TW202037204A - 減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況 - Google Patents

減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況 Download PDF

Info

Publication number
TW202037204A
TW202037204A TW108140412A TW108140412A TW202037204A TW 202037204 A TW202037204 A TW 202037204A TW 108140412 A TW108140412 A TW 108140412A TW 108140412 A TW108140412 A TW 108140412A TW 202037204 A TW202037204 A TW 202037204A
Authority
TW
Taiwan
Prior art keywords
measurement result
transmission power
power
threshold
antenna
Prior art date
Application number
TW108140412A
Other languages
English (en)
Other versions
TWI753319B (zh
Inventor
馬博德 莫菲德
阿里德 寇斯魯德
福岡吉郎
艾拉 伯恰克徹
麥克 柯爾曼
史帝芬 瓊斯
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202037204A publication Critical patent/TW202037204A/zh
Application granted granted Critical
Publication of TWI753319B publication Critical patent/TWI753319B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本揭示內容的一個態樣中,提供了一種方法、電腦可讀取媒體和裝置。該裝置可以包括記憶體以及耦合到記憶體的至少一個處理器。至少一個處理器可以被配置為:決定與由通訊設備對一或多個封包的重傳相關聯的重傳速率。至少一個處理器可以被配置為:決定與該裝置的至少一個天線的天線增益相關聯的量測結果。至少一個處理器可以被配置為:基於重傳速率以及基於量測結果,來調整該裝置的傳輸功率。

Description

減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況
本申請案主張以下申請案的權益:於2018年12月7日提出申請的並且標題為「MITIGATING SPECTRAL EMISSION CONDITIONS FOR HIGH TRANSMISSION OUTPUT POWER DURING DEGRADED ANTENNA PEAK GAIN」的美國臨時申請案第62/776,891號、以及於2019年8月12日提出申請的並且標題為「MITIGATING SPECTRAL EMISSION CONDITIONS FOR HIGH TRANSMISSION OUTPUT POWER DURING DEGRADED ANTENNA PEAK GAIN」的美國專利申請案第16/538,533號,這兩個申請案的全部內容藉由引用方式明確地併入本文。
大體而言,本揭示內容關於通訊系統,並且更特定地,本揭示內容關於調整發送設備的傳輸功率。
無線個人區域網路(WPAN)是用於將以距使用者的特定距離為中心的設備互連的個人短程無線網路。由於WPAN所提供的連接性的靈活性和便利性,WPAN已經得以普及。WPAN(諸如基於短程無線通訊協定的彼等WPAN)藉由提供允許在特定距離(例如,5米、10米、20米、100米等)內的連接性的無線鏈路,來提供到設備的無線連線性。
短程無線通訊協定可以包括藍芽® (BT)協定、藍芽® 低能(BLE)協定、Zigbee® 協定等。BT是一種無線技術標準,其利用在全球公認的工業、科學和醫療(ISM)頻帶(例如,從2.400千兆赫(GHz)到2.485 GHz)中的特高頻(UHF)無線電波來實現射頻通訊。類似地,BLE定義了一種實現在2.4 GHz ISM頻帶內進行操作的射頻通訊的標準。
短程無線通訊協定可以用於經由WPAN將設備進行連接。可以在WPAN上進行通訊的設備的實例可以包括膝上型電腦、平板電腦、智慧型電話、個人資料助理、音訊系統(例如,耳麥、耳機、揚聲器等)、可穿戴設備(例如,智慧手錶、健身追蹤器)、在各種醫療、工業、消費者和健身應用中的電池供電的感測器和致動器等等。
在一些場景中,與其他網路類型(諸如無線區域網路(WLAN))相比,WPAN可以提供優點和便利性。然而,在WPAN中的短程無線通訊可能容易受到與在其他無線網路中的通訊相同或類似的問題的影響。例如,當諸如人體之類的物體阻擋發射器和接收器之間的路徑時,短程無線通訊可能經歷品質降級。短程無線通訊所經歷的此類問題可能使設備的效能降級,可能使使用者體驗降級等等。因此,需要一種用於解決在短程無線通訊中的被遮擋的通訊路徑的方法。
下文提供了一或多個態樣的簡化概述,以便提供對此種態樣的基本理解。該概述不是對所有預期態樣的詳盡綜述,而且既不意欲標識所有態樣的關鍵或重要元素,亦不意欲圖示任何或所有態樣的範圍。其唯一目的是以簡化的形式提供一或多個態樣的一些概念,作為稍後提供的更加詳細的描述的前序。
用於與無線個人區域網路(WPAN)一起使用的各種標準和協定(諸如藍芽® (BT)及/或藍芽® 低能(BLE))定義了設備可以如何進行操作。例如,BT和BLE標準和協定可以定義設備要在其中進行通訊的頻譜以及最大傳輸功率,其中設備可以以最大傳輸功率進行發送以便減少對在該頻譜或附近頻譜中操作的其他設備的干擾。
諸如BT無線耳麥之類的接收設備可以從諸如智慧型電話或個人媒體播放機之類的發送設備接收封包。當發送設備接近吸收性身體時,諸如當發送設備被放置在使用者的口袋中時,射頻(RF)鏈路餘量可能由於各種問題而降級。例如,RF能量在被發送時可能被人體組織吸收,這可能是特別成問題的,因為BT在其中操作的頻譜(包括2400兆赫(MHz)到2483.5 MHz以及從2402 MHz到2480 MHz進行通道化)被人體組織高度吸收。另外,諸如當通訊鏈路跨使用者的身體時,人體可能屏蔽RF能量。此外,與自由空間或開放空間相比,來自發送設備的天線輻射模式可能降級,從而導致峰值天線增益降低。最後,設備的天線匹配可能經歷失諧,這可能導致天線失配和相對較高的電壓駐波比(VSWR)。
前述問題中的一或多個問題以及其他潛在問題可能使接收設備處的信號強度惡化及/或共同使其降低。除了對發送設備的遮擋之外,接收設備亦可能類似地被阻擋(諸如,當耳麥被使用者的頭部及/或耳朵阻擋時),從而進一步降低了接收設備所獲取的信號強度。因此,封包串流可能變得降級。例如,在先進音訊分發簡檔(A2DP)鏈路上的音訊可能對於使用者聽起來是「不連貫的」(例如,當發送設備被放置在使用者的口袋中時)。由發送設備及/或接收設備被使用者身體的遮擋所引起的一或多個問題可以被統稱為「跨身體」問題。「跨身體」問題的實例可以是,當智慧型電話位於使用者的口袋中而所連接的耳麥位於使用者的耳朵中時可能造成A2DP音訊品質降級。本揭示內容可以提供用於減輕信號強度及/或品質的降低的各種技術和方法,該信號強度及/或品質的降低可以是與發送設備及/或接收設備與使用者的身體的相對緊密接近度相稱的。
在本揭示內容的一個態樣中,提供了一種方法、電腦可讀取媒體和裝置。該裝置可以包括記憶體以及耦合到該記憶體的至少一個處理器。該至少一個處理器可以被配置為:決定與由該通訊設備對一或多個封包的重傳相關聯的重傳速率。該至少一個處理器可以被配置為:決定與該裝置的至少一個天線的天線增益相關聯的量測結果。該至少一個處理器可以被配置為:基於該重傳速率以及基於該量測結果,來調整該裝置的傳輸功率。
在一個態樣中,與該天線增益相關聯的該量測結果可以是VSWR量測結果或指示反射RF功率的分貝(dB)量測結果中的至少一項。在一個態樣中,該重傳速率可以是基於由該裝置重傳的該一或多個封包的數量或者基於所接收的針對該一或多個封包的該重傳的請求的數量來決定的。
在一個態樣中,該至少一個處理器可以被配置為:藉由當該重傳速率滿足第一閥值時並且當該量測結果滿足第二閥值時增加該裝置的該傳輸功率,來調整該傳輸功率,以及增加後的傳輸功率可以超過基於相鄰通道功率(ACP)標準來為該裝置配置的閥值傳輸功率。類似地,該至少一個處理器可以被配置為:藉由當該重傳速率未能滿足第一閥值時及/或當該量測結果未能滿足第二閥值時減小該裝置的該傳輸功率,來調整該傳輸功率,以及減小後的傳輸功率可以是從超過基於ACP標準來為該裝置配置的閥值傳輸功率的增加後的傳輸功率來減小的。
在一個態樣中,該裝置可以包括功率偵測電路,其被配置為偵測該量測結果。該至少一個處理器可以被配置為基於將該功率偵測電路啟動以用於對該量測結果的該偵測來決定該量測結果。此外,該至少一個處理器可以被配置為基於在所偵測到的量測結果和經調整的傳輸功率之間的對應關係來調整該傳輸功率。
在一個態樣中,該裝置可以包括接收器電路,其被配置為經由該裝置的該至少一個天線來偵測反射信號。該至少一個處理器可以被配置為基於該反射信號來決定該量測結果。此外,該至少一個處理器可以被配置為基於與該反射信號相關聯的差分誤差向量幅度(DEVM)或ACP中的至少一項來調整該傳輸功率。
在一個態樣中,該裝置可以包括比較器電路,其被配置為偵測該量測結果以及被配置為當所偵測到的量測結果滿足第一閥值時將衰減器去啟動。當該重傳速率滿足該第一閥值時,該至少一個處理器可以被配置為:基於將該比較器電路啟動以用於對該量測結果的該偵測以及對該衰減器的該去啟動,來決定該量測結果以及調整該傳輸功率。
在一個態樣中,該裝置可以包括比較器電路,其被配置為偵測該量測結果以及被配置為當所偵測到的量測結果滿足第一閥值時,增加與該至少一個天線連接的外部功率放大器的增益。當該重傳速率滿足第二閥值時,該至少一個處理器可以被配置為:基於將該比較器電路啟動以用於對該量測結果的該偵測以及對該外部功率放大器的該增益的該增加,來決定該量測結果以及調整該傳輸功率。
在一個態樣中,該裝置亦可以包括:與接收鏈相關聯的至少一個其他天線,該接收鏈不同於與該至少一個天線相關聯的發射鏈。該至少一個處理器可以被配置為:基於經由該至少一個其他天線所偵測到的反射信號來決定該量測結果。
為了實現前述和相關目的,一或多個態樣包括下文中充分描述並且在請求項中特別指出的特徵。以下描述和附圖詳細地闡述了一或多個態樣的某些說明性特徵。然而,該等特徵指示可以採用各個態樣的原理的各種方式中的僅一些方式,並且該描述意欲包括所有此種態樣以及其均等物。
下文結合附圖闡述的詳細描述意欲作為各種配置的描述,而並非意欲表示可以在其中實踐本文所描述的概念的僅有配置。為了提供對各個概念的透徹理解,詳細描述包括具體細節。然而,對於本領域技藝人士將顯而易見的是,可以在沒有該等具體細節的情況下實踐該等概念。在一些實例中,以方塊圖形式圖示熟知的結構和部件,以便避免模糊此種概念。
現在將參照各種裝置和方法來提供電信系統的若干態樣。將藉由各個方塊、部件、電路、過程、演算法等(被統稱為「元素」),在以下的詳細描述中描述並且在附圖中示出該等裝置和方法。該等元素可以使用電子硬體、電腦軟體或其任意組合來實現。至於該等元素是實現為硬體還是軟體,取決於特定的應用和對整個系統所施加的設計約束。
舉例而言,可以將元素、或元素的任何部分、或元素的任意組合實現為「處理系統」,其包括一或多個處理器。處理器的實例包括:微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位訊號處理器(DSP)、精簡指令集運算(RISC)處理器、片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路、以及被配置為執行貫穿本揭示內容描述的各種功能的其他合適的硬體。處理系統中的一或多個處理器可以執行軟體。無論被稱為軟體、韌體、仲介軟體、微代碼、硬體描述語言還是其他名稱,軟體皆應當被廣義地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體部件、應用、軟體應用、套裝軟體、常式、子常式、物件、可執行檔、執行的執行緒、程序、函數等。
相應地,在一或多個示例配置中,可以用硬體、軟體或其任意組合來實現所描述的功能。若用軟體來實現,則該等功能可以儲存在電腦可讀取媒體上或編碼為電腦可讀取媒體上的一或多個指令或代碼。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是能夠由電腦存取的任何可用媒體。藉由舉例而非限制的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁儲存設備、上述類型的電腦可讀取媒體的組合、或者能夠用於儲存能夠由電腦存取的具有指令或資料結構形式的電腦可執行代碼的任何其他媒體。
圖1A示出根據本揭示內容的某些態樣的示例無線個人區域網路(WPAN)100。在WPAN 100內,源設備102(例如,無線發送設備)可以使用通訊鏈路116以使用短程無線通訊協定與槽設備112(例如,無線接收設備)進行通訊。說明性地,短程無線通訊協定可以包括藍芽® (BT)協定或BT低能(BLE)協定。
儘管本揭示內容可能在經由BT及/或BLE實現的WPAN的上下文中描述了各個態樣,但是本揭示內容並不限於WPAN、BT及/或BLE。本文描述的各個態樣可以適用於多種不同的技術。例如,本揭示內容的概念可以適用於任何短程無線電/無線技術,諸如Wi-Fi直連、紅外無線(IrDA)、超寬頻(UMB)、感應無線、ZigBee等。另外,本揭示內容的態樣可以應用於無線區域網路(WLAN)中,諸如與基於網際網路協定(IP)的WLAN語音(VoIP)一起應用。在另一實例中,本揭示內容的各態樣可以應用於蜂巢網路中,諸如與長期進化(LTE)無線電存取技術(RAT)及/或第五代(5G)新無線電(NR)RAT一起應用。
源設備102的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、行動站(STA)、膝上型電腦、個人電腦(PC)、桌上型電腦、個人數位助理(PDA)、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、相機、遊戲控制台、平板設備、智慧設備、可穿戴設備(例如,智慧手錶)、車輛、電錶、氣泵、烤箱、恒溫器、助聽器、無線耳麥(包括無線耳機)、醫療感測器、血糖在體單元、物聯網路(IoT)設備或任何其他功能相似的設備。
槽設備112的實例包括蜂巢式電話、智慧型電話、SIP電話、STA、膝上型電腦、PC、桌上型電腦、PDA、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、相機、遊戲控制台、平板設備、智慧設備、可穿戴設備(例如,智慧手錶)、車輛、電錶、氣泵、烤麵包機、恒溫器、助聽器、無線耳麥(包括無線耳機)、醫療感測器、血糖在體單元、IoT設備或任何其他功能相似的設備。儘管源設備102被示為與WPAN 100中的一個槽設備112進行通訊,但是在不脫離本揭示內容的範圍的情況下,源設備102可以與WPAN 100內的更多的周邊設備進行通訊。
根據各種配置,設備可以根據一或多個無線電模式進行操作。例如,源設備102可以被配置為實現BT協定,並且因此可以根據諸如基本速率(BR)/增強資料速率(EDR)之類的一種無線電模式進行操作。在另一實例中,源設備102可以被配置為實現BLE協定,並且因此可以根據BLE無線電模式進行操作。在一些態樣中,設備(例如,源設備102)可以被配置有雙無線電模式,並且因此能夠根據BR/EDR模式和BLE模式進行操作。例如,基於設備可能參與的短程無線通訊的類型,該設備可以在不同的時間處根據BR/EDR模式或BLE模式進行操作。
說明性地,設備可以根據BR/EDR模式進行操作,以用於對資料(例如,音訊資料)的連續串流、廣播網路、網狀網路及/或其中相對較高的資料速率可能是更合適的一些其他應用。然而,設備可以根據BLE模式進行操作,以用於短脈衝資料傳輸及/或其中功率節省可能是期望的(例如,以及相對較低的資料速率可以是可接受的)一些其他應用。在其他態樣中,設備可以根據一或多個其他無線電模式進行操作,包括專有無線電模式(例如,高速無線電模式、低能無線電模式、等時無線電模式等)。
短程無線通訊協定(例如,BT及/或BLE)可以包括及/或可以使用一或多個其他通訊協定,諸如在建立和維護通訊鏈路時。如圖所示,源設備102可以根據用於短程無線通訊的至少一種通訊協定來與槽設備112建立通訊鏈路116。
通訊鏈路116可以包括遵循與BT或BLE一起包括的及/或用於與其一起使用的協定的鏈路。在一個態樣中,通訊鏈路116可以包括非同步無連接(ACL)鏈路。利用ACL,源設備102可以與第二設備(例如,槽設備112)進行連接(或者在BT規範的術語中,稱為「配對」)。該連接是非同步的,因為兩個設備可以不需要在時間方面在彼此之間同步資料通訊來允許經由通訊鏈路116傳送資料封包。
在一個態樣中,通訊鏈路116可以包括先進音訊分發簡檔(A2DP)鏈路。A2DP鏈路提供在源設備(例如,源設備102)和槽設備(例如,槽設備112)之間的點對點鏈路。利用A2DP鏈路,可以在ACL資料通道上發送包括音訊的資料封包,並且可以在單獨的控制通道上發送其他資訊(例如,用於控制音訊串流)。資料封包(例如,包括音訊)可以非週期性地發生。
EDR可以支援A2DP,例如,BT EDR可以支援BT A2DP。EDR可以包括兩種調制方案。一種調制方案可以是π/4雙極化正交移相鍵控(DPQPSK),其可以涉及對兩個不同的QPSK信號的極化多工,以便改進頻譜效率。π/4 DPQPSK調制方案可以用於大約每秒2兆位元(Mbps)的頻寬。另一種調制方案可以是8差分移相鍵控(DPSK)。8DPSK調制方案可以用於大約3 Mbps的頻寬。
在其他態樣中,通訊鏈路116可以支援在源設備102和槽設備112之間的一或多個其他同步邏輯傳輸機制。例如,通訊鏈路116可以包括面向同步連接(SCO)的鏈路、擴展型SCO(eSCO)鏈路或等時(ISO)鏈路。
源設備102可以在通訊鏈路116上發送可以由槽設備112接收的封包。例如,源設備102可以將音訊串流到槽設備112,該音訊由槽設備112的一或多個揚聲器輸出(例如,每個封包可以包括攜帶音訊資料的有效負荷,其中槽設備112被配置為輸出音訊資料)。當源設備102被使用者的身體105遮擋時(例如,當源設備102被放置在使用者的口袋中時),射頻(RF)鏈路餘量可能由於各種問題而降級。例如,RF能量在被發送時可能被身體105(例如,被身體105的組織)吸收,這可能是特別成問題的,因為通訊鏈路116可以在其中進行操作的頻譜可能被人體組織吸收。例如,通訊鏈路116可以包括在從2400兆赫(MHz)到2483.5 MHz的頻譜中操作並且從2402 MHz到2480 MHz被通道化的鏈路,並且使用者的身體105可能對該頻譜中的RF能量具有高度吸收性。
另外,身體105可能屏蔽RF能量,諸如當通訊鏈路跨使用者的身體105時(例如,槽設備112位於使用者的右耳中,而源設備102位於使用者的左口袋中,反之亦然)。此外,來自源設備102的至少一個天線104的輻射模式可能降級,這導致峰值天線增益的降低(例如,與自由空間或開放空間相比)。源設備102的天線匹配(包括至少一個天線104和該至少一個天線中的另一個天線)亦可能經歷失諧,這可能導致天線失配和相對較高的電壓駐波比(VSWR)。
前述問題中的一或多個問題以及其他潛在問題可能使槽設備112處的信號強度惡化及/或共同使其降低。除了(例如,被身體105)遮擋源設備102之外,槽設備112亦可能類似地被阻擋(例如,作為耳麥的槽設備112可能被使用者的身體105的頭部阻擋),從而進一步降低了槽設備112所獲取的信號強度。因此,在通訊鏈路116上的封包串流(例如,音訊串流)可能變得降級。
例如,在A2DP通訊鏈路116上的音訊可能對於使用者聽起來是「不連貫的」(例如,當源設備102被放置在使用者的口袋中並且通訊鏈路116被使用者的身體105阻擋時)。由源設備102及/或槽設備112被使用者身體105的遮擋/阻擋所引起的一或多個問題可以被統稱為「跨身體」問題,例如,當源設備102位於使用者的口袋中而槽設備112位於使用者的耳朵中時的「跨身體」問題可能造成音訊品質降級。本揭示內容可以提供用於減輕信號強度及/或品質的降低的各種技術和方法,該信號強度及/或品質的降低可以是與源設備102及/或槽設備112與使用者的身體105的相對緊密接近度相稱的,使用者的身體105可能對於由源設備102進行的傳輸具有高度吸收性。
由於源設備102可以是在通訊鏈路116上發送給槽設備112的資料封包(例如,A2DP封包)的源,因此一種用於解決由於與吸收性物體(例如,人體)的相對緊密接近度而導致的在通訊鏈路116上的傳輸的RF功率降低的方法是增加源設備102的傳輸功率,以克服由身體105對信號的損失及/或反射。
然而,當增加傳輸功率時,可能會違反帶內遮罩。帶內遮罩可以定義應用於一或多個級別的RF傳輸的一或多條線路,以便藉由約束在帶內頻譜(例如,針對BT的2.400至2.485 GHz、針對Wi-Fi的2.4 GHz、針對Wi-Fi的5 GHz等)之外的過多能量來減少相鄰通道干擾。在BT的上下文中,BT核心規範可以定義諸如用於EDR傳輸的帶內遮罩。
帶內遮罩可以包括相鄰通道功率(ACP)參數。說明性地,用於BT的ACP參數可以由BT特殊興趣組(SIG)規範來定義。ACP功率位準量測結果可以被定義為有效各向同性輻射功率(EIRP),並且因此,可以將設備的天線效能考慮在內,因為該設備的完整RF系統(亦即,無線電單元和天線)決定該設備的總輻射功率以及由此決定雜散發射。
結合設備無線電單元和天線的作用,一或多個因素可能對設備的雜散發射起作用。例如,頻譜再生長可能是由設備RF信號鏈的增益級中的非線性度造成的,並且頻譜再生長可能造成設備違反ACP參數(例如,BT ACP參數)。ACP參數違反可能是由交互調變失真(IMD)造成的,IMD反映了RF部件(例如,增益塊、放大器等)的線性度的度量。ACP參數失效可能是由針對每1 dB的信號增加而增加3 dB的三階IMD(IMD3)幅度(亦即,IMD3具有為3:1的斜率)造成的。類似地,相間通道功率參數失效可能是由針對每1 dB的增加信號而增加5 dB的五階IMD(IMD5)幅度(亦即,IMD5具有為5:1的斜率)造成的。可能對雜散設備發射起作用的因素的其他實例可以包括發射器基頻調制器雜訊、發射器數位類比轉換器(DAC)量化雜訊、鎖相迴路(PLL)相位雜訊及/或雜散、熱雜訊及/或電源噪音。
ACP參數可能特別要求設備合規性,因為ACP測試(例如,在設備製造商處)可以使用基於其中擷取跡線的最大值保持的測試裝置的量測。舉例而言,針對BT設備的ACP測試可能使能量位準比平均或均方根(rms)量測結果增加大約8.5至10 dB,並且因此,遵守BT ACP參數可能是困難的。
參照圖1B,圖150示出頻譜遮罩152。頻譜遮罩152可以是針對一或多個短程無線通訊技術來定義的,例如,頻譜遮罩152可以是由BT SIG針對2 Mbps EDR(EDR2)和3 Mbps EDR(EDR3)信號標準而定義的。在一些態樣中,一或多個ACP參數可以包括頻譜遮罩152。本揭示內容可能在BT及/或BLE的上下文中描述了雜散發射、頻譜遮罩等;然而,本揭示內容並不限於BT及/或BLE。例如,其他標準及/或協定可以定義一或多個頻譜遮罩,並且根據此類標準及/或協定進行操作的其他設備可能造成雜散發射,諸如當經歷由於與吸收性物體(例如,人體)的相對緊密接近度而導致的RF功率降低時,當增加傳輸功率時。
源設備102可以被配置為發送信號(例如,資料封包,其可以在有效負荷中包括音訊資料)。可以在可以包括通道m 的中心頻率Fc 上發送信號,並且因此通道m 可以對應於0 MHz的偏移(亦即,因為通道m 是要在其上攜帶信號的預期通道)。
在一些態樣中,源設備102可以被配置為以對應於+20 dB毫瓦(dBm)的傳輸功率156在通道m 上發送信號。例如,如本文所描述的,當源設備102偵測到RF功率的吸收和降低時,源設備102可以以等於大約+20 dBm的傳輸功率156來發送信號。
大約+20 dBm的傳輸功率156可能造成信號洩漏到從Fc 正向和負向偏移這兩種情況下的其他通道中。如圖所示,偏移通道n 可以包括從Fc 負向偏移的通道n -1(包括m -1 MHz)、n -2(包括m -2 MHz)和n -3(包括m -3 MHz)。此外,偏移通道n 可以包括從Fc 正向偏移的通道n +1(包括m +1 MHz)、n +2(包括m +2 MHz)和n +3(包括m +3 MHz)。
包括頻譜遮罩152的ACP參數表明,當源設備102在Fc 處的通道m 上發送信號時,在偏移通道n 上的信號發射應當不超過閥值量。例如,當源設備102在通道m 上發送信號時,在通道n -3和通道n +3上信號的功率應當不超過-40 dBm。換言之,在頻帶-2.5 MHz至-3.5 MHz中的信號的功率154a以及在頻帶+2.5 MHz至+3.5 MHz中的信號的功率154f應當不超過-40 dBm。
對於一些設備而言,當設備的傳輸功率被增加以抵消RF功率降低時,增加後的傳輸功率可能違反ACP參數(例如,取決於設備的發射鏈的設計)。特定而言,一些現有及/或傳統設備可能沒有被設計為實現較高輸出功率同時亦維持頻譜純度;換言之,隨著傳輸功率適當地增加以克服RF功率降低,雜散發射亦可能相應地增加。儘管BT核心規範允許每個通道最多3個ACP參數異常,但是增加傳輸功率可能造成一些設備更頻繁地及/或在更多的通道上使ACP參數失效(例如,尤其是傳統設備)。
通常,當傳輸功率被增加到在設備的天線埠處量測到的大約+10 dBm至+15 dBm的輸出功率時,ACP參數邊際性和失效頻繁地發生在+/-2 MHz、+/-3 MHz等處。然而,可能需要接近+20 dBm的增加後的傳輸功率來克服RF功率降低。因此,設備更有可能違反ACP參數,並且該等違反可能更加嚴重,且發生在超出BT SIG頻率偏移異常的限制的多倍的頻率偏移處。
在一些態樣中,在+/-2 MHz、+/-3 MHz和更遠的頻率偏移(例如,如在BT核心規範中設置的)處的ACP參數可以被定義為絕對集成功率規範,而不是相對於主傳輸能量波瓣而言的。因此,隨著設備的輸出功率被增加,對雜散發射起作用的一或多個因素(例如,IMD、發射器基頻調制器雜訊、發射器DAC量化雜訊、PLL相位雜訊及/或雜散、熱雜訊、電源雜訊等)的絕對水平可能同樣增加。另外,由於發射鏈塊(例如,前功率放大器、功率放大器及/或外部功率放大器)(若存在此種塊的話)的非線性度,頻譜再生長可能甚至進一步增長。
因此,由於BT ACP參數的邊際性和失效,BT設備通常被限制為在天線埠處的+10 dBm至+15 dBm的輸出功率,這可能不足以遞送所估計的接近+20 dBm的增加後的傳輸功率(其是用於克服RF功率降低所需要的)。甚至能夠遞送+20 dBm輸出功率的設備亦可能禁用了此能力。例如,由於功耗所引起的管理負擔,用於遞送+20 dBm輸出功率的能力可能被禁用(能夠以+20 dBm輸出功率來執行同時亦遵守BT ACP參數的相對高度線性的發射鏈設計可能在功耗方面是相對昂貴的)。
在一些態樣中,源設備102可以被配置為:即使當利用足以克服RF功率降低的輸出功率(例如,+20 dBm)進行發送時,亦避免違反ACP參數(諸如頻譜遮罩152)。對於此種配置,可以量測源設備102的雜散發射。該等量測可以是在使用者使用源設備102之前進行的,例如,該等量測可以是由源設備102的製造商進行的。為了量測雜散發射,可以使用短程無線通訊測試儀或頻譜分析儀。首先,可以利用源設備102執行傳導量測,其中可以根據該傳導量測來推導出傳導值。傳導值可以包括與在從Fc 被包括在其中的通道m 偏移的通道n 上的發射的功率相對應的值。
傳導值可以具有所量測到的相對於加到其上或從其中減去的0 dB各向同性(dBi)而言的峰值天線增益。例如,若源設備102的峰值天線增益為-5 dBi,並且在通道n +3 處的傳導值大約為-37 dBm/MHz,則無線電發射(亦被稱為源設備102針對通道n +3 的ACP數量或ACP量測結果)可以大約等於-42 dBm/MHz(從-37 dBm減去5 dB)。針對通道n +3 的此ACP數量指示源設備102針對通道n +3 可以具有大約2 dB的餘量。換言之,當以大約+20 dBm的功率進行發送時,源設備102可以不違反ACP參數(包括頻譜遮罩152),這是因為在通道n +3 上的發射的功率小於針對通道n +3 的頻譜遮罩152。
再次參照圖1A,源設備102可以被配置為偵測一或多個條件,其指示由於與吸收性物體(例如,人體)的相對緊密接近度而導致的RF功率降低。例如,源設備102可能沒有明確地偵測到源設備102足夠接近使用者的身體105而使得一些發送的信號被使用者的身體105反射回來及/或吸收;確切而言,源設備102可以偵測一或多個條件,其指示與使用者的身體105的相對緊密接近度而使得源設備102可能遭受RF功率降低。
在各個態樣中,指示RF功率降低的一或多個條件可以包括兩個條件:其中第一個條件可以是基於源設備102要重傳資料封包所採用的速率的,而其中第二個條件可以是基於與源設備102的至少一個天線104的天線增益相關聯的量測的。
對於第一個條件,源設備102可以決定與源設備102對第一封包集合124a中的一或多個封包的重傳相關聯的重傳速率120。在一個態樣中,源設備102可以決定在經配置的時間段內的重傳速率120,其可以是在源設備102處預先決定的。在另一態樣中,源設備102可以基於重傳訊窗來決定重傳速率120。例如,重傳訊窗可以是連續跟在包括(例如,來自槽設備112的)重傳請求的接收時槽之後的下一個發送時槽。然而,重傳訊窗可以根據不同的配置而變化,諸如多少設備(例如,槽設備)與源設備102活動地連接。
源設備102可以向槽設備112發送第一封包集合124a,並且槽設備112可以接收第一封包集合124a中的一或多個封包。然而,當源設備102正在經歷RF功率降低時,在槽設備112處封包錯誤率/位元錯誤率可能增加。當封包錯誤率/位元錯誤率增加時,源設備102可以重傳第一封包集合124a中的一或多個封包。
根據各個態樣,槽設備112可以基於第一封包集合124a中的一或多個封包來向源設備102發送回饋訊息集合126。在一種配置中,槽設備112可以請求對封包的重傳,並且因此,槽設備112可以向源設備102發送回饋訊息集合126,其用於指示第一封包集合124a中的槽設備112請求進行重傳的一或多個封包。例如,槽設備112可以決定與針對第一封包集合124a中的相應封包的位元錯誤率相關聯的相應值。若與第一封包集合124a中的相應封包相關聯的位元錯誤率滿足(例如,達到或超過)位元錯誤閥值,則槽設備112可以發送回饋訊息集合126中的指示針對重傳第一封包集合124a中的相應封包的請求的相應的回饋訊息。
在另一種配置中,槽設備112可以向源設備102提供針對第一封包集合124a之每一個封包的認可(ACK)/否定認可(NACK)回饋。說明性地,槽設備112可以在回饋訊息集合126中包括指示針對第一封包集合124a的第一子集的NACK回饋的資訊,例如,第一封包集合124a的第一子集可以是未被成功接收、未被成功解碼、沒有接收到等等的封包。類似地,槽設備112可以在不同的回饋訊息集合中包括指示針對第一封包集合124a的第二子集的ACK回饋的資訊,例如,第一封包集合124a的第二子集可以是被成功接收並且被成功解碼的封包。
根據一個態樣,槽設備112可以嘗試對第一封包集合124a之每一個封包進行解碼,並且槽設備112可以決定第一封包集合124a之每一個封包是否被成功解碼。例如,槽設備112可以基於與第一封包集合124a之每一個封包相關聯的循環冗餘檢查(CRC)及/或訊息完整性碼(MIC)來驗證經解碼的第一封包集合124a中的每一者。若槽設備112成功地解碼第一封包集合124a中的相應封包(例如,若槽設備112決定第一封包集合124a中的相應封包通過了CRC驗證及/或通過了MIC驗證),則槽設備112可以向源設備102發送指示第一封包集合124a中的相應封包被成功接收和解碼的ACK回饋。然而,若槽設備112沒有成功地解碼第一封包集合124a中的另一封包(例如,若槽設備112決定第一封包集合124a中的另一封包的CRC驗證失敗及/或MIC驗證失敗),則槽設備112可以在回饋訊息集合126中的對應回饋訊息中向源設備102發送NACK回饋。
源設備102可以諸如回應於回饋訊息集合126之每一個回饋訊息,來發送第一封包集合124a中的一或多個重傳封包。基於以下各項中的至少一項,源設備102可以決定重傳速率120:在經配置的時間段內接收的回饋訊息集合126的數量,或者在經配置的時間段內發送的第一封包集合124a中的一或多個重傳封包的數量。例如,源設備102可以決定重傳速率120等於在經配置的時間段內接收的回饋訊息集合126的數量,或者等於在經配置的時間段內發送的第一封包集合124a中的重傳封包的數量。
源設備102可以基於所決定的重傳速率120來決定是否滿足第一閥值(例如,預定義閥值)。例如,源設備102可以將所決定的重傳速率120與第一閥值進行比較。當所決定的重傳速率120等於及/或超過第一閥值時,則可以滿足第一閥值。當基於重傳速率120而滿足第一閥值時,則源設備102可以決定可以達到指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低的第一條件。
所決定的重傳速率120可能受到替代或額外因素的影響;亦即,由於除了RF功率降低以外的一或多個原因,在一個經配置的時間段期間的一種重傳速率可能比在先前配置的時間段期間的先前重傳速率增加。例如,增加的路徑損耗(例如,由於源設備102距槽設備112足夠遠以至於影響通訊鏈路116的品質)可能造成所決定的重傳速率120增加。在另一實例中,對通訊鏈路116的干擾可能造成所決定的重傳速率120增加(例如,由在通訊鏈路116在其中操作的頻帶中或附近的信號造成的帶內干擾)。
增加源設備102發送封包所利用的傳輸功率可能不適合解決關於增加後的重傳速率的一些其他原因,並且此外,可能具有一些不利影響。例如,增加源設備102發送封包所利用的傳輸功率可能造成對附近設備的雜散發射。此外,增加源設備102發送封包所利用的傳輸功率可能在源設備102處消耗可觀的功率量。因此,可以在決定源設備102正在經歷RF功率降低時,結合至少一個第二條件來考慮所決定的重傳速率120,以便改進準確度。
對於第二個條件,源設備102可以決定與源設備102的至少一個天線104相關聯的天線增益量測結果122。源設備102可以量測指示與源設備102的至少一個天線104相關聯的天線增益的多個不同類型的值中的任何一個值。例如,天線增益量測結果122可以是基於VSWR量測結果及/或指示反射RF功率的分貝(dB)量測結果。
對於源設備102,天線增益可以與VSWR及/或反射功率相關。在一些態樣中,可以在部署源設備102之前指定此種相關性,例如,源設備102的至少一部分的製造商(例如,源設備102的一或多個部件的製造商)可以在源設備102與槽設備112進行連接之前,在消費者擁有源設備102之前等等,將天線增益與VSWR及/或反射功率相關。例如,源設備102的至少一部分的製造商可以利用相對緊密接近人體、人體模型或模擬人體對天線增益的效果的另一模型(諸如用於對由於與吸收性物體的相對緊密接近度而導致的RF功率降低的可接受準確建模)的天線,來量測與VSWR及/或反射功率相關聯的天線增益。
在一些態樣中,源設備102可以被配置為進入校準模式,在該模式下,源設備102可以接收指示(例如,諸如由源設備102的至少一部分的製造商在建模場景中所量測到的)天線增益量測結果的輸入,同時源設備102被配置為量測在該天線增益處的VSWR及/或反射RF功率。源設備102可以被配置為儲存表(例如,查閱資料表),在該表中,複數個天線增益量測結果(或天線增益量測結果的範圍)中的每一者與對應的VSWR及/或反射RF功率相關。因此,當源設備102接收到指示所量測到的天線增益的輸入時,源設備102可以利用源設備102所量測到的VSWR及/或反射RF功率來更新該表中的針對所量測到的天線增益的條目。例如,源設備102可以接收第一天線增益量測結果的輸入,並且源設備102可以發送信號(例如,製造商可以在對由於與吸收性物體的相對緊密接近度而導致的RF功率降低進行建模時,提供第一天線增益量測結果的輸入,並且使得源設備102發送信號)。隨後,源設備102可以量測VSWR及/或反射RF功率(例如,使用本文描述的方法之一)。相應地,源設備102可以更新該表中的針對第一天線增益量測結果的條目,以使得該條目指示在第一天線增益量測結果與所量測到的VSWR及/或反射RF功率之間的相關性。在不脫離本揭示內容的範圍的情況下,可以使用用於決定及/或儲存在不同天線增益與對應的所量測到的VSWR及/或反射RF功率之間的相關性的其他方法。
當源設備102已經建立與槽設備112的通訊鏈路116時,源設備102可以被配置為決定天線增益量測結果122。源設備102可以量測VSWR及/或反射RF功率以決定天線增益量測結果122。例如,當源設備102正在發送第一封包集合124a時,源設備102可以量測VSWR及/或反射RF功率。在本文中(諸如關於圖5至圖14)可以描述量測VSWR及/或反射RF功率並且相應地決定天線增益量測結果122的各個態樣。
源設備102可以基於所量測到的VSWR及/或反射RF功率來決定天線增益測結果122。例如,源設備102可以存取表,該表指示在相應的VSWR及/或反射RF功率與相應的天線增益之間的對應關係。源設備102可以辨識該表中的針對所量測到的VSWR及/或反射RF功率的條目,並且源設備102可以根據該表的該條目來辨識與所量測到的VSWR及/或反射RF功率相關的天線增益。
源設備102可以基於所決定的天線增益量測結果122來決定是否滿足第二閥值(例如,預定義閥值)。例如,源設備102可以將所決定的天線增益量測結果122與第二閥值進行比較。當所決定的天線增益量測結果122等於及/或超過第二閥值時,則可以滿足第二閥值。當基於所決定的天線增益量測結果122而滿足第二閥值時,則可以達到指示由於與吸收性物體(例如,人體)的相對緊密接近度而導致的RF功率降低的第二條件。
當源設備102偵測到兩個條件皆滿足時,則源設備102可以調整源設備102的傳輸功率128。則在各態樣中,回應於指示RF功率降低的條件集合,源設備102可以增加源設備102的傳輸功率128。源設備102可以以相對於發送第一封包集合124a所利用的傳輸功率而言增加的傳輸功率,來發送第二封包集合124b。源設備102可以利用20 dB、15 dB、10 dB、5 dB等的增加後的傳輸功率來發送第二封包集合124b。根據各個態樣,源設備102可以被配置有增加後的傳輸功率,其可以是基於針對源設備102的由於與吸收性物體的相對緊密接近度而導致的RF功率降低的建模的。
為了發送第二封包集合124b,源設備102可以將傳輸功率增加到可能原本造成違反一或多個ACP參數(例如,頻譜遮罩152及/或一或多個BT ACP參數)(例如,因為身體105可能吸收一些雜散發射及/或造成原本將造成雜散發射的一些信號被反射回來)的位準、及/或在功耗方面可能相對昂貴的位準。例如,在圖1B的上下文中,當源設備102偵測到滿足指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低的第一條件和第二條件兩者時,源設備102可以將傳輸功率156增加到大約+20 dBm。然而,如圖所示,在偏移通道n 上的發射的功率154a-f可以不違反頻譜遮罩152,並且因此可以遵守一些ACP參數,例如,利用增加後的傳輸功率,由源設備102進行的傳輸可以在每個通道3個BT ACP參數異常之內,或者與其相對接近。由於源設備102的配置(例如,由於無線電單元及/或天線設計,由於發射鏈設計等)及/或由於使用者的身體105對偏移通道n 上的發射的吸收及/或反射,源設備102可以避免違反頻譜遮罩152。
當源設備102利用增加後的傳輸功率來發送第二封包集合124b時,源設備102可以繼續決定在經配置的時間段內的重傳速率120及/或決定天線增益量測結果122。例如,源設備102可以決定以下各項中的至少一項:在經配置的時間段內接收的回饋訊息集合126的數量、或者在經配置的時間段內發送的第一封包集合124a中的一或多個重傳封包的數量。
當兩個條件中的至少一個條件沒有被滿足時,RF能量可能不再由於吸收而損失。當所決定的重傳速率120未能滿足第一閥值時及/或當所決定的天線增益量測結果122未能滿足第二閥值時,源設備102可以避免利用相對高的傳輸功率(例如,+20 dBm)進行發送。因此,當所決定的重傳速率120未能滿足第一閥值及/或所決定的天線增益量測結果122未能滿足第二閥值時,源設備102可以藉由降低傳輸功率來調整源設備102的傳輸功率128。
例如,取決於源設備102被配置為在指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低時達到的傳輸功率,源設備102可以將傳輸功率降低5 dB、10 dB、15 dB、20 dB等。在一些態樣中,源設備102可以將傳輸功率從以下位準減小:原本可能造成違反BT ACP參數(例如,頻譜遮罩152)(例如,因為身體105可能不再吸收一些雜散發射/或不再造成某個信號被反射回來)的增加後的位準、及/或將傳輸功率減小到在功耗方面可能相對較為保守的位準。
圖2是根據本揭示內容的某些態樣的無線設備200的方塊圖。根據一些實例,無線設備200可以被實現為圖1A中的源設備102及/或槽設備112。在某些配置中,無線設備200可以被實現為BT及/或BLE設備,其被配置為當無線設備200偵測到滿足條件集合之每一個條件時調整傳輸功率,每個條件可以指示無線設備200正在經歷由於與吸收性物體的相對緊密接近度而導致的RF功率降低。在其他態樣中,無線設備200可以是根據一或多個其他標準及/或協定進行操作的任何其他無線設備,其可能經歷與由於與吸收性物體的相對緊密接近度而導致的RF功率降低類似或相似的一或多個條件(諸如在預定義時間段內增加後的重傳速率和在該時間段內減小後的天線增益(例如,增加後的VSWR及/或增加後的反射RF功率))。例如,無線設備200可以是WLAN設備(例如,被配置用於VoIP的WLAN設備)、蜂巢設備(例如,被配置用於語音撥叫及/或資料連接)。無線設備200的各種實例包括行動設備、手機、平板設備、耳麥、可穿戴設備(例如,智慧手錶、智慧眼鏡等)、醫療感測器、IoT設備等。
如圖2中所示,無線設備200可以包括諸如處理器202之類的處理元件,其可以執行用於無線設備200的程式指令。無線設備200亦可以包括顯示器電路204,其可以執行圖形處理並且向顯示器242提供顯示信號。處理器202亦可以耦合到記憶體管理單元(MMU)240,其可以被配置為從處理器202接收位址並且將彼等位址轉換為記憶體(例如,記憶體206、ROM 208、快閃記憶體210)及/或其他電路或設備(諸如顯示器電路204、無線電單元230、連接器介面220及/或顯示器242)中的位置。MMU 240可以被配置為執行記憶體保護和頁表轉換或建立。在一些態樣中,MMU 240可以作為處理器202的一部分包括在內。
如圖所示,處理器202可以耦合到無線設備200的各種其他電路。例如,無線設備200可以包括各種類型的記憶體、連接器介面220(例如,用於耦合到電腦系統)、顯示器242及/或無線通訊電路(例如,用於Wi-Fi、BT、BLE等)。無線設備200可以包括用於執行與其他短程無線通訊設備(例如,BT設備、BLE設備等)的無線通訊的複數個天線235a、235b、235c、235d。
在某些態樣中,無線設備200可以包括被配置為進行以下操作的硬體和軟體部件(處理元件):決定與由無線設備200對一或多個封包的重傳相關聯的重傳速率;決定與無線設備200的至少一個天線的天線增益相關聯的量測結果;及基於所決定的重傳速率以及基於與天線增益相關聯的量測結果來調整無線設備200的傳輸功率。無線設備200亦可以包括用於控制短程無線通訊操作(例如,BT操作、BLE操作等)的韌體或其他硬體/軟體。另外或替代地,無線設備200可以包括、儲存及/或執行用於根據一或多個其他無線通訊技術(例如,WLAN、蜂巢RAT等)進行控制和通訊的硬體、軟體及/或韌體。
在某些態樣中,WLAN控制器250可以被配置為利用使用所有天線235a、235b、235c、235d的WLAN鏈路來與第二設備進行通訊。在某些配置中,短程通訊控制器252可以被配置為實現短程無線通訊協定堆疊(諸如BT堆疊(例如,參見下文的圖3A)及/或BLE堆疊(例如,參見下文的圖3B)),以及使用天線235a、235b、235c、235d中的一或多個天線來與至少一個第二無線設備進行通訊。
無線設備200可以被配置為藉由執行儲存在記憶體媒體(例如,非暫時性電腦可讀取記憶體媒體)上的程式指令,經由硬體配置/操作,及/或經由韌體配置/操作,來實現(諸如在本揭示內容中描述的)與由於與吸收性物體的相對緊密接近度而導致的RF功率降低相關聯的技術中的部分或全部。在一些態樣中,在本揭示內容中描述的與由於與吸收性物體的相對緊密接近度而導致的RF功率降低相關聯的技術可以至少部分地由可程式設計硬體元件(諸如現場可程式設計閘陣列(FPGA))來實現及/或作為特殊應用積體電路(ASIC)來實現。
在某些態樣中,無線電單元230可以包括被配置為控制用於各種相應的無線電存取技術(RAT)協定的通訊的單獨的控制器。例如,如圖2中所示,無線電單元230可以包括被配置為控制無線區域網路(WLAN)通訊的WLAN控制器250、以及被配置為控制短程通訊(例如,BT通訊、BLE通訊等)的短程通訊控制器252。共存介面254(例如,有線介面)可以用於在WLAN控制器250和短程通訊控制器252之間發送資訊。
在一些態樣中,WLAN控制器250及/或短程通訊控制器252中的一或多者可以被實現為硬體、軟體、韌體或其某種組合。
短程通訊控制器252可以被配置為決定與由無線設備200對一或多個封包的重傳相關聯的重傳速率。短程通訊控制器252可以被配置為決定與無線設備200的至少一個天線235a、235b、235c、235d的天線增益相關聯的量測結果。短程通訊控制器252可以被配置為基於重傳速率以及基於與無線設備200的至少一個天線235a、235b、235c、235d的天線增益相關聯的量測結果,來調整無線設備200的傳輸功率。在一個態樣中,與天線增益相關聯的量測結果包括VSWR量測結果或者指示反射RF功率的dB量測結果中的至少一項。重傳速率可以是基於由無線設備200所重傳的一或多個封包的數量或者基於由無線設備200接收的針對一或多個封包的重傳的請求的數量來決定的。
在一個態樣中,調整無線設備200的傳輸功率可以包括:當重傳速率滿足第一閥值時並且當與天線增益相關聯的量測結果滿足第二閥值時,增加無線設備200的傳輸功率,並且增加後的傳輸功率可以超過基於ACP標準來為無線設備200配置的閥值傳輸功率(諸如至少一個頻譜遮罩)。在另一態樣中,調整無線設備200的傳輸功率可以包括:當重傳速率未能滿足第一閥值時及/或當與天線增益相關聯的量測結果未能滿足第二閥值時,減小無線設備200的傳輸功率,並且減小後的傳輸功率可以是從超過基於ACP標準來為無線設備200配置的閥值傳輸功率(諸如頻譜遮罩152)的增加後的傳輸功率來減小的,並且減小後的傳輸功率可以低於閥值傳輸功率。
如下文將進一步描述的,無線設備200可以包括被配置為偵測量測結果的功率偵測電路。短程通訊控制器252可以被配置為基於將功率偵測電路啟動以用於偵測與天線增益相關聯的量測結果,來決定與天線增益相關聯的量測結果,並且亦可以被配置為基於在所偵測到的量測結果與經調整的傳輸功率之間的對應關係來調整傳輸功率。
在下文進一步描述的另一態樣中,無線設備200可以包括接收器電路,其被配置為經由無線設備200的至少一個天線235a、235b、235c、235d來偵測反射信號。短程通訊控制器252可以被配置為基於反射信號來決定與天線增益相關聯的量測結果,並且可以被配置為基於差分誤差向量幅度(DEVM)及/或基於與反射信號相關聯的ACP量測結果中的至少一種情況,來調整傳輸功率。
在下文進一步描述的另一態樣中,無線設備200可以包括比較器電路,其被配置為偵測與天線增益相關聯的量測結果。比較器電路可以被配置為在所偵測到的量測結果滿足第二閥值時將衰減器去啟動。當短程通訊控制器252決定重傳速率滿足第一閥值時,短程通訊控制器252可以被配置為決定與天線增益相關聯的量測結果,並且基於將比較器電路啟動以用於偵測量測結果以及將衰減器去啟動來調整傳輸功率。
在下文進一步描述的另一態樣中,無線設備200可以包括比較器電路,其被配置為偵測與天線增益相關聯的量測結果。比較器電路可以被配置為當所偵測到的量測結果滿足第二閥值時,增加與至少一個天線235a、235b、235c、235d連接的外部功率放大器的增益。當短程通訊控制器252決定重傳速率滿足第一閥值時,短程通訊控制器252可以被配置為決定與天線增益相關聯的量測結果,並且基於將比較器電路啟動以用於偵測量測結果以及增加外部功率放大器的增益來調整傳輸功率。
在下文進一步描述的另一態樣中,至少一個其他天線235a、235b、235c、235d可以與接收鏈相關聯,接收鏈不同於與至少一個天線235a、235b、235c、235d相關聯的發射鏈。短程通訊控制器252可以被配置為基於經由至少一個其他天線偵測到的反射信號來決定量測結果。
圖3A示出根據本揭示內容的某些態樣的可以在無線設備中實現的BT協定堆疊300。例如,BT協定堆疊300可以由在圖2中所示的處理器202、記憶體206、快閃記憶體210、ROM 208、無線電單元230及/或短程通訊控制器252中的一或多者來實現。
參照圖3A,BT協定堆疊300可以被組織為下層、中間層和上層。BT協定堆疊300的下層可以包括控制器堆疊306,其尤其可以用於硬體介面管理、鏈路建立和鏈路管理。BT協定堆疊300的中間層可以包括主機堆疊304,其尤其可以用於應用(層)介面管理以允許應用(層)存取短程無線通訊。BT協定堆疊300的較高層可以包括應用層302,其可以包括一或多個應用以及允許一或多個應用使用BT通訊的一或多個簡檔。
控制器堆疊306可以包括實體(PHY)層322。PHY層322可以包括例如無線電單元及/或基頻處理器。在一些態樣中,PHY層322可以定義用於在連接BT設備的實體鏈路或通道上發送位元串流的機制。位元串流可以被群組為編碼字元或符號,並且被轉換為在無線傳輸媒體上發送的資料封包。PHY層322可以向無線傳輸媒體提供電、機械及/或程序介面。PHY層322可以負責將資料調制和解調為RF信號以經由空中傳輸。PHY層322可以描述無線設備的接收器/發射器的實體特性。實體特性可以包括調制特性、射頻容限、靈敏度級別等。
控制器堆疊306亦可以包括鏈路控制器320。鏈路控制器320可以負責適當地將用於提供給PHY層322以及從PHY層322獲得的資料進行格式化。此外,鏈路控制器320可以執行鏈路(例如,邏輯鏈路,其包括ACL鏈路、A2DP鏈路、SCO鏈路、eSCO鏈路、ISO鏈路等)的同步。鏈路控制器320可以負責執行由鏈路管理器318發出的命令和指令,其包括建立和維護由鏈路管理器318指示的鏈路。
鏈路管理器318可以將主機控制器介面(HCI)316命令轉換為控制器級別的操作(例如,基頻級別的操作)。除了其他任務之外,鏈路管理器318亦可以負責建立和配置鏈路以及管理功率改變請求。每種類型的邏輯鏈路(例如,ACL鏈路、A2DP鏈路、SCO鏈路、eSCO鏈路、ISO鏈路等)可以與特定的封包類型相關聯。例如,SCO鏈路可以提供針對在主設備和從設備之間的通訊所預留的通道頻寬,並且支援在不進行重傳的情況下對資料封包的定期、週期性交換。eSCO鏈路可以提供針對在主設備和從設備之間的通訊所預留的通道頻寬,並且支援在重傳的情況下對資料封包的定期、週期性交換。從建立在主設備和從設備之間的連接開始,在主設備和從設備之間就可以存在ACL鏈路,並且用於ACL鏈路的資料封包除了有效負荷之外,亦可以包括編碼資訊。
鏈路管理器318可以經由主機控制器介面(HCI)316與主機堆疊304進行通訊,例如,鏈路管理器318可以將HCI 316命令轉換為控制器級別的操作(例如,基頻級別的操作)。HCI 316可以充當在BT協定堆疊300的下層(例如,控制器堆疊306)和BT協定堆疊的其他層(例如,主機堆疊304和應用層302)之間的邊界。BT規範可以定義標準HCI以支援跨兩個單獨的處理器而實現的BT系統。例如,在電腦上的BT系統可以使用BT系統本身的處理器來實現堆疊的下層(例如,PHY層322、鏈路控制器320及/或鏈路管理器318)。BT系統可以使用BT部件的處理器來實現其他層(例如,主機堆疊304和應用層302)。然而,在一些態樣中,BT系統可以是在同一處理器上實現的,並且此種BT系統可以被稱為「無主機」。
主機堆疊304可以至少包括邏輯鏈路控制和適配協定(L2CAP)層314、服務發現協定(SDP)層312、射頻通訊(RFCOMM)層310和物件交換(OBEX)層308。L2CAP層314是在HCI 316之上實現的,並且可以經由HCI 316進行通訊。L2CAP層314主要可以負責建立跨一些現有鏈路(例如,包括ACL鏈路的邏輯鏈路)的連接及/或請求一些鏈路(例如,包括ACL鏈路的邏輯鏈路)(若彼等鏈路尚不存在的話)。此外,L2CAP層314可以在不同的較高層協定(諸如SDP協定和RFCOMM協定)之間實現多工,這可以允許不同的應用使用單個鏈路(例如,包括ACL鏈路的邏輯鏈路)。另外,L2CAP層314可以將從較高層接收的資料封包重新封包為較低層所期望的格式。L2CAP層314可以採用通道的概念來追蹤資料封包來自何處以及資料封包應當去往何處。通道可以是在發送設備(例如,主設備)處的L2CAP層314與在接收設備(例如,從設備)處的另一L2CAP層314之間的資料流或串流的邏輯表示。
SDP層312可以定義針對BT服務的伺服器和客戶端兩者的動作。BT規範將服務定義為可以是可由另一(遠端)BT設備使用的任何特徵。SDP客戶端可以使用L2CAP鏈路上的預留通道來與SDP伺服器進行通訊,以發現哪些服務是可用的。當SDP客戶端找到所期望的服務時,SDP客戶端可以請求單獨的連接以使用該服務。預留通道可以專用於SDP通訊,以使得設備知道如何連接到任何其他設備上的SDP服務。SDP伺服器可以維護SDP資料庫,SDP資料庫可以包括描述SDP伺服器所提供的服務的服務記錄集合。服務記錄可以包含服務的通用唯一辨識碼(UUID)以及描述SDP客戶端可以如何連接到服務的資訊。
RFCOMM層310可以模擬串列電纜線設置和RS-232序列埠的狀態。RFCOMM層310可以經由L2CAP層314連接到BT協定堆疊300的下層。藉由提供序列埠模擬,RFCOMM層310可以支援傳統的序列埠應用。RFCOMM層310亦可以支援物件交換(OBEX)層308。
OBEX層308可以定義可以由設備用來交換資料物件的通訊協定,並且資料物件亦可以是由OBEX層308來定義的。希望與另一設備建立OBEX通訊通信期的BT設備可以被視為客戶端設備。客戶端初始可以發送一或多個SDP請求,以確保另一設備可以充當OBEX服務的伺服器。若伺服器設備可以提供OBEX服務,則伺服器設備可以利用伺服器設備的OBEX服務記錄進行回應。OBEX服務記錄可以包含客戶端設備可以用來建立RFCOMM通道的RFCOMM通道號。在兩個設備之間的進一步通訊可以是以封包來傳送的,封包可以包含請求、回應及/或資料。封包的格式可以是由OBEX通信期協定來定義的。
應用層302可以包括至少一個應用326,其中使用者可以與應用326進行互動並且應用326可以存取BT通訊以用於各種功能。應用326可以經由可以描述各種不同類型的任務的一或多個簡檔328來存取BT通訊。藉由遵循一或多個簡檔328的程序,應用326可以根據BT規範來使用BT通訊。
圖3B示出可以在BLE設備中實現的BLE協定堆疊350。例如,BLE協定堆疊350可以由在圖2中所示的處理器202、記憶體206、快閃記憶體210、ROM 208、無線電單元230及/或短程通訊控制器252中的一或多者來實現。
BLE協定堆疊350可以被組織為三層,其可以包括應用層352、主機堆疊354和控制器堆疊356。控制器堆疊356在BLE協定堆疊350中可以位於主機堆疊354和應用層352之下。控制器堆疊356可以包括PHY層372和LL 370。
PHY層372可以定義用於在連接BLE設備的實體鏈路上發送位元串流的機制。位元串流可以被分組為編碼字元或符號,並且被轉換為在傳輸媒體上發送的資料封包。PHY層372可以提供到傳輸媒體的電、機械和程序介面。電連接器的形狀和特性、用於傳輸的頻帶、調制方案以及類似的低級參數可以是由PHY層372來指定的。
LL 370負責在PHY層372上的低級通訊。LL 370管理用於發送和接收資料封包的序列和時序,以及使用LL協定來與其他設備關於連接參數和資料流控制進行通訊。LL 370亦提供了守門功能,以限制暴露以及與其他設備的資料交換。若配置了過濾,則LL 370維護允許設備列表,並且將忽略來自不在列表上的設備的針對資料交換的所有請求。LL 370亦可以降低功耗。在一些態樣中,LL 370可以包括公司的專有LL,其可以用於發現同級設備(例如,與該公司相關聯的其他設備),以及與其建立安全的通訊通道。在某些態樣中,LL 370可以負責在WPAN中的設備之間傳輸資料封包。每個資料封包可以包括存取位址,存取位址指定用於攜帶資料封包的邏輯傳輸的類型。在主設備和從設備之間可以存在邏輯傳輸。此外,一些邏輯傳輸可以攜帶多個邏輯鏈路。
BLE協定堆疊350可以包括HCI 374,其可以充當在BLE協定堆疊350的下層(例如,控制器堆疊356)和BLE協定堆疊的其他層(例如,主機堆疊354和應用層352)之間的邊界。另外,主機堆疊354可以使用HCI 374來與無線設備中的BLE控制器(例如,圖2中的短程通訊控制器252)進行通訊。LL 370可以使用HCI 374來與BLE協定堆疊350的主機堆疊354進行通訊。儘管一些BLE系統可能是「無主機」的,因為主機堆疊354和控制器堆疊356可以是在同一處理器上實現的,但是HCI 374亦可以允許主機堆疊354與不同的控制器堆疊356進行通訊,諸如當控制器堆疊356是在第二處理器上實現的時。
主機堆疊354可以包括通用存取簡檔(GAP)360、通用屬性協定(GATT)362、安全性管理器(SM)364、屬性協定(ATT)366和L2CAP層368。L2CAP層368可以將來自上層的多個協定封裝成資料封包格式(反之亦然)。L2CAP層368亦可以將來自上層的具有大資料有效負荷的封包分割成多個封包,其中該資料有效負荷被分段成較小大小的資料有效負荷,較小大小的資料有效負荷適配發送側上的最大有效負荷大小(例如,二十七位元組)。類似地,L2CAP層368可以接收攜帶已經被分段的資料有效負荷的多個資料封包,並且L2CAP層368可以將經分段的資料有效負荷組合成單個資料封包,其攜帶將被發送給上層的資料有效負荷(例如,應用層352)。
ATT 366包括基於與BLE設備相關聯的出於特定目的(例如,監測心率、溫度、廣播通告等)而配置的屬性的客戶端/伺服器協定。可以由同級設備發現、讀取和寫入屬性。在ATT 366上執行的操作集合可以包括但不限於錯誤處理、伺服器配置、檢視資訊、讀操作、寫操作、佇列寫等。ATT 366可以形成在BLE設備之間的資料交換的基礎。
SM 364可以負責設備配對和金鑰分發。由SM 364實現的安全性管理器協定可以定義如何執行與對方BLE設備的SM的通訊。SM 364提供了可以由BLE協定堆疊350的其他部件使用的額外加密功能。在BLE中使用的SM 364的架構被設計為藉由將工作轉移到假定更加強大的中央設備來使對周邊設備的依賴要求最小化。BLE使用配對機制來進行金鑰分發。SM 364提供了不僅用於對資料進行加密而且用於提供資料認證的機制。
在BLE協定堆疊350中的主機堆疊354之上,應用層352可以包括應用358,諸如與BLE協定堆疊350的主機堆疊354對接以經由BLE通訊實現各種功能的使用者應用。
返回參照主機堆疊354,GATT 362可以使用用於發現服務以及用於在同級設備上讀取和寫入特徵值的屬性協定來提供服務框架。GATT 362可以諸如經由簡檔來與應用358進行對接,簡檔可以定義屬性集合及/或對於要在BLE通訊中使用該等屬性所需要的許可。GAP 360可以提供用於應用358發起、建立和管理與其他BLE設備的連接的介面。
在一些態樣中,無線設備(例如,源設備102、無線設備200等)可以被配置為根據不同的標準及/或協定進行通訊。例如,無線設備可以被配置有用於短程無線通訊的BT和BLE兩者。因此,無線設備可以被配置有BT協定堆疊300和BLE協定堆疊350兩者。在一些態樣中,一或多個層可以被配置用於在BT協定堆疊300和BLE協定堆疊350兩者中使用,例如,協定堆疊300、350的L2CAP層314、368可以被配置用於使用BT或BLE的雙模式短程無線通訊。
圖4A是示出根據本揭示內容的某些態樣的資料封包400的圖。資料封包可以與各種短程無線通訊技術(諸如BT)一起使用。例如,在圖1A的上下文中,資料封包400可以是第一封包集合124a中的一者及/或第二封包集合124b中的一者。
資料封包400可以包括前序信號402、同步字元404、尾部406、PDU 412和CRC 414。在某些配置中,資料封包400可以不包括CRC 414。
在某些配置中,PDU 412可以包括標頭422、有效負荷424和MIC 426。MIC包括可以用於對資料封包進行認證的資訊,諸如當資料封包被加密時。換言之,接收設備可以使用MIC,來確認訊息來自所述發送設備(例如,資料封包真實性)以及確認有效負荷424尚未被改變(例如,資料封包完整性)。MIC藉由使得同樣擁有秘密金鑰的接收設備能夠偵測到對有效負荷424的任何改變,從而保護資料封包400的有效負荷完整性和真實性兩方面。
在一些態樣中,PDU 412的標頭422可以包括複數個欄位,其至少包括LT_ADDR 428。LT_ADDR可以指示邏輯傳輸位址。LT_ADDR 428可以與邏輯鏈路相關聯。例如,被包括在LT_ADDR 428中的邏輯傳輸位址可以指示邏輯鏈路的類型(例如,ACL、A2DP、eSCO、ISO等)。
圖4B是示出根據本揭示內容的某些態樣的資料封包450的圖。資料封包可以與各種短程無線通訊技術(諸如BLE)一起使用。例如,在圖1A的上下文中,資料封包400可以是第一封包集合124a中的一個封包及/或第二封包集合124b中的一個封包。
資料封包450可以包括前序信號452、存取位址454、PDU 456和CRC 458。在某些配置中,資料封包450可以不包括CRC 458。
在一些態樣中,存取位址454可以設置鏈路層(例如,鏈路層370)連接的位址。例如,存取位址454可以包括指示邏輯鏈路的類型(例如,ACL、A2DP、eSCO、ISO等)的位址。
在某些配置中,PDU 456可以包括標頭462、有效負荷464和MIC 468。MIC包括可以用於對資料封包進行認證的資訊,諸如當資料封包被加密時。在一些態樣中,PDU 456的標頭462可以包括複數個欄位,其至少包括邏輯鏈路辨識符(LLID)。LT_ADDR可以指示邏輯傳輸位址。
圖5示出根據本揭示內容的各個態樣的無線通訊環境500。在無線通訊環境500中,使用者505可以擁有源設備502。例如,源設備502可以是圖1A中的源設備102。源設備502可以與槽設備(例如,圖1A中的槽設備112)建立無線連接。
源設備502可以發送資料封包。在這樣做時,源設備502可以發射天線輻射模式。當源設備502位於自由空間中時(例如,使用者505不吸收發射,RF信號未被反射回源設備502等),源設備502可以發射倒F天線模式510。
當源設備502被放置在使用者505附近時(例如,在衣服中,在口袋中等),天線輻射模式可能從倒F天線模式510降級。例如,最小峰值天線增益在大約90與120度之間的區域內可能減小達15 dB以上。
基於源設備502相對於使用者505位於何處,可以將天線輻射模式相對於倒F天線模式510來降級。例如,當源設備502位於使用者505的左後口袋中時,源設備502可以發射第二天線輻射模式512。在另一實例中,當源設備502位於使用者505的左前口袋中時,源設備502可以發射第三天線輻射模式514。
在源設備502的天線處觀察到的相關聯的VSWR可以是降級的(例如,VSWR可以大約在1.2與5之間)。此種降級可以增加在天線和發射器電路之間的反射功率,並且源設備502可以量測並且儲存反射功率的此種增加。
如圖5所示,VSWR及/或天線反射功率的量測結果可以基本上指示設備(例如,源設備502)所處的環境,諸如環境500。特定而言,VSWR及/或天線反射功率可以指示設備經由其來發送信號的至少一個天線的增益。可以以一或多個不同的方式來量測VSWR及/或天線反射功率。例如,用於WLAN閉合迴路功率控制(CLPC)的耦合器可以用於量測可能是由使用者505的吸收性身體造成的反射功率。
降級的天線模式512、514(相對於倒F天線模式510而降級的)可以與VSWR相關聯。例如,當天線輻射模式(例如,類似於第二和第三模式512、514)被擷取時,由設備量測到的反射功率可以被儲存在記憶體中(例如,被儲存在一或多個暫存器中)。由於人體(或類似實體)導致的天線輻射模式的最小降低可以用於設置對於設備而言所允許的同時仍然符合BT ACP規範(例如,由於輻射損耗的增加,這可能進而降低所量測到的ACP)的絕對最大傳輸功率。
如本文所描述的,可以藉由傳輸功率的對應增加來克服最小天線輻射模式的降低。然而,最小天線輻射模式的相對顯著降低實際上可能無法藉由傳輸功率的相等增加來解決。例如,為了抵消最小天線輻射模式的15 dB降低,傳輸功率的15 dB增加可能是不切實際的,並且為了克服由於與吸收性物體的相對緊密接近度而導致的RF功率降低,傳輸功率的15 dB增加將是不必要地大的。替代地,與最小天線輻射模式的降低相比,相對較小的傳輸功率的增加,但是此種增加仍然可以與最小天線輻射模式的降低相稱的。
例如,最小天線輻射模式的大約15 dB的降低可以與5 dB的最大允許傳輸功率增加相對應。若設備在自由空間中的傳輸功率為+15 dBm,則可以以5 dB來克服RF功率降低,這是因為該設備在自由空間中的+15 dBm傳輸功率與5 dB的最大允許傳輸功率增加將產生+20 dBm的傳輸功率。+20 dBm的增加後的傳輸功率可以改進在源設備502和槽設備之間的信號品質,並且可以解決降級的天線模式512、514。因此,+20 dBm的傳輸功率可以足以克服RF功率降低,諸如當該設備在使用者505的口袋中時。
各種設備可以被限制為大約+13 dBm至+15 dBm的輸出功率(如在連接晶片的傳輸引腳處量測到的);然而,此種限制可能是由於在沒有任何發射的情況下的ACP參數邊際性和失效所導致的,諸如可以被視為根據BT規範而允許的每通道異常的ACP參數邊際性和失效。然而,在一些現有及/或將來的設備上可以移除及/或不存在對輸出功率的此類限制,以使得該等設備可以達到+20 dBm EIRP的最大允許輸出功率,諸如以便克服RF功率降低,同時仍然觀察到ACP參數(例如,如關於圖1B中的光譜遮罩152所示出的)。
圖6是源設備600的方塊圖。源設備600可以是圖1A中的源設備102。源設備600可以包括連接晶片610,其可以經由軟體及/或韌體來控制短程通訊電路616及/或WLAN電路618的一些功能。源設備600亦可以包括電路612,其可以包括RF前端電路。在一些態樣中,連接晶片610可以包括電路612,並且所示出的連接晶片610可以包括軟體及/或韌體。電路612可以用於短程通訊電路616和WLAN電路618。電路612可以被設計為偵測所提供的RF功率,亦即,將被提供用於信號傳輸的功率。電路612可以實現CLPC耦合器620。
在一些態樣中,電路612可以包括功率偵測器(PDET)614。連接晶片610可以被配置為決定第一條件是否指示RF功率降低;亦即,連接晶片610可以決定由源設備600發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,電路612可以用於決定與天線624的增益的相關聯的量測結果。例如,當重傳速率滿足第一閥值時,連接晶片610可以將電路612啟動以用於偵測反射RF功率650。
當源設備600在封包集合的傳輸期間被遮擋時,可以根據來自電路612的信號的在天線624處被反射的一部分來量測反射RF功率650。來自電路612的信號的該部分可能由於天線失配而在天線624處被反射,這可能是由相對緊密接近源設備600的吸收性物體造成的。反射RF功率650可以指示天線624的增益。電路612可以被配置為使用功率偵測器614來偵測反射RF功率,功率偵測器614可以是標量功率偵測器。
在電路612中,可以包括RF開關622。RF開關622可以使得用於WLAN電路618的CLPC耦合器620的輸出(例如,用於在WLAN傳輸期間偵測所應用的RF功率)或反射RF功率650被路由至功率偵測器614。耦合器620的隔離埠可以用於偵測反射RF功率650。
在一些態樣中,當連接晶片610決定重傳速率滿足第一閥值時,連接晶片610可以藉由使得RF開關622將反射RF功率路由至功率偵測器614,來將電路612啟動以用於偵測反射RF功率量測結果。相應地,當短程通訊電路616發送信號(例如,資料封包)時,功率偵測器614可以量測反射RF功率650。由功率偵測器614得到的量測結果可以包括指示反射RF功率650的dB值。
功率偵測器614可以將反射RF功率650的量測結果提供給連接晶片610。連接晶片610可以決定反射RF功率650的量測結果是否滿足第二閥值。當反射RF功率650的量測結果滿足第二閥值時,則連接晶片610可以使得短程通訊電路616增加傳輸功率。
在一個態樣中,短程通訊電路616可以基於查閱資料表來增加傳輸功率。例如,連接晶片610可以存取包括條目集合的查閱資料表。每個條目可以指示反射RF功率量測值(或反射RF功率量測值的範圍)以及對傳輸功率的對應增加。因此,當功率偵測器614偵測到相對低的反射RF功率量測結果時,可以應用對傳輸功率的相對較低的增加。相應地,對傳輸功率的增加可以是與反射RF功率650相稱的。
在另一態樣中,短程通訊電路616可以基於演算法來增加傳輸功率。例如,連接晶片610可以基於由功率偵測器614提供的反射RF功率量測結果來執行演算法。在一些態樣中,該演算法可以是基於曲線擬合吸波暗室實驗室量測結果的,其中當在人體或人體模型上量測到天線效能時,其可以將VSWR與峰值天線增益降低相關。對該演算法的執行可以產生傳輸功率的增加,這可以由短程通訊電路616來應用。因此,可以計算傳輸功率的增加以與反射RF功率650相對應。
如上述,可以針對設備600預先配置查閱資料表。例如,設備600的製造商可以在校準模式下填充查閱資料表,諸如當對由於與吸收性物體(例如,人體)的相對緊密接近度而導致的RF功率降低進行建模時。類似地,可以針對設備600更新上述演算法。例如,當對由於吸收性而導致的RF功率降低進行建模時,可以對演算法的一或多個變數及/或函數進行校準,以便使該演算法(相對)準確地將天線增益量測結果與反射RF功率650(及/或VSWR)相關。
相對於用於偵測反射RF功率的其他方法而言,對與天線624耦合的功率偵測器614的使用可以減少功耗。特定而言,因為功率偵測器614不使用短程通訊電路616的接收鏈來偵測反射RF功率650,所以可以減少功耗。
圖7是源設備700的方塊圖。源設備700可以是圖1A中的源設備102。源設備700可以包括電路712。電路712可以包括及/或可以通訊地耦合到短程通訊電路716、WLAN電路718(例如,包括WLAN無線電接收器)和功率偵測器714(例如,標量功率偵測器)。
源設備700亦可以包括連接晶片710,其可以經由軟體及/或韌體來控制短程通訊電路716及/或WLAN電路718的一些功能。在一些態樣中,連接晶片710可以包括電路712,並且所示出的連接晶片710可以包括軟體及/或韌體。
連接晶片710可以被配置為決定第一條件是否指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低;亦即,連接晶片710可以決定由源設備700發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,電路712可以決定與天線724的增益相關聯的量測結果。例如,當重傳速率滿足第一閥值時,連接晶片710可以將電路712啟動以用於偵測反射RF功率750及/或偵測前向功率760。
在一些態樣中,當連接晶片710決定重傳速率滿足第一閥值時,連接晶片710可以將電路712啟動以用於偵測反射RF功率750量測結果。電路712(例如,功率偵測器714及/或WLAN電路718)可以被配置為量測由反射RF功率750所指示的總信號。例如,反射RF功率750可以被饋送到功率偵測器714中。功率偵測器714可以量測由反射RF功率750指示的電壓和電流(例如,與反射RF功率750相對應的信號的幅度和相位變化)。
為了量測DEVM值及/或ACP值,WLAN電路718亦可以偵測信號的前向功率760。耦合器720的隔離埠可以用於偵測由RF開關722控制的前向功率760。RF開關722可以使得去往/來自天線724的路徑或耦合器720的隔離埠路由到WLAN電路718的接收器輸入。RF開關722可以將耦合器720的隔離埠路由到WLAN電路718的接收器輸入。因此,當在耦合器720處接收到信號的前向功率760時,在耦合器720處接收的前向功率760可以被回饋到WLAN電路718(例如,回饋到WLAN無線電接收器)。隨後,電路712(例如,WLAN電路718)可以量測前向功率760。
連接晶片710可以基於(例如,經由功率偵測器714所量測到的)反射RF功率750以及基於(例如,從耦合器720回饋到WLAN電路718中的)前向功率760,來決定DEVM值及/或ACP值。例如,連接晶片710可以被配置用於對反射RF功率750和前向功率760進行向量分析。在各態樣中,連接晶片710可以決定在一或多個通道n 上的DEVM值及/或ACP值,一或多個通道n 是從在其上發送初始信號的Fc (和通道m )偏移的。
連接晶片710可以對DEVM值及/或ACP值進行量化。例如,連接晶片710可以決定DEVM值及/或ACP值處於範圍集合中的哪個範圍內,並且連接晶片710可以將與DEVM值及/或ACP值所處的範圍相對應的量化值指派給DEVM值及/或ACP值。此外,若短程通訊電路716的發射鏈在ACP規範(例如,BT ACP規範)內,則連接晶片710可以對經量化的DEVM值及/或ACP進行區分。例如,可以將經量化的DEVM值及/或ACP值與一或多個閥值(諸如頻譜遮罩)進行比較。例如,參照1B,頻譜遮罩152可以定義一或多個閥值。
連接晶片710可以根據DEVM值及/或ACP值來決定當前傳輸功率低於最大允許傳輸功率。進一步根據DEVM值及/或ACP值,連接晶片710可以偵測與ACP參數相符的一或多個邊際性及/或失效,諸如在圖1B中所示的偏移通道n 上。連接晶片710可以偵測到DEVM值及/或ACP值中的一或多者滿足一或多個第二閥值,諸如可以與ACP參數邊際性及/或失效相對應的第二閥值。
可以藉由DEVM值及/或ACP值來指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低。相應地,當連接晶片710偵測到DEVM值及/或ACP值滿足一或多個第二閥值時,連接晶片710可以使得短程通訊電路716增加傳輸功率。例如,連接晶片710的韌體可以促使短程通訊電路716的傳輸功率增加(例如,增加到可能使得違反頻譜遮罩(若RF能量沒有丟失到此種程度的話)的位準)。
圖8是源設備800的方塊圖。源設備800可以是圖1A中的源設備102。源設備800可以包括連接晶片810,其可以經由軟體及/或韌體來控制短程通訊電路的一些功能。另外,源設備800可以包括硬體電路812,其可以被嵌入在源設備800的RF前端中。電路812可以包括用於偵測VSWR改變和傳輸功率的對應增加的自管理回饋系統。然而,可以首先由連接晶片810啟用自管理回饋系統。
連接晶片810可以被配置為決定指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低的第一條件;亦即,連接晶片810可以決定由源設備800發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,電路812可以用於決定與天線824的增益的相關聯的量測結果。例如,當重傳速率滿足第一閥值時,連接晶片810可以將電路812啟動以用於偵測反射RF功率850。
在一些態樣中,當連接晶片810決定重傳速率滿足第一閥值時,連接晶片810可以將電路812啟動,以用於經由賦能引腳814來偵測反射RF功率量測結果。當重傳速率滿足時在第一閥值時,連接晶片810可以諸如藉由沿著賦能引腳814發送控制信號,來啟動賦能引腳814。
在一個態樣中,賦能引腳814可以包括可以在一些設備中存在的(但是可能是未被使用的)前端模組(FEM)控制線。在另一態樣中,賦能引腳814可以包括多功能引腳或通用輸入/輸出(GPIO)線(例如,當FEM控制線不存在或用於另一目的時)。對賦能引腳814(例如,包括FEM控制線或GPIO線)的使用可以允許實現增加後的傳輸功率以克服RF功率降低而無需晶片重新旋塗(re-spin)(從而減少了用於實現該技術的開發時間)。
電路812可以控制源設備800的傳輸功率。例如,當賦能引腳814啟動電路812時,經由電路812發送要施加於天線824的信號,電路812包括驅動器放大器816和外部功率放大器818。另外,電路812包括衰減器826。在正常操作期間,天線824被正確地匹配,並且因此,沒有從天線824偵測到顯著的反射RF功率。因此,衰減器826可以將信號衰減。例如,衰減器826可以將信號衰減,以使得最大可能傳輸功率不是經由驅動器放大器816和外部功率放大器818兩者來達到的。
然而,當天線824相對接近吸收性身體時,天線824可能沒有被正確地調諧,從而造成反射RF功率增加。可以根據來自電路812的信號的在天線824處被發射的一部分來量測反射RF功率850。由於天線失配,來自電路812的信號的該部分可以在天線824處被反射,這可能是由RF功率降低造成的,並且反射RF功率850被饋送到功率偵測器822(例如,標量功率偵測器)。功率偵測器822的輸出被提供給比較器820。
比較器820可以被配置為將(如由功率偵測器822所量測到的)反射RF功率850與第二閥值進行比較。當比較器820決定反射RF功率850滿足第二閥值時,則比較器820可以斷開衰減器826。在沒有衰減器826的情況下,被饋送到天線824的RF功率增加以維持更好的通訊鏈路(例如,以維持良好的BT A2DP音訊品質)。例如,當比較器820決定反射RF功率滿足第二閥值時,衰減器826可以不再將信號衰減。相應地,可以經由驅動器放大器816和外部功率放大器818兩者來達到最大可能傳輸功率。每當存在增益改變時,可以將比較器820的控制電壓相應地調整為比較器820輸入將從RF功率偵測器822輸出觀察到的電壓。
圖9是源設備900的方塊圖。源設備900可以是圖1A中的源設備102。源設備900可以包括連接晶片910,其可以經由軟體及/或韌體來控制短程通訊電路的一些功能。另外,源設備900可以包括硬體電路912,其可以被嵌入在源設備900的RF前端中。電路912可以包括用於偵測VSWR改變和傳輸功率的對應增加的自管理回饋系統。然而,可以首先由連接晶片910啟用自管理回饋系統。
連接晶片910可以被配置為決定第一條件是否指示RF功率降低;亦即,連接晶片910可以決定由源設備900發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,電路912可以用於決定與天線924的增益相關聯的量測結果。例如,當重傳速率滿足第一閥值時,連接晶片910可以將電路912啟動以用於偵測反射RF功率950。
在一些態樣中,當連接晶片910決定重傳速率滿足第一閥值時,連接晶片910可以將電路912啟動以用於經由賦能引腳914來偵測反射RF功率量測結果。當重傳速率滿足第一閥值時,連接晶片910可以諸如藉由沿著賦能引腳914發送控制信號來啟動賦能引腳914。
在一個態樣中,賦能引腳914可以包括可以在一些設備中存在的(但是可能是未被使用的)FEM控制線。在另一態樣中,賦能引腳914可以包括多功能引腳或GPIO線(例如,當FEM控制線不存在或用於另一目的時)。對賦能引腳914(例如,包括FEM控制線或GPIO線)的使用可以允許實現增加後的傳輸功率以克服RF功率的減小而無需晶片重新旋塗(從而減少了用於實現該技術的開發時間)。
電路912可以控制源設備900的傳輸功率。例如,當賦能引腳914啟動電路912時,經由電路912發送要被施加到天線924的信號,電路912包括外部功率放大器918。外部功率放大器918可以使增益控制啟用。當RF功率降低是相對較低時,比較器920可以接收相對低的輸入電壓,諸如相對低的毫伏(mV)量測結果。相應地,比較器920可以將外部功率放大器918設置為低增益狀態。
當天線924相對接近吸收性身體時,天線924可能沒有被正確地調諧,從而造成反射RF功率增加。可以根據來自電路912的信號的在天線924處被反射的一部分來量測反射RF功率950。由於天線失配,來自電路912的信號的該部分可以在天線924處被反射,這可能是由於與吸收性物體的相對緊密接近度而導致的RF功率降低造成的。反射RF功率950被饋送到功率偵測器922(例如,標量功率偵測器)。功率偵測器922的輸出被提供給比較器920。
比較器920可以被配置為將(如由功率偵測器922以mV所量測到的)反射RF功率950與第二閥值(例如,預定的比較器參考電壓)進行比較。比較器920可以決定反射RF功率950滿足第二閥值,因為功率偵測器922的輸出電壓可以增加到高於預定的比較器參考電壓。相應地,可以(例如,由比較器920)將外部功率放大器918的增益調整到較高狀態。隨著外部功率放大器918的增益增加,功率偵測器922可以偵測到較高的反射RF功率。為了適應反射RF功率中的該突然步進,可以相應地調整比較器920的參考電壓。
圖10是源設備1000的方塊圖。源設備1000可以是圖1A中的源設備102。源設備1000可以包括連接晶片1010,其可以經由軟體及/或韌體來控制短程通訊電路的一些功能。連接晶片1010可以控制經由發送(TX)鏈1020(例如,TX鏈0)的短程無線通訊發送,並且類似地,可以控制經由接收(RX)鏈1022(例如,RX鏈2)的短程無線通訊接收。TX鏈1020可以與TX天線1024通訊地耦合,並且RX鏈1022可以與RX天線1026通訊地耦合。TX鏈1020和RX鏈1022在組合連接晶片1010中可以是不同的BT鏈。此外,RX天線1026可以是來自分集RX、分集TX、多輸入多輸出(MIMO)及/或另一技術的天線。
RX天線1026可以用於RF回饋。RX鏈1022可能將一些多徑及/或反射信號感知為所發送的信號。例如,若天線到天線隔離1040(例如,天線到天線相互耦合)是相對高的,諸如大於40 dB至50 dB,則RX鏈1022可能將一些多徑及/或反射信號解釋為所發送的信號。當在相同頻帶中操作時,設備中的典型的天線到天線隔離(或耦合)可以近似為15 dB到25 dB。因此,多徑信號可以不破壞對反射RF功率的偵測。
連接晶片1010可以被配置為決定第一條件是否指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低;亦即,連接晶片1010可以決定由源設備1000發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,連接晶片1010可以經由RX鏈1022來偵測反射RF功率1050。
當相對大量的RF能量丟失或被吸收時,RX天線1026可以偵測(例如,要經由TX天線1024發送的)信號的反射RF功率1050。反射RF功率1050可以指示TX天線1024的增益,並且因此可以用於偵測第二條件,第二條件指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低。連接晶片1010可以量測由RX鏈1022偵測到的反射RF功率1050。連接晶片1010可以決定反射RF功率1050的量測結果是否滿足第二閥值。當反射RF功率1050的量測結果滿足第二閥值時,則連接晶片1010可以使得短程通訊電路1016增加傳輸功率。
圖11是源設備1100的方塊圖。源設備1100可以是圖1A中的源設備102。源設備1100可以包括連接晶片1110,其可以經由軟體及/或韌體來控制短程通訊電路的一些功能。另外,源設備1100可以包括電路1102,其可以被嵌入在源設備1100的RF前端中。在一些態樣中,電路1102可以由連接晶片910來啟用。
連接晶片1110可以被配置為決定第一條件,第一條件指示由於與吸收性物體的相對緊密接近度而導致的RF功率降低;亦即,連接晶片1110可以決定由源設備1100發送的一或多個封包的重傳速率。當重傳速率滿足第一閥值時,電路1102可以用於決定與天線1124的增益相關聯的量測結果。例如,當重傳速率滿足第一閥值時,連接晶片1110可以將電路1102啟動以用於量測與天線1124相關聯的VSWR。
如圖所示,電路1102可以包括末級功率放大器(PA)1106、整流器1128、類比數位轉換器(ADC)1130、PA偏置電感器1108和汲極電流監測器1126。電路1102可以與天線1124通訊地耦合,天線1124可以是源設備1100的至少一個TX天線。
與天線1124相關聯的RF負載的變化可能相應地造成與天線1124相關聯的VSWR的變化。例如,「跨身體」問題或造成對天線1124的遮擋的另一個類似問題可能造成與天線1124相關聯的RF負載的變化。當依據與天線1124相關聯的RF負載的變化而發生VSWR的變化時,電流消耗及/或電壓消耗可能改變。相應地,電路1102對電流消耗及/或電壓消耗的偵測可以指示VSWR的變化,並且相應地,指示與天線1124相關聯的RF負載的變化。電路1102可以用於監測RFPA輸出電路中的汲極電壓和電流。例如,電路1102可以包括放大器,諸如其中電流可以隨著負載而改變的AB類放大器。
當天線1124正在自由空間中操作(例如,未被人體遮擋)時,可以將放大器汲極負載線設置為50歐姆負載阻抗操作。然而,由於與吸收性物體的相對緊密接近度(例如,由於「跨身體」問題)而導致的RF功率降低可能造成負載阻抗改變,並且因此造成VSWR改變。吸收性物體(例如,人體)距天線1124越近,VSWR的改變就越大,相應地,吸收性身體距天線1124越近,汲極電流和汲極電壓就可以反映出越大的改變。
輸入信號1104被施加到電路1102,諸如當源設備1100要發送一或多個封包時。當施加輸入信號1104時,輸入信號1104可以通過末級PA電晶體1106。朝著汲極電源1120,電流可以通過PA偏置電感器1108到達汲極電流監測器1126。電路1102可以偵測或量測汲極電流監測器1126處的汲極電流,諸如當信號1104被施加到電路1102以用於經由天線1124進行傳輸時。
此外,當施加信號1104時,電流可以被施加到整流器1128。整流器1128可以將來自對信號1104的施加的交流電轉換為直流電。來自整流器1128的與信號1104相關聯的直流電可以由ADC 1130轉換為數位信號。來自ADC 1130的數位信號可以傳遞至汲極電壓監測器1132。汲極電壓監測器1132可以偵測或量測與信號1104經由天線1124的傳輸相關聯的汲極電壓。
電路1102可以決定分別來自汲極電流監測器1126及/或汲極電壓監測器1132的汲極電流及/或汲極電壓中的至少一項。電路1102可以將所決定的汲極電流及/或汲極電壓與汲極電流閥值或汲極電壓閥值中的相應一項進行比較。當汲極電流滿足(例如,達到或超過)汲極電流閥值及/或汲極電壓滿足汲極電壓閥值時,則電路1102可以決定VSWR已經與RF負載相結合地變化,從而指示當經由天線1124發送信號1104時造成RF功率降低的吸收性身體的存在。相應地,可以例如由連接晶片1110來增加源設備1100的傳輸功率。例如,當汲極電流滿足汲極電流閥值及/或汲極電壓滿足汲極電壓閥值時,電路1102可以向連接晶片1110提供對RF功率降低的指示。
當連接晶片1110決定重傳速率滿足第一閥值,並且進一步決定汲極電流滿足汲極電流閥值及/或汲極電壓滿足汲極電壓閥值時,則連接晶片1110可以增加針對經由天線1124發送的信號的傳輸功率。連接晶片1110可以增加傳輸功率。連接晶片1110可以將傳輸功率增加預定量(诸如,在由ACP標準設定的限制、由監管機構或用於比吸收率(SAR)的標準設定的限制、或者另一限制或標準內的量)。
圖12是根據各個態樣的無線通訊的方法1200的流程圖。該方法可以由諸如源設備102之類的短程無線通訊設備來執行。根據不同的態樣,可以將所示出的操作中的一或多個操作進行調換、省略及/或同時執行。
在操作1202處,第一設備可以向第二設備發送封包集合。例如,第一設備可以與第二設備建立短程無線通訊連接。隨後,第一設備可以在所建立的連接上以第一傳輸功率向第二設備發送封包集合。舉例而言,封包集合可以包括用於音訊串流的音訊資料及/或用於視訊串流的視訊資料。在圖1A的上下文中,源設備102可以在通訊鏈路116上向槽設備112發送第一封包集合124a。
在操作1204處,源設備可以決定與封包集合的重傳相關聯的重傳速率。可以基於由第一設備所重傳的封包集合的數量或者基於所接收的針對封包集合中的一或多個封包的重傳的請求的數量,來決定重傳速率。例如,第一設備可以從第二設備接收基於封包集合的訊息集合。訊息集合之每一個訊息可以指示用於重傳封包集合中的封包的請求。第一設備可以對在預定時間段內接收的訊息集合的數量進行計數。
在圖1A的上下文中,源設備102可以決定重傳速率120。源設備102可以基於向槽設備112發送第一封包集合124a來決定重傳速率120。例如,源設備102可以基於在預定時間段內接收的回饋訊息集合126的數量來決定重傳速率120。例如,參照圖6,連接晶片610可以決定重傳速率。參照圖7,連接晶片610可以決定重傳速率。參照圖8,連接晶片810可以決定重傳速率。參照圖9,連接晶片910可以決定重傳速率。參照圖10,連接晶片1010可以決定重傳速率。參照圖11,連接晶片1110可以決定重傳速率。
在操作1206處,第一設備可以將所決定的重傳速率與第一閥值進行比較。例如,第一設備可以將封包集合中的所重傳的封包的數量或者從第二設備接收的訊息集合的數量與第一閥值進行比較。第一設備可以決定計數是否滿足第一閥值(諸如當計數達到或超過第一閥值時)。若計數滿足第一閥值,則第一設備可以決定正在丟失足夠數量的封包,使得第一設備應當決定是否增加第一設備的傳輸功率。若計數不滿足第一閥值,則第一設備可以繼續決定重傳速率。若重傳速率不滿足第一閥值,則第一設備可以繼續使用第一傳輸功率來發送封包集合(操作1202)。然而,若重傳速率滿足第一閥值,則第一設備可以決定與源設備的至少一個傳輸天線的天線增益相關聯的量測結果。
在圖1A的上下文中,若源設備102決定重傳速率120不滿足第一閥值,則源設備102可以繼續使用當前傳輸功率來向槽設備112發送第一封包集合124a。然而,若源設備102決定重傳速率120滿足第一閥值,則源設備102可以決定存在指示RF能量損失的第一條件。
在操作1210處,第一設備可以決定與至少一個TX天線的天線增益相關聯的量測結果。根據各個態樣,該量測結果可以是VSWR量測結果或指示反射RF功率的dB量測結果中的一項。例如,第一設備可以量測VSWR及/或反射RF功率中的至少一項。第一設備可以將VSWR及/或反射RF功率中的所量測到的至少一項與天線增益量測結果相關,諸如藉由存取示出在VSWR及/或反射RF功率量測結果的集合與天線增益量測結果集合之間的對應關係的表。隨後,第一設備可以基於該表來決定與所量測到的VSWR及/或反射RF功率相關的天線增益量測結果。
在第一實例中,第一設備可以包括功率偵測電路,其被配置為偵測與天線增益相關聯的量測結果。第一設備可以基於將功率偵測電路啟動以用於偵測量測結果來決定與天線增益相關聯的量測結果。在第二實例中,第一設備可以包括接收器電路,其被配置為經由至少一個天線來偵測反射信號。第一設備可以基於反射信號來決定量測結果。在第三實例中,第一設備可以包括被配置為偵測與天線增益相關聯的量測結果的比較器電路,並且比較器電路可以被配置為當所偵測到的量測結果滿足第二閥值時,將衰減器去啟動。第一設備可以被配置為基於將比較器電路啟動來偵測與天線增益相關聯的量測結果。在第四實例中,第一設備可以包括被配置為偵測與天線增益相關聯的量測結果的比較器電路,並且比較器電路可以被配置為當所偵測到的量測結果滿足第二閥值時,增加與至少一個天線連接的外部功率放大器的增益。第一設備可以被配置為基於將比較器電路啟動來偵測與天線增益相關聯的量測結果。在第五實例中,第一設備可以包括與接收鏈相關聯的至少一個其他天線,接收鏈不同於與至少一個天線相關聯的發射鏈。第一設備可以基於經由至少一個其他天線所偵測到的反射信號來決定與天線增益相關聯的量測結果。
在圖1A的上下文中,源設備102可以決定與至少一個天線104的天線增益相關聯的天線增益量測結果122。在圖6的上下文中,參照第一實例,連接晶片610可以將電路612啟動以用於偵測反射RF功率650,其可以是由功率偵測器614偵測到的。在圖7的上下文中,參照第二實例,連接晶片710可以將電路712啟動以用於偵測反射RF功率750,其可以是由短程通訊電路716偵測到的。在圖8的上下文中,參照第三實例,連接晶片810可以將電路812啟動以用於偵測反射RF功率850,其可以是經由賦能引腳814來控制的。在圖9的上下文中,參照第四實例,連接晶片910可以將電路912啟動以用於偵測反射RF功率950,其可以是經由賦能引腳914來控制的。在圖10的上下文中,參照第五實例,連接晶片1010可以量測由RX鏈1022偵測到的反射RF功率1050。在圖11的上下文中,電路1102可以偵測或量測汲極電流及/或汲極電壓,諸如藉由從汲極電流監測器1126獲得汲極電流及/或藉由從汲極電壓監測器1132獲得汲極電壓。
根據操作1212,第一設備可以將與天線增益相關聯的量測結果與第二閥值進行比較。例如,第一設備可以將與天線增益相關聯的量測結果與第二閥值進行比較。第一設備可以決定與天線增益相關聯的量測結果是否滿足第二閥值(諸如當與天線增益相關聯的量測結果達到或超過第二閥值時)。若與天線增益相關聯的量測結果滿足第二閥值,則第一設備可以決定正在丟失RF功率(諸如由於接近吸收性身體)。若與天線增益相關聯的量測結果不滿足第二閥值,則第一設備可以繼續使用第一傳輸功率來發送封包集合(操作1202)。然而,若與天線增益相關聯的量測結果確實滿足第二閥值,則第一設備可以增加源設備的傳輸功率(操作1214)。
在操作1214處,當在短程無線通訊連接上向第二設備發送封包集合時,第一設備可以增加傳輸功率。亦即,當重傳速率滿足第一閥值時並且當與天線增益相關聯的量測結果滿足第二閥值時,第一設備可以增加傳輸功率。第一設備可以藉由辨識要將第一傳輸功率增加的量來增加傳輸功率,並且增加後的傳輸功率可以超過基於限制或標準(諸如由ACP標準定義的限制及/或針對SAR所定義的限制)來為第一設備配置的閥值傳輸功率。隨後,第一設備可以利用增加後的傳輸功率來發送封包集合。
利用增加後的傳輸功率,第一設備可以繼續向第二設備發送封包集合。然而,第一設備可以繼續決定重傳速率和天線增益量測結果。若在傳輸功率被增加之後重傳速率及/或天線增益量測結果分別未能滿足第一和第二閥值,則第一設備可以減小傳輸功率。減小後的傳輸功率可以被減小到低於閥值傳輸功率,閥值傳輸功率可以與ACP標準或SAR標準相關聯。
在圖1A的上下文中,當在通訊鏈路116上向槽設備112發送第二封包集合124b時,源設備102可以藉由增加傳輸功率來調整傳輸功率128。參照圖6,在第一實例中,當重傳速率滿足第一閥值時並且當與反射RF功率650相關聯的量測結果超過第二閥值時,連接晶片610可以增加傳輸功率。參照圖7,在第二實例中,當重傳速率滿足第一閥值時並且當與反射RF功率750相關聯的量測結果滿足第二閥值時,連接晶片710可以增加傳輸功率。參照圖8,在第三實例中,連接晶片810可以藉由使得比較器820斷開衰減器826來增加傳輸功率。參照圖9,在第四實例中,連接晶片910可以藉由比較器920可以將外部功率放大器918的增益調整為較高的狀態,來增加傳輸功率。參照圖10,在第五實例中,當重傳速率滿足第一閥值時並且當與反射RF功率1050相關聯的量測結果超過第二閥值時,連接晶片1010可以增加傳輸功率。參照圖11,當重傳速率滿足第一閥值時,並且進一步地,當汲極電流滿足汲極電流閥值及/或汲極電壓滿足汲極電壓閥值時,連接晶片1110可以增加傳輸功率。
圖13是示出在示例裝置1302中的不同構件/部件之間的資料流的概念性資料流圖1300。裝置1302可以是短程無線通訊設備。裝置1302可以包括接收部件1304,其被配置為從第二設備1350接收信號。裝置1302可以包括發送部件1306,其被配置為向第二設備1350發送信號。
發送部件1306可以在短程無線通訊鏈路上向第二設備1350發送一或多個封包。接收部件1304可以從第二設備1350接收基於一或多個封包的回饋,並且該回饋可以包括一或多個重傳請求。接收部件1304可以將重傳請求提供給重傳部件1308。
重傳部件1308可以被配置為決定與由裝置1302對一或多個封包的重傳相關聯的重傳速率。重傳部件1308可以基於由發送部件1306在預定時間段內重傳的一或多個封包的數量,及/或基於在預定時間段內從第二設備1350接收的針對一或多個封包的重傳請求的數量,來決定重傳速率。
重傳部件1308可以決定重傳速率是否滿足第一閥值。若重傳速率滿足第一閥值,則重傳部件1308可以向增益部件1310指示RF功率降低。若重傳速率不滿足第一閥值,則重傳部件1308可以避免向增益部件1310指示RF功率降低。
當RF功率降低被指示給增益部件1310時,增益部件1310可以決定與裝置1302的至少一個天線的天線增益相關聯的量測結果。與天線增益相關聯的量測結果可以是VSWR量測結果或指示反射RF功率的dB量測結果中的至少一項。
在一個態樣中,增益部件1310可以與被配置為偵測與天線增益相關聯的量測結果的功率偵測電路連接,並且增益部件1310可以基於將功率偵測電路啟動以用於偵測與天線增益相關聯的量測結果,來決定量測結果。
在另一態樣中,增益部件1310可以與被配置為經由至少一個天線來偵測反射信號的接收器電路連接。增益部件1310可以被配置為基於反射信號來決定與天線增益相關聯的量測結果。例如,增益部件1310可以決定與反射信號相關聯的DEVM值及/或ACP值。增益部件1310可以將DEVM值及/或ACP進行量化,並且對經量化的DEVM值及/或ACP值進行區分以決定與天線增益相關聯的量測結果。
在另一態樣中,增益部件1310可以與比較器電路連接,比較器電路被配置為偵測與天線增益相關聯的量測結果。增益部件1310可以被配置為基於將比較器電路啟動來決定與天線增益相關聯的量測結果。比較器可以與衰減器或外部功率放大器中的至少一者連接。
在另一態樣中,增益部件1310可以與同裝置1302的接收鏈相關聯的至少一個其他天線連接,並且接收鏈可以不同於與至少一個天線(其可以是TX天線)相關聯的發射鏈。增益部件1310可以被配置為基於經由至少一個其他天線所偵測到的反射信號來偵測與天線增益相關聯的量測結果。
增益部件1310可以將與天線增益相關聯的量測結果與第二閥值進行比較。若與天線增益相關聯的量測結果滿足第二閥值,則增益部件1310可以向功率部件1312指示RF功率降低。若與天線增益相關聯的量測結果不滿足第二閥值,則增益部件1310可以避免向功率部件1312指示RF功率降低。
功率部件1312可以被配置為基於對RF功率損失的指示來調整用於向第二設備1350發送一或多個封包的傳輸功率。例如,功率部件1312可以基於由增益部件1310指示的對RF功率損失的指示來增加傳輸功率。換言之,當重傳速率滿足第一閥值時並且當與天線增益相關聯的量測結果滿足第二閥值時,功率部件1312可以增加傳輸功率。功率部件1312可以基於與ACP或SAR相關聯的限制或標準,來將傳輸功率增加到超過被配置用於裝置1302的閥值傳輸功率的位準。
當不再指示RF功率損失時,功率部件1312可以進一步減小傳輸功率。例如,當重傳部件1308決定重傳速率未能滿足第一閥值時及/或當增益部件1310決定與天線增益相關聯的量測結果未能滿足第二閥值時,則功率部件1312可以減小用於向第二設備1350發送一或多個封包的傳輸功率。在減小傳輸功率時,功率部件1312可以從超過閥值傳輸功率的增加後的傳輸功率來減小傳輸功率。因此,功率部件1312可以將傳輸功率減小到不超過基於ACP標準或SAR標準的閥值傳輸功率的位準。
在一個態樣中,當增益部件1310與功率偵測電路連接時,功率部件1312可以基於在所偵測到的與天線增益相關聯的量測結果和增加後的傳輸功率之間的對應關係來增加傳輸功率。例如,功率部件1312可以存取查閱資料表,該查閱資料表可以是至少部分地藉由天線增益量測結果進行索引的。功率部件1312可以辨識在查閱資料表中與所偵測到的天線增益量測結果相匹配的條目,諸如藉由辨識包括值範圍的條目。功率部件1312可以相應地辨識在與所偵測到的天線增益量測結果相對應的條目中指示的功率位準。功率部件1312可以向發送部件1306提供所辨識的功率位準,發送部件1306可以在短程無線通訊連接上向第二設備1350發送一或多個封包。
在另一態樣中,當增益部件1310與接收器電路連接時,功率部件1312可以基於與由接收器電路所偵測到的反射信號相關聯的DEVM及/或ACP中的至少一項來增加傳輸功率。增益部件1310可以向功率部件1312指示與反射信號相關聯的DEVM及/或ACP是否滿足與至少一個天線相關聯的閥值。功率部件1312可以向發送部件1306指示功率位準,並且功率位準可以是預先配置的。
在另一態樣中,當增益部件1310包括比較器電路時,功率部件1312可以被配置為藉由將與比較器連接的衰減器去啟動及/或藉由增加外部功率放大器的增益來增加傳輸功率。
該裝置可以包括執行上述圖12的流程圖中的演算法的方塊之每一個方塊的額外部件。因此,可以由部件執行上述圖12的流程圖之每一個方塊,並且該裝置可以包括彼等部件中的一或多個部件。部件可以是被專門配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器實現,儲存在電腦可讀取媒體內以用於由處理器來實現,或其某種組合。
圖14是示出針對採用處理系統1414的裝置1302'的硬體實現方式的實例的圖1400。可以利用匯流排架構(通常由匯流排1424表示)來實現處理系統1414。匯流排1424可以包括任何數量的互連匯流排和橋接,這取決於處理系統1414的特定應用和整體設計約束。匯流排1424將包括一或多個處理器及/或硬體部件(由處理器1404、部件1304、1306、1308、1310、1312以及電腦可讀取媒體/記憶體1406表示)的各種電路連接到一起。匯流排1424亦可以將諸如時序源、周邊設備、電壓調節器以及功率管理電路之類的各種其他電路進行連接,其是本領域熟知的,並且因此將不再進行描述。
處理系統1414可以耦合到收發機1410。收發機1410耦合到一或多個天線1420。收發機1410提供用於在傳輸媒體上與各種其他裝置進行通訊的構件。收發機1410從一或多個天線1420接收信號,從所接收的信號中提取資訊,以及向處理系統1414(具體為接收部件1304)提供所提取的資訊。另外,收發機1410從處理系統1414(具體為發送部件1306)接收資訊,並且基於所接收到的資訊來產生要被施加到一或多個天線1420的信號。處理系統1414包括耦合到電腦可讀取媒體/記憶體1406的處理器1404。處理器1404負責一般的處理,其包括對儲存在電腦可讀取媒體/記憶體1406上的軟體的執行。軟體在由處理器1404執行時使得處理系統1414執行上文針對任何特定裝置所描述的各種功能。電腦可讀取媒體/記憶體1406亦可以用於儲存由處理器1404在執行軟體時所操縱的資料。處理系統1414亦包括部件1304、1306、1308、1310、1312中的至少一者。部件可以是在處理器1404中運行的、駐存/儲存在電腦可讀取媒體/記憶體1406中的軟體部件、耦合到處理器1404的一或多個硬體部件、或其某種組合。
在一種配置中,用於無線通訊的裝置1302/1302'可以包括:用於決定與由通訊設備對一或多個封包的重傳相關聯的重傳速率的構件。裝置1302/1302'可以包括:用於決定與通訊設備的至少一個天線的天線增益相關聯的量測結果的構件。裝置1302/1302'可以包括:用於基於重傳速率以及基於量測結果來調整通訊設備的傳輸功率的構件。在一個態樣中,與天線增益相關聯的量測結果包括VSWR量測結果或指示反射RF功率的dB量測結果中的至少一項。在一個態樣中,重傳速率是基於由通訊設備重傳的一或多個封包的數量或者基於所接收的針對一或多個封包的重傳的請求的數量來決定的。
在一個態樣中,用於調整通訊設備的傳輸功率的構件被配置為:當重傳速率滿足第一閥值時並且當量測結果滿足第二閥值時,增加通訊設備的傳輸功率,並且增加後的傳輸功率超過基於ACP標準或SAR標準來為通訊設備配置的閥值傳輸功率。
在一個態樣中,用於調整通訊設備的傳輸功率的構件被配置為:當重傳速率未能滿足第一閥值時並且當量測結果未能滿足第二閥值時,減小通訊設備的傳輸功率,並且減小後的傳輸功率是從超過閥值傳輸功率的增加後的傳輸功率來減小的,閥值傳輸功率是基於ACP標準或SAR標準來為通訊設備配置的,並且減小後的傳輸功率低於閥值傳輸功率。
裝置1302/1302'亦可以包括用於偵測量測結果的構件,並且決定量測結果是基於對量測結果的偵測的,並且調整傳輸功率是基於在所偵測到的量測結果和經調整的傳輸功率之間的對應關係的。
裝置1302/1302'可以包括用於經由至少一個天線來偵測反射信號的構件,並且決定量測結果是基於反射信號的,並且調整傳輸功率是基於與反射信號相關聯的DEVM或ACP中的至少一項的。
裝置1302/1302'可以包括:用於偵測量測結果的構件;及用於當所偵測到的量測結果滿足第二閥值時並且當重傳速率滿足第一閥值時將衰減器去啟動的構件,決定量測結果以及調整傳輸功率是基於對量測結果的偵測和對衰減器的去啟動的。在另一態樣中,裝置1302/1302'可以包括:用於當所偵測到的量測結果滿足第二閥值時並且當重傳速率滿足第一閥值時,增加與至少一個天線連接的外部功率放大器的增益的構件,決定量測結果以及調整傳輸功率是基於外部功率放大器增益的增加的。
在一個態樣中,量測結果是基於經由與接收鏈相關聯的至少一個其他天線所偵測到的反射信號的,接收鏈不同於與至少一個天線相關聯的發射鏈。
前述構件可以是圖2中的前述處理器202、短程通訊控制器252、天線235a-d及/或無線電單元230中的一或多者。替代地或另外,前述構件可以是圖13至圖14中的裝置1302的部件1304、1306、1308、1310、1312及/或裝置1302'的處理系統1414中的一或多者,其可以被配置為執行由前述構件所記載的功能和操作。
應當理解的是,所揭示的過程/流程圖中的方塊的特定次序或層次是對示例性方法的說明。應當理解的是,基於設計偏好,可以重新排列過程/流程圖中的方塊的特定次序或層次。此外,可以合併或省略一些方塊。所附的方法請求項以取樣次序提供了各個方塊的元素,而並不意味著限於所提供的特定次序或層次。
提供前面的描述以使得本領域的任何技藝人士能夠實踐本文描述的各個態樣。對該等態樣的各種修改對於本領域技藝人士而言將是顯而易見的,以及本文所定義的一般原理可以應用到其他態樣。因此,請求項並不意欲限於本文所圖示的態樣,而是被賦予與文字請求項相一致的全部範圍,其中除非明確地聲明如此,否則提及單數形式的元素並不意欲意指「一個且僅僅一個」,而是「一或多個」。本文使用「示例性」一詞意味著「用作示例、實例或說明」。本文中描述為「示例性」的任何態樣未必被解釋為比其他態樣優選或者有優勢。除非另有明確聲明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」、「A、B、或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以及「A、B、C或其任意組合」之類的組合包括A、B及/或C的任意組合,並且可以包括A的倍數、B的倍數或C的倍數。具體地,諸如「A、B或C中的至少一個」、「A、B、或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」、以及「A、B、C或其任意組合」之類的組合可以是僅A、僅B、僅C、A和B、A和C、B和C、或A和B和C,其中任何此種組合可以包含A、B或C中的一或多個成員或數個成員。貫穿本揭示內容描述的各個態樣的元素的全部結構和功能均等物以引用方式明確地併入本文中,並且意欲由請求項來包含,其中全部結構和功能均等物對於本領域技藝人士而言是已知的或者稍後將是已知的。此外,本文中沒有任何揭示內容是想要奉獻給公眾的,不管此種揭示內容是否明確記載在請求項中。詞語「模組」、「機制」、「元素」、「設備」等等可以不是詞語「構件」的替代。因此,沒有請求項元素要被解釋為構件加功能,除非該元素是明確地使用片語「用於……的構件」來記載的。
100:無線個人區域網路(WPAN) 102:源設備 104:天線 105:身體 112:槽設備 116:通訊鏈路 120:重傳速率 122:天線增益量測結果 124a:第一封包集合 124b:第二封包集合 126:回饋訊息集合 128:傳輸功率 150:圖 152:頻譜遮罩 154a:功率 154b:功率 154c:功率 154d:功率 154e:功率 154f:功率 156:傳輸功率 200:無線設備 202:處理器 204:顯示器電路 206:記憶體 208:ROM 210:快閃記憶體 220:連接器介面 230:無線電單元 235a :天線 235b:天線 235c:天線 235d:天線 240:記憶體管理單元(MMU) 242:顯示器 250:WLAN控制器 252:短程通訊控制器 254:共存介面 300:BT協定堆疊 302:應用層 304:主機堆疊 306:控制器堆疊 308:物件交換(OBEX)層 310:射頻通訊(RFCOMM)層 312:服務發現協定(SDP)層 314:邏輯鏈路控制和適配協定(L2CAP)層 316:主機控制器介面(HCI) 318:鏈路管理器 320:鏈路控制器 322:實體(PHY)層 326:應用 328:簡檔 350:BLE協定堆疊 352:應用層 354:主機堆疊 356:控制器堆疊 358:應用 360:通用存取簡檔(GAP) 362:通用屬性協定(GATT) 364:安全性管理器(SM) 366:屬性協定(ATT) 368:L2CAP層 370:鏈路層(LL) 372:PHY層 374:主機控制器介面(HCI) 400:資料封包 402:前序信號 404:同步字元 406:尾部 408:速率指示符 412:PDU 414:CRC 422:標頭 424:有效負荷 426:MIC 428:LT_ADDR 450:資料封包 452:前序信號 454:存取位址 456:PDU 458:CRC 462:標頭 464:有效負荷 468:MIC 500:無線通訊環境 502:源設備 505:使用者 510:倒F天線模式 512:第二天線輻射模式 514:第三天線輻射模式 600:源設備 610:連接晶片 612:電路 614:功率偵測器(PDET) 616:短程通訊電路 618:WLAN電路 620:CLPC耦合器 622:RF開關 624:天線 650:反射RF功率 700:源設備 710:連接晶片 712:電路 714:功率偵測器 716:短程通訊電路 718:WLAN電路 720:耦合器 722:RF開關 724:天線 750:反射RF功率 760:前向功率 800:源設備 810:連接晶片 812:硬體電路 814:賦能引腳 816:驅動器放大器 818:外部功率放大器 820:比較器 822:功率偵測器 824:天線 826:衰減器 850:反射RF功率 900:源設備 910:連接晶片 912:硬體電路 914:賦能引腳 918:外部功率放大器 920:比較器 922:功率偵測器 924:天線 950:反射RF功率 1000:源設備 1010:連接晶片 1020:發送(TX)鏈 1022:接收(RX)鏈 1024:TX天線 1026:RX天線 1040:天線到天線隔離 1050:反射RF功率 1100:源設備 1102:電路 1104:輸入信號 1106:末級功率放大器(PA) 1108:PA偏置電感器 1110:連接晶片 1120:汲極電源 1124:天線 1126:汲極電流監測器 1128:整流器 1130:類比數位轉換器(ADC) 1132:汲極電壓監測器 1200:方法 1202:操作 1204:操作 1206:操作 1210:操作 1212:操作 1214:操作 1300:概念性資料流圖 1302:裝置 1302':裝置 1304:接收部件 1306:發送部件 1308:重傳部件 1310:增益部件 1312:功率部件 1350:第二設備 1400:圖 1404:處理器 1406:電腦可讀取媒體/記憶體 1410:收發機 1414:處理系統 1420:天線 1424:匯流排
圖1A是示出根據本揭示內容的某些態樣的WPAN的實例的圖。
圖1B是示出根據本揭示內容的某些態樣的頻譜遮罩(spectral mask)的圖。
圖2是根據本揭示內容的某些態樣的無線設備的方塊圖。
圖3A是示出根據本揭示內容的某些態樣的協定堆疊的圖。
圖3B是示出根據本揭示內容的某些態樣的協定堆疊的圖。
圖4A是示出根據本揭示內容的某些態樣的封包的圖。
圖4B是示出根據本揭示內容的某些態樣的封包的圖。
圖5是示出根據本揭示內容的某些態樣的無線通訊環境的圖。
圖6是示出根據本揭示內容的某些態樣的無線通訊設備的圖。
圖7是示出根據本揭示內容的某些態樣的無線通訊設備的圖。
圖8是示出根據本揭示內容的某些態樣的無線通訊設備的圖。
圖9是示出根據本揭示內容的某些態樣的無線通訊設備的圖。
圖10是示出根據本揭示內容的某些態樣的無線通訊設備的圖。
圖11是示出根據本揭示內容的某些態樣的用於無線通訊設備的電路的圖。
圖12是示出根據本揭示內容的某些態樣的無線通訊的方法的流程圖。
圖13是示出在示例裝置中的不同構件/部件之間的資料流的概念性資料流圖。
圖14是示出針對採用處理系統的裝置的硬體實現方式的實例的圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100:無線個人區域網路(WPAN)
102:源設備
104:天線
105:身體
112:槽設備
116:通訊鏈路
120:重傳速率
122:天線增益量測結果
124a:第一封包集合
124b:第二封包集合
126:回饋訊息集合
128:傳輸功率

Claims (30)

  1. 一種被配置用於無線通訊的通訊設備,該通訊設備包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:決定與由該通訊設備對一或多個封包的重傳相關聯的一重傳速率;決定與該通訊設備的至少一個天線的一天線增益相關聯的一量測結果;及基於該重傳速率以及基於該量測結果,來調整該通訊設備的一傳輸功率。
  2. 如請求項1所述之通訊設備,其中與該天線增益相關聯的該量測結果包括一電壓駐波比(VSWR)量測結果或指示反射射頻(RF)功率的一分貝(dB)量測結果中的至少一項。
  3. 如請求項1所述之通訊設備,其中該重傳速率是基於由該通訊設備重傳的該一或多個封包的一數量或者基於所接收的針對該一或多個封包的該等重傳的請求的一數量來決定的。
  4. 如請求項1所述之通訊設備,其中該調整該通訊設備的該傳輸功率包括: 當該重傳速率滿足一第一閥值時並且當該量測結果滿足一第二閥值時,增加該通訊設備的該傳輸功率,其中增加後的該傳輸功率超過基於一相鄰通道功率(ACP)標準來為該通訊設備配置的一閥值傳輸功率。
  5. 如請求項1所述之通訊設備,其中該調整該通訊設備的該傳輸功率包括: 當該重傳速率未能滿足一第一閥值時或者當該量測結果未能滿足一第二閥值時,減小該通訊設備的該傳輸功率,其中減小後的該傳輸功率是從超過基於一相鄰通道功率(ACP)標準來為該通訊設備配置的一閥值傳輸功率的增加後的一傳輸功率來減小的,並且減小後的該傳輸功率低於該閥值傳輸功率。
  6. 如請求項1所述之通訊設備,進一步包括: 一功率偵測電路,其被配置為偵測該量測結果,其中該至少一個處理器被配置為基於將該功率偵測電路啟動以用於對該量測結果的該偵測來決定該量測結果,並且被配置為基於在所偵測到的該量測結果和經調整的該傳輸功率之間的一對應關係來調整該傳輸功率。
  7. 如請求項1所述之通訊設備,進一步包括: 一接收器電路,其被配置為經由該至少一個天線來偵測一反射信號,其中該至少一個處理器被配置為基於該反射信號來決定該量測結果,並且被配置為基於與該反射信號相關聯的一差分誤差向量幅度(DEVM)或一相鄰通道功率(ACP)中的至少一項來調整該傳輸功率。
  8. 如請求項1所述之通訊設備,進一步包括: 一比較器電路,其被配置為偵測該量測結果,以及當所偵測到的該量測結果滿足一第二閥值時將一衰減器去啟動,其中當該重傳速率滿足一第一閥值時,該至少一個處理器被配置為:基於將該比較器電路啟動以用於對該量測結果的該偵測以及對該衰減器的該去啟動,來決定該量測結果以及調整該傳輸功率。
  9. 如請求項1所述之通訊設備,進一步包括: 一比較器電路,其被配置為偵測該量測結果,以及當所偵測到的該量測結果滿足一第二閥值時,增加與該至少一個天線連接的一外部功率放大器的一增益,其中當該重傳速率滿足一第一閥值時,該至少一個處理器被配置為:基於將該比較器電路啟動以用於對該量測結果的該偵測以及對該外部功率放大器的該增益的該增加,來決定該量測結果以及調整該傳輸功率。
  10. 如請求項1所述之通訊設備,進一步包括: 與一接收鏈相關聯的至少一個其他天線,該接收鏈不同於與該至少一個天線相關聯的一發射鏈,其中該至少一個處理器被配置為:基於經由該至少一個其他天線所偵測到的一反射信號來決定該量測結果。
  11. 一種被配置用於無線通訊的一通訊設備的方法,該方法包括以下步驟: 決定與由該通訊設備對一或多個封包的重傳相關聯的一重傳速率;決定與該通訊設備的至少一個天線的一天線增益相關聯的一量測結果;及基於該重傳速率以及基於該量測結果,來調整該通訊設備的一傳輸功率。
  12. 如請求項11所述之方法,其中與該天線增益相關聯的該量測結果包括一電壓駐波比(VSWR)量測結果或指示反射射頻(RF)功率的一分貝(dB)量測結果中的至少一項。
  13. 如請求項11所述之方法,其中該重傳速率是基於由該通訊設備重傳的該一或多個封包的一數量或者基於所接收的針對該一或多個封包的該等重傳的請求的一數量來決定的。
  14. 如請求項11所述之方法,其中該調整該通訊設備的該傳輸功率包括以下步驟: 當該重傳速率滿足一第一閥值時並且當該量測結果滿足一第二閥值時,增加該通訊設備的該傳輸功率,其中增加後的該傳輸功率超過基於一相鄰通道功率(ACP)標準來為該通訊設備配置的一閥值傳輸功率。
  15. 如請求項11所述之方法,其中該調整該通訊設備的該傳輸功率包括以下步驟: 當該重傳速率未能滿足一第一閥值時或者當該量測結果未能滿足一第二閥值時,減小該通訊設備的該傳輸功率,其中減小後的該傳輸功率是從超過基於一相鄰通道功率(ACP)標準來為該通訊設備配置的一閥值傳輸功率的增加後的一傳輸功率來減小的,並且減小後的該傳輸功率低於該閥值傳輸功率。
  16. 如請求項11所述之方法,進一步包括以下步驟: 由一功率偵測電路來偵測該量測結果,其中該決定該量測結果是基於將該功率偵測電路啟動以用於對該量測結果的該偵測的,以及該調整該傳輸功率是基於在所偵測到的該量測結果和經調整的該傳輸功率之間的一對應關係的。
  17. 如請求項11所述之方法,進一步包括以下步驟: 由一接收器電路經由該至少一個天線來偵測一反射信號,其中該決定該量測結果是基於該反射信號的,以及該調整該傳輸功率是基於與該反射信號相關聯的一差分誤差向量幅度(DEVM)或一相鄰通道功率(ACP)中的至少一項的。
  18. 如請求項11所述之方法,進一步包括以下步驟: 由一比較器電路偵測該量測結果;及當所偵測到的該量測結果滿足一第二閥值時,由該比較器電路將一衰減器去啟動,其中當該重傳速率滿足一第一閥值時,該決定該量測結果以及該調整該傳輸功率是基於將該比較器電路啟動以用於該偵測該量測結果以及該將該衰減器去啟動的。
  19. 如請求項11所述之方法,進一步包括以下步驟: 由一比較器電路偵測該量測結果;及當所偵測到的該量測結果滿足一第二閥值時,由該比較器電路增加與該至少一個天線連接的一外部功率放大器的一增益,其中當該重傳速率滿足一第一閥值時,該決定該量測結果以及該調整該傳輸功率是基於將該比較器電路啟動以用於對該量測結果的該偵測以及對該外部功率放大器的該增益的該增加的。
  20. 如請求項11所述之方法,進一步包括以下步驟: 其中該量測結果是基於經由與一接收鏈相關聯的至少一個其他天線所偵測到的一反射信號的,該接收鏈不同於與該至少一個天線相關聯的一發射鏈。
  21. 一種被配置用於無線通訊的裝置,包括: 用於決定與由該裝置對一或多個封包的重傳相關聯的一重傳速率的構件;用於決定與該裝置的至少一個天線的一天線增益相關聯的一量測結果的構件;及用於基於該重傳速率以及基於該量測結果,來調整該通訊設備的一傳輸功率的構件。
  22. 如請求項21所述之裝置,其中與該天線增益相關聯的該量測結果包括一電壓駐波比(VSWR)量測結果或指示反射射頻(RF)功率的一分貝(dB)量測結果中的至少一項。
  23. 如請求項21所述之裝置,其中該重傳速率是基於由該裝置重傳的該一或多個封包的一數量或者基於所接收的針對該一或多個封包的該等重傳的請求的一數量來決定的。
  24. 如請求項21所述之裝置,其中該用於調整該裝置的該傳輸功率的構件被配置為: 當該重傳速率滿足一第一閥值時並且當該量測結果滿足一第二閥值時,增加該裝置的該傳輸功率,其中增加後的該傳輸功率超過基於一相鄰通道功率(ACP)標準來為該裝置配置的一閥值傳輸功率。
  25. 如請求項21所述之裝置,其中該用於調整該裝置的該傳輸功率的構件被配置為: 當該重傳速率未能滿足一第一閥值時或者當該量測結果未能滿足一第二閥值時,減小該裝置的該傳輸功率,其中減小後的該傳輸功率是從超過基於一相鄰通道功率(ACP)標準來為該裝置配置的一閥值傳輸功率的增加後的一傳輸功率來減小的,並且減小後的該傳輸功率低於該閥值傳輸功率。
  26. 如請求項21所述之裝置,進一步包括: 用於偵測該量測結果的構件,其中該決定該量測結果是基於對該量測結果的該偵測的,以及該調整該傳輸功率是基於在所偵測到的該量測結果和經調整的該傳輸功率之間的一對應關係的。
  27. 如請求項21所述之裝置,進一步包括: 用於經由該至少一個天線來偵測一反射信號的構件,其中該決定該量測結果是基於該反射信號的,以及該調整該傳輸功率是基於與該反射信號相關聯的一差分誤差向量幅度(DEVM)或一相鄰通道功率(ACP)中的至少一項的。
  28. 如請求項21所述之裝置,進一步包括: 用於偵測該量測結果的構件;及用於當所偵測到的該量測結果滿足一第二閥值時將一衰減器去啟動的構件,其中當該重傳速率滿足一第一閥值時,該決定該量測結果以及該調整該傳輸功率是基於對該量測結果的該偵測以及對該衰減器的該去啟動的。
  29. 如請求項21所述之裝置,進一步包括: 用於偵測該量測結果的構件;及用於當所偵測到的該量測結果滿足一第二閥值時,增加與該至少一個天線連接的一外部功率放大器的一增益的構件,其中當該重傳速率滿足一第一閥值時,該決定該量測結果以及該調整該傳輸功率是基於對該量測結果的該偵測以及對該外部功率放大器的該增益的該增加的。
  30. 一種儲存用於由一通訊設備進行無線通訊的電腦可執行代碼的電腦可讀取媒體,包括用於進行以下操作的代碼: 決定與由該通訊設備對一或多個封包的重傳相關聯的一重傳速率;決定與該通訊設備的至少一個天線的一天線增益相關聯的一量測結果;及基於該重傳速率以及基於該量測結果,來調整該通訊設備的一傳輸功率。
TW108140412A 2018-12-07 2019-11-07 減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況 TWI753319B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862776891P 2018-12-07 2018-12-07
US62/776,891 2018-12-07
US16/538,533 US11051252B2 (en) 2018-12-07 2019-08-12 Mitigating spectral emission conditions for high transmission output power during degraded antenna peak gain
US16/538,533 2019-08-12

Publications (2)

Publication Number Publication Date
TW202037204A true TW202037204A (zh) 2020-10-01
TWI753319B TWI753319B (zh) 2022-01-21

Family

ID=70971232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140412A TWI753319B (zh) 2018-12-07 2019-11-07 減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況

Country Status (5)

Country Link
US (1) US11051252B2 (zh)
EP (1) EP3892040B1 (zh)
CN (1) CN113170399B (zh)
TW (1) TWI753319B (zh)
WO (1) WO2020117423A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870512B2 (en) 2022-04-27 2024-01-09 Samsung Electronics Co., Ltd. Distributed closed-loop power control with VGA gain update

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477803B2 (en) * 2019-07-12 2022-10-18 Arista Networks, Inc. Accommodating simultaneous transmissions in a wireless channel
LU102088B1 (en) 2020-09-25 2022-03-29 Fbconsulting S A R L Ultra wideband transmission power management
US11496969B2 (en) * 2020-10-13 2022-11-08 Samsung Electronics Co., Ltd. Systems, methods, and apparatus for combined power control of multiple transmit paths
CN113673098A (zh) * 2021-08-12 2021-11-19 广州广电计量检测股份有限公司 一种无线设备的电磁辐射比吸收率仿真检测方法及装置
US11943690B2 (en) 2022-03-01 2024-03-26 Bose Corporation Systems and methods for dynamic adjustment of RF amplifiers
CN115022951B (zh) * 2022-05-31 2024-02-20 武汉烽火技术服务有限公司 短码传输场景下总误码率最小化能量调度方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071776B2 (en) * 2001-10-22 2006-07-04 Kyocera Wireless Corp. Systems and methods for controlling output power in a communication device
WO2004073243A2 (en) * 2003-02-13 2004-08-26 Wavelink Corporation Channel, coding and power management for wireless local area networks
JP4592548B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
WO2010143477A1 (ja) * 2009-06-12 2010-12-16 シャープ株式会社 無線通信システム、基地局、移動局、基地局の制御プログラムおよび移動局の制御プログラム
US8233851B2 (en) 2010-02-03 2012-07-31 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Method and apparatus for providing impedance matching for high-frequency signal transmitter
CN103338471A (zh) * 2013-06-27 2013-10-02 南京邮电大学 基于模型的无线多跳网络服务质量指标评价方法
WO2015061994A1 (zh) 2013-10-30 2015-05-07 华为技术有限公司 一种对外环功控进行收敛的方法和设备
US10498011B2 (en) 2016-09-02 2019-12-03 Apple Inc. Electronic devices having closed-loop antenna adjustment capabilities
US10568050B2 (en) * 2017-05-04 2020-02-18 Ofinno, Llc RACH power adjustment
US10123279B1 (en) * 2017-06-02 2018-11-06 Sprint Spectrum L.P. Method and system for controlling reference signal power boosting settings based on power headroom and retransmission rate in an LTE network
US10517050B2 (en) * 2017-10-02 2019-12-24 Qualcomm Incorporated Compliance with regional regulatory requirements for user equipment with positive antenna gain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870512B2 (en) 2022-04-27 2024-01-09 Samsung Electronics Co., Ltd. Distributed closed-loop power control with VGA gain update

Also Published As

Publication number Publication date
EP3892040A1 (en) 2021-10-13
CN113170399A (zh) 2021-07-23
US11051252B2 (en) 2021-06-29
WO2020117423A1 (en) 2020-06-11
CN113170399B (zh) 2022-03-25
EP3892040B1 (en) 2023-10-18
US20200187127A1 (en) 2020-06-11
TWI753319B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
TWI753319B (zh) 減輕針對在降級的天線峰值增益期間高傳輸輸出功率的頻譜發射狀況
US10932043B2 (en) Wireless audio system and method for wirelessly communicating audio information using the same
US10244307B1 (en) Communication of wireless headphones
US10341758B1 (en) Wireless audio system and method for wirelessly communicating audio information using the same
US11743963B2 (en) Coordinated transmission and control for audio output devices
US10911184B2 (en) Error correction for data packets in short-range wireless communications systems
TWI413379B (zh) 用於驗證串流資料通道中的資料封包完整性的方法和裝置
US10575199B2 (en) System and method for performing over-the-air testing of device under test
US10784993B1 (en) Soft combining packets received from different piconets
ES2961895T3 (es) Método de comunicación y aparato de comunicaciones
US20200329052A1 (en) System and method for aligning a packet counter in short-range wireless communications systems
WO2021183481A1 (en) Broadcast relay piconet for low energy audio
CN113315728B (zh) 频偏估计方法、终端设备、介质和芯片系统
US11275648B2 (en) Empty data packet hard align
Chen et al. Reliable and practical bluetooth backscatter with commodity devices
US10367609B2 (en) Error correction for data packets transmitted using an asynchronous connection-less communication link
KR101784307B1 (ko) 통신 감도를 개선하기 위한 시스템들 및 방법들
CN103391260B (zh) 降低无线干扰的方法和无线终端
US11330468B2 (en) Low power techniques for bluetooth low energy in scanning state
Mahtab Alam et al. Wearable wireless networks for internet of humans: trends and challenges