傳呼的波束回饋,可以使用不同的格式(例如免許可上鏈、基於許可的上鏈或PRACH)。Different configurations can be used for BWP assignments and/or BWP links. In the same configuration, k1 = k2. The WTRU may use the same BWP as the DL-BWP that the WTRU receives its paging indication for uplinking. In a one-to-one mapping configuration, one DL BWP can be joined to exactly one UL BWP. The WTRU may be configured to have and may receive a paging indication on DL BWP k and may be configured with UL BWP k1 = f(k2), where f(k) is a unique function. This function f() can be known to the WTRU. Thus, the WTRU may use the UL-BWP for feedback, which may be linked to the DL BWP that the WTRU receives the paging indication. In a one-to-many mapping configuration, one DL BWP may link multiple UL BWPs; that is, two WTRUs may be configured such that DL BWP k2 may be configured to have any UL BWP (for example, for WTRUl, K2 = f1 (k1), and for WTRU2, k2 = f2 (k1)). For example, from a system perspective, if one DL BWP is available for two different WTRUs to receive a paging indication, the DL BWP can be mapped to two UL BWPs that are available to the WTRU to provide beam information feedback. In this case, the function f() may be based on a modulo function and/or may depend on the WTRU_ID and/or the paging group ID. For beam feedback for paging, different formats can be used (eg, license-free, license-based uplink or PRACH).

不同的上鏈格式可被用於基於BWP的回饋,以用於進階傳呼。在一個範例中,免許可上鏈可被用於該回饋。如果WTRU使用免許可上鏈,那麼WTRU會在預先配置的BWP中具有預先配置的資源。在另一個範例中,基於許可的上鏈可被用於該回饋。如果將基於許可的上鏈用於回饋,那麼,倘若WTRU想要動態切換BWP以及在不同BWP中排程回饋,則gNB可以使用較長的DCI格式(與標準中定義的DCI格式0_1類似,該格式包括動態切換BWP的方式)來為該回饋排程上鏈。gNB可以保留多個正交時間/頻率/BWP資源,並且WTRU可以從gNB保留的集合中選擇資源。這種由WTRU執行的資源選擇可以基於WTRU_ID。為了減小DCI的開銷(或是實現更好的碼率),可以使用BWP連結及/或較短的DCI格式(與標準中定義的DCI格式0_0類似,沒有BWP的指示)來排程上鏈,以進行回饋。PRACH資源可被用於該回饋。在進階傳呼中,如果WTRU使用為PRACH配置的資源來進行回饋,那麼BWP連結可以識別UL-BWP,以傳送專用於波束回饋的RACH資源。Different uplink formats can be used for BWP-based feedback for advanced paging. In one example, an unlicensed winding can be used for this feedback. If the WTRU uses an unlicensed uplink, the WTRU will have pre-configured resources in the pre-configured BWP. In another example, a license-based uplink can be used for this feedback. If the license-based uplink is used for feedback, then if the WTRU wants to dynamically switch BWP and schedule feedback in different BWPs, the gNB can use a longer DCI format (similar to DCI format 0_1 defined in the standard, The format includes the way to dynamically switch the BWP) to schedule the rollup for this feedback. The gNB may reserve multiple orthogonal time/frequency/BWP resources, and the WTRU may select resources from the set of gNB reservations. This resource selection performed by the WTRU may be based on the WTRU_ID. In order to reduce the overhead of DCI (or achieve a better bit rate), you can use the BWP link and / or the shorter DCI format (similar to the DCI format 0_0 defined in the standard, without the BWP indication) to schedule the winding, Give feedback. PRACH resources can be used for this feedback. In advanced paging, if the WTRU uses the resources configured for PRACH for feedback, the BWP link may identify the UL-BWP to transmit RACH resources dedicated to beam feedback.

在這裡描述了用於波束報告的WTRU的傳呼回饋行為的範例。WTRU可以提供用於波束報告的回饋。如果使用了用於UL以及DL的BWP連結以進行傳呼,那麼WTRU行為可以包括以下任何範例性操作。WTRU可以針對傳呼DCI而預先計算或檢查所配置的BWP。如果該BWP與目前活動的BWP相同,那麼WTRU可以接收傳呼DCI。否則,WTRU可以切換到用於傳呼DCI的DL BWP。WTRU可以解碼傳呼DCI、並且可以檢查該WTRU是否是被傳呼的群組的一部分。如果WTRU是被傳呼的群組的一部分(也就是說,該WTRU被傳呼),那麼可以賦能進階傳呼,並且可以使用針對該波束的回饋。在這種情況下,WTRU可以找到連結的UL BWP以進行回饋。如果連結的UL BWP是相同的配置或一對一的配置,那麼WTRU可以識別該UL-BWP。如果連結的UL BWP在一個DL-BWP以及多個UL-BWP之間具有一對多映射,那麼WTRU可以使用預先定義的演算法來確定該UL BWP。舉例來說,該UL-BWP可以使用基於WTRU-ID及/或傳呼群組ID的取模函數來確定。如果連結的UL BWP與目前BWP不同,那麼WTRU可以在被排程資源的時槽之前切換BWP。因此,WTRU可以傳送波束回饋。An example of a paging feedback behavior of a WTRU for beam reporting is described herein. The WTRU may provide feedback for beam reporting. If a BWP connection for UL and DL is used for paging, the WTRU behavior may include any of the following exemplary operations. The WTRU may pre-compute or check the configured BWP for paging DPI. If the BWP is the same as the currently active BWP, the WTRU may receive the paging DCI. Otherwise, the WTRU may switch to the DL BWP for paging DCI. The WTRU may decode the paging DCI and may check if the WTRU is part of the group being paged. If the WTRU is part of a group being paged (that is, the WTRU is paged), advanced paging can be enabled and feedback for the beam can be used. In this case, the WTRU may find the linked UL BWP for feedback. If the linked UL BWP is the same configuration or a one-to-one configuration, the WTRU may identify the UL-BWP. If the linked UL BWP has a one-to-many mapping between one DL-BWP and multiple UL-BWPs, the WTRU may use a predefined algorithm to determine the UL BWP. For example, the UL-BWP can be determined using a modulo function based on the WTRU-ID and/or paging group ID. If the linked UL BWP is different from the current BWP, the WTRU may switch the BWP before the time slot of the scheduled resource. Therefore, the WTRU can transmit beam feedback.

基本傳呼處理與具有回饋的進階傳呼可被組合在一起,並且gNB能在基本傳呼與具有回饋的進階傳呼之間進行切換、以及可以基於場景及/或部署來配置這兩個選項。對於組合的基本與進階傳呼,該基本或進階傳呼可以被表明,因此可以賦能或禁用基於回饋需求的觸發器。例如,基本或進階傳呼的指示可以被包括在傳呼DCI、RMSI及/或OSI中。The basic paging process and the advanced paging with feedback can be combined, and the gNB can switch between the basic paging and the advanced paging with feedback, and the two options can be configured based on the scenario and/or deployment. For combined basic and advanced paging, the basic or advanced paging can be indicated, so triggers based on feedback requirements can be enabled or disabled. For example, an indication of a basic or advanced paging can be included in the paging DCI, RMSI, and/or OSI.

就N個群組以及K個子群組的傳呼群組,可以使用取模函數來確定。基於位置或回饋對使用者(WTRU)進行分組可以被使用。然而,第二級分組(例如基於IMSI)不會添加很多變化。第二分組可以基於另一個常數K(該常數也可以使用與IMSI類似的取模運算)。K可以是所支援的可在同一個PO中被傳呼的群組的總數。用於表明群組的不同方法都是可以使用的(例如位元映像、群組ID混合)。使用者分組可以減小WTRU複雜性以及模糊性(例如,如果將壓縮的WTRU_ID用於該傳呼訊息)。不同群組的傳呼訊息可以在相同或不同的時槽或微時槽中被FDM或TDM。For the N groups and the paging groups of the K subgroups, the modulo function can be used to determine. Grouping users (WTRUs) based on location or feedback can be used. However, the second level of packets (eg based on IMSI) does not add a lot of changes. The second packet can be based on another constant K (this constant can also use a modulo operation similar to IMSI). K can be the total number of groups supported that can be paged in the same PO. Different methods for indicating a group are available (eg, bit map, group ID mix). User grouping can reduce WTRU complexity and ambiguity (eg, if a compressed WTRU_ID is used for the paging message). Different groups of paging messages can be FDM or TDM in the same or different time slots or micro time slots.

傳呼群組指示符可以被使用。為了支援高級傳呼方法,有可能需要粒度更精細的分組。粒度更精細的分組可以用指示符來表明。分組決策可以在較高層(例如MAC、RLC、RRC)基於位置或其他參數而被做出。在同一個PO中可以傳呼多個群組。因此,傳呼DCI可以包括正在傳呼哪些群組的指示,並且例如,其可以表明有一個群組正在被傳呼。舉例來說,傳呼群組指示符可以採用在傳呼DCI(由P-RNTI遮罩的CRC)、傳呼訊息或是任何通道或信號中發送的位元映像的形式。例如,在傳呼DCI中可以使用群組位元映像(K位元位元映像)作為傳呼群組指示符。如果來自群組的任一WTRU被傳呼,則可以在該位元映像中設定與該群組對應的位元(例如設定為“1”),否則可以重設對應位元(例如重設為“0”)。在另一個範例中,群組ID可被用作傳呼群組指示符。在傳呼DCI中可以聚合及傳送不同的群組ID,以表明正在傳呼來自不同群組的WTRU。每一個群組都可以用群組ID來表示(例如範圍從0到K-1)。傳呼DCI可以包括被傳呼的群組的數量及/或其群組ID。The paging group indicator can be used. In order to support advanced paging methods, it may be necessary to have finer-grained packets. Finer-grained packets can be indicated by indicators. Packet decisions can be made at higher layers (eg, MAC, RLC, RRC) based on location or other parameters. Multiple groups can be paged in the same PO. Thus, the paging DCI can include an indication of which groups are being paged, and for example, it can indicate that one group is being paged. For example, the paging group indicator can take the form of a bitmap of bits transmitted in the paging DCI (CRC masked by the P-RNTI), the paging message, or any channel or signal. For example, a group bit map (K bit bitmap) can be used in the paging DCI as a paging group indicator. If any of the WTRUs from the group are paged, the bit corresponding to the group may be set in the bit map (eg, set to "1"), otherwise the corresponding bit may be reset (eg, reset to " 0”). In another example, the group ID can be used as a paging group indicator. Different group IDs may be aggregated and transmitted in the paging DCI to indicate that the WTRUs from different groups are being paged. Each group can be represented by a group ID (eg ranging from 0 to K-1). The paging DCI may include the number of groups being paged and/or its group ID.

在一範例中,用於傳呼群組識別符的混合設計可被使用。在混合方法中,在傳呼DCI中可以發送群組位元映像以及WTRU群組位元映像。此方法可以提供被傳呼的WTRU的更精細的分辨粒度。WTRU可被提供其自己的群組及其在位元映像中的位置,這樣則可以使用附加的WTRU特定傳訊。多個P-RNTI或PG-RNTI可被用於傳呼群組指示符。不同的群組可以具有不同的P-RNTI而不是LTE中的單一P-RNTI值(PG-RNTI)。PG-RNTI可以是為被傳呼的不同群組保留的依序或非依序的RNTI範圍。在這種情況下,只有一個群組可以用一個DCI來傳呼。該傳呼DCI的CRC可以用正被傳呼的群組的PG-RNTI來遮罩。In an example, a hybrid design for paging group identifiers can be used. In the hybrid approach, a group bit map and a WTRU group bit map can be sent in the paging DCI. This method can provide a finer resolution granularity of the WTRU being paged. The WTRU may be provided with its own group and its location in the bitmap, such that additional WTRU-specific messaging may be used. Multiple P-RNTIs or PG-RNTIs may be used for paging group indicators. Different groups may have different P-RNTIs instead of a single P-RNTI value (PG-RNTI) in LTE. The PG-RNTI may be a sequential or non-sequential RNTI range reserved for different groups being paged. In this case, only one group can use a DCI to page. The CRC of the paging DCI can be masked with the PG-RNTI of the group being paged.

特定於傳呼的群組公共PDCCH(P-GC-PDCCH)可被用於傳呼群組指示符。與用於指示SFI的GC-PDCCH類似,P-GC-PDCCH可以表明傳呼特定的時槽格式。P-GC-PDCCH可以位於可供任一或所有WTRU對其進行監控的公共搜尋空間。P-GC-PDCCH可以在所有的波束上被掃描。P-GC-PDCCH可以在用於每一個PO的時槽的開端被傳送,以表明與時槽或非時槽傳輸中的傳呼訊息位置相關的符號。P-GC-PDCCH可以具有帶有傳呼群組指示的傳呼DCI。P-GC-PDCCH可以包括具有在後續時槽中針對傳呼而被觀察的符號的位元映像。P-GC-PDCCH可以被編碼以及在與GC-PDCCH類似的控制通道中被傳送。CRC可以用特定的數字(例如P-RNTI)或範圍(例如PG-RNTI)來遮罩。A paging-specific group common PDCCH (P-GC-PDCCH) may be used for the paging group indicator. Similar to the GC-PDCCH used to indicate SFI, the P-GC-PDCCH may indicate a particular time slot format for paging. The P-GC-PDCCH may be located in a common search space that can be monitored by any or all of the WTRUs. The P-GC-PDCCH can be scanned on all beams. The P-GC-PDCCH may be transmitted at the beginning of the time slot for each PO to indicate a symbol associated with the location of the paging message in the time slot or non-time slot transmission. The P-GC-PDCCH may have a paging DCI with a paging group indication. The P-GC-PDCCH may include a bitmap of symbols having symbols that are observed for paging in subsequent slots. The P-GC-PDCCH may be encoded and transmitted in a control channel similar to the GC-PDCCH. The CRC may be masked with a specific number (eg, P-RNTI) or range (eg, PG-RNTI).

傳呼專用SFI可被用於傳呼群組指示符。用於傳呼的SFI表的條目可被添加給表明傳呼時槽格式的GC-PDCCH。這些條目可被用作傳呼排程資訊。WTRU可以使用從GC-PDCCH解碼的索引來識別一個或多個傳呼訊息位置。SFI表的條目可被用於表明供傳呼使用的多個時槽的非時槽格式。以上的任何方法都可以用於識別正在使用該傳呼時槽格式的群組。GC-PDCCH可以用於動態地修改用於供傳呼DCI/訊息使用的非時槽的符號的數量。The paging-specific SFI can be used to page the group indicator. An entry for the SFI table for paging may be added to the GC-PDCCH indicating the slot format of the paging. These entries can be used as paging schedule information. The WTRU may use an index decoded from the GC-PDCCH to identify one or more paging message locations. The entries of the SFI table can be used to indicate the non-time slot format of multiple time slots for paging. Any of the above methods can be used to identify the group that is using the paging slot format. The GC-PDCCH can be used to dynamically modify the number of symbols used for non-time slots for paging DCI/messages.

雖然這裡描述的解決方案考慮了LTE、LTE-A、新型無線電(NR)或5G特定協定,然而應該理解,這裡描述的解決方案並不限於這種場景,並且同樣適用於其他無線系統。While the solutions described herein take into account LTE, LTE-A, Novel Radio (NR) or 5G specific protocols, it should be understood that the solutions described herein are not limited to such scenarios and are equally applicable to other wireless systems.

雖然在上文中描述了採用特定組合的特徵及元素,但是本領域中具有通常知識者將會認識到,每一個特徵既可以單獨使用,也可以與其他特徵以及元素進行任何組合。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的範例包括電信號(經由有線或無線連接傳送)以及電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括、但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、磁性媒體(例如內部硬碟以及可拆卸磁片)、磁光媒體、以及光學媒體(例如CD-ROM碟片以及數位多功能光碟(DVD))。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機使用的射頻收發器。Although features and elements of a particular combination are described above, those of ordinary skill in the art will recognize that each feature can be used alone or in any combination with other features and elements. Moreover, the methods described herein can be implemented in a computer program, software or firmware incorporated into a computer readable medium for use by a computer or processor. Examples of computer readable media include electrical signals (transmitted via wired or wireless connections) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage devices, magnetic media (eg internal hard drives) And removable magnetic discs), magneto-optical media, and optical media (such as CD-ROM discs and digital versatile discs (DVD)). A processor associated with the software can be used to implement a radio frequency transceiver for use at a WTRU, UE, terminal, base station, RNC, or any computer host.

100‧‧‧通信系統 100‧‧‧Communication system

102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU)102, 102a, 102b, 102c, 102d‧ ‧ ‧ wireless transmit / receive unit (WTRU)

104、113‧‧‧無線電存取網路(RAN)104, 113‧‧‧ Radio Access Network (RAN)

106、115‧‧‧範例性核心網路(CN)106, 115‧‧‧ exemplary core network (CN)

108‧‧‧公共交換電話網路(PSTN)108‧‧‧Public Switched Telephone Network (PSTN)

110‧‧‧網際網路110‧‧‧Internet

112‧‧‧其他網路112‧‧‧Other networks

114a、114b‧‧‧基地台114a, 114b‧‧‧ base station

116‧‧‧空中介面116‧‧‧Intermediate mediation

118‧‧‧處理器118‧‧‧Processor

120‧‧‧收發器120‧‧‧ transceiver

122‧‧‧傳輸/接收元件122‧‧‧Transmission/receiving components

124‧‧‧揚聲器/麥克風124‧‧‧Speaker/Microphone

126‧‧‧小鍵盤126‧‧‧Keypad

128‧‧‧顯示器/觸控板128‧‧‧Display/Touchpad

130‧‧‧非可移記憶體130‧‧‧ Non-removable memory

132‧‧‧可移記憶體132‧‧‧Removable memory

134‧‧‧電源134‧‧‧Power supply

136‧‧‧全球定位系統(GPS)晶片組136‧‧‧Global Positioning System (GPS) chipset

138‧‧‧其他週邊設備138‧‧‧Other peripheral equipment

160a、160b、160c‧‧‧e節點B160a, 160b, 160c‧‧‧e Node B

162‧‧‧行動性管理實體(MME)162‧‧‧Action Management Entity (MME)

164‧‧‧服務閘道(SGW)164‧‧‧Service Gateway (SGW)

180a、180b、180c‧‧‧gNB180a, 180b, 180c‧‧‧ gNB

182a、182b‧‧‧行動性管理功能(AMF)182a, 182b‧‧‧Action Management Function (AMF)

184a、184b‧‧‧使用者平面功能(UPF)184a, 184b‧‧‧ User Plane Function (UPF)

183a、183b‧‧‧對話管理功能(SMF)183a, 183b‧‧‧Dialog Management Function (SMF)

185a、185b‧‧‧資料網路(DN)185a, 185b‧‧‧ Data Network (DN)

200、400‧‧‧時槽格式200, 400‧‧‧ slot format

201、203‧‧‧波束201, 203‧‧ beam

208‧‧‧同步信號塊(SSB)208‧‧‧Synchronization Signal Block (SSB)

210、218、404、408‧‧‧實體廣播通道(PBCH)210, 218, 404, 408‧‧‧ Physical Broadcast Channel (PBCH)

204、206、212、214‧‧‧傳呼下鏈控制資訊(DCI)204, 206, 212, 214‧‧ ‧ paging underline control information (DCI)

402‧‧‧主同步信號(PSS)402‧‧‧Primary Synchronization Signal (PSS)

406‧‧‧輔同步信號(SSS)406‧‧‧Secondary Synchronization Signal (SSS)

CORESET‧‧‧控制資源集合CORESET‧‧‧Control Resource Collection

PMT‧‧‧傳呼多工類型PMT‧‧‧ paging multiplex type

PO‧‧‧傳呼時機PO‧‧‧ paging time

RMSI‧‧‧剩餘最小系統資訊RMSI‧‧‧Remaining minimum system information

SCS‧‧‧子載波間隔SCS‧‧‧Subcarrier spacing

SSB‧‧‧同步信號塊 SSB‧‧‧ sync signal block

更詳細的理解可以從以下結合附圖舉例給出的描述中得到,其中附圖中的相同元件符號指示的是相同的元件,並且其中: 第1A圖是示出了可以實施所揭露的一個或多個實施例的範例性通信系統的系統圖; 第1B圖是示出了根據一實施例的可以在第1A圖所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 第1C圖是示出了根據一實施例的可以在第1A圖所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖; 第1D圖是示出了根據一實施例的可以在第1A圖所示的通信系統內使用的另一範例性RAN以及另一範例性CN的系統圖; 第2圖是包括被分頻多工(FDM)的傳呼下鏈控制資訊(DCI)以及同步信號塊(SSB)的範例性時槽格式的方塊圖; 第3圖是包括被FDM的傳呼DCI以及SSB的範例性時槽格式的方塊圖; 第4圖是包括與SSB進行分時多工(TDM)的傳呼時機(PO)的另一個範例性時槽格式的方塊圖; 第5圖是包括與SSB進行TDM的DCI以及PO的另一個範例性時槽格式的方塊圖; 第6圖是包括利用跳頻以與SSB進行TDM的DCI以及PO的另一個範例性時槽格式的方塊圖; 第7圖用於範例性傳呼排程的資源格式,其中PO是通過具有大小為2個符號的微時槽的四個波束的掃描定義的; 第8圖是用於範例性傳呼排程的資源格式,其中PO是通過具有分別包括兩個正交分頻多工(OFDM)符號的微時槽格式的四個波束的掃描定義的; 第9圖是用於範例性傳呼排程的資源格式,其中PO是一起被掃描的; 第10圖是用於範例性傳呼排程的資源格式; 第11圖是範例性傳呼波束選擇過程的流程圖; 第12圖是PO期間的範例性傳呼多工格式的訊息傳遞圖; 第13圖是PO期間的範例性傳呼多工格式的訊息傳遞圖; 第14圖是用於PO配置的範例性多工圖樣(pattern)1,其中傳呼控制資源集合(CORESET)與同步信號/實體廣播通道(SS/PBCH)塊進行TDM; 第15圖是用於PO配置的另一範例性多工圖樣1,其中傳呼CORESET與SS/PBCH塊進行TDM; 第16圖是用於PO配置的另一範例性多工圖樣1,其中傳呼CORESET與SS/PBCH塊進行TDM; 第17圖是用於PO配置的另一範例性多工圖樣1,其中傳呼CORESET與SS/PBCH塊進行TDM; 第18圖是用於PO配置的範例性多工圖樣3,其中傳呼CORESET與SS/PBCH塊進行FDM; 第19圖是用於PO配置的範例性多工圖樣3,其中傳呼CORESET與SS/PBCH塊進行FDM; 第20圖是範例性PO配置的傳訊圖;以及 第21圖是範例性PO配置的傳訊圖。A more detailed understanding can be obtained from the following description taken in conjunction with the accompanying drawings, wherein the same reference numerals are used to refer to the same elements, and wherein: FIG. 1A is a diagram showing that one or System diagram of an exemplary communication system of various embodiments; FIG. 1B is a diagram showing an exemplary wireless transmit/receive unit (WTRU) system that can be used within the communication system shown in FIG. 1A, in accordance with an embodiment. 1C is a system diagram showing an exemplary Radio Access Network (RAN) and an exemplary Core Network (CN) that can be used within the communication system shown in FIG. 1A, in accordance with an embodiment; 1D is a system diagram showing another exemplary RAN and another exemplary CN that can be used in the communication system shown in FIG. 1A according to an embodiment; FIG. 2 is a diagram including frequency division multiplexing (FDM) paging downlink control information (DCI) and block diagram of the exemplary time slot format of the synchronization signal block (SSB); Figure 3 is a block diagram of an exemplary time slot format including the paging DCI of the FDM and the SSB Figure 4 is included with SSB Block diagram of another exemplary time slot format for paging time division multiplexing (TDM) paging time; Figure 5 is a block diagram of another exemplary time slot format including DCI for TDM with SSB and PO Figure 6 is a block diagram of another exemplary time slot format including DCI and PO for frequency hopping with SSB; Figure 7 is a resource format for exemplary paging schedule, where PO is by size Defined for scanning of four beams of two-symbol micro-time slots; Figure 8 is a resource format for exemplary paging scheduling, where PO is passed by having two orthogonal frequency division multiplexing (OFDM) The scan of the four beams of the symbol's micro-slot format is defined; Figure 9 is a resource format for an exemplary paging schedule in which POs are scanned together; Figure 10 is for exemplary paging schedules Resource format; Figure 11 is a flowchart of an exemplary paging beam selection process; Figure 12 is a message delivery diagram of an exemplary paging multiplex format during PO; Figure 13 is an exemplary paging multiplex format message during PO Transfer diagram; Figure 14 is for PO assignment An exemplary multiplex pattern 1, in which a paging control resource set (CORESET) and a sync signal/physical broadcast channel (SS/PBCH) block are TDM; FIG. 15 is another exemplary multiplex for PO configuration Figure 1, where the paging CORESET and the SS/PBCH block are TDM; Figure 16 is another exemplary multiplex pattern 1 for PO configuration, where the paging CORESET and the SS/PBCH block are TDM; Figure 17 is for the PO Another exemplary multiplex pattern 1 configured, wherein the paging CORESET and the SS/PBCH block are TDM; FIG. 18 is an exemplary multiplex pattern 3 for PO configuration, wherein the paging CORESET and the SS/PBCH block are FDM; Figure 19 is an exemplary multiplex pattern 3 for PO configuration, where the paging CORESET and SS/PBCH blocks are FDM; Figure 20 is a diagram of an exemplary PO configuration; and Figure 21 is a diagram of an exemplary PO configuration. .

Claims (20)

一種被配置為支援多波束通信以及執行傳呼監控的無線傳輸/接收單元(WTRU),該WTRU包括: 一接收器,被配置為接收用於增強型傳呼的一配置; 一處理器,被配置為: 確定用於一同步信號塊(SSB)的一第一子載波間隔(SCS)以及用於一傳呼接收的一第二SCS; 基於該第一SCS以及該第二SCS來確定一傳呼多工類型(PMT),其中在該第一SCS以及該第二SCS不同的情況下,該PMT被確定為是一第一類型,以及在該第一SCS以及該第二SCS相同的情況下,該PMT被確定為是一第二類型; 基於所確定的PMT來確定一傳呼控制資源集合(CORESET)、一傳呼訊息以及該SSB之間的一波束、時間及頻率關係;以及 該接收器被配置為基於所確定的波束、時間及頻率關係以針對該傳呼訊息而在一傳呼時機(PO)的一個或多個波束中監控該PO。A wireless transmit/receive unit (WTRU) configured to support multi-beam communication and perform paging monitoring, the WTRU comprising: a receiver configured to receive a configuration for enhanced paging; a processor configured to Determining a first subcarrier spacing (SCS) for a synchronization signal block (SSB) and a second SCS for a paging reception; determining a paging multiplex type based on the first SCS and the second SCS (PMT), wherein in the case where the first SCS and the second SCS are different, the PMT is determined to be a first type, and in the case where the first SCS and the second SCS are the same, the PMT is Determining to be a second type; determining a paging control resource set (CORESET), a paging message, and a beam, time, and frequency relationship between the SSBs based on the determined PMT; and the receiver is configured to be based on The determined beam, time, and frequency relationship is used to monitor the PO in one or more beams of a paging occasion (PO) for the paging message. 如申請專利範圍第1項所述的WTRU,其中在該PMT被確定為是該第一類型的情況下,該波束、時間及頻率關係包括:該傳呼CORESET與該傳呼訊息進行分時多工(TDM)、該傳呼訊息在與該SSB的一相同時槽中被時間對準、以及該傳呼訊息與該SSB進行分頻多工(FDM)。The WTRU as claimed in claim 1, wherein in the case where the PMT is determined to be the first type, the beam, time, and frequency relationship includes: the paging CORESET and the paging message perform time division multiplexing ( TDM), the paging message is time aligned in a same time slot as the SSB, and the paging message is frequency division multiplexed (FDM) with the SSB. 如申請專利範圍第2項所述的WTRU,其中該傳呼CORESET是使用一重複波束而與該傳呼訊息進行TDM,導致該PO的每波束兩傳輸。The WTRU as claimed in claim 2, wherein the paging CORESET uses a repeating beam to perform TDM with the paging message, resulting in two transmissions per beam of the PO. 如申請專利範圍第1項所述的WTRU,其中在該PMT被確定為是該第二類型的情況下,該波束、時間及頻率關係包括:該傳呼CORESET與該傳呼訊息進行分時多工(TDM)、該傳呼CORESET以及該傳呼訊息在與該SSB的一相同時槽中被時間對準、以及該傳呼CORESET以及該傳呼訊息與該SSB進行分頻多工(FDM)。The WTRU as claimed in claim 1, wherein in the case where the PMT is determined to be the second type, the beam, time, and frequency relationship includes: the paging CORESET and the paging message perform time division multiplexing ( TDM), the paging CORESET, and the paging message are time aligned in a same time slot as the SSB, and the paging CORESET and the paging message are frequency division multiplexed (FDM) with the SSB. 如申請專利範圍第4項所述的WTRU,其中該傳呼CORESET在不使用一重複波束下與該傳呼訊息進行TDM,導致該PO的每波束一傳輸。The WTRU as claimed in claim 4, wherein the paging CORESET performs TDM with the paging message without using a repeating beam, resulting in one transmission per beam of the PO. 如申請專利範圍第1項所述的WTRU,其中: 該接收器進一步被配置為針對一傳呼下鏈控制資訊(DCI)監控該PO,其中該傳呼DCI包括關於該傳呼訊息的一排程資訊。The WTRU as claimed in claim 1, wherein: the receiver is further configured to monitor the PO for a paging downlink control information (DCI), wherein the paging DCI includes a schedule information about the paging message. 如申請專利範圍第1項所述的WTRU,其中: 該接收器進一步被配置為從一gNB接收該傳呼CORESET。The WTRU of claim 1, wherein: the receiver is further configured to receive the paging CORESET from a gNB. 如申請專利範圍第1項所述的WTRU,其中: 該接收器進一步被配置為從一gNB接收關於用於傳呼的一多工類型是分時多工(TDM)、分頻多工(FDM)、或是混合TDM及FDM的一指示。The WTRU as claimed in claim 1, wherein: the receiver is further configured to receive from a gNB that a multiplex type for paging is time division multiplexing (TDM), frequency division multiplexing (FDM) Or an indication of mixing TDM and FDM. 如申請專利範圍第1項所述的WTRU,其中該PO包括以下的至少一者:時槽、非時槽、子訊框或正交分頻多工(OFDM)符號。The WTRU as claimed in claim 1, wherein the PO comprises at least one of: a time slot, a non-time slot, a subframe, or an orthogonal frequency division multiplexing (OFDM) symbol. 如申請專利範圍第1項所述的WTRU,被配置為在一空閒模式下使用不連續接收(DRX)來進行操作、以及在該PO期間喚醒以執行該傳呼監控。The WTRU as described in claim 1 is configured to operate using discontinuous reception (DRX) in an idle mode and wake up during the PO to perform the paging monitoring. 一種由被配置為支援多波束通信的一無線傳輸/接收單元(WTRU)執行的傳呼監控的方法,該方法包括: 接收用於增強型傳呼的一配置; 確定用於一同步信號塊(SSB)的一第一子載波間隔(SCS)以及用於一傳呼接收的一第二SCS; 基於該第一SCS以及該第二SCS來確定一傳呼多工類型(PMT),其中在該第一SCS以及該第二SCS不同的情況下,該PMT被確定為是一第一類型,以及在該第一SCS以及該第二SCS相同的情況下,該PMT被確定為是一第二類型; 基於所確定的PMT來確定一傳呼控制資源集合(CORESET)、一傳呼訊息以及該SSB之間的一波束、時間以及頻率關係;以及 基於所確定的波束、時間及頻率關係以針對該傳呼訊息而在一傳呼時機(PO)的一個或多個波束中監控該PO。A method of paging monitoring performed by a wireless transmit/receive unit (WTRU) configured to support multi-beam communication, the method comprising: receiving a configuration for enhanced paging; determining for a synchronization signal block (SSB) a first subcarrier spacing (SCS) and a second SCS for a paging reception; determining a paging multiplex type (PMT) based on the first SCS and the second SCS, wherein the first SCS and In the case where the second SCS is different, the PMT is determined to be a first type, and in the case that the first SCS and the second SCS are the same, the PMT is determined to be a second type; PMT to determine a paging control resource set (CORESET), a paging message, and a beam, time, and frequency relationship between the SSBs; and based on the determined beam, time, and frequency relationship for a paging message for the paging message The PO is monitored in one or more beams of the opportunity (PO). 如申請專利範圍第11項所述的方法,其中在該PMT被確定為是該第一類型的情況下,該波束、時間及頻率關係包括:該傳呼CORESET與該傳呼訊息進行分時多工(TDM)、該傳呼訊息在與該SSB的一相同時槽中被時間對準、以及該傳呼訊息與該SSB進行分頻多工(FDM)。The method of claim 11, wherein in the case where the PMT is determined to be the first type, the beam, time, and frequency relationship includes: the paging CORESET and the paging message are time-multiplexed ( TDM), the paging message is time aligned in a same time slot as the SSB, and the paging message is frequency division multiplexed (FDM) with the SSB. 如申請專利範圍第12項所述的方法,其中該傳呼CORESET是使用一重複波束而與該傳呼訊息進行TDM,導致該PO的每波束兩傳輸。The method of claim 12, wherein the paging CORESET uses a repeating beam to perform TDM with the paging message, resulting in two transmissions per beam of the PO. 如申請專利範圍第11項所述的方法,其中在該PMT被確定為是該第二類型的情況下,該波束、時間及頻率關係包括:該傳呼CORESET與該傳呼訊息進行分時多工(TDM)、該傳呼CORESET以及該傳呼訊息在與該SSB的一相同時槽中被時間對準、以及該傳呼CORESET以及該傳呼訊息與該SSB進行分頻多工(FDM)。The method of claim 11, wherein in the case where the PMT is determined to be the second type, the beam, time, and frequency relationship includes: the paging CORESET and the paging message are time-multiplexed ( TDM), the paging CORESET, and the paging message are time aligned in a same time slot as the SSB, and the paging CORESET and the paging message are frequency division multiplexed (FDM) with the SSB. 如申請專利範圍第14項所述的方法,其中該傳呼CORESET在不使用一重複波束的情況下與該傳呼訊息進行TDM,導致該PO的每波束一傳輸。The method of claim 14, wherein the paging CORESET performs TDM with the paging message without using a repeating beam, resulting in one transmission per beam of the PO. 如申請專利範圍第11項所述的方法,進一步包括: 針對一傳呼下鏈控制資訊(DCI)監控該PO,其中該傳呼DCI包括關於該傳呼訊息的一排程資訊。The method of claim 11, further comprising: monitoring the PO for a paging downlink control information (DCI), wherein the paging DCI includes a schedule information about the paging message. 如申請專利範圍第11項所述的方法,進一步包括: 從一gNB接收該傳呼CORESET。The method of claim 11, further comprising: receiving the paging CORESET from a gNB. 如申請專利範圍第11項所述的方法,進一步包括: 從一gNB接收關於用於傳呼的一多工類型是分時多工(TDM)、分頻多工(FDM)或是混合TDM及FDM的一指示。The method of claim 11, further comprising: receiving, from a gNB, a multiplex type for paging is time division multiplexing (TDM), frequency division multiplexing (FDM), or hybrid TDM and FDM. An indication. 如申請專利範圍第11項所述的方法,其中該PO包括以下的至少一者:時槽、非時槽、子訊框或正交分頻多工(OFDM)符號。The method of claim 11, wherein the PO comprises at least one of: a time slot, a non-time slot, a subframe, or an orthogonal frequency division multiplexing (OFDM) symbol. 如申請專利範圍第11項所述的方法,進一步包括: 在一空閒模式下使用不連續接收(DRX),以及在該PO期間喚醒以執行該傳呼監控。The method of claim 11, further comprising: using discontinuous reception (DRX) in an idle mode, and waking up during the PO to perform the paging monitoring.
TW107140569A 2017-11-15 2018-11-15 Apparatus and systems for paging and L1 mobility in NR TW201933817A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762586513P 2017-11-15 2017-11-15
US62/586513 2017-11-15
US201862652809P 2018-04-04 2018-04-04
US62/652809 2018-04-04

Publications (1)

Publication Number Publication Date
TW201933817A true TW201933817A (en) 2019-08-16

Family

ID=64604733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140569A TW201933817A (en) 2017-11-15 2018-11-15 Apparatus and systems for paging and L1 mobility in NR

Country Status (2)

Country Link
TW (1) TW201933817A (en)
WO (1) WO2019099661A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757467B (en) 2017-12-12 2024-02-02 Oppo广东移动通信有限公司 Method and device for determining paging time and computer storage medium
US10945286B2 (en) 2018-08-03 2021-03-09 Qualcomm Incorporated Beam-specific system information scheduling window design
US11582733B2 (en) 2019-06-19 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block repetition
KR20210020384A (en) * 2019-08-14 2021-02-24 삼성전자주식회사 Method and apparatus for transmitting and receiving paging for multi-SIM UE in the next generation wireless communication systems
WO2021033952A1 (en) 2019-08-16 2021-02-25 엘지전자 주식회사 Method and device for transmitting and receiving wireless signal in wireless communication system
KR102438711B1 (en) * 2019-09-19 2022-08-31 엘지전자 주식회사 A method for transmitting and receiving signals in a wireless communication system and an apparatus supporting the same
US11979852B2 (en) * 2019-11-07 2024-05-07 Qualcomm Incorporated Paging indication for communicating a paging control channel
CN114615726B (en) * 2019-11-18 2023-09-05 Oppo广东移动通信有限公司 Wireless communication method and device
US20230007625A1 (en) * 2019-12-10 2023-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Paging a User Equipment by a Network Node
US11968634B2 (en) * 2020-04-24 2024-04-23 Qualcomm Incorporated Synchronization signal block (SSB) in full-duplex
US20210337489A1 (en) * 2020-04-24 2021-10-28 Qualcomm Incorporated Synchronization signal block (ssb) in full-duplex
US20230189147A1 (en) * 2020-05-14 2023-06-15 Interdigital Patent Holdings, Inc. Wtru power saving associated with idle mode
KR20210157262A (en) * 2020-06-19 2021-12-28 삼성전자주식회사 Apparatus and method for performing a paging in wireless communication system
US11943740B2 (en) * 2020-06-26 2024-03-26 Qualcomm Incorporated Methods and apparatus for repetition of paging and paging DCI
KR20220008676A (en) * 2020-07-14 2022-01-21 삼성전자주식회사 Method and apparatus for transmitting and receving paging in wireless communication system
US11653329B2 (en) 2020-07-16 2023-05-16 Qualcomm Incorporated Beam-specific page monitoring
WO2022027258A1 (en) * 2020-08-04 2022-02-10 北京小米移动软件有限公司 Paging packet configuration method and apparatus, paging detection method and apparatus, access network device, and terminal
KR20220021049A (en) * 2020-08-12 2022-02-22 삼성전자주식회사 Electronic device for receiving paging message and method for operating thereof
KR20230067615A (en) * 2020-09-15 2023-05-16 삼성전자주식회사 Method and apparatus for transmitting and receiving paging in a wireless communication system
US20230300789A1 (en) * 2020-10-23 2023-09-21 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
US20240147544A1 (en) * 2021-05-28 2024-05-02 Qualcomm Incorporated Nr air-to-ground signaling enhancement for initial access with multiple numerologies or waveforms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756564B (en) * 2013-10-16 2019-01-11 华为技术有限公司 A kind of method, apparatus and system for sending, receiving paging message
CN114978453A (en) * 2015-08-25 2022-08-30 Idac控股公司 Framing, scheduling and synchronization in a wireless system

Also Published As

Publication number Publication date
WO2019099661A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
TW201933817A (en) Apparatus and systems for paging and L1 mobility in NR
CN115087100B (en) Method and apparatus for paging procedure in New Radio (NR)
KR102401700B1 (en) New wireless LAN access in beamforming system
CN112740818B (en) Receiver-assisted transmission in NRU
CN110679186B (en) Beamformed paging transmission
TWI696373B (en) Efficient utilization of ssbs in new radio systems
TWI706685B (en) Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)
TW201939913A (en) Synchronization signal and paging for new radio-unlicensed (NR-U) band communications
US20200053781A1 (en) Ss block methods and procedures for nr-u
TW201937973A (en) Physical random access
TW201843950A (en) Beam-based pdcch transmission in nr
TW201828667A (en) Receiver bandwidth adaptation
TWI748365B (en) Systems and methods for multi-ap transmission with uniform coverage
CN112369081A (en) Wireless Transmit Receive Unit (WTRU) reachability
TW201937971A (en) Methods and apparatuses for Non-Orthogonal Multiple Access
JP2022521331A (en) Wake-up signal for power saving
TW201907686A (en) Synchronization signal multiplexing and mappings in nr
TW202037210A (en) Sidelink synchronization methods for v2x in nr
TW202209917A (en) Wtru power saving associated with idle mode
CN116250306A (en) Paging for highly directional systems
CN118216189A (en) Methods and apparatus for RRM measurement and paging reliability using low power wake-up receiver for wireless systems
WO2024030989A1 (en) Wtru reachability in energy saving networks
CN118354428A (en) Method and apparatus for paging procedure in New Radio (NR)
CN116982365A (en) Method and apparatus for power saving enhancement of paging procedure in cellular system